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“The important thing is not to stop questioning.”

Albert Einstein
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ABSTRACT

The study of Complex Networks represents an essential contribution to science as
a tool to describe the structure of a wide range of complex systems in nature. Con-
cerning atmospheric sciences, complex networks have been applied to climate data
analysis, dealing with long-period and low-resolution data. Only a few works have
been held in the weather domain, dealing with short-term changes in the atmosphere
and manipulating spatial and temporal high-resolution data. What are the geograph-
ical and temporal signatures of meteorological processes in precipitation networks?
To answer that, we present three case studies analyzing the behavior of network
structures related to precipitation time series. The first one approaches the relations
between topological and geographical distances and the spatial dependence inherent
in a precipitation network. Our second case study compares different similarity mea-
sures and criteria for building up the networks, resulting in geographical findings:
networks from distinct criteria occupying different spatial positions on a watershed,
with a small number of shared edges. Finally, the last case study presents a descrip-
tion of the relations between topological metrics and meteorological properties in
a series of precipitation events. As a result, we have explored the characteristics of
meteorological networks in distinct scenarios, considering their spatial and temporal
components. This way, we have prepared a basis for future research involving the
application of complex networks to anticipate extreme weather events.

Keywords: Networks. Graph Theory. Meteorological Radar. Precipitation.
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MÉTRICAS DE REDES COMPLEXAS EM UM CONTEXTO
METEOROLÓGICO

RESUMO

O estudo das Redes Complexas representa uma contribuição importante à ciência
como ferramenta para descrever a estrutura de uma variedade de sistemas complexos
na natureza. No que se refere à área das Ciências Atmosféricas, as redes complexas
têm sido aplicadas na análise de dados climáticos, envolvendo longas séries temporais
e dados com baixa resolução. Até então, apenas algumas pesquisas foram realizadas
na escala do tempo, tratando mudanças a curto prazo na atmosfera e manipulando
dados com alta resolução espacial e temporal. Quais são as assinaturas geográficas e
temporais de processos meteorológicos em redes de precipitação? Para responder a
essa pergunta, apresentamos três estudos de caso analisando o comportamento de es-
truturas de rede relacionadas a séries temporais de precipitação. O primeiro aborda
as relações entre as distâncias topológicas e geográficas e a dependência espacial
inerente a uma rede de precipitação. No nosso segundo estudo de caso, comparamos
diferentes métricas de similaridade e critérios para a construção das redes, com des-
cobertas geográficas como resultado: redes de distintos critérios ocupando diferentes
posições espaciais em uma bacia, com um pequeno número de arestas compartilha-
das. Por fim, o nosso último estudo de caso apresenta uma descrição das relações
entre métricas topológicas e propriedades meteorológicas em uma série de eventos
de precipitação. Como resultado, foram exploradas as características de redes mete-
orológicas em distintos cenários, considerando as componentes espacial e temporal.
Dessa forma, preparamos uma base para pesquisas futuras envolvendo a aplicação
de redes complexas na antecipação de eventos de tempo extremo.

Palavras-chave: Redes Complexas. Teoria dos Grafos. Radar Meteorológico. Preci-
pitação.
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1 INTRODUCTION

The study of Complex Networks represents an essential contribution to science to
describe the structure of complex systems in nature. In such a description, the nodes
represent the systems’ components, and the edges describe the interactions between
its components. Among its many applications, a commonly cited example is the
mapping of the Internet network, consisting of routers, computers, and many other
devices (nodes) connected by physical links (edges). Hydrographic networks, road
systems, and social networks are other examples of applications in complex networks
(WATTS; STROGATZ, 1998; STROGATZ, 2001; ALBERT; BARABÁSI, 2002; BARABÁSI;

PÓSFAI, 2016).

Figure 1.1 - Global network connections.

SOURCE: Linforth (2020).

In the scope of nature, more specifically in the atmospheric sciences, the study
of complex networks has been applied to the analysis of climatic data to identify
structural patterns and teleconnections. To this end, researchers use long series of
atmospheric variables from different sources, ranging from months to several years.
They arrange such data in network structures based on some similarity measure: cor-
relation, event synchronization, or mutual information. (TSONIS et al., 2006; DONGES

et al., 2009; STEINHAEUSER et al., 2010; PALUŠ et al., 2011; MALIK et al., 2012; BOERS

et al., 2014; JHA; SIVAKUMAR, 2017; BOERS et al., 2019).

Some papers analyze, for example, several years of reanalysis data from the United

1



States National Centers for Environmental Prediction (NCEP). Addressing a global
spatial domain, they find patterns of teleconnections or a structure of communities
with an intrinsic climatological interpretation. (TSONIS et al., 2006; STEINHAEUSER

et al., 2010).

Other works base their researches on long time series of rainfall estimates from
satellite data. With the use of event synchronization measures in such time series,
they identify the relationship between the occurrence of extreme precipitation events
between distant areas within a given time interval (BOERS et al., 2014; BOERS et al.,
2019).

However, while climate refers to the average of atmospheric conditions over a long
period, the weather domain deals with the most immediate state of the atmosphere.
As a result of extreme weather conditions, floods, tornadoes, thunderstorms, and
hail precipitation can emerge, causing severe impacts to society, with social and
economic losses. The monitoring of weather conditions, analyzing severe weather
parameters in advance could mitigate the effects of such events (ENORÉ et al., 2018).

A few works have applied complex networks specifically to study weather events.
Ceron et al. (2019) have published one of them. Their paper analyzes precipitation
estimate data from a meteorological radar with high spatial and temporal resolution.
The authors show significant results in the detection of communities, based on a
short-term time series, with just ten days (CERON et al., 2019).

What remains unknown in the context of complex meteorological networks is the
spatial and temporal behavior of topological indices in networks of meteorologi-
cal phenomena. The present work seeks precisely to try to answer these questions,
specifically concerning precipitation events.

1.1 Objective

The purpose of this research is to contextualize network indices, specifically in the
meteorological scope, addressing short-term atmospheric change fields, both spa-
tially and temporally.

In this context, the scientific question to be answered is: “What is the behavior of
meteorological processes in precipitation networks?”. In response, we expect to find
patterns in topological indices, considering the geographic and temporal components
of the network. The final objective is to present a descriptive approach to the different
features found.

2



There are perspectives to use the concepts obtained in this research as a preliminary
basis for the future development of tools that could help the nowcasting process re-
alized by the meteorologists from the National Institute for Space Research (INPE).
Among the perspectives, we can mention the attempt to promote the anticipated
classification of events, applying network analysis to forecast data. Forecast prod-
ucts based on radar images and data from numerical weather prediction models are
some examples of data that can serve as a basis for this analysis.

1.2 Dissertation structure

The structure of this research work is described below.

• Chapter 2. Theoretical Foundations: Basic concepts of climatology and
meteorology; Definition of the similarity functions applied in this work;
Description of the adopted methods to build up networks; Definition of
network metrics; Concepts of the small world phenomenon;

• Chapter 3. Literature Review: Complex networks applied in climate and
weather scales; Tools for network creation and analysis;

• Chapter 4. Methodology: Information about the dataset; Concepts about
(geo)graphs; Methodology applied in the construction of the network;

• Chapter 5. Case Study 1: Spatial dependence and relations between topo-
logical and geographical distances;

• Chapter 6. Case Study 2: Building up different networks in a watershed;

• Chapter 7. Case Study 3: Analysis of precipitation events and relations
between network metrics and meteorological properties;

• Final Remarks.

3





2 THEORETICAL FOUNDATIONS

2.1 Climate and weather

The weather term refers to the most immediate state of the atmosphere, comprising
its short-term variations (minutes to days) (AMERICAN METEOROLOGY SOCIETY

(AMS), 2018). Cavalcanti et al. (2009) point out that the atmosphere, however, is
highly complex, defying the most straightforward definitions. Various phenomena,
such as cyclones, anticyclones, atmospheric waves, and cold fronts, are associated
with the weather we experience in our daily lives, such as rain, heat, and cold.

Climate is usually defined as the average of time, or more strictly, as the statistical
description of the average and variability of quantities over a long period. This
period may range from months to thousands or millions of years. A classic period
adopted when dealing with climate is 30 years, as defined by the WMO. Quantities
are often surface variables such as temperature, precipitation, and wind (WORLD

METEOROLOGICAL ORGANIZATION (WMO), 2019).

Precipitation, the focus of this work, is the condensation product of water vapor in
the atmosphere, which falls from clouds due to the gravity effect. For the formation
of clouds to occur, a lifting process must take place. The water vapor present in the
air, when reaching higher altitudes, condenses and forms droplets that are converted
into rainfall. Convergence, convection, topography, and cold fronts are examples of
lifting mechanisms (CAVALCANTI et al., 2009).

