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Abstract: Forest degradation and forest disturbance are distinct yet often conflated concepts, com-
plicating their definition and monitoring. Forest degradation involves interrupted succession and a
severe reduction in forest services over time, caused by factors like fires, illegal selective logging, and
edge effects. Forest disturbance, on the other hand, refers to abrupt, localized events, natural or an-
thropogenic, such as legal selective logging, tropical blowdowns, storms, or fires, without necessarily
leading to long-term degradation. Despite the varying intensity and scale of forest degradation and
disturbance, systematic studies distinguishing its types and classes are limited. This study reviews
anthropogenic impacts on forests in the Brazilian Amazon, analyzing 80 scientific articles using re-
mote sensing techniques and data. Most research focuses on the “arc of deforestation,” characterized
by intense human activity, showcasing methodological advancements but also revealing gaps in
monitoring less-studied regions like the central and western Amazon. The findings emphasize the
need for advanced remote sensing tools to differentiate degradation types, particularly in sustainable
forest management (SFM) contexts. Expanding research to underrepresented regions and refining
methodologies are crucial for better understanding forest dynamics and improving conservation
strategies. These efforts are essential to support effective forest management and informed policy
development across the Amazon.
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1. Introduction
1.1. Sustainable Forest Management in the Amazon: Importance and Challenges

Tropical forests are one of the world’s largest and most productive ecosystems. They
also play an essential role in the global carbon cycle, containing 44% of the world’s above-
ground biomass [1,2]. The Brazilian Amazon contains one-third of the world’s tropi-
cal forests. Its commercial roundwood stocks are estimated to be around 60 billion m3

(2118 trillion ft3), making it the world’s largest tropical timber reserve [3–6].
Sustainable forest management (SFM) is an approach to managing forests that balances

environmental, social, and economic objectives to meet the needs of present and future
generations [6]. SFM encompasses practices that maintain and enhance forest health,
productivity, biodiversity, and ecological functions [6]. Reduced impact logging (RIL) is
a forest management practice designed to minimize the ecological damage that typically
accompanies selective logging and is widely applied in SFM in the Amazon [6,7]. RIL
involves practices that significantly reduce impacts compared to conventional logging;
some of these practices include pre-harvest planning, targeted felling techniques, log drag
control, and continuous monitoring [7]. Selective logging is a stage of management that
aims to harvest specific trees while preserving the structure of the forest, contributing to
sustainability when rigorously planned and monitored [7,8]. These practices minimize
unnecessary canopy openings, protect surrounding vegetation, and maintain the overall
forest structure, thereby mitigating the ecological impacts typically associated with logging
activities [7].

In contrast, conventional logging often results in significant forest degradation due to
uncontrolled felling, poorly planned roads, and extensive canopy gaps [7]. This unregulated
approach compromises forest health and biodiversity, leading to a decline in ecosystem
services, prolonged carbon emissions, and challenges in forest regeneration [8–11]. By
comparison, RIL reduces these impacts, promoting sustainability and aligning with the
principles of SFM.

Pereira-Jr [7] highlights the differences in canopy gap fractions caused by conventional
logging (CL) and reduced impact logging (RIL) in 1996 and 1998. CL consistently resulted
in higher canopy gaps, with total gap percentages of 16.5% and 21.6% in 1996 and 1998,
respectively, primarily driven by tree felling and skidding activities. In contrast, RIL
demonstrated significantly lower impacts, with total gap percentages of 4.9% and 10.9%,
emphasizing its effectiveness in minimizing forest canopy disruption. The data reinforce
the value of RIL as a sustainable logging practice that reduces environmental impacts while
maintaining forest structure.

Nevertheless, under Brazilian standards, specific values are established for harvesting
intensity per hectare [6]. The authorized harvesting intensity of Brazilian forests is not
associated with data on the heterogeneity of the original forest structure, i.e., the volumes
determined for extraction are fixed and standardized [9]. In the SFM for the Saracá-Taquera
National Forest in the Brazilian Amazon, logging intensity surpassed 100 m3 ha−1, with
more than 20 trees harvested per hectare in certain areas [9]. Putz et al. [10] mentioned that
the challenge in managing tropical forests stems from their complex and diverse ecosystems.
According to Chazdon et al. [11], improper use of natural forests can disrupt logging cycles
and harm ecosystems.

SFM is recognized as a forest conservation strategy, but gaps remain in evaluating
indicators that point to more appropriate ways of exploiting forest resources [7,12].

These challenges related to conducting SFM raise the following guiding questions:
(i) What is the temporal trend in publications on remote sensing techniques and sustain-
able forest management? (ii) Which institutions and countries are leading this research?
(iii) Which approaches are most commonly used? (iv) What are the main techniques and
sensors used? (v) What is the spatial distribution and territorial scope of the studies
throughout the Amazon biome?
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1.2. Remote Sensing in Tropical Forest Monitoring

Remote sensing (RS) plays an important role in monitoring and quantifying canopy
disturbance caused by selective logging [13–15]. Studies have shown that high spatial
and temporal resolution images are necessary to monitor selective logging in the Ama-
zon [14,16]. In addition, the remote sensing techniques and products used for mapping
and monitoring studies of selective logging have been insufficient for large-scale assess-
ments [17–19].

Abdollahnejad et al. [18] have proposed an advanced approach integrating geographic
information systems (GISs) and remote sensing using high-resolution images to monitor
logging areas. Their research suggests that high spectral and spatial resolution images
are necessary to increase the accuracy of volume estimates. Petri et al. [20] also tested
using images from the PlanetScope nanosatellite constellation for vegetation studies in the
Amazon. They concluded that high spatial and temporal resolution images are essential
for understanding forest dynamics in the Amazon. Yet, for extensive areas like the Ama-
zon, these costs can quickly escalate, posing a challenge for continuous and large-scale
monitoring efforts [18].

Advances in remote sensing technologies, such as high-resolution satellites, drones,
and LiDAR (Light Detection and Ranging) sensors, combined with machine learning
techniques, have provided new possibilities for effectively and sustainably monitoring
and managing forests [18,21]. These technologies enable precise detection and monitoring
of changes in forest cover, making it easier to identify illegal activities and assess the
impacts of logging [21,22]. However, the application of high spatial resolution sensors to
the analysis of forest degradation in sustainable forest management (SFM) is still limited to
smaller areas, as evidenced by the scope of the studies conducted.

