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ABSTRACT

We present a computational model of networked neurons developed to study the effect of temperature on neuronal synchronization in the
brain in association with seizures. The network consists of a set of chaotic bursting neurons surrounding a core tonic neuron in a square
lattice with periodic boundary conditions. Each neuron is reciprocally coupled to its four nearest neighbors via temperature dependent gap
junctions. Incorporating temperature in the gap junctions makes the coupling stronger when temperature rises, resulting in higher likelihood
for synchrony in the network. Raising the temperature eventually makes the network elicit waves of synchronization in circular ripples that
propagate from the center outwardly. We suggest this process as a possible underlying mechanism for seizures induced by elevated brain
temperatures.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0219836

In the brain, temperature fluctuates a small amount around the
normal physiological baseline of 38 ◦C.1 Excess of this value by
a few degrees can cause cognition impairment, brain damage,
aggravated sleep disorders,2,3 and neuronal pathologies.4 High
temperature affects neurons’ excitability by altering the rate at
which ions flow in and out of the cell. At elevated temperatures,
the flow tends to be faster, making neurons spike at higher fre-
quencies, and possibly requiring stronger coupling to produce
neuronal synchrony that could lead to the onset of a seizure.5–7

Here, we present a temperature dependent network of neurons
that illustrates this process. The network contains 225 neurons
in a 15×15 lattice with periodic boundary conditions, displaying
a tonic neuron at the center and all the other neurons burst-
ing. The neuronal equations feature temperature dependence via
Arrhenius functions attached to the ion channels’ conductances
and activation/deactivation variables. Each neuron is connected
to its four nearest neighbors by reciprocal gap junctions in the
standard diffusive coupling, containing an additional Arrhenius
function that extends the influence of temperature to the connec-
tions between neurons. The idea is that, similarly to membrane

ion channels allowing the flow of ions between the inside and
the outside of the cell, gap junctions allow the direct flow of ions
between neurons and therefore subject to a temperature influence
analogous to the case of ion channels. This implementation of the
Arrhenius factor in the network gap junctions is consistent with
experimental work in biological cells,5,8,9 yielding waves of syn-
chrony across the network that mimic the behavior of neurons
undergoing a seizure.10,11

I. INTRODUCTION

Chaos synchronization though presently well known and
understood, still defies common sense. When first introduced in
the literature,12 synchronization of chaotic systems came as a sur-
prise, given the typical exponential divergence of chaotic trajecto-
ries started at slightly different initial conditions.13,14 Nonetheless,
chaotic systems may synchronize depending on their nature and
strength of the coupling connecting them. Among the several kinds
of chaotic synchronization that have been identified,15 a peculiar
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type of synchronization involves oscillating systems that have their
phases in step with each other (their phase differences remain
less than 2π) while their amplitudes stay uncorrelated, known as
phase synchronization.16 Phase synchronization is present in many
systems including the brain.17–20 Synchrony of brain functions is
crucial for the preservation of life, playing important roles in sleep

cycles and memory consolidation,21,22 but can also be troubling in
association with certain neurological disorders including epilepsy,
Alzheimer’s and Parkinson’s disease.23–26

In this manuscript, we elaborate on the case of a compu-
tational network of neurons displaying traveling waves of phase
synchrony that start at the center of the grid and move outwardly

FIG. 1. Membrane voltage traces for (A) gsK(Ca) = 0.3, (B) gsK(Ca) = 0.31, (C) gsK(Ca) = 0.45, (D) gsK(Ca) = 0.4411, (E) gsK(Ca) = 0.45, (F) gsK(Ca) = 0.4575, (G) gsK(Ca) =

0.458, (H) gsK(Ca) = 0.5. (I) Firing patterns in the parameter space.
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as circular ripples of periodic waves. This kind of neuronal output
is akin to abnormal synchronization, due to high activity of neu-
rons in the brain, causing seizures possibly associated with epilepsy.
Epilepsy is a dysfunction characterized by the occurrence of repeated
seizures, placed among the most prevailing brain disorders, and
affecting more than 50 million people around the globe.27 Epilepsy
typically elicits recurring seizures with involuntary tremors, some-
times including slips of attention or loss of consciousness. It is an
extremely debilitating brain disorder, often precluding patients from
leading a normal life and from being less dependent on caregivers.
The fact that roughly 75% of epilepsy cases begin in childhood
indicates that the developing brain is more susceptible to seizures.28