Clouds can be classified according to their appearance, shape, and altitude, the two
primary categories being: (NUGENT et al., 2019; NATIONAL OCEANIC AND ATMO-

SPHERIC ADMINISTRATION (NOAA), 2015):

• Cumuliform: Also known as convective clouds, they develop due to vertical
movements from instability in the atmosphere. They can result in storms
with heavy rain and electrical discharges.

• Stratiform: Clouds in horizontal, uniform, flat layers, which tend to spread
over larger areas. They are typically formed when a layer of air reaches
saturation but is thermodynamically stable. They can also form when a
convective cloud encounters a stable layer and spreads out in a layered
format. May result in light precipitation or drizzle.

Both can produce significant rainfall accumulations. The cumuliform clouds are usu-
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ally associated with high precipitation values in a short period. Moreover, the rain-
fall from stratiform clouds may reach substantial accumulations in a more extended
period due to its persistence.

From a climatological point of view, the rainfall regime in a given area is the domi-
nant factor in defining the local climate. However, these rainfall events result from a
series of events in very different temporal and spatial scales. This way, the events in a
certain location can affect the weather in other regions. These distance interactions
occur through a mechanism called teleconnections (CAVALCANTI et al., 2009). As
mentioned in the previous chapter, complex networks can be applied in atmospheric
data to identify and analyze teleconnections.

When analyzing precipitation on the meteorological scale, events such as floods and
inundations can be monitored or even predicted in advance (ANDERSEN; SHEPHERD,
2013). Other environmental and social impacts can be avoided or mitigated through
monitoring and forecasting intense rainfall.

2.2 Graph theory and network science

Network science has its mathematical basis in graph theory, whose origin comes
from the 18th century in Könisberg, the capital of Eastern Prussia. Its peculiar
arrangement of bridges - seven in total - gave birth to a puzzle: Can one walk across
all seven bridges and never cross the same one twice? The problem was solved by
Leonardo Euler, a swiss mathematician, in 1735 with a representation based on
nodes and edges. He represented each of the four land areas with letters (nodes)
and the bridges with lines (edges). Then, Euler observed that, if there was a path
crossing all bridges, but never the same bridge twice, nodes with an odd number
of edges should be the starting or the end point of such a path. A path that goes
through all bridges must have only one starting and one end point. Therefore, such
a path cannot exist on the Könisberg graph, which has four nodes with an odd
number of edges (BARABÁSI; PÓSFAI, 2016).

Although Euler is considered to be the creator of graph-theoretical ideas, the term
graph was actually mentioned for the first time in 1878 by James Joseph Sylvester
(SYLVESTER, 1877-8). In a formal definition, a graph G is defined by a set V(G)
of elements called vertices, a set E(G) of elements called edges, and a relation of
incidence, which associates each edge with one or two nodes called its ends. An
edge can be called a loop if its starting and end points are exactly the same vertex.
The terms nodes and links are also used instead of vertices and edges, respectively
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(TUTTE, 2001).

To understand a complex system, regardless of its nature, we need to know how
its components interact with each other. In network science, we can do that by
representing the systems’ components and their interactions through nodes and links
of a graph. Two basic network parameters are the number of nodes (N) and the
number of links (L). The links of a network can be directed or undirected. If the
interaction between two nodes occurs strictly in one direction, the link is directed.
Otherwise, if the interaction happens no matter the direction, the link is undirected
(BARABÁSI; PÓSFAI, 2016). In this research, we use only undirected links, because
we do not distinguish the direction of the interactions.

A complete description of a network requires the identification of all its connections.
The simplest way to achieve that is through an adjacency list, whose elements are
the pairs of nodes connected by the network’s edges. There is also the option to
represent the network through an adjacency matrix. Considering a directed network
of N nodes, its adjacency matrix has N columns and N rows, its elements being:

Ai,j =

1, if there is a link from node i to node j

0, if nodes i and j are not connected to each other
(2.1)

These element values are applied in networks whose all edges have the same weight.
But in this work, we use weighted networks, which are networks where each edge
has a unique weight wij (Aij = wij).

2.3 Similarity functions

This section describes the similarity measures we use in this work, aiming to compare
pairs of time series. The resulting values are the weights of our network edges. We
employ two similarity measures: Pearson Correlation (PC) and Mutual Information
(MI). The first is a normalized covariance between two series, capturing their joint
variability. For a high PC coefficient, the variations in the values of one series must
also happen in the other. Therefore, linear relations result in high coefficients. Its
value is given by the Equation (2.2).

r =
∑n

i=1(xi − x̄)(yi − ȳ)√∑n
i=1(xi − x̄)2

√∑n
i=1(yi − ȳ)2

(2.2)
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Differently, the MI gives a notion of the shared information between the two series.
It measures how much knowing one of them reduces the uncertainty related to
the other. One could define MI in terms of conditional and joint entropy or joint
and marginal probability functions (Equation (2.3)). Consequently, MI recognizes
nonlinear relations as well (SHANNON, 1948) (KRASKOV et al., 2004).

I(X; Y ) =
∑
yϵY

∑
xϵX

p(x, y)log

(
p(x, y)

p(x)p(y)

)
(2.3)

2.4 Building up networks

After applying a similarity measure to compare time series, an adjacency matrix is
produced as an outcome. Based on that, we need to define a criterion to select the
edges that will remain when building up the network. In this work, we use three
different criteria for that purpose: Global Threshold (GT), Backbone (BB), and
Configuration Model (CM).

In the GT criterion, the edges remain for those pairs whose similarity exceeds a
global threshold, selecting only the highest similarity values. For this research, we
define the global threshold value as the point of maximum diameter of the network.
This way, we intend to promote the best possible balance between removing the
least relevant edges and keeping the most important ones - as applied in previous
papers in the literature (SANTOS et al., 2019; CERON et al., 2019). The probability
that an edge of weight wij remains, given a global threshold value (gt), is:

pij = H(wij) =

1, wij ≥ gt

0, wij < gt

 (2.4)

Distinctly, the BB approach uses each node’s weight fluctuations to select the re-
maining edges. Considering a node i with degree ki and strength si, we hypothesize
that weights are randomly distributed over the ki edges and sum up to si. The
probability that an incident edge has weight wij or larger is (MENCZER et al., 2020):

pij =
(

1 − wij

si

)ki−1
. (2.5)

The edge is preserved if pij < α. Since each edge has two endpoints, we consider the
smaller pij. This approach selects edges that are incident to highly connected nodes
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or those that substantially contribute to the node strength. The bigger the wij and
ki are, the smaller the resulting pij is.

The third criteria, CM, is based on a method available at the Networkx Library. It
generates random pseudographs following a pre-defined degree distribution (NEW-

MAN, 2003). The main idea of using this approach is to have a null model for
comparison.

2.5 Network metrics

There are some properties we can calculate related to nodes, edges, and even to the
graph as a whole. Such properties help to explain the characteristics of a network
structure. Next, we describe the metrics mentioned in this research. The descriptions
and equations we present here refer specifically to undirected networks, which are
the focus of this work.

The local metrics we employ, related to nodes individually or pairs of nodes, are:

• Degree (ki): number of connections of a given node; in an unweighted
graph, the degree can be calculated based on the adjacency matrix:

ki =
N∑

j=1
Aij (2.6)

• Clustering Coefficient (ci): indicates how connected a node’s neighbors
are to each other. For a node i with degree ki, the local clustering coefficient
is defined as ((BARABÁSI; PÓSFAI, 2016)):

ci = 2Li

ki(ki − 1) (2.7)

Where Li is the number of links between the neighbours of node i.

• Shortest path length (lij): the path with the minimum number of edges
that connects the nodes i and j;

• Node’s average shortest path (⟨l⟩i): the average of the shortest paths
from node i to all the other nodes (which are inside the connected compo-
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nent):

⟨l⟩i = 1
N − 1

N∑
j=1,j ̸=i

lij (2.8)

And the following metrics are the ones we apply when analyzing the network as a
whole:

• Average degree (⟨k⟩): average number of the degree metric of all nodes
in the network:

⟨k⟩ = 1
N

N∑
i=1

ki (2.9)

• Network’s average shortest path (⟨l⟩): the average of all nodes’ aver-
age shortest paths:

⟨l⟩ = 1
N

N∑
i=1

⟨l⟩i (2.10)

• Average of the local clustering coefficients (⟨c⟩): average of the clus-
tering coefficients of all nodes in the network:

⟨c⟩ = 1
N

N∑
i=1

ci (2.11)

• Diameter (D): the longest shortest path of a network;

• Heterogeneity parameter (κ): the ratio between the average of the
squared degree and the square of the average degree:

κ = ⟨k2⟩/⟨k⟩2 (2.12)

• Number of components (NC): the number of isolated groups of nodes
(components);

• Giant component (GC): the size of the largest component;

• Singletons (ST ): the number of components with a single node.
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2.6 Small world effect

In 1967, Stanley Milgram designed the first experiment to measure distances in
social networks. He chose two individuals as targets. Then Milgram sent letters to
randomly chosen people, asking them to forward these letters until they reached the
target individuals. At the end of the experiment, he found the average number of
5.2 intermediate people before getting the letter to the final target. It is known as
the small world phenomenon or six degrees of separation (ALBERT; BARABÁSI, 2002;
BARABÁSI; PÓSFAI, 2016).