1.3. Defining Forest Degradation and Forest Disturbance

The literature is rife with dozens of definitions of forest degradation regarding partial
changes to the forest canopy. Categorizing forest degradation is challenging due to its
dependence on the study’s objective, biophysical conditions, causes, and spatiotemporal
scales [23,24]. Simula [25] and Thompson et al. [24] argue that the lack of scientific con-
sensus on forest degradation has led to many definitions and multiple ways of measuring
it, particularly by remote sensing. More recently, the term forest disturbance has been in-
creasingly used to describe more subtle changes in forest structure and function [7,9,14,16].
These disturbances often include events that do not result in outright deforestation but
still alter the forest’s composition, canopy cover, or ecosystem services, such as selective
logging, fires, and small-scale natural events. This shift in terminology reflects an effort to
capture a broader spectrum of forest dynamics and to better align with advances in remote
sensing technologies that can detect such nuanced changes [9,14,16,18].

In this analysis, forest degradation can be defined as a condition of interrupted suc-
cession due to human actions, leading to a severe reduction in the forest’s services over a
certain period. It is a temporal process in which forest services decline and can be caused
by forest fires, illegal selective logging, and edge effects, among others [24–27]. In contrast,
forest disturbance refers to any abrupt and localized event, natural or anthropogenic, that
disrupts forest structure or function, such as legal selective logging, tropical blowdowns,
storms or even forest fires, without necessarily causing long-term degradation [9,14,16,18].
Thus, while forest degradation implies a sustained loss of ecosystem services, forest distur-
bance can be temporary and sometimes even a part of natural forest dynamics [7,14,16].

In this context, the Reducing Emissions from Deforestation and Forest Degradation
(REDD+) program is an international initiative aimed at combating climate change by
addressing forest loss and degradation. Figure 1 illustrates the relationship between degra-
dation, deforestation, and sustainable practices such as SFM in the context of REDD+. Each
component of the acronym REDD+ represents a key focus area. The first D (deforesta-
tion) focuses on preventing the permanent removal of forests (clear-cut), which releases
significant amounts of stored carbon into the atmosphere (line C, Figure 1). The second D
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(degradation) addresses the decrease in forest quality and carbon storage capacity caused
by activities such as illegal selective logging, fires, edge effects, or other human-induced
action. At this stage, the services provided by the forest are significantly reduced and CO2
emissions are prolonged over time, but the vegetation is not completely removed (line B,
Figure 1). The plus sign (+) extends the scope of the program to include some sustainable
practices like the conservation of forest carbon stocks and the sustainable management
of forests (line A, Figure 1) [28]. Here, forest disturbances resulting from legal selective
logging are represented as critical factors, emphasizing the need to mitigate their impact to
ensure the effectiveness of these sustainable practices. This expanded framework aims to
address a broader set of activities to promote sustainable development while mitigating
climate change impacts [28–30].
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Figure 1. The graph illustrates the impact of human activities on forest ecosystem services in the
context of REDD+ (red letters on the Y axis). Curve A (disturbance) represents forest carbon stock
conservation practices and sustainable forest management, where forest interventions cause low
CO2 emissions and favorable variations in forest services, represented by the REDD+ “plus” (+)
symbol. Curve B (degradation) represents a forest degraded by anthropogenic events such as extreme
droughts, edge effects, fire, and illegal logging that persist over time. Curve C (deforestation)
represents the maximum stage of anthropogenic intervention and the complete absence of forest
services, since at this stage the vegetation has been completely removed (clear-cutting), represented
by the first D in the REDD+ acronym. Source: adapted from [24,26,27,31].

However, the term “forest degradation” is often used to describe legal selective logging
activities [22,32–35]. It is essential to point out that although legal selective logging can be
considered forest degradation from an anthropological perspective or by generic definitions,
this classification is inadequate [36]. The selective extraction of legal timber is an activity
integrated into SFM and is considered a mechanism of REDD+ policies and, therefore, in
first approximation, should not be categorized as forest degradation [36], but rather as forest
disturbance, as it should not cause de-characterization or damage to the environmental
function of the managed forest ecosystem [16,36].

It is essential to consider a more comprehensive approach that considers broader
ecological processes, regardless of their impact on human society, such as forest dynamics
and resilience [26,27,30]. Ecosystem resilience is the capacity to return to its original
state in terms of structure and function after a disturbance without requiring external
intervention [27].
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1.4. Mapping Forest Degradation and Legal Selective Logging

The techniques, methods, and data sources used for mapping and monitoring forest
degradation and selective logging in the Amazon are essentially the same, as both detect and
analyze changes in forest cover when the forest is not entirely removed [16,19,34]. Although,
from the point of view of remote sensing, the equivalence in detection between these two
actions is to be expected, and several studies treat both in a similar way [16,22,33,34], some
important points need to be kept in mind.

The intensity and types of disturbance are different in the various types of degradation,
including the partial loss of living biomass and forest quality, without the complete removal
of vegetation cover. This can include the death of trees, damage to soil and understory
vegetation, and a reduction in biodiversity [16]. However, in legal selective logging with re-
duced impact, the disturbances are smaller and relate to the specific removal of trees of high
commercial value, usually with openings in the forest, logging trails, and collateral damage
to other trees and understored vegetation [7,37,38]. Therefore, disturbances caused to
forests by selective logging are of lesser intensity in cases of forest management implemen-
tation and, for this reason, should be distinctly mapped and considered [7,16,38]. Although
using RIL reduces disturbance, these disturbances can still be classified as low intensity,
since they cause changes to the forest’s structure and the ecosystem’s dynamics [16,37].

Taking the above points into account, it should be noted that the simplest and most
effective way of differentiating the intensities of forest degradation processes is by ob-
serving selectively logged areas in sustainable management plans, where there are Forest
Management Unit (FMU) boundaries, as well as timber unit (TU) boundaries, allowing
for auxiliary information in classifying the changes detected. In SFM, the FMU represents
the designated portion of the property allocated for forest management. The specific area
designated for logging activities is referred to as a timber unit (TU) [6,9].

In contrast, in areas affected by fire or high-intensity or illegal selective logging, the
intensities of forest degradation are much higher, indicating that monitoring systems
must be more specific in order to discriminate between the different types of forest dis-
turbance, which result in very different impacts and levels of degradation [16]. Figure 2
shows a cross-section of forest change detection alerts from the systems (A) DETER/INPE,
(B) SAD/IMAZON, and (C) Brazilian Forestry Service (BFS)/SCCON, respectively, which
intersect the TU in the FMU inside the Saracá-Taquera National Forest. Systems A and B
are used in command-and-control policies and operate throughout the Amazon using low
and medium spatial resolution images. System C monitors and maps forest disturbances in
specific areas within the limits of the SFM boundaries using PlanetScope high spatial and
temporal resolution images carried out by the Brazilian Forestry Service (BFS). System C
shows greater consistency and precision in relation to the extracted areas of vegetation, us-
ing selective logging practices, and consequently with more coherent classification related
to the phenomenon [39–41].

