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ABSTRACT

A number of the most common MPI-based high-performance computing approaches
available in the Python programming environment of the LNCC Santos Dumont
supercomputer are compared using three selected test cases. Python includes specific
libraries, development tools, implementations, documentation and optimization or
parallelization resources. It provides a straightforward way to allow programs to be
written with a high level of abstraction, but the parallelization features to exploit
multiple cores, processors or accelerators such as GPUs are diverse and may not be
easily selectable by the programmer. This work compares common approaches in
Python to increase computing performance for three test cases: a 2D heat transfer
problem solved by the finite difference method, a 3D fast Fourier transform applied to
synthetic data, and asteroid classification using a random forest. The corresponding
serial and parallel implementations in Fortran 90 were taken as references to compare
the computational performance. In addition to the performance results, a discussion
of the trade-off between easiness of programming and computational performance
is included. This work is intended as a primer for using parallel HPC resources in
Python.

Keywords: High performance computing. Python programming environment. Parallel
computing.
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SOLUÇÕES COMUNS BASEADAS EM MPI PARA
PROCESSAMENTO DE ALTO DESEMPENHO EM PYTHON

AVALIADAS EM CASOS DE TESTE SELECIONADOS

RESUMO

Algumas das abordagens de computação de alto desempenho mais comuns baseadas
em MPI disponíveis no ambiente de programação Python do supercomputador LNCC
Santos Dumont são comparadas usando três casos de teste selecionados. Python
inclui bibliotecas específicas, ferramentas de desenvolvimento, implementações, do-
cumentação e recursos de otimização ou paralelização. Ele fornece uma maneira
direta de permitir que programas sejam escritos com um alto nível de abstração,
mas os recursos de paralelização para explorar vários núcleos, processadores ou
aceleradores, como GPUs, são diversos e podem não ser facilmente selecionáveis pelo
programador. Este trabalho compara abordagens comuns em Python para se obter
processamento de alto desempenho desempenho utilizando três casos de teste: um
problema de transmissão de calor bidimensional resolvido por diferenças finitas, uma
transformada rápida de Fourier tridimensional aplicada a dados sintéticos e uma
classificação de asteróides por floresta aleatória. As correspondentes implementações
seriais e paralelas em Fortran 90 foram tomadas como referência para comparação
de desempenho nesses casos de teste. Além dos resultados de desempenho, inclui-se
uma discussão sobre o compromisso entre facilidade de programação e desempenho
de processamento. Este trabalho pretende ser uma introdução para o uso de recursos
de processamento de alto desempenho baseados em MPI para Python.

Palavras-chave: Processamento de alto desempenho. Ambiente de programação
Python. Computação paralela.
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1 INTRODUCTION

This work explores the most common high-performance computing (HPC) approaches
available in the Python programming environment that are based in the Message
Passing Interface (MPI) communication library. These approaches were implemented
and evaluated in terms of performance for three selected test cases, which employ
different algorithms and were applied to different application problems. The cor-
responding serial and parallel implementations in Fortran 90 (henceforth referred
to as F90) were taken as references to compare the computational performance.
All versions of the codes were executed in the Santos Dumont supercomputer of
the LNCC (National Laboratory for Scientific Computing), henceforth referred to
as SDumont. In addition to the performance results, a discussion of the trade-off
between easiness of programming and computational performance is included. This
work is a short primer for the use of HPC resources in the Python programming
environment, using the SDumont.

Python is a modern and user-friendly language, featuring an easy syntax, good
readability, easy interfacing with external applications, fast implementation using
scripting, access to a wide community of developers, and with a huge collection of
libraries, scientific or not (LUNACEK et al., 2013; VIRTANEN et al., 2020). Furthermore,
Python supports HPC by means of embedded or external libraries (SEHRISH et

al., 2017). A powerful programming environment is provided by combining Python
with an interactive shell like IPython (PÉREZ; GRANGER, 2007), allowing for rapid
prototyping. According to the 2021 IEEE Spectrum programming language ranking
(IEEE Spectrum, 2021), Python is the most popular, as shown in Figure 1.1.

Python availability reaches compiler packages like the Intel one (CIELO et al., 2019) or
most supercomputer programming environments. Application programs implemented
in languages like F90 or C, even demanding massive parallel processing, can be
encapsulated in the Python environment by means of wrappers in a modular way.
Such flexibility facilitates to perform simulations, data analysis and visualization
(BEAZLEY; LOMDAHL, 1997), mainly for large scale scientific applications. Thus,
Python provides an interactive, user-friendly programming environment that is
convenient to trial-and-error, greedy, or other exploration schemes, common in
scientific computing (HINSEN, 1997). Current use of Python in supercomputing
environments is exemplified in the Section 2.19 by a list of recent works.

The use of Python is also widespread for scientific applications at INPE (the Brazilian
National Institute for Space Research), where its digital library lists over 80 references
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Figure 1.1 - Ranking of most popular programming languages, according to IEEE Spectrum.

Source: Adapted from IEEE Spectrum (2021).

for this language (INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS (INPE), 2020),
including several applications, such as the optimization of a mathematical model
to estimate the amount of solar radiation incident on the Earth’s surface (SOUZA

et al., 2018b), or the use of a neural network for the classification of supernovae
(NASCIMENTO et al., 2019).

There is a trade-off between languages like F90 or C and the Python environment
concerning the easiness of programming and the processing performance. Such lan-
guages are harder to implement an application than Python, but are straightforward
to optimize/parallelize and provide better performance. However, there are nowadays
many libraries and frameworks that provide HPC resources for Python, making it
difficult to analyze such trade-off in order to choose one of them.

This work aims to explore the most common MPI-based (DALCÍN et al., 2008)
parallelization approaches available in the Python ecosystem, which includes libraries,
frameworks and tools. The performance of these Python HPC approaches is then
compared to the correspondent serial and MPI F90 implementations for three specific
tests cases:

• Stencil test case: a five-point stencil finite difference method to solve partial
differential equations resulting from Poisson equations, applied to a 2D
heat transfer problem on a finite surface;
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• Fast Fourier Transform (FFT) test case: an algorithm that computes the
multidimensional Fourier transform of an 3D array of synthetic data;

• Random Forest test case: a random forest algorithm applied for the classifi-
cation of asteroid orbits of a NASA dataset.

In most of this work parallelization is achieved using MPI (GROPP et al., 1996;
BARNEY, 2021), but some implementations use IPython Parallel (LIMPRASERT,
2015), both for CPU execution (Central Processing Unit, which refers to a processor
core). Therefore, multiple cores of the processors of one or more computing nodes are
employed. Some few implementations were executed in a GPU (Graphics Processing
Unit), used as an accelerator for the compute-intensive parts of a program executed
in the CPU.

Some considerations about this work, as well as about Python in general, follows:

a) Python environment is very diverse, and Python code can be linked to a
multitude of APIs/libraries for HPC, allowing programs to be written in
many different ways;

b) Python implementations of this work include HPC solutions for standard
Python (DOBESOVA, 2011), Cython (BEHNEL et al., 2010), Numba and
Numba-GPU (MAROWKA, 2018a), and F2PY (PETERSON, 2009), but there
are many others not employed here;

c) Python multiprocessing environment allows any parallel execution, from
MPI processes to OpenMP (DAGUM; MENON, 1998) threads, using a per-
sonal laptop/PC or supercomputer, but in this work, the different HPC
implementations were based on MPI for Python, except for Numba-GPU;

d) A current Python trend for Deep Learning is the PyTorch library (KETKAR;

MOOLAYIL, 2021), which mostly generate code for execution in GPUs;

e) Standard Python code does not allow any parallelization by threads/pro-
cesses (GONZALEZ et al., 2019), which is provided by Python and third-party
libraries; however, in the case of thread-based libraries, there is no guaran-
tee of thread-safeness, requiring the program avoiding race conditions, for
instance using locks 1; race conditions happen when different threads access

1http://www.pythontutorial.net/advanced-python/python-threading-lock
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the same memory position to perform a read/write in a random order that
may preclude the execution of the program in a logically correct manner;

f) Performance results shown here are specific of the selected test cases and
corresponding problem size; different algorithms, applications and problem
sizes may lead to a different analysis of the processing performance.

In the scope of this work, two articles were published about the Stencil test case, one
in the proceedings of the XV Brazilian e-Science Workshop (BreSci-2021) (MIRANDA;

STEPHANY, 2021b), and the other in the journal Cereus Magazine (MIRANDA;

STEPHANY, 2021a), as shown in the Appendix A.

The remaining chapters of this document are:

• Chapter 2: Description of the MPI-based HPC approaches for Python
programming employed in this work;

• Chapter 3: Description of the selected test cases, showing the corresponding
implementations in Python and in F90;

• Chapter 4: Analysis of the parallel performance for the different Python
and F90 implementations of the selected test cases;

• Chapter 5: Profiling for the F90 and F2PY implementations of the Stencil
and FFT test cases, also estimating the overhead due to the use of Python;

• Chapter 6: Final remarks;

• Appendix A: Reference and abstract of the published articles that resulted
of this work;

• Appendix B: Brief description of the Python environment;

• Appendix C: Listing and brief description of other HPC Python approaches
not employed in this work;

• Appendix D: Complete set of codes implemented in this work;

• Annex A: Publicly available serial and parallel F90 codes from the Stencil
test case employed in this work.
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2 EMPLOYED PYTHON HPC APPROACHES

The purpose of this chapter is to briefly describe the most common MPI-based HPC
approaches for Python coding employed in this work for the selected test cases. Some
of these approaches are part of more general Python frameworks, like the Scikit-learn
library, which is specific for machine learning, or the SciPy, for scientific computing.
A complete, comprehensive description of all Python HPC resources would be not
feasible in the scope of this work. Some Python HPC approaches use wrapping
around existing libraries, others re-purpose existing C or F90 code, while others use
compilers to generate native code. Most approaches are being continually developed
and improved. A number of other Python HPC approaches, not employed in this
work, are briefly described in the Appendix C.

In this work, two free and open source packages were chosen: the web application
JupyterLab (Section B.6) for providing a graphical interface to the remote SDu-
mont supercomputer, and the Conda environment and package management system
(Section B.7). The following sections detail the some of the employed libraries: Scikit-
learn (machine learning), SciPy (scientific computing, engineering, etc.), NumPy
(mostly for array manipulation), MPI for Python and IPython Parallel (both for
parallelization), Cython and Numba (both for generating optimized code), F2PY
(reusing F90/C code), CuPy (execution in GPU), pyFFTW and mpi4py-fftw (serial
and parallel FFT), among others. All these Python libraries/packages are free and
open source.

Please observe the final sections of this chapter, addressing the SDumont computing
environment for Python, including the Slurm job manager, and also describing the
state-of-the-art of the use of Python in supercomputer environments.

2.1 Scikit-learn

Scikit-learn (KRAMER, 2016) is a Python library for machine learning tasks such as
classification, regression or clustering via standard algorithms like support vector
machine, random forest, gradient boost, k-means or DBSCAN. Scikit-learn is built
on top of the SciPy library, being mainly written in Python, except for some core
algorithms written in Cython to improve performance. It also uses NumPy, LIBSVM
and LIBLINEAR libraries.

In addition, Scikit-learn provides easy interface with other libraries such as Matplotlib,
NumPy, Pandas, SciPy, and others. Process-based or thread-based parallelism can be
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achieved by many different ways, according to the chosen library. For instance, in the
Random Forest test case of this work, the Python version employs the Scikit-learn
library with a flow of tasks supported by the joblib library, which in turn uses as
parallel backend both IPP or loky. The Listing 2.1 shows an excerpt of Scikit-learn
code.

Listing 2.1 - Excerpt of Scikit-learn code.

1 from sklearn.ensemble import RandomForestClassifier
2 import numpy as np
3

4 # Load data
5 X_train = np.load("X_train.npy")
6 y_train = np.load("y_train.npy")
7

8 # Create a classifier
9 clf = RandomForestClassifier()

10

11 # Learn on the train subset
12 clf.fit(X_train, y_train)

2.2 SciPy

SciPy is a Python library used for scientific computing, mathematics, and engineering,
and includes modules for optimization, linear algebra, integration, interpolation, FFT,
image and signal processing, differential equation solvers, etc. SciPy has become
the de facto standard for writing scientific computing programs in Python, with
thousands of dependent packages and repositories. Other libraries, such as Scikit-
learn, are built on top of it. SciPy is written using Python, Cython, Pythran, F90,
C/C+, and some optimized libraries. A part of the F90 code of SciPy is a very
proven legacy code, which was wrapped and transformed into a Python library. Data
structures like multidimensional arrays and some other resources come from the
NumPy library (VIRTANEN et al., 2020). The Listing 2.2 shows an excerpt of SciPy
code.

2.3 NumPy

The NumPy library is a Python library that supports multidimensional arrays,
definition of arbitrary data types, integration with databases, and a set of functions
for numerical calculus, linear algebra, etc., which is not as comprehensive as the
offered by SciPy. Regardless of its use in scientific computing, NumPy is more
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Listing 2.2 - Excerpt of SciPy code.

1 from scipy.fft import fft
2 import numpy as np
3

4 # Input array with real numbers example
5 x = np.array([1.7, 0.9, 0.0, -0.9, -1.7, -2.6])
6

7 # Compute the 1-D discrete Fourier transform
8 y = fft(x)

frequently used to process multidimensional data in general. NumPy has tools to
integrate existing C/C++ or F90 code (WALT et al., 2011). NumPy may automatically
use vectorization in order to explore processor SIMD instructions, depending on the
processor.

The Python language was not conceived for numerical processing (number crunching),
but its characteristics led to the development of several libraries, such as NumPy.
Conversely, NumPy led to improvements in the Python syntax, such as handling
arrays indexing. NumPy allow arrays to be pointed to memory addresses dynamically
allocated by extensions written in C/C++ or F90, without the need to be copied,
thus allowing some compatibility with existing numerical libraries, such as the linear-
algebra libraries BLAS and LAPACK. The Listing 2.3 shows an excerpt of NumPy
code.

Listing 2.3 - Excerpt of NumPy code.

1 import numpy as np
2

3 # reshape gives a new shape to an array without changing its data
4 data = np.arange(10).reshape(2,5)

2.4 MPI for Python (mpi4py)

The Message Passing Interface (MPI) is the standard HPC communication library
(GROPP; LUSK, 1996; UNIVERSITY OF TENNESSEE et al., 2020; DONGARRA et al.,
1995). MPI for Python (mpi4py) (DALCÍN et al., 2008) is a package that provides
a library with Python bindings to an MPI library that was wrapped around. In
addition, mpi4py can be built choosing the underlying MPI distribution. Currently,
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mpi4py supports the MPI-2 standard. It makes the parallel execution of Python
scripts accessible, providing most of the MPI functionality and also communication
of Python objects such as NumPy arrays between processes.

Communication of Python objects not supported by the MPI standard can be done
using the Python Pickle module, which converts the object to a sequence of bytes
for the MPI communication and subsequently reconverts the sequence back to the
original object (the object is pickled into a sequence of bytes to later be unpickled).
The syntax of MPI for Python is similar to the MPI syntax, but does not have the
MPI_ prefix, and adopting an upper-case initial letter for communication functions
that support general Python objects (for example, Send), while using a lower case
initial letter for standard MPI objects (for example, send). MPI for Python also
supports parallel input and output in the MPI-2 standard in order to exploit parallel
file systems. The Listing 2.4 shows an excerpt of mpi4py code.

Listing 2.4 - Excerpt of mpi4py code.

1 # Write to a file test01.py and run with
2 # $ mpiexec -n 2 python test01.py
3

4 from mpi4py import MPI
5

6 # Communication information
7 comm = MPI.COMM_WORLD
8 mpirank = comm.Get_rank()
9 mpisize = comm.size

10

11 # Performs an action depending on the process or rank
12 if not mpirank:
13 data = [1.7, 0.9, 0.0, -0.9, -1.7, -2.6]
14 comm.send(data, dest=1, tag=123)
15 elif mpirank == 1:
16 data = comm.recv(source=0, tag=123)
17 print(mpisize, data)

2.5 IPython Parallel (IPP)

IPython alone is a command shell for interactive computing in multiple programming
languages, originally developed for Python, with a number of features typical of
others shells, but allowing for interactive execution of tasks. It is complemented by
IPython Parallel (IPP) (LIMPRASERT, 2015), which provides an abstraction layer that
supports interactive parallel processing. IPP allows configuring a parallel execution
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environment for a specific architecture. Applications can be developed, executed,
monitored and debugged in an interactive way. If the communication overhead is high,
the programmer can employ IPP with MPI to optimize inter-process communication
in addition to native IPP communication. However, in this work the standard parallel
features of IPP were used.

An IPP Client object is created when there is a request to execute a parallel Python
program. The request is sent to the Controller, which is composed by a Hub process
and a set of Scheduler processes 1. The Controller manages the set of Engine processes
trying to meet the demand of the Client. It keeps monitoring the status of these
Engines, checking their availability in order to schedule them, in a way that different
Client requests may be queued and then executed. These processes are managed by
Slurm. Typically, each process runs on a processor core, similarly to MPI processes.
IPP also provides interactivity, since the IPP Controller is continuously monitoring
new tasks and assigning them to idling IPP Engines. It provides fast, interactive
parallelization with few lines of code in the case of embarrassingly parallel algorithms,
which are trivially parallelized since there are no data dependencies.

In this work, IPP was only used in the Random Forest test case that used the
corresponding algorithm of the Scikit-learn library, employing the joblib library with
the IPP parallel backend. Listing 2.5 shows an excerpt of IPP code.

2.6 Cython

Cython is a compiler for the Python language, and for its own Cython extensions,
which allows generating C-compiled code automatically from Python code. The
C static compiler provides a more optimized code, in comparison to the original
Python code (BEHNEL et al., 2010). Cython source code is compiled to the C language,
which is then compiled again to generate an executable machine code. The standard
operating system C-compiler is employed.

Cython can be customized by choosing specific Cython extensions for the Python
language. Thus, Cython not only has interfaces for the libraries called in the original
Python code, but also allows interfacing with other C/C++ codes or libraries.
Cython combines the Python fast development environment with the performance of
C compiled programs.

Cython compiles the original Python code providing hints about parts of the code

1http://tw.pycon.org/2014apac/zh/program/36.html
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Listing 2.5 - Excerpt of IPP code.

1 import ipyparallel as ipp
2 from ipyparallel.joblib import IPythonParallelBackend
3 from joblib import Parallel, parallel_backend, register_parallel_backend
4 from sklearn.ensemble import RandomForestClassifier
5 import pandas as pd, numpy as np
6

7 # Prepare the engines
8 c = ipp.Client(profile = "profilename")
9 bview = c.load_balanced_view()

10 register_parallel_backend(’ipyparallel’,
11 lambda : IPythonParallelBackend(view = bview))
12

13 # Load data
14 X_train = np.load("X_train.npy")
15 y_train = np.load("y_train.npy")
16

17 # Create a random forest classifier
18 clf = RandomForestClassifier()
19

20 # Train the model using the training sets, in parallel
21 with parallel_backend(’ipyparallel’):
22 clf.fit(X_train, y_train)
23

24 # End
25 c.shutdown(hub=True, block=False)

that can be optimized by C-compilation, and about optimization choices. However,
for these parts, it is up to the programmer to add, for example, variable type
annotations to the Python code to comply with the strong typing of the C language.
It is possible to add further annotations related to the optimization hints. Cython
is commonly used to build Python libraries from Python code that uses Cython
extensions. Therefore, the new module/library can be called from the standard
Python code. The final performance will depend on the Cython compiler options,
the set of extensions used, the libraries being used, or even the portability of the
Python code to Cython.

The Listing 2.6 shows an excerpt of Cython code.

2.7 Numba

Numba (MAROWKA, 2018a) is usually employed as a JIT (just-in-time compiler) that
converts a subset of Python and NumPy library functions into optimized machine code
using the LLVM compiler infrastructure project (LATTNER; ADVE, 2004; LAM et al.,
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Listing 2.6 - Excerpt of Cython code.

1 %%cython --force --compile-args=-O3
2 #cython: language_level=3
3

4 # This example uses cythonmagic, a IPython magic command interface for
5 # interactive work with Cython, and %%cython to compile and import a
6 # JupyterLab notebook cell with Cython code
7 import numpy as np
8

9 a = np.zeros((8, 8), np.double, ’F’)
10 for _ in range(8):
11 a += 1
12 print(a)

2015). LLVM is a collection of modular, reusable compiler and toolchain technologies,
which began development in 2000 at the University of Illinois at Urbana-Champaign,
and which can be used, as in Numba, to translate into machine code, to run on CPU
or GPU. Figure 2.1 shows the diagram representing the phases of interpretation and
JIT compilation of Numba.

Numba is available in the Python Anaconda distribution, and allows optimized code
generation, with generally only minor changes to the original Python code. LLVM
currently supports compilation of languages such as Ada, C/C++, D, Delphi, F90,
Haskell, Julia, Objective-C, Rust, Swift, among others. It is based on converting
the code to its own intermediate representation (IR – Intermediate Representation),
which is strongly typed and follows the RISC standard (Reduced Instruction Set
Computing).

Most HPC approaches for Python employ of AOT (ahead-of-time) compilers, i.e.,
using code that was compiled before execution, but besides AOT, Numba also
supports JIT (just-in-time) compilation during the program execution. One of the
advantages of JIT compilation is portability to a different machine, with the Numba
compiler producing code optimized for the specific architecture. One of the reasons
for using Numba with AOT compilation is to use it on machines that may not have
the Numba compiler installed.

It is important to stress the different procedure for using Numba with JIT or AOT
compilation. JIT is the preferred form as it allows for portable code that employs
machine-optimized Numba compilation. In the case of JIT, specific decorators must
be included in the original compute-intensive Python functions in order to signal the
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Figure 2.1 - Diagram of Numba JIT interpretation and compilation phases.

Source: Adapted from Lam and Seibert (2019).

Numba compiler in execution time. In the case of AOT, it is adopted the standard
approach of compiling these functions and wrapping them into a standard Python
library. Numba also allows execution using a GPU, since it supports part of the
Nvidia CUDA API, requiring as usual the definition of a kernel function that to
be executed in the GPU, but using Python language, instead of using the CUDA
extensions.

2.7.1 GPU in short

In this work, just a few test cases were executed using GPU, and thus this section
contains a short introduction to such accelerators.

As shown in Figure 2.2, the GPU is the device (or processing accelerator) composed
of hundreds of cores and having its own memory. As any accelerator, the GPU is part
of the computing node, called the host. Typically, a node has two multicore processors
(CPUs), and one or more GPUs. The kernel function contains the instructions to be
executed in the GPU cores. Input data (operands) must be copied from the main
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Figure 2.2 - GPU processing flow.
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Source: Adapted from Li et al. (2015).

memory to the GPU memory, and after execution, output data (results) must be
copied from the GPU memory to the main memory. These copies in both directions
imply in significant overheads that penalize GPU performance. There are schemes to
minimize such overhead, but are out of the scope of this work. The architecture of the
GPU is composed by a set of streaming multiprocessors (SM), each one composed of
the same number of cores. There is a global GPU memory, but also each SM have its
own memory, and there are levels of cache between the global and the SM memories.

The GPU parallelization of the kernel function is achieved by mapping the problem
domain into blocks of threads. The blocks are then divided into warps of usually
32 threads. Warps of the same block are assigned to one of the streaming multi-
processors of the GPU (Figure 2.3). The single-instruction multiple-threads (SIMT)
paradigm models the GPU execution, since threads of the same warp are executed
simultaneously. Optimized GPU execution requires dividing the domain into blocks
according to the GPU architecture, i.e., taking into account the number of SMs, and
to minimize memory traffic between host and device.

2.8 F2PY

F2PY (F90 for Python) allows wrapping existing optimized F90/C compiled code
into a Python library (PETERSON, 2009). Thus, it allows reuse of F90/C optimized
code. However, if such code is not available, the original compute-intensive part of
the Python code can be rewritten in F90/C, and wrapped into a Python library
by F2PY. F2PY is part of the NumPy library. The Listing 2.7 shows an excerpt of
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Figure 2.3 - Execution illustrating blocks of 15 threads.

Source: Adapted from Daniel and Mircea (2010).

F2PY code.

Listing 2.7 - Excerpt of F2PY code.

1 %%fortran
2 ! This example uses fortranmagic in a JupyterLab notebook cell, which
3 ! compiles and imports symbols from a cell with Fortran code, using F2PY.
4 subroutine example(a, b, c)
5 real, intent(in) :: a, b
6 real, intent(out) :: c
7 c = a + b
8 end subroutine example

2.9 Pandas

Pandas (MCKINNEY et al., 2011) is a package for working with relational or labeled data
for data analysis and manipulation, featuring optimized manipulation of numerical
tables, spreadsheets, relational databases and time series. Pandas is based on the use
of DataFrame objects, providing a high level of abstraction for reading, manipulating,
aggregating, and displaying data. Pandas includes statistical and other data functions,
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allows the importing/exporting of data from/to different file formats (CSV, QSL,
Microsoft Excel, and others), and handling of missing data, filtering, reshaping,
rotating, or indexing data, besides handling time series data. Pandas is performance-
optimized as it includes compute-intensive parts written in Cython, and is built on
top of NumPy. The Listing 2.8 shows an excerpt of Pandas code.

Listing 2.8 - Excerpt of Pandas code.

1 import pandas as pd
2

3 # Create and display a DataFrame
4 df = pd.DataFrame({’Name’ : [’Robert’, ’John’, ’Michael’],
5 ’Rank’ : [2, 3, 4]})
6 display(df)

2.10 pyFFTW

pyFFTW (GOMERSALL, 2021) is a Python library, which is a wrapper for the standard
C-language FFTW – Fast Fourier Transform in the West (FFTW) (FRIGO; JOHNSON,
1998), a library developed at the Massachusetts Institute of Technology (MIT). The
pyFFTW library performs a planning and configuration step before calculating the
FFT, in order to optimize the processing performance. Consequently, pyFFT is more
efficient than the simpler NumPy FFT standard module, for instance. The Listing 2.9
shows an excerpt of pyFFTW code.

Listing 2.9 - Excerpt of pyFFTW code.

1 import numpy as np, pyfftw as pf
2

3 # Create data
4 data = [1.7, 0.9, 0.0, -0.9, -1.7, -2.6]
5

6 # FFT transform
7 result = pf.interfaces.numpy_fft.fftn(data)
8

9 # Show the result
10 print(result)
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2.11 mpi4py-fft

Mpi4py-fft (MORTENSEN et al., 2019), like pyFFTW, is a Python library for calculating
Fast Fourier Transforms (FFTs), but it allows parallelization through MPI to Python
(mpi4py), and the use of large multidimensional arrays. Similarly to pyFFTW,
it is also a wrapper for the standard C-language FFTW, developed at MIT. In
the case of parallelization, it allows choosing an algorithm that will be used for
decomposing the domain of the multidimensional array, for example dividing the
data into slabs with convenient dimensions to be assigned to the MPI processes.
Mpi4py-fft requires an installed and configured MPI library. Conda, an environment
and package management system, can be used to install the required mpi4py-fft
dependencies. The Listing 2.10 shows an excerpt of mpi4py-fft code.

Listing 2.10 - Excerpt of mpi4py-fft code.

1 from mpi4py_fft import PFFT, newDistArray
2 from mpi4py import MPI
3 import numpy as np
4

5 comm = MPI.COMM_WORLD
6 rank = comm.Get_rank()
7 size = comm.Get_size()
8

9 f = PFFT(comm, [8, 8, 8], dtype=np.complex128, backend=’pyfftw’)
10 u = newDistArray(f, False)
11 u[:,:,:] = np.random.randn(*u.shape)
12

13 # FFT
14 result = f.forward(u, normalize=False)

2.12 Joblib

The Scikit-learn library includes joblib (FAOUZI; JANATI, 2020) among other options
for parallelism. Joblib is a toolset for providing lightweight Python pipeline, aiming
for simple parallelism and on-demand recalculation in the sense of storing to disk
and reusing previous results, especially for large NumPy arrays. The user may
choose a process-based or thread-based parallel backend, such as loky, Dask, or IPP.
Joblib is based on a pipeline scheme that includes stages for tasks like I/O from/to
the hard disk of operands and results, or mathematical operations. Such scheme
allows a concurrent execution of different tasks in different chunks of an array, for
instance. Therefore, loops through a large array are quickly executed, provided that
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the iterations are independent. In this work, it was used only in the Random Forest
test case. The Listing 2.5 in the Section 2.5 also shows an excerpt of the joblib code.

2.13 Loky

Loky (KOLESNIKOV et al., 2020) is a high-level process-based parallel library that is
the default parallel backend for the joblib library of Scikit-learn, providing ease of
use. Loky creates and manages a pool of worker processes to execute tasks in parallel.
All processes are started using fork+exec on POSIX systems, limiting execution to
a single computing node. In this work, it was used only in the Random Forest test
case. The Listing 2.11 shows an excerpt of loky code.

Listing 2.11 - Excerpt of loky code.

1 from sklearn.ensemble import RandomForestClassifier
2 import numpy as np
3

4 # loky maximum number of concurrently running jobs
5 num_cores = 6
6

7 # Load data
8 X_train = np.load("X_train.npy")
9 y_train = np.load("y_train.npy")

10

11 # Create a classifier
12 # By default, loky is used
13 clf = RandomForestClassifier(n_jobs=num_cores)
14

15 # Learn on the train subset
16 clf.fit(X_train, y_train)

2.14 CuPy

CuPy (NISHINO; LOOMIS, 2017) is a NumPy/SciPy compatible library based on the
CUDA toolkit to allow execution on GPUs. It is based on other libraries also developed
for GPU execution, such as cuBLAS, cuDNN, cuRand, cuSolver, cuSPARSE, cuFFT
and NCCL. CuPy API has the same API as Numpy/SciPy, and allows replacing
standard code of these libraries by GPU-optimized code, thus providing a similar
functionality. The Listing 2.12 shows an excerpt of CuPy code.
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Listing 2.12 - Excerpt of CuPy code.

1 import cupy as cp
2

3 a = cp.arange(10).reshape(2, 5).astype(’d’)
4 b = a.sum(axis=1)
5 print(b)

2.15 PARF

PARF (BOULESTEIX et al., 2012) is an F90 library for Random Forest classification
developed by Goran Topić and Tomislav Šmuc, at the Informatics and Computing
Center of the Ruđer Bošković Institute, Croatia. PARF is based on the algorithm
developed by Leo Breiman (University of California, Berkeley) and Adele Cutler
(Utah State University). The PARF library includes routines for data handling,
Random Forest configuration, training analysis and data visualization. Input data
must be done in the ARFF format (Attribute-Relation File Format) of the University
of Waikato, New Zealand, an ASCII text format to describe instances and attributes
of each database record. PARF is now obsolete, being superseded by new libraries
like the Scikit-learn library. The PARF library source codes were written for the
Intel F90 compiler, and used for the serial or MPI parallel versions.

In the Random Forest test case of this work, the PARF library was directly called from
the F90 amd F2PY serial and parallel implementations. In the case of the standard
Python implementations, Cython and Numba implementations, the Scikit-learn
library was used instead.

2.16 Optimization for NUMA

Similarly to current supercomputer shared-memory nodes, SDumont twin-processor
nodes have the memory configured for NUMA (Non-UNiform Memory Access). Each
processor has its local low-latency memory, composing a NUMA node, and there is
an interconnection between processors to allow one processor to access the memory of
the other, but with higher latency. Figure 2.4 shows an example of a NUMA memory
architecture for a processing node with two Intel Skylake processors 2, similar to
the ones in the SDumont Seq-X nodes (Subsection 4.1.1). NUMA optimization is
intended to balance memory usage across processors to optimize memory access
by assigning an equal number of threads/processes for the cores of each processor

2http://www.nas.nasa.gov/hecc/support/kb/skylake-processors_550.html
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Figure 2.4 - Example of a processing node with two Intel Skylake processors with NUMA
memory architecture (SP means Scalable Processor products of Intel).

Source: Nasa (2021).

(or close to equal in the case of an odd number). An even 50%-50% distribution
of processes among the processors is advisable, in order to avoid using all cores of
one processor while using only a few of the remaining processor. Such unbalance
may compromise memory access in the first processor, overloading its local memory.
In order to avoid this issue, a specific flag may be required in the execution of
the parallel program in the command line or in the job scheduler, if the default
distribution does not provide such balance.

For instance, parallel executions performed with 16 processes in 24-core B710 or
48-core Seq-X nodes (Subsection 4.1.1), such number of processes may be unevenly
distributed between the processors, for instance, as [12+4] in the B710 node, and
[16+0] in the Seq-X node. In order to avoid unbalancing, the Slurm script must
include the cpu_bind option with the attribute distribution=block:cyclic as shown in
the Listing 2.13.
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Listing 2.13 - Excerpt of Slurm script.

1 > srun −n 16 .... −−cpu_bind=cores −−distribution=block:cyclic ... [executable program]

2.17 Python resources available on the SDumont

The SDumont computing environment provides two Python distributions, Anaconda
and Intel, in addition to its default standard Python 2.7.5 version. In general,
Anaconda is the most popular distribution, since it is free and open-source, including
a multitude of over 7,500 packages for machine learning, data science, etc. It is also
possible to install third-party packages through the use of the Conda environment
and package manager. The following Anaconda distributions are available in the
SDumont: anaconda2/2018.12 (Python 2.7.15), anaconda2/2019.10 (Python 2.7.16),
anaconda3/2018.12 (Python 3.7.3), and anaconda3/2020.11 (Python 3.8.5). It is
needed to load the corresponding operating system module.

The Intel Python distribution (CIELO et al., 2019) is a set of Python packages
and libraries optimized for Intel processor architectures for scientific computing
and data science applications. These optimizations are achieved by vectorization,
multithreading and the use of Intel libraries designed to optimize packages like
NumPy, SciPy and Scikit-learn. Intel Python includes compilers such as Numba and
Cython, and libraries such as the Intel Math Kernel, Intel MPI, Intel Tread Building
Blocks, and Intel Data Analytics Acceleration Library. The following Intel Python
distributions are available in the SDumont: Intel Parallel Studio XE (PSXE) 2016,
2017, 2018, 2019 (Python 3.6.8), and Python 3.7.7 in Intel PSXE 2020. It is also
needed to load the chosen Intel PSXE operating system module, which may require
to use an Intel batch file to configure the environment.

On both Anaconda and Intel Python distributions, in the case of a missing package,
Conda allows using its stacking feature or nested activation to append such package
without requiring to reinstall the full Python distribution. When selecting a particular
Python distribution, it is important to check its compatibility with existing libraries
and/or tools. For instance, some profiling metrics of the Intel profiler are not available
when using the Anaconda distribution. Conda tools allow logging the list of employed
packages and versions, in order to ensure portability to other Python environments.
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2.18 Using Python with the Slurm job scheduler

The Simple Linux Utility for Resource Management (Slurm) is a job scheduler used
in SDumont and of common use in supercomputers and computer clusters (it may
also be employed for cluster management). It is free and open source, being developed
collaboratively by the Lawrence Livermore National Laboratory, and companies such
as SchedMD, Linux NetworX, Hewlett Packard, and Groupe Bull, besides a large
group of collaborators. Slurm allows to: (i) allocate resources such as computing
nodes to users; (ii) start, execute, and monitor parallel jobs such as an MPI program
on a set of allocated nodes; (iii) solve resource contention problems by managing a
queue of pending jobs. It uses algorithms to optimize job allocation on the available
computing nodes.

In SDumont, parallel tasks are scheduled for execution using Slurm, by means of a
script file that contains all settings, options, modules, paths, etc. required by Slurm
to run the executable on the computing nodes. In the case of Python, the parallel
implementations of this work employ Slurm with a configuration file specific for
parallel execution using MPI or IPP (Section 2.5).

In the case of MPI, each MPI process is an instance of the Python interpreter, reading
the Python source code from the storage device in execution time. The computing
environment must be configured using Conda prior to the parallel execution, and
when the Python code ends, the MPI processes automatically terminate. In the case
of IPP, the processes need to be explicitly terminated.

2.19 Current use of Python in supercomputing environments

This work has a similarity to the tutorial Python in HPC (RESCH, 2020) provided
by the High Performance Computing (HPC) Group of the US National Institute
of Health (NIH). The tutorial is aimed at those who are starting to use Python in
an HPC environment, describing an example with pyOpenCL (a wrapper around
OpenCL which is a framework for writing code for heterogeneous platforms) for
GPU execution. There is also a discussion about disk access using Python, since it
deals with small file read/write operations. Python fast code development as it is an
interpreted and interactive language is emphasized, as well as the need of profiling
the code to find performance bottlenecks before exploiting Python HPC resources.

Another tutorial was presented at the Exascale Computing Project 2nd Annual
Meeting (2018), Python for HPC (SCULLIN et al., 2018). This tutorial aims to support
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the use of Python in some US governmental supercomputing facilities. The tutorial
summarizes HPC approaches for Python, some of them employed in this work, as
well as the stressing the convenience of using Python for both prototyping and
implementing production software, and of using F90 to optimize high-performance
kernels. There is also a discussion about the growth of the use of Python in science
and technology projects, as Python is widely available in US HPC centers. Basic
guidelines for HPC Python are also given to avoid excessive disk usage, and to
perform code profiling or even applying the Roofline model to check if a given code
is memory-bound or compute-bound for execution in the considered supercomputer.

Besides these tutorials, some articles in recent years emphasize the use of Python
programming with HPC resources, as follows.

• Towards Green Aviation with Python at Petascale (VINCENT et al., 2016)
shows the optimization of aircraft aerodynamics using Computational
Fluid Dynamics (CFD) by means of the open source framework Python
PyFR (WITHERDEN et al., 2014). PyFR is portable and compatible with
many architectures, including AMD and Nvidia CPUs and GPUs. It uses
execution time code generation to port compute-intensive kernels (parts of
code that demand 50% to 85% of the processing time) from the Python
intermediate language to languages such as CUDA, OpenCL, ROCm, or
OpenMP/C, according to the available architecture that may combine CPUs
and accelerators. Kernel specification is done by the Python Mako template
engine library. It’s approximately 8,000 lines of code are mainly written
in the Python language. It is scalable from a laptop to a supercomputer
by means of the MPI communication library. The article cites the use of
Python as rapid application development of non-critical parts of code, while
the overhead to execute compute-intensive kernels is minimal, generally
due to the call time of an external function. The article also highlights
an issue discussed in this work, about the trade-off between exploring
the GPU processing power and writing code for the GPU. Due to the
processing power of some GPUs, porting compute-intensive pieces of code
also to CPU-executable kernel functions (hybrid processing) may require
additional coding effort and complexity that may not be worth the gain in
processing performance. In this way, running the compute-intensive part
on the GPU can end up leaving many processor cores (CPUs) idle. There
are some libraries intended to provide easy programming for GPU, like
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OpenACC 3, but usually do not provide the same performance as the CUDA
language.