Triggered by fever typically above 38 ◦C,29 febrile seizures affect
2% to 5% of children. They are an age-dependent response of the
developing brain to fever, occur in children from 6 months to 5 years

of age, and in general feature a seizure accompanied by fever, but
the fever is not associated with an intracranial infection or a defined
cause.30 Although febrile seizures are thought to be not life threaten-
ing, there is up to 9% risk of a child developing epilepsy after having
febrile seizures, especially if the child has pre-existing neurological
impairment, a family history of epilepsy, or a complicated febrile
seizure (prolonged, focal, recurrent).31 Additionally, there has been
evidence that a proportion of children with sudden unexplained
death in childhood had a history of febrile seizures, suggesting that
febrile seizure may increase the risk for sudden unexplained child
death.32

Body temperature regulation in many living organisms is cru-
cial for their survival. In humans, small fluctuations around 37◦C
occur naturally as part of the circadian rhythm. Healthy individuals
experience a mean daily temperature variation of 0.5◦C, reaching a

FIG. 2. Firing pattern and frequency color maps for a range of slow potassium and calcium conductances at T = 38 ◦C, plates (A) and (B); and at T = 41 ◦C, plates (C)
and (D).
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minimum around 4 A.M. and a maximum around 6 P.M. Larger
variations of a few degrees below or above 37◦C for an extended
period of time can be harmful.33

In the brain, an organ with only 2% of the whole body mass
and still using 25% of the total body glucose consumption and 20%
of the total oxygen utilization, the average temperature is higher, at
38.5◦C. While the brain temperature can fluctuate 2–4◦C within the
normal physiological range,1 increased core temperature is known to
affect brain function. High temperatures have been associated with
sudden infant death syndrome (SIDS),34 can cause cognition impair-
ment, aggravate sleep disorders, and trigger seizures.2,3 In view of
the current reality of increased numbers of extreme weather events
including heat waves, there are serious concerns that neurological
disorders in general, and epilepsy in particular, will become more
pervasive.4,35,36 Even though the large amount of research work done
on the seizures triggering mechanisms, there still is much to be
learned, particularly in the case of seizures linked to temperature.

II. NEURONAL MODEL EQUATIONS

The model neuron used in the network is based on the
landmark equations developed by Alan Hodgkin and Andrew
Huxley,37,38 comprising differential equations for the voltage across
the cell membrane, and the functions for potassium channel
activation and sodium channel activation and inactivation, as time-
dependent variables. As an extension of the Hodgkin–Huxley equa-
tions, the Huber–Braun model implemented here also comprises
four differential equations but including two slow currents, depolar-
ization for sodium and repolarization for potassium. These peculiar
features grant the Huber–Braun model the capability for generat-
ing a wide range of patterns of action potentials, including tonic
(regular fast spiking), bursting (trains of regular fast spiking inter-
spaced with longer subthreshold oscillations), and chaos (irregular
spiking),39,40 as illustrated in the voltage vs time graphs (A) through
(H) in Fig. 1. Dynamical transitions between states of tonic and
bursting firings mediated by chaos are of particular relevance in this
model41,42 and play important roles on how temperature43,44 affects
neuronal output.

The time evolution of the potential V across the cell membrane
is given by

CV̇ = −Ileak − INa − IK − IsNa − IsK(Ca) − Iinj, (1)

where C is the membrane capacitance and Iinj is a constant injected
current used as control parameter. The leak current, here approxi-
mated to be ohmic, is written as Ileak = gleak(V − Vleak), where gleak

is the leak conductance and Vleak is the corresponding equilibrium
potential. The fast and slow currents for sodium and potassium
mentioned above and labeled Na, K, sNa and sK(Ca), respectively,
are written as In = ρgnan(V − Vn) where n denotes Na, K, sNa, or
sK(Ca). Vn represents the equilibrium potential for the nth corre-
sponding current, gn the nth maximum conductance, and ρ(T) is the
Arrhenius temperature function for the ionic currents.