In network science, it implies that there is a short distance between two randomly
chosen nodes in a network. It is possible to identify if a network structure could be
statistically classified as a small-world network. We can do that by comparing the
⟨c⟩ and ⟨l⟩ between the original network and an equivalent random one - the same
number of nodes and edges, but not necessarily preserving the degree distribution.
Considering a graph with L edges randomly distributed by its N nodes, one can
define analytically (ALBERT; BARABÁSI, 2002; BARABÁSI; PÓSFAI, 2016):

⟨k⟩ = p(N − 1),

⟨c⟩ = p and

⟨l⟩ = log(N)/log(⟨k⟩),

where p = 2L/[N(N − 1)]

(2.13)

If the original network has a lower ⟨l⟩ and a higher ⟨c⟩ than its equivalent random
structure, it is possible to define it as a small-world network.

11





3 LITERATURE REVIEW

3.1 Complex networks in climate and weather

One of the first examples of the application of complex networks in climate, the
article "What do networks have to do with climate?", Tsonis et al. (2006) reviews
the literature on complex networks, presenting the network types and some of the
metrics used to describe their structural properties. In order to extend these concepts
to a climate system, the authors assume that a network could represent dynamic
systems with interactions.

They use an NCEP reanalysis dataset with geopotential height values at a pressure
level of 500 hPa to represent the atmosphere’s general circulation. The data are
monthly and cover the period from 1950 to 2004, with a spatial resolution of 5
degrees and a global domain (TSONIS et al., 2006).

When building up the network, each node represents a grid point, and it is related
to a time series of anomaly values (calculated by subtracting the climatological
average for each month). Next, they calculate the correlation coefficient between
the time series. The results equal to or above 0.5 are considered to create the edges
between the respective nodes (TSONIS et al., 2006). Once having constructed graphs,
they measure some properties such as the clustering coefficient, which measures how
connected the neighbors of a given node are, and the diameter, which represents the
maximum shortest path between any pair of vertices in the network. Based on these
metrics and comparing with equivalent random networks (networks with the same
number of vertices and edges but with a random distribution of connections), the
authors managed to classify the network according to its type. Furthermore, they
revealed intrinsic characteristics of this climate network: stability and efficiency in
transferring information (TSONIS et al., 2006).

Donges et al. (2009) constructed weather networks from surface air temperature
data from reanalysis datasets and the coupled atmosphere-ocean general circulation
model. Using different similarity metrics, they compared different spatial scales,
highlighting the results using mutual information to detect network structures based
on nonlinear physical processes.

Steinhaeuser et al. (2010) also apply the concepts of complex networks to climate
data - NCEP reanalysis data over 60 years with monthly temporal resolution and
2.5º spatial resolution for a global domain - in order to identify regions with sim-
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ilar climatologies. They use cross-correlation between atmospheric variables as the
representative value of each grid point (node). Then, they apply the Euclidean dis-
tance between the correlation values of each node to map the similarities (weight
of the edges). Their work employs community detection techniques to provide a
climatological interpretation of the network structure.

Another example of a climate network is analyzed in Boers et al. (2014), which
presents a framework for forecasting extreme precipitation events, focusing on the
central-eastern Andes. They build up networks based on a nonlinear synchronization
measure. As a result, they identify the spread of events from South America to the
east-central region of the Andes within one day. Their dataset consists of 13 years
of satellite data with a spatial resolution of 0.25º.

The nonlinear event synchronization measure is also applied to precipitation data
from satellite images by Boers et al. (2019), using a dataset in a global spatial
domain, from 1998 to 2016 with a daily temporal resolution. Analyzing the distances
between the synchronized events, they identify the relationship between extreme
precipitation events in the monsoon systems of south-central and eastern Asia and
Africa.

Jha and Sivakumar (2017) also analyze precipitation data, but from a network of
rain gauges, specifically from the Murray-Darling basin region in Australia. Data
comprise the period from 1951 to 2014 with a daily temporal resolution. For this
study, such data are grouped in different temporal scales to evaluate the impact of
this variation on the structure of networks. The correlation threshold employed to
select the edges of each network is also varied to evaluate the results.

Akbar and Saritha (2021) present a quantum inspired community detection that
was successful in demonstrating an association between biodiversity change, climate
change and land-use conversion. To analyze the climate change, the authors employ
annual temperature and precipitation anomalies from 2010, 2014 and 2018.

Agarwal et al. (2022) investigate the pattern of extreme precipitation events in a river
basin located in India. To do that, they employ two event-based nonlinear similarity
measures: event synchronization and edit distance. The dataset includes a gridded
daily precipitation data with a spatial resolution of 0.25◦, which was produced from
an interpolation of 6995 gauging stations. The time series contain 22 years (1998 to
2019) in a daily resolution.
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Table 3.1 - Comparison of the datasets mentioned in the literature review.

Paper Variable Source
Temporal
Resolution
and Domain

Spatial
Resolution
and Domain

Tsonis et al.
(2006)

Geopotencial
Height at 500
hPa

NCEP
reanalysis
dataset

1950-2004
Monthly

Global
5º

Steinhaeuser
et al. (2010)

Air
Temperature,
Pressure,
Relative
Humidity,
Precipitable
Water

NCEP
reanalysis
dataset

1948-2007
Monthly

Global
2,5 º

Boers et al.
(2014) Precipitation

Satellite
(TRMM
3B42V7) +
Rain Gauges

2001- 2013
3 hours

South America
0,25º

Jha and
Sivakumar
(2017)

Precipitation Pluviometers 1951-2014
Daily

Murray-
Darling Basin
(Australia)

Boers et al.
(2019) Precipitation

Satellite
(TRMM
3B42V7)

1998-2016
Daily

Global
0,25º

Ceron et al.
(2019) Precipitation

Weather
Radar at Pico
do Couto
(DECEA)

24/01/2012 -
02/02/2012
10 minutes

Mountaineous
Region of RJ
0,009º

Agarwal et al.
(2022) Precipitation Gauging

Stations
1998-2019
Daily

Ganga River
Basin (India)
0,25º

All cited works apply complex network analysis to atmospheric data, dealing specif-
ically with a climatic scale. Few works use complex networks in the weather domain,
approaching a dataset that refers to the most immediate state of the atmosphere
and, therefore, analyzes short-term changes in space and time. The article by Ceron
et al. (2019) follows this line precisely and analyzes meteorological networks with
high spatial and temporal resolution. The authors use community detection tech-
niques, and as a result, present well-defined structures consistent with the region’s
topography and land use/cover. However, the authors use a single time series com-
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prising ten days, not analyzing whether the network presents any dynamic behavior,
which could allow, for example, classifications or even predictions.

Table 3.1 presents the characteristics of the data used by the mentioned works,
making a comparison between the domains and spatial and temporal resolutions
adopted.

3.2 Tools for network creation and analysis

There are several tools available whose goal is to construct and analyze networks.
The options include programming language packages, libraries, database manage-
ment systems, and even independent platforms. This section describes a few of the
most commonly used tools.

Igraph is a well-known free and open-source package, often used in complex net-
works scenario. It is available in Python, C, R, and Mathematica languages. The
package offers diverse functions for analyzing networks, offering good performance,
portability, and ease of use (IGRAPH, 2020).

Networkx is a library created explicitly for use in Python language, which allows
the creation, manipulation, and study of the dynamics and structure of complex
networks. It allows the network construction based on different data types, such as
text, image, and XML (NETWORKX, 2019).

Tidygraph is an R package that provides an API for graph manipulation. It encapsu-
lates a good part of igraph functionalities, also adding some methods for relational
data manipulation, such as graph joining. Internally, it structures the network by or-
ganizing nodes and edges in virtual data frames and offers an API for manipulating
this data (PEDERSEN, 2019).

Stplanr, dodgr, and spnetwork are other R language packages that provide net-
work analytical tools. Among them, the dodgr package is more specific to road net-
works, with a focus on directed and weighted graphs (LOVELACE; ELLISON, 2018;
PADGHAM, 2019; SPNETWORK, 2016).

Concerning road networks, there is also the OSMnx package that lets the user down-
load and manipulate geospatial data from OpenStreetMap. It is possible to model,
project, visualize, and analyze real-world street networks and any other geospatial
geometries (OSMNX, 2021).
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Flashgraph is a suitable option for handling large networks when nodes and edges
exceed the available main memory capacity. It is possible thanks to its intelligent
I/O scheduling and its storage system, which leaves only the network vertices in
main memory and the edges in SSDs (ZHENG et al., 2015).