• Performance Analysis of Parallel Python Applications (WAGNER et al., 2017)
is about a new Python profiler, the Extrae performance monitor, which
provides event-based tracing. It can be applied to Python codes with parallel
backends that are thread-based (OpenMP or pthreads codes), process-based
(MPI codes) or hybrid (MPI+OpenMP). It aims at obtaining profiling data
as comprehensive as such provided by standard C/F90 profilers. Extrae
was evaluated for an electronic structure simulation Python package used
in materials science.

• Performance evaluation of Python parallel programming models: Charm4Py
and mpi4py (FINK et al., 2021) compares mpi4py, already described in this
chapter, and Charm4Py, a similar model that is based on the Charm++
object-oriented framework, which creates virtual processes to be assigned
to MPI ranks. The comparison employs a set of benchmarks that include
a 2D stencil problem, similar to the first test case of this work, and was
executed using both CPUs and GPUs in two supercomputers, Summit and
Stampede2 (respectively, #2 and #44 of the Top500 list of November 2021).
Parallel scalability, granularity and load balance aspects of the tests are
discussed.

• Productivity, Portability, Performance: Data-Centric Python (ZIOGAS et

al., 2021) proposed and tested a three-layer architecture for HPC Python,
composed of data-centric Python, data-centric intermediate language that
provides automatic optimizations, and the processing hardware, that may
include accelerators such as GPUs or FPGAs. It includes HPC extensions
over annotated Python code, and thus an original Python code must
be rewritten to add such annotations, but maintaining portability. The
proposed approach was tested on the Piz Daint supercomputer (#20 of
the Top500 list of November 2021) using a set of benchmarks and different
problem sizes, showing its better parallel efficiency and scalability, when
compared to other approaches such as Dask.

• Python and HPC for High Energy Physics Data Analyzes (SEHRISH et al.,
2017) shows a test case using data from high energy physics experiments,
which can easily reach up to 10 petabyte. Data is generated by a detector

3http://www.openacc.org
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of subatomic particles of the Fermi National Accelerator Laboratory in
dark matter research. Tabular data is provided in the HDF5 format and
read into Pandas DataFrames. MPI for Python (mpi4py) is employed
for parallelization, and code was executed in multicore processor nodes
with/without Intel Phi accelerators.

• GPU Computing with Python: Performance, Energy Efficiency and Usability
(HOLM et al., 2020) shows performance tests using codes and libraries for
processing accelerators: CUDA for GPUs and OpenCL for GPUs and
others (FPGA, DSP, etc.). The codes were written in C++ with the
CUDA or OpenCL libraries, or in Python with the PyCUDA or PyOpenCL
libraries. It was intended to make comparisons between the CUDA and
OpenCL versions, and also between their corresponding Python versions
using PyCUDA and PyOpenCL. Additional comparisons were performed
for different GPUs. Some test cases have shown that the overhead of using
Python is negligible, for instance comparing a PyCUDA to a CUDA version.

• Constructing a Supercomputing Framework using Python for Hybrid Par-
allelism and GPU Cluster (CHEN; YU, 2011) is about a new HPC Python
software framework, called SOLVCON, for solving linear and nonlinear
hyperbolic partial differential equations for Computational Fluid Dynam-
ics (CFD) applications. Hybrid parallelism refers to execution using both
CPUs and GPUs. SOLVCON also provides support for parallel I/O and
visualization of the numerical results. It is organized in 5 layers that include
a total of 27 modules. In typical CFD applications executed by SOLVCON,
99% of the execution time corresponds to spatial loops, which are imple-
mented using C and/or CUDA languages. Specific SOLVCON modules
provide (MPI) process-based or thread-based parallelization. The proposed
approach allows writing a Python code integrating codes of other languages,
libraries and tools, while obtaining a good parallel scalability.
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3 SELECTED TEST CASES AND IMPLEMENTATIONS

In this chapter, each one of the test cases is defined by an algorithm and a specific
application, followed by the corresponding implementations in F90 and the chosen
Python HPC implementations. The three selected test cases are:

• Section 3.1: Stencil test case, applied to a heat transfer problem on a finite
2D surface solved by a finite-difference method.

• Section 3.2: FFT test case, applied to a 3D array of synthetic data.

• Section 3.3: The Random Forest test case, applied to a classification problem
of asteroid orbits.

Please refer to Subsection 4.1.1 for the description of the different processing nodes
of the Santos Dumont supercomputer.

In all implementations of the different test cases, the open-source web application
JupyterLab was used to experiment, develop, execute and analyze the results, includ-
ing the F90 implementations. It allows the sharing of codes, data, and documents that
were used to manage these implementations and allows interactive code-related func-
tions to be implemented and executed interactively, and to check the reproducibility
of the results.

3.1 Stencil test case and implementations

Processing performances of the Python implementations were evaluated, taking as
references the serial and parallel F90 corresponding implementations. The adopted
test case is a well known heat transfer problem over a finite surface (Figure 3.1),
modeled by the Poisson partial-differential equation. It models the normalized
temperature distribution over the surface along a number of iterations that compose
the simulation. As commonly employed for numerical solutions, this equation is
discretized in a finite grid and solved by a finite difference method.

The specific algorithm is based on a main loop for time steps. In each iteration
(time step), the 2D grid is updated and the temperature of the 3 grid points of
the heat sources is increased by 1 unit, modeling the insertion of energy that is
performed every time step. The updating of the 2D grid requires the calculation of
a five-point stencil over the 2D domain grid (CHEN et al., 2002) in order to update
the temperatures at every time step. A uniform temperature field with zero value is
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Figure 3.1 - Initial and final temperature distribution over a finite surface exemplified
for a 10 × 10 blue-cell grid, including constant zero-temperature boundary
conditions in the outer borders, and thus the simulation encompasses only the
8 × 8 inner grid. Three heat sources were arbitrarily chosen, shown as red
cells.

(a) Initial zero-temperature distribution
over the 10 × 10 grid for a finite surface.

(b) Final temperature distribution for the
same grid after 500 iterations.

Source: Author’s production.

assumed over the surface, and typically, adiabatic or Dirichlet boundary conditions
are assumed, being the latter assumed for this problem. Three constant rate heat
sources were placed at localized grid points, and each introduces a unit amount of
heat at each time step. The heat transfer simulation is modeled over a finite number
of time steps, with all grid points being updated at each time step. The temperature
distribution will be determined by the heat sources and the Dirichlet boundary
conditions, which implies in zero temperature at the border grid points.

The five-point stencil allows updating a grid point by averaging the temperatures of
the point itself with the temperatures of its four neighboring grid points, left-right
and up-down. The temperature field U is defined over a discrete grid (x, y) with
spatial resolutions ∆x = ∆y = h. Thus, the discretization maps real Cartesian
coordinates (x, y) to a discrete grid (i, j), with Ux,y = Ui,j , Ux+h,y = Ui+1,j for the
x dimension, and analogously for the y dimension. Therefore, the discretized 2D
Poisson equation with a five-point stencil is expressed by Equation 3.1.

∂2U

∂x2 + ∂2U

∂y2 ≈ Ui+1,j + Ui,j+1 − 4Ui,j + Ui−1,j + Ui,j−1

h2 (3.1)
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In the case of parallelization, the domain corresponding to the finite surface is divided
into subdomains that are assigned to processes or threads. However, the update
of points in the border of subdomains requires the temperatures values of points
in the neighboring subdomains, and such data dependency between subdomains
implies in communication between processes or synchronization between threads
(LANGTANGEN; CAI, 2008). Considering the chosen test case, an early implementation
of the algorithm was proposed by Balaji et al. (2017) using the C language, but
later it was ported to F90. Figure 3.1(b) shows the final temperature distribution
over a finite surface after 500 iterations, exemplified by the grid 10 × 10 and three
arbitrarily chosen heat sources, shown as red cells. The simulation covers only the
internal grid 8 × 8, and the initial zero-temperature distribution is indicated in blue.

The 2D discrete domain is shown in Figure 3.2(a), with every small circle denotes a
grid point and the red cross, the five-point stencil. Green lines show the division
of the domain into 9 equal subdomains, for the sake of example. The same domain
is shown in Figure 3.2(b), but with each subdomain enlarged by two rows and
two columns of extra grid points, shown in yellow, which are copies of the grid
points of the four neighboring subdomain. In the borders of the domain, grid points
corresponding to the boundary conditions are copied. These extra rows and columns
of grid points compose the ghost zone of each subdomain for the specific five-point
stencil, with other stencils eventually requiring a different number of rows and
columns of grid points. The red arrow denotes the communication/synchronization
required to update a grid point of the central subdomain from a “white point” of the
subdomain above it, with the temperature of this point copied to the corresponding
“yellow point” of the ghost zone of the considered central subdomain.

For simplification, it is assumed a square grid of n × n = N points, and also a square
grid of processors or threads of p × p = P units, in a way that n is a multiple of
p. It is then possible to divide the domain into P subdomains, each one containing
[N/P = (n × n)/(p × p) = n/p × n/p] points. The ghost zone then adds two rows
and two columns of grid points, considering the five-point stencil. Therefore, each
subdomain contains [(n + 2)/p × (n + 2)/p] points.

Serial and parallel of the Stencil test case F90 implementations were based on a
former work (SOUZA et al., 2018a). Other implementations are standard Python,
Fortran-to-Python (F2PY), Cython, and Numba (including Numba-GPU). The
compute-intensive part of the implementations was hand coded and does not use an
existing off-the-shelf external library. In this work, most parallel versions of these
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Figure 3.2 - Discretized 2D domain of the heat transfer case (red cross denotes the five-point
stencil).

(a) Discretized 2D domain of the heat
transfer problem chosen as test case show-
ing 9 sub domains with their grid points.

(b) Discretized 2D domain of the heat
transfer problem divided into 9 sub do-
mains enlarged with their ghost zones.

Source: Adapted from Balaji et al. (2017).

implementations are based on MPI: the version is wrapped by the MPI for Python
(mpi4py) API into a Python function, allowing the execution of MPI processes in one
or more computing nodes from the Python environment. However, the F2PY API is
the only exception, since it reuses a binary code generated by an F90 compiler by
encapsulating it into a Python function. Parallelization using threads was restricted
to the execution of a Numba JIT-compiled function in GPU, which is also discussed
ahead.

Stencil test case implementations are described in the next sections.

3.1.1 F90 serial and parallel

The F90 serial and parallel versions were compiled with the GNU-compiler gfortran,
which fully complies to the Fortran 95 standard. The serial F90 version is the
implementation of the algorithm described in the previous section. Its corresponding
parallel version employs standard MPI asynchronous non-blocking communication
functions MPI_ISend() and MPI_IRecv(), which allows overlapping computation
and communication, enhancing the parallel performance. However, at the end of
each time step, synchronization is required for the updating of each subdomain
ghost zones from the neighboring subdomains. As already mentioned, for a square
grid with N = n × n points and p × p MPI processes, each process is assigned a
subdomain with a total of [(N/p) + 2] × [(N/p) + 2] points, including the ghost zone.
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The compute-intensive part of the code is the updating of the domain grid using the
five-point stencil, as shown in the F90 code of the Listing 3.1, showing two nested
loops that traverse the 2D grid, with the anew array stores the values of updated
grid elements calculated from their previous values aold array.

Listing 3.1 - Compute-intensive part of the Stencil test case F90 code.

1 do j = 2, by+1
2 do i = 2, bx+1
3 anew(i,j) = ( aold(i, j) / 2.0 +
4 ( aold(i-1,j) + aold(i+1,j) +
5 aold(i,j-1) + aold(i,j+1) ) / 8.0 )
6 enddo
7 enddo

3.1.2 F2PY serial and parallel

F2PY creates a Python library from the F90/C code, and this library is then imported
by the Python code. In this test case, the function arguments of the created library
are the number of grid points, the location and heat rate of the sources, the number
of iterations, etc. If the F90 code is not already parallelized with MPI, a typical
alternative is to use the mpi4py Python library in the Python code. F2PY seems
to be convenient when an optimized F90/C code already exists and can be reused.
In this test case, the Python code uses F90/C code wrapped into a library built by
F2PY, as shown in the Listing 3.2. The Pyhton library libstencil is built by F2PY
from F90 code, and includes the function funcstencil. The parameters gridsize, energy,
niters, are the same as in the F90 implementation, and the total energy entered
into the grid and the elapsed time are returned by the function and stored in the
variables heat and etime.

Listing 3.2 - Compute-intensive part of the F2PY implementation, in the main Python
code.

1 heat, etime = libstencil.funcstencil(gridsize, energy, niters)
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3.1.3 Standard Python serial and parallel

The portability of the F90 code to Python is straightforward, requiring only NumPy
as external library, which is the Python numerical-tool library. Most of the loops in
the Python code can be executed using NumPy. The structure and sequence of the
original code is preserved and executed interactively by the Python interpreter, while
the cycle of analyzing results, changing code or parameters, and re-executing, benefits
from the JupyterLab environment. However, as any interpreted language, Python is
slow. Once the proof-of-concept of the Python code is complete, the code needs to
be optimized, focusing on its compute-intensive parts, which are the performance
bottlenecks. In this step, the programmer can take advantage of the modular nature
of Python to selectively optimize the code, for example by porting a specific module
to F90 or by replacing it by an optimized library function. In addition, parallelization
can be performed employing the native Python multiprocessing environment. In this
work, Python multiprocessing was provided by the MPI for Python (mpi4py) library.
The compute-intensive part of the code is the updating of the domain grid using the
five-point stencil at each timestep, as shown in the Python code in the Listing 3.3.
Two nested loops traverse the 2D grid, and the anew array stores the result of an
equation that uses the elements of the aold array. Loops are performed internally by
NumPy using the colon notation (“:”) in the array indices.

Listing 3.3 - Compute-intensive part of the Python implementation.

1 anew[1:-1,1:-1] = ( aold[1:-1,1:-1] / 2.0 +
2 ( aold[2:,1:-1] + aold[:-2,1:-1] +
3 aold[1:-1,2:] + aold[1:-1,:-2] ) / 8.0 )

3.1.4 Cython serial and parallel

Cython is a compiler for both the Cython and Python languages, which is typically
used to create Python libraries. These libraries are later called from standard Python
code. In this test case the original Python code was reused, with few changes, in
order to be compiled by Cython. The Cython parallel version employs mpi4py. The
part that updates the 2D grid using the five-point stencil is shown in the Listing 3.4.

In this Cython implementation, the code included comments starting with “#cython:”
that are actually compiler directives for disabling limit checking, disabling negative
indexing, inferring the types of variables, among others.
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Listing 3.4 - Compute-intensive part of the Cython implementation.

1 cpdef stp(double[:,::1] anew, double[:,::1] aold, Py_ssize_t by, Py_ssize_t bx):
2 for i in range(1, bx+1):
3 for j in range(1, by+1):
4 anew[i,j] = ( aold[i,j] / 2.0 +
5 ( aold[i-1,j] + aold[i+1,j] +
6 aold[i,j-1] + aold[i,j+1] ) / 8.0 )

3.1.5 Numba serial and parallel

In this implementation, the compute-intensive part of the Python code was embedded
into a function decorated for Numba JIT-compilation. The remaining Python code is
interpreted by standard Python. Parallelization for the Numba-compiled function is
provided by mpi4py for multicore processors. In the case of the standard multicore
processor parallelization of the Numba code, the compute-intensive function that
updates the domain grid using the five-point stencil is shown in the Listing 3.5.
Loops are performed internally by NumPy using the colon notation (“:”) in the array
indices. @jit is the Python decorator for Numba JIT compilation.

Listing 3.5 - Compute-intensive part of the Numba implementation.

1 @jit(nopython=True)
2 def kernel(anew, aold):
3 anew[1:-1,1:-1] = ( aold[1:-1,1:-1] / 2.0 +
4 ( aold[2:,1:-1] + aold[:-2,1:-1] +
5 aold[1:-1,2:] + aold[1:-1,:-2] ) / 8.0 )

3.1.6 Numba-GPU

In this section, Numba was also employed for execution using a GPU, since Numba
supports part of the Nvidia CUDA API, requiring the definition of the kernel function
that will be executed on the GPU. The Numba-GPU implementation required more
modifications to the standard Python serial code, than the other implementations.
The compute-intensive part of the code was encapsulated into a JIT-compiled function
for GPU execution by means of a Numba decorator. As usual, the remaining code of
the test case algorithm is executed by the standard Python interpreter, since it is
not compute-intensive.
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The compute-intensive part of the code is the updating of the 2D grid/array using the
five-point stencil, as shown in the code of Listing 3.6. The kernel function executed
in the GPU assigns the iterations of two nested loops that traverse the 2D grid by
blocks of threads in a way that each thread calculates the stencil at a grid point. Each
block is divided into 32-thread warps and assigned to a particular GPU streaming
multiprocessor. Two copies of the 2D array are created in the GPU memory, being
swapped one for another: the anew array stores the 2D grid that is updated from the
2D grid stored in the aold array, and vice-versa along the time steps. Numba-GPU
requires more code changes than the CPU version, such as defining GPU blocks
and grids, and transferring data from host memory to device/GPU memory, and
vice-versa. @cuda.jit is the Python decorator for Numba-GPU JIT compilation.

Listing 3.6 - Compute-intensive part of the Numba-GPU implementation.

1 @cuda.jit
2 def kernel(anew, aold):
3 n = anew.shape[0] - 1
4 i, j = cuda.grid(2)
5 if (i > 0 and j > 0) and (i < n and j < n):
6 anew[i,j] = ( aold[i,j] / 2.0 +
7 ( aold[i-1,j] + aold[i+1,j] +
8 aold[i,j-1] + aold[i,j+1]) / 8.0 )

The algorithm comprises the main loop with iterations that correspond to the time
steps of the simulation. At each time step/iteration, the 2D array must be updated.
In the serial version, such updating is entirely executed by the kernel function in
the GPU. The 2D array is transferred to the GPU in the first time step, the GPU
updates the 2D array and inserts energy in each time step, and only at the last time
step the final 2D array is transferred back to the host memory.

However, in the parallel version, the 2D array cannot be fully updated by each MPI
process (in the GPU), since the updating of the borders of its subdomain requires the
updated values of the ghost zone, which are calculated by the processes that update
the neighbouring subdomains. Therefore, each process needs to transfer its updated
borders from the GPU to the host memory in order to send these values to the
neighbouring processes. Besides, each process receives the updated borders from the
neighbouring processes in order to transfer these values to the GPU, which compose
the updated ghost zone of the subdomain. After the last time step is completed,
the GPU of each process must transfer the final array back to its host memory.
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Therefore, MPI communication and Host-GPU transfer in both directions, both
related to the updating of ghost zones, make the performance of parallel versions
very low compared to serial versions.

3.2 FFT test case and implementations

This section describes a specific FFT algorithm, the Fast Fourier Transform in
the West (FFTW), applied to a synthetic 3D multidimensional array. An array
of synthetic data has elements assigned by the programmer, as an alternative to
real-world data.

FFT is an algorithm that computes the discrete Fourier transform (DFT), which is
a numerical algorithm for converting a finite sequence of N equally spaced samples
in the temporal or spatial domain, into the corresponding sequence in the frequency
domain. For instance, the FFT allows decomposing a signal varying in time consisting
of multiple pure frequencies. The Fast Fourier Transform (FFT) is an approach that
reduces the DFT computation complexity from O(N2) to O(N log N).

The 1D DFT of a sequence of N complex numbers results in a sequence of N − 1
complex numbers given by Equation 3.2.

Xk =
N−1∑
n=0

xn · e−2πikn
N , (k = 0, ..., N − 1) (3.2)

The calculation of multidimensional 3D FFTs is given by the product of the cor-
responding 1D FFTs along each dimension, as shown in the Equation 3.3. Each
3-element tuple of complex numbers in the time or space domain is mapped to a
corresponding 3-element tuple of complex numbers in the frequency domain for the
same 3D grid. The same equation can be adapted for higher dimensions.

X(k1, k2, k3) =
N3−1∑
n3=0

N2−1∑
n2=0

N1−1∑
n1=0

x(n1, n2, n3) e
−2πik3n3

N3
× −2πik2n2

N2
× −2πik1n1

N1 (3.3)

The parallelization is performed by dividing and distributing the 3D array of N3

complex numbers into N/p slabs that are assigned to p MPI processes. Two successive
1D FFTs are performed on the y and z dimensions for each slab, and then a new set of
N/p slabs is obtained by the transposition of the former ones, in a way that the new
slabs are assigned to the p MPI processes. This requires an all-to-all communication.
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Figure 3.3 - Parallelization of the 3D FFT, showing the decomposition of a L × M × N
domain into 4 slabs assigned to 4 MPI processes.

Source: Adapted from Schulz (2008).

Finally, each MPI process performs a 1D FFT on the x dimension of its slab. This
scheme is shown in Figure 3.3, but considering a more generic multidimensional array
of dimension L × M × N and 4 processes,

The standard implementations of Python, Cython and Numba FFT employ the
mpi4py-fft library (Section 2.11) which depends on the FFTW library, and also
the mpi4py library for parallelization, and which automatically distributes large
sequences or data arrays. In the case of the F90 and F2PY implementations, the
FFTW library available on the SDumont was used (module mathlibs/fftw/3.3.8_-
openmpi-3.1_gnu) with the MPI library. Therefore, differently from the Stencil test
case, the compute-intensive part of the code uses off-the-shelf external libraries.

In order to obtain performance, F90 is straightforward, followed by F2PY, which
required relatively few changes to the original F90 code, and Python. FFT test case
implementations are described in the next sections.
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3.2.1 F90 serial and parallel

The F90 serial and parallel versions were compiled with the GNU-compiler gfortran,
which complies to the Fortran 95 standard. These F90 implementations employ the
FFTW library available on the SDumont, and the MPI library. Parallelization is per-
formed as described above, in the Section 3.2. The FFTW library includes a planning
step before running the FFT, in order to optimize the processing performance. The
compute-intensive part of the code is shown in the Listing 3.7, being performed by
the FFTW library (fftw_mpi_execute_dft). In the code, plan is given as an option,
data1 is the input 3D array, while data2 is the output one.

Listing 3.7 - compute-intensive part of the FFT test case F90 code.

1 call fftw_mpi_execute_dft(plan, data1, data2)

3.2.2 F2PY serial and parallel

The F2PY implementation reuses the F90 source code, including the MPI and
FFT libraries, with minor changes. The original compute-intensive source code is
transformed into Python functions with the corresponding arguments. The F90
source code is then built using F2PY and the -O3 compilation flag, and wrapped
by F2PY into a standard Python library, which contains most of the original code,
including: (i) initializing the 3D array with values derived from the array indices, (ii)
calculating the FFTW transform, and (iii) calculating the array checksum in order to
check the correctness of the result. The remaining Python code is short, since it just
imports the library to call the functions built by F2PY, and then displays the result.

Instead of passing input parameters as function arguments, another possible approach
can be created by hardcoding the arguments, i.e., to declare their values as parameters
inside the program. Such approach was used in this test case for convenience, since it
is easy to edit the code, recompile and re-execute it using the JupyterLab notebook.
Changes in the Python code are minimal, and the use of Slurm is also similar. Two
different versions of the library were developed, serial and parallel, for ease of use,
but is would be possible to employ a single version, and choose serial or parallel
execution using the Slurm script.

The compute-intensive part of the F2PY implementation is due to the Python
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function calls to perform the FFTW, shown in the Listing 3.8 (Pyhton library libfft
and function funcfft built by F2PY using the size gridsize3d of the array as argument).
This function call returns the checksum of the array elements and the elapsed time,
in the csum and etime variables.

Listing 3.8 - Compute-intensive part of the FFT test case Python code.

1 csum, etime = libfft.funcfft(gridsize3d)

3.2.3 Standard Python serial and parallel

In the Python serial implementation, the Python library pyFFTW is used, which is
an encapsulated version of the C-compiled FFTW, being the compute-intensive part
of the implementation. The remaining part is the standard Python code, executed
in an interpreted way. However, the initialization of the 3D multidimensional array
was written in Python and requires nested loops, which are very slow when executed
in interpreted form. Therefore, the Python code that performs the initialization
was optimized by calls to functions of the NumPy library. The parallel Python
implementation simply calls the mpi4py-fft library, that adds an MPI parallelization
layer to the same FFTW library.

In this implementation, the computation-intensive part of the code is shown in
the Listing 3.9, being performed by the pyFFTW library (pf.interfaces.numpy_-
fft.fftn). The array u contains the input 3D multidimensional array, uf contains
the result, overwrite_input=True indicates that the input array can be overwritten,
while auto_contiguous=False, and auto_align_input=False both indicate that the
multidimensional array can be copied into contiguous memory positions that are
also aligned in memory, in order to optimize memory access.

Listing 3.9 - Compute-intensive part of the FFT test case Python code.

1 uf = pf.interfaces.numpy_fft.fftn(u,
2 overwrite_input=True,
3 auto_contiguous=False,
4 auto_align_input=False)
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3.2.4 Cython serial and parallel

Cython is a static optimizing compiler that translates Python or Cython source code
into C language target code that is then compiled to generate an optimized machine
code. Cython implementations use the same Python libraries pyFFTW (serial),
and mpi4py-fft (parallel) as the standard Python corresponding implementations.
Therefore, the remaining Python code is the same for both corresponding serial
and parallel implementations. Function input arguments were hardcoded, taking
advantage of the JupyterLab notebook.

The compute-intensive part of the code is the function call to the library pyFFTW
(serial version), or to mpi4py-fft library (parallel version), as shown in the Listing 3.10
for both versions. The data argument contains the input 3D multidimensional array,
while result is the output transformed array. In the parallel version, MPI.COMM_-
WORLD is the default MPI communicator, [N, N, N ] is the dimensions of the 3D
array, dtype is the type of each element in the array (complex number), and the
backend specifies the pyFFTW library, which is the same used in the serial version.

Listing 3.10 - Compute-intensive part of the FFT test case Cython code.

1 # serial version:
2 result = pyfftw.interfaces.numpy_fft.fftn(data)
3 # parallel version:
4 plan = PFFT(MPI.COMM_WORLD, [N, N, N], dtype=np.complex128, backend=’pyfftw’)
5 result = plan.forward(data)

3.2.5 Numba serial and parallel

The Numba implementation employed JIT compilation, and similarly to the standard
Python and Cython implementations, the serial version uses the pyFFTW library and
the parallel version uses the mpi4py-fft library. Differently from the Numba implemen-
tation of the Stencil test case, JIT compilation was not used in the computationally
intensive part of the FFTW, since it is executed by the pyFFTW library which has
already been AOT compiled and optimized. However, Numba was used in the rest of
the code including the function that initializes the 3D multidimensional array, being
faster than the corresponding part of the standard Python implementation.

The compute-intensive part of this implementation is also the function call of the
library pyFFTW for the serial version, or mpi4py-fft for the parallel version, and is
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shown in the Listing 3.11, both already AOT compiled, for the serial and parallel
versions. The parameter data is the array containing the input 3D multidimensional
array. In the parallel version, MPI.COMM_WORLD is the standard MPI communi-
cator, [N, N, N ] are the dimensions of the 3D array, dtype is the type of each element
of the array (complex number), and backend specifies the pyFFTW library, which is
the same used in the serial version.

Listing 3.11 - Compute-intensive part of the FFT test case Numba code.

1 # serial version:
2 result = pyfftw.interfaces.numpy_fft.fftn(data)
3 # parallel version:
4 plan = PFFT(MPI.COMM_WORLD, [N, N, N], dtype=np.complex128, backend=’pyfftw’)
5 result = plan.forward(data)

3.2.6 CuPy

The CuPy implementation was executed on a B715 node or on a Seq-X (Sub-
section 4.1.1), both employing a single GPU. The CuPy library is GPU-specific,
NumPy-compatible, and encapsulates the CUDA toolkit. The compute-intensive part
is the FFTW, performed by a CuPy library function and executed in the GPU. Other
CuPy functions were employed to transfer the input array to/from the GPU memory,
and to calculate the checksum of the array elements. The NumPy fromfunction
function was used to initialize the 3D multidimensional array to avoid using the
Python interpreter slow loops. The same CuPy code was executed on a B715 node
using Slurm or on a Seq-X directly from the operating system command line, using
a Tesla K40t GPU or a Volta V100 GPU, respectively. The compute-intensive part
of the Python code of the CuPy implementation is the function call of the library
routine shown in the Listing 3.12. The data argument is the input 3D array, and
result is the transformed output array. Provided that there is the availability of an
optimized CuPy function for the compute-intensive part of the code, this is a very
simple way for employing a GPU.

Listing 3.12 - Compute-intensive part of the FFT test case CuPy code.

1 result = cupy.fft.fftn(data)
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3.3 Random Forest test case and implementations

This test case describes the implementation of the machine learning algorithm
Random Forest (RF), applied for the classification of asteroid orbits. An RF is a set
of decision trees generated by an ensemble method. As in the other test cases, the
corresponding RF implementations were made in F90 and Python, in both sequential
and parallel versions.

3.3.1 Random Forest and ensemble methods

A decision tree is a machine learning algorithm (MLA), more specifically, a non-
parametric (does not require hyperparameters) supervised (applied to known classes)
learning method used for classification and regression. A decision tree is similar to a
graph, composed of nodes and branches, with each node associated to an attribute of
the input data, and each branch associated to the class or value of the node attribute.
Nodes are ordered according to its importance for discriminating the instances. At the
end of the tree, branches are assigned with the corresponding major class. A decision
tree is called a regression tree if it uses numerical data, or a classification tree if it
uses categorical (class) data. Similarly to other machine learning algorithms, input
data is divided into information variables (input) and a decision variable (output). In
the training phase, a decision tree is generated from known instances of the training
dataset. Then, in the test phase, the decision tree is used to perform classification or
regression on new input data in order to estimate the decision variable for each new
instance of the test dataset.

An ensemble method may improve the performance of any MLA by combining a finite
set of instances of the original MLA, being these instances called members of the
ensemble. This ensemble-generated set of members actually represents a new MLA
that is expected to yield a better result than the original MLA. In general, ensemble
methods may have members being training independently one from one another in
parallel, or being trained consecutively in sequence. Considering a given MLA, the
use of an ensemble method reduces the bias error, which is due to the algorithm
itself or its hyperparameters, by means of reducing the error due to the variance,
which is due to sensitivity to small fluctuations in the input data. As a consequence,
ensemble methods helps to avoid overfitting. The most standard ensemble methods
are Bagging and Boosting, with each one having many variations.

Bagging (BREIMAN, 2001), from Bootstrap Aggregating, applies some sampling
scheme to the input data in order to generate different training datasets for the
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ensemble members, but is possible to use an ensemble of different MLAs or of the
same MLA with different hyperparameters. Each dataset contains a different set
of instances, but each instance has the complete set of input attributes. Another
scheme would be to use a slightly different set of attributes in the training of each
member, but the complete set of instances of the input data, or yet a combination
of both approaches. In addition, the use of different training data can be applied
for ensembles composed of different MLAs. After the training, in the test phase, the
result of the ensemble-MLA for each new instance is given by averaging the results
of the members (for numerical output, in classification or regression), or by a polling
scheme (for categorical output, in classification). Bagging is inherently parallelizable,
since members are trained independently, by assigning one or a block of members
to each MPI process or POSIX thread. An RF is an ensemble of decision trees that
employs Bagging.

Boosting (BREIMAN, 2001) is an ensemble method in which training is performed
consecutively on the members, but weighting the error of each instance. In the training
of the first member, weights are initially equal to unity, but in the successive trainings
of the members, the importance of each instance is weighted by its corresponding
classification/regression error. Boosting it is not memberwise parallelizable, since each
member is trained consecutively, but it is usually faster than Bagging, as it demands
a much lower number of members. Eventually, the execution of each member may be
parallelizable. After the training, in the test phase, the result of the ensemble-MLA
for each new instance is given by the last member of the ensemble.

In this test case, the ensemble method is an RF, and thus bagging was applied to
generate N training sets for each of the N trees. Each set is obtained by randomly
sampling, with replacement, the original dataset. Figure 3.4 presents the flowchart of
an RF composed of the set of decision trees in the test phase, i.e., after the decision
trees were trained. Each instance from the test dataset is then classified by each of
the decision trees, yielding a result, which can be numerical or categorical. The final
result of the RF is then computed by averaging the numerical results or by a polling
scheme for categorical results.

3.3.2 The asteroid orbit classification problem

This problem is about training an MLA, a Random Forest, to perform asteroid orbit
classification. A dataset of 100,000 asteroids was randomly selected and divided into
training and test sets, with respectively 66,000 and 34,000 instances, each defined
in a separate ARFF file. Each instance of the dataset corresponds to an observed

40



Figure 3.4 - RF flowchart.
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Source: Author’s production.

asteroid and contains 37 attributes that the RF employs to classify the asteroid class,
among the 13 possible classes for asteroid orbit, as described in Table 3.1 and in
Table 3.2.

Table 3.1 - The 13 asteroid orbit classes for the class decision attribute in the asteroid
orbit dataset.

Abbr. Title Description

AMO Amor Near-Earth asteroid orbits similar to that of 1221 Amor
APO Apollo Near-Earth asteroid orbits which cross the Earth’s orbit
AST Asteroid Asteroid orbit not matching any defined orbit class
ATE Aten Near-Earth asteroid orbits similar to that of 2062 Aten
CEN Centaur Objects with orbits between Jupiter and Neptune
HYA Hyperbolic Asteroid Asteroids on hyperbolic orbits
IEO Interior Earth Object Orbit contained entirely within the orbit of the Earth
IMB Inner Main-belt Orbital elements constrained by Inner Main-belt
MBA Main-belt Asteroid Orbital elements constrained by Main-belt Asteroid
MCA Mars-crossing Ast. Orbit of Mars constrained by Mars-crossing
OMB Outer Main-belt Orbital elements constrained by Outer Main-belt
TJN Jupiter Trojan Traped in Jupiter’s L4/L5 Lagrange points
TNO TransNeptunian Object Objects with orbits outside Neptune

Source: Adapted from the NASA Planetary Data System (2022).
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Table 3.2 - The 37 selected information attributes plus 1 for the asteroid orbit dataset
(the 38th one is the decision attribute, the class, as described in the preceding
table).

Attribute Description

neo Near-Earth object
pha Potential hazards asteroid
h Absolute magnitude parameter
diameter Asteroid diameter, from equivalent sphere
albedo Geometric albedo
diameter_sigma Diameter 1 sigma
orbit_id Orbit id
epoch Epoch, particular time
epoch_mjd Epoch of the elements represented as the Modified Julian Date (MJD)
epoch_cal Epoch calender
e The eccentricity of the conic
a Mean Distance, the semi-major axis of the orbit measured in AU
q Perihelion distance [AU]
i Inclination, the angle between the ecliptic plane and the plane of the orbit
om Longitude of the Ascending Node (Omega)
w Argument of Perihelion (w)
ma Mean Anomaly (M)
ad Aphelion distance [AU]
n Mean motion [deg/d]
tp Time of perihelion passage (TDB)
tp_cal tp calender
per Period
per_y Period year
moid Earth minimum orbit intersection distance au unit
moid_ld Earth minimum orbit intersection distance lunar unit
sigma_e e 1-sigma (see "e" above)
sigma_a a 1-sigma
sigma_q q 1-sigma
sigma_i i 1-sigma
sigma_om om 1-sigma
sigma_w w 1-sigma
sigma_ma ma 1-sigma
sigma_ad ad 1-sigma
sigma_n n 1-sigma
sigma_tp tp 1-sigma
sigma_per period 1-sigma
rms A measure of the predicted data’s deviation from the observed data
class Asteroid Orbit Classes

Source: Adapted from the NASA Planetary Data System (2021).

Asteroid orbit data were obtained from the Solar System Dynamics (SSD) of the
Jet Propulsion Laboratory (JPL) 1. It provides astronomical data about the orbits,
physical characteristics, and discovery circumstances for most of the known natural

1http://ssd.jpl.nasa.gov/
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bodies in the Solar System. A subset of it, the Small Bodies Database (SBDB),
provides information about small bodies like known asteroids and comets. For
convenience, raw data were pre-processed using Weka software (Waikato Environment
for Knowledge Analysis, developed at the University of Waikato, New Zealand) 2,
and the resulting datasets are in ARFF format.

3.3.3 Random Forest implementations

In the Random Forest test case, all implementations were executed using processor
cores of one or more computing nodes (no GPU). Python was used with the Scikit-
learn library (Section 2.1), and since this library is a highly optimized and constantly
updated, performance results were better than those obtained by the F90 or F2PY
implementations, which are based on the obsolete PARF library (Section 2.15). As a
consequence, differently from the previous test cases, the F90 implementation was
not taken as a reference.

It is important to note that, with the exception of the F90 and F2PY implementations,
the other Python implementations of this test case (standard Python, Cython and
Numba) do not employ the MPI communication library for parallelization, using
instead the IPP library. Parallelization is accomplished by running multiple training
and prediction processes on decision trees, using multiple MPI or IPP processes
(depending on implementation). In the case of Python, the Scikit-learn library uses
the IPP library as a backend, which works using engines and other components that
run in processes, as discussed in the Section 2.5.

Random forest test case implementations are described in the next sections.

3.3.3.1 F90 serial and parallel

The serial and MPI-based parallel F90 implementations use the PARF (Section 2.15),
an F90 library written for Random Forest classification. The compute-intensive part
of the code, executed by the PARF library is the build_tree routine that builds the
trees, and corresponds to 46% of the total processing time according to the gprof
operating system profiler.

3.3.3.2 F2PY serial and parallel

In the F2PY implementation, the original PARF F90 code with a command line
interface was re-written as a subroutine and then built by F2PY into a Python

2http://www.cs.waikato.ac.nz/ml/weka/
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library. The Intel compiler with the optimization flag -O3 was used instead of the
GNU compiler, since PARF requires some Intel resources. The input are the files
containing the datasets, and the outputs are the classification error, another metric
for classification accuracy (kappa), and the elapsed time measured using the F90
library wall time function. In the parallel version, all MPI declarations and calls are
in the PARF code, and the F2PY is built using the Intel MPI.