Misclassifications of different levels of forest disturbance can underestimate or over-
estimate the extent of the impacts caused on forests, particularly in the case of selective
logging in the Amazon. When conducted legally and under sustained management, selec-
tive logging is thought to have a low intensity of disturbance and minimal effects on the
forest ecosystem [7]. However, generalized classifications of forest degradation areas with-
out distinguishing between different types of disturbance can compromise the credibility
of regulated forest conservation and management initiatives in the Amazon [42,43].

The lack of differentiation between forest extraction practices associated with SFM
and other degradation processes with different impacts can lead to difficulties raising
funds for conservation projects and discourage investment in sustainable management
practices in the Amazon. Public policies and regulations based on incorrect data can be
ineffective or harmful [44,45]. This can result in an inadequate allocation of resources
for forest conservation and management, as well as hindering the implementation of
effective strategies for forest protection [44]. Accuracy in classifying the different intensities
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of forest disturbances or degradation is crucial for environmental, economic, and social
sustainability in forest management in the Amazon [23,30].

Remote Sens. 2024, 16, x FOR PEER REVIEW 6 of 25 
 

 

 
Figure 2. Forest degradation alerts from the systems (A) DETER/INPE (Real-Time Deforestation 
Detection System, developed by the National Institute for Space Research—INPE); (B) 
SAD/IMAZON (Deforestation Alert System, developed by the Amazon Institute for Man and the 
Environment—IMAZON); and Selective Logging alert (disturbance) (C) Brazilian Forestry Service 
(BFS)/SCCON (Brazilian Forestry Service system, developed by SCCON Geospatial). These systems 
intersect the timber unit in the Forest Management Unit inside the Saracá-Taquera National Forest, 
Brazilian Amazon. 

Misclassifications of different levels of forest disturbance can underestimate or 
overestimate the extent of the impacts caused on forests, particularly in the case of 
selective logging in the Amazon. When conducted legally and under sustained 
management, selective logging is thought to have a low intensity of disturbance and 
minimal effects on the forest ecosystem [7]. However, generalized classifications of forest 
degradation areas without distinguishing between different types of disturbance can 
compromise the credibility of regulated forest conservation and management initiatives 
in the Amazon [42,43]. 

The lack of differentiation between forest extraction practices associated with SFM 
and other degradation processes with different impacts can lead to difficulties raising 
funds for conservation projects and discourage investment in sustainable management 
practices in the Amazon. Public policies and regulations based on incorrect data can be 
ineffective or harmful [44,45]. This can result in an inadequate allocation of resources for 
forest conservation and management, as well as hindering the implementation of effective 
strategies for forest protection [44]. Accuracy in classifying the different intensities of 
forest disturbances or degradation is crucial for environmental, economic, and social 
sustainability in forest management in the Amazon [23,30]. 

1.5. Objective 
In order to better distinguish anthropogenic forest disturbances and degradation in 

different intensities, spatial dimensions, and temporality, detected by remote sensing in 
the Amazon forest, we aim to map the spatial distribution and temporal evolution of 
studies in the Amazon biome by means of remote sensing and identifying the main 
techniques and sensors used to better understand the patterns, trends, and gaps associated 

Figure 2. Forest degradation alerts from the systems (A) DETER/INPE (Real-Time Defor-
estation Detection System, developed by the National Institute for Space Research—INPE);
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(BFS)/SCCON (Brazilian Forestry Service system, developed by SCCON Geospatial). These systems
intersect the timber unit in the Forest Management Unit inside the Saracá-Taquera National Forest,
Brazilian Amazon.

1.5. Objective

In order to better distinguish anthropogenic forest disturbances and degradation in
different intensities, spatial dimensions, and temporality, detected by remote sensing in the
Amazon forest, we aim to map the spatial distribution and temporal evolution of studies in
the Amazon biome by means of remote sensing and identifying the main techniques and
sensors used to better understand the patterns, trends, and gaps associated with monitoring
anthropogenic forest disturbances, generically referred to as forest degradation.

2. Materials and Methods
2.1. Search Process and Article Selection

We conducted a systematic literature review on the remote monitoring of anthro-
pogenic forest disturbances and their impact on sustainable forest management. The review
was based on a spatiotemporal evaluation of the main techniques and sensors used to
monitor and map forest degradation and legal selective logging in the Amazon. As they
have a specific focus on conservation and environmental management, the systematic
review guidelines proposed by Pullin and Sterward [46] were followed.
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This study used only articles that explicitly applied remote sensing (RS) techniques
and images aimed at detecting anthropogenic forest disturbances, in order to contribute
to advancing the discussion on distinguishing forest degradation from legal selective
logging in the Amazon. In this way, the main approaches, trends, and gaps in research on
anthropogenic forest disturbances, notably, forest degradation and legal selective logging
in the Amazon, were analyzed.

Only peer-reviewed articles published between January 2003 (the year the first article
appeared) and July 2024 were selected from the Scopus and Web of Science databases [47,48].
The search considered synonyms found in the literature based on the keywords in the
title, abstract, and keywords, and the ALL option was chosen in the search (Table 1).
These terminologies are widely used in the literature for remote monitoring studies of
forest disturbances and degradation in the Amazon. Reviews, conferences, and book
chapters were excluded, as peer-reviewed articles are considered the most reliable source
for reviewing the literature among the documents available [49,50].

Table 1. Search expression encoded in Web of Science and Scopus and applied to titles, abstracts,
and keywords.

Criteria Search Expression

What?

“Selective Logging” OR “Selective Harvesting”
OR “Selective Cutting” OR “Disturbance” OR

“Forest Disturbance” OR “Illegal Logging” OR
“Degradation” OR “Forest Degradation”

How? AND “Monitoring” OR “Remote Sensing”
OR “Satellite”

Where? AND “Amazon”

Limited to? Articles

Data range 2003/January to 2024/July
Adapted from [31].

In addition to articles written in English, papers written in Portuguese were also
analyzed, as the subject is geographically related to Brazil, and some references are in
Portuguese. We expanded the language filter to ensure that a thorough analysis of the
scientific literature identifies and synthesizes relevant evidence, regardless of geographical
origin or language of publication. Non-English publications may contain ideas or provide
context not available in English articles [51].

