
     

LETTER • OPEN ACCESS

Quantifying landscape fragmentation and forest
carbon dynamics over 35 years in the Brazilian
Atlantic Forest
To cite this article: Igor S Broggio et al 2024 Environ. Res. Lett. 19 034047

 

View the article online for updates and enhancements.

You may also like
Turnover rates of regenerated forests
challenge restoration efforts in the
Brazilian Atlantic forest
Pedro Ribeiro Piffer, Marcos Reis Rosa,
Leandro Reverberi Tambosi et al.

-

Engagement of scientific community and
transparency in C accounting: the Brazilian
case for anthropogenic greenhouse gas
emissions from land use, land-use change
and forestry
M M C Bustamante, J S O Silva, R Z
Cantinho et al.

-

Evidence of time-lag in the provision of
ecosystem services by tropical
regenerating forests to coffee yields
Adrian David González-Chaves, Luísa
Gigante Carvalheiro, Pedro Ribero Piffer
et al.

-

This content was downloaded from IP address 200.130.19.189 on 01/04/2024 at 11:53

https://doi.org/10.1088/1748-9326/ad281c
/article/10.1088/1748-9326/ac5ae1
/article/10.1088/1748-9326/ac5ae1
/article/10.1088/1748-9326/ac5ae1
/article/10.1088/1748-9326/aabb37
/article/10.1088/1748-9326/aabb37
/article/10.1088/1748-9326/aabb37
/article/10.1088/1748-9326/aabb37
/article/10.1088/1748-9326/aabb37
/article/10.1088/1748-9326/acb161
/article/10.1088/1748-9326/acb161
/article/10.1088/1748-9326/acb161
https://pagead2.googlesyndication.com/pcs/click?xai=AKAOjstb6ev51xUGoBGAyfTEPa6-xKt5WZWF8fJn57OChtUtUXP2FWSVZxSrdnL-Z_Zc494-NHuMvZcezRpUKWcCpyphwQdkNYJAP0togcR2j4A_aLuk5vYkFgLb4fOGyfNsPBfTNRf6KPAPcWJjazMz31V0MGy567b8xoyP4M3nOmkcwSW7gHbhLcT_nEzKhCG3UH8UO6W3cJ8P67gY83Tlr0vNmWpnIaVEh1Le7RPf5dOvvd91s0PP_3S_hGdXksHSiAM8Qs9ZXnQZU_CtcbfzczsTMZ23N4DwCKRlJ6vlKCEEOLq7KpV2tyompJ4os44Bdi5NCJGyYYKdfsJYIVgH02c&sig=Cg0ArKJSzG_mH6ZAxBAe&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://www.owlstonemedical.com/breath-biopsy-complete-guide/%3Futm_source%3Djbr%26utm_medium%3Dad-b%26utm_campaign%3Dbb-guide-bb-guide%26utm_term%3Djbr


Environ. Res. Lett. 19 (2024) 034047 https://doi.org/10.1088/1748-9326/ad281c

OPEN ACCESS

RECEIVED

11 September 2023

REVISED

18 December 2023

ACCEPTED FOR PUBLICATION

9 February 2024

PUBLISHED

11 March 2024

Original content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

LETTER

Quantifying landscape fragmentation and forest carbon dynamics
over 35 years in the Brazilian Atlantic Forest
Igor S Broggio1,4,8,∗, Celso H L Silva-Junior3,5,7,8, Marcelo T Nascimento1,4, Dora M Villela1,4
and Luiz E O C Aragão2,6,8
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Abstract
The Brazilian Atlantic Forest (AF) covers 13% of Brazil but retains only 26% of its original forest
area. Utilizing a Morphological Spatial Pattern Analysis (MSPA), we generated 30 m spatial
resolution fragmentation maps for old-growth and secondary forests across the AF. We quantified
landscape fragmentation patterns and carbon (C) dynamics over 35 years using MapBiomas data
between the years 1985 and 2020. We found that from 1985 to 2020 the forest suffered continuous
fragmentation, losing core (nuclei forest fragments) and bridge (areas that connect different core
areas) components of the landscape. About 87.5% (290 468.4 km2) of the remaining forest lacked
core areas, with bridges (38.0%) and islets (small, isolated fragments) (35.4%) being predominant.
Secondary forests (1986–2020) accounted for 99 450.5 km2 and played a significant role in
fragmentation pattern, constituting 44.9% of the areas affected by edge effects (perforation, edge,
bridge, and loop), 53.7% of islets, and comprising only 1.4% of core forest. Additionally,
regeneration by secondary forests contributed to all fragmentation classes in 2020. Even with the
regrowth of forests, the total forested area in the biome did not increase between 1985 and 2020.
Deforestation emissions reached 818 Tg CO2, closely paralleled by edge effects emissions at 810 Tg
CO2, highlighting a remarkable parity in C emissions between the two processes. Despite slow
changes, AF biome continues to lose its C stocks. We estimated that around 1.96 million hectares
(19 600 km2) of regenerated forest would be required to offset the historical C emissions over the
analysed period. Hence, MSPA can support landscape monitoring, optimizing natural or active
forest regeneration to reduce fragmentation and enhance C stocks. Our study’s findings are critical
for guiding land-use policies focusing on minimizing emissions, promoting forest regrowth, and
monitoring its permanence. This study offers biome scale, spatially explicit information, critical for
AF conservation and management.