The remaining Python code is basically the same for both serial and parallel versions,
being the only difference the name of the library built by F2PY for the serial and
parallel versions. The number of MPI processes is defined in the Slurm script (1, 4,
16, 24, 48, 72, and 96 processes), and execution times are the average of 3 runs.

The compute-intensive part of the code shown in Listing 3.13 refers to the F2PY-built
function. In the listing, result contains the set of output parameters, lib_p2py_parf
is the name of the library created by P2PY, random_forest is the function with the
compiled PARF code, and the files train.arff and test.arff contain the datasets for
the training and testing phases, respectively.

Listing 3.13 - Compute-intensive part of the Random Forest test case F2PY code.

1 result = lib_p2py_parf.random_forest("train.arff", "test.arff")

3.3.3.3 Standard Python serial and parallel

The standard Python serial and parallel implementations, as well as the Cython and
Numba ones, use the Scikit-learn library that employs the IPP library as parallel
backend. The Scikit-learn Random Forest library is faster than PARF. The Pandas
library was used to store the datasets, which are read from ARFF files using the
SciPy library.

This test case requires the training and test phases of a classification algorithm.
The use of Scikit-learn requires a configuration step to select an estimator/classifier
(in this case, the Random Forest), and also to select the specific parameters of the
estimator. In the next step, training is performed using the training dataset, and
then testing, using the test dataset.

The compute-intensive part of the code is shown in the Listing 3.14 and is performed
by the Scikit-learn library. In the parallel version, the line that declares the backend
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is added. The clf is the Random Forest classifier, the fit is the function that performs
the classification, and the X contains a matrix of dimension 66, 000 × 36, since there
are 66,000 training instances and 36 attributes. And finally, y is a vector of dimension
66,000 containing the known classification for these instances into one of 13 possible
classes. The result is the trained Random Forest model, also stored as clf, which can
then be employed in the test phase.

Listing 3.14 - Compute-intensive part of the Random Forest test case Python code.

1 with parallel_backend(’ipyparallel’):
2 clf.fit(X, y)

3.3.3.4 Cython serial and parallel

In the Cython implementation, the same code of the Python standard implementation
is reused, and thus includes the same calls to the Scikit-learn library. As this library
is already optimized for performance, porting the Python code to Cython would not
significantly improve performance. The Cython parallel version is also similar to the
corresponding standard Python, using IPP as the parallel backend.

Please see the Listing 3.14 in the Subsubsection 3.3.3.3 containing the compute-
intensive part of the Cython code, as it is identical to the standard Python imple-
mentation.

3.3.3.5 Numba serial and parallel

In the Numba implementation, the same code as the standard Python implementation
is reused and therefore includes the same calls to the optimized Scikit-learn library.
Since this library is already optimized for performance, there would be useless to port
the source code to Numba in order to optimize it. However, there is a small gain of
performance by using Numba JIT compilation for the remaining part of the Python
code. The IPP parallel backend is also employed for the Numba parallel version.
The Numba implementation is then executed in three different ways: (i) interpreted
by standard Python (only for small parts of the original code), (ii) executed using
optimized library functions (compute-intensive part), and (iii) executed using Numba
JIT-compilation (remaining part).

Please see the Listing 3.14 in the Subsubsection 3.3.3.3 containing the compute-
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intensive part of the Numba code, since it is identical to the standard Python
implementation.
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4 TEST CASES PARALLEL PERFORMANCE

This chapter covers the analysis of the parallel performance of the different serial and
parallel implementations (F90 and Python) for each one of the three selected test
cases. Most of the parallel implementations are MPI-based, but there are some others
that employ specific Python libraries. The only implementations that were executed
using thread parallelism were Numba-GPU and CuPy for GPU execution, and the
loky implementation for CPU execution using threads. This chapter is divided as
follows:

• Section 4.1 Test environment: standard parallel performance definitions,
description of the SDumont execution nodes, and a listing of the versions
of the employed compilers, Python, etc.;

• Section 4.2 Stencil test case: a five-point stencil finite difference method to
solve partial differential equations resulting from Poisson equations, applied
to a 2D heat transfer problem on a finite surface;

• Section 4.3 Fast Fourier Transform (FFT) test case: an algorithm that
computes the multidimensional Fourier transform of an 3D array of synthetic
data;

• Section 4.4 Random Forest test case: a random forest algorithm applied for
the classification of asteroid orbits of a NASA dataset.

General guidelines for the tests: all processing times shown here are the average
of 3 executions. The calculation of speedups and parallel efficiencies always took
the serial execution time of the F90 implementation as a reference, except for the
Randon Forest test case, which used the serial execution time of the standard Python
implementation as a reference. The serial and parallel test cases were executed by
means of the Slurm job scheduler, except where otherwise stated. The JupyterLab
interactive environment was employed in all tests.

4.1 Test environment

Standard parallel performance metrics are used here, like the speedup Sp, given by
the ratio between the serial ts and the parallel execution time tp, using p processes
or threads (Equation 4.1), being the ideal speedup, called linear speedup, equal to p.

Sp = ts

tp

(4.1)
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In this work, for each considered implementation of any test case, the speedup is
calculated using the time of the serial version and the corresponding time of the
parallel version, i.e., same programming language and compiler. However, the best
serial time of each test case is considered, in order to allow a more fair comparison
of speedups. Another standard metric is the parallel efficiency Ep, given by the ratio
between the speedup Sp and the corresponding number of p processes or threads
(Equation 4.2). Thus, a linear speedup corresponds to a parallel efficiency of 100%, or
unitary. It is important to note that the parallel efficiency can be higher than 100%,
depending on the value adopted as a reference for the speedup calculation. It can
also happen for serial and parallel versions generated with the same programming
language and compiler, if the parallelization implies in an optimization of the memory
access, and thus lowering execution times of each process/thread.

Ep = Sp

p
(4.2)

4.1.1 The Santos Dumont computing environment

This section describes briefly the SDumont computing environment in terms of
software and hardware. Three different computer nodes 1 of the LNCC Santos
Dumont supercomputer were employed:

• Thin node B710 (B710), with 2 Intel Xeon E5-2695v2 Ivy Bridge (2.4
GHz) 12-core processors (total of 24 cores per node) and 64 GB main
memory; compilers and libraries include GNU Fortran 7.4, GNU Fortran
8.3, OpenMPI 4.0.1, Intel Fortran 19.0.3, Intel MPI, Python 3.6.12, Cython
0.29.20, NumPy 1.18.1, and Numba 0.41.0;

• Thin node B715 (B715), with 2 Intel Xeon E5-2695v2 Ivy Bridge (2.4
GHz) 12-core processors (total of 24 cores per node), 64 GB main memory,
and 2 GPUs Nvidia Tesla K40t; in addition to the compilers and libraries
of the B710 nodes, there are CUDA libraries;

• Sequana X node (Seq-X)

– Execution node, with 2 Intel Xeon Gold 6252 (2.1 GHz) 24-core
processors (total of 48 cores per node), 4 GPUs Nvidia Volta V100
and 384 GB main memory; in addition to the compilers and libraries
of the B710 nodes, there are CUDA libraries;

1http://sdumont.lncc.br/machine.php?pg=machine
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– sdumont18 login node 2 , with 2 Intel Xeon Gold 6152 (2.1 GHz)
22-core processors (total of 44 cores per node), 4 GPUs Nvidia Volta
V100 and 768 GB main memory.

The employed compilers and libraries for F90 and Python are available in the
SDumont computing environment. Serial and parallel implementations of the F90
used two suites of tools and compilers: GNU version 4.8.5 and Intel versions 19.0.3
or 19.1.2, included in the Intel Parallel Studio (PSXE) 2019/2020. Intel-compiled
implementations used the Intel MPI library of the corresponding version, while
GNU-compiled implementations used the OpenMPI library versions 3.3.8, 4.0.1 and
4.0.4. The standard optimization flag adopted in this work for F90 is -O3, which
in general allows a performance close to the maximum attainable. Some particular
implementations, or SDumont computer nodes, required different compiler or library
versions. There is also available the PGI Portland Group Inc. suite of compilers, but
it was not considered in this work.

Two Python distributions are available in the SDumont computing environment:
Python versions 3.6.8 and 3.7.7 of the Intel PSXE 2019/2020, and Python versions
3.7.3, 3.8.5, and 3.9.4 of the Anaconda 2018.12 and 2020.11 distribution. Addition-
ally, the Conda environment and package manager was also employed. As already
mentioned, some particular implementations, or SDumont computer nodes, required
different compiler or library versions.

4.1.2 Compiler evaluation for the Stencil test case

A preliminary performance test for the Stencil test case was performed in order
to choose one of the F90 compilers (GNU or Intel) to be adopted for this work.
These codes are compiled Ahead Of Time (AOT), that is, at compile time. This test
also included a comparison between the Intel and Anaconda Python distributions,
using the Numba compiler (not Intel or GNU) which is compatible with a subset
of Python and NumPy, is a JIT compiler (Just In Time), or that is, it compiles at
runtime, and does not require major changes to Python code. For Numba, only the
compute-intensive kernel is JIT-compiled and executed as machine code, with the
rest of the code being interpreted by standard Python. Two Python distributions
were compared: Anaconda 2018.12 with Python 3.7.3 and OpenMPI 4.0.1, and Intel
PSXE 2019 with Python 3.6.8 and Intel MPI. Two different SDumont nodes are
used, B710 and Seq-X.

2http://sdumont.lncc.br/support_manual.php?pg=support#6.8
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Table 4.1 shows the serial and parallel elapsed times for the Intel/GNU F90-compiled
implementations and for the Intel/Anaconda implementations executed in the B710
or Seq-X nodes. Running up to 16 processes required a single B710 node, while 36
processes on the B710 required two nodes, and on Seq-X required a single node.

Table 4.1 - Serial and parallel elapsed times (seconds) (Stencil test case, B710 or Seq-X
nodes) as a function of the number of processes, for the different F90 and
Numba implementations. Best times are highlighted in red for Seq-X, and in
blue for B710.

Implemen- Number of MPI processes
tation Serial 1 4 9 16 36

F90

Seq-X/GNU 15.82 15.64 4.13 2.09 1.48 1.21
Seq-X/Intel 15.59 15.76 4.02 2.05 1.58 1.51
B710/GNU 19.25 21.91 7.34 6.15 4.68 2.13
B710/Intel 21.87 20.66 7.32 6.21 4.63 2.20

Numba

Seq-X/Anaconda 17.13 17.08 22.61 2.62 1.69 1.44
Seq-X/Intel 17.11 17.95 22.71 2.47 1.78 1.74
B710/Anaconda 30.48 30.53 8.18 6.33 5.86 3.22
B710/Intel 30.37 30.57 8.11 4.37 3.35 1.92

Source: Author’s production.

Considering these processing performance results, the GNU compiler suite was
adopted for the remaining of this work, except for the profiling tests, shown in the
Chapter 5, which required the Intel compiler suite. These results also compare Numba
performance for Intel and Anaconda distributions, but Numba is just one of the
available Python HPC approaches. In this work, the Python Anaconda distribution
was adopted due to the wide availability of libraries and documentation.

4.2 Stencil test case processing performance

This section shows the processing performance of the Stencil test case, for both
serial and parallel implementations performed on CPUs/cores of one or multiple core
processors of one or more computer nodes, and also on GPUs. The compute-intensive
part of the implementations was hand coded, thus not using a specific off-the-shelf
external library.

Table 4.2 shows processing times of the test case for the different implementations in

50



one or more SDumont B710 computer nodes. The same table also shows processing
times for the serial and for the MPI version with 1, 4, 9, 16, 36, 49, 64, and 81
processes. Figure 4.1 shows the processing times as a function of the number of
MPI processes for the different implementations, Figure 4.2 shows the corresponding
speedups, and Figure 4.3 shows the parallel efficiencies.

In general, according to Table 4.2, the F90 and the F2PY achieved the best perfor-
mance, with the latter yielding the lowest processing time of 1.01 s with 81 MPI
processes. They are followed by the Cython and Numba implementations, with
standard Python well behind. F2PY required little changes to the F90 original code,
while Cython and Numba, little changes to the Python code. Numba performance was
comparable to the others, only from 4 up to 36 processes. The very poor performance
of the standard Python serial and parallel versions shows the convenience of using
implementations like F2PY, Cython or even Numba.

Table 4.2 - Performance (Stencil test case, B710 nodes) of the different implementations,
depending on the number of MPI processes: processing times, speedups, and
parallel efficiencies. Best values for serial or for each number of MPI processes
are highlighted in red. The execution time of the compiled serial code was
taken as a reference for the calculation of speedup (highlighted in blue).

Implemen- Number of MPI processes
tation Serial 1 4 9 16 36 49 64 81

Processing time (seconds)

F90 19.25 21.91 7.34 6.15 4.68 2.13 1.89 1.23 1.69
F2Py 18.94 23.60 7.45 6.17 4.62 2.15 1.63 1.27 1.01
Cython 23.97 23.98 7.46 6.29 4.69 2.23 1.67 1.31 2.06
Numba 30.48 30.53 8.18 6.33 5.86 3.22 2.68 1.79 2.07
Python 212.43 227.19 64.74 44.78 33.46 15.21 10.43 7.85 6.70

Speedup

F90 1.00 0.88 2.62 3.13 4.11 9.04 10.21 15.67 11.42
F2Py 1.02 0.82 2.58 3.12 4.16 8.96 11.83 15.14 19.03
Cython 0.80 0.80 2.58 3.06 4.10 8.64 11.55 14.74 9.36
Numba 0.63 0.63 2.35 3.04 3.29 5.98 7.19 10.75 9.32
Python 0.09 0.08 0.30 0.43 0.58 1.27 1.85 2.45 2.87

Parallel efficiency

F90 1.00 0.88 0.66 0.35 0.26 0.25 0.21 0.24 0.14
F2Py 1.02 0.82 0.65 0.35 0.26 0.25 0.24 0.24 0.23
Cython 0.80 0.80 0.65 0.34 0.26 0.24 0.24 0.23 0.12
Numba 0.63 0.63 0.59 0.34 0.21 0.17 0.15 0.17 0.12
Python 0.09 0.08 0.07 0.05 0.04 0.04 0.04 0.04 0.04

Source: Author’s production.
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Figure 4.1 - Processing times (seconds) (Stencil test case, B710 nodes) of the different
implementations, depending on the number of MPI processes. For convenience,
times above 30 s are not fully depicted.
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As can be seen from Table 4.2, Figure 4.1, Figure 4.2 and Figure 4.3, parallel
scalability is not good as the test case algorithm updates all grid points at each
time step, thus requiring the exchange of boundary grid point temperatures between
neighboring subdomains in order to update the corresponding ghost zones. This
update implies in communication between processes that compromises the parallel
efficiency (below 40% for 9 MPI processes or more). It can be seen that for up to 36
MPI processes, executed in two B710 nodes, all implementations performed similarly,
except for standard Python. In the case of 81 MPI processes, executed in 4 computer
nodes, the performance of all implementations was significantly lower in comparison
to 64 MPI processes, executed in 3 computer nodes. The exception was F2PY that
obtained the lowest time with 81 MPI processes.

4.2.1 F90 serial and parallel (CPU)

In this work, the parallelization was performed by dividing the domain of the test
case into square subdomains of up to 9 × 9 that are performed by 81 processes.
The parameters of the test case are the number of points of the grid, the energy to
be inserted, and the number of iterations. F90 obtained the best serial execution
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Figure 4.2 - Speedups (Stencil test case, B710 nodes) of the different implementations,
depending on the number of MPI processes. The execution time of the F90
serial was taken as the reference for speedup calculation. Dashed line denotes
the linear speedup.
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Figure 4.3 - Parallel efficiencies (Stencil test case, B710 nodes) of the different implemen-
tations, depending on the number of MPI processes.
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among the implementations, but not for the parallel executions with 16, 49, and 81
processes.

The results were evaluated in the JupyterLab interactive environment using a set
of commands called cell magics such as %%writefile to write the source code to
disk, and %%bash to access the shell, for instance, to build the executable file that
will be specified in the Slurm script. Output files resulting from the execution can
be read and analyzed on the Notebook, allowing documentation and, consequently,
reproducibility.

4.2.2 F2PY serial and parallel (CPU)

F2PY and F90 were the best performing implementations. Despite the overhead added
by the wrapper and the Python interpreter, F2PY achieved superior performance for
16, 49 and 81 processes, and also in the serial implementation. For 81 processes, the
performance of F2PY was much better than F90 (1.01 s versus 1.69 s).

4.2.3 Standard Python serial and parallel (CPU)

The standard implementation in Python only uses, as external library, NumPy.
It preserves most of the original code, being the 2D compute-intensive loops are
performed by NumPy. However, the execution is slow, since it is interpreted. Such
implementation serves to develop a proof of concept making use of the Python rapid
prototyping and portability, requiring only on a standard Python interpreter. In a
further step, the compute-intensive parts of the code can gradually be optimized,
taking advantage of the interactive and experimental nature of Python.

4.2.4 Cython serial and parallel (CPU)

The performance of the serial Cython implementation is between F2PY and Numba,
and the parallel is close to the ones of F90 and F2PY, from 4 to 64 processes. The
serial and parallel versions are based on code that is compiled by Cython. The
compute-intensive parts are encapsulated and a Python library is created. This
external library is then called from standard Python code. Parallelization is provided
by the mpi4py library. In general, Cython is a good choice when F90 code doesn’t
exist, and we want to use a language relatively close to Python to benefit from
readability and maintainability, as well as the fast, iterative development cycle.
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4.2.5 Numba serial and parallel (CPU)

Numba’s performance was below F90, F2PY, and Cython, but well above standard
Python one. The performance of the serial implementation was worse than serial
Cython, and in the parallel implementation the performance was close to or equal to
Cython from 4 to 81 processes.

Numba uses JIT compilation and the compute-intensive core is placed in a function
decorated for Numba. The rest of the code is executed by the Python interpreter,
and the parallel implementation uses the mpi4py library. Numba proved to be a
good alternative when the F90 code does not exist, or when the Python code exists,
and it is intended to make few changes to the code. If applicable, Numba has also
the advantage of providing support for GPU execution. Furthermore, since Numba
can be JIT-compiled, the machine code is eventually optimized in execution time for
a specific architecture, providing portability without the need of a previous AOT
compilation.

4.2.6 Numba-GPU

This section intends to compare the single-node performance of: (i) the serial and par-
allel versions of the Numba-GPU implementation, running on one or more processor
cores (CPU) and one or more GPUs, on B715 nodes or Seq-X nodes; (ii) the serial
and parallel versions of the F90 implementation, running on one or more processor
cores (CPU) on B715 nodes or Seq-X nodes, without GPU. The Seq-X node is an
upgraded computer node with newer processors and GPUs, compared to the B715
node. In addition, the Seq-X node has four GPUs.

The Numba-GPU implementation was tested on a B715 node using a single CPU/core
and a Tesla K40 GPU with an execution time of 9.35 s, which is half the execution time
of the F90 serial implementation (Table 4.3). The same Numba-GPU implementation
running on a Seq-X node using a single CPU/core and a single Volta V100 GPU
only spent 2.25 s, achieving a speedup of 8.57, which is slightly better than the 9-
process MPI F90 implementation on a Seq-X node. The Numba-GPU implementation
required major code modifications, compared to standard serial Python code.

The compute-intensive part of the code was encapsulated into a function with a
decorator for Numba JIT-compilation and execution in GPU. The block size of
256 = 16 × 16 threads has been trial and error optimized for running on V100 (Seq-X
node) and K40 (B715 node) GPUs. The remaining code of the implementation, which
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Table 4.3 - Performance (Stencil test case, Seq-X and B715 nodes) as a function of the
number of processes for the F90 and Numba-GPU implementations. The
execution time of the F90-compiled serial code in the B715 node was taken as
the reference for the speedup calculation (highlighted in blue). Best values for
serial or for each number of MPI processes are highlighted in red.

Implemen- Number of MPI processes
tation Serial 1 4 9 16 36

Processing time (seconds)

F90/B715 19.25 21.91 7.34 6.15 4.68 2.13
F90/Seq-X 15.82 15.64 4.13 2.09 1.48 1.21
Numba-GPU/B715 9.35 104.82 27.25 11.71 7.92 4.35
Numba-GPU/Seq-X 2.25 49.54 15.16 6.91 6.72 9.09

Speedup

F90/B715 1.00 0.88 2.62 3.13 4.11 9.04
F90/Seq-X 1.22 1.23 4.66 9.22 13.02 15.94
Numba-GPU/B715 2.06 0.18 0.71 1.64 2.43 4.43
Numba-GPU/Seq-X 8.57 0.39 1.27 2.79 2.87 2.12

Parallel efficiency

F90/B715 1.00 0.88 0.66 0.35 0.26 0.25
F90/Seq-X 1.22 1.23 1.17 1.02 0.81 0.44
Numba-GPU/B715 2.06 0.18 0.18 0.18 0.15 0.12
Numba-GPU/Seq-X 8.57 0.39 0.32 0.31 0.18 0.06

Source: Author’s production.

is not compute-intensive, was executed in an interpreted form by Python using the
CPU.

The performances of the F90 serial and parallel implementations for CPU, and
the Numba-GPU implementation for a B715 node or a Seq-X node, are shown in
Table 4.3 and in Figure 4.4, Figure 4.5, and Figure 4.6. In the parallel execution of
the F90 implementation on the 24-core B715 node, for up to 16 MPI processes a
single node was used, and for 36 MPI processes two nodes were used.

Parallel execution of Numba-GPU on B715 nodes was done using 2 MPI processes per
node. Each process is executed in a single core of a processor, leaving the remaining
11 cores of the processor in idle, and each process uses one GPU. Therefore, execution
with 36 MPI processes demanded 18 nodes B715. However, Numba-GPU parallel
execution in Seq-X nodes was restricted to a single Seq-X node with 48 cores and 4
GPUs. Thus, for 1 to 4 MPI processes, each process used an exclusive GPU, while for
9, 16, and 36 processes, GPUs are assigned to processes in a round-robin distribution,
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Figure 4.4 - Processing times (seconds) (Stencil test case, Seq-X and B715 nodes) as
a function of the number of MPI processes for the F90 and Numba-GPU
implementations executed on the Seq-X (red and green bars) and on the
B715 node (blue and orange bars). For convenience, times above 30 s are
not fully depicted.
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compromising the performance. A further improvement to take advantage of Numba
ease of programming would be to use a single Seq-X node using 48 MPI processes,
assigning 4 processes to be executed using Numba-GPU, leaving the remaining 44
processes executed using CPU (Numba-CPU). Another improvement, assuming many
Seq-X nodes available, would be to use 4 MPI processes per node, similarly to the
B715 Numba-GPU parallel implementations.

Table 4.3 and Figure 4.4 shows the processing times (seconds) as a function of the
number of MPI processes, for the F90 and Numba-GPU implementations executed on
B715 and Seq-X nodes. In this table, F90 implementation execution times in nodes
B715 were extracted from Table 4.2. The Numba-GPU implementation was executed
on B715 nodes with 2 MPI processes per node using 2 GPUs, and thus each process
is executed on a core/CPU paired with a GPU. Therefore, 1 MPI process uses 1
node, 4 processes uses 2 nodes, 9 processes uses 5 nodes, 16 processes uses 8 nodes,
and 36 processes uses 18 nodes. The Numba-GPU implementation was executed on
a single Seq-X node with up to 36 processes using 4 GPUs. Therefore, for 1 to 4 MPI
processes, each process used an exclusive GPU, while for 9, 16, and 36 processes,
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Figure 4.5 - Speedup (Stencil test case, Seq-X and B715 nodes) as a function of the number
of MPI processes, for the F90 and Numba-GPU implementations, serial and
parallel versions, executed on the Seq-X (dashed lines) and on the B715 (solid
lines). The execution time of serial implementation F90 on B715 was taken as
reference for speedup calculation. The dotted line gray is the linear speedup.

Processes

Sp
ee
du
p

0

5

10

15

Serial 1 4 9 16 36

F90/B715

F90/Seq-X

Numba-GPU/B715

Numba-GPU/Seq-X

Linear

Source: Author’s production.

GPUs are assigned to processes in a round-robin distribution, compromising the
performance.

Figure 4.5 shows the Speedup as a function of the number of MPI processes, for the
serial and parallel versions of the F90 and Numba-GPU implementations, executed
on Seq-X and B715 nodes. The dotted line represents the linear speedup. Two points
should be highlighted: the speedup of 8.57 of the Numba-GPU serial version on the
Seq-X node, and the good scalability of F90 parallel on the Seq-X node up to 9 MPI
processes. Obviously, the speedup of serial versions of Numba-GPU is only due to
GPUs.

Figure 4.6 shows the parallel efficiencies as a function of the number of MPI processes,
for the serial and parallel F90 and Numba-GPU implementations, executed on the
Seq-X node and nodes B715. In general, these implementations have very low parallel
efficiency.

Table 4.4 shows the execution times of some parts of the code as a function of the
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Figure 4.6 - Parallel efficiencies (Stencil test case, Seq-X and B715 nodes) as a function of
the number of MPI processes, for the F90 and Numba-GPU implementations,
serial and parallel versions, executed on the Seq-X node (dashed lines) and on
the B715 nodes (solid lines).
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number of MPI processes, for the Numba-GPU implementation executed on Seq-X
and B715 nodes. All these times were measured in the Python code using the native
Python wall time function. The three selected parts are executed every time step:
Kernel, Memory transfer and Insertion of energy.

The Kernel is the most computationally intensive part of the code, and as it is
JIT-compiled, it is slow on the first run because of the build time, and a little faster
on later runs because the machine code is stored in memory requiring no additional
compilation. Memory transfer time measures the 2D array transfer time between
host memory and device memory, and vice-versa, at each time step, which accounts
for most of the total execution time in the MPI implementations. Please note that
such transfer at every time step only exists for the MPI version, even using 1 process,
but in the serial version, the 2D array is transferred to the GPU in the first time
step, being the remaining time steps performed in the GPU without any transfer,
except for the last time step. This explains the huge difference between the transfer
times of the serial and 1-process MPI executions.

This Numba-GPU implementation for the Stencil test case shows that writing HPC
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Table 4.4 - Time elapsed (seconds) (Stencil test case, Seq-X and B715 nodes) for selected
code snippets, as a function of the number of MPI processes, for the Numba-
GPU implementation.

Implemen- Number of MPI processes
tation Serial 1 4 9 16 36
Numba-GPU/B715 9.35 104.82 27.25 11.71 7.92 4.35

Kernel 1.08 1.77 1.34 1.01 0.84 1.19
Mem transf 0.32 102.97 25.51 9.73 5.48 2.75
Insert energy 7.93 0.04 0.04 0.02 0.00 0.00

Numba-GPU/Seq-X 2.25 49.54 15.16 6.91 6.72 9.09
Kernel 0.28 0.86 0.27 0.31 0.40 0.46
Mem transf 0.27 48.63 14.55 5.78 4.18 6.69
Insert energy 1.67 0.02 0.02 0.01 0.00 0.00

Source: Author’s production.

code for GPU execution takes some effort, but generally brings some performance,
as shown by the serial GPU implementation running on Seq-X node, being 8 times
faster than the Serial CPU implementation. However, the performance of the parallel
implementation show that it demands further optimizations in order to minimize
the overheads of MPI communication and memory transfers between GPU and host,
and thus explore the processing power of the GPU.

4.3 FFT test case processing performance

This section shows the processing performance of implementations of the Fast Fourier
transform test case, running on CPUs, i.e., on one or multiple processor cores of
one or more computer nodes, and on GPUs, including an implementation optimized
for NUMA. The compute-intensive part of the implementations uses out-of-the-box
external libraries, differently from the previous test case.

Table 4.5 shows processing times of the test case for the different implementations in
one or more SDumont B710 computer nodes. The same table also shows processing
times for the serial and for the MPI version with 1, 4, 16, 24, 48, 72, and 96 processes.
According to the same table, the F90 implementation achieved the best performance,
followed by the F2PY implementation. The shortest time was obtained by the
F90 implementation with 48 MPI processes (2.22 s) processes. Numba performed
generally better than Cython and Python, but worse than F2PY and F90. The
very low performance of the standard Python serial and parallel versions shows the
convenience of using other Python-compatible implementations like F2PY or Numba.
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Table 4.5 - Performance (FFT test case, B710 nodes) of the different implementations,
depending on the number of MPI processes: processing time, speedup, and
parallel efficiencies. Best values are highlighted in red. The execution time of the
F90 serial implementation was taken as the reference for speedup calculation
and is shown in blue.

Implemen- Number of MPI processes
tation Serial 1 4 16 24 48 72 96

Processing time (seconds)

F90 19.29 23.43 6.42 2.65 2.36 2.22 2.25 2.33
F2PY 23.83 27.61 7.42 3.53 4.09 4.28 3.60 5.19
Python 161.70 174.78 44.88 11.09 7.47 12.32 10.47 8.68
Cython 109.03 124.17 29.06 7.92 7.66 10.21 10.62 8.57
Numba 48.64 50.01 13.25 5.20 4.33 13.00 11.53 9.04

Speedup

F90 1.00 0.82 3.00 7.28 8.18 8.70 8.58 8.28
F2PY 0.81 0.70 2.60 5.47 4.72 4.51 5.36 3.72
Python 0.12 0.11 0.43 1.74 2.58 1.57 1.84 2.22
Cython 0.18 0.16 0.66 2.43 2.52 1.89 1.82 2.25
Numba 0.40 0.39 1.46 3.71 4.45 1.48 1.67 2.13

Parallel efficiency

F90 1.00 0.82 0.75 0.46 0.34 0.18 0.12 0.09
F2PY 0.81 0.70 0.65 0.34 0.20 0.09 0.07 0.04
Python 0.12 0.11 0.11 0.11 0.11 0.03 0.03 0.02
Cython 0.18 0.16 0.17 0.15 0.10 0.04 0.03 0.02
Numba 0.40 0.39 0.36 0.23 0.19 0.03 0.02 0.02

Source: Author’s production.

Figure 4.7 shows the processing times as a function of the number of MPI processes
for the different implementations, Figure 4.8 shows the corresponding speedups
calculated using as reference to the time of the F90 serial implementation, and
Figure 4.9 shows the parallel efficiencies. It can be seen that the parallel scalability
is poor for all implementations due to the MPI communication. Only the F90 and
F2PY implementations show some parallel scalability, and above 4 MPI processes all
implementations presented efficiencies below 50%.

4.3.1 F90 serial and parallel (CPU)

The F90 serial and parallel implementations presented the best performance, but
with poor parallel scalability, except for 4 processes, with efficiency of 75%, reaching
for 96 processes an efficiency of only 9%.
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Figure 4.7 - Processing times (seconds) (FFT test case, B710 nodes) of the different imple-
mentations as a function of the number of MPI processes. For convenience,
times above 30 s are not fully depicted.
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Figure 4.8 - Speedups (FFT test case, B710 nodes) of the implementations as a function
of the number of MPI processes. Dotted lines denote linear speedup.
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Figure 4.9 - Parallel efficiencies (FFT test case, B710 nodes) as a function of the number
of MPI processes depending on the number of MPI processes.
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4.3.2 F2PY serial and parallel (CPU)

F2PY serial and parallel implementations performed slightly worse than F90. Parallel
scalability was also poor, except for 4 processes, with efficiency of 65%, reaching for
96 processes an efficiency of only 4%.

4.3.3 Standard Python serial and parallel (CPU)

Similarly to other test cases, the performance of the standard Python serial and
parallel implementations is very poor, but these implementations serve as a starting
point to execute making use of Python features, such as portability to execute in
different computing environments. In a further step, compute-intensive parts of the
code can be replaced by an optimized library, using for instance F2PY, Cython or
Numba, as discussed in the next sections.

4.3.4 Cython serial and parallel (CPU)

In general, the performances of the Cython and Python implementations are the
worst, for both serial and parallel implementations. Serial times are high and parallel
scalability is very poor. The serial Cython implementation uses some native extensions,
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pyFFTW library, and creates a Python library which is then used in a main Python
code that imports the library and calls the new function.

4.3.5 Numba serial and parallel (CPU)

In general, Numba implementation performance was worse than the F90 and F2PY
ones, but better than the Python and Cython implementations. The lower time of
Numba was 4.33 s for 24 MPI processes, relatively close to F2PY implementation.

4.3.6 CuPy (GPU)

Similarly to the tests performed with the Numba-GPU for the Stencil test case in
Subsection 4.2.6, this section intends to compare the single-node performance of the
serial CuPy implementation, using a single GPU on a B715 or a Seq-X node, to the
F90 serial and parallel implementations, up to 24 processes on a B715 or a Seq-X
node, but with no GPU. Performance results for both approaches are presented in
Table 4.6. Please note that the F90 implementations uses the FFTW library, while
the Python one uses the fftn routine of the CuPy library. The same F90 and CuPy
implementations were executed in both B715 and Seq-X nodes, but the latter node
is newer, and thus deliver more processing performance.

The CuPy serial implementations (1 processor core and 1 GPU) had a poor perfor-
mance, compared to the F90 parallel implementations executed with 4 to 24 processes
on both the B715 or the Seq-X node. In addition, the parallel F90 implementation
executed had acceptable parallel scalability, similar to when it was performed in both
nodes, if considered as reference the F90 serial time on the SEQ-X node (12.74 s).
As an example, for 24 processes, efficiencies were 40% and 55%, executed in nodes
B715 and Seq-X, respectively. The corresponding graphs of Table 4.6 are shown in
Table 4.6 and Figure 4.10, Figure 4.11 and Figure 4.12.

The CuPy implementation for GPU didn’t require many code modifications compared
to the Python implementation for CPU as CuPy doesn’t wrap the code in a function
like Numba-GPU. The CuPy library is similar to the NumPy library, being used
to copy the 3D array to the device memory (GPU), execute the fftn routine, and
calculate the checksum of the array elements.

4.3.7 Optimization for NUMA

In order to check the influence of NUMA optimization (Section 2.16), this section show
processing performance using always 16 processes for the different implementations.
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Table 4.6 - Performance (FFT test case, Seq-X and B715 nodes) of the serial CuPy imple-
mentation and of the F90 implementations, as a function of the number of MPI
processes. The execution time of the serial F90 implementation executed in the
B715 node was taken as a reference for the calculation of speedup (highlighted
in blue).

Implemen- Number of MPI processes
tation GPU Serial 1 4 16 24

Processing time (seconds)

F90/B715 23.77 23.41 6.48 2.73 2.48
F90/Seq-X 12.74 14.85 4.06 1.37 0.96
CuPy(GPU)/B715 38.16
CuPy(GPU)/Seq-X 19.62

Speedup

F90/B715 1.00 1.02 3.67 8.71 9.59
F90/Seq-X 1.87 1.60 5.85 17.32 24.74
CuPy(GPU)/B715 0.62
CuPy(GPU)/Seq-X 1.21

Parallel efficiency

F90/B715 1.00 1.02 0.92 0.54 0.40
F90/Seq-X 1.87 1.60 1.46 1.08 1.03
CuPy(GPU)/B715 0.62
CuPy(GPU)/Seq-X 1.21

Source: Author’s production.

Since executions were performed in 24-core B710 or 48-core Seq-X nodes, such
number of processes may be unevenly distributed between the processors. This can be
avoided by using the cpu_bind option with (for instance) the distribution=block:cyclic
attribute in the Slurm script, as described in Section 2.16, and referred in this section
as “option Bind”.

Figure 4.13 shows the processing times (seconds) and Table 4.7 also shows the
speedup and parallel efficiency, of the different implementations of the FFT test case,
for 16 MPI processes on B710 and Seq-X nodes, with/without NUMA optimization,
respectively Bind/None. The Bind option reduced time by 10% in average for node
B710, and by 21% in average for node Seq-X. In the latter, Numba had the biggest
reduction (32%).

Figure 4.14 shows the speedup of the different FFT test case implementations,
speedup and parallel efficiencies for 16 MPI processes, running on nodes B710 and
Seq-X with/without NUMA optimization (respectively Bind/None). F90 execution
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Figure 4.10 - Processing times (seconds) (FFT test case, Seq-X and B715 nodes) depending
on the number of MPI processes for the F90 and CuPy implementations
performed on the Seq-X (red and green bars) and on the B715 node (blue
and orange bars).
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Figure 4.11 - Speedups (FFT test case, Seq-X and B715 nodes) of the serial CuPy imple-
mentation and of the F90 implementations, as a function of the number of
MPI processes, executed on the Seq-X (red triangle and green line) and on
the B715 node (blue dot and orange line). The execution time of the serial
F90 implementation executed in the B715 node was taken as a reference for
the calculation of speedup (highlighted in blue). The dotted line indicates
the linear speedup.
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Figure 4.12 - Parallel efficiencies (FFT test case, Seq-X and B715 nodes) of the serial CuPy
implementation and of the F90 implementations, as a function of the number
of MPI processes, performed on the Seq-X (red triangle and green line) and
on the B715 node (blue dot and orange line).
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time with 16 processes without optimization was taken as reference for speedup
calculation. Figure 4.15 shows the parallel efficiencies of the different implementations
of the FFT test case, speedup and parallel efficiencies for 16 MPI processes running on
nodes B710 and Seq-X with/without NUMA optimization (respectively Bind/None).

4.4 Random Forest test case processing performance

This section shows the processing performance of the random forest (RF) test
case (Table 4.8), which has the compute-intensive part executed by an external
library. Python, Numba, and Cython use the Scikit-learn library (Section 2.1), while
F90 and F2PY use the PARF library (Section 2.15). Parallelization is done using
the MPI library for F90 and F2PY, or the IPP library, for Python, Cython, and
Numba. This section shows the serial and parallel processing performance of the
CPU implementations, i.e., executed by one or multiple processor cores of one or
more computer nodes, with no GPU.

Table 4.8 shows the processing times for the different implementations on SDumont
B710 execution nodes. The same table also shows processing times for the serial and
parallel versions with 1, 4, 16, 24, 48, 72, and 96 processes. Execution with 1 to 24
processes use 1 node, 48 processes use 2 nodes, 72 processes use 3 nodes, and 96
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Table 4.7 - Processing times (seconds) (FFT test case, B710 and Seq-X nodes), speedups
and parallel efficiencies of the different implementations for 16 MPI processes,
using or not the Bind option for NUMA optimization. The execution time
of F90 without such option (None) on node B710 was taken as reference for
speedup calculation (highlighted in blue). Best values are highlighted in red.