2.2. Data Selection and Integration

With the keywords mentioned, 136 articles were identified in Web of Science and
81 articles were identified in Scopus (as of 1 July 2024), which were compiled into CSV
(comma-separated values) and TXT (text format) files from the respective databases. Af-
ter debugging duplicate articles in different databases with the help of RStudio soft-
ware (Version 4.3.1) using the mergeDbSouce and remove.duplicated functions of the
Bibliometrix package [52], 158 articles remained.

After carefully selecting articles, we reviewed each paper to remove duplicates from
the database. We specifically checked each article to ensure it focused on the Amazon biome
and used remote sensing products, techniques, and images to map and monitor forest
degradation and forest disturbances. After this thorough process, we selected 80 articles
for analysis (Figure 3).
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Figure 3. An overview of the criteria and procedure for the bibliographic search for a systematic
review of the literature on works that explicitly apply RS techniques and images to the study of
anthropogenic forest disturbances. N = Number of articles.

2.3. Classification, Organization of Information, and Data Analysis

Based on this number, we proceeded to organize and classify the information contained
in the articles. To systematize the evaluation of the approaches used, trends, and gaps in
research, the information was listed in chronological order, starting with the most recent
year. The information gleaned from the articles was categorized in terms of the exact
location of the study area (geographical coordinates), the digital processing techniques
used in the satellite images, and the sensors used.

Additionally, the articles were categorized based on the type of anthropogenic forest
disturbance presented and classified accordingly:

(a) Legal selective logging: for works that applied RS techniques to map or monitor
anthropogenic forest disturbances arising exclusively from logging activities in autho-
rized sustainable forest management areas.

(b) Forest degradation: for works that applied RS techniques to map or monitor anthro-
pogenic forest degradation of any nature other than legal selective logging.

(c) Legal selective logging + forest degradation: for works that applied RS techniques to
map or monitor both anthropogenic actions simultaneously.

Based on the criteria provided, we have established the following analysis parameters:
(a) annual global publication trend; (b) analysis of emerging patterns and trends; (c) spatial
distribution and approach of the work; (d) the main techniques used for mapping or
monitoring; (e) the main RS images used for monitoring or mapping; and (f) teaching and
research institutions that have published the most on the subject.

3. Results
3.1. Global Publication Trends

The red dotted regression line shows a positive slope, indicating a general increase
in the number of scientific publications over time. This reflects the growing attention to
monitoring degradation and anthropogenic forest disturbances in the Amazon biome. This
upward trend suggests growing interest and research activity in this topic area over the
years. Although there is an overall upward trend, individual years show considerable
variation in production. For example, the years that showed the highest scientific produc-
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tivity were 2019, 2020, and 2023, accounting for 26 articles, approximately one-third of all
publications (32.5%). Among these, 2019 and 2023 have stood out with nine publications
each. Conversely, 2003, 2004, 2011, and 2015 had the lowest number of publications, with
only one article each year (5%) (See Figure 4).
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3.2. Keyword Analyses of Emerging Patterns and Trends

Review articles often use keyword analyses to identify central themes, patterns, and
trends in different research fields [53–55]. Figure 5 illustrates the relative occurrence of key
terms—biomass, carbon, degradation, disturbance, logging, and selective—in texts from 2003 to
2024. Each color in the stacked bars represents one of the selected words, with the height of
each color segment within a given year indicating the proportional frequency of that word.
These words were selected for their relevance to the discussion of forest management topics,
highlighting trends and shifts in focus over time. The graph enables a visual assessment of
the prominence of each word across different years, reflecting evolving research or policy
interests in these areas.
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The results show that each year presents a different distribution of proportions among
the words, suggesting a shift in focus over time. Carbon and degradation maintain a con-
sistent presence throughout the years, indicating a continuous interest during the entire
period analyzed. The term biomass gains prominence, starting in 2016, possibly reflecting
a growing interest in its role in carbon sequestration. Although disturbance, selective, and
logging are consistently present over time, these terms show a marked increase from 2020 to
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2024, indicating a rise in discussions about logging and the impacts of forest disturbances.
Carbon and biomass have gained relevance in recent years, especially between 2016 and 2024.
This increase may be related to the role of biomass and carbon in climate change mitigation
policies, with biomass increasingly being considered a renewable energy alternative.

3.3. Spatial Distribution of Studies and Approaches

A total of 25 studies were applied to the entire Amazon biome. Of these, we found
that 72% (18 articles) used forest degradation exclusively (even though they may have
included SFM areas) to map anthropogenic forest disturbances. Five articles studied
forest degradation and selective logging together. Only two articles discussed the region’s
selective extraction of legal timber and its impacts. Figure 6 presents the spatial distribution
of studies on mapping forest degradation and forest disturbance in the Amazon biome by
type of detection.
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For regional studies (55 articles), the assessment of the categorization and spatial
distribution in the Amazon biome revealed that out of the 88 study areas sampled (where
coordinates were available), 75 were concentrated in just three states (85.2%): Pará (44.3%);
Mato Grosso (26.1%); and Rondônia (14.7%). In Pará, there were two notable regions. The
Paragominas region in the northeast of the state had 14 articles, including studies on the
former selective exploitation of legal timber (4), forest degradation (6), and articles dealing
with both selective exploitation and forest degradation (4). Additionally, in the far west
of Pará, the Lower Amazon region also featured 14 articles, with the focus being on legal
selective logging (11) and some studies on forest degradation (3).

The state of Mato Grosso, particularly the region around the municipality of Sinop, had
the second-highest number of research papers, totaling 23 articles. Most of these articles
focused on studies related to legal selective logging (11), followed by forest degradation (4).
The region of the National Forests (Flona) located in the state of Rondônia had 13 articles,
all of which dealt with the monitoring and mapping of legal selective logging within the
Jamari and Jacundá National Forests (Figure 6).
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3.4. Main Techniques Used

The results show the main approaches used in the studies evaluated and demonstrate
the frequency of various techniques employed in scientific articles focused on monitoring
anthropogenic forest disturbances and forest degradation. Each technique plays a specific
role in monitoring and mapping (Figure 7).
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The Linear Spectral Mixture Model (LSMM) is the most used technique, with
23 occurrences, highlighting its importance in decomposing spectral signals into indi-
vidual components (fraction images). Random Forest appears with nine occurrences, which
shows that it is a frequently used technique for classifying vegetation and monitoring
changes in forest cover. Visual classification, although a more traditional technique and a
pioneer in this type of study [56], is still relevant (seven occurrences), especially in areas
where human interpretation is required to identify specific vegetation characteristics. The
Carnegie Landsat Analysis System (CLASS), with six occurrences, is highly frequent in the
studies evaluated.