Characteristic time constants τn control the opening and clos-
ing of the various ion channels, with the sodium channels, in
particular, considered to activate rather quickly, with an activation
function given by aNa = 1

1+e
−sNa(V−V0Na

) , where sNa sets the slope of

the sigmoidal curve and V0Na corresponds to the half-activation

potential. The equations for the other three activation variables are

ȧK =
φ

τK

(aK∞ − aK), (2)

ȧsNa =
φ

τsNa

(asNa∞ − asNa), (3)

ȧsK(Ca) = −
φ

τsK(Ca)

(νaccIsNa + νdepasK(Ca)). (4)

The activation functions aj∞ are modeled by sigmoidal steady state
curves given by an∞ = 1

1+e−sn(V−V0 n) , n = K, sNa, sK(Ca).

In this model, aNa ≡ aNa∞ as a result of the very fast Na+

channel activation. Ca++ accumulation and depletion are included,
respectively, in νacc and νdep, and φ(T) is the Arrhenius tem-
perature function for the activation/deactivation variables. The
Arrhenius functions ρ(T) and φ(T) are here written as ρ(T)

= ρ
(T−Tref)/10◦C

0 and φ(T) = φ
(T−Tref)/10◦C

0 , where ρ0 = 1.3, φ0 = 3.0.
These are temperature scaling parameters borrowed from the Arrhe-
nius law relating chemical reaction rates to a temperature change of
10 ◦C,45,46 where T is the neuron’s temperature and Tref is a reference
temperature that can be conveniently adjusted to allow the model
be applied to a variety of settings.44,47 For the purpose of this work,

FIG. 3. Bifurcation diagram and firing rate for the neuron model as a function of
gsK(Ca) for (A) T = 38 ◦C (dark-blue, left y axis for the interspike interval) show-
ing a route to chaos through period doubling cascade. Neuronal firing rate shown
in the same plot (light-blue, right y axis). (B) T = 41 ◦C left y axis for the inter-
spike interval (burgundy) and neuronal firing rate right y axis shown in the same
plot (red).

Chaos 34, 083141 (2024); doi: 10.1063/5.0219836 34, 083141-4

Published under an exclusive license by AIP Publishing

 06 Septem
ber 2024 14:52:47

https://pubs.aip.org/aip/cha


Chaos ARTICLE pubs.aip.org/aip/cha

we set the baseline normal temperature of the brain at T = 38 ◦C
and the reference temperature at Tref = 60 ◦C. The computer sim-
ulations were carried out by applying the standard Runge–Kutta
fourth-order numerical integration method with 0.1 ms step of inte-
gration, and unless otherwise explicitly mentioned in the text, the
parameter values used throughout this work are as shown in the
Appendix.

Among the various physiologically relevant parameters in the
Huber–Braun model, the potassium calcium-dependent slow repo-
larization conductance gsK(Ca) provides a useful control for creating
a wide range of neuronal output patterns, as shown in the color map
of Fig. 1(I), with gsK(Ca) on the x axis and gsNa on the y axis, and col-
ors coded with the voltage traces (A) through (H). The voltage traces
and color map shown in Fig. 1 are for the case where the neuron is
at its baseline temperature of 38 ◦C.