Number of MPI processes
Implemen- B710 Seq-X
tation None Bind None Bind

16 16 16 16
Processing time (seconds)

F90 2.65 2.47 1.65 1.33
F2PY 3.53 3.20 2.09 1.54
Python 11.09 10.10 6.60 5.66
Cython 7.92 6.52 5.31 4.51
Numba 5.20 4.70 3.40 2.30

Speedup

F90 1.00 1.07 1.61 1.99
F2PY 0.75 0.83 1.27 1.73
Python 0.24 0.26 0.40 0.47
Cython 0.33 0.41 0.50 0.59
Numba 0.51 0.56 0.78 1.15

Parallel efficiency

F90 0.06 0.07 0.10 0.12
F2PY 0.05 0.05 0.08 0.11
Python 0.01 0.02 0.03 0.03
Cython 0.02 0.03 0.03 0.04
Numba 0.03 0.04 0.05 0.07

Source: Author’s production.

processes use 4 nodes. Figure 4.16 also shows the processing times as a function of
the number of processes for the different implementations, Figure 4.17 shows the
corresponding speedups, and Figure 4.18 shows the parallel efficiencies.

According to Table 4.8, the lower time was 11 s for the Python implementation with
24 processes, while the higher time was 141.71 s for the parallel F2PY implementation
using 1 MPI process. Numba serial obtained a slightly better time than Python serial,
however to standardize the analysis, the Python serial time was used as a reference
for speedup and efficiency calculations, instead of serial F90, which demanded a
higher execution time.

Serial implementations achieved slightly better time than the corresponding 1-process
parallel versions, as the latter add the overhead of parallel execution mechanisms
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Figure 4.13 - Processing times (seconds) (FFT test case, B710 and Seq-X nodes) of the
different implementations for 16 MPI processes with/without NUMA opti-
mization (respectively Bind/None).
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Figure 4.14 - Speedups (FFT test case, B710 and Seq-X nodes) of the different implemen-
tations for 16 MPI processes with/without NUMA optimization (respectively
Bind/None).

 Execution node and task distribution

Sp
ee

du
p

0

0.5

1

1.5

2

B710 None B710 Bind Seq-X None Seq-X Bind

F90 F2PY Python Cython Numba

Source: Author’s production.

69



Figure 4.15 - Parallel efficiencies (FFT test case, B710 and Seq-X nodes) of the different
implementations for 16 MPI processes, with/without NUMA optimization
(respectively Bind/None).
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and libraries. In general, the Python implementation have the best performance in
all cases, followed by Numba. However, speedups and parallel efficiencies were very
low for all implementations.

Since the compute-intensive part of the code is executed by external libraries, just
the serial implementations can be used for an initial performance evaluation. The
serial F90 and F2PY implementations, which use the PARF library (Section 2.15),
are much slower than the Python, Numba or Cython implementations, which use
the Scikit-learn library. Another aspect is that Numba or Cython implementations
did not perform better than the standard Python implementation, indicating that a
suitable choice of optimized library was more important, and that the use of Numba
or Cython resulted in performance overheads.

Speedups and parallel efficiencies were very low for all implementations. As can be
seen in Table 4.8, and in Figure 4.16, Figure 4.17, and Figure 4.18, execution times
decreased up to 16 (using 1 node), 24 or 48 processes (using 2 nodes), depending on
the implementation. Parallel scalability was very poor, since all speedups are below
2.5 and all efficiencies, below 0.5.
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Table 4.8 - Performance (Random Forest test case, B710 nodes) of the different implemen-
tations, depending on the number of processes: processing times, speedups,
and parallel efficiencies. Best values for each case are highlighted in red. The
execution time of the serial code was taken as a reference for the calculation of
speedup, shown in blue.

Implemen- Number of MPI processes
tation Serial 1 4 16 24 48 72 96

Processing time (seconds)

Python 25.67 28.59 14.91 11.15 11.00 11.99 13.89 14.52
Numba 24.98 33.61 16.63 13.01 13.80 15.65 15.51 16.69
Cython 29.46 65.56 25.71 15.32 15.41 17.71 15.58 16.89
F90 137.69 138.93 45.35 20.83 19.15 14.55 14.62 16.04
F2PY 135.10 141.71 48.29 23.00 19.16 17.14 17.46 17.96

Speedup

Python 1.00 0.90 1.72 2.30 2.33 2.14 1.85 1.77
Numba 1.03 0.76 1.54 1.97 1.86 1.64 1.65 1.54
Cython 0.87 0.39 1.00 1.67 1.67 1.45 1.65 1.52
F90 0.19 0.18 0.57 1.23 1.34 1.76 1.76 1.60
F2PY 0.19 0.18 0.53 1.12 1.34 1.50 1.47 1.43

Parallel efficiency

Python 1.00 0.90 0.43 0.14 0.10 0.04 0.03 0.02
Numba 1.03 0.76 0.39 0.12 0.08 0.03 0.02 0.02
Cython 0.87 0.39 0.25 0.10 0.07 0.03 0.02 0.02
F90 0.19 0.18 0.14 0.08 0.06 0.04 0.02 0.02
F2PY 0.19 0.18 0.13 0.07 0.06 0.03 0.02 0.01

Source: Author’s production.

4.4.1 F90 Serial and parallel (CPU)

The F90 implementation requires the PARF library to be configured, and built using
the Intel compiler. In the case of the parallel version, it also needs to be configured
to use the MPI library. PARF has an interface to the command line, which was
used in this implementation. Two different libraries were compiled and generated,
one for the sequential version, the other for the parallel version. Once created, the
libraries are used directly via command line, using the files containing the datasets
as arguments of the library function.

4.4.2 F2PY Serial and parallel (CPU)

In this implementation, F2PY wrapped the F90 code, which reuses code from the
PARF library and executes the compute-intensive part of the code, into a new
Python library using F2PY. The remaining Python part of the code is simple,
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Figure 4.16 - Processing times (seconds) (Random Forest test case, B710 nodes) for the
different implementations as a function of the number of processes. For
convenience, times above 40 s are not fully depicted.
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Figure 4.17 - Speedups (Random Forest test case, B710 nodes) of implementations as a
function of the number of processes. Serial Python time was used as reference
for calculation of the speedup. The dotted line denotes linear speedup.
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Figure 4.18 - Parallel efficiencies (Random Forest test case, B710 nodes) of implementations
as a function of number of processes.
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it loads the library, loads the datasets, calls the library, and displays the result.
Overall performance of this F2PY implementations is close to that of F90. The F2PY
serial version is slightly faster than the F90 version, probably due to optimizations
performed in the original F90 code when compiled by F2PY.

There are no major changes in the parallel version, the F90 source code of the PARF
library is configured to use the MPI library, and the new parallel version of the
library is built by F2PY. The newly created library is then used in the same Python
code as the serial version, being the Slurm configuration file written accordingly for
MPI execution.

4.4.3 Standard Python Serial and parallel (CPU)

The standard Python code is more complex than the F90 implementation, which
uses the PARF library, since the Scikit-learn library is more general and requires
specifying the estimator (Random Forest), the related parameters (for example, the
number of trees of the Random Forest), to execute the training phase using the
corresponding dataset, and then to perform the test phase using the test dataset.
Finally, to calculate the chosen Kappa rank metric. In addition, a small Python
code was used to read the original ARFF dataset from disk and to convert it to the
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Scikit-learn format. The parallel version is similar, requiring only the addition of a
Python line of code specifying the IPP library as the parallel backend in the training
phase.

4.4.4 Cython Serial and parallel (CPU)

The Cython implementation is very similar to the standard Python, with the compute-
intensive part of the code executed by the Scikit-learn library. Cython is only used
for the remaining part of the code, and thus it was not expected a significant
performance improvement. However, the use of the Cython adds a small overhead,
and performance was worse than that of standard Python. Parallelization was done
using the Scikit-learn library with the IPP backend.

4.4.5 Numba Serial and parallel (CPU)

Since the compute-intensive part of the Random Forest code is executed using the
Scikit-learn library, Numba JIT-compilation was only applied to the remaining part
of the code. JIT-compilation makes the execution slightly slower than that of the
AOT-compiled Cython. Parallelization was done using the Scikit-learn library with
the IPP backend.

4.4.6 IPP and Loky (CPU)

This section shows the serial and parallel processing performance of loky and IPP
implementations running on Seq-X node CPUs. Loky (loky Python library) is limited
to a single compute node, while IPP (IPP Python library) has no such limitation, and
both are used with the Scikit-learn library. In addition, IPP executions were evaluated
for NUMA optimization that evenly distribute the processes among the processor
cores, using the cpu_bind option with the attribute distribution=block:cyclic in the
Slurm script, as described in the Section 2.16, and referred below as the Bind option.

Table 4.9, Figure 4.19, Figure 4.20, and Figure 4.21 show the Random Forest test
case processing times for the different implementations and number of processes
(loky is restricted to the 48 cores of a single node) executed on Seq-X nodes. The
table shows the processing times for the serial and parallel versions with 1 node (up
to 48 processes), 2 nodes (96 processes), 3 nodes (144 processes) and 4 nodes (192
processes). In the table, the best times are shown in red, and the sequential Python
implementation used as a reference is shown in blue. The shortest time was 0.62 s
for the loky implementation with 40 processes, while the worst time was 10.6 s for
the 1-process parallel IPP. The IPP implementation optimized for NUMA did not

74



improve the performance in comparison to its non-optimized version. Even limited
to a single computing node, loky implementation achieved a far better performance
than the IPP one.

Table 4.9 - Performance (Random Forest test case, Seq-X nodes) of the IPP, IPP NUMA
and locky implementations as a function of the number of processes: processing
times, speedups, and parallel efficiencies. The best values for serial or for each
number of processes are shown in red. The serial code execution time was
taken as a reference for the speedup calculation, shown in blue.

Implemen- Number of processes
tation Seq. 1 8 16 24 32 40 48 96 144 192

Processing times [s]

IPP 8.99 10.62 5.71 5.53 5.60 5.97 6.14 6.64 7.99 7.21 6.87
IPP NUMA 5.77 5.43 5.62 6.02 6.17
Loky 5.96 1.24 0.72 0.67 0.62 0.62 0.64

Speedup

IPP 1.00 0.85 1.57 1.62 1.60 1.51 1.46 1.35 1.12 1.25 1.31
IPP NUMA 1.56 1.66 1.60 1.49 1.46
Loky 1.51 7.26 12.56 13.51 14.47 14.50 14.12

Parallel efficiency

IPP 1.00 0.85 0.20 0.10 0.07 0.05 0.04 0.03 0.01 0.01 0.01
IPP NUMA 0.19 0.10 0.07 0.05 0.04
Loky 1.51 0.91 0.79 0.56 0.45 0.36 0.29

Source: Author’s production.
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Figure 4.19 - Processing times (seconds) (Random Forest test case, Seq-X nodes) of imple-
mentations as a function of the number of processes.
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Figure 4.20 - Speedups (Random Forest test case, Seq-X nodes) of implementations as a
function of the number of processes. Serial Python time was used as reference
for calculations. The dotted line denotes linear speedup.
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Figure 4.21 - Parallel efficiencies (Random Forest test case, Seq-X nodes) of implementa-
tions as a function of number of processes.

Processes

E
ff

ic
ie

nc
y

0

0.5

1

1.5

2

1 8 16 24 32 40 48

IPP

IPP NUMA

Loky

Source: Author’s production.

77





5 SOME PROFILING RESULTS

This chapter shows profiling results only for the stencil and the FFT test cases for
both the F90 and F2PY implementations. For convenience, two profilers available
in the SDumont programming environment were chosen, the Intel APS and the
Python cProfile, both shown in the following sections. Obviously, there are many
other profilers that can be applied to the different implementations shown in this
work. For instance, Intel APS can be used for Cython, or Numba-GPU may use
the Nvidia profiler. However, considering the SDumont programming environment,
profiling schemes for some Python implementations may require a careful planning.
One example is the batch job submission provided by Slurm that may limit profiling
to the post-processing data of the job. Another issue is the code optimization cycle
(performing profiling, code optimization and profiling again) may be very limited
due to the waiting time in the SDumont Slurm submission queues. Therefore, if
possible, such experiments can be performed in a laptop, in order to speed-up eventual
optimizations of the code.

All results shown in this chapter are for the stencil and FFT F90 and F2PY imple-
mentations generated using the Intel F90 compiler and Intel Python to be compatible
to the employed Intel profiling tools.

Performance optimization of serial or parallel software is based on an analysis
of execution times and how these times are divided among the several parts or
subroutines/functions of the software, or even to identify compute-intensive parts
inside specific programs or subroutines/functions. This is usually referred to as
performing the timing and profiling of the software. Serial and parallel performance
results shown in Chapter 4 were based on timing information, while this chapter
shows mainly profiling results.

The profiling of a program comprehends to instrument and run it in order to obtain
information about its execution, such as execution time, breakdown of the execution
times of the program components (functions, routines, etc.), memory usage, graph of
the program call tree, optimizations performed on the source code by the compiler,
etc.

Profiling can be performed by the compiler profiling options, which require to
recompile the code, by accessing CPU or GPU hardware counters, by adding calls
to operational system routines in the original code or by linking the program to
a profiling library or program. The resulting profile information allows to analyse
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performance bottlenecks in the code and thus to optimize its processing performance
in terms of time or memory. Usually, it is possible to refer to these profiling approaches
as being performed by profilers that may include tools for generating statistics or
visualizing profile data.

Except for the use of hardware counters, profiling increases the execution time, since
it requires additional calls to time and profiling routines. The original code is then
said to be instrumented, and the resulting profiling may be slightly different from
the (unknown) real one. Another point is to perform the profiling of the code for
problem size and input data similar to those employed for the intended use of the
program. In this work, a few profiling tools or profilers were used according to the
implementation, all of them available on the SDumont computing environment. It
is not intended to provide an overview of all existing profilers, but just to present
examples of profiling for some of the implementations.

5.1 The Intel Application Performance Snapshot (APS)

The Intel Application Performance Snapshot (APS) was the profiler employed in
this work for all F90 implementations. It is a lightweight profiling tool that supports
programs parallelized with using MPI and/or OpenMP libraries (Figure 5.1). The
APS requires compilation using the Intel suite of compilers and tools, which include
the APS tool. Some specific options must be specified in the compilation, like the
option to use the PAPI library, while the program execution is triggered by the
APS command with options to specify the output wanted by the user. During the
execution of the program, APS stores profile data in disk, being such data available
to be read as plain text or by an HTML browser. Table 5.1 shows the performance
metrics provided by APS.

Intel provides a wide range of tools, including a more comprehensive set of profilers.
For instance, the APS full set includes the Intel VTune Amplifier, to provide more
detailed profile data or the Intel Advisor which provides optimization hints.

Even called as a lightweight profiler, Intel APS provides much performance data, as
can be seen in Section 6.3 for the stencil and FFT test case F90 implementations.
Besides usual timing and profiling data, cache stalls are expressed in percentage of
cycles [%c], and (pipeline) memory stalls, in percentage of pipeline slots [%ps]. The
Bound feature of the profiler indicates if the program is memory-bound or MPI-bound,
i.e., limited by memory performance or by the MPI performance, and thus could have
its performance improved by optimizing memory access or by the MPI optimization,
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Table 5.1 - Intel APS summary of performance metrics.

Metric Description
Elapsed Time Execution time of specified application in seconds.
SP GFLOPS Number of single precision giga-floating point operations calculated per

second.
Cycles per Instruction
Retired (CPI)

The amount of time each executed instruction took measured by cycles

MPI Time Average time per process spent in MPI calls
MPI Imbalance CPU time spent by ranks spinning in waits on communication operations
OpenMP Imbalance Percentage of elapsed time that your application wastes at OpenMP

synchronization barriers because of load imbalance
CPU Utilization Estimate of the utilization of all logical CPU cores on the system by

your application
Memory Stalls Indicates how memory subsystem issues affect application performance
FPU Utilization The effective FPU usage while the application was running
I/O Operations The time spent by the application while reading data from the disk or

writing data to the disk
Memory Footprint Average per-rank and per-node consumption of both virtual and resident

memory

Source: Adapted from Intel APS (2022).

respectively. These hints are based on a set of specific thresholds, as follows: MPI%
(10%), IPC (instructions per cycle per core, 1), 20% for Cache%, DRAM%, and Mem
Stalls%, and Vectorization% (70%). Poor MPI parallel performance can be due to
wait times within the MPI library, sending and receiving messages that are out of
sync, imbalance between processes, misconfigurations, etc.

The Intel APS profiler outputs some normalized values, calculated in function of their
nominal maximum values. In the case of SDumont B710 nodes, nominal maximum
values are: IPC = 4 (according to Intel APS); DP = 19.2 GFlops/sec per core (2.4
GHz × 8 DP/cycle considering vectorization with E5-2695v2 Ivy Bridge AVX-256
instructions); and DRAM = 59.7 GB/s (for DDR3-1866).

In general, increasing the number of MPI processes, there is a tendency of the program
shifting from memory-bound to MPI-bound. This can be expected since the higher
the number of processes, the lower the memory demand per process. In addition,
increasing the number of processes, the MPI% time also increases, but DP instruction
rate typically decreases, since MPI communication and synchronization times increase.
In other words, program granularity worsen, since there is less calculation and more
communication per process. DP GFlop/sec value per core increases with the number
of processes since each process tends to be less constrained by the memory (less
memory stalls in the pipelines, less cache misses, etc.). IPC rate tends to be relatively
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Figure 5.1 - Intel APS profiling.
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for the serial program, lower for a small number of MPI processes, but tends to
increase for higher number of processes, since there is a higher number of instructions
required by calls to the MPI library.

5.2 The Intel Python Profiler

Python standard library provides the cProfile. This Python tool profiles only the part
of the Python code, without internally profiling the eventual C/F90 compiled code
that may be part of the Python program. It yields the same profile data provided by
the standard gprof profiler. The Python environment also provides the timeit tool
to measure the elapsed time based on the system wall clock. It was also employed
in this work, but it is worth to note that the profiling performed by the cProfile is
restricted to the top layer of the Python program, i.e., the Python interpreter.

5.3 Profiling results

Profiling results for the stencil and the FFT test cases for both the F90 and F2PY
serial and parallel implementations follow. Intel APS was used for the F90 imple-
mentations, and the Python cProfile library was used for the F2PY ones.
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5.3.1 Stencil test case profiling for the F90 code

The Intel APS profiler was used to analyze the F90 serial and parallel (MPI)
implementations of the Stencil test case (4800 × 4800 point grid, 500 iterations, and
1 energy unit). Code is compiled by the Intel F90 compiler with the APS compilation
options, then is executed by using the APS command with the specific options for the
program execution, and then APS executed again to generate the profiling reports.
In particular, JupyterLab was used in all these steps to allow easy reproducibility
and documentation. The stencil F90 code was executed in a SDumont B710 node,
being compiled with the Intel Parallel Studio XE 2020 (PSXE). The related PSXE
module includes the Intel MPI library.

Table 5.2 shows selected profiling results for the Stencil test case generated by the
Intel APS (speedup and parallel efficiency were calculated apart). The serial execution
time used as a reference for the speedup calculations is highlighted in blue. Orange
values represent manually calculated values. Some values in the table are void, since
they are not applicable, or for some reason, the profiler was not able to calculate
them. This table shows that above 16 MPI processes, the Bound hint (highlighted
in green) shifts from memory-bound to MPI-bound. It is also worth to note the
amount of time demanded by the MPI_Init function, reaching 35% of the elapsed
time (or 48% of the MPI time) for 81 processes.

It is important to note that times, speedups and parallel efficiencies shown in Table 5.2
are different to the corresponding performance results shown in Chapter 4, since
the results shown in this table were obtained using the Intel F90 compiler, not the
GNU F90 compiler used in that chapter. However, performance results in the table
are worst mainly due to the profiler overhead, which tends to increase with the
number of MPI processes. In the same table, performance results that have room to
be improved are indicated by APS, and are highlighted in red in this table.

Figure 5.2 shows profiling results obtained for the Stencil test case F90 implementation
as a function of MPI processes, generated by the Intel APS profiler, according to the
definitions shown in the Section 5.1. This figure shows a decrease of the normalized
DP GFlop/sec (total) value with the increase of the number of MPI processes, since
the nominal DP GFlop/sec total value tends to increase much more. The profiling
information can be further employed to optimize the code or to investigate some
kind of performance anomaly. For instance, in the same figure, results for 9 MPI
processes presented the highest percentage of memory stalls and the lowest IPC rate.
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Table 5.2 - APS-generated profiling results (Stencil test case, B710 nodes) for the F90
implementation as a function of the number of MPI processes. Manually cal-
culated values are highlighted in orange. The serial execution time used as
a reference for the speedup calculations is highlighted in blue. Performance
results that have room to be improved are highlighted in red. Bound hint is
highlighted in green.

Number of MPI processes
Parameter Serial 1 4 9 16 36 49 64 81

Elapsed Time [s] 22.6 23.3 9.1 7.9 7.5 5.0 4.8 5.4 5.7
NonMPI Time [s] - 22.8 8.1 6.7 5.5 2.4 2.0 1.8 1.5
Speedup - 1.0 2.5 2.9 3.0 4.5 4.7 4.2 4.0
Efficiency - 1.0 0.6 0.3 0.2 0.1 0.1 0.1 0.0
MPI Time [s] - 0.5 1.0 1.2 2.0 2.6 2.8 3.6 4.2
MPI Time [%] - 2.1 10.9 15.1 27.5 52.5 59.4 68.2 74.4
MPI_Init [s] - 1.0 0.8 1.0 1.1 1.5 1.4 1.9 2.0
MPI_Wait [s] - - 0.2 0.1 0.9 0.9 1.0 0.8 1.2
MPI_Bcast [s] - - 0.0 0.0 0.0 0.2 0.3 0.8 0.8
MPI Imbalance [s] - - 0.1 0.0 0.7 0.9 1.0 1.2 1.6
DP [GFlops] 3.8 3.6 9.6 12.4 12.0 17.2 16.4 15.4 13.6
IPC Rate 1.5 1.3 1.0 0.6 0.9 1.3 1.5 1.5 1.7
Bound mem mem mem mem mem MPI MPI MPI MPI
Cache Stalls [%c] 13.0 14.4 23.8 32.2 26.9 16.2 16.3 12.6 10.2
DRAM Stalls [%c] 13.3 14.3 29.2 33.2 27.7 24.4 14.0 10.6 7.1
DRAM [GB/s] - 11.9 26.4 - 28.5 20.0 12.1 12.5 8.0
Mem Stalls [%ps] 29.3 31.9 44.7 67.3 52.9 36.2 26.1 21.7 14.0
Vectorization [%] 100.0 100.0 100.0 100.0 100.0 99.9 98.5 99.8 98.0

Source: Author’s production.

Figure 5.3 shows the processing times for the F90 Stencil test case as a function
of the number of MPI processes. As expected, the increase of the number of MPI
processes decreases the elapsed time, while increasing the MPI time and decreasing
the difference between these times.

5.3.2 FFT test case profiling for the F90 code

Similarly to the previous section, the Intel APS profiler was used to analyze the
F90 serial and parallel (MPI) implementations of the FFT test case (3D array of
complex numbers with dimension 576 × 576 × 576). Code was compiled by the
Intel F90 compiler with the APS compilation options, then is executed by using the
APS command with the specific options for the program execution, and then APS
executed again to generate the profiling reports. In particular, JupyterLab was used
in all these steps to allow easy reproducibility and documentation. The FFT F90
code was executed in a SDumont B710 node, being compiled with the Intel Parallel
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Figure 5.2 - Profiling values (Stencil test case, B710 nodes) for the F90 implementation as a
function of the number of MPI processes. Except for MPI% and Mem Stalls%
(continuous lines), percentage values (dotted lines) result from normalization
taking the corresponding maximum values of each variable.
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Figure 5.3 - Processing times (seconds) (Stencil test case, B710 nodes) for the F90 imple-
mentation as a function of the number of MPI processes.
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Studio XE 2020 (PSXE). The related PSXE module includes the Intel MPI library.

Table 5.3 shows the profiling results selected for the FFT F90 test case generated
by the Intel APS (speedup and parallel efficiency were calculated apart). The serial
execution time used as a reference for the speedup calculations is highlighted in
blue. Some values in the table are void, since they are not applicable, or for some
reason, the profiler was not able to calculate them. This table shows that above 4
MPI processes, the Bound hint shifts from memory-bound to MPI-bound. It is also
worth to note the amount of time demanded by the MPI_Init function, reaching
47% of the elapsed time (or 63% of the MPI time) for 96 processes.

Table 5.3 - APS-generated profiling results (FFT test case, B710 nodes) for the F90 imple-
mentation as a function of the number of MPI processes. Manually calculated
values are highlighted in orange. The serial execution time used as a reference
for the speedup calculations is highlighted in blue. Performance results that
have room to be improved are highlighted in red. Bound hint is highlighted in
green.

Number of MPI processes
Parameter Serial 1 4 16 24 48 72 96

Elapsed Time [s] 20.3 21.1 7.4 4.0 4.0 3.8 5.1 5.5
NonMPI Time [s] - 20.6 5.8 2.3 1.9 1.2 1.3 1.3
Speedup - 1.0 2.7 5.1 5.1 5.4 4.0 3.7
Efficiency - 1.0 0.7 0.3 0.2 0.1 0.1 0.0
MPI Time [s] - 0.5 1.5 1.7 2.1 2.5 3.7 4.1
MPI Time [%] - 2.4 20.9 41.9 52.2 68.3 78.7 77.3
MPI_Init [s] - 0.5 0.7 1.0 1.5 1.8 2.2 2.6
MPI_Sendrecv [s] - - 0.8 0.6 0.4 0.3 0.5 0.3
MPI Imbalance [s] - - 0.1 0.3 0.2 0.4 1.2 1.1
DP [GFlops] 1.1 1.1 3.0 5.6 6.3 6.2 4.5 3.6
IPC Rate 1.4 1.4 1.3 1.1 1.1 1.3 1.6 1.5
Bound mem mem mem MPI MPI MPI MPI MPI
Cache Stalls [%c] 9.1 8.8 19.2 17.9 18.0 13.7 9.3 10.6
DRAM Stalls [%c] 32.2 29.2 16.0 21.0 21.5 12.3 5.7 4.9
DRAM [GB/s] - 1.6 6.9 15.5 16.5 8.8 4.6 2.8
Mem Stalls [%ps] 45.9 41.7 41.3 44.9 43.2 29.4 13.7 17.4
Vectorization [%] 5.3 5.5 5.3 5.4 7.8 5.0 31.0 18.4

Source: Author’s production.

It is important to note that times, speedups and parallel efficiencies shown in Table 5.3
are different to the corresponding performance results shown in Chapter 4, since the
results shown in this table were obtained using the Intel F90 compiler, not the GNU
F90 compiler used in that chapter. However, performance results in Table 5.3 are
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Figure 5.4 - Profiling values (FFT test case, B710 nodes) for the F90 implementation as a
function of the number of MPI processes. Except for MPI% and Mem Stalls%ps
(continuous lines), percentage values (dotted lines) result from normalization
taking the corresponding maximum values of each variable.
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Figure 5.5 - Processing times (seconds) (FFT test case, B710 nodes) for the F90 imple-
mentation as a function of the number of MPI processes.
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worst mainly due to the profiler overhead, which tends to increase with the number
of MPI processes. In the same table, performance results that have room to be
improved are indicated by APS, and are highlighted in red in this table. Figure 5.4
shows profiling results obtained for the FFT test case F90 implementation as a
function of MPI processes, generated by the Intel APS profiler, according to the
definitions shown in the Section 5.1. This figure shows a decrease of the normalized
DP GFlop/sec (total) value with the increase of the number of MPI processes, since
the nominal DP GFlop/sec total value tends to increase much more. The profiling
information can be further employed to optimize the code or to investigate some
kind of performance anomaly. For instance, in the same figure, results for 16 MPI
processes presented the highest percentage of memory stalls, while the lowest IPC
rate occurred for 24 processes.

Figure 5.5 shows the processing times for the F90 FFT test case as a function of
the number of MPI processes. As expected, the increase of the number of MPI
processes decreases the elapsed time, while increasing the MPI time and decreasing
the difference between these times.

5.4 Overhead due to the APS Profiler in the F90 codes

Any profiler incorporate in the original code calls for functions or routines that
perform timing and profiling. As a consequence, the resulting instrumented code will
have an overhead of execution time, the profiling code-instrumentation overhead.
This section shows the instrumentation overhead of the Intel APS profiler for both
the stencil and FFT serial and parallel implementations in F90 with and without
the profiler. These implementations were compiled with the Intel F90 compiler using
the optimization flag -O3, and execution time values are given by the average of 3
runs in the SDumont B710 nodes.

Figure 5.6 compares the speedups for the F90 Stencil test case with and without
the Intel APS profiler as a function of the number of MPI processes. As already
commented, the profiler overhead can much affect the speedup of the MPI program,
tending to increase with the number of MPI processes. In this case, the profiler
overhead peaks at 81 processes, reducing the original speedup from 15.7 to 8.8 (44%
reduction).

Figure 5.7 shows the comparison of speedups with Intel APS (in red) and without
Intel APS (in blue), as a function of number of MPI processes, including serial
version, for the F90 implementation, running on B710 nodes, and using Intel tools.
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Figure 5.6 - Comparison of the speedups (Stencil test case, B710 nodes) for the F90
implementation with and without the Intel APS profiler as a function of the
number of MPI processes.
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Figure 5.7 - Speedups (FFT test case, B710 nodes) as a function of the number of MPI
processes, including the serial version, for the F90 implementations, built with
and without the Intel APS.
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The comparison shows the effect of using the Intel APS library on the results of
the F90 implementation. As the number of MPI processes increases, the influence
of Intel APS increases, and in 72 processes the speedup was reduced from 10 to
7 (30% reduction), making the analysis of profiling results non-trivial, needing to
consider deviations, and possibly using other profiling tools when there is a desire to
get results close to the result of the implementation that does not use profiling.

5.5 The overhead due to the use of Python in the F2PY codes

A question that arises is how much the performance is affected when using a Python
program in comparison to the straightforward use of a C/F90 compiled program. The
overhead due to the use of Python is expected, since a Python program may reuse
a C/F90 compiled program or library, for instance. Obviously, the use of Python
adds an extra level of programming due to the Python commands. On the contrary,
such overhead may be acceptable, since Python programming is typically easier and
allows a modular approach.

In this work, the Python overhead was evaluated for the F2PY implementations
of both the stencil and FFT test cases. This overhead is depicted for F2PY in
Figure 5.8. F2PY is a feature of the NumPy library that reuses one or more original
F90 subroutines, which are then incorporated as functions from a standard Python
library. However, each F90 routine must be called as a Python function and thus a
F2PY wrapper is required to generate the APIs that maps Python function calls to
the corresponding F90 subroutines embedded in the related library. The execution
of the standard Python code is done in an interpreted way by the Python virtual
machine, while the execution of the function of F2PY-generated Python library is
done by the compiled F90 native code.

These Python overhead measures were performed using different execution time data,
generated by calls to the system wall time, use of the Python cProfile, and calls to
F90 CPU_TIME routine in the original code. Each measure of the Python overhead
is assumed as given by the difference between the F2PY and F90 implementations.

Even considering only timing information, values of execution time may be different
according to the employed tool. Table 5.4 and Table 5.5 show, respectively, the
execution times of the F90 and F2PY implementations for the stencil and FFT test
cases in function of the number of MPI processes. These tables compare execution
times obtained by different tools. The Intel Python cProfile was used only for timing,
while Intel APS profiler was not employed. Each profiling value is the average of 3
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Figure 5.8 - Python overhead when using F2PY.

(compiled machine code)
subroutine foo(x)
  double precision, intent(out) :: x
  ...

API

import library
x = library.foo()
...

library

original F90 code reused

overhead

Python main code

Source: Author’s production.

runs of each implementation. The shortest execution times for each number of MPI
processes are highlighted in red. The different timing tools employed here follow.
Except for the last two cProfile tools, the desired elapsed time is yielded by the
difference between two successive wall time values.

Table 5.4 - Processing times (seconds) (Stencil test case, B710 nodes) for the F90 (without
the Intel APS profiler) and F2PY (with timing information of the Intel cProfiler)
implementations as a function of the number of MPI processes.

Implemen- Number of MPI processes
tation Serial 1 4 9 16 36 49 64 81

F90

OS time command 21.94 22.56 7.98 6.98 5.63 3.81 3.49 4.08 3.85
F90 wall time call 21.88 22.04 7.43 6.22 4.62 2.17 1.80 1.73 1.39

F2PY

OS time command 22.48 21.04 6.83 5.28 4.04 3.44 4.19 4.50 4.70
Python wall time call 21.95 20.43 6.24 4.61 3.33 2.67 3.48 3.74 3.84
F90 wall time call 21.94 20.02 5.81 4.02 2.35 1.41 1.83 1.60 1.67
cProfile tottime 21.95 20.43 6.24 4.61 3.33 2.67 3.48 3.74 3.84
cProfile cumtime 22.33 20.88 6.67 5.08 3.84 3.24 3.82 4.30 4.49

Source: Author’s production.

• OS time command: uses only the wall time value (CPU time, etc. was

91



Table 5.5 - Processing times (seconds) (FFT test case, B710 nodes) for the F90 (without
the Intel APS profiler) and F2PY (with timing information of the Intel cProfiler)
implementations as a function of the number of MPI processes.

Implemen- Number of MPI processes
tation Serial 1 4 16 24 48 72 96

F90

OS time command 18.76 20.13 6.42 3.22 3.55 3.22 4.22 4.27
F90 wall time call 18.57 19.70 5.62 2.22 1.76 1.23 1.88 1.97

F2PY

OS time command 20.36 20.85 6.82 4.08 4.28 4.12 4.76 5.42
Python wall time call 19.77 20.29 6.23 3.36 3.48 3.37 3.91 4.64
F90 wall time call 19.76 19.88 5.78 2.35 1.99 1.64 1.93 2.03
cProfile tottime 19.78 20.29 6.23 3.36 3.47 3.39 3.90 4.64
cProfile cumtime 20.20 20.70 6.66 3.88 4.06 3.90 4.52 5.21

Source: Author’s production.

not used);

• F90 wall time call (F90 code alone): calls embedded in the F90 code;

• Python wall time call: analogous to the OS time command;

• F90 wall time call (F90 code wrapped by F2PY): calls embedded in
the wrapped F90 code;

• cProfile tottime: elapsed time calculated using Python library wall time
calls to F90 routines wrapped into Python library functions;

• cProfile cumtime: idem, but adding time due to the Python overhead.

Figure 5.9 shows the processing times (seconds) of the F90 and F2PY implementations
of the Stencil test case as a function of the number of MPI processes, using the values
already shown in Table 5.4. Figure 5.10 shows the processing times (seconds) of the
F90 and F2PY implementations of the FFT test case as a function of the number of
MPI processes, using the values already shown in Table 5.5.
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Figure 5.9 - Processing times (seconds) (Stencil test case, B710 nodes) as a function of the
number of MPI processes for the F90 and F2PY implementations.

Processes

Pr
oc

es
si

ng
 ti

m
e 

(s
ec

on
ds

)

0

5

10

15

20

25

Serial 1 4 9 16 36 49 64 81

F90 no Intel APS

F90 inside F2PY

F2PY (and tottime)

cProfile cumtime

F90 with Intel APS

Source: Author’s production.

Figure 5.10 - Processing times (seconds) (FFT test case, B710 nodes) as a function of the
number of MPI processes for the F90 and F2PY implementations.
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6 FINAL REMARKS

The Python environment provides fast prototyping of computer code in a high level of
abstraction, including Python and third-part libraries. However, the straightforward
use of Python is usually slow, since it is an interpreted language, requiring the use of
Python HPC approaches. This work presents the most common of HPC approaches
applied to three selected test cases, mostly using MPI, which were also implemented
in F90/MPI for the purpose of comparison. Some test cases were implemented in
the Scikit-learn that uses the IPython Parallel library. All implementations were
developed and executed on the LNCC Santos Dumont supercomputer using its
available resources. The considered three test cases were:

• Stencil test case: a five-point stencil finite difference method to solve partial
differential equations resulting from Poisson equations, applied to a 2D
heat transfer problem on a finite surface;

• Fast Fourier Transform (FFT) test case: an algorithm that computes the
multidimensional Fourier transform of an 3D array of synthetic data;

• Random Forest test case: a random forest algorithm applied for the classifi-
cation of asteroid orbits of a NASA dataset.

The serial and parallel implementations in F90 of the test cases were taken as a
reference to compare their performance with some serial and parallel implementations
of the same algorithms using approaches available in the Python environment of the
supercomputer: F2PY, Cython, Numba, Numba-GPU, and the standard Python
itself. Except for some implementations, parallel code was generated using the MPI
library and executed in one or more nodes of the supercomputer using multicore
processors. Processing times, speedups and parallel efficiencies were presented and
discussed for these implementations considering a specific problem size for each test
cases. Profiling was performed only for the F90 and F2PY implementations of the
stencil and the FFT test cases. For convenience, JupyterLab notebooks were used,
providing a web-based environment that facilitates the exchange, development and
execution of code in different environments, and thus improving code documentation,
portability and reproducibility.

This work may represent a small primer for using MPI-based HPC features in the
Python programming environment, considering execution in multicore processors,
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but there is a full set of Python alternatives for execution in GPUs. For instance,
this work presented a few implementations in Numba-GPU.

It is important to note that there is not a standard approach for achieving HPC in
Python, it depends on the available choices in terms of the programming environment
and computer hardware, the programmer knowledge or experience, etc. In general,
Python code can be optimized by performing timing and profiling in order to identify
compute-intensive parts of the code, and then replacing them by more efficient library
routines. Python modular approach facilitates such approach. The following section
provides some general recommendations.

6.1 Some general recommendations for HPC Python

This section lists below some general recommendations for using HPC resources in
Python. However, some of these recommendations may be specific for the test cases
employed in this work. Different algorithms or application problems may require
different Python HPC approaches.

• In general, in the case of non pre-existing F90 or C code, Python allows
rapid prototyping and wide portability. However, since Python is an in-
terpreted language, it is slow. Consequently, compute-intensive parts like
loops may compromise processing performance. Therefore, in order to opti-
mize the Python program, these parts must be replaced by calls to more
efficient library routines, or re-written in F90 or Cython. The optimization
process can be performed in a progressive way, taking advantage of Python
interactive and modular nature.