The Normalized Difference Vegetation Index (NDVI) is widely used to monitor vegeta-
tion vigor, which is essential for identifying areas of degradation and helping to implement
practices that promote forest recovery (six occurrences) [57,58]. The Normalized Difference
Fraction Index (NDFI) (five occurrences) helps to detect and monitor forest degradation in
areas subject to sustainable forest management, allowing targeted interventions to recover
intensely degraded areas. This is an essential component of sustainable management [40].
The Difference Relative Normalized Burn Ratio (∆rNBR) (five occurrences) is essential
for assessing the severity of forest fires and their impacts, providing important data for
post-fire recovery and the prevention of future fires [59,60]. Texture analysis (three occur-
rences) allows for a detailed assessment of the structural complexity of vegetation, helping
to distinguish between different types of vegetation and levels of degradation [16,19,32,61].
Deep Learning—DL (two occurrences) is a set of machine learning techniques that uses
deep neural networks to recognize complex patterns in large datasets [22].

3.5. Main Satellites Used

For SFM, it is essential to use remote sensing (RS) products to monitor and manage
forests. An analysis of the frequency of occurrence in articles reveals the importance of
different satellites and technologies in forest management research and practice (Figure 8).

The main satellites’ classification results to monitor anthropogenic forest disturbance
and degradation indicate that the Landsat series is the most used (55 occurrences). This is
mainly because of its extensive historical data and its capability to offer detailed multispec-
tral data over several decades [62–65].
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LiDAR technology, with 14 occurrences, recently incorporated into forest cover moni-
toring studies, is highly valued for its ability to accurately measure the three-dimensional
structure of forests [21].

The MODIS (Moderate Resolution Imaging Spectroradiometer), with six hits, despite
its low spatial resolution, is widely used to monitor large areas of forest cover due to its
high temporal frequency, which enables rapid detection of changes such as forest fires and
large-scale forest degradation [66,67].

The Sentinel-1 and Sentinel-2 satellites mentioned nine occurrences when combined,
providing optical (Sentinel-2) and radar (Sentinel-1) data. This combination is crucial for
monitoring forests in adverse weather conditions and detecting subtle changes in forest
cover [68,69].

ALOS-PALSAR, SPOT, GEDI, and IKONOS had a combined 14 occurrences. These
satellites and sensors provide valuable additional data, complementing the information
obtained by the main satellites mentioned. They are used for specific applications, such
as detecting small changes in forest cover, assessing biomass, and monitoring small area
changes. ALOS-PALSAR helps with monitoring in tropical regions using synthetic aperture
radar (SAR). SPOT is mainly used for monitoring land use, land cover, and vegetation
changes. GEDI (Global Ecosystem Dynamics Investigation), which is NASA’s tool to
measure how deforestation has contributed to atmospheric CO2 concentrations, is an
innovative orbital LiDAR technology that helps assess the vertical structure of forests,
including tree height and biomass. Ikonos, with its high spatial resolution, is used for
detecting small changes in forest cover, detailed mapping, and monitoring specific areas of
interest [70–73].

PlanetScope is the only satellite mentioned comprising a constellation of imaging
nanosatellites. It provides daily high spatial resolution images of the Earth’s entire land
cover. Its capability to capture detailed daily data makes it a powerful tool for monitoring
forest disturbances and sustainable forest management [9,22,41].

3.6. Main Research Institutions

Based on our dataset, Figure 9 shows the affiliations of the top 10 institutions world-
wide that have published the most on this subject. These institutions significantly generate
knowledge and advance technology for implementing and monitoring tropical forests and
sustainable forest management practices.
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The University of Sheffield (20 articles) is known for its significant research in ecology
and environmental science, focusing on understanding the impacts of human activities on
forests and developing strategies to promote forest sustainability [74,75]. The University
of California’s research (14 articles) has focused on emerging remote sensing technolo-
gies, such as terrestrial and orbital LiDAR, environmental data analysis, and methods for
monitoring changes in forest cover.

In Brazil, EMBRAPA (13 articles) has played a vital role in developing robust tech-
nologies, including sustainable forest management practices, pioneering studies into post-
harvest forest monitoring, and implementing reduced impact logging (RIL) practices in the
Amazon, most recently working with LiDAR technology [76–78].

Several studies from Michigan State University (13 articles) focus on using emerging
remote sensing technologies for managing natural resources, particularly forests [79]. The
National Institute for Space Research (INPE) (11 articles) is crucial in monitoring and
developing remote sensing methodologies for the Amazon and other tropical forests.
INPE uses a series of satellites to gather data on deforestation, forest degradation, and
biomass, which are crucial for the sustainable management of Brazilian forests [39,80,81].
NASA (eight articles), through its satellite missions such as GEDI and Landsat, provides
essential data used to monitor global forest cover and study the impacts of climate change,
deforestation, and anthropogenic disturbances [21,82].

The Alliance Biodiversity & International Center for Tropical Agriculture (CIAT) (eight
articles) promotes biodiversity conservation and the sustainable use of tropical resources,
including forests. CIAT’s research often deals with the sustainability of agroforestry systems
and sustainable forest management [83]. The University of Exeter (eight articles) researches
biodiversity conservation and the development of environmental policies that promote
forest sustainability [17,84].

Finally, the University of Brasilia (seven articles) conducts significant research into trop-
ical forest ecology and sustainable management practices, contributing to the development
of public conservation policies in Brazil [16,19,32,61].

These institutions, with their research and innovations, play a key role in advancing
sustainable forest management, helping to develop and implement practices that balance
the conservation of forest ecosystems with economic and social needs.

4. Discussion
4.1. Need to Differentiate Forest Degradation from SFM and Policy Implications

The concept of forest degradation has not yet reached a scientific consensus, resulting
in a variety of definitions and different approaches to its detection and measurement,
especially by means of remote sensing, as demonstrated in this literature review [24–27].
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The impacts of activities related to forest management and the monitoring of selective
logging have mainly been viewed from an ecological standpoint [11,14]. As a result,
the term “forest degradation” is often used to describe the effects of selective logging
activities [19,22,32–34], fire [16,19,32], and landscape fragmentation [19]. It is important to
note that although legal selective logging can be considered degradation from an ecological
perspective or by generic definitions, it is temporary degradation. Selective logging is an
activity that is part of SFM and, therefore, at first glance, should be categorized distinctly
within the term forest degradation [36].