Urban Network Analysis is another tool we can mention. It was launched by City
Form Lab and is available in Rhino and ArcGIS software, allowing the analysis of
spatial networks. It only encompasses a few metrics that are more specific to urban
networks, such as betweeness, closeness e straightness (SEVTSUK; MEKONNEN, 2012).

neo4J is a graph database with native storage and processing. It comprises a graph
property model, and a query language called Cypher that facilitates the understand-
ing and use of the tool (NEO4J, 2020).

Table 3.2 - Tools for network creation and analysis.

Name Type Language
Clear
Spatial
Support

Benefits/Particularities

igraph Library
Collection

Python, C,
R, Mathe-
matica

No Good performance and
portability

networkx Library Python Yes Network construction from
different data types

tidygraph Package R No
Based on data frames, allows
relational data manipulation,
such as graph joining

stplanr Package R Yes Designed for transport planning
dodgr Package R Yes Especific for road networks

spnetwork Package R Yes Performs spatial analysis on
networks

OSMnx Package Python Yes Especific for street networks
based on Open Street Maps

flashgraph Package C++, with
R bindings No

Semi-external memory graph
processing engine, optimized for
a high-speed SSD array

Urban
Network
Analysis

Toolbox
(ArcGIS
and
Rhino)

Python Yes For spatial analysis on urban
street networks.

neo4J Database — Yes Graph database with native
storage and processing

Table 3.2 presents a comparison of the mentioned tools. In this work, we use mainly
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the igraph library, jointly with the Python language, due to its portability, good
performance and the vast amount of functions available for analyzing networks. We
also employ Networkx library in order to use some specific functions.
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4 METHODOLOGY

4.1 Data

For having a high spatial and temporal resolution, weather radar data were adopted
as the basis for the present research. Given the areas addressed in the case studies,
which we describe in the following chapters, the radar with the most suitable cover-
age is situated in the municipality of São Roque (lat= 23◦35′56”S, lon= 47◦5′52”W ).
Its operation is in charge of the Department of Airspace Control (DECEA), and its
range is 250 km in qualitative mode and 400 km in surveillance mode. Figure 4.1
presents the coverage considering the qualitative mode. The Metropolitan Area of
São Paulo (MASP) is highlighted in the map to show the coverage geographically.

Figure 4.1 - Coverage of São Roque weather radar, the Metropolitan Area of São Paulo
(yellow) and the Tamanduateí Basin (orange).

This weather radar performs a volumetric scan composed of azimuth scans in 15
different elevation angles, from 0.5 degrees to nearly 20 degrees. Each of these az-
imuth scans generates a product named PPI (Plan Position Indicator). It consists of
projecting an azimuth scan onto a horizontal plane. All data are transformed from
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polar coordinates into a cartesian grid. CAPPI (Constant Altitude Position Indica-
tor) is another product derived from radar scans. It is a projection of a horizontal
plane at a constant height (REDEMET, 2015). The volumetric scans provide high-
resolution data in space and time domains, with approximately 1km and 10 minutes,
respectively (DEPARTAMENTO DE CONTROLE DO ESPAÇO AÉREO (DECEA), 2010).

The output is a set of reflectivity values (target return echoes) in dBZ units, ob-
tained from the reflectivity factor logarithm (Z), considering the default diameter of
rain droplets. Using the Marshall-Palmer formula, reflectivity values correlate to an
estimated rainfall rate (R) (MARSHALL et al., 1947). For all our case studies, we keep
the values in reflectivity units (dBz) as they are available. In summary, the higher
the reflectivity value, the more intense is the estimated precipitation.

4.2 (geo)graphs: geographical graphs

Spatial dependence is a fundamental physical property of many phenomena modeled
through networks. It is also the case of the meteorological networks addressed in this
research. They are phenomena set in the atmosphere whose geographic component
is intrinsic in the formation and occurrence of events.

Santos et al. (2017) presents the concept of (geo)graphs: graphs whose nodes have
a known geographic location and the edges have an intrinsic spatial dependence.
Furthermore, they are objects compatible with Geographic Information Systems
(GIS), a classic approach to manipulating spatial data.

This concept is one of the basis of this research for constructing precipitation net-
works since it includes the geographic component. Moreover, it allows data expor-
tation in shapefile format, making it possible to conduct spatial analysis on a GIS
platform.

4.3 From binary data into geographical networks

We developed an application in Python, called graph4gis (G4G), which reads the
input data, builds up the networks, and in the end, exports the results in shapefile
format. The igraph library is used for the construction of graphs and the calculation
of metrics. The code was structured, at first, in 3 modules: data, graph and output.
Figure 4.2 presents the flowchart of the processes involved.

The first module processes the input data by importing the radar binary files and
creating a time series. Next, it calculates the similarity measure between the time
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series of each pair of grid points. G4G offers two alternatives of similarity functions:
Pearson Correlation (PC) and Mutual Information (MI). For Pearson Correlation,
there is the option to consider a time delay when comparing the pair of time series.
Only correlations with meaningful p-values are considered (significance level = 0.05).

Figure 4.2 - G4G Flowchart.

The second module deals directly with graph issues. First, it generates a weighted
adjacencies matrix from the calculated similarity function. Then, it builds up the
graph using one of the following criteria: Global-Threshold (GT), Backbone (BB),
or Configuration Model (CM). Section 2.4 clarifies how each criterion works. As a
result, each node represents a grid point, and the selected edges carry the similarity
weights. In the end, this module calculates the metrics for each vertex and the global
metrics of the network. Section 2.5 describes all the metrics G4G calculates.

The third module is responsible for exporting the results. It creates a shapefile with
a set of points and lines, geographically representing the vertices and edges of the
graph. Next, the module adds the calculated metrics for each vertex as geometry
attributes in this shapefile. The application also delivers a CSV file with global
network metrics. This module is furthermore responsible for all the plots that G4G
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produces.
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5 FIRST CASE STUDY: SPATIAL DEPENDENCE AND RELATIONS
BETWEEN TOPOLOGICAL AND GEOGRAPHICAL DISTANCES

This chapter is based on the paper "Geographical complex networks applied to
describe meteorological data" published in the Proceedings of the XXII Brazilian
Symposium on Geoinformatics (GEOINFO). It presents our first case study, which
involves analyzing the relations between topological and geographical distances and
the spatial dependence inherent in the network structure. Besides, we analyze the
geographical layout of the network on a watershed.

5.1 Introduction

Based on Graph Theory, the study of Complex Networks represents a relevant con-
tribution to science as a tool to describe the structure of a wide range of complex
systems in nature, such as climate events (BARABÁSI; PÓSFAI, 2016). In such a con-
text, Complex networks have been applied to climate data analysis to identify struc-
tural patterns and teleconnections. The researchers use similarity measures such as
Pearson correlation, event synchronization, or mutual information to construct the
network connections. In terms of data, they are based on long time series of atmo-
spheric variables, ranging from months to several years (TSONIS et al., 2006; BOERS

et al., 2019).

Few works have been held specifically in the weather domain, dealing with short-term
changes in the atmosphere and manipulating spatial and temporal high-resolution
data through complex networks. One of those few examples handled precipitation
data from weather radar, and they achieved significant results in community detec-
tion based on a time series of only ten days, with 1 kilometer of spatial resolution
(CERON et al., 2019). The behavior of topological metrics in meteorological networks
is a characteristic that remains unknown.

With this in mind, the present work aims to make some progress in the spatial
analysis of metrics in meteorological networks, specifically in precipitation events.

Due to climate changes, extreme precipitation events are becoming more frequent,
with several impacts on society. Finding spatial patterns of precipitation events could
represent a significant advance in atmospheric science and several applications, from
health geography to resilient urban mobility (SANTOS et al., 2017).
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5.2 Materials and methods

5.2.1 Data

The case study presented here was held in São Paulo Metropolitan Region, specifi-
cally comprising the area of Tamanduateí basin, from January 2015. Located on the
Tiete river’s left margin, the Tamanduatei basin has its source in the city of Mauá.
It also crosses the towns of Diadema, São Caetano do Sul, besides the eastern and
central zones of São Paulo (RAMALHO, 2007).

As previously mentioned, we used weather radar time series as our base dataset due
to its spatial and temporal high-resolution data. The weather radar of São Roque,
described in Section 4.1, is the one that offers the best coverage.

For the present study case, we used PPI data corresponding to the first elevation
level. Only reflectivity values above 20 dBz were considered as it represents an
estimated rainfall rate of 1 millimeter per hour. This way, we also disregard any
possible noisy data. The selected time series comprises the entire month of January
of 2015 with a temporal resolution of 10 minutes, so it is composed of more than
4400 scans in time, each one of them including 783 points in space.

5.2.2 Network construction and analysis

Spatial embedding is a physical property inherent in many phenomena modeled
through networks, including the meteorological events addressed in this research.
Therefore, we use here geographical graphs, as described in Section 4.2

We developed a tool to manage the input data and construct the network consider-
ing its geographical component. We called it Graph4GIS (G4G). It delivers output
files with topological metrics calculated. One of these outputs is a shapefile, a file
compatible with GIS platforms, allowing graph visualization in geographical space.
Section 4.3 provides a complete description of G4G operation flow.