• When starting to write a new Python program, or when only minor changes
are intended in an existing Python program, the easier alternative to aim
processing performance is Numba, due to its portability and ability to
generate code for both CPU and GPU execution, although Numba supports
only a subset of Python. Since Numba is compiled JIT, the code can
eventually be optimized at execution time for the employed architecture,
and thus ensuring portability.

• In the case of existing F90 code, it can be reused and wrapped as a
function/routine into a Python library using F2PY, a resource of the
NumPy library. Most of the original F90 code can be left unchanged,
including the eventual calls to the MPI library.
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• In the case of existing F90 code with a known compute-intensive part(s), it
is possible to port most of the original F90 code to the Python language,
except for that part(s) that may be wrapped into a function/subroutine
using F2PY and called from the Python program. This approach takes
more time than the former one, but Python resources allow making the
new library available for other programs or users in a user-friendly way.

• When there is not an F90 code, Cython is usually a good choice for obtaining
processing performance while having a Python-like syntax and advantages
similar to those of Python. Cython supports both Python and Cython
languages, allowing to integrate Python code. On the other way, compute-
intensive parts of a Python code can be ported to Cython to improve
processing performance. Similarly to F2PY, Cython builds a standard
Python library that can be called from the Python program.

• When writing a Python program to be executed on a GPU, Numba is
the best choice, although major code changes are required to obtain maxi-
mum GPU performance. In addition, Numba JIT compilation allows the
generation of code optimized for the architecture employed for execution.

• As a general rule, the best approach for HPC is to write a standard
Python program from scratch, but using off-the-shelf optimized libraries
for known compute-intensive parts. Environments like JupyterLab provide
documentation, resulting in a code easy to understand, maintain, and reuse.
In a second step, profiling may allow optimizing the remaining not-known
compute-intensive parts.

• Another general rule is to search for highly optimized libraries for specific
classes of algorithms, that may be tailored for CPU or GPU execution (this
is not the case of this work).

6.2 Future work

Future work foresees a more detailed analysis of profiling data in order to improve
the MPI parallel performance of the test case implementations. This can be achieved
by optimizing the existing Python and F90 codes, or by exploring different, more
optimized, libraries. It is also foreseen the development of new implementations of
these test cases aimed for execution in GPUs, also available in the Santos Dumont
supercomputer.
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APPENDIX A - PUBLISHED ARTICLES

Two articles were submitted and approved for publication, one in a national congress
and the other in a journal, and both cover only the five-point stencil case test:

• MIRANDA, E. F.; STEPHANY, S. Comparison of High Performance
Computing Approaches in the Python Environment for a Five-Point Stencil
Test Problem. In proceedings: XV Brazilian e-Science Workshop (BreSci),
2021. p. 33-40. ISSN 2763-8774. DOI 10.5753/bresci.2021.15786.

Article approved and presented at the national congress (article 213763),
XV Brazilian e-Science Workshop (BreSci), event that is part of the XLI
Congress of the Brazilian Computer Society (CSBC-2021), from 18 to 23
July 2021. Available from: http://doi.org/10.5753/bresci.2021.15786. Access
in: Dec. 2021.

Abstract: Several of the most important high-performance computing
approaches available in the Python programming environment of the LNCC
Santos Dumont supercomputer, are compared using a specific test problem.
Python includes specific libraries, implementations, development tools,
documentation, optimization and parallelization resources. It provides a
straightforward way to program using a high level of abstraction, but
the parallelization features for exploring multiple cores, processors, or
accelerators such as GPUs, are diverse and may not be easily chosen by the
user. Serial and parallel implementations of a test problem in Fortran 90
are taken as benchmarks to compare performance. This work is a primer
for the use of HPC resources in Python.

• MIRANDA, E. F.; STEPHANY, S. Common approaches to HPC in Python
evaluated for a scientific computing test case. REVISTA CEREUS, 13(2),
84-98, 2021. ISSN 2175-7275. DOI 10.18605/2175-7275/cereus.v13n2p84-98.

Article accepted in a journal (submission 3408), REVISTA CEREUS. Qualis
CAPES Interdisciplinary B2 in the evaluation of the 2013-2016 quadrennium.
Available from: http://doi.org/10.18605/2175-7275/cereus.v13n2p84-98. Ac-
cess in: Dec. 2021.

Abstract: A number of the most common high-performance computing
approaches available in the Python programming environment of the LNCC
Santos Dumont supercomputer, are compared using a specific test case.
Python includes specific libraries, development tools, implementations, doc-
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umentation and optimizing/parallelizing resources. It provides a straight-
forward way to program in a high level of abstraction, but parallelization
resources to exploit multiple cores, processors or accelerators like GPUs
are diverse and may be not easily selectable by the programmer. This work
makes a comparison of common approaches in Python to boost computing
performance. The test case is a well-known 2D heat transmission problem
modeled by the Poisson partial-differential equation, which is solved by a
finite difference method that requires the calculation of a 5-point stencil
over the domain grid. Their serial and parallel implementations in Fortran
90 were taken as references in order to compare their performance to some
serial and parallel Python implementations of the same algorithm. Besides
performance results, a discussion about the trade-off between easiness of
programming versus processing performance is included. This work is a
primer for the use of HPC resources in Python.

ORCID

• Miranda, E. F.: ORCID 0000-0003-1200-794X

• Stephany, S.: ORCID 0000-0002-6302-4259
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APPENDIX B - PYTHON ENVIRONMENT RESOURCES

Python is a high-level, general-purpose, interactive language, with dynamic typing
and automatic memory management, supporting the imperative, functional, and
object-oriented programming paradigms, and in combination with its libraries allows
two ways of execution, interpreted and compiled. Among the supported paradigms,
the functional with division of processing in independent tasks allows a more efficient
parallelization. It is one of the most widely used languages, easy to learn, easy to read
and maintain, it is portable across platforms, extensible, scalable, and has support,
among others, for databases, and GUI programming (SANNER, 1999).

B.1 Programming paradigms

There are several taxonomies proposed for programming paradigms; one can try to
summarize, in general, imperative, declarative and object-oriented. The imperative
paradigm consists of a sequence of commands that has an explicit implementation,
that is, explaining how to do it to execute an algorithm. In this paradigm, the
source code, for example in C or F90, is usually compiled by generating code in
machine language, which is subsequently executed. Generally, in these languages, the
imperative programming paradigm is used with compilation ahead-of-time (AOT).
The declarative programming paradigm, on the other hand, enumerates tasks to be
performed, leaving its implementation implicit, that is, showing what the algorithm
should do. The declarative paradigm can be subdivided into functional, logical
programming, or directed to a database (SEBESTA et al., 2016).

The Python language allows to write code following a functional declarative program-
ming paradigm when in combination with the user standard library or with external
libraries. This paradigm is based on the application of functions to data passed as
arguments, which allows the interpreter to generate the intermediate representation
composed of independent tasks corresponding to each function call, which simplify
the parallelization (SINGH, 2010).

B.2 Compiled and interpreted languages

In addition to the taxonomy of programming paradigms, programming languages
can be divided and grouped according to the way they are executed or implemented,
in two large groups: compiled languages and interpreted languages, with the first
group generally corresponding to imperative programming, but not necessarily from
the second group with declarative programming. For example, Python and C++,
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depending on the implementation employed, may fall into one group or another.
The compiled languages imply the compilation of the entire program, generating
object code in machine language and requiring memory for this, but allowing a
quick execution thanks to the optimizations of the compiler and not requiring new
compilation in repeated executions in the same architecture. On the other hand, the
interpreted languages execute instruction by instruction, without generating native
object code, requiring less memory, but with slower execution and possibly requiring
a new compilation for an intermediate representation at each repetition. It should
be noted that Python can reuse the generated intermediate format, avoiding the
recompilation of already compiled code. In addition, while machine code generation
does not require less memory, the full programming environment requires a virtual
machine that requires a lot of memory. The use of less memory is even more evident for
extensive Python code, despite the memory required by the Python virtual machine.
Note, however, that these definitions are general, as it is possible to implement
interpreters for compiled languages, as well as compilers for interpreted languages. A
good example of this is the C++ interpreter from CERN (VASILEV et al., 2012).

Python, because the standard implementation is an interpreted language, requires
an interpreter which is a program that executes instruction-by-instruction Python
code or in instruction blocks grouped in a script. An interpreter usually translates
the original language into an intermediate representation, which is performed by
the associated virtual machine. It is possible to have different virtual machines for
the same interpreter, each associated with a specific processor architecture. There
are several interpreters available, which may or may not support all the features of
the Python language, and the reference implementation, CPython, translates the
source code of the language into an efficient intermediate representation (bytecode),
which is then executed using a Python virtual machine. In the case of libraries used
with Python, the interpreter accesses the functions or routines of these libraries in
intermediate representation to be executed by the virtual machine, or less frequently,
in machine language, to be executed directly by the processor (SANNER, 1999).

More recently, the so-called runtime compilation, or just-in-time (JIT), was intro-
duced, in which the interpreter compiles the intermediate representation at runtime,
generating code in machine language for execution in the processor. Thus, at runtime,
the identification of the types of variables is done, allowing the appropriate optimiza-
tions. Thus, using Python with libraries that allow JIT compilation combines the
advantages of both languages, namely the readable syntax of a modern interpreted
language with the better performance of a compiled language. An example of a JIT
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interpreter for Python is Pypy (BIHAM; SEBERRY, 2006).

B.3 Python intermediate representation

During the executing of Python code, the Python reference implementation CPython
first compiles the source code to an intermediate representation (called bytecode)
and then, in a second step, executes it in an interpreted form. After the compilation,
which is done transparently, the bytecode is then sent to be executed by a Python
Virtual Machine (PVM), which is part of the Python system, and which would be
the interpreter itself. The intermediate representation has the advantage of being
platform independent, and once the bytecode is generated, it can be executed without
changes on a different platform that has a specific PVM for the target machine. The
intermediate representation is generated through the analysis of the Python source
code, and some optimizations are made, however many of the language analyzes,
such as type checking and other characteristics of dynamic languages, are done at
runtime by the interpreter. Depending on the resources used, bytecode is stored in an
external file, and can be reused in later executions, saving compilation time. In this
case, if the source code does not change, there is no longer a need for the compilation
step, and for execution bytecode and the virtual machine are enough. All of these
steps are automatically managed by Python and are transparent to the user. Python
bytecode is also used by other system components, as is the case with the Numba
compiler, which uses it during runtime to compile certain machine code snippets into
machine code, making hybrid execution, part interpreted using bytecode, and part
executing native code (LAM et al., 2015).

B.4 Python decorators

Python treats classes and functions as objects, allowing to pass classes or functions
as an argument to other functions. The Python language incorporated in its more
recent versions the use of the so-called decorators, which improves the syntax for
passing a function as an argument of another function, without explicitly modifying
it, but extending its behavior. Also, a function can return another function. As an
example, decorators, combined with the Numba JIT compiler, allow the definition of
functions that must be compiled only at runtime. In this case, the interpreter, instead
of using its representation of the function, uses the machine language code generated
by Numba. Thus, the Python user has the impression of executing commands in an
interpreted language, but taking advantage of the performance obtained by compiling
just-in-time (LAM et al., 2015).
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B.5 Python libraries

Python’s flexibility allows the user to choose from several parallelization and optimiza-
tion features through libraries or different implementations in imperative languages
like C or F90. As an example, the library for scientific computing NumPy, which uses
code implemented in C/C++ and F90 (WALT et al., 2011), has a tool called F2PY
that generates an F90 program interface for Python (PETERSON, 2009). Python
libraries are not necessarily written using the Python language, and in fact the
interfacing and extension capability is used to create libraries from various sources,
and within the library there can be optimized native code that is executed directly
by the processor without being interpreted, making the library as fast as a compiled
language. Consequently, one of the ways to get performance in Python is to use
optimized libraries, especially in computationally intensive parts.

There are also compilers, such as Cython, that can create standard Python libraries
by compiling the source code into C code, which in turn is built by a C compiler
to generate optimized native code, and the end result is a library (BEHNEL et al.,
2010). Another example is the Numba compiler and library, which allows to compile
just-in-time (during runtime) a subset of the Python language and the NumPy
library (LAM et al., 2015). mpi4py is a library, as its name suggests, that allows
parallelization using the Message Passing Interface (MPI) standard, for execution
using multiple processes (DALCÍN et al., 2008). On the other hand, Dask is a library
for parallel processing that integrates with specific libraries that allow more efficient
parallelization by dividing processing into independent tasks (ROCKLIN, 2015). In
addition to these, there are several other libraries and HPC solutions for Python,
such as libraries related to SMD, Cluster, Cloud, Grid, and Distributed Computing
(PALACH, 2014). Another example of this is PyTorch, which is an open source machine
learning library based on the Torch library, used for applications such as computer
vision and natural language processing. PyTorch has support for parallelization on
machines with multi-core processors and with GPU (KETKAR, 2017).

In short, the Python user has access to more than sixty libraries and solutions related
to parallel processing (PALACH, 2014). The Anaconda open-source distribution,
focused on scientific computing, which aims to simplify package management and
deployment, has a cloud-based repository with more than seven thousand packages
for data science and machine learning. Anaconda is available for use in SDumont.
The current version of Python, as of December 2020, is 3.9.1. The software composed
of the Python language and its standard library, the external libraries, and the
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interpreter and virtual machine used, constitutes the so-called Python programming
environment (or Python ecosystem).

Throughout this text, for the sake of simplicity, each core of a multi-core processor
will be denoted as CPU, and each general-purpose graphics accelerator card (GPGPU
- General Purpose Graphics Processing Unit) will be denoted as GPU. In addition,
High Performance Computing, which obviously includes parallel processing on CPUs
and / or GPUs, will be denoted as HPC.

B.6 JupyterLab (and Jupyter Notebook)

JupyterLab, which has been used in all implementations in this work, is a user interface
that is an evolution, is compatible, and offers all the familiar building blocks of classic
Jupyter Notebook. JupyterLab is an interactive development environment that has the
flexibility to allow combination of executable code snippets to solve a problem, with
explanatory text, and calculation results including graphics, in addition to having an
interactive authoring application running in the web browser. It offers some features
of literate programming, which is a programming paradigm introduced by Donald
Knuth, in which code accompanies an explanation of its logic in a natural language
interspersed with snippets of source code that can be compiled and/or executed
(KNUTH, 1992). The approach is used in scientific computing and data science for
reproducible research and open access purposes to facilitate understanding. In this
way, it generates a powerful work environment for rapid development and prototyping,
promoting integration between the various components of this environment, allowing
easy visualization and analysis, and generating multimedia web documentation
(PERKEL, 2018). It has a client-server architecture with a communication protocol
that allows running servers on remote machines (a cluster, or a supercomputer),
and interactively developing a prototype on a local laptop, while executing the code
transparently on remote machine (Figure B.1).

The development interface in the web browser is standardized and is the same
regardless of where the notebook server is running, making it easy to use in different
environments and systems. It is even possible to use several notebook servers at
the same time, each running on different machines, and being viewed in different
windows of the web browser on the local machine, making it possible to develop and
run code on different machines at the same time. Depending on the configuration,
it is possible to use or combine several programming languages or environments,
for example, it is possible to develop code in F90, C, R, Bash shell, and others. It
is also possible to access the operating system shell and perform most of the tasks
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Figure B.1 - JupyterLab interface.

Source: Author’s production.

and features from the command line. It also creates or edits a standalone document
on the local machine containing a Notebook, which later can also be viewed in an
appropriate document reader, or the document can be exported to other formats
such as pdf, html, and LaTeX. This document can be shared and also used in another
Notebook session. It is possible to use Notebook in order to store the entire history
with the step by step of what was done during development, including the outputs
and results of the remote machine, interspersed with executable code snippets, and
with the description of what was done, in separate cells. This Notebook may be
reproducible, cells may be re-executed, and the same results may be obtained by
mixing documentation with executable code, as long as it is on the same machine
or in the same configuration, or else the Notebook may be viewed as just a regular
document, and comments may be be added as they are machine independent. When
used in conjunction with Conda (GRÜNING et al., 2018), an open source environment
and package management system, it provides a quick and easy environment to install,
run, and update Python packages and resolve their dependencies, including installing
packages with the same versions used during code development (BISONG, 2019).

B.7 Conda package manager and ecosystem

Conda (GRÜNING et al., 2018) is a free, open source, multi-featured Python package
and environment manager that is cross-platform and can work with languages other
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than Python. As an example, it is used by the Python Anaconda distribution.
Environment management is one of the main aspects of Conda, allowing different
versions of packages to be used, or even completely separate package installations. It
is possible to work with different Python environments, which can be easily created,
saved, loaded and switched. Other features are conflict resolution management,
package dependencies, and package breaking. In this work, several features of Conda
were used, such as nested activation to allow two environments to be used at the
same time. Conda also has features to list current packages and install on another
machine to allow reproducibility. It is also possible to create stacked environments,
to allow, for example, adding packages to an existing environment without modifying
it, and this feature can be useful, for example, in SDumont if the existing Python
distribution being used does not have the JupyterLab package, or another package.
A new stacked environment is created, in the user area, to add the missing packages,
without modifying the environment that already exists. Conda also has a large online
package repository.
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APPENDIX C - OTHER PYTHON HPC APPROACHES

This appendix briefly describes other approaches that were not directly used in
this work, but are somehow related, or were used as a reference. Perhaps the most
employed of these approaches is PyTorch. Most of these solutions are actively being
developed and offer some form of high-performance or parallel processing, multi-
processing, or interfacing capabilities with C or F90. Furthermore, it does not include
cloud computing, grid computing and related projects such as distributed file systems.

C.1 PyTorch

PyTorch is an open source machine learning library based on the Torch library, which
provides resources for parallel execution on multi-core processors or GPU (KETKAR,
2017; IMAMBI et al., 2021). Torch is an open source library for machine learning that
provides a programming environment for scientific computing and uses the Lua pro-
gramming language, from script, in its compiled implementation just-in-time, which
is based on the C language. It is important to note that Torch supports operations
with multidimensional arrays and tensors. Although the development of Torch has
been stalled since 2018, PyTorch continues to be developed and updated, being used
for applications such as computer vision and natural language processing. PyTorch
has interfaces for Python and C++ languages and provides scalable and distributed
training, optimizing development, features supported by Torch (COLLOBERT et al.,
2002). PyTorch’s main developer is Facebook, which uses mainly for translations and
natural language processing (NLP), processing approximately 6 million translations
per day, which include distributed and multitasking training for multiple complex
models at the same time (KETKAR, 2017) . PyTorch allows immediate execution of
calculations with tensors by means of computational graphs generated dynamically,
and in each, the vertices correspond to the tasks to be performed and the edges define
the order of execution of these tasks. Each task can be performed independently,
using parallel processing, for example with GPU (FEY; LENSSEN, 2019).

C.2 PyCuda

PyCuda is a Python library and programming environment, which works as an
interface to the CUDA parallel programming API, written in C++, with features
and resources such as comprehensive implementation, guarantee of resources between
class initialization and completion, dependency control for allocated memory control,
abstractions to facilitate CUDA programming, automatic translation of CUDA errors
for Python exceptions, JIT compilation using LNCC / NVCC, has little or no
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Figure C.1 - PyCuda JIT interpretation and compilation diagram.
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Source: Adapted from Klöckner et al. (2012a).

overhead from wrapping, comes with library optimized for GPU for linear algebra,
reduction, search, and additional packages for FFT (fast Fourier transform) and
LAPACK, in addition to complete documentation. PyCuda also supports threading
with different contexts for each thread, albeit with limitations on the freeing of
dynamically allocated memory. It is also possible to use the CUDA-GDB debugging
tool to debug Python / PyCuda scripts, and the CUDA profiling tool to view
information such as routines or functions and tree runtimes of calls that shows which
ones called or were called by others, either to run on CPU or GPU (KLÖCKNER

et al., 2012b). Figure C.1 shows the JIT PyCuda interpretation and compilation
diagram, which includes an interpreted phase for tests and execution on the CPU,
and a compilation phase for the GPU that uses a temporary storage of binary codes,
to avoid repeated compilations at each run.

C.3 Other Nvidia GPU supports for Python

Nvidia’s GPUs are used in several HPC (HOLM et al., 2020) projects and are also
present in 100 systems on the TOP500 list (ranking of the 500 supercomputers). A
simple search for the word “Python” on Nvidia’s site, returns 5,230 results. Python is
used in the Nvidia DIGITS environment for deep learning, composed of the cuBLAS,
cuDNN, NCCL, NVCaffe, Torch, and TensorFlow (YEAGER et al., 2015) libraries. It
is also used in the Nvidia DALI library (Data Loading Library) to speed up data
preprocessing for deep learning (GAYER et al., 2019) applications. Another library is
Nvidia Theano, for definition, optimization, and analysis of mathematical expressions
involving multidimensional arrays (BERGSTRA et al., 2010). The Python TensorFlow
module is a machine learning library, which runs on CPUs and GPUs (BROWNLEE,
2016). Nvidia also contributes to the design of the LLVM compiler, allowing, for
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example, the F90 LLVM compiler to generate code for GPU (OSMIALOWSKI, 2017).
Using Python and Numba is one of the easiest ways to use GPU for computing
(ODEN, 2020).

C.4 Dask for Python

Dask is a programming environment that optimizes the parallel execution of Python
programs. Dask integrates with other libraries such as NumPy, Pandas, and Scikit
Learn, and has a scheduler (scheduler) capable of providing parallelization in the
execution of programs, whether on a simple laptop multi-core, cluster, or even on a
supercomputer. Dask integrates well with the Python environment, requiring few
code changes. In addition, it provides the automation of parallelization by dividing
the processing into independent tasks and scheduling them for execution according to
the available computational resources (shared memory node, processors, cores, GPU,
etc.). Dask is installed automatically when installing the Anaconda distribution,
thus allowing efficient parallelization to be used. The Anaconda distribution is the
most popular of the Python versions for Data Science. Some notable features of
Dask are the support for multidimensional arrays, the low level interface to allow
optimizations, and the full integration with Python. Perhaps the main feature of
Dask is its declarative programming, resembling Python. The Dask scheduler is based
on the generation of a graph, in which the nodes represent Python functions and the
lines, the flow of Python objects between the nodes, as illustrated in Figure C.2. This
allows to identify independent tasks, which correspond to the functions of each node,
and which allow to efficiently process large collections of data. After the graph is
generated, the Dask task scheduler distributes them for execution, with two options:
the single machine scheduler, which is simpler and applies to a local shared memory
machine, and the distributed scheduler, more complex, as it applies to a distributed
memory machine, such as a cluster (ROCKLIN, 2015; ROCKLIN, 2021).

C.5 Parallel Python

Module that provides code parallelization mechanisms in multiprocessor systems or in
clusters, using processes and inter-process communication. Features include dynamic
allocation of processes and resources at runtime, load balancing, fault tolerance, and
cross-platform operation (PALACH, 2014).
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Figure C.2 - Diagram of the task graph and Dask schedulers.
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Source: Adapted from dask.org (2022).

C.6 FEniCS

Computing platform for solving partial differential equations. It has resources to work
with finite elements efficiently. Scalable for high-performance clusters is designed for
parallel processing, and allows rapid prototyping, in addition to scaling the same code
for HPC. As an example, a thermomechanical simulation can be initially developed
on a desktop computer, and then the same code can run on a larger scale using 24,000
parallel processes (ALNÆS et al., 2015).

C.7 dispy

Structure for creating and using clusters for parallel and distributed computing,
including multiprocessing, and processing in cluster, grid, and cloud. It fits well in the
paradigm of parallel data processing, and has resources for communication between
tasks, client and server modules, and scheduler for shared execution. It is a generic
and comprehensive environment for creating and using clusters to perform parallel
computing between multiple processors. It has features for data parallelization, and
communication of tasks in a concurrent, asynchronous, or distributed manner (AGIUS;

INGUANEZ, 2019).

C.8 Ray

System for building and running distributed applications, supporting GPU, multi-
processing, and cluster execution. It includes libraries to speed up machine learning,
and can be used in conjunction with libraries like PyTorch, TensorFlow, Keras, and
others (MORITZ et al., 2018).
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C.9 Celery

Environment for distributed applications, consisting of asynchronous (background)
or synchronous (waiting until they are ready) task execution queues, based on
parameter passing, with support for scheduled or real-time execution, written in
Python. Tasks can be executed concurrently on one or more execution nodes (CPUs),
using multiprocessing, or co-routines. Celery is used, for example, in services like
Instagram to process millions of tasks (MCLEOD, 2015).

C.10 Charm4py

Environment for distributed computing and parallel programming, built on top of
Charm ++ which is a programming language and environment for parallel program-
ming supported by an adaptive execution environment. Charm4py supports migrable
objects and calling remote methods asynchronously (CHOI et al., 2021).

C.11 Deap

Computational environment for rapid prototyping and testing of ideas. It also works
with multiprocessing mechanisms and SCOOP (seen in the following item). It allows
the creation of new types, customization of initializers, intelligent choice of operators,
and writing of algorithms (DE RAINVILLE et al., 2012).

C.12 SCOOP

Module for distributed tasks, allowing concurrent parallel programming in various
environments, from heterogeneous grids to supercomputers. Features include working
with multiple computers on a network, creating multiple tasks within a task, easily
paralleling serial code, and efficient load balancing (HOLD-GEOFFROY et al., 2014).

C.13 Pyro

Library that allows to easily build applications where objects on a network can
communicate with each other. Common Python methods can be used for calling
objects on other machines, including call and return parameters. Pyro is in charge of
locating the object and the machine, to execute it (BLANK et al., 2003).

C.14 PySpark

High-level library and interface and engine optimized for the Spark environment,
which is a unified analysis engine for large-scale data processing. It offers more than
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80 high-level operators for building parallel applications. It consists of libraries that
include a database interface, machine learning, and graphics production. It also allows
to work with systems like Hadoop (distributed computing) and cloud computing,
among others (DRABAS; LEE, 2017).

C.15 PyPy

Alternative Python implementation that uses JIT crawled compilation, and is compat-
ible with the Python reference implementation, with the exception of its extensions.
It has tracking of frequently performed operations, in order to compile for machine
code only those parts of the code that require greater processing capacity, making
the execution mixed, one part interpreted and the other native (BIHAM; SEBERRY,
2006).

C.16 Python Multiprocessing

The multiprocessing module, which is part of the standard Python library, allows
parallelism for the concurrent execution of processes, executed in the multiple cores of
the processors of a shared memory machine. Thus, it cannot be used on a distributed
memory machine, such as a cluster or a supercomputer. It is accessed through its
API that allows to easily use the data parallelism paradigm (SINGH et al., 2013).

C.17 Python Threading

Module threading, which is part of the standard Python library, allows parallelism
for the concurrent execution of threads executed on the multiple processor cores of a
shared memory machine, with all threads are part of a single process and everyone
has access to the memory of that process (MAROWKA, 2018b).

C.18 Pythran

Similar to Cython, Pythran is a ahead of time compiler for a subset of the Python
language, with a focus on scientific computing (like Numba), which takes a Python
module containing annotations and some interface descriptions, and generate a native
module from optimized high-level constructions, requiring only annotations of type
for exported functions. It is also possible to generate calls to OpenMP (library for
shared memory multi-process programming), and use SIMD instructions (GUELTON

et al., 2015; GUELTON, 2018).
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C.19 Nutika

Another project similar to Cython, with a focus on compatibility and simplicity,
which supports all Python language, does not require annotations, and uses calls to
the libpython library. It’s a compiler written in Python that compiles Python source
code to C source code, applying some compile-time optimizations in the process,
compatible with all Python libraries and modules and has an interface for programs
compiled in C (VAN ROSSUM, 2007).

C.20 Pyrex

Project with some similarity to Cython, with a focus on helping to write Python
extension modules, making it easy to create code required to interface modules,
using a language with syntax similar to Python, which allows writing code that
mixes Python and data types C, and compile in an extension module for Python
(OLIPHANT, 2007).

C.21 Boost.MPI

It provides links (bindings) Python built on top of the C++ library Boost.MPI,
which is a C++ interface for MPI, through the Boost.Python library, as a alternative
interface for MPI. Using Python with Boost.MPI has some advantages such as the
Python fast development environment, and also writing a simpler code, since using
Boost.Python it is not necessary to write the initialization code, as in C++, as this is
already done automatically when loading the Boost.MPI module in Python code. To
transmit Python objects, it is possible to do so in several ways, for example, using
pickling (preparing sequentially, suitable for transmission) in the sending process, and
then unpickling in the receiving process (ABRAHAMS; GROSSE-KUNSTLEVE, 2003).

C.22 PyOpenCL

PyOpenCL works as a wrapper for OpenCL which is a framework for writing
code for heterogeneous platforms consisting of CPUs, GPUs, DSPs, FPGAs and
other processors or hardware accelerators. It is a library API to allow Python to
access it. OpenCL was developed in C++ and allows to perform tasks in parallel
on multi-core processors and on different processing accelerators, such as GPGPU
(General-Purpose Graphics Processing Units), DSP (Digital Signal Processors), FPGA
(Field Programmable Gate Array), and others. OpenCL was initially developed by
Apple, and collaborates with AMD, IBM, Qualcomm, Intel, and Nvidia, who seek
to provide a common API to the different existing processing accelerators. Some
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implementations of OpenCL use the LLVM compiler (KLÖCKNER et al., 2012b).
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APPENDIX D - CODES IMPLEMENTED IN THIS WORK

This appendix shows the main codes of the three test cases shown in this work. The
full set of codes is available at the repository http://github.com/efurlanm/msc22.

D.1 Implementations of the stencil test case

D.1.1 Serial F90

Listing D.1 - Serial F90 implementation of the stencil test case.

1 program stencil
2 implicit none
3 integer, parameter :: nsources=3
4 integer :: n=4800 ! nxn grid (4800)
5 integer :: energy=1 ! energy to be injected per iteration (1)
6 integer :: niters=500 ! number of iterations (500)
7 integer :: iters, i, j, size, sizeStart, sizeEnd
8 integer, dimension(3, 2) :: sources
9 double precision, allocatable :: aold(:,:), anew(:,:)

10 double precision :: t=0.0, t1=0.0, heat=0.0
11

12 call cpu_time(t1)
13 t = -t1
14

15 size = n + 2
16 sizeStart = 2
17 sizeEnd = n + 1
18

19 allocate(aold(size, size))
20 allocate(anew(size, size))
21 aold = 0.0
22 anew = 0.0
23

24 sources(1,:) = (/ n/2, n/2 /)
25 sources(2,:) = (/ n/3, n/3 /)
26 sources(3,:) = (/ n*4/5, n*8/9 /)
27

28 do iters = 1, niters, 2
29

30 do j = sizeStart, sizeEnd
31 do i = sizeStart, sizeEnd
32 anew(i,j) = aold(i,j)/2.0 + (aold(i-1,j) + aold(i+1,j) + &
33 aold(i,j-1) + aold(i,j+1))/4.0/2.0
34 enddo
35 enddo
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36

37 do i = 1, nsources
38 anew(sources(i,1)+1, sources(i,2)+1) = &
39 anew(sources(i,1)+1, sources(i,2)+1) + energy
40 enddo
41

42 do j = sizeStart, sizeEnd
43 do i = sizeStart, sizeEnd
44 aold(i,j) = anew(i,j)/2.0 + (anew(i-1,j) + anew(i+1,j) + &
45 anew(i,j-1) + anew(i,j+1))/4.0/2.0
46 enddo
47 enddo
48

49 do i = 1, nsources
50 aold(sources(i,1)+1, sources(i,2)+1) = &
51 aold(sources(i,1)+1, sources(i,2)+1) + energy
52 enddo
53

54 enddo
55

56 heat = 0.0
57 do j = sizeStart, sizeEnd
58 do i = sizeStart, sizeEnd
59 heat = heat + aold(i,j)
60 end do
61 end do
62

63 deallocate(aold)
64 deallocate(anew)
65

66 call cpu_time(t1)
67 t = t + t1
68

69 write(*, "(’Heat = ’ f0.4’ | ’)", advance="no") heat
70 write(*, "(’Time = ’f0.4)") t
71

72 end

D.1.2 Parallel F90

Listing D.2 - Parallel F90 implementation of the stencil test case.

1 program stencil
2 use MPI
3 implicit none
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4 integer :: n=0 ! nxn grid
5 integer :: energy=0 ! energy to be injected per iteration
6 integer :: niters=0 ! number of iterations
7 integer :: iters, i, j, px, py, rx, ry
8 integer :: north, south, west, east, bx, by, offx, offy
9 integer :: nargs=0, iargc

10 integer :: mpirank, mpisize, mpitag=1, mpierror
11 integer, dimension(3) :: args
12 integer, dimension(2) :: pdims=0
13 integer, dimension(4) :: sendrequest, recvrequest
14 double precision :: mpiwtime=0.0, heat=0.0, rheat=0.0
15 double precision, dimension(:), allocatable :: sendnorthgz, sendsouthgz
16 double precision, dimension(:), allocatable :: recvnorthgz, recvsouthgz
17 double precision, dimension(:,:), allocatable :: aold, anew
18 character(len=50) :: argv
19

20 integer, parameter :: nsources=3 ! three heat sources
21 ! locnsources = number of sources in my area
22 integer :: locnsources=0, locx, locy
23 ! locsources = sources local to my rank
24 integer, dimension(nsources, 2) :: locsources=0, sources
25

26 call MPI_Init(mpierror)
27 call MPI_Comm_rank(MPI_COMM_WORLD, mpirank, mpierror)
28 call MPI_Comm_size(MPI_COMM_WORLD, mpisize, mpierror)
29

30 if (mpirank == 0) then ! rank 0 argument checking
31 mpiwtime = -MPI_Wtime()
32 nargs = iargc()
33 call getarg(1, argv); read(argv, *) n ! nxn grid
34 call getarg(2, argv); read(argv, *) energy ! energy to be injected
35 call getarg(3, argv); read(argv, *) niters ! number of iterations
36 args = [ n, energy, niters ] ! distribute arguments
37 call MPI_Bcast(args, 3, MPI_INTEGER, 0, MPI_COMM_WORLD, mpierror)
38 else
39 call MPI_Bcast(args, 3, MPI_INTEGER, 0, MPI_COMM_WORLD, mpierror)
40 n = args(1); energy = args(2); niters = args(3)
41 endif
42

43 ! Creates a division of processors in a Cartesian grid
44 ! MPI_DIMS_CREATE(NNODES, NDIMS, DIMS, IERROR)
45 ! NNODES - number of nodes in a grid
46 ! NDIMS - number of Cartesian dimensions
47 ! DIMS - array specifying the number of nodes in each dimension
48 ! Examples:
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49 ! MPI_Dims_create(6, 2, dims) -> (3,2)
50 ! MPI_Dims_create(7, 2, dims) -> (7,1)
51 call MPI_Dims_create(mpisize, 2, pdims, mpierror)
52

53 ! determine my coordinates (x,y)
54 px = pdims(1)
55 py = pdims(2)
56 rx = mod(mpirank, px)
57 ry = mpirank / px
58

59 ! determine my four neighbors
60 north = (ry - 1) * px + rx; if( (ry - 1) < 0 ) north = MPI_PROC_NULL
61 south = (ry + 1) * px + rx; if( (ry + 1) >= py) south = MPI_PROC_NULL
62 west = ry * px + rx - 1; if( (rx - 1) < 0 ) west = MPI_PROC_NULL
63 east = ry * px + rx + 1; if( (rx + 1) >= px) east = MPI_PROC_NULL
64

65 ! decompose the domain
66 bx = n / px ! block size in x
67 by = n / py ! block size in y
68 offx = (rx * bx) + 1 ! offset in x
69 offy = (ry * by) + 1 ! offset in y
70

71 ! initialize heat sources
72 sources = reshape( [ n/2, n/2, &
73 n/3, n/3, &
74 n*4/5, n*8/9 ], &
75 shape(sources), order=[2, 1])
76

77 do i = 1, nsources ! determine which sources are in my patch
78 locx = sources(i, 1) - offx
79 locy = sources(i, 2) - offy
80 if(locx >= 0 .and. locx <= bx .and. locy >= 0 .and. locy <= by) then
81 locnsources = locnsources + 1
82 locsources(locnsources, 1) = locx + 2
83 locsources(locnsources, 2) = locy + 2
84 endif
85 enddo
86

87 ! allocate communication buffers
88 allocate(sendnorthgz(bx)) ! send buffers
89 allocate(sendsouthgz(bx))
90 allocate(recvnorthgz(bx)) ! receive buffers
91 allocate(recvsouthgz(bx))
92 ! allocate two work arrays
93 allocate(aold(bx+2, by+2)); aold = 0.0 ! 1-wide halo zones!
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94 allocate(anew(bx+2, by+2)); anew = 0.0 ! 1-wide halo zones!
95

96 ! laco principal das iteracoes
97 do iters = 1, niters, 2
98

99 ! --- anew <- stencil(aold) ---
100 if(north /= MPI_PROC_NULL) then
101 sendnorthgz = aold(2, 2:bx+1)
102 recvnorthgz = 0.0
103 call MPI_IRecv(recvnorthgz, bx, MPI_DOUBLE_PRECISION, north, &
104 mpitag, MPI_COMM_WORLD, recvrequest(1), mpierror)
105 call MPI_ISend(sendnorthgz, bx, MPI_DOUBLE_PRECISION, north, &
106 mpitag, MPI_COMM_WORLD, sendrequest(1), mpierror)
107 endif
108 if(south /= MPI_PROC_NULL) then
109 sendsouthgz = aold(bx+1, 2:bx+1)
110 recvsouthgz(:) = 0.0
111 call MPI_IRecv(recvsouthgz, bx, MPI_DOUBLE_PRECISION, south, &
112 mpitag, MPI_COMM_WORLD, recvrequest(2), mpierror)
113 call MPI_ISend(sendsouthgz, bx, MPI_DOUBLE_PRECISION, south, &
114 mpitag, MPI_COMM_WORLD, sendrequest(2), mpierror)
115 endif
116 if(east /= MPI_PROC_NULL) then
117 call MPI_IRecv(aold(2:bx+1, bx+2), bx, MPI_DOUBLE_PRECISION, east, &
118 mpitag, MPI_COMM_WORLD, recvrequest(3), mpierror)
119 call MPI_ISend(aold(2:bx+1, bx+1), bx, MPI_DOUBLE_PRECISION, east, &
120 mpitag, MPI_COMM_WORLD, sendrequest(3), mpierror)
121 endif
122 if(west /= MPI_PROC_NULL) then
123 call MPI_IRecv(aold(2:bx+1, 1), bx, MPI_DOUBLE_PRECISION, west, &
124 mpitag, MPI_COMM_WORLD, recvrequest(4), mpierror)
125 call MPI_ISend(aold(2:bx+1, 2), bx, MPI_DOUBLE_PRECISION, west, &
126 mpitag, MPI_COMM_WORLD, sendrequest(4), mpierror)
127 endif
128 if(north /= MPI_PROC_NULL) then
129 call MPI_Wait(recvrequest(1), MPI_STATUS_IGNORE, mpierror)
130 call MPI_Wait(sendrequest(1), MPI_STATUS_IGNORE, mpierror)
131 aold(1, 2:bx+1)=recvnorthgz
132 endif
133 if(south /= MPI_PROC_NULL) then
134 call MPI_Wait(recvrequest(2), MPI_STATUS_IGNORE, mpierror)
135 call MPI_Wait(sendrequest(2), MPI_STATUS_IGNORE, mpierror)
136 aold(bx+2, 2:bx+1)=recvsouthgz
137 endif
138 if(east /= MPI_PROC_NULL) then
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139 call MPI_Wait(recvrequest(3), MPI_STATUS_IGNORE, mpierror)
140 call MPI_Wait(sendrequest(3), MPI_STATUS_IGNORE, mpierror)
141 endif
142 if(west /= MPI_PROC_NULL) then
143 call MPI_Wait(recvrequest(4), MPI_STATUS_IGNORE, mpierror)
144 call MPI_Wait(sendrequest(4), MPI_STATUS_IGNORE, mpierror)
145 endif
146