A group of experienced researchers from Embrapa Amazonia Oriental have empha-
sized the need for a deeper reflection on the concept of forest degradation and its role in
decision-making. They suggest that forest management, when based on good forest prac-
tices and techniques, causes temporary forest disturbances responsible only for a low level
of forest degradation, contributing to forest conservation from a broad perspective when
good management practices are applied [36]. Another point is the fact that production
forests, such as areas oriented for SFM, at the same time as generating environmental im-
pact, advocate ways of mitigating them, such as reduced impact techniques and enrichment
of clearings [85,86].

Pereira-Jr [7] provides a comparative analysis of canopy gap fractions resulting from
CL and RIL in 1996 and 1998. The study demonstrates that CL consistently caused greater
canopy disruption, with total gap percentages reaching 16.5% in 1996 and 21.6% in 1998,
predominantly driven by tree felling and skidding operations. Conversely, RIL exhibited
significantly lower impacts on the canopy, with total gap percentages of 4.9% and 10.9% for
the same years. These findings underscore the efficacy of RIL in minimizing disturbances to
forest canopy structure, highlighting its role as a sustainable logging practice that mitigates
environmental degradation while preserving forest integrity.

Matricardi et al. [16] observed that selective logging impacted, on average, less than
4% of the forest canopy in the Amazon between 1992 and 1999, while in forest degradation
caused by forest fires, forest canopies were affected by more than 30% in the same period of
analysis. In addition, recurrent fires and the opening up of the forest canopy intensify the
drying out of the soil and biomass, degrading the forest and creating favorable conditions
for subsequent fires [87,88]. This cycle compromises the recovery capacity of tropical forests,
making them more susceptible to clear-cutting. This highlights the need for management
and protection strategies to break this cycle of degradation and conservation [89–92].

Recently, Matricardi et al. [19] identified and classified two types of forest degradation
in the Brazilian Amazon: forest degradation dependent on deforestation, which is closely
associated with landscape fragmentation (fragment size and edge effect) in the region,
and degradation independent of deforestation, which is driven by selective logging and
forest fires. The authors observed that most forests selectively logged between 1992 and
2014 remained in the Brazilian Amazon, even when later affected by fires. As a result,
they argue that the conversion of forests for other land uses, such as agriculture or pasture
(deforestation), is a distinct process from selective logging, even though selective logging
of valuable trees is part of the deforestation process [19].

In this context, an important contribution of this study is to indicate that although
several studies treat forest disturbances from legal selective logging as forest degradation,
in practice there are several types of dynamics in the forest canopy, varying in intensity, size,
and impacts resulting from anthropogenic interventions. Therefore, the different types of
anthropogenic interventions need to be properly differentiated and considered, especially
for cases of selective logging and timber harvesting in SFM projects.

Even though areas with SFM have high logging intensities of more than 30 m3·ha−1

and more than 20 individuals logged per hectare, resulting in large and persistent clearings,
these areas are supported by technical and legal aspects, which ensures the sustainabil-
ity/legality of the activity and guarantees that the area has a legal obligation to remain
intact for at least 35 years, as determined by law [9,92]. In this sense, as proposed by
Oliveira et al. [9], areas within SFM with high logging intensities should be monitored
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after logging to assess the dynamics and resilience of the trees and, if necessary, possible
adjustments to improve the current legislation, which defines the temporal, physical, and
ecological parameters for extracting native timber in the Amazon [6,9].

It is therefore important to clearly distinguish disturbances that occur within the
boundaries of sustainably managed areas from those in areas that do not follow these
practices. This definition suggests that any human intervention that occurs outside sus-
tainable management areas, which does not result in total deforestation, can be considered
forest degradation. On the other hand, sustainable management activities, even if they are
intense, are processes of temporary forest disturbance in which the forest recovers and can
be exploited again within cutting cycles, and are therefore not associated with deforesta-
tion [19,92]. Analyzing forest disturbances from the perspective of forest dynamics and
resilience offers numerous opportunities, but also presents significant challenges [7,11]. In
particular, this approach would allow this definition to be generalized and distinguished
from any biases introduced by biased human perspectives [11,93,94].

Furthermore, mistakes in identifying degraded areas and selective logging can under-
mine the credibility of forest conservation and management efforts. This can make securing
funding for conservation projects harder and discourage investment in SFM practices [95].
Public policies and regulations based on incorrect data can be ineffective or have negative
consequences [96]. This can lead to inadequate allocation of public resources for forest con-
servation and management and hinder the implementation of effective strategies for forest
protection [97,98]. Improving the accuracy in classifying forest degradation and selective
logging is crucial for the environmental, economic, and social sustainability of SFM. Invest-
ments in modern monitoring technologies, such as remote sensing and GIS, combined with
robust field validation, are essential to ensure the integrity of forest ecosystems and the
effectiveness of management and conservation policies [9,21,22].

4.2. The Evolution of Monitoring Approaches for Forest Degradation

The evolution of forest degradation mapping highlights significant advancements in
technology, methodology, and understanding of forest dynamics over time. This progress
reflects a transition from traditional techniques to sophisticated technologies like machine
learning and advanced satellite systems.

Early efforts, such as the pioneering study by Nepstad et al. (1999), relied on indirect
methods like sawmill records to estimate forest areas impacted by selective logging due to
the scarcity of remote sensing technologies. These methods, while innovative at the time,
provided limited spatial and temporal insights [13].

The late 1990s and early 2000s marked the beginning of remote sensing applications
for forest degradation mapping. Souza and Barreto (2000) introduced a remote sensing
approach to detect forests impacted by selective logging in Pará, Brazil, utilizing a linear
mixture model and buffer zones [99]. Shortly after, Souza et al. (2003) advanced these tech-
niques with the use of Spectral Mixture Analysis and Landsat imagery [56]. Matricardi et al.
(2005) further refined the use of Landsat images, employing texture analysis to estimate
selectively logged areas in Mato Grosso, Brazil [61]. These studies signaled the transition to
satellite-based mapping, enabling broader spatial coverage and more detailed assessments.