Pearson Correlation is the similarity measure we employ in this case study. The
network is built up using the Global-Threshold (GT) criteria (details in 2.4). Figure
5.1 describes the flow employed by G4G for this case study.
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Figure 5.1 - G4G flow for Case Study 1.
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5.3 Results

Before analyzing the network built for the mentioned case study, we can observe
the spatial dependence inherent in such data on Figures 5.2 and 5.3. The first one
shows how the (temporal) correlation between the (time series associated with each)
pairs of points is related to the geographical (euclidean) distance between them. We
grouped correlation values into three categories - minimum, medium, and maximum
- respectively colored in red, green, and blue. For the red group, it is possible to see
a spatial dependence up to approximately 3 km. Regarding medium and maximum
categories, the temporal correlation is considerably high between 1 and 10 km of
distance, but we can still observe the influence of spatial dependence until 20 km.

We can also notice that the minimum correlations for the geographically nearest ten
pairs of points are even higher than the maximum correlations for those more distant
than 28 km. Such property is an indicator of how well-behaved the relation between
temporal correlations and geographical distances is in this network structure.

The scatter plot on Figure 5.3 presents the relation between the euclidean distance
and the topological distance between each pair of nodes - the network path with
the shortest number of edges between those nodes. We can verify strong linearity in
such relation, with a correlation coefficient (R2) equal to 0.767 and a slope of 1.16.
Such a slope value indicates that as the geographical distance increases, the impact
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Figure 5.2 - Temporal Correlation versus Geographical distance between each pair of
points. Correlation values are grouped into three categories - minimum,
medium and maximum values - respectively coloured in red, green and blue.

is even more significant on the topological distance.

This chart also shows the longest edge in the network (2.5 km), indicated by the
maximum geographical distance for the pairs of points within a topological distance
of 1 edge. Therefore, there are no pairs of points directly connected at a distance
greater than 2.5 km. On the other hand, there are very close nodes, geographically
neighbors, but with a high topological distance, up to 12 edges.

The geographical network built up by graph4GIS is introduced in Figure 5.4. It used
a threshold of 0.86, which was the critical threshold for our study case. This output
allows us to visualize the structure of network connections spatially.
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Figure 5.3 - Topological distance versus Geographical (euclidean) distance.

Figure 5.4 - Geographical network for Tamanduateí Basin. The white points represent the
nodes, the blue segments are the edges of the network, and the yellow border
is the outline of the basin.
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5.4 Final considerations

This work applied Complex Networks in the study of meteorological networks, aim-
ing to explore topological metrics’ behavior in such a context. This paper introduced
some spatial analysis of the system’s topological structure based on precipitation
time series.

As a result, we could identify the spatial dependence of temporal correlations, such
as the linearity in the relation between the topological and geographical distances
between different pairs of points in a hydrological basin. We also verified some pe-
culiarities in the network, such as the maximum geographical length of an edge (2.5
km) and a high maximum topological distance between neighboring nodes (11 edges
on the shortest path between nodes close 1km to each other).

In future works, we would like to analyze datasets for specific meteorological pro-
cesses to identify spacial and topological signatures. Besides, we intend to approach
larger study areas, including the entire São Paulo Metropolitan Region, and other
graph measures, such as degree, clustering coefficient, betweenness, and diameter.
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6 SECOND CASE STUDY: BUILDING UP DIFFERENT NETWORKS
IN A WATERSHED

We based this chapter on the paper "Global-threshold and backbone high-resolution
weather radar networks are significantly complementary in a watershed" submitted
to Computers & Geosciences. It presents the second case study, which compares
different similarity measures and criteria for building up networks. We analyze the
structural patterns of the various generated networks.

6.1 Introduction

Complex networks have been widely applied in the study of several complex systems
in nature and society (BARABÁSI; PÓSFAI, 2016). In climate, they are used as an
alternative tool for investigating climate dynamics (FERREIRA et al., 2021). Based
on long-term events, such studies analyze atmospheric datasets in long time series
that range from months to several years (TSONIS et al., 2006; BOERS et al., 2014).

Boers et al. (2019) revealed a global pattern of extreme-rainfall teleconnections using
an event synchronization method. They employed a satellite-derived rainfall dataset
in a daily temporal resolution for almost 20 years. Tsonis et al. (2006) identified
super-nodes associated with teleconnection patterns based on reanalysis data. Such
a dataset comprehended over fifty years in a temporal resolution of one month. Their
findings suggest that the organization of teleconnections is related to the stability
of the climate system.

Differently, the weather, which deals with short-term changes in the atmosphere, has
been little exploited in Network Science. Ceron et al. (2019) published one of the
few studies within this context, using spatial and temporal high-resolution data from
weather radar to detect community structures. Jorge et al. (2020) also worked with
weather radar networks, analyzing the relation between topological and geographical
distances.

In this work, we build (geo)graphs (geographical networks (SANTOS et al., 2017))
based on weather radar data, creating connections between points on the geograph-
ical space in a watershed. We use different similarity measures: Pearson Correlation
(PC) coefficient and the Mutual Information (MI) index (KRASKOV et al., 2004).
The former captures linear correspondences between the series, while the latter also
recognizes nonlinear relations. Besides, we follow two criteria: a global threshold to
connect similar time series and a local threshold criterion to extract the network
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backbone. Interestingly, both criteria generate significantly complementary network
structures. We compare them, taking into account the geographical context. Our
findings also show a statistically significant linear relationship between topological
and geographical distances.

6.2 Material and methods

6.2.1 Weather radar dataset and the Tamanduateí basin

Our study area focuses on the Tamanduateí river’s basin in the Metropolitan Area of
São Paulo, Brazil. Situated on the Tiete river’s left margin, the Tamanduateí basin
has its source in Mauá. It also crosses the cities of Diadema, São Caetano do Sul,
and the eastern and central zones of São Paulo (RAMALHO, 2007). It is one of the
basins with the highest number of extreme rainfall events in the city of São Paulo
(COELHO, 2016).

We employ the Shuttle Radar Topography Mission (SRTM) Digital Elevation Model
data to define the watershed contour. A watershed is a land area that drains rainfalls
and streams to a common outlet such as a bay mouth or any point along a stream
channel. By employing a digital elevation model, it is possible to identify the drainage
system based on the land’s topography.

We analyze the precipitation series from January 2015, with data from a weather
radar located in the city of São Roque, described in Section 4.1, which is 60 km
distant from our study area.

We use only the first azimuth scan (PPI) and values as they are available in dBZ
units. Such data are arranged in a cartesian grid after being converted from polar
coordinates. From this initial grid, we select only the points strictly inside the limits
of the Tamanduateí basin and values that correspond to a precipitation rate above
1 millimeter per hour.

6.2.2 The construction and analysis of the geographical networks

The nodes of our graph are the grid points of the weather radar scan, which are inside
the Tamanduateí basin area. We preserve its spatial location as an attribute. As a
result, if we plot it over a map, we have 587 nodes, one by square kilometer, inside
the basin boundaries. The edges are based on similarities between the corresponding
time series of each pair of vertices. We use and compare two similarity functions in
this work: the Pearson Correlation (PC) coefficient and the Mutual Information
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(MI). Both are described in Section 2.3.

Once all edges have associated similarity measures, one must define which must
remain in the network. We use and compare two criteria for that purpose: a global
threshold (GT) to connect similar time series and a local strategy to extract the
network backbone (BB). In the first one, the edges remain for those pairs whose
similarity exceeds a global threshold, defined as the point of maximum diameter of
our network (SANTOS et al., 2019). Distinctly, the BB criterion consists of using each
node’s weight fluctuations to select the edges to be preserved. Both GT and BB
criteria are explained with more details in Section 2.4.

Figure 6.1 - G4G flow for Case Study 2 — pcGT and miGT networks.
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Combining the two similarity metrics, PC and MI, with the two network-building
criteria, GT and BB, we end up with four network structures: pcGT, pcBB, miGT,
and miBB. We build the pcGT with a global threshold of 0.86, which results in a
graph with 587 vertices and 1270 edges. Figure 6.1 describes the flow to build up
pcGT and miGT. Then, for the pcBB, we adjust the value of α so that the resulting
network has approximately the same number of edges as the pcGT.

When applying the Mutual Information in our dataset, the range of weights is lower
than the obtained with the Pearson Correlation coefficient. The threshold of the

31



maximum diameter is 0.6, and the miGT has fewer edges (964) than the pcGT. To
build the miBB, we adopt the same idea as before, adjusting the value of α in order
to achieve a resulting network with the same number of edges as the miGT. The
pcBB and the miBB are built up according to the flow described in Figure 6.2.