147 ! update grid points
148 do j = 2, by+1
149 do i = 2, bx+1
150 anew(i, j) = aold(i, j)/2.0 + (aold(i-1, j) + aold(i+1, j) + &
151 aold(i, j-1) + aold(i, j+1)) / 4.0 / 2.0
152 enddo
153 enddo
154

155 do i = 1, locnsources
156 anew(locsources(i, 1), locsources(i, 2)) = &
157 anew(locsources(i, 1), locsources(i, 2)) + energy
158 enddo
159

160 ! --- aold <- stencil(anew) ---
161 if(north /= MPI_PROC_NULL) then
162 sendnorthgz=anew(2, 2:bx+1)
163 call MPI_IRecv(recvnorthgz, bx, MPI_DOUBLE_PRECISION, north, mpitag,

&
164 MPI_COMM_WORLD, recvrequest(1), mpierror)
165 call MPI_ISend(sendnorthgz, bx, MPI_DOUBLE_PRECISION, north, mpitag,

&
166 MPI_COMM_WORLD, sendrequest(1), mpierror)
167 endif
168 if(south /= MPI_PROC_NULL) then
169 sendsouthgz=anew(bx+1, 2:bx+1)
170 call MPI_IRecv(recvsouthgz, bx, MPI_DOUBLE_PRECISION, south, mpitag,

&
171 MPI_COMM_WORLD, recvrequest(2), mpierror)
172 call MPI_ISend(sendsouthgz, bx, MPI_DOUBLE_PRECISION, south, mpitag,

&
173 MPI_COMM_WORLD, sendrequest(2), mpierror)
174 endif
175 if(east /= MPI_PROC_NULL) then
176 call MPI_IRecv(anew(2:bx+1, bx+2), bx, MPI_DOUBLE_PRECISION, east, &
177 mpitag, MPI_COMM_WORLD, recvrequest(3), mpierror)
178 call MPI_ISend(anew(2:bx+1, bx+1), bx, MPI_DOUBLE_PRECISION, east, &
179 mpitag, MPI_COMM_WORLD, sendrequest(3), mpierror)
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180 endif
181 if(west /= MPI_PROC_NULL) then
182 call MPI_IRecv(anew(2:bx+1, 1), bx, MPI_DOUBLE_PRECISION, west,

mpitag, &
183 MPI_COMM_WORLD, recvrequest(4), mpierror)
184 call MPI_ISend(anew(2:bx+1, 2), bx, MPI_DOUBLE_PRECISION, west,

mpitag, &
185 MPI_COMM_WORLD, sendrequest(4), mpierror)
186 endif
187 if(north /= MPI_PROC_NULL) then
188 call MPI_Wait(recvrequest(1), MPI_STATUS_IGNORE, mpierror)
189 call MPI_Wait(sendrequest(1), MPI_STATUS_IGNORE, mpierror)
190 anew(1, 2:bx+1)=recvnorthgz
191 endif
192 if(south /= MPI_PROC_NULL) then
193 call MPI_Wait(recvrequest(2), MPI_STATUS_IGNORE, mpierror)
194 call MPI_Wait(sendrequest(2), MPI_STATUS_IGNORE, mpierror)
195 anew(bx+2, 2:bx+1)=recvsouthgz
196 endif
197 if(east /= MPI_PROC_NULL) then
198 call MPI_Wait(recvrequest(3), MPI_STATUS_IGNORE, mpierror)
199 call MPI_Wait(sendrequest(3), MPI_STATUS_IGNORE, mpierror)
200 endif
201 if(west /= MPI_PROC_NULL) then
202 call MPI_Wait(recvrequest(4), MPI_STATUS_IGNORE, mpierror)
203 call MPI_Wait(sendrequest(4), MPI_STATUS_IGNORE, mpierror)
204 endif
205

206 ! update grid points
207 do j = 2, by+1
208 do i = 2, bx+1
209 aold(i, j) = anew(i, j)/2.0 + (anew(i-1, j) + anew(i+1, j) + &
210 anew(i, j-1) + anew(i, j+1)) / 4.0 / 2.0
211 enddo
212 enddo
213

214 do i = 1, locnsources
215 aold(locsources(i, 1), locsources(i, 2)) = &
216 aold(locsources(i, 1), locsources(i, 2)) + energy
217 enddo
218

219 enddo
220

221 ! ALL REDUCE:
222 heat = 0.0
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223 do j = 2, by+1
224 do i = 2, bx+1
225 heat = heat + aold(i, j)
226 enddo
227 enddo
228 call MPI_Allreduce(heat, rheat, 1, MPI_DOUBLE_PRECISION, MPI_SUM, &
229 MPI_COMM_WORLD, mpierror)
230

231 if(mpirank == 0) then
232 mpiwtime = mpiwtime + MPI_Wtime()
233 write(*, "(’Heat=’ f0.2’ | ’)", advance="no") rheat
234 write(*, "(’Time=’ f0.4’ | ’)", advance="no") mpiwtime
235 write(*, "(’MPI_Size=’ i0 ’ | ’)", advance="no") mpisize
236 write(*, "(’MPI_Dims=(’i0’,’i0’) | ’)", advance="no") pdims
237 write(*, "(’bx,by=(’i0’,’i0’)’)") bx,by
238 endif
239

240 call MPI_Finalize(mpierror)
241 end

D.1.3 Serial F2PY

Listing D.3 - Serial F2PY implementation of the stencil test case - F90 code.

1 subroutine st(n, energy, niters, heat, t)
2 integer, intent(in) :: n, energy, niters
3 double precision, intent(out) :: heat, t
4 integer, parameter :: nsources=3
5 integer :: iters, i, j, x, y, size, sizeStart, sizeEnd
6 integer, dimension(3, 2) :: sources
7 double precision, allocatable :: aold(:,:), anew(:,:)
8 double precision :: t1=0.0, t2=0.0
9

10 call cpu_time(t1)
11

12 size = n + 2
13 sizeStart = 2
14 sizeEnd = n + 1
15

16 allocate(aold(size, size))
17 allocate(anew(size, size))
18 aold = 0.0
19 anew = 0.0
20

21 sources(1,:) = (/ n/2, n/2 /)
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22 sources(2,:) = (/ n/3, n/3 /)
23 sources(3,:) = (/ n*4/5, n*8/9 /)
24

25 do iters = 1, niters, 2
26 do j = sizeStart, sizeEnd
27 do i = sizeStart, sizeEnd
28 anew(i,j) = aold(i,j)/2.0 + (aold(i-1,j) + aold(i+1,j) + &
29 aold(i,j-1) + aold(i,j+1)) / 4.0 / 2.0
30 enddo
31 enddo
32 do i = 1, nsources
33 x = sources(i,1) + 1
34 y = sources(i,2) + 1
35 anew(x,y) = anew(x,y) + energy
36 enddo
37 do j = sizeStart, sizeEnd
38 do i = sizeStart, sizeEnd
39 aold(i,j) = anew(i,j)/2.0 + (anew(i-1,j) + anew(i+1,j) + &
40 anew(i,j-1) + anew(i,j+1)) / 4.0 / 2.0
41 enddo
42 enddo
43 do i = 1, nsources
44 x = sources(i,1) + 1
45 y = sources(i,2) + 1
46 aold(x,y) = aold(x,y) + energy
47 enddo
48 enddo
49 heat = 0.0
50 do j = sizeStart, sizeEnd
51 do i = sizeStart, sizeEnd
52 heat = heat + aold(i,j)
53 end do
54 end do
55 deallocate(aold)
56 deallocate(anew)
57 call cpu_time(t2)
58 t = t2 - t1
59 end subroutine

Listing D.4 - Serial F2PY implementation of the stencil test case - Python code.

1 from time import time
2 tp = time()
3 import stencil_f2py_seq
4 import numpy as np
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5

6 n = 4800 # nxn grid; 4800,1,500->1500; 100,1,10->30; [4800]
7 energy = 1 # energy to be injected per iteration; [1]
8 niters = 500 # number of iterations; [500]
9

10 heat, t = stencil_f2py_seq.st(n, energy, niters)
11 tp = time() - tp
12

13 print("Heat = %0.4f | Time = %0.4f | TimePyt = %0.4f" %(heat, t, tp))

D.1.4 Parallel F2PY

Listing D.5 - Parallel F2PY implementation of the stencil test case - F90 module code.

1 subroutine stm(n, energy, niters, oheat, otime, orank)
2 use MPI
3 implicit none
4 integer, intent(in) :: n, energy, niters
5 double precision, intent(out) :: oheat, otime
6 integer, intent(out) :: orank
7

8 integer :: iters, i, j, px, py, rx, ry
9 integer :: north, south, west, east, bx, by, offx, offy

10 integer :: mpirank, mpisize, mpitag=1, mpierror
11 integer, dimension(2) :: pdims=0
12 integer, dimension(4) :: sendrequest, recvrequest
13 double precision :: mpiwtime=0.0, heat=0.0, rheat=0.0
14 double precision, dimension(:), allocatable :: sendnorthgz, sendsouthgz
15 double precision, dimension(:), allocatable :: recvnorthgz, recvsouthgz
16 double precision, dimension(:,:), allocatable :: aold, anew
17

18 integer, parameter :: nsources=3 ! three heat sources
19 ! locnsources = number of sources in my area
20 integer :: locnsources=0, locx, locy
21 ! locsources = sources local to my rank
22 integer, dimension(nsources, 2) :: locsources=0, sources
23

24 call MPI_Init(mpierror)
25 call MPI_Comm_rank(MPI_COMM_WORLD, mpirank, mpierror)
26 call MPI_Comm_size(MPI_COMM_WORLD, mpisize, mpierror)
27

28 if (mpirank == 0) then
29 mpiwtime = -MPI_Wtime() ! inicializa contador de Time
30 endif
31
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32 ! Creates a division of processors in a Cartesian grid
33 ! MPI_DIMS_CREATE(NNODES, NDIMS, DIMS, IERROR)
34 ! NNODES - number of nodes in a grid
35 ! NDIMS - number of Cartesian dimensions
36 ! DIMS - array specifying the number of nodes in each dimension
37 ! Examples:
38 ! MPI_Dims_create(6, 2, dims) -> (3,2)
39 ! MPI_Dims_create(7, 2, dims) -> (7,1)
40 call MPI_Dims_create(mpisize, 2, pdims, mpierror)
41

42 ! determine my coordinates (x,y)
43 px = pdims(1)
44 py = pdims(2)
45 rx = mod(mpirank, px)
46 ry = mpirank / px
47

48 ! determine my four neighbors
49 north = (ry - 1) * px + rx; if( (ry - 1) < 0 ) north = MPI_PROC_NULL
50 south = (ry + 1) * px + rx; if( (ry + 1) >= py) south = MPI_PROC_NULL
51 west = ry * px + rx - 1; if( (rx - 1) < 0 ) west = MPI_PROC_NULL
52 east = ry * px + rx + 1; if( (rx + 1) >= px) east = MPI_PROC_NULL
53

54 ! decompose the domain
55 bx = n / px ! block size in x
56 by = n / py ! block size in y
57 offx = (rx * bx) + 1 ! offset in x
58 offy = (ry * by) + 1 ! offset in y
59

60 ! initialize heat sources
61 sources = reshape( [ n/2, n/2, &
62 n/3, n/3, &
63 n*4/5, n*8/9 ], &
64 shape(sources), order=[2, 1])
65

66 do i = 1, nsources ! determine which sources are in my patch
67 locx = sources(i, 1) - offx
68 locy = sources(i, 2) - offy
69 if(locx >= 0 .and. locx <= bx .and. locy >= 0 .and. locy <= by) then
70 locnsources = locnsources + 1
71 locsources(locnsources, 1) = locx + 2
72 locsources(locnsources, 2) = locy + 2
73 endif
74 enddo
75

76 ! allocate communication buffers
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77 allocate(sendnorthgz(bx)) ! send buffers
78 allocate(sendsouthgz(bx))
79 allocate(recvnorthgz(bx)) ! receive buffers
80 allocate(recvsouthgz(bx))
81 ! allocate two work arrays
82 allocate(aold(bx+2, by+2)); aold = 0.0 ! 1-wide halo zones!
83 allocate(anew(bx+2, by+2)); anew = 0.0 ! 1-wide halo zones!
84

85 do iters = 1, niters, 2
86

87 ! --- anew <- stencil(aold) ---
88 if(north /= MPI_PROC_NULL) then
89 sendnorthgz = aold(2, 2:bx+1)
90 recvnorthgz = 0.0
91 call MPI_IRecv(recvnorthgz, bx, MPI_DOUBLE_PRECISION, north, &
92 mpitag, MPI_COMM_WORLD, recvrequest(1), mpierror)
93 call MPI_ISend(sendnorthgz, bx, MPI_DOUBLE_PRECISION, north, &
94 mpitag, MPI_COMM_WORLD, sendrequest(1), mpierror)
95 endif
96 if(south /= MPI_PROC_NULL) then
97 sendsouthgz = aold(bx+1, 2:bx+1)
98 recvsouthgz(:) = 0.0
99 call MPI_IRecv(recvsouthgz, bx, MPI_DOUBLE_PRECISION, south, &

100 mpitag, MPI_COMM_WORLD, recvrequest(2), mpierror)
101 call MPI_ISend(sendsouthgz, bx, MPI_DOUBLE_PRECISION, south, &
102 mpitag, MPI_COMM_WORLD, sendrequest(2), mpierror)
103 endif
104 if(east /= MPI_PROC_NULL) then
105 call MPI_IRecv(aold(2:bx+1, bx+2), bx, MPI_DOUBLE_PRECISION, east, &
106 mpitag, MPI_COMM_WORLD, recvrequest(3), mpierror)
107 call MPI_ISend(aold(2:bx+1, bx+1), bx, MPI_DOUBLE_PRECISION, east, &
108 mpitag, MPI_COMM_WORLD, sendrequest(3), mpierror)
109 endif
110 if(west /= MPI_PROC_NULL) then
111 call MPI_IRecv(aold(2:bx+1, 1), bx, MPI_DOUBLE_PRECISION, west, &
112 mpitag, MPI_COMM_WORLD, recvrequest(4), mpierror)
113 call MPI_ISend(aold(2:bx+1, 2), bx, MPI_DOUBLE_PRECISION, west, &
114 mpitag, MPI_COMM_WORLD, sendrequest(4), mpierror)
115 endif
116 if(north /= MPI_PROC_NULL) then
117 call MPI_Wait(recvrequest(1), MPI_STATUS_IGNORE, mpierror)
118 call MPI_Wait(sendrequest(1), MPI_STATUS_IGNORE, mpierror)
119 aold(1, 2:bx+1)=recvnorthgz
120 endif
121 if(south /= MPI_PROC_NULL) then
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122 call MPI_Wait(recvrequest(2), MPI_STATUS_IGNORE, mpierror)
123 call MPI_Wait(sendrequest(2), MPI_STATUS_IGNORE, mpierror)
124 aold(bx+2, 2:bx+1)=recvsouthgz
125 endif
126 if(east /= MPI_PROC_NULL) then
127 call MPI_Wait(recvrequest(3), MPI_STATUS_IGNORE, mpierror)
128 call MPI_Wait(sendrequest(3), MPI_STATUS_IGNORE, mpierror)
129 endif
130 if(west /= MPI_PROC_NULL) then
131 call MPI_Wait(recvrequest(4), MPI_STATUS_IGNORE, mpierror)
132 call MPI_Wait(sendrequest(4), MPI_STATUS_IGNORE, mpierror)
133 endif
134

135 ! update grid points
136 do j = 2, by+1
137 do i = 2, bx+1
138 anew(i, j) = aold(i, j)/2.0 + (aold(i-1, j) + aold(i+1, j) + &
139 aold(i, j-1) + aold(i, j+1)) / 4.0 / 2.0
140 enddo
141 enddo
142

143 do i = 1, locnsources
144 anew(locsources(i, 1), locsources(i, 2)) = &
145 anew(locsources(i, 1), locsources(i, 2)) + energy
146 enddo
147

148 ! --- aold <- stencil(anew) ---
149 if(north /= MPI_PROC_NULL) then
150 sendnorthgz=anew(2, 2:bx+1)
151 call MPI_IRecv(recvnorthgz, bx, MPI_DOUBLE_PRECISION, north, mpitag,&
152 MPI_COMM_WORLD, recvrequest(1), mpierror)
153 call MPI_ISend(sendnorthgz, bx, MPI_DOUBLE_PRECISION, north, mpitag,&
154 MPI_COMM_WORLD, sendrequest(1), mpierror)
155 endif
156 if(south /= MPI_PROC_NULL) then
157 sendsouthgz=anew(bx+1, 2:bx+1)
158 call MPI_IRecv(recvsouthgz, bx, MPI_DOUBLE_PRECISION, south, mpitag,&
159 MPI_COMM_WORLD, recvrequest(2), mpierror)
160 call MPI_ISend(sendsouthgz, bx, MPI_DOUBLE_PRECISION, south, mpitag,&
161 MPI_COMM_WORLD, sendrequest(2), mpierror)
162 endif
163 if(east /= MPI_PROC_NULL) then
164 call MPI_IRecv(anew(2:bx+1, bx+2), bx, MPI_DOUBLE_PRECISION, east,&
165 mpitag, MPI_COMM_WORLD, recvrequest(3), mpierror)
166 call MPI_ISend(anew(2:bx+1, bx+1), bx, MPI_DOUBLE_PRECISION, east,&
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167 mpitag, MPI_COMM_WORLD, sendrequest(3), mpierror)
168 endif
169 if(west /= MPI_PROC_NULL) then
170 call MPI_IRecv(anew(2:bx+1, 1), bx, MPI_DOUBLE_PRECISION, west,

mpitag, &
171 MPI_COMM_WORLD, recvrequest(4), mpierror)
172 call MPI_ISend(anew(2:bx+1, 2), bx, MPI_DOUBLE_PRECISION, west,

mpitag, &
173 MPI_COMM_WORLD, sendrequest(4), mpierror)
174 endif
175 if(north /= MPI_PROC_NULL) then
176 call MPI_Wait(recvrequest(1), MPI_STATUS_IGNORE, mpierror)
177 call MPI_Wait(sendrequest(1), MPI_STATUS_IGNORE, mpierror)
178 anew(1, 2:bx+1)=recvnorthgz
179 endif
180 if(south /= MPI_PROC_NULL) then
181 call MPI_Wait(recvrequest(2), MPI_STATUS_IGNORE, mpierror)
182 call MPI_Wait(sendrequest(2), MPI_STATUS_IGNORE, mpierror)
183 anew(bx+2, 2:bx+1)=recvsouthgz
184 endif
185 if(east /= MPI_PROC_NULL) then
186 call MPI_Wait(recvrequest(3), MPI_STATUS_IGNORE, mpierror)
187 call MPI_Wait(sendrequest(3), MPI_STATUS_IGNORE, mpierror)
188 endif
189 if(west /= MPI_PROC_NULL) then
190 call MPI_Wait(recvrequest(4), MPI_STATUS_IGNORE, mpierror)
191 call MPI_Wait(sendrequest(4), MPI_STATUS_IGNORE, mpierror)
192 endif
193

194 ! update grid points
195 do j = 2, by+1
196 do i = 2, bx+1
197 aold(i, j) = anew(i, j)/2.0 + (anew(i-1, j) + anew(i+1, j) + &
198 anew(i, j-1) + anew(i, j+1)) / 4.0 / 2.0
199 enddo
200 enddo
201

202 do i = 1, locnsources
203 aold(locsources(i, 1), locsources(i, 2)) = &
204 aold(locsources(i, 1), locsources(i, 2)) + energy
205 enddo
206

207 enddo
208

209 ! ALL REDUCE:
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210 heat = 0.0
211 do j = 2, by+1
212 do i = 2, bx+1
213 heat = heat + aold(i, j)
214 enddo
215 enddo
216 call MPI_Allreduce(heat, rheat, 1, MPI_DOUBLE_PRECISION, MPI_SUM, &
217 MPI_COMM_WORLD, mpierror)
218

219 orank = mpirank
220 if(mpirank == 0) then
221 otime = mpiwtime + MPI_Wtime()
222 oheat = rheat
223 endif
224

225 call MPI_Finalize(mpierror)
226 end subroutine

Listing D.6 - Parallel F2PY implementation of the stencil test case - Python main code.

1 from time import time
2 from stc_f2p_par import stm
3

4 n = 4800 # nxn grid; 4800,1,500->1500; 100,1,10->30; [4800]
5 energy = 1 # energy to be injected per iteration; [1]
6 niters = 500 # number of iterations; [500]
7 heat = 0.0
8 t = 0.0
9 t0 = 0.0

10 rank = 0
11

12 t0 = time()
13 heat, t, rank = stm(n, energy, niters)
14 t0 = time() - t0
15

16 if not rank :
17 print("Heat = %0.4f | Time = %0.4f | TimePyt = %0.4f" %(heat, t, t0))

D.1.5 Serial Python

Listing D.7 - Serial Python implementation of the stencil test case.

1 from time import time
2 t = time()
3 import numpy as np
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4

5 n = 4800 # nxn grid (4800,1,500)=1500
6 energy = 1.0 # energy to be injected per iteration
7 niters = 500 # number of iterations
8

9 size = n + 2
10 sizeEnd = n + 1
11 anew = aold = np.zeros((size, size), np.float64)
12 nsources = 3 # sources of energy
13 sources = np.empty((nsources, 2), np.int)
14 sources[:,:] = [ [n//2, n//2], [n//3, n//3], [n*4//5, n*8//9] ]
15 niters = (niters+1) // 2
16

17 for iters in range(niters):
18 anew[1:-1, 1:-1] = ( aold[1:-1, 1:-1] / 2.0 +
19 ( aold[2: , 1:-1] + aold[ :-2, 1:-1] +
20 aold[1:-1, 2: ] + aold[1:-1, :-2] ) / 8.0 )
21 anew[sources[0:nsources,0], sources[0:nsources,1]] += energy
22 aold[1:-1, 1:-1] = ( anew[1:-1, 1:-1] / 2.0 +
23 ( anew[2: , 1:-1] + anew[ :-2, 1:-1] +
24 anew[1:-1, 2: ] + anew[1:-1, :-2] ) / 8.0 )
25 aold[sources[0:nsources,0], sources[0:nsources,1]] += energy
26 heat = np.sum( aold[1:sizeEnd, 1:sizeEnd] ) # system total heat
27

28 t = time() - t
29 print("Heat = %0.4f | Time = %0.4f s" %(heat, t))

D.1.6 Parallel Python

Listing D.8 - Parallel Python implementation of the stencil test case.

1 from mpi4py import MPI
2 import numpy as np
3

4 n = 4800 # nxn grid (4800,1,500)=1500
5 energy = 1.0 # energy to be injected per iteration
6 niters = 500 # number of iterations
7

8 nsources = 3 # sources of energy
9 sources = np.zeros((nsources, 2), np.int)

10 sources[:,:] = [ [n//2, n//2], [n//3, n//3], [n*4//5, n*8//9] ]
11 locnsources = locx = locy = 0 # number of sources in my area
12 locsources = np.zeros((nsources, 2), np.int) # local to my rank
13 rheat = np.zeros(1, np.float64)
14 size = n + 2
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15 sizeEnd = n + 1
16

17 comm = MPI.COMM_WORLD
18 mpirank = comm.rank
19 mpisize = comm.size
20 if not mpirank : mpiwtime = -MPI.Wtime()
21

22 # determine my coordinates (x,y)
23 pdims = MPI.Compute_dims(mpisize, 2)
24 px = pdims[0]
25 py = pdims[1]
26 rx = mpirank % px
27 ry = mpirank // px
28

29 # determine my four neighbors
30 north = (ry - 1) * px + rx
31 if (ry - 1) < 0 : north = MPI.PROC_NULL
32 south = (ry + 1) * px + rx
33 if (ry + 1) >= py : south = MPI.PROC_NULL
34 west = ry * px + rx - 1
35 if (rx - 1) < 0 : west = MPI.PROC_NULL
36 east = ry * px + rx + 1
37 if (rx + 1) >= px : east = MPI.PROC_NULL
38

39 # decompose the domain
40 bx = n // px # block size in x
41 by = n // py # block size in y
42 offx = rx * bx + 1 # offset in x
43 offy = ry * by + 1 # offset in y
44

45 # determine which sources are in my patch
46 for i in range(nsources) :
47 locx = sources[i, 0] - offx
48 locy = sources[i, 1] - offy
49 # if(locx >= 0 and locx <= bx and locy >= 0 and locy <= by) :
50 if(locx >= 0 and locx < bx and locy >= 0 and locy < by) :
51 locsources[locnsources, 0] = locx + 2
52 locsources[locnsources, 1] = locy + 2
53 locnsources += 1
54

55 # working arrays with 1-wide halo zones
56 anew = np.zeros((bx+2, by+2), np.float64)
57 aold = np.zeros((bx+2, by+2), np.float64)
58

59 # iterations
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60 niters = (niters + 1) // 2
61 for iters in range(niters) :
62 # exchange data with neighbors
63 if north != MPI.PROC_NULL :
64 r1=comm.irecv(source=north, tag=1)
65 s1=comm.isend(aold[1, 1:bx+1], dest=north, tag=1)
66 if south != MPI.PROC_NULL :
67 r2=comm.irecv(source=south, tag=1)
68 s2=comm.isend(aold[bx, 1:bx+1], dest=south, tag=1)
69 if east != MPI.PROC_NULL :
70 r3 = comm.irecv(source=east, tag=1)
71 s3 = comm.isend(aold[1:bx+1, bx], dest=east, tag=1)
72 if west != MPI.PROC_NULL :
73 r4 = comm.irecv(source=west, tag=1)
74 s4 = comm.isend(aold[1:bx+1, 1], dest=west, tag=1)
75 # wait
76 if north != MPI.PROC_NULL :
77 s1.wait()
78 aold[0, 1:bx+1] = r1.wait()
79 if south != MPI.PROC_NULL :
80 s2.wait()
81 aold[bx+1, 1:bx+1] = r2.wait()
82 if east != MPI.PROC_NULL :
83 s3.wait()
84 aold[1:bx+1, bx+1] = r3.wait()
85 if west != MPI.PROC_NULL :
86 s4.wait
87 aold[1:bx+1, 0] = r4.wait()
88 # update grid
89 anew[1:-1, 1:-1] = ( aold[1:-1, 1:-1] / 2.0 +
90 ( aold[2: , 1:-1] + aold[ :-2, 1:-1] +
91 aold[1:-1, 2: ] + aold[1:-1, :-2] ) / 8.0 )
92 # refresh heat sources
93 anew[locsources[0:locnsources, 0]-1, locsources[0:locnsources, 1]-1] +=

energy
94

95 # exchange data with neighbors
96 if north != MPI.PROC_NULL :
97 r1=comm.irecv(source=north, tag=1)
98 s1=comm.isend(anew[1, 1:bx+1], dest=north, tag=1)
99 if south != MPI.PROC_NULL :

100 r2=comm.irecv(source=south, tag=1)
101 s2=comm.isend(anew[bx, 1:bx+1], dest=south, tag=1)
102 if east != MPI.PROC_NULL :
103 r3 = comm.irecv(source=east, tag=1)
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104 s3 = comm.isend(anew[1:bx+1, bx], dest=east, tag=1)
105 if west != MPI.PROC_NULL :
106 r4 = comm.irecv(source=west, tag=1)
107 s4 = comm.isend(anew[1:bx+1, 1], dest=west, tag=1)
108 # wait
109 if north != MPI.PROC_NULL :
110 s1.wait()
111 anew[0, 1:bx+1] = r1.wait()
112 if south != MPI.PROC_NULL :
113 s2.wait()
114 anew[bx+1, 1:bx+1] = r2.wait()
115 if east != MPI.PROC_NULL :
116 s3.wait()
117 anew[1:bx+1, bx+1] = r3.wait()
118 if west != MPI.PROC_NULL :
119 s4.wait
120 anew[1:bx+1, 0] = r4.wait()
121 # update grid
122 aold[1:-1, 1:-1] = ( anew[1:-1, 1:-1] / 2.0 +
123 ( anew[2: , 1:-1] + anew[ :-2, 1:-1] +
124 anew[1:-1, 2: ] + anew[1:-1, :-2] ) / 8.0 )
125 # refresh heat sources
126 aold[locsources[0:locnsources, 0]-1, locsources[0:locnsources, 1]-1] +=

energy
127

128 # get final heat in the system
129 comm.Reduce(np.sum(aold[1:bx+1, 1:by+1]), rheat)
130

131 # show
132 if not mpirank :
133 print("Heat=%0.4f | Time=%0.4f | MPISize=%0s | Dim=%0s | bx,by=%0s,%0s"
134 %(rheat, mpiwtime+MPI.Wtime(), mpisize, pdims, bx, by))

D.1.7 Serial Cython

Listing D.9 - Serial Cython implementation of the stencil test case - Cython module code.

1 #cython: boundscheck=False, wraparound=False, cdivision=True
2 #cython: initializedcheck=False, language_level=3, infer_types=True
3

4 cpdef st(int n, double energy, int niters):
5 from time import time
6 import numpy as np
7

8 cdef double heat = 0.0
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9 cdef double t = 0.0
10 cdef Py_ssize_t size = n + 2
11 cdef Py_ssize_t sizeStart = 1
12 cdef Py_ssize_t sizeEnd = n + 1
13 cdef Py_ssize_t iters, i, j
14

15 t = time()
16

17 cdef double[:,::1] mvaold = np.zeros((size, size), np.double)
18 cdef double[:,::1] mvanew = np.zeros((size, size), np.double)
19 cdef Py_ssize_t nsources = 3 # qde de fontes
20 cdef int[:,::1] mvsources = np.empty( (nsources,2), np.intc)
21

22 mvsources[0,0] = mvsources[0,1] = n/2
23 mvsources[1,0] = mvsources[1,1] = n/3
24 mvsources[2,0] = n*4/5
25 mvsources[2,1] = n*8/9
26

27 niters = (niters + 1) // 2
28 for iters in range(niters) :
29 # iteracao impar
30 for i in range(sizeStart, sizeEnd) :
31 for j in range(sizeStart, sizeEnd) :
32 mvanew[i,j] = ( mvaold[i,j] / 2.0 +
33 ( mvaold[i-1,j] + mvaold[i+1,j] +
34 mvaold[i,j-1] + mvaold[i,j+1] ) / 8.0 )
35 for i in range(nsources) :
36 mvanew[mvsources[i,0], mvsources[i,1]] += energy
37 # iteracao par
38 for i in range(sizeStart, sizeEnd) :
39 for j in range(sizeStart, sizeEnd) :
40 mvaold[i,j] = ( mvanew[i,j] / 2.0 +
41 ( mvanew[i-1,j] + mvanew[i+1,j] +
42 mvanew[i,j-1] + mvanew[i,j+1] ) / 8.0 )
43 for i in range(nsources) :
44 mvaold[mvsources[i,0], mvsources[i,1]] += energy
45 # calcula o total de energia
46 for i in range(sizeStart, sizeEnd) :
47 for j in range(sizeStart, sizeEnd) :
48 heat += mvaold[i,j]
49 t = time() - t
50 return heat, t

Listing D.10 - Serial Cython implementation of the stencil test case - Python main code.
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1 from time import time
2 tp = time()
3 import scs
4

5 n = 4800 # nxn grid; 4800,1,500->1500; 100,1,10->30 [4800]
6 energy = 1.0 # energy to be injected per iteration [1.0]
7 niters = 500 # number of iterations [500]
8

9 heat, t = scs.st(n, energy, niters)
10 tp = time() - tp
11 print("Heat = %0.4f | Time = %0.4f | TimePyt = %0.4f" %(heat, t, tp))

D.1.8 Parallel Cython

Listing D.11 - Parallel Cython implementation of the stencil test case - Cython module.

1 #cython: language_level=3
2 #cython: cdivision=True
3 #cython: initializedcheck=False
4 #cython: infer_types=True
5 #cython: wraparound=False
6 #cython: boundscheck=False
7

8 import numpy as np
9

10 cpdef stp(double[:,::1] anew, double[:,::1] aold, Py_ssize_t by, Py_ssize_t bx) :
11 for i in range(1, bx+1) :
12 for j in range(1, by+1) :
13 anew[i,j] = ( aold[i,j] / 2.0 +
14 ( aold[i-1,j] + aold[i+1,j] +
15 aold[i,j-1] + aold[i,j+1] ) / 8.0 )

Listing D.12 - Parallel Cython implementation of the stencil test case - Python main code.

1 import numpy as np
2 import time
3 from mpi4py import MPI
4 import scp2
5

6 n = 4800 # nxn grid (4800,1,500)=1500; (100,1,10)=30
7 energy = 1.0 # energy to be injected per iteration
8 niters = 500 # number of iterations
9

10 nsources = 3 # sources of energy
11 size = n + 2
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12 heat = np.zeros((1), np.float64) # system total heat
13 anew = np.zeros((size, size), np.float64)
14 aold = np.zeros((size, size), np.float64)
15 sources = np.empty((3,2), np.int32)
16 sources[:,:] = [ [n//2, n//2], [n//3, n//3], [n*4//5, n*8//9] ]
17 niters = (niters+1) // 2
18

19 comm = MPI.COMM_WORLD
20 mpirank = comm.rank
21 mpisize = comm.size
22

23 nsources = 3
24 sources = np.zeros((nsources, 2), np.intc)
25 sources[:,:] = [ [n//2, n//2], [n//3, n//3], [n*4//5, n*8//9] ]
26

27 # sources in my area, local to my rank
28 locnsources = 0
29 locsources = np.empty((nsources,2), np.intc)
30

31 rheat = np.zeros(1, np.double)
32 bheat = np.zeros(1, np.double)
33

34 # determine my coordinates (x,y)
35 pdims = MPI.Compute_dims(mpisize, 2)
36 px = pdims[0]
37 py = pdims[1]
38 rx = mpirank % px
39 ry = mpirank // px
40

41 # determine my four neighbors
42 north = (ry - 1) * px + rx
43 if (ry - 1) < 0 :
44 north = MPI.PROC_NULL
45 south = (ry + 1) * px + rx
46 if (ry + 1) >= py :
47 south = MPI.PROC_NULL
48 west = ry * px + rx - 1
49 if (rx - 1) < 0 :
50 west = MPI.PROC_NULL
51 east = ry * px + rx + 1
52 if (rx + 1) >= px :
53 east = MPI.PROC_NULL
54

55 # decompose the domain
56 bx = n // px # block size in x
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57 by = n // py # block size in y
58 offx = rx * bx + 1 # offset in x
59 offy = ry * by + 1 # offset in y
60

61 # determine which sources are in my patch
62 for i in range(nsources) :
63 locx = sources[i, 0] - offx
64 locy = sources[i, 1] - offy
65 if(locx >= 0 and locx <= bx and locy >= 0 and locy <= by) :
66 locsources[locnsources, 0] = locx + 2 - 1
67 locsources[locnsources, 1] = locy + 2 - 1
68 locnsources += 1
69

70 # working arrays with 1-wide halo zones
71 anew = np.zeros((bx+2, by+2), np.double)
72 aold = np.zeros((bx+2, by+2), np.double)
73

74 if not mpirank : t0 = time.time()
75

76 for iters in range(niters) :
77 # exchange data with neighbors
78 if north != MPI.PROC_NULL :
79 r1=comm.irecv(source=north, tag=1)
80 s1=comm.isend(aold[1, 1:bx+1], dest=north, tag=1)
81 if south != MPI.PROC_NULL :
82 r2=comm.irecv(source=south, tag=1)
83 s2=comm.isend(aold[bx, 1:bx+1], dest=south, tag=1)
84 if east != MPI.PROC_NULL :
85 r3 = comm.irecv(source=east, tag=1)
86 s3 = comm.isend(aold[1:bx+1, bx], dest=east, tag=1)
87 if west != MPI.PROC_NULL :
88 r4 = comm.irecv(source=west, tag=1)
89 s4 = comm.isend(aold[1:bx+1, 1], dest=west, tag=1)
90 # wait
91 if north != MPI.PROC_NULL :
92 s1.wait()
93 aold[0, 1:bx+1] = r1.wait()
94 if south != MPI.PROC_NULL :
95 s2.wait()
96 aold[bx+1, 1:bx+1] = r2.wait()
97 if east != MPI.PROC_NULL :
98 s3.wait()
99 aold[1:bx+1, bx+1] = r3.wait()

100 if west != MPI.PROC_NULL :
101 s4.wait
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102 aold[1:bx+1, 0] = r4.wait()
103

104 # update grid
105 scp2.stp(anew, aold, bx, by)
106

107 # refresh heat sources
108 for i in range(locnsources) :
109 anew[locsources[i, 0]-1, locsources[i, 1]-1] += energy
110

111 # exchange data with neighbors
112 if north != MPI.PROC_NULL :
113 r1=comm.irecv(source=north, tag=1)
114 s1=comm.isend(anew[1, 1:bx+1], dest=north, tag=1)
115 if south != MPI.PROC_NULL :
116 r2=comm.irecv(source=south, tag=1)
117 s2=comm.isend(anew[bx, 1:bx+1], dest=south, tag=1)
118 if east != MPI.PROC_NULL :
119 r3 = comm.irecv(source=east, tag=1)
120 s3 = comm.isend(anew[1:bx+1, bx], dest=east, tag=1)
121 if west != MPI.PROC_NULL :
122 r4 = comm.irecv(source=west, tag=1)
123 s4 = comm.isend(anew[1:bx+1, 1], dest=west, tag=1)
124 # wait
125 if north != MPI.PROC_NULL :
126 s1.wait()
127 anew[0, 1:bx+1] = r1.wait()
128 if south != MPI.PROC_NULL :
129 s2.wait()
130 anew[bx+1, 1:bx+1] = r2.wait()
131 if east != MPI.PROC_NULL :
132 s3.wait()
133 anew[1:bx+1, bx+1] = r3.wait()
134 if west != MPI.PROC_NULL :
135 s4.wait
136 anew[1:bx+1, 0] = r4.wait()
137

138 # update grid
139 scp2.stp(aold, anew, bx, by)
140

141 # refresh heat sources
142 for i in range(locnsources) :
143 aold[locsources[i, 0]-1, locsources[i, 1]-1] += energy
144

145 # get final heat in the system
146 bheat[0] = np.sum(aold[1:-1, 1:-1])
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147 comm.Reduce(bheat, rheat)
148

149 if not mpirank :
150 t1 = MPI.Wtime() - t0
151 print(’Heat={:0.4f} | Time={:0.4f} | MPISize={:d} | Dim={:d},{:d} | bx,by={:d

},{:d}’
152 .format(rheat[0], t1, mpisize, pdims[0], pdims[1], bx, by))

D.1.9 Serial Numba-CPU

Listing D.13 - Serial Numba-CPU implementation of the stencil test case.