III. TEMPERATURE AS SEIZURE FACILITATOR

A. Temperature effects on the single neuron

dynamics

Temperature changes can affect the neuronal behavior as illus-
trated in Fig. 2 showing the different types of voltage patterns [color
coded with the voltage traces in Fig. 1 graphs (A) through (H)], and
frequency (color coded with the vertical color bar in Hertz on the
right-hand side of the figure), in gsNa vs gsK(Ca) parameter space for
T = 38 ◦C [top panels (A) and (B)], and T = 41 ◦C [bottom panels
(C) and (D)]. In particular, this variation in temperature modifies
the curved borderline [red stripe going from the top right-hand side
of the color maps (A) and (C) downward bending to the left-hand
side], separating the tonic area (cyan) from the chaos/bursting areas
(red and other colors). The gray (resting potential) area at T = 41 ◦C

FIG. 4. Raster plots of spiking times for (A) η = 0.0, (B) η = 0.5, (C) η = 1.0 (left-hand side panels), along with the corresponding frames, each at time t = 2500ms
(right-hand side panels). Synchronization index are R(A) = 0.1, R(B) = 0.13 and R(C) = 0.27. Normal brain temperature at T = 38 ◦C.
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is slightly smaller in panel (C) than in panel (A) at T = 38 ◦C, indi-
cating more active neurons at higher temperatures. Overall, the
neurons in panel (D) at T = 41 ◦C fire at higher rates compared to
the corresponding ones in panel (b) at T = 38 ◦C, noticeable by the
area in panel (D) with yellow/orange/red coded frequencies being
larger than the corresponding area in panel (B). This increase in the
neuron’s firing rate with increase in temperature may play a role in
the mechanism underlying neuronal synchronization under higher
temperatures.

A cross section of the maps in Fig. 2 at gsNa = 0.25 showing
the dynamics of the single neuron for 0 ≤ gsK(Ca) ≤ 0.5 is displayed
in Fig. 3, with panel (A) showing the bifurcation diagram and fir-
ing rate for T = 38 ◦C, and panel (B) showing the same graphs for
T = 41 ◦C. For both temperature cases, the bifurcation diagrams
exhibit the typical tonic-bursting chaotic transition,42 with temper-
ature enacting seemingly minor but relevant changes, especially the
overall increase in the neuron’s firing rate at higher temperatures.

For example, for gsK(Ca) ≈ 0.05 (tonic) at 38 ◦C, the neuron’s
firing rate is 10.2 Hz going up to 14 Hz at 41 ◦C. However, for the
same two temperatures, the corresponding increase in the firing rate
for a neuron with gsK(Ca) ≈ 0.31 (bursting) is from 2 to 3 Hz. This
means that if the two neurons were to be coupled to become syn-
chronized, it would be more likely that they would synchronize in
a tonic regime at T = 41 ◦C, given the more predominant firing
rate of the tonic neuron compared to that of the bursting neuron
at a higher temperature.44,48 However, it might be the case that tem-
perature increase by itself would not be sufficient for the neurons
synchronize, requiring additional action from another process to
achieve synchronization.

The tonic-bursting transition49 mediated by chaos discussed
here is known to be associated with a number of neuronal fea-
tures and processes including ion channel conductances,42 cou-
pling strength in networks,48 neuromodulation,50 and temperature.44

Here, we are interested in understanding how temperature increase
can affect neuronal synchronization and potentially lead to the onset
of seizures.

B. Networked neurons

Our neuronal network consists of a regular square lattice with
periodic boundary conditions containing 15×15 neurons recipro-
cally connected via gap junctions, or electrical synapses, to their four
next-door neighbors. The core central neuron (112) is selected to be
in the tonic regime (gsK(Ca) = 0.05), and the remaining 224 neurons
are chosen to be in the bursting regime with gsK(Ca) values in a ran-
dom uniform distribution in the interval [0.31, 0.33]. Gap junctions
are associated with fast flow of ions between neurons and considered
to be part of important synchronizing mechanisms in the brain, par-
ticularly in the case of seizures.51–54 The synapses in our model are
implemented by including a diffusive coupling current Icoupl,i into
Eq. (), which now reads

CV̇i = −Ileak − INa − IK − IsNa − IsK(Ca) − Iinj − Icoupl,i, (5)

with

Icoupl,i = η

N∑

j=1

Aijγ (T)(Vj − Vi), (6)

in which η is the coupling strength, N is the total number of neu-
rons, Aij is the adjacency matrix, γ (T) is the Arrhenius function,
and Vi and Vj are the instantaneous voltages across the mem-
branes of neurons i and j, respectively. The Arrhenius function γ (T)