The mid-2000s saw a leap in the adoption of new satellite technologies. The Land-
sat series became essential for forest monitoring due to its extensive historical archive
and multispectral capabilities. Asner et al. (2005) utilized the Carnegie Landsat Analysis
System (CLAS) to map selectively logged forests across the Brazilian Amazon [14], while
Matricardi et al. (2013) applied semi-automatic approaches and texture analysis to achieve
similar goals [16]. These advancements highlighted the growing reliance on Landsat’s
medium-resolution imagery for large-scale assessments. Low-resolution satellites like
MODIS also contributed, particularly in monitoring large-scale degradation due to its high
temporal frequency [66,67]. Yet, limitations in spatial resolution meant these technolo-
gies were less effective in detecting subtle disturbances, such as low-intensity selective
logging [82].
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However, studies began identifying limitations in detecting low-intensity logging
and subtle degradation using medium-resolution sensors, as they often failed to capture
approximately 50% of canopy damage caused by logging operations [7,61].

The past two decades have seen the integration of high-resolution satellites and ad-
vanced technologies into forest monitoring [9,15,18,21,22]. Platforms like PlanetScope
and Sentinel-2 now provide daily, high-resolution imagery, enabling more detailed assess-
ments of forest structure and disturbances [20,22,68,69]. LiDAR technology has become
highly valued for its ability to capture three-dimensional forest structure, tree height,
and biomass [21,100]. LiDAR-based platforms like NASA’s GEDI have revolutionized
large-scale carbon and biomass quantification [73].

Simultaneously, advancements are marked by the introduction of machine learning
and artificial intelligence (AI) techniques [21,22,98]. These technologies have revolution-
ized forest monitoring by enabling the processing of vast datasets and improving accuracy
when detecting and classifying disturbances [33,74]. Algorithms such as Random Forest
and Deep Learning have been increasingly employed to differentiate between natural
disturbances (e.g., storms) and anthropogenic impacts (e.g., selective logging and fires),
offering a higher level of precision than traditional methods [21,22,33,74]. Moreover, ma-
chine learning models have been integrated with data from high-resolution satellites and
LiDAR, providing a multi-faceted approach to monitoring forest degradation [21,100].

Key research institutions have driven these advancements. For example, EMBRAPA
and INPE in Brazil have been pivotal in developing methodologies for monitoring tropical
forests and implementing sustainable forest management practices [36,76–78]. Internation-
ally, universities like that of Sheffield and California have contributed to ecological research
and the application of remote sensing technologies [74,75], while NASA has played a
central role through missions like Landsat and GEDI [73,82].

Despite these advancements, challenges persist, particularly the costs and high com-
putational demands associated with high-resolution data and LiDAR technologies. These
limitations restrict their accessibility to well-funded projects and institutions. Nevertheless,
initiatives like Brazil’s RedeMAIS and Norway’s NICFI program have made high-resolution
satellite data more accessible to public institutions [101,102]. These efforts have democra-
tized forest monitoring by providing high-resolution imagery for use in conservation and
sustainable management [9,22].

The evolution of forest degradation to disturbance mapping reflects a dynamic trajec-
tory of technological innovation. From early manual methods to the adoption of satellite
platforms and the integration of machine learning, these advancements have significantly
enhanced the capacity to monitor and manage forest resources. These technological inno-
vations also allow for better categorization of forest degradation, enabling the distinction
between different types and intensities of disturbances, such as selective logging, fires,
and edge effects. Moving forward, the combination of high-resolution imagery, advanced
algorithms, and collaborative global initiatives will continue to shape the future of forest
monitoring, ensuring more effective and sustainable management practices

4.3. Regional Focus of Studies and the Need for Expansion

SFM areas within conservation units have played a key role in advancing techniques
and tools capable of capturing and quantifying in detail the dynamics of disturbances
and forest regeneration resulting from the selective logging of trees [9,21,22,69]. These
studies are essential to refine and validate strategies that can eventually be applied more
widely across the Amazon biome. This includes developing remote sensing tools that
accurately capture changes in forest cover and different disturbance intensities, regardless
of geographical location [14]. In protected areas, like in the National Forests of Rondônia,
Flona Jamari was the country’s first forest concession in 2008 and Flona Jacundá began
logging in 2014. Both units’ conservation are managed by the Brazilian Forest Service
and operated by private companies [103–105]. The Lower Amazon region has several
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sustainable use conservation units with a long history of forest management, making it a
natural source of research of this nature [9,106].

On the other hand, the Paragominas region in the northeast of the state of Pará is a
model for forest management in the private areas and for being a pioneer in studies of SFM
and the mapping of selective logging using remote sensing [56,107,108]. The Sinop region
has the highest concentration of SFM plans in private areas within the Amazon. It is one of
the largest timber-exporting regions, with numerous companies operating in the timber
sector [61,109,110].

In this regard, studies monitoring anthropogenic forest disturbances and degradation
are mainly focus on the “arc of deforestation” in the Brazilian Amazon (Figure 6) [111–113].
The concentration of studies in this area is largely due to the intense human activity and
rapid land use changes occurring there [43,113]. This region, which spans the southern and
eastern edges of the Amazon, has become a focal point for deforestation due to factors such
as mechanized agriculture, cattle ranching, and logging—often conducted illegally [113].
These activities contribute to a high visibility of forest loss, making it an attractive region
for researchers aiming to study anthropogenic impacts on tropical forests [62–65,113].

However, despite regional focus, this study has been significantly advanced through
remote sensing techniques, each offering distinct capabilities for monitoring and analysis.
The Linear Spectral Mixture Model (LSMM) excels in decomposing spectral signals into in-
dividual components, enabling the detection of subtle changes in forest composition [56,80].
Random Forest is widely used for classifying vegetation and monitoring changes in forest
cover [98], while visual classification remains relevant in scenarios requiring human inter-
pretation of specific vegetation characteristics [56]. Tools like the Carnegie Landsat Analysis
System (CLAS) and indices such as the Normalized Difference Vegetation Index (NDVI)
and the Normalized Difference Fraction Index (NDFI) are critical for monitoring vegetation
vigor and identifying degraded areas, particularly within SFM contexts [40,58,59]. Addi-
tionally, the Difference Relative Normalized Burn Ratio (∆rNBR) is vital for assessing fire
severity and informing recovery efforts [59,60], while texture analysis provides detailed
insights into vegetation structure [16,19,32,61]. Advanced techniques such as Deep Learn-
ing (DL) leverage neural networks to detect complex patterns in large datasets, further
expanding the potential of remote sensing in forest monitoring [21,22,114].