1 import numpy as np
2 from numba import jit, config, prange
3 from time import time
4

5 config.DUMP_ASSEMBLY = 0
6 config.NUMBA_ENABLE_AVX = 1
7 config.NUMBA_NUM_THREADS = 1
8

9 @jit(’(float64[:,:],float64[:,:])’, nopython=True, parallel=True, nogil=True)
10 def kernel_seq(anew, aold) :
11 anew[1:-1, 1:-1] = ( aold[1:-1, 1:-1] * 0.5 +
12 ( aold[2: , 1:-1] + aold[ :-2, 1:-1] +
13 aold[1:-1, 2: ] + aold[1:-1, :-2] ) * 0.125 )
14

15 n = 4800 # nxn grid (4800,1,500)=1500; (4800,1,5)=12
16 energy = 1.0 # energy to be injected per iteration
17 niters = 500 # number of iterations
18 nsources = 3 # sources of energy
19 size = n + 2
20 sizeEnd = n + 1
21 heat = np.zeros((1), np.float64) # system total heat
22 anew = np.zeros((size, size), np.float64)
23 aold = np.zeros((size, size), np.float64)
24 sources = np.empty((nsources, 2), np.int16)
25 sources[:,:] = [ [n//2, n//2], [n//3, n//3], [n*4//5, n*8//9] ]
26 niters = (niters + 1) // 2
27

28 t0 = time()
29 for iters in range(niters) :
30 kernel_seq(anew, aold)
31 for i in range(nsources) :
32 anew[sources[i, 0], sources[i, 1]] += energy
33 kernel_seq(aold, anew)
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34 for i in range(nsources) :
35 aold[sources[i, 0], sources[i, 1]] += energy
36

37 heat[0] = np.sum( aold[1:-1, 1:-1] ) # system total heat
38 t0 = time() - t0
39

40 print("Heat = %0.4f | Time = %0.4f | Thread count = %s" %
41 (heat[0], t0, config.NUMBA_NUM_THREADS))

D.1.10 Parallel Numba-CPU

Listing D.14 - Parallel Numba-CPU implementation of the stencil test case.

1 import numpy as np
2 import time
3 from mpi4py import MPI
4

5 from numba import jit, prange, config
6 config.DUMP_ASSEMBLY = 0
7 config.NUMBA_ENABLE_AVX = 1
8 config.NUMBA_NUM_THREADS = 1
9

10 @jit(’(float64[:,:],float64[:,:])’, nopython=True, parallel=True, nogil=True)
11 def kernel1(anew, aold) :
12 anew[1:-1, 1:-1] = ( aold[1:-1, 1:-1] * 0.5 +
13 ( aold[2: , 1:-1] + aold[ :-2, 1:-1] +
14 aold[1:-1, 2: ] + aold[1:-1, :-2] ) * 0.125 )
15

16 n = 4800 # nxn grid (4800,1,500)=1500; (100,1,10)=30
17 energy = 1.0 # energy to be injected per iteration
18 niters = 500 # number of iterations
19

20 nsources = 3 # sources of energy
21 size = n + 2
22 heat = np.zeros((1), np.float64) # system total heat
23 anew = np.zeros((size, size), np.float64)
24 aold = np.zeros((size, size), np.float64)
25 sources = np.empty((3,2), np.int32)
26 sources[:,:] = [ [n//2, n//2], [n//3, n//3], [n*4//5, n*8//9] ]
27 niters = (niters+1) // 2
28

29 comm = MPI.COMM_WORLD
30 mpirank = comm.rank
31 mpisize = comm.size
32

154



33 nsources = 3
34 sources = np.zeros((nsources, 2), np.intc)
35 sources[:,:] = [ [n//2, n//2], [n//3, n//3], [n*4//5, n*8//9] ]
36

37 # sources in my area, local to my rank
38 locnsources = 0
39 locsources = np.empty((nsources,2), np.intc)
40

41 rheat = np.zeros(1, np.double)
42 bheat = np.zeros(1, np.double)
43

44 # determine my coordinates (x,y)
45 pdims = MPI.Compute_dims(mpisize, 2)
46 px = pdims[0]
47 py = pdims[1]
48 rx = mpirank % px
49 ry = mpirank // px
50

51 # determine my four neighbors
52 north = (ry - 1) * px + rx
53 if (ry - 1) < 0 :
54 north = MPI.PROC_NULL
55 south = (ry + 1) * px + rx
56 if (ry + 1) >= py :
57 south = MPI.PROC_NULL
58 west = ry * px + rx - 1
59 if (rx - 1) < 0 :
60 west = MPI.PROC_NULL
61 east = ry * px + rx + 1
62 if (rx + 1) >= px :
63 east = MPI.PROC_NULL
64

65 # decompose the domain
66 bx = n // px # block size in x
67 by = n // py # block size in y
68 offx = rx * bx + 1 # offset in x
69 offy = ry * by + 1 # offset in y
70

71 # determine which sources are in my patch
72 for i in range(nsources) :
73 locx = sources[i, 0] - offx
74 locy = sources[i, 1] - offy
75 if(locx >= 0 and locx <= bx and locy >= 0 and locy <= by) :
76 locsources[locnsources, 0] = locx + 2 - 1
77 locsources[locnsources, 1] = locy + 2 - 1
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78 locnsources += 1
79

80 # working arrays with 1-wide halo zones
81 anew = np.zeros((bx+2, by+2), np.double)
82 aold = np.zeros((bx+2, by+2), np.double)
83

84 if not mpirank : t0 = time.time()
85

86 for iters in range(niters) :
87 # exchange data with neighbors
88 if north != MPI.PROC_NULL :
89 r1=comm.irecv(source=north, tag=1)
90 s1=comm.isend(aold[1, 1:bx+1], dest=north, tag=1)
91 if south != MPI.PROC_NULL :
92 r2=comm.irecv(source=south, tag=1)
93 s2=comm.isend(aold[bx, 1:bx+1], dest=south, tag=1)
94 if east != MPI.PROC_NULL :
95 r3 = comm.irecv(source=east, tag=1)
96 s3 = comm.isend(aold[1:bx+1, bx], dest=east, tag=1)
97 if west != MPI.PROC_NULL :
98 r4 = comm.irecv(source=west, tag=1)
99 s4 = comm.isend(aold[1:bx+1, 1], dest=west, tag=1)

100 # wait
101 if north != MPI.PROC_NULL :
102 s1.wait()
103 aold[0, 1:bx+1] = r1.wait()
104 if south != MPI.PROC_NULL :
105 s2.wait()
106 aold[bx+1, 1:bx+1] = r2.wait()
107 if east != MPI.PROC_NULL :
108 s3.wait()
109 aold[1:bx+1, bx+1] = r3.wait()
110 if west != MPI.PROC_NULL :
111 s4.wait
112 aold[1:bx+1, 0] = r4.wait()
113

114 # update grid
115 kernel1(anew, aold)
116

117 # refresh heat sources
118 for i in range(locnsources) :
119 anew[locsources[i, 0]-1, locsources[i, 1]-1] += energy
120

121 # exchange data with neighbors
122 if north != MPI.PROC_NULL :
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123 r1=comm.irecv(source=north, tag=1)
124 s1=comm.isend(anew[1, 1:bx+1], dest=north, tag=1)
125 if south != MPI.PROC_NULL :
126 r2=comm.irecv(source=south, tag=1)
127 s2=comm.isend(anew[bx, 1:bx+1], dest=south, tag=1)
128 if east != MPI.PROC_NULL :
129 r3 = comm.irecv(source=east, tag=1)
130 s3 = comm.isend(anew[1:bx+1, bx], dest=east, tag=1)
131 if west != MPI.PROC_NULL :
132 r4 = comm.irecv(source=west, tag=1)
133 s4 = comm.isend(anew[1:bx+1, 1], dest=west, tag=1)
134 # wait
135 if north != MPI.PROC_NULL :
136 s1.wait()
137 anew[0, 1:bx+1] = r1.wait()
138 if south != MPI.PROC_NULL :
139 s2.wait()
140 anew[bx+1, 1:bx+1] = r2.wait()
141 if east != MPI.PROC_NULL :
142 s3.wait()
143 anew[1:bx+1, bx+1] = r3.wait()
144 if west != MPI.PROC_NULL :
145 s4.wait
146 anew[1:bx+1, 0] = r4.wait()
147

148 # update grid
149 kernel1(aold, anew)
150

151 # refresh heat sources
152 for i in range(locnsources) :
153 aold[locsources[i, 0]-1, locsources[i, 1]-1] += energy
154

155 # get final heat in the system
156 bheat[0] = np.sum(aold[1:-1, 1:-1])
157 comm.Reduce(bheat, rheat)
158

159 if not mpirank :
160 t1 = MPI.Wtime() - t0
161 print(’Heat={:0.4f} | Time={:0.4f} | MPISize={:d} | Dim={:d},{:d} | bx,by={:d

},{:d}’
162 .format(rheat[0], t1, mpisize, pdims[0], pdims[1], bx, by))

D.1.11 Numba-GPU
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Listing D.15 - Numba-GPU implementation of the stencil test case.

1 import math
2 from time import time
3 import numpy as np
4 from numba import cuda, jit, prange
5

6 @cuda.jit
7 def st3(a1, a2):
8 n = a1.shape[0] - 1
9 i, j = cuda.grid(2)

10 if (i > 0 and j > 0) and (i < n and j < n) :
11 a1[i,j] = a2[i,j]/2.0+(a2[i-1,j]+a2[i+1,j]+a2[i,j-1]+a2[i,j+1])/8.0
12

13 def calc3(anew, aold, heat, sizeEnd, niters, nsources, sources, energy,
14 blocks_per_grid, threads_per_block):
15 for iters in range(0, niters, 2):
16 st3[blocks_per_grid, threads_per_block](anew, aold)
17 for i in range(0, nsources) :
18 anew[sources[i,0], sources[i,1]] += energy # heat source
19 st3[blocks_per_grid, threads_per_block](aold, anew)
20 for i in range(0, nsources):
21 aold[sources[i,0], sources[i,1]] += energy # heat source
22

23 #def par_cuda():
24 n = 4800 # nxn grid
25 energy = 1 # energy to be injected per iteration
26 niters = 500 # number of iterations
27 nsources = 3 # sources of energy
28 size = n + 2 # plus the ghost zone
29 sizeEnd = n + 1
30

31 # initialize the data arrays
32 anew = np.zeros((size, size), np.float64)
33 aold = np.zeros((size, size), np.float64)
34 # initialize three heat sources
35 sources = np.empty((3,2), np.int32)
36 sources[:,:] = [ [n//2, n//2], [n//3, n//3], [n*4//5, n*8//9] ]
37 heat = 0 # system total heat sum
38

39 # copy the arrays to the device
40 anew_global_mem = cuda.to_device(anew)
41 aold_global_mem = cuda.to_device(aold)
42

43 # configure blocks & grids
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44 # set the number of threads in a block
45 threads_per_block = (32, 32)
46 # calculate the number of thread blocks in the grid
47 blocks_per_grid_x = math.ceil(aold.shape[0] / threads_per_block[0])
48 blocks_per_grid_y = math.ceil(aold.shape[1] / threads_per_block[1])
49 blocks_per_grid = (blocks_per_grid_x, blocks_per_grid_y)
50

51 t = time()
52 # main calc
53 calc3(anew_global_mem, aold_global_mem, heat,
54 sizeEnd, niters, nsources, sources, energy,
55 blocks_per_grid, threads_per_block)
56

57 # copy the result back to the host
58 aold = aold_global_mem.copy_to_host()
59

60 for j in range(1, sizeEnd):
61 for i in range(1, sizeEnd):
62 heat = heat + aold[i,j]
63 t = time() - t
64

65 # show the result if desired
66 print("Heat=%.4f | Time=%.4f" % (heat, t))

D.2 Implementations of the FFT test case

D.2.1 Serial F90

Listing D.16 - Serial F90 implementation of the FFT test case.

1 program main
2 use, intrinsic :: iso_c_binding
3 implicit none
4 include "fftw3.f03"
5 integer, parameter :: L = 576, M = 576, N = 576
6 type(C_PTR) :: plan, cdata
7 complex(C_DOUBLE_COMPLEX), pointer :: data(:,:,:)
8 complex(C_DOUBLE_COMPLEX) :: s
9 integer :: i, j, k

10 double precision :: t0, t1, t2
11

12 call cpu_time(t0) ! time measurement
13

14 ! in-place transform (note dimension reversal)
15 cdata = fftw_alloc_complex(int(L * M * N, C_SIZE_T))
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16 call c_f_pointer(cdata, data, [L, M, N])
17

18 ! create plan for in-place forward DFT (note dimension reversal)
19 plan = fftw_plan_dft_3d(N, M, L, data, data, &
20 FFTW_FORWARD, FFTW_ESTIMATE)
21

22 ! fills the array with complex values
23 do k = 1, N
24 do j = 1, M
25 do i = 1, L
26 data(i, j, k) = sin( real(i + j + k) )
27 enddo
28 enddo
29 enddo
30 data = dcmplx( real(data) , 0 )
31

32 call cpu_time(t1) ! time measurement
33

34 ! compute transform (as many times as desired)
35 call fftw_execute_dft(plan, data, data)
36 ! checksum
37 s = sum(data)
38

39 call cpu_time(t2) ! time measurement
40

41 call fftw_destroy_plan(plan)
42 call fftw_free(cdata)
43

44 ! result
45 write(*, "(’S: ’spf0.0spf0.0’j’)", advance="no") s * 1e-5
46 write(*, "(’ | L: ’g0)", advance="no") L
47 write(*, "(’ | T1: ’sf0.4)", advance="no") t1-t0
48 write(*, "(’ | TF: ’sf0.4)", advance="no") t2-t1
49 write(*, "(’ | TT: ’sf0.4)") t2-t0
50

51 end

D.2.2 Parallel F90

Listing D.17 - Parallel F90 implementation of the FFT test case.

1 program main
2 use, intrinsic :: iso_c_binding
3 use MPI
4 implicit none
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5 include ’fftw3-mpi.f03’
6 integer :: mpirank, mpisize, mpierror, i, j, k
7 integer(C_INTPTR_T), parameter :: L = 576, M = 576, N = 576
8 type(C_PTR) :: plan, cdata
9 complex(C_DOUBLE_COMPLEX), pointer :: data(:,:,:)

10 integer(C_INTPTR_T) :: alloc_local, local_N, local_start
11 complex(C_DOUBLE_COMPLEX) :: s, rs
12 double precision :: t0, t1, t2
13

14 call cpu_time(t0) ! time measurement
15

16 call MPI_Init(mpierror)
17 call MPI_Comm_rank(MPI_COMM_WORLD, mpirank, mpierror)
18 call MPI_Comm_size(MPI_COMM_WORLD, mpisize, mpierror)
19

20 ! init
21 call fftw_mpi_init()
22

23 ! get local data size and allocate (note dimension reversal)
24 alloc_local = fftw_mpi_local_size_3d(N, M, L, &
25 MPI_COMM_WORLD, local_N, local_start)
26 cdata = fftw_alloc_complex(alloc_local)
27 call c_f_pointer(cdata, data, [L, M, local_N])
28

29 ! create MPI plan for in-place forward DFT (note dimension reversal)
30 plan = fftw_mpi_plan_dft_3d(N, M, L, data, data, &
31 MPI_COMM_WORLD, FFTW_FORWARD, FFTW_ESTIMATE)
32

33 ! Fills the array with complex values
34 do k = 1, int(local_N)
35 do j = 1, M
36 do i = 1, L
37 data(i, j, k) = dcmplx( sin( real(i + j + (k + local_start)) ) ,

0)
38 enddo
39 enddo
40 enddo
41

42 call cpu_time(t1) ! time measurement
43

44 ! Compute transform (as many times as desired)
45 call fftw_mpi_execute_dft(plan, data, data)
46

47 ! Checksum
48 s = sum(data)
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49 call MPI_Reduce(s, &! send data
50 rs, &! recv data
51 1, &! count
52 MPI_DOUBLE_COMPLEX, &! data type
53 MPI_SUM, &! operation
54 0, &! rank of root process
55 MPI_COMM_WORLD, mpierror)
56

57 ! clean
58

59 call cpu_time(t2) ! time measurement
60

61 call fftw_destroy_plan(plan)
62 call fftw_free(cdata)
63 call fftw_mpi_cleanup()
64 call mpi_finalize(mpierror)
65

66 ! show the result
67 if (mpirank == 0) then
68 write(*, "(’S: ’spf0.0spf0.0’j’)", advance="no") rs * 1e-5
69 write(*, "(’ | L: ’g0)", advance="no") L
70 write(*, "(’ | N: ’g0)", advance="no") mpisize
71 write(*, "(’ | T1: ’sf0.4)", advance="no") t1-t0
72 write(*, "(’ | TF: ’sf0.4)", advance="no") t2-t1
73 write(*, "(’ | TT: ’sf0.4)") t2-t0
74 endif
75

76 end

D.2.3 Serial F2PY

Listing D.18 - Serial F2PY implementation of the FFT test case - F90 module code.

1 subroutine fs(ss, ll, ts, tf, tt)
2 use, intrinsic :: iso_c_binding
3 include "fftw3.f03"
4 double complex, intent(out) :: ss
5 integer, intent(out) :: ll
6 double precision, intent(out) :: ts, tf, tt
7 integer, parameter :: L = 576, M = 576, N = 576
8 type(C_PTR) :: plan, cdata
9 complex(C_DOUBLE_COMPLEX), pointer :: data(:,:,:)

10 complex(C_DOUBLE_COMPLEX) :: s
11 integer :: i, j, k
12 double precision :: t0, t1, t2
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13

14 call cpu_time(t0) ! time measurement
15

16 ! in-place transform (note dimension reversal)
17 cdata = fftw_alloc_complex(int(L * M * N, C_SIZE_T))
18 call c_f_pointer(cdata, data, [L, M, N])
19

20 ! create plan for in-place forward DFT (note dimension reversal)
21 plan = fftw_plan_dft_3d(N, M, L, data, data, &
22 FFTW_FORWARD, FFTW_ESTIMATE)
23

24 ! fills the array with complex values
25 do k = 1, N
26 do j = 1, M
27 do i = 1, L
28 data(i, j, k) = sin( real(i + j + k) )
29 enddo
30 enddo
31 enddo
32 data = dcmplx( real(data), 0 )
33

34 call cpu_time(t1) ! time measurement
35

36 ! compute transform (as many times as desired)
37 call fftw_execute_dft(plan, data, data)
38 ! checksum
39 s = sum(data)
40

41 call cpu_time(t2) ! time measurement
42

43 call fftw_destroy_plan(plan)
44 call fftw_free(cdata)
45

46 ! result
47 ss = s * 1e-5
48 ll = L
49 ts = t1 - t0
50 tf = t2 - t1
51 tt = t2 - t0
52

53 end subroutine

Listing D.19 - Serial F2PY implementation of the FFT test case - Python main code.

1 import nc2cs
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2 import time as tm
3 t2 = tm.time() # time measurement
4 S, L, ts, tf, tt = nc2cs.fs()
5 t3 = tm.time() # time measurement
6 print(f"S:{S:.0f}", end=’’)
7 print(f" | L:{L:0g}", end=’’)
8 print(f" | T1:{ts:.4f}", end=’’)
9 print(f" | TF:{tf:.4f}", end=’’)

10 print(f" | TT:{tt:.4f}", end=’’)
11 print(f" | TO:{t3-t2:.4f}")

D.2.4 Parallel F2PY

Listing D.20 - Parallel F2PY implementation of the FFT test case - F90 module code.

1 subroutine fs(ss, ll, ts, tf, tt, mr, ms)
2 use, intrinsic :: iso_c_binding
3 use MPI
4 implicit none
5 include ’fftw3-mpi.f03’
6 integer, intent(out) :: mr, ms, ll
7 double complex, intent(out) :: ss
8 double precision, intent(out) :: ts, tf, tt
9 integer :: mpirank, mpisize, mpierror, i, j, k

10 integer(C_INTPTR_T), parameter :: L = 576, M = 576, N = 576
11 type(C_PTR) :: plan, cdata
12 complex(C_DOUBLE_COMPLEX), pointer :: data(:,:,:)
13 integer(C_INTPTR_T) :: alloc_local, local_N, local_start
14 complex(C_DOUBLE_COMPLEX) :: s, rs
15 real(C_DOUBLE) :: t0, t1, t2
16

17 call cpu_time(t0) ! time measurement
18

19 call MPI_Init(mpierror)
20 call MPI_Comm_rank(MPI_COMM_WORLD, mpirank, mpierror)
21 call MPI_Comm_size(MPI_COMM_WORLD, mpisize, mpierror)
22

23 ! init
24 call fftw_mpi_init()
25

26 ! get local data size and allocate (note dimension reversal)
27 alloc_local = fftw_mpi_local_size_3d(N, M, L, &
28 MPI_COMM_WORLD, local_N, local_start)
29 cdata = fftw_alloc_complex(alloc_local)
30 call c_f_pointer(cdata, data, [L, M, local_N])
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31

32 ! create MPI plan for in-place forward DFT (note dimension reversal)
33 plan = fftw_mpi_plan_dft_3d(N, M, L, data, data, &
34 MPI_COMM_WORLD, FFTW_FORWARD, FFTW_ESTIMATE)
35

36 ! fill array with complex values
37 do k = 1, int(local_N)
38 do j = 1, M
39 do i = 1, L
40 data(i, j, k) = sin( real(i + j + (k + local_start)) )
41 enddo
42 enddo
43 enddo
44 data = dcmplx( real(data), 0 )
45

46 call cpu_time(t1) ! time measurement
47

48 ! compute transform (as many times as desired)
49 call fftw_mpi_execute_dft(plan, data, data)
50

51 ! compute the checksum of processes
52 s = sum(data)
53 call MPI_Reduce(s, &! send data
54 rs, &! recv data
55 1, &! count
56 MPI_DOUBLE_COMPLEX, &! data type
57 MPI_SUM, &! operation
58 0, &! rank of root process
59 MPI_COMM_WORLD, mpierror)
60

61 ! clean
62 call fftw_destroy_plan(plan)
63 call fftw_free(cdata)
64 call fftw_mpi_cleanup()
65 call mpi_finalize(mpierror)
66

67 call cpu_time(t2) ! time measurement
68

69 ! result
70 ss = rs * 1e-5
71 ll = L
72 ts = t1 - t0
73 tf = t2 - t1
74 tt = t2 - t0
75 mr = mpirank
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76 ms = mpisize
77

78 end subroutine

Listing D.21 - Parallel F2PY implementation of the FFT test case - Python main code.

1 import nc2cp
2 import time as tm
3 t2 = tm.time() # time measurement
4 ss, ll, ts, tf, tt, mr, ms = nc2cp.fs()
5 t3 = tm.time() # time measurement
6 if mr == 0 :
7 print(f"S:{ss:.0f}", end=’’)
8 print(f", L:{ll:0g}", end=’’)
9 print(f", N:{ms:0g}", end=’’)

10 print(f", T1:{ts:.4f}", end=’’)
11 print(f", TF:{tf:.4f}", end=’’)
12 print(f", TT:{tt:.4f}", end=’’)
13 print(f", TO:{t3-t2:.4f}")

D.2.5 Serial Python

Listing D.22 - Serial Python implementation of the FFT test case.

1 import numpy as np, pyfftw as pf, time as tm
2

3 t0 = tm.time() # time measurement
4

5 # data
6 L = M = N = 576
7 u = pf.empty_aligned( (N, M, L), dtype=np.complex128 )
8 for k in range (u.shape[2]) :
9 for j in range(u.shape[1]) :

10 for i in range(u.shape[0]) :
11 u[i, j, k] = i + j + k + 3
12 u.real = np.sin ( u.real )
13 u.imag = 0
14

15 t1 = tm.time() # time measurement
16

17 # FFT
18 uf = pf.interfaces.numpy_fft.fftn(u,
19 overwrite_input=True, auto_contiguous=False,
20 auto_align_input=False)
21 # checksum
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22 S = np.sum(uf)
23

24 t2 = tm.time() # time measurement
25

26 print(f"S: {S*1E-5:.0f}", end=’’)
27 print(f" | L: {L:0g}", end=’’)
28 print(f" | T1: {t1-t0:.4f}", end=’’)
29 print(f" | TF: {t2-t1:.4f}", end=’’)
30 print(f" | TT: {t2-t0:.4f}")

D.2.6 Parallel Python

Listing D.23 - Parallel Python implementation of the FFT test case.

1 import numpy as np, time as tm
2 from mpi4py_fft import PFFT, newDistArray
3 from mpi4py import MPI
4 comm = MPI.COMM_WORLD
5 rank = comm.Get_rank()
6 size = comm.Get_size()
7

8 t0 = tm.time() # time measurement
9

10 # data
11 L = M = N = 576
12 NA = np.array([N, M, L], dtype=int)
13 f = PFFT(comm, NA, dtype=np.complex128, backend=’pyfftw’)
14 u = newDistArray(f, False)
15 for k in range (u.shape[2]) :
16 for j in range(u.shape[1]) :
17 for i in range(u.shape[0]) :
18 u[i, j, k] = i + j + k + 3
19 u.real = np.sin ( u.real )
20 u.imag = 0
21

22 t1 = tm.time() # time measurement
23

24 # FFT
25 uf = f.forward(u, normalize=False)
26

27 # checksum
28 S = np.array(0, dtype=np.complex128)
29 Sn = np.array(np.sum(uf), dtype=np.complex128)
30 comm.Reduce([Sn, MPI.DOUBLE_COMPLEX], [S, MPI.DOUBLE_COMPLEX],
31 op=MPI.SUM, root=0)
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32

33 t2 = tm.time() # time measurement
34

35 if rank == 0 :
36 print(f"S: {S*1E-5:.0f}", end=’’)
37 print(f" | L: {L:0g}", end=’’)
38 print(f" | N: {size:0g}", end=’’)
39 print(f" | TS: {t1-t0:.4f}", end=’’)
40 print(f" | TP: {t2-t1:.4f}", end=’’)
41 print(f" | TT: {t2-t0:.4f}")

D.2.7 Serial Cython

Listing D.24 - Serial Cython implementation of the FFT test case - Cython module.

1 #cython: boundscheck=False, wraparound=False, cdivision=True
2 #cython: initializedcheck=False, language_level=3, infer_types=True
3 def ff():
4 import numpy as np, pyfftw as pf, time as tm
5

6 t0 = tm.time() # time measurement
7

8 # data
9 L = M = N = 576

10 u = pf.empty_aligned( (N, M, L), dtype=np.complex128 )
11 for k in range (u.shape[2]) :
12 for j in range(u.shape[1]) :
13 for i in range(u.shape[0]) :
14 u[i, j, k] = i + j + k + 3
15 u.real = np.sin ( u.real )
16 u.imag = 0
17

18 t1 = tm.time() # time measurement
19

20 # FFT
21 uf = pf.interfaces.numpy_fft.fftn(u,
22 overwrite_input=True, auto_contiguous=False,
23 auto_align_input=False)
24 # checksum
25 s = np.sum(uf)
26

27 t2 = tm.time() # time measurement
28

29 return s, L, t0, t1, t2
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Listing D.25 - Serial Cython implementation of the FFT test case - Python main code.

1 import numpy as np
2 import time as tm
3 import cc2cs
4

5 t3 = tm.time() # time measurement
6

7 s, L, t0, t1, t2 = cc2cs.ff()
8

9 t4 = tm.time() # time measurement
10

11 print(f"S:{s*1E-5:.0f}", end=’’)
12 print(f" | L:{L:0g}", end=’’)
13 print(f" | T1:{t1-t0:.4f}", end=’’)
14 print(f" | TF:{t2-t1:.4f}", end=’’)
15 print(f" | TT:{t2-t0:.4f}", end=’’)
16 print(f" | TO:{t4-t3:.4f}")

D.2.8 Parallel Cython

Listing D.26 - Parallel implementation of the FFT test case - Cython module.

1 #cython: boundscheck=False, wraparound=False, cdivision=True
2 #cython: initializedcheck=False, language_level=3, infer_types=True
3 import numpy as np, time as tm
4 from mpi4py_fft import PFFT, newDistArray
5 from mpi4py import MPI
6

7 def ffp():
8 comm = MPI.COMM_WORLD
9 rank = comm.Get_rank()

10 size = comm.Get_size()
11

12 t0 = tm.time() # time measurement
13

14 # data
15 L = M = N = 576
16 NA = np.array([N, M, L], dtype=int)
17 f = PFFT(comm, NA, dtype=np.complex128, backend=’pyfftw’)
18 u = newDistArray(f, False)
19 for k in range (u.shape[2]) :
20 for j in range(u.shape[1]) :
21 for i in range(u.shape[0]) :
22 u[i, j, k] = i + j + k + 3
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23 u.real = np.sin ( u.real )
24 u.imag = 0
25

26 t1 = tm.time() # time measurement
27

28 # FFT
29 u_hat = f.forward(u, normalize=False)
30 # checksum
31 rs = np.array(0, dtype=np.complex128)
32 s = np.array(np.sum(u_hat), dtype=np.complex128)
33 comm.Reduce([s, MPI.DOUBLE_COMPLEX], [rs, MPI.DOUBLE_COMPLEX],
34 op=MPI.SUM, root=0)
35

36 t2 = tm.time() # time measurement
37

38 return rs, L, size, rank, t0, t1, t2

Listing D.27 - Parallel implementation of the FFT test case - Python main code.

1 import numpy as np
2 import time as tm
3 import cc2cp
4

5 t3 = tm.time() # time measurement
6

7 s, l, n, r, t0, t1, t2 = cc2cp.ffp()
8

9 t4 = tm.time() # time measurement
10

11 if r == 0 :
12 print(f"S:{s*1E-5:.0f}", end=’’)
13 print(f", L:{l:0g}", end=’’)
14 print(f", N:{n:0g}", end=’’)
15 print(f", T1:{t1-t0:.4f}", end=’’)
16 print(f", TF:{t2-t1:.4f}", end=’’)
17 print(f", TT:{t2-t0:.4f}", end=’’)
18 print(f", TO:{t4-t3:.4f}")

D.2.9 Serial Numba-CPU

Listing D.28 - Serial Numba-CPU implementation of the FFT test case.

1 import numpy as np, pyfftw as pf, time as tm
2 from numba import njit, objmode
3
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4 t3 = tm.time() # time measurement
5

6 @njit
7 def ff() :
8 with objmode(t0 = ’f8’) :
9 t0 = tm.time() # time measurement

10

11 # data
12 L = M = N = 576
13 with objmode(u = ’complex128[:,:,:]’) : # annotate return type
14 u = pf.empty_aligned( (N, M, L), dtype=np.complex128 )
15 for k in range (u.shape[2]) :
16 for j in range(u.shape[1]) :
17 for i in range(u.shape[0]) :
18 u[i, j, k] = complex( np.sin ( i + j + k + 3 ), 0 )
19

20 with objmode(t1 = ’f8’) :
21 t1 = tm.time() # time measurement
22

23 # FFT
24 with objmode(u = ’complex128[:,:,:]’) : # annotate return type
25 u = pf.interfaces.numpy_fft.fftn(u)
26 # checksum
27 s = np.sum(u)
28

29 with objmode(t2 = ’f8’) :
30 t2 = tm.time() # time measurement
31

32 return s, L, t0, t1, t2
33

34 # main
35 s, l, t0, t1, t2 = ff()
36

37 t4 = tm.time() # time measurement
38

39 print(f"S:{s*1E-5:.0f}", end=’’)
40 print(f" | L:{l:0g}", end=’’)
41 print(f" | T1:{t1-t0:.4f}", end=’’)
42 print(f" | TF:{t2-t1:.4f}", end=’’)
43 print(f" | TT:{t2-t0:.4f}", end=’’)
44 print(f" | TO:{t4-t3:.4f}")

D.2.10 Parallel Numba-CPU
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Listing D.29 - Parallel Numba-CPU implementation of the FFT test case.

1 import numpy as np, time as tm
2 from numba import njit, objmode
3 from mpi4py_fft import PFFT, newDistArray
4 from mpi4py import MPI
5

6 t3 = tm.time() # time measurement
7

8 def uu() :
9 return newDistArray(f, False)

10 def uf(u) :
11 return f.forward(u, normalize=False)
12 @njit
13 def ff() :
14 with objmode(t0 = ’f8’) :
15 t0 = tm.time() # time measurement
16

17 # data
18 with objmode(u = ’complex128[:,:,:]’) : # annotate return type
19 u = uu()
20 for k in range (u.shape[2]) :
21 for j in range(u.shape[1]) :
22 for i in range(u.shape[0]) :
23 u[i, j, k] = complex( np.sin ( i + j + k + 3 ), 0 )
24

25 with objmode(t1 = ’f8’) :
26 t1 = tm.time() # time measurement
27

28 # FFT
29 with objmode(u_hat = ’complex128[:,:,:]’) : # annotate return type
30 u_hat = uf(u)
31 # checksum
32 s = np.array(np.sum(u_hat), dtype=np.complex128)
33 rs = np.array(0, dtype=np.complex128)
34 with objmode() :
35 MPI.COMM_WORLD.Reduce([s, MPI.DOUBLE_COMPLEX],
36 [rs, MPI.DOUBLE_COMPLEX], op=MPI.SUM, root=0)
37

38 with objmode(t2 = ’f8’) :
39 t2 = tm.time() # time measurement
40

41 return rs, t0, t1, t2
42

43 # main
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44 ms = MPI.COMM_WORLD.Get_size()
45 mr = MPI.COMM_WORLD.Get_rank()
46 L = M = N = 576
47 # PFFT should be outside the numba function due to the "class" return
48 f = PFFT(MPI.COMM_WORLD, [N, M, L], dtype=np.complex128,
49 backend=’pyfftw’)
50 # numba function
51 s, t0, t1, t2 = ff()
52

53 t4 = tm.time() # time measurement
54

55 if not mr :
56 print(f"S:{s*1E-5:.0f}", end=’’)
57 print(f", L:{L:0g}", end=’’)
58 print(f", N:{ms:0g}", end=’’)
59 print(f", T1:{t1-t0:.4f}", end=’’)
60 print(f", TF:{t2-t1:.4f}", end=’’)
61 print(f", TT:{t2-t0:.4f}", end=’’)
62 print(f", TO:{t4-t3:.4f}")

D.2.11 CuPY

Listing D.30 - CuPY implementation of the FFT test case.

1 import numpy as np, cupy as cp, time as tm
2 def f() :
3 t0 = -tm.time() # <--- time measurement
4 L = M = N = 576
5 a = np.fromfunction( lambda i, j, k:
6 np.sin ( i + j + k + 3 ), (N, M, L), dtype=cp.complex128 )
7 f = cp.asarray(a)
8 fft = cp.fft.fftn(f)
9 s = complex(cp.sum(fft))

10 t0 += tm.time() # <--- time measurement
11 print(f"S:{s*1e-5:.0f}", end=’’)
12 print(f" | T:{t0:.4f}")

D.3 Implementations of the random forest test case

D.3.1 Serial and parallel F90

The code of the F90 implementation of the RF case study reuses the code from the
PARF library, and below are just the modifications made to the library, both in the
serial and parallel versions, which basically consists of measuring the processing time
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using the wall time, and in the case of the parallel version also show the number of
MPI processes used.

Listing D.31 - Serial F90 implementation of the RF test case.

1 PROGRAM random_forest
2

3 ... original code at the beginning of PARF F90 code ...
4

5 !=[ added code ]------------------------
6 real :: t0, t1
7 call cpu_time(t0) ! time measurement
8 !---------------------------------------
9

10 ... original main PARF F90 code ...
11

12 !=[ added code ]------------------------
13 call cpu_time(t1) ! time measurement
14 if (par_rank == 0) then
15 write(6, "(’T: ’sf0.4’ | N: ’g0)" ) t1-t0, par_processes
16 endif
17 !---------------------------------------
18

19 END PROGRAM random_forest

D.3.2 Serial and parallel F2PY

As with the F90 implementation, the F90 code from PARF is reused. Below are just
the changed parts. Existing F90 code is repurposed and inserted into a subroutine as
per the F2PY API specification. Basically library code changes are to make outputs
or input values to be placed in main subroutine call parameters. It also implies that
other internal subroutines are changed to include passing parameters that must reach
the main subroutine.

Listing D.32 - Serial F2PY implementation of the RF test case - F90 module code.