= γ
(T−Tref)/10◦C

0 is here introduced following the standard modeling
of temperature dependency for individual neuronal [see the equa-
tions for ρ(T) and φ(T) in the text below Eq. (4)]. Given that gap
junctions can be viewed as channels for the direct flow of ions
between neurons, we implemented in our network model gap junc-
tions with the equivalent temperature dependency. The idea is that
gap junctions should have their own dependency on temperature,
akin to the ionic currents’ dependency. This implementation follows
a heuristic approach and is consistent with experimental outputs
obtained from measurements in cardiac cells8 and in induced pairs
of transfected human HeLa cells.9

In order to characterize the collective dynamics of the network,
we use the synchronization index R given by

R =
〈X2〉 − 〈X〉2

1
N

∑N
i=1[〈Vi

2〉 − 〈Vi〉
2]

, (7)

where X = 1
N

∑N
i=1 Vi, N is the number of neurons, Vi is the voltage

over time, and 〈•〉 represents the mean variable over time. Neu-
rons in the network simulations are initiated with random initial
conditions, the first 70 000 transient points are eliminated, and the
synchronization index is computed over 50 000 data points after the
transient. The synchronization index R gives values between 0 and 1,
where 0 means no synchronization, 1 means complete synchroniza-
tion, and any value between 0 and 1 means partial synchronization.
The synchronization measure used in this work is applied to the

FIG. 5. Synchronization index R for increasing values of the coupling strength for
T = 38 ◦C and T = 41 ◦C. Empty square line (T = 38 ◦C) and empty circle line
(T = 41 ◦C) are for another set of random initial conditions..
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FIG. 6. (A) Raster plot of spiking times for T = 38 ◦C, η = 1.23, (B) snapshots of neuron’s voltage at times t = 570ms, t = 590ms, t = 600ms, and t = 610ms.
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FIG. 7. (A) Raster plot of spike times for T = 41 ◦C, η = 1.23; (B) snapshots of neuron’s voltage at times t = 740ms, t = 760ms, t = 770ms, and t = 780ms.
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noiseless network synchronized in the periodic tonic regime, where
complete and phase synchronization may overlap. This is not the
case in phase synchronization with stochastic resonance where the
phases and the amplitudes of the wave may not overlap and need to
be distinguished from each other.43,55

Initially, we investigate the case of maintaining the neurons at
the brain’s normal temperature, T = 38 ◦C, with increasing values
of the coupling strength η. Our simulations indicate that starting
with no coupling (η = 0), where the neurons fire independently of
each other [Fig. 4(a)], the network output evolves to sparse spots of
synchronous behavior for η = 0.5 [Fig. 4(b)], and to a more struc-
tured but still incomplete synchronous state for η = 1 [Fig. 4(c)].
The corresponding raster plots24 and snapshots of the network activ-
ity shown in Fig. 4 illustrate the trend, confirmed by the respective
values for the synchronization index as R(A) = 0.10, R(B) = 0.13, and
R(C) = 0.27.

Figure 5 shows how the synchronization index R responds to
increasing values of the coupling constant η for the temperatures of
38 and 41 ◦C, using two different initial conditions for each tem-
perature. The blue lines with empty and filled squares correspond to
T = 38 ◦C and the red lines with empty and filled circles correspond
to T = 41 ◦C. For increasing values of the coupling strength starting
at η ≈ 0.5 the synchronization index also increases, but for η > 1,
higher values of R are consistently obtained at T = 41 ◦C compared
to those at T = 38 ◦C. This indicates that higher temperature is facil-
itating more synchronization among the neurons as a direct result of
the implementation of the Arrhenius function in the synapses.