To enhance the practical value of this research for decision-makers, there is a need
to align technical advancements with real-world applications. For instance, integrating
NDVI and ∆rNBR can provide actionable insights for post-fire recovery planning and
monitoring the impacts of climate change on vegetation health [58,60]. Similarly, advanced
techniques like Deep Learning could be applied to predict degradation hotspots under
future climate scenarios by combining satellite data with local environmental variables [22].
By combining advanced remote sensing techniques, such as LSMM, NDVI, and Deep
Learning, with on-the-ground validation in less-studied regions, researchers can generate
a holistic understanding of forest dynamics [21,22,58,60]. This comprehensive approach
will inform adaptive management strategies and policies that promote the resilience of
Amazonian forests, ensuring their ecological, economic, and social benefits for future
generations [111,112].

With climate change intensifying extreme events and altering climate patterns in the
Amazon, there is an increasing need to expand the focus of forest degradation and dis-
turbances studies beyond the “arc of deforestation” [17,34,111]. Although this region is a
critical point of research due to intense human activities, forests located in more remote and
dense areas of central and western Amazon are also vulnerable to the impacts of climate
change and anthropogenic actions [115]. These historically less-studied areas may face new
challenges, such as severe droughts and more frequent fires, which compromise the natural
regeneration of forests and increase the risks of degradation [17,31,115,116]. Expanding
research to include less-studied, densely forested regions in the central and western Ama-
zon, where traditional, community-based, and low-impact logging practices may be more
prevalent, would provide a more comprehensive understanding of forest disturbance and
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degradation patterns across the Amazon [116]. This broader approach could improve forest
management practices by incorporating the diversity of forest conditions and disturbances
across different parts of the biome [21,117]. Comprehensive data from underrepresented
regions can guide public policies and management practices, promoting the resilience and
long-term sustainability of Amazonian forests [17,31,118,119].

Expanding the focus of studies to include these less-impacted regions is essential for
understanding how different parts of the biome respond to the combined pressures of
human activities and extreme climate events [120–122]. This enables the development of
adaptive monitoring and management strategies that consider the diverse environmental
conditions across the Amazon, ensuring a more robust approach to conservation [123].
Comprehensive and context-specific data on these areas could guide public policies and
management practices that promote the resilience of Amazonian forests to climate change,
supporting the long-term sustainability of the entire ecosystem [17,31,114,115].

In summary, while the focus of research has been on the arc of deforestation, it is
crucial to expand research and discussion to monitor degradation and anthropogenic
disturbances in the forest on a broader scale [116]. This expansion should include other
regions of the Amazon that are less studied but equally important, as they are heavily
forested and face serious challenges that warrant balanced scientific attention [33,112,115].
Notably, further research is needed to monitor selective logging across the entire Amazon.
To date, only one notable study [16,19] has distinguished selective logging from fire-affected
areas throughout the legal boundaries of the Amazon. Here, we have addressed the main
achievements of remote sensing and new technologies in assessing forest disturbances in
tropical regions, as well as the challenges related to the concepts of forest degradation and
forest management. Altogether, this work provides a valuable contribution to researchers,
policymakers, and forest practitioners, helping to improve forest management, regulation,
and conservation.

5. Conclusions

This study highlights advancements in monitoring forest degradation and distur-
bances within the Amazon biome, emphasizing the critical role of remote sensing technolo-
gies and sustainable forest management (SFM) practices. By synthesizing key methodolo-
gies, such as Linear Spectral Mixture Models (LSMM), Normalized Difference Vegetation
Index (NDVI), and emerging techniques and technologies like Deep Learning and LiDAR,
we demonstrate how these tools have transformed our ability to monitor and assess forest
dynamics. These advancements allow for more precise categorization of disturbances,
distinguishing temporary impacts associated with SFM from more severe degradation
caused by illegal logging, fires, and other anthropogenic activities.

While much of the research remains concentrated in the “arc of deforestation”, the need
to expand the geographic focus of studies to include less-impacted and under-researched
regions is critical. Areas in the central and western Amazon, characterized by dense forests
and traditional or low-impact logging practices, offer valuable insights into forest resilience
and the diverse impacts of anthropogenic and climatic pressures. Addressing this research
gap would provide a more comprehensive understanding of forest degradation across the
entire biome, ensuring that findings are representative of the Amazon’s full complexity.

Climate change adds urgency to this endeavor, as the intensification of extreme events,
such as severe droughts and fires, threatens the regeneration capacity of Amazonian forests.
Expanding studies to underrepresented regions will enable the development of adaptive
management strategies that are responsive to local environmental conditions and resilient
to climatic variations. This approach is essential to support the long-term sustainability of
the Amazon and its vital ecological, economic, and social functions.

Policymakers and forest practitioners can benefit greatly from the integration of
advanced monitoring tools with field-based validation. Providing actionable insights, such
as identifying degradation hotspots and assessing post-disturbance recovery, will help
refine forest management policies, improve REDD+ initiatives, and promote more effective
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conservation strategies. The distinction between forest degradation and SFM must be clear
in policy frameworks to ensure that temporary, managed disturbances are not conflated
with permanent degradation, preserving the credibility and sustainability of SFM practices.

The proposal presented here, which calls for differentiating types of forest disturbance,
especially to separate low-impact sustainable management areas from other forms of
medium- and high-intensity degradation, represents a significant advancement in assessing
forest disturbance in terms of intensity, size, agents, causes, and impacts. These criteria
help make a clearer distinction between sustainable management practices and other levels
of disturbance that structurally compromise forest integrity and conservation.

Future research should focus on refining definitions of forest degradation and enhanc-
ing monitoring methods. This includes developing more precise, standardized criteria for
defining and assessing forest degradation across different regions and contexts. Further
research could also explore advanced remote sensing techniques, such as machine learning
models integrated with high-resolution data, to improve the classification and discrimina-
tion of various forest disturbance types. Additionally, long-term studies on the ecological
recovery and resilience of forests after different intensities of disturbance could provide
valuable insights for sustainable management practices. Such research would contribute
to a more comprehensive understanding of degradation processes, ultimately supporting
more effective conservation and management strategies.

In summary, this study underscores the need for a broader, more inclusive research
agenda that captures the full spectrum of forest dynamics across the Amazon. By combining
technological innovations, regional insights, and robust monitoring strategies, researchers
and practitioners can contribute to the resilience and sustainability of Amazonian forests,
ensuring their preservation for future generations. This comprehensive understanding is
indispensable for shaping effective public policies and advancing global efforts to mitigate
climate change and protect tropical forests.
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