Figure 6.2 - G4G flow for Case Study 2 — pcBB and miBB networks.
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We compare the mentioned networks with the Configuration model (CM) (NEW-

MAN, 2003), a null model based on random connections. The Networkx library pro-
vides an implementation that generates pseudographs by randomly assigning edges
to match a given degree sequence. We generate a set of ten thousand samples of
pseudographs based on pcGT’s degree sequence and another ten thousand samples
based on miGT’s. We refer to these sets as pcCM and miCM, respectively. Figure
6.3 presents G4G flow concerning the networks pcCM and miCM.

For all the constructed network models, we measure and analyze the network met-
rics: average shortest path (⟨l⟩), average of the local clustering coefficients (⟨c⟩),
diameter (D), heterogeneity parameter (κ), number of components (NC), the size of
the giant component (GC) and the number of singletons (ST). The first one refers
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to the average of the shortest paths that link every pair of vertices. The local clus-
tering coefficient indicates how connected a node’s neighbors are to each other. The
diameter is defined as the longest shortest path of a network. The κ is the ratio
between the squared degree and the square of the average degree (κ = ⟨k2⟩ / ⟨k⟩2).
Large κ means heavy-tailed degree distributions, while κ ≈ 1 approximates to ran-
dom networks (Poisson distribution). The NC is the number of isolated groups of
nodes (components), GC is the size of the largest component, and ST is the number
of components with a single node (BARABÁSI; PÓSFAI, 2016).

Figure 6.3 - G4G flow for Case Study 2 — pcCM and miCM networks.
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Furthermore, we analyze if each network structure could be statistically classified
as a small-world network by comparing the ⟨c⟩ and ⟨l⟩ between the original network
and an equivalent random one with the Erdős and Rényi model (BARABÁSI; PÓSFAI,
2016) — the same number of nodes and edges, but not necessarily preserving the
degree distribution. The small-world phenomenon implies a short distance between
two randomly chosen nodes in a network. Section 2.6 describes how this comparison
can be done.
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6.3 Results and discussion

Table 6.1 presents the weight (PC coefficient or MI index) range and topological
metrics for each network model. Concerning the CM models, the values are the
average numbers since they correspond to several realizations. For the same reason,
we could not measure the values of NC, GC, and ST for them. The last two columns
contain the ⟨l⟩ and ⟨c⟩ metrics for the equivalent random network (Erdős and Rényi
model) in each case (same number of vertices and edges, without preserving the
same degree distribution).

Table 6.1 - Topological properties of each network.

Network L Weight ⟨l⟩ ⟨c⟩ D κ NC GC ST ⟨lrand⟩ ⟨crand⟩
pcGT 1270 0.86-0.98 8.93 0.536 37 1.775 125 349 85 4.35 0.007
pcBB 1269 0.27-0.95 4.42 0.225 19 3.263 237 161 218 4.34 0.007
pcCM 1270 0.13-0.96 3.89 0.017 8.66 1.775 − − − − −
miGT 964 0.6-0.85 10.38 0.474 49 1.422 82 305 33 5.36 0.005
miBB 964 0.18-0.69 3.88 0.159 19 2.962 202 152 152 5.36 0.005
miCM 964 0.04-0.74 5.06 0.007 11.5 1.422 − − − − −

As Table 6.1 shows, the average shortest path (⟨l⟩) and the diameter (D) are higher
when using a global threshold. The same occurs with the clustering coefficient (⟨c⟩),
which increases as the network preserves similar connections. Differently, the het-
erogeneity parameter (κ) is higher when using the BB criterion, showing that the
degree distribution tends to be less homogeneous when using a backbone strategy.
It is also possible to notice that we generate less fragmented networks using the GT
approach. The giant components (GC) of pcGT and miGT are over twice the size of
pcBB’s and miBB’s, and the number of connected components (NC) and singletons
(ST ) are considerably smaller in both GT networks.

Regarding the CM networks, pcCM and miCM, the values of ⟨c⟩ and D are the
lowest among all the network models, which is typical behavior of random networks.
Their κ are precisely the same as its correspondent GT network (pcCM=pcGT,
miCM=miGT) since the Configuration Model preserves the degree distribution.

When it comes to analyzing the small-world property, only the miBB fulfills the
requirements. It has a lower ⟨l⟩ (3.88) and a higher ⟨c⟩ (0.159) when compared with
its equivalent random network (⟨lrand⟩ = 5.36, ⟨crand⟩ = 0.005). The miCM could be
another example of an equivalent random network, but in this case, considering the
average of ten thousand samples and keeping the degree distribution of the original
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network. In this scenario, using miCM as a comparison base, we also have ⟨lrand⟩
and ⟨crand⟩ that satisfies the conditions to classify the miBB as being statistically a
small-world network.

Figures 6.4 and 6.5 contain the weight histograms of the investigated networks. The
first figure contains those using Pearson Correlation, and the second one refers to
the networks with Mutual Information. By definition, both GT networks (pcGT
and miGT) present weights that are higher than or equal to the global threshold.
Contrastingly, the pcBB and the miBB networks generate flatter distributions, as
the backbone method also considers the nodes’ degree and strength besides the
edge’s weight. The number of shared edges between pcGT and pcBB is 78 (6.14%
approximately), and between miGT and miBB is 71 (7.36%).

Figure 6.4 - Weight distribution for PC networks.

The CM networks present distribution with a higher frequency on lower weights
when compared to their corresponding BB or GT. When comparing the set of PC
networks with the set of MI, one notices that the shapes of the distributions are
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similar, with a slight difference in the relative frequencies. MIs have more edges
with lower weights, naturally expected since the MI index range is smaller than the
PC coefficient range.

Figure 6.5 - Weight distribution for MI networks.

Figures 6.6 and 6.7 introduce the scatter plots of the topological distance versus
the geographical (euclidean) distance - each point represents a pair of nodes. It
compares the spatial dependence between GT and BB networks, both based on PC
and MI. In case of both the PC networks, there is a significant linear relationship:
R2 = 0.77 with a slope of 1.15 (p-value < E − 7) for the pcGT, and R2 = 0.68 with
a slope of 0.76 (p-value < E − 7) for the pcBB. Concerning the MI ones, only miGT
presents a high R2 (0.79, with slope = 1.95), whereas miBB has an R2 of only 0.20
(slope = 0.24).

The pcBB shows longer edges (topological distance = 1) in geographical space when
compared to the pcGT. The pcBB presents an average geographical length of 2.14,
and a maximum geographical length of 7.52, while pcGT has an average geographical
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length of 1.06, and a maximum geographical length equals 2.40. The pcBB-network
contains nodes whose time series are highly correlated to only a few others. However,
some highly connected nodes (hubs) are also present due to their combination of
high degree and links with lower weights, which allows long-range connections as
well (geographical length > 5 km).

Figure 6.6 - Topological versus Geographical distance for each pair of nodes comparing
pcGT versus pcBB — auxiliar lines representing linear regression, for pcGT
(blue) and pcBB (green).

The behavior is similar when comparing the topological and geographical distances
of the MI networks. The BB criterion also presents longer edges (topological distance
= 1), geographically speaking, than the GT criterion. The miBB shows an average
geographical length of 2.07 and a maximum geographical length of 9.78, whereas
the miGT has an average geographical length of 0.94 and a maximum geographical
length of 2.60. One can notice that the miBB-network has long-distance edges (al-
most 10 km) that meaningfully reduce the topological distances inside the network
and contribute to its small-world phenomena. Distances of almost 25 km are reached
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with less than 10 edges.

Figure 6.7 - Topological versus Geographical distance for each pair of nodes comparing
miGT versus miBB — auxiliar lines representing linear regression, for miGT
(blue) and miBB (green).

On the other hand, there are nodes in the pcBB and the miBB so close in geograph-
ical space (≈ 1km) but relatively far in topological space (> 5 edges). This situation
is even more apparent for the pcGT and the miGT networks. As BB-networks’
connected components are smaller than those from the GT-networks’, topological
distances are smaller for the BB-networks than for the GT-networks. In terms of
geographical space, the miBB presents a greater reach than the pcBB because of its
long edges.

One can visually verify the spatial structure of the PC and the MI networks in
Figures 6.8 and 6.9. The intersection between GT and BB structures, for both
similarity metrics, is represented by the edges in red. The GT and the BB networks
are significantly complementary in the studied watershed. A watershed represents

38



the set of points on the space with a standard outlet for surface runoff. In the
background, SRTM altimetric data is employed and the lower a cell, the darker
it is. The structure of PC and MI networks are very similar. The BB networks
surround the watershed, mainly in the higher part of it, southwest, and around
the outlet. Oppositely, the GT networks are mainly on the central watershed area,
connecting cells in a region with no high difference of altimetry and high correlation
in rainfall time series. When comparing the PC with the MI networks, there are
slight observable differences in the map. The miGT is visually less clustered than
the pcGT, confirming the average clustering coefficient values in Table 6.1 (pcGT’s
⟨c⟩ = 0.536, miGT’s ⟨c⟩ = 0.474). The miBB has long edges on the west boundary
of the watershed that probably contributes to a lower average shortest path, and
consequently, to the small-world effect.