Our network, as a lattice with a tonic neuron at the center
surrounded by bursting neurons, is intended to mimic the behav-
ior of a focal seizure, displaying waves of synchronization start-
ing at the center and spreading radially in approximate circular

FIG. 8. Synchronization index for coupling constant η = 1.23 with increasing
temperature values.

formation.10,56,57 Figure 6 raster plot (a) and wave propagation (b)
show the initial formation of incomplete waves for η = 1.23 and
T = 38 ◦C, possibly depicting the pre-ictal (aura) stage of the
seizure. The raster plot, 6(a), shows the center tonic neuron (112)
spiking but not in synchrony with its surrounding neighbors, result-
ing in an incomplete outgoing wave with a frequency of about 2 Hz,
visualized in the four panels of 6(b) with snapshots of the neu-
rons instantaneous voltages taken at times t = 570 ms, t = 590 ms,
t = 600 ms and t = 610 ms. As the temperature increases to
T = 41 ◦C characterizing a febrile state, the central neuron synchro-
nizes with its neighbors as shown in the raster plot, Fig. 7(a), and
the snapshots of neuronal activity in the panels of Fig. 7(b), display-
ing typical waves in ripples as observed in ictal states in the human
brain.11 A more quantitative view of how temperature affects syn-
chrony in the network is depicted in Fig. 8, showing the overall
increase of the synchronization index R with higher temperatures
for η = 1.23.

We emphasize that the only difference between the cases
depicted in Figs. 6 and 7 is the temperature of the system, at 38 and
41 ◦C, respectively. In this implementation, the system evolves from
a pre-ictal state, with initiation of incomplete waves of synchronous
waves at 38 ◦C, to the total domination of complete synchronous
waves typical of seizures at the ictal state at 41 ◦C.

IV. DISCUSSION

Temperature is among a number of potential causes lead-
ing to the onset of seizures, especially if the person already has
a pre-existing condition conducive to the event. Higher temper-
atures increase the excitability of neurons which could facilitate
synchronization in connection with their increased coupling. This is
a main feature of the neuronal network presented in this work. We
implemented an Arrhenius function in the gap junctions connecting
the neurons, resulting in coupling strengthening with temperature
increase.

The model we propose here is primarily aimed at mimicking
the onset of partial (focal) seizures,58–60 i.e., seizures localized in a
brain region with excessive synchronous activity directly linked to
high fever or conditions leading to a heat stroke. Partial epileptic
seizures can be treated effectively with focal cooling, indicating that
while higher temperatures may induce seizures, lower temperatures
may not only stop them but also prevent them from happening.61

The introduction of noise to the system in the context of stochas-
tic resonance43,55 might enhance synchronization, which if com-
bined with temperature, would be a compounding agent producing
cumulative effects facilitating the onset of seizures.

Our network model can be adjusted for studying general-
ized seizures,62 characterized by abnormal electrical activity that
starts simultaneously in both hemispheres of the brain. This type
of synchronization at a distance may be identified as remote
synchronization,63–65 in which case our insights and methods could
be applied for studying synchronization of far apart systems, partic-
ularly systems that are directly related to climate change.66

Moreover, the network model proposed here can be adjusted to
study neuropathologies related to sleep, memory, and Parkinson’s
disease, for example. The topic is of relevance not only to neurolog-
ical disorders but also to study the adaptability of living organisms
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to a quickly changing climate, especially in the context of warming
environments.
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APPENDIX: MODEL PARAMETERS

gleak = 0.1 mS/cm2, Vleak = −60 mV, Iinj = 1.0,
gNa = 1.5 mS/cm2, VNa = 50 mV, V0Na = −25 mV,
gK = 2.0 mS/cm2, VK = −90 mV, V0K = −25 mV,
gsNa = 0.25 mS/cm2, VsNa = 50 mV, V0sNa = −40 mV,
gsK(Ca) = 0.25 mS/cm2, VsK(Ca) = −90 mV, C = 1 µF/cm2,
τK = 2.0 ms, τsNa = 10.0 ms, τsK(Ca) = 20.0 ms,
sK = 0.25 mV-1, ssNa = 0.09 mV-1, ssNa = 0.25 mV-1,
νacc = 0.17, νdep = 0.012, ρ0 = 1.3, φ0 = 3.0, γ0 = 4.0,
Tref = 60 ◦C, Tnormal = 38 ◦C.
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