1 ! the existing F90 code is repurposed and inserted into a subroutine.
2 !-[ changed ]----------------------------
3 ! PROGRAM random_forest
4 SUBROUTINE random_forest(p_trainset, p_testset, &
5 p_error_count, p_oob_count, p_kappa_value, &
6 p_instance_count, p_error, p_testset_kappa_value, &
7 p_time, p_rank, p_size)
8 !---------------------------------------
9
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10 ... inital PARF F90 code ...
11

12 !-[ changed ]----------------------------
13

14 ! files
15 character(len=256), intent(in) :: p_trainset, p_testset
16

17 ! Trainset
18 integer, intent(out) :: p_error_count, p_oob_count
19 real, intent(out) :: p_kappa_value
20

21 ! Testset
22 integer, intent(out) :: p_instance_count
23 real, intent(out) :: p_error, p_testset_kappa_value
24

25 ! Proc, time
26 integer, intent(out) :: p_rank, p_size
27 real, intent(out) :: p_time
28

29 real :: t0, t1
30

31 p_error_count = 0
32 p_oob_count = 0
33 p_instance_count = 0
34 p_kappa_value = 0
35 p_error = 0
36 p_testset_kappa_value = 0
37

38 call cpu_time(t0) ! time measurement
39 !----------------------------------------
40

41 ... PARF F90 code ...
42

43 ! Basically library code changes are to make outputs or input values to
44 ! be placed in main subroutine call parameters. It also implies that
45 ! other internal subroutines are changed to include passing parameters
46 ! that must reach the main subroutine.
47 !-[ changed ]----------------------------
48 CALL classify_instanceset(testset, rfptr, p_error, &
49 p_instance_count, p_testset_kappa_value)
50 !---------------------------------------
51

52 ... PARF F90 code ...
53

54 !-[ changed ]----------------------------
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55 CALL calc_training_error(trainset, p_error_count, &
56 p_oob_count, p_kappa_value)
57 !----------------------------------------
58

59 ... PARF F90 code ...
60

61 !-[ changed ]----------------------------
62 CALL classify_instanceset(testset, rfptr, p_error, &
63 p_instance_count, p_testset_kappa_value)
64 !---------------------------------------
65

66 ... PARF F90 code ...
67

68 !-[ changed ]----------------------------
69 CALL classify_instanceset(protoset, rfptr, p_error, &
70 p_instance_count, p_testset_kappa_value)
71 !---------------------------------------
72

73 ... PARF F90 code ...
74

75 !-[ changed ]----------------------------
76 call cpu_time(t1) ! time measurement
77 p_size = par_processes
78 p_rank = par_rank
79 p_time = t1 - t0
80 !---------------------------------------
81

82 ... PARF F90 code ...
83

84 ! the existing F90 code is repurposed and inserted into a subroutine.
85 !-[ changed ]----------------------------
86 ! END PROGRAM random_forest
87 END SUBROUTINE
88 !---------------------------------------

Listing D.33 - Serial F2PY implementation of the RF test case - Python main code.

1 import time as tm, parf003ser
2

3 t0 = tm.time() # time measurement
4

5 resu = parf003ser.random_forest(
6 "datasets/asteroid-train-66k.arff",
7 "datasets/asteroid-test-34k.arff"
8 )
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9 p_error_count = resu[0]
10 p_oob_count = resu[1]
11 p_kappa_value = resu[2]
12 p_instance_count = resu[3]
13 p_error = resu[4]
14 p_testset_kappa_value = resu[5]
15 p_time = resu[6]
16 p_rank = resu[7]
17 p_size = resu[8]
18

19 t1 = tm.time() # time measurement
20

21 if p_rank == 0 :
22 print(f’Trainset classification error is’,
23 f’{p_error_count * 100 / p_oob_count :.2f}%’,
24 f’of {p_oob_count} (kappa: {p_kappa_value :.4f})’)
25 print(f’ Testset classification error is {p_error * 100 :.2f}%’,
26 f’of {p_instance_count} (kappa: {p_testset_kappa_value :.4f})’)
27 print(f’T: {p_time :.4f} | N: {p_size :0g}’)

D.3.3 Parallel F2PY

The parallel F90 version reuses the code from the PARF library which is built in two
different ways, one for the serial version and one for the parallel, changing settings
in the library before the build, and F2PY builds two Python libraries, one for the
serial version and another for the parallel version. This Python library is then used
in the main Python code of the F2PY implementation.

Listing D.34 - Parallel F2PY implementation of the RF test case - Python main code.

1 import time as tm, parf003mpi
2

3 t0 = tm.time() # time measurement
4

5 resu = parf003mpi.random_forest(
6 "datasets/asteroid-train-66k.arff",
7 "datasets/asteroid-test-34k.arff"
8 )
9 p_error_count = resu[0]

10 p_oob_count = resu[1]
11 p_kappa_value = resu[2]
12 p_instance_count = resu[3]
13 p_error = resu[4]
14 p_testset_kappa_value = resu[5]
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15 p_time = resu[6]
16 p_rank = resu[7]
17 p_size = resu[8]
18

19 t1 = tm.time() # time measurement
20

21 if p_rank == 0 :
22 print(f’Trainset classification error is’,
23 f’{p_error_count * 100 / p_oob_count :.2f}%’,
24 f’of {p_oob_count} (kappa: {p_kappa_value :.4f})’)
25 print(f’ Testset classification error is {p_error * 100 :.2f}%’,
26 f’of {p_instance_count} (kappa: {p_testset_kappa_value :.4f})’)
27 print(f’T: {p_time :.4f} | N: {p_size :0g}’)

D.3.4 Serial Python

Listing D.35 - Serial Python implementation of the RF test case.

1 import pandas as pd
2 import numpy as np
3 import sys
4 from scipy.io import arff
5 from sklearn.impute import SimpleImputer
6 from sklearn.ensemble import RandomForestClassifier
7 from sklearn import metrics
8 from time import time
9 t = time()

10

11 data = arff.loadarff(sys.argv[1])
12 df = pd.DataFrame(data[0])
13 df = df.replace(b’N’, 0)
14 df = df.replace(b’Y’, 1)
15 df[’class’] = df[’class’].str.decode(’utf-8’).fillna(df[’class’])
16 y_train = df[’class’]
17 X_train = df.drop(columns=[’class’])
18 imp = SimpleImputer(missing_values = np.nan, strategy = ’mean’)
19 df2 = pd.DataFrame(imp.fit_transform(X_train))
20 df2.columns = X_train.columns
21 df2.index = X_train.index
22 X_train = df2
23

24 datat = arff.loadarff(sys.argv[2])
25 df = pd.DataFrame(datat[0])
26 df = df.replace(b’N’, 0)
27 df = df.replace(b’Y’, 1)
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28 df[’class’] = df[’class’].str.decode(’utf-8’).fillna(df[’class’])
29 y_test = df[’class’]
30 X_test = df.drop(columns = [’class’])
31 imp = SimpleImputer(missing_values = np.nan, strategy = ’mean’)
32 df2 = pd.DataFrame(imp.fit_transform(X_test))
33 df2.columns = X_test.columns
34 df2.index = X_test.index
35 X_test = df2
36

37 clf = RandomForestClassifier(n_estimators = 100)
38 clf.fit(X_train, y_train)
39 y_pred_test = clf.predict(X_test)
40 y_pred_train = clf.predict(X_train)
41 accu = metrics.accuracy_score(y_train, y_pred_train, normalize = False)
42 trsi = y_train.size
43 perr = ((trsi - accu) / (trsi)) * 100
44 kapp = metrics.cohen_kappa_score(y_train, y_pred_train)
45 print(f’Trainset classification error is {perr:.2f}% ’,
46 f’of {trsi} (kappa: {kapp:.4f})’)
47 accu = metrics.accuracy_score(y_test, y_pred_test, normalize = False)
48 trsi = y_test.size
49 perr = ((trsi - accu) / (trsi)) * 100
50 kapp = metrics.cohen_kappa_score(y_test, y_pred_test)
51 print(f’ Testset classification error is {perr:.2f}% ’,
52 f’of {trsi} (kappa: {kapp:.4f})’)
53

54 t = time() - t
55 print(f"T: {t:.4f} s")

D.3.5 Parallel Python

Listing D.36 - Parallel Python implementation of the RF test case.

1 import argparse, logging, os, sys, datetime, pandas as pd, numpy as np
2 from joblib import Parallel, parallel_backend, register_parallel_backend
3 from joblib import delayed, cpu_count
4 from sklearn.impute import SimpleImputer
5 from sklearn.ensemble import RandomForestClassifier
6 from sklearn import metrics
7 from scipy.io import arff
8 import ipyparallel as ipp
9 from ipyparallel.joblib import IPythonParallelBackend

10 from time import time
11 t = time()
12
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13 # Prepare the engines
14 c = ipp.Client(profile = sys.argv[3])
15 ncli = len(c.ids)
16 bview = c.load_balanced_view()
17 register_parallel_backend(
18 ’ipyparallel’,
19 lambda : IPythonParallelBackend(view = bview))
20

21 # Get & prepare data
22 data = arff.loadarff(sys.argv[1])
23 df = pd.DataFrame(data[0])
24 df = df.replace(b’N’, 0)
25 df = df.replace(b’Y’, 1)
26 df[’class’] = df[’class’].str.decode(’utf-8’).fillna(df[’class’])
27 y_train = df[’class’]
28 X_train = df.drop(columns=[’class’])
29 imp = SimpleImputer(missing_values = np.nan, strategy = ’mean’)
30 df2 = pd.DataFrame(imp.fit_transform(X_train))
31 df2.columns = X_train.columns
32 df2.index = X_train.index
33 X_train = df2
34

35 datat = arff.loadarff(sys.argv[2])
36 df = pd.DataFrame(datat[0])
37 df = df.replace(b’N’, 0)
38 df = df.replace(b’Y’, 1)
39 df[’class’] = df[’class’].str.decode(’utf-8’).fillna(df[’class’])
40 y_test = df[’class’]
41 X_test = df.drop(columns = [’class’])
42 imp = SimpleImputer(missing_values = np.nan, strategy = ’mean’)
43 df2 = pd.DataFrame(imp.fit_transform(X_test))
44 df2.columns = X_test.columns
45 df2.index = X_test.index
46 X_test = df2
47

48 clf = RandomForestClassifier(n_estimators = 100)
49 with parallel_backend(’ipyparallel’) :
50 clf.fit(X_train, y_train)
51

52 y_pred_test = clf.predict(X_test)
53 y_pred_train = clf.predict(X_train)
54 accu = metrics.accuracy_score(y_train, y_pred_train, normalize = False)
55 trsi = y_train.size
56 perr = ((trsi - accu) / (trsi)) * 100
57 kapp = metrics.cohen_kappa_score(y_train, y_pred_train)
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58 print(f’Trainset classification error is {perr:.2f}% ’,
59 f’of {trsi} (kappa: {kapp:.4f})’)
60 accu = metrics.accuracy_score(y_test, y_pred_test, normalize = False)
61 trsi = y_test.size
62 perr = ((trsi - accu) / (trsi)) * 100
63 kapp = metrics.cohen_kappa_score(y_test, y_pred_test)
64 print(f’ Testset classification error is {perr:.2f}% ’,
65 f’of {trsi} (kappa: {kapp:.4f})’)
66

67 t = time() - t
68 print(f"T: {t:.4f} | N: {ncli:0g}")
69

70 c.shutdown(hub=True, block=False)

D.3.6 Serial Cython

Listing D.37 - Serial Cython implementation of the RF test case - Cython module code.

1 #cython: boundscheck=False, wraparound=False, cdivision=True
2 #cython: initializedcheck=False, language_level=3, infer_types=True
3 def rfcsf(trainset, testset) :
4 import pandas as pd
5 import numpy as np
6 import sys
7 from scipy.io import arff
8 from sklearn.impute import SimpleImputer
9 from sklearn.ensemble import RandomForestClassifier

10 from sklearn import metrics
11

12 data = arff.loadarff(trainset)
13 df = pd.DataFrame(data[0])
14 df = df.replace(b’N’, 0)
15 df = df.replace(b’Y’, 1)
16 df[’class’] = df[’class’].str.decode(’utf-8’).fillna(df[’class’])
17 y_train = df[’class’]
18 X_train = df.drop(columns=[’class’])
19 imp = SimpleImputer(missing_values = np.nan, strategy = ’mean’)
20 df2 = pd.DataFrame(imp.fit_transform(X_train))
21 df2.columns = X_train.columns
22 df2.index = X_train.index
23 X_train = df2
24

25 datat = arff.loadarff(testset)
26 df = pd.DataFrame(datat[0])
27 df = df.replace(b’N’, 0)
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28 df = df.replace(b’Y’, 1)
29 df[’class’] = df[’class’].str.decode(’utf-8’).fillna(df[’class’])
30 y_test = df[’class’]
31 X_test = df.drop(columns = [’class’])
32 imp = SimpleImputer(missing_values = np.nan, strategy = ’mean’)
33 df2 = pd.DataFrame(imp.fit_transform(X_test))
34 df2.columns = X_test.columns
35 df2.index = X_test.index
36 X_test = df2
37

38 clf = RandomForestClassifier(n_estimators = 100)
39 clf.fit(X_train, y_train)
40 y_pred_test = clf.predict(X_test)
41 y_pred_train = clf.predict(X_train)
42 accu = metrics.accuracy_score(y_train, y_pred_train, normalize = False)
43 trtrsi = y_train.size
44 trperr = ((trtrsi - accu) / (trtrsi)) * 100
45 trkapp = metrics.cohen_kappa_score(y_train, y_pred_train)
46

47 accu = metrics.accuracy_score(y_test, y_pred_test, normalize = False)
48 tetrsi = y_test.size
49 teperr = ((tetrsi - accu) / (tetrsi)) * 100
50 tekapp = metrics.cohen_kappa_score(y_test, y_pred_test)
51

52 return trtrsi, trperr, trkapp, tetrsi, teperr, tekapp

Listing D.38 - Serial Cython implementation of the RF test case - Python main code.

1 from time import time
2 from rfcs import rfcsf
3

4 t0 = time()
5 trainset = "datasets/asteroid-train-66k.arff"
6 testset = "datasets/asteroid-test-34k.arff"
7 trtrsi, trperr, trkapp, tetrsi, teperr, tekapp = rfcsf(trainset, testset)
8 t1 = time() - t0
9 print(f’Trainset classification error is {trperr:.2f}% ’,

10 f’of {trtrsi} (kappa: {trkapp:.4f})’)
11 print(f’ Testset classification error is {teperr:.2f}% ’,
12 f’of {tetrsi} (kappa: {tekapp:.4f})’)
13 print(f"T: {t1:.4f}")

D.3.7 Parallel Cython
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Listing D.39 - Parallel Cython implementation of the RF test case - Cython module.

1 #cython: boundscheck=False, wraparound=False, cdivision=True
2 #cython: initializedcheck=False, language_level=3, infer_types=True
3 def rfcmf(trainset, testset) :
4 import logging, os, sys, datetime
5 import pandas as pd, numpy as np
6 from sklearn.impute import SimpleImputer
7 from sklearn.ensemble import RandomForestClassifier
8 from sklearn import metrics
9 from scipy.io import arff

10 import ipyparallel as ipp
11 from ipyparallel.joblib import IPythonParallelBackend
12 from joblib import Parallel, parallel_backend
13 from joblib import register_parallel_backend
14 from joblib import delayed, cpu_count
15 from time import time
16 t = time()
17

18 # Get & prepare data
19 data = arff.loadarff(trainset)
20 df = pd.DataFrame(data[0])
21 df = df.replace(b’N’, 0)
22 df = df.replace(b’Y’, 1)
23 df[’class’] = df[’class’].str.decode(’utf-8’).fillna(df[’class’])
24 y_train = df[’class’]
25 X_train = df.drop(columns=[’class’])
26 imp = SimpleImputer(missing_values = np.nan, strategy = ’mean’)
27 df2 = pd.DataFrame(imp.fit_transform(X_train))
28 df2.columns = X_train.columns
29 df2.index = X_train.index
30 X_train = df2
31

32 datat = arff.loadarff(testset)
33 df = pd.DataFrame(datat[0])
34 df = df.replace(b’N’, 0)
35 df = df.replace(b’Y’, 1)
36 df[’class’] = df[’class’].str.decode(’utf-8’).fillna(df[’class’])
37 y_test = df[’class’]
38 X_test = df.drop(columns = [’class’])
39 imp = SimpleImputer(missing_values = np.nan, strategy = ’mean’)
40 df2 = pd.DataFrame(imp.fit_transform(X_test))
41 df2.columns = X_test.columns
42 df2.index = X_test.index
43 X_test = df2
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44

45 clf = RandomForestClassifier(n_estimators = 100)
46 with parallel_backend(’ipyparallel’) :
47 clf.fit(X_train, y_train)
48 y_pred_test = clf.predict(X_test)
49 y_pred_train = clf.predict(X_train)
50 accu = metrics.accuracy_score(y_train, y_pred_train,
51 normalize = False)
52 trtrsi = y_train.size
53 trperr = ((trtrsi - accu) / (trtrsi)) * 100
54 trkapp = metrics.cohen_kappa_score(y_train, y_pred_train)
55

56 accu = metrics.accuracy_score(y_test, y_pred_test,
57 normalize = False)
58 tetrsi = y_test.size
59 teperr = ((tetrsi - accu) / (tetrsi)) * 100
60 tekapp = metrics.cohen_kappa_score(y_test, y_pred_test)
61

62 return trtrsi, trperr, trkapp, tetrsi, teperr, tekapp

Listing D.40 - Parallel Cython implementation of the RF test case - Python main code.

1 import argparse
2 from time import time
3 from rfcm import rfcmf
4 import ipyparallel as ipp
5 from ipyparallel.joblib import IPythonParallelBackend
6 from joblib import Parallel, parallel_backend
7 from joblib import register_parallel_backend
8 from joblib import delayed, cpu_count
9

10 t0 = time()
11 trainset = "datasets/asteroid-train-66k.arff"
12 testset = "datasets/asteroid-test-34k.arff"
13 parser = argparse.ArgumentParser()
14 parser.add_argument("-p", "--profile", required=True,
15 help="Name of IPython profile to use")
16 profile = parser.parse_args().profile
17

18 # Prepare the engines
19 c = ipp.Client(profile = profile)
20 ncli = len(c.ids)
21 bview = c.load_balanced_view()
22 register_parallel_backend(’ipyparallel’,
23 lambda : IPythonParallelBackend(view = bview) )
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24

25 ( trtrsi, trperr, trkapp, tetrsi, teperr, tekapp
26 ) = rfcmf(trainset, testset)
27

28 # Shutdown the engines
29 c.shutdown(hub=True, block=False)
30

31 # Result
32 t1 = time() - t0
33 print(f’Trainset classification error is {trperr:.2f}% ’,
34 f’of {trtrsi} (kappa: {trkapp:.4f})’)
35 print(f’ Testset classification error is {teperr:.2f}% ’,
36 f’of {tetrsi} (kappa: {tekapp:.4f})’)
37 print(f"T: {t1:.4f} | N: {ncli:0g}")

D.3.8 Serial Numba-CPU

Listing D.41 - Serial Numba-CPU implementation of the RF test case.

1 import pandas as pd
2 import numpy as np
3 import sys
4 from scipy.io import arff
5 from sklearn.impute import SimpleImputer
6 from sklearn.ensemble import RandomForestClassifier
7 from sklearn import metrics
8 from numba import jit, objmode
9 from time import time

10 t0 = time()
11

12 @jit(forceobj=True)
13 def rfcsf(trainset, testset) :
14 data = arff.loadarff(trainset)
15 df = pd.DataFrame(data[0])
16 df = df.replace(b’N’, 0)
17 df = df.replace(b’Y’, 1)
18 df[’class’] = df[’class’].str.decode(’utf-8’).fillna(df[’class’])
19 y_train = df[’class’]
20 X_train = df.drop(columns=[’class’])
21 imp = SimpleImputer(missing_values = np.nan, strategy = ’mean’)
22 df2 = pd.DataFrame(imp.fit_transform(X_train))
23 df2.columns = X_train.columns
24 df2.index = X_train.index
25 X_train = df2
26

185



27 datat = arff.loadarff(testset)
28 df = pd.DataFrame(datat[0])
29 df = df.replace(b’N’, 0)
30 df = df.replace(b’Y’, 1)
31 df[’class’] = df[’class’].str.decode(’utf-8’).fillna(df[’class’])
32 y_test = df[’class’]
33 X_test = df.drop(columns = [’class’])
34 imp = SimpleImputer(missing_values = np.nan, strategy = ’mean’)
35 df2 = pd.DataFrame(imp.fit_transform(X_test))
36 df2.columns = X_test.columns
37 df2.index = X_test.index
38 X_test = df2
39

40 clf = RandomForestClassifier(n_estimators = 100)
41 clf.fit(X_train, y_train)
42 y_pred_test = clf.predict(X_test)
43 y_pred_train = clf.predict(X_train)
44 accu = metrics.accuracy_score(y_train, y_pred_train, normalize = False)
45 trtrsi = y_train.size
46 trperr = ((trtrsi - accu) / (trtrsi)) * 100
47 trkapp = metrics.cohen_kappa_score(y_train, y_pred_train)
48

49 accu = metrics.accuracy_score(y_test, y_pred_test, normalize = False)
50 tetrsi = y_test.size
51 teperr = ((tetrsi - accu) / (tetrsi)) * 100
52 tekapp = metrics.cohen_kappa_score(y_test, y_pred_test)
53

54 return trtrsi, trperr, trkapp, tetrsi, teperr, tekapp
55

56 # main
57 trainset = "datasets/asteroid-train-66k.arff"
58 testset = "datasets/asteroid-test-34k.arff"
59 trtrsi, trperr, trkapp, tetrsi, teperr, tekapp = rfcsf(trainset, testset)
60 t1 = time() - t0
61 print(f’Trainset classification error is {trperr:.2f}% ’,
62 f’of {trtrsi} (kappa: {trkapp:.4f})’)
63 print(f’ Testset classification error is {teperr:.2f}% ’,
64 f’of {tetrsi} (kappa: {tekapp:.4f})’)
65 print(f"T: {t1:.4f}")

D.3.9 Parallel Numba-CPU

Listing D.42 - Parallel Numba-CPU implementation of the RF test case.

1 import argparse, logging, os, sys, datetime
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2 import pandas as pd, numpy as np
3 from joblib import ( Parallel, parallel_backend,
4 register_parallel_backend )
5 from joblib import delayed, cpu_count
6 from sklearn.impute import SimpleImputer
7 from sklearn.ensemble import RandomForestClassifier
8 from sklearn import metrics
9 from scipy.io import arff

10 import ipyparallel as ipp
11 from ipyparallel.joblib import IPythonParallelBackend
12 from numba import jit, objmode
13 from time import time
14 t0 = time()
15

16 def eng01(clf, X_train, y_train) :
17 with parallel_backend(’ipyparallel’) :
18 clf.fit(X_train, y_train)
19 return clf
20

21 @jit(forceobj=True)
22 def rfamf(trainset, testset) :
23

24 # Get & prepare data
25 data = arff.loadarff(trainset)
26 df = pd.DataFrame(data[0])
27 df = df.replace(b’N’, 0)
28 df = df.replace(b’Y’, 1)
29 df[’class’] = df[’class’].str.decode(’utf-8’).fillna(df[’class’])
30 y_train = df[’class’]
31 X_train = df.drop(columns=[’class’])
32 imp = SimpleImputer(missing_values = np.nan, strategy = ’mean’)
33 df2 = pd.DataFrame(imp.fit_transform(X_train))
34 df2.columns = X_train.columns
35 df2.index = X_train.index
36 X_train = df2
37

38 datat = arff.loadarff(testset)
39 df = pd.DataFrame(datat[0])
40 df = df.replace(b’N’, 0)
41 df = df.replace(b’Y’, 1)
42 df[’class’] = df[’class’].str.decode(’utf-8’).fillna(df[’class’])
43 y_test = df[’class’]
44 X_test = df.drop(columns = [’class’])
45 imp = SimpleImputer(missing_values = np.nan, strategy = ’mean’)
46 df2 = pd.DataFrame(imp.fit_transform(X_test))
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47 df2.columns = X_test.columns
48 df2.index = X_test.index
49 X_test = df2
50

51 clf = RandomForestClassifier(n_estimators = 100)
52 clf = eng01(clf, X_train, y_train)
53 y_pred_test = clf.predict(X_test)
54 y_pred_train = clf.predict(X_train)
55 accu = metrics.accuracy_score(y_train, y_pred_train,
56 normalize = False)
57 trtrsi = y_train.size
58 trperr = ((trtrsi - accu) / (trtrsi)) * 100
59 trkapp = metrics.cohen_kappa_score(y_train, y_pred_train)
60

61 accu = metrics.accuracy_score(y_test, y_pred_test,
62 normalize = False)
63 tetrsi = y_test.size
64 teperr = ((tetrsi - accu) / (tetrsi)) * 100
65 tekapp = metrics.cohen_kappa_score(y_test, y_pred_test)
66

67 return trtrsi, trperr, trkapp, tetrsi, teperr, tekapp
68

69 # Main
70 trainset = "datasets/asteroid-train-66k.arff"
71 testset = "datasets/asteroid-test-34k.arff"
72 parser = argparse.ArgumentParser()
73 parser.add_argument("-p", "--profile", required=True,
74 help="Name of IPython profile to use")
75 profile = parser.parse_args().profile
76

77 # Prepare the engines
78 c = ipp.Client(profile = profile)
79 ncli = len(c.ids)
80 bview = c.load_balanced_view()
81 register_parallel_backend(’ipyparallel’,
82 lambda : IPythonParallelBackend(view = bview) )
83

84 # Call Numba Code
85 ( trtrsi, trperr, trkapp, tetrsi, teperr, tekapp,
86 ) = rfamf(trainset, testset)
87

88 # Shutdown the engines
89 c.shutdown(hub=True, block=False)
90

91 # Result
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92 t1 = time() - t0
93 print(f’Trainset classification error is {trperr:.2f}% ’,
94 f’of {trtrsi} (kappa: {trkapp:.4f})’)
95 print(f’ Testset classification error is {teperr:.2f}% ’,
96 f’of {tetrsi} (kappa: {tekapp:.4f})’)
97 print(f"T: {t1:.4f} | N: {ncli:0g}")
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ANNEX A - STENCIL CODE

This annex shows the original codes developed in C by Torsten Hoefler (BALAJI et al.,
2017), which were used as a reference to write the serial and parallel implementations
of the stencil case study used in this work.

A.1 Serial version

Original untouched serial version. Uses two arrays to store the grid, one holds data
during execution and the other holds the result of calculations. Two loops are used to
iterate through the 2D matrix and update grid points. Three fixed array points are
used to insert heat units into each repeating loop. A variable is used to accumulate
the amount of heat inserted in each loop (note: in the implementation used in this
work, the variable was moved out of the main loop. See Subsection 3.1.1).

Listing A.1 - stencil.c.

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <math.h>
4 #include <mpi.h>
5

6 // row-major order
7 #define ind(i,j) (j)*n+i
8

9 void printarr(double *a, int n) {
10 // does nothing right now, should record each "frame" as image
11 FILE *fp = fopen("heat.svg", "w");
12 const int size = 5;
13

14 fprintf(fp, "<html>\n<body>\n<svg xmlns=\"http://www.w3.org/2000/svg\" version
=\"1.1\">");

15

16 fprintf(fp, "\n<rect x=\"0\" y=\"0\" width=\"%i\" height=\"%i\" style=\"stroke-
width:1;fill:rgb(0,0,0);stroke:rgb(0,0,0)\"/>", size*n, size*n);

17 for(int i=1; i<n+1; ++i)
18 for(int j=1; j<n+1; ++j) {
19 int rgb = (a[ind(i,j)] > 0) ? rgb = (int)round(255.0*a[ind(i,j)]) : 0.0;
20 if(rgb>255) rgb=255;
21 if(rgb) fprintf(fp, "\n<rect x=\"%i\" y=\"%i\" width=\"%i\" height=\"%i\" style

=\"stroke-width:1;fill:rgb(%i,0,0);stroke:rgb(%i,0,0)\"/>", size*(i-1), size
*(j-1), size, size, rgb, rgb);

22 }
23 fprintf(fp, "</svg>\n</body>\n</html>");
24
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25 fclose(fp);
26 }
27

28 int main(int argc, char **argv) {
29

30 int n = atoi(argv[1]); // nxn grid
31 int energy = atoi(argv[2]); // energy to be injected per iteration
32 int niters = atoi(argv[3]); // number of iterations
33 double *aold = (double*)calloc(1,(n+2)*(n+2)*sizeof(double)); // 1-wide halo

zones!
34 double *anew = (double*)calloc(1,(n+2)*(n+2)*sizeof(double)); // 1-wide halo-

zones!
35 double *tmp;
36

37 MPI_Init(NULL, NULL);
38

39 #define nsources 3
40 int sources[nsources][2] = {{n/2, n/2}, {n/3, n/3}, {n*4/5, n*8/9}};
41

42 double heat=0.0; // total heat in system
43 double t=-MPI_Wtime();
44 for(int iter=0; iter<niters; ++iter) {
45 for(int j=1; j<n+1; ++j) {
46 for(int i=1; i<n+1; ++i) {
47 anew[ind(i,j)] = aold[ind(i,j)]/2.0 + (aold[ind(i-1,j)] + aold[ind(i+1,j)] + aold

[ind(i,j-1)] + aold[ind(i,j+1)])/4.0/2.0;
48 heat += anew[ind(i,j)];
49 }
50 }
51 for(int i=0; i<nsources; ++i) {
52 anew[ind(sources[i][0],sources[i][1])] += energy; // heat source
53 }
54 tmp=anew; anew=aold; aold=tmp; // swap arrays
55 }
56 t+=MPI_Wtime();
57 printarr(anew, n);
58 printf("last heat: %f time: %f\n", heat, t);
59

60 MPI_Finalize();
61 }
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A.2 Parallel version

Original untouched code from the parallel version. Divides the grid into parts, and
each part is calculated by an MPI process. Communication between the processes is
necessary, because to calculate an edge point, it is necessary to know the value of
the point that is in the adjacent process.

Listing A.2 - stencil_mpi.c.

1 /*
2 * Copyright (c) 2012 Torsten Hoefler. All rights reserved.
3 *
4 * Author(s): Torsten Hoefler <htor@illinois.edu>
5 *
6 */
7

8 #include "stencil_par.h"
9

10 int main(int argc, char **argv) {
11

12 MPI_Init(&argc, &argv);
13 int r,p;
14 MPI_Comm comm = MPI_COMM_WORLD;
15 MPI_Comm_rank(comm, &r);
16 MPI_Comm_size(comm, &p);
17 int n, energy, niters, px, py;
18

19 if (r==0) {
20 // argument checking
21 if(argc < 6) {
22 if(!r) printf("usage: stencil_mpi <n> <energy> <niters> <px> <py>\n");
23 MPI_Finalize();
24 exit(1);
25 }
26

27 n = atoi(argv[1]); // nxn grid
28 energy = atoi(argv[2]); // energy to be injected per iteration
29 niters = atoi(argv[3]); // number of iterations
30 px=atoi(argv[4]); // 1st dim processes
31 py=atoi(argv[5]); // 2nd dim processes
32

33 if(px * py != p) MPI_Abort(comm, 1);// abort if px or py are wrong
34 if(n % py != 0) MPI_Abort(comm, 2); // abort px needs to divide n
35 if(n % px != 0) MPI_Abort(comm, 3); // abort py needs to divide n
36
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37 // distribute arguments
38 int args[5] = {n, energy, niters, px, py};
39 MPI_Bcast(args, 5, MPI_INT, 0, comm);
40 }
41 else {
42 int args[5];
43 MPI_Bcast(args, 5, MPI_INT, 0, comm);
44 n=args[0]; energy=args[1]; niters=args[2]; px=args[3]; py=args[4];
45 }
46

47 // determine my coordinates (x,y) -- r=x*a+y in the 2d processor array
48 int rx = r % px;
49 int ry = r / px;
50 // determine my four neighbors
51 int north = (ry-1)*px+rx; if(ry-1 < 0) north = MPI_PROC_NULL;
52 int south = (ry+1)*px+rx; if(ry+1 >= py) south = MPI_PROC_NULL;
53 int west= ry*px+rx-1; if(rx-1 < 0) west = MPI_PROC_NULL;
54 int east = ry*px+rx+1; if(rx+1 >= px) east = MPI_PROC_NULL;
55 // decompose the domain
56 int bx = n/px; // block size in x
57 int by = n/py; // block size in y
58 int offx = rx*bx; // offset in x
59 int offy = ry*by; // offset in y
60

61 //printf("%i (%i,%i) - w: %i, e: %i, n: %i, s: %i\n", r, ry,rx,west,east,north,
south);

62

63 // allocate two work arrays
64 double *aold = (double*)calloc(1,(bx+2)*(by+2)*sizeof(double)); // 1-wide halo

zones!
65 double *anew = (double*)calloc(1,(bx+2)*(by+2)*sizeof(double)); // 1-wide halo

zones!
66 double *tmp;
67

68 // initialize three heat sources
69 #define nsources 3
70 int sources[nsources][2] = {{n/2,n/2}, {n/3,n/3}, {n*4/5,n*8/9}};
71 int locnsources=0; // number of sources in my area
72 int locsources[nsources][2]; // sources local to my rank
73 for (int i=0; i<nsources; ++i) { // determine which sources are in my patch
74 int locx = sources[i][0] - offx;
75 int locy = sources[i][1] - offy;
76 if(locx >= 0 && locx < bx && locy >= 0 && locy < by) {
77 locsources[locnsources][0] = locx+1; // offset by halo zone
78 locsources[locnsources][1] = locy+1; // offset by halo zone
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79 locnsources++;
80 }
81 }
82

83 double t=-MPI_Wtime(); // take time
84 // allocate communication buffers
85 double *sbufnorth = (double*)calloc(1,bx*sizeof(double)); // send buffers
86 double *sbufsouth = (double*)calloc(1,bx*sizeof(double));
87 double *sbufeast = (double*)calloc(1,by*sizeof(double));
88 double *sbufwest = (double*)calloc(1,by*sizeof(double));
89 double *rbufnorth = (double*)calloc(1,bx*sizeof(double)); // receive buffers
90 double *rbufsouth = (double*)calloc(1,bx*sizeof(double));
91 double *rbufeast = (double*)calloc(1,by*sizeof(double));
92 double *rbufwest = (double*)calloc(1,by*sizeof(double));
93

94 double heat; // total heat in system
95 for(int iter=0; iter<niters; ++iter) {
96 // refresh heat sources
97 for(int i=0; i<locnsources; ++i) {
98 aold[ind(locsources[i][0],locsources[i][1])] += energy; // heat source
99 }

100

101 // exchange data with neighbors
102 MPI_Request reqs[8];
103 for(int i=0; i<bx; ++i) sbufnorth[i] = aold[ind(i+1,1)]; // pack loop - last

valid region
104 for(int i=0; i<bx; ++i) sbufsouth[i] = aold[ind(i+1,by)]; // pack loop
105 for(int i=0; i<by; ++i) sbufeast[i] = aold[ind(bx,i+1)]; // pack loop
106 for(int i=0; i<by; ++i) sbufwest[i] = aold[ind(1,i+1)]; // pack loop
107 MPI_Isend(sbufnorth, bx, MPI_DOUBLE, north, 9, comm, &reqs[0]);
108 MPI_Isend(sbufsouth, bx, MPI_DOUBLE, south, 9, comm, &reqs[1]);
109 MPI_Isend(sbufeast, by, MPI_DOUBLE, east, 9, comm, &reqs[2]);
110 MPI_Isend(sbufwest, by, MPI_DOUBLE, west, 9, comm, &reqs[3]);
111 MPI_Irecv(rbufnorth, bx, MPI_DOUBLE, north, 9, comm, &reqs[4]);
112 MPI_Irecv(rbufsouth, bx, MPI_DOUBLE, south, 9, comm, &reqs[5]);
113 MPI_Irecv(rbufeast, by, MPI_DOUBLE, east, 9, comm, &reqs[6]);
114 MPI_Irecv(rbufwest, by, MPI_DOUBLE, west, 9, comm, &reqs[7]);
115 MPI_Waitall(8, reqs, MPI_STATUSES_IGNORE);
116 for(int i=0; i<bx; ++i) aold[ind(i+1,0)] = rbufnorth[i]; // unpack loop - into

ghost cells
117 for(int i=0; i<bx; ++i) aold[ind(i+1,by+1)] = rbufsouth[i]; // unpack loop
118 for(int i=0; i<by; ++i) aold[ind(bx+1,i+1)] = rbufeast[i]; // unpack loop
119 for(int i=0; i<by; ++i) aold[ind(0,i+1)] = rbufwest[i]; // unpack loop
120

121 // update grid points
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122 heat = 0.0;
123 for(int j=1; j<by+1; ++j) {
124 for(int i=1; i<bx+1; ++i) {
125 anew[ind(i,j)] = aold[ind(i,j)]/2.0 + (aold[ind(i-1,j)] + aold[ind(i+1,j)] + aold

[ind(i,j-1)] + aold[ind(i,j+1)])/4.0/2.0;
126 heat += anew[ind(i,j)];
127 }
128 }
129

130 // swap arrays
131 tmp=anew; anew=aold; aold=tmp;
132

133 // optional - print image
134 if(iter == niters-1) printarr_par(iter, anew, n, px, py, rx, ry, bx, by, offx,

offy, comm);
135 }
136 t+=MPI_Wtime();
137

138 // get final heat in the system
139 double rheat;
140 MPI_Allreduce(&heat, &rheat, 1, MPI_DOUBLE, MPI_SUM, comm);
141 if(!r) printf("[%i] last heat: %f time: %f\n", r, rheat, t);
142

143 MPI_Finalize();
144 }

Listing A.3 - stencil_par.h.

1 /*
2 * stencil_par.h
3 *
4 * Created on: Jan 4, 2012
5 * Author: htor
6 */
7

8 #ifndef STENCIL_PAR_H_
9 #define STENCIL_PAR_H_

10

11 #include "mpi.h"
12 #include <math.h>
13 #include <stdio.h>
14 #include <stdlib.h>
15 #include <string.h>
16 #include <stdint.h>
17
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18 // row-major order
19 #define ind(i,j) (j)*(bx+2)+(i)
20

21 void printarr_par(int iter, double* array, int size, int px, int py, int rx, int
ry, int bx, int by, int offx, int offy, MPI_Comm comm);

22

23 #endif /* STENCIL_PAR_H_ */
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