Figure 6.8 - Networks on the watershed (contour in yellow): pcGT (blue), pcBB (green),
and shared edges (red). In the background, SRTM altimetric data (the lower
a cell, the darker it is).
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Figure 6.9 - Networks on the watershed (contour in yellow): miGT (blue), miBB (green),
and shared edges (red). In the background, SRTM altimetric data (the lower
a cell, the darker it is).

6.4 Final considerations

This work presented different structures of geographical networks based on weather
radar data, using two similarity measures: the Pearson Correlation (PC) coefficient
and the Mutual Information (MI) index. Furthermore, we employed distinct crite-
ria to create its connections: a Global-Threshold (GT), a Backbone (BB), and a
Configuration Model (CM).

The scatter plot of the topological distance versus the geographical (euclidean) dis-
tance revealed a statistically significant linear relationship for the pcGT and miGT
networks and even for the pcBB one. The miBB was an exception presenting a
low average shortest path for distant geographical points. Furthermore, our analysis
showed that it could be considered a small-world network from a statistical point of
view.

It is well known that the GT criterion returns a network linking nodes with very
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similar behaviors (regarding its time series). On the other hand, the BB criterion
provides a network linking nodes with a higher level of heterogeneity depending on
the relation between the link’s weight and node’s strength (MENCZER et al., 2020).
This work presented a geographical analysis for the different network structures
in the context of a watershed: the GT networks are in the central area, close to
the main rivers, while the BB networks surround the watershed and dominate cells
close to the outlet. Using both PC and MI, the number of shared edges between
GT and BB is only around 7% of the total number of edges, showing a significant
complementarity.

As future work, we intend to reproduce the analysis in several other watersheds, from
mountainous regions to floodplains, looking for spatial signatures for the different
networks in the different landscapes.

41





7 THIRD CASE STUDY: ANALYSIS OF PRECIPITATION EVENTS
AND RELATIONS BETWEEN NETWORK METRICS AND METEO-
ROLOGICAL PROPERTIES

This chapter presents the third case study, which interprets complex network metrics
in the weather context. We analyze the relations between meteorological properties
and network metrics based on a set of precipitation events. The content of this
chapter will be submitted to a journal to be defined.

7.1 Introduction

Recently, several works have used complex networks to support analyzing complex
systems, such as the climate. By using networks, the researchers could identify tele-
connection patterns and analyze the structure of climatic events. By dealing with
climate, they have employed long time series of atmospheric datasets (TSONIS et al.,
2006; BOERS et al., 2014).

The weather, otherwise, is related to short-term changes in the atmosphere, dealing
with variables in high resolution both spatially and temporally. Very few works
have explored meteorological events in network science. Ceron et al. (2019) is one
of the few studies within this context handling high-resolution precipitation data
from weather radar. With a dataset of only ten days, they could find community
structures compatible with the land use/cover. Jorge et al. (2020) also worked with
precipitation networks concerning the weather scale. They analyzed the relation
between topological and geographical distances. However, none of these works have
handled networks related to precipitation events.

In the present work, we build geographical networks based on precipitation events
using weather radar data. These events were tracked by Tathu (Tracking and Anal-
ysis of Thunderstorms) from January to March 2019, focusing on the Metropolitan
Area of São Paulo (MASP). In the context of this set of events, we analyze the
relations between the meteorological properties and the topological metrics of the
correspondent networks. Our findings show significant correlations and some partic-
ularities when analyzing specific events groups.
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7.2 Material and methods

7.2.1 Data

For our study case, we used data from a weather radar situated in the city of São
Roque, whose coverage includes the entire MASP. More details about this weather
radar are in Section 4.1. For this work, we use the CAPPI product at the height of
3 km, which is the most used to identify meteorological systems, avoiding altitude
changing and ground echoes problems. The values are used in reflectivity units
(dBZ), as they are supplied by the product.

Using such data, we analyze precipitation events that occurred from January to
March of 2019. To identify the events, both spatially and temporally, we used Tathu
software, a computational tool for automatic tracking and forecasting the life cycle
of weather systems. It uses techniques of image processing, geoprocessing, and spa-
tial database. Developed as a Python package, the software architecture allows an
efficient extension of functionalities and the use of different types of environmental
data (UBA; GALANTE, 2021). It can identify and track events using input from satel-
lite or weather radar data. Based on Tathu’s results, we could extract the following
meteorological properties related to each identified event:

• id: identification key that Tathu generates for each event;

• start: day/time when the event started;

• end: day/time when the event finished;

• duration: event duration in hours and minutes;

• peak-lat: latitude of the event centroid at the peak time;

• peak-lon: longitude of the event centroid at the peak time;

• peak-time: time at which the event reaches its peak with the highest
reflectivity values;

• peak-reflect_max: value of the point of maximum reflectivity at the
peak time;

• peak-reflect_avg: spatial average of reflectivity values at the peak time;

• peak-area: area of the event at the peak time (in km2);
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• peak-area_px: area of the event at the peak time (in number of pixels);

• avg-speed: temporal average of the event speed;

• max-speed: maximum speed identified during the event lifetime;

• avg-area: temporal average of the event area;

• max-area: maximum area identified during the event lifetime;

• avg-reflect_avg: the temporal average calculated over the spatial average
of reflectivity values at each time step;

• avg-reflect_max: the temporal average calculated over the maximum
reflectivity value identified at each time step;

• delta-reflect: the difference between avg-reflect_max and avg-reflect_avg;

7.2.2 Study area

Our study area in this work is the metropolitan area of São Paulo (MASP). With
39 municipalities and more than 19 million inhabitants, it is the most significant
metropolitan region of Brazil (INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍS-

TICA, 2011). Due to fast urban growth, MASP has undergone climatic changes over
the past decades. As a result of these changes, temperature and precipitation show
a tendency to increase, mainly since the mid’s 70s (LIMA; RUEDA, 2018).

From the events database we produced using Tathu, we select those which occur
inside the MASP bounding box, adding a buffer of 10 km. Figure 7.1 illustrates the
delimitation of our study area.

7.2.3 Precipitation event networks

Among the events tracked by Tathu inside our study area, we filter those whose
duration is at least 1 hour and 40 minutes and at most 20 hours. The lower threshold
guarantees at least 10 time steps to calculate correlations later. The upper threshold
is to avoid huge events with a high computational cost. After applying these filters,
we end up with a sample of 383 events. For each one of these events, we build
a correspondent geographical network. To do that, for each event, we select the
weather radar dataset accordingly to its duration, using its start and end time as
delimiters.
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Figure 7.1 - MASP and the delimitation of the study area.

In the next step, such dataset is used as input to G4G (described in Section 4.3).
As previously mentioned, G4G converts each grid point of the dataset, inside the
selected study area, into a network node carrying an attribute of geographical coordi-
nate. Then, the software selects the time series associated with every grid point and
binds it to the correspondent node. Nodes with a completely zeroed time series are
discarded from the network. Figure 7.2 presents G4G flow to build the geographical
networks from this case study.

We adopt Pearson Correlation as the similarity function for the present case study,
adding an option of time delay in the calculations. This delay ranges from 0 to
30 minutes, and we keep the delay that maximizes the correlation for each pair of
nodes. In the end, we have two filled matrices: one with the delays and the other
one with the respective correlations (weight matrix).

The Global Threshold (GT) criterion is applied to the weight matrix to select the
most relevant weights. Then, the software builds an edge for the correspondent
pairs of nodes. At the end of G4G processing, we have a geographical network for
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the precipitation event with a group of network metrics associated (described in
Section 2.5).

Figure 7.2 - G4G flow for Case Study 3.
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Figure 7.3 - Flow to identify correlations between network and meteorological metrics.

Once we have the network metrics for the whole set of selected events, we can try to
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identify relations between these metrics and the meteorological properties. Figure 7.3
presents the flow we implemented for that purpose. After Tathu processing, it pro-
duces a database of events. Based on that, we extract a set of physical properties that
characterizes the events. We call these properties meteorological ("meteo") metrics.
For each event tracked by Tathu, G4G builds the correspondent network and cal-
culates its metrics. A Person Correlation is performed for every pair meteo-network
metric, discarding those correlations with a p-value not statistically significant. The
result is a graph representing these relations between network and meteorological
metrics.

7.3 Results and discussion

Figure 7.4 shows the resulting graph with the meteo-network correlations for the
entire set of selected events (sample with 383 events as mentioned in 7.2.3). The
orange nodes are the network metrics, the grey nodes are the meteorological prop-
erties, the blue edges represent positive correlations, and the red edges are negative
correlations. The thicker the edges, the higher the correlation modulus. Only cor-
relation coefficients above 0.4 or below −0.4 are included in the graph. Every edge
connects a network node to a meteorological node, resulting in a bipartite graph.

The orange node "t_delay" represents the time delay that maximized the correlations
of each network. Unfortunately it did not correlate to any meteorological property.
"Vertices", "giant_component", and "diameter" are the nodes with the most signifi-
cant number of connections, each one with 10. As the event has a larger area, greater
duration, or higher speed, the correspondent network tends to spread to follow the
event track. Consequently, it results in a higher number of vertices. The result shows
that the number of components also tends to increase as well as the size of the giant
component. The paths also tend to expand with a more extensive network as the
clustering coefficient does not present a positive correlation. Therefore, the diameter
metric naturally increases with the event’s area, speed, or duration.

We can also notice that, the higher the reflectivity values are ("delta-reflect", "avg-
reflect_max", "avg-reflect_avg", "peak-reflect_max"), the greater the network is, as
there is a positive correlation with "vertices" property. It shows that events with
a wider reflectivity range tend to be those with larger areas or greater duration.
For the same reason, this reflectivity variation also positively correlates with the
diameter and the average shortest path.

Differently, the clustering coefficient has a negative correlation with the reflectivity
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measures. The higher the reflectivity values are, the less clustered the network is.
Higher values in reflectivity time series probably become more challenging to have
similarities, affecting the network clustering.

Figure 7.4 - Meteo-Network Graph: Network metrics (orange nodes), Meteorological prop-
erties (grey nodes), positive and negative correlations (blue and red edges,
respectively).

However, the mentioned results are derived from the group of events as a whole, in-
cluding all kinds of meteorological processes. Intending to analyze these correlations
in more specific scenarios, we define four group categories by classifying events by
their area size or duration. Table 7.1 describes these groups and Figure 7.5 shows
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their intersections. It is possible to notice that short-duration events (D1) have a
high intersection with small extension ones (A1), as well as, most of the long-duration
events (D2) are included in the group of events with a larger area (A2).

Table 7.1 - Groups of Events.

Group Filter Number of Events
D1 Duration ≤ 2 hours 114
D2 Duration > 5 hours 53
A1 Area ≤ 300 km2 70
A2 Area ≥ 5000 km2 60

Figure 7.5 - Groups of events and their intersections.

Usually, long-duration events might be associated with weather fronts, which could
also reflect in large extensions. On the other hand, short-duration and small area
events may be related to local convective systems, which generally present high
intensity in a very brief occurrence. As our dataset comprises basically the summer
period, convective systems are naturally expected since air humidity is higher in this
year’s season.

Figure 7.6 shows the graph concerning the D1 group, which concentrates the shortest
duration events (2 hours or less). We can observe some particularities when com-
paring it with the general graph. One of them is the positive correlation between
the "avg_degree" and the "avg-reflect_avg". In short events, the average reflectiv-
ity appears to increase homogeneously, supporting more connections. The positive
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correlations involving area, speed, or duration do not appear for brief events.

Figure 7.6 - Meteo-Network Graph - Group D1 (Short Duration): Network metrics (or-
ange nodes), Meteorological properties (grey nodes), positive and negative
correlations (blue and red edges, respectively).
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D2 is the group with the longest duration events. Figure 7.7 presents the correspon-
dent graph. In this context of long events, the clustering coefficient has a negative
correlation with duration, area ("avg", "max" and "peak"), and "max-speed", which
we do not see in the general graph. The diameter and average shortest paths do not
correlate with the area size, as the network paths are more related to the duration in
this scenario. The positive correlation between duration and "diameter"/"shortpath-
mean" corroborates that. On the other hand, the edges positively correlate with
maximum and average areas. Similarly, the number of connected components, sin-
gletons, and the giant components’ size correlate to the area dimension.

Figure 7.8 brings the graph for A1 group, which includes the events with small area
(under 300 km2). Despite having very few edges, we can highlight the correlation
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between the average degree and the average speed. As we consider a time delay for
the correlations, the speed supports creating more connections. In short extension
events, which turn into networks with a few nodes, these connections easily reflect
an increase in the average degree.

Figure 7.7 - Meteo-Network Graph - Group D2 (Long Duration): Network metrics (orange
nodes), Meteorological properties (grey nodes), positive and negative correla-
tions (blue and red edges, respectively).
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The last group, A2, includes the events with more extensive areas (above 5000km2).
In this case, the clustering coefficient has a negative correlation with duration and
area ("avg", "max", and "peak"), besides some reflectivity measures. The more ex-
tended the network is, the less clustered it is. It is the same behavior we see in the
D2 graph. Oppositely, the edges positively correlate with the maximum reflectivity
at the event peak. Moreover, the average degree also correlates with the average
reflectivity at the event peak. In this group, an increase in the reflectivity values
somehow promotes the creation of more connections.
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Figure 7.8 - Meteo-Network Graph - Group A1 (Short Extension): Network metrics (or-
ange nodes), Meteorological properties (grey nodes), positive and negative
correlations (blue and red edges, respectively).
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7.4 Final considerations

This work presented the analysis of network metrics applied in the weather scope
based on a set of precipitation events. We examined the relations between meteoro-
logical properties and network metrics. The spatial and temporal components were
considered when building up the networks. We identified the relations for the set of
events as a whole and groups of events.

Concerning the general ensemble, we could see that a larger area, greater duration,
or higher speed tends to extend the correspondent network following the event track.
Consequently, metrics such as the number of components and the diameter also tend
to increase. The clustering coefficient, otherwise, decreases as the reflectivity values
vary.

We also analyzed the meteo-network relations inside specific events groups, classi-
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fying them by duration or area size. It was possible to notice some particularities in
these scenarios. In short-duration events, the average reflectivity seems to increase
homogeneously, supporting more connections and increasing the network’s average
degree. Concerning long-duration and large-extension events, there is a negative cor-
relation between the clustering coefficient and the event area. In other words, the
more extended the network is, the less clustered it is. In short extension events, the
speed tends to increase the average degree.

Figure 7.9 - Meteo-Network Graph - Group A2 (Long Extension): Network metrics (or-
ange nodes), Meteorological properties (grey nodes), positive and negative
correlations (blue and red edges, respectively).
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As a continuation of this work, we plan to analyze the projections of the network and
meteorological sets in the bipartite graphs, aiming to go deeper into the correlation
analysis. We also intend to embrace other periods in future works and combine
different atmospheric variables in multi-layer networks, including forecast data. The
expectation is to anticipate extreme events in a very short term.
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8 FINAL REMARKS

Extreme weather events can impact society in several ways. The use of complex
networks in the weather domain could be a tool to help mitigate these impacts.
However, a few works have studied the behavior of networks in such a context.
Therefore, this research aimed to answer the scientific question: “What is the be-
havior of meteorological processes in precipitation networks?” To answer that, we
presented three case studies analyzing the behavior of network structures related to
precipitation time series. For all of them, weather radar data were employed. The
geographical and temporal aspects of the networks were considered when building
them up. The first case study analyzes a precipitation network based on a month
time series above the Tamanduateí basin. We could verify the spatial dependence
of temporal correlations inherent in a precipitation network, noticing a high tem-
poral correlation, especially up to 10 kilometers in geographical distance. We could
also explore the relations between topological and geographical distances, observing
long topological distances between neighboring nodes and edges connecting short
euclidean distances.

The second case study was based on the same dataset from the first case study —
the same period and spatial domain. It compared different similarity measures —
Mutual Information (MI) and Pearson Correlation (PC) — and criteria – Global-
Threshold (GT), Backbone (BB), and Configuration Model (CM) — for building
up the networks. Our findings showed that GT and BB criteria produced networks
significantly complementary in the geographical space. Moreover, we verified that
the combination of MI and BB generated a structure that could be statistically
classified as a small-world network.

The last case study described the relations between topological metrics and mete-
orological properties in a series of precipitation events. These events were tracked
at the Metropolitan Area of São Paulo (MASP) from January to March 2019. In a
general context, we observed that a larger area, greater duration, or higher speed
influenced the network extension, as it tends to follow the event track. As a result,
the diameter and the number of components increased. Differently, the clustering
coefficient presented a negative correlation with properties related to reflectivity
variation. Analyzing more specific scenarios, we could identify some interesting par-
ticularities. For example, in the context of short extension events, we noticed that
speed tends to increase the number of connections inside the network. Concerning
long-duration and large extension events, the area negatively correlates with network
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clusterization.

With the presented case studies, this research explored the behavior of network
structures in a meteorological context. As a result, we have a basis for future re-
searches in the scope of complex networks applied to anticipate extreme weather
events. As our next steps, we intend to employ forecast data, such as an extrapola-
tion from weather radar scans, combined with lightning information from satellite
sensors. The expectation is to incorporate these data into a multi-layer geographical
network, with the primary goal of promoting the identification of extreme events
in the short term. As an additional ideal, we can attempt to classify the events
accordingly to the type of meteorological process involved.
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tada, a ser executada por um computa-
dor para alcançar um determinado obje-
tivo. Aceitam-se tanto programas fonte
quanto os executáveis.

Pré-publicações (PRE)

Todos os artigos publicados em periódi-
cos, anais e como capítulos de livros.
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