1. Introduction

The main contributors to fragmentation of remain-
ing forests globally are deforestation and degradation

(Taubert et al 2018). Understanding landscape struc-
ture overtime and its impacts on carbon (C) stocks
is critical for the sustainable management of tropical
forests (Turner and Gardner 2015, McDowell et al
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2020) The patch–corridor–matrix model (Forman
1995) efficiently characterizes landscape spatial struc-
ture. It serves as a foundational framework for study-
ing ecological processes over space and time. (Wiens
1995, Schröder and Seppelt 2006, Turner and Cardille
2007, Haddad et al 2015).

The Brazilian Atlantic Forest (AF), recognized as
a significant biodiversity hotspot (Myers et al 2000)
and currently an area of global restoration priority
(Strassburg et al 2019), has a history of extensive frag-
mentation. Studies have utilized metrics such as frag-
ment size, edge area, and isolation-related approaches
to characterize fragmentation status (Vos et al 2001,
Urban 2005). Additionally, landscape metrics have
been employed to assess AF fragmentation by ana-
lysing the spatial distribution of forest remnants at
biome scale (Ribeiro et al 2009, Rezende et al 2018,
Rosa et al 2021).

However, to understand how changes in land-
scape configuration affect the integrity of remain-
ing forests and their capacity to maintain ecosys-
tem services, such as C storage, biodiversity and
water cycle, time continuous fragmentation assess-
ment must necessarily be associated with deforesta-
tion monitoring information.

The latest deforestation report for the AF showed
that over 300 km2 (30 012 ha) of forests were lost
in 2022. In that year alone, there were 7905 verified
deforestation alerts, marking a significant increase
of 53.7% in relation to 2021. Alarmingly, 99.8% of
these alerts exhibited signs of illegality. The ‘Mata
Atlântica em Pé’ operation monitored 1279 alerts in
17 states, leading to fines totalling over R$ 48 million
(MapBiomas 2023).

Furthermore, recent proposed legislative changes,
such as MP 1150/2022, pose an additional risk by
relaxing restrictions on the removal of native veget-
ation, potentially bypassing crucial environmental
assessments, and ecological compensation require-
ments. This could undermine efforts that resulted in
a sharp decrease in deforestation rates in the past
decades, from an average loss of 1000 km2 per year
during the 1990s to a reduction below 120 km2 by
2018 (SOS Mata Atlântica 2022). During the same
timeframe, there was a significant rise in regenera-
tion rates (Rosa et al 2021), especially post-2006 with
the enactment of the AF Law (11.428/2006) and later
with the New Forest Code (12.651/2012) introdu-
cing the Rural Environmental Registry (CAR). The
CAR is a mandatory registry that obliges the dis-
closure of environmental data from private rural
properties, serving as a tool for guiding vegetation
preservation and restoration initiatives (da Silva
et al 2023).

The current decade, referred by the United
Nations as the restoration decade (Gnacadja and
Vidal 2022), emphasizes the importance of regen-
eration of secondary forests, mainly in the tropics,

for increasing forest C stocks and enhancing ecosys-
tem services provision (Chazdon et al 2016, 2019,
Heinrich et al 2021, 2023). Despite important legis-
lative measures aiming the protection of remaining
forests, the AF continues to be degraded and defor-
ested (Mohebalian et al 2022), resulting in reduced
connectivity and ecosystem functionality in this biod-
iversity hotspot (Faria et al 2023).

To support the efforts required for increasing
the integrity of AF biome in storing C and provid-
ing other ecosystem services, the aim of this study
was to evaluate the dynamics of forest fragmenta-
tion, accounting for the contribution of secondary
forest regrowth on the fragmentation status, and to
quantify the impact of deforestation, degradation,
and forest regrowth on the C budget of the fragmen-
ted AF biome. Given the extensive fragmentation in
the AF, surpassing that of the Amazon, and consid-
ering significant C loss solely caused by deforestation
in the Amazon, our study predicts that the combined
effects of edge degradation and deforestation in the
AF will markedly impact C stocks, potentially out-
weighing C removals from regenerating forests.

This analysis can provide valuable insights for
supporting decision-makers and stakeholders on the
elaboration of better choices for effective national
and regional landscape management initiatives,
focusing on the conservation of biodiversity and
ecosystem services, contributing to the ambitious
national and global restoration goals of 350 mil-
lion hectares of deforested and degraded areas
by 2030.

2. Methods

2.1. Categorizing landscape fragmentation
We used MapBiomas forest maps to assess fragment-
ation status of AF landscape in 1985 and 2020 at
a 30 meter spatial resolution. We categorized forest
landscape into seven fragmentation classes (Vogt et al
2007, Soille and Vogt 2009, Riitters and Vogt 2023):
core, perforation, edge, bridge, loop, branch, and
islet, ranging from lowest to highest fragmentation
level (figure 1(a)). Core is the interior forest area
excluding the perimeter, islets are small, disjointed
forest patches, edges constitute the external forest
perimeter, and perforation refers to the internal forest
perimeter. The connection classes include bridge,
loop, and branch. Bridges connect different core
areas, loops connect the same core area, and branches
are forest areas linked at one end to perforation, edge,
bridge, or loop.

After define fragmentation classes, we developed a
temporal pathway outlining forest processes. Shifting
from core to more fragmented classes indicate
primary degradation, while non-core classes into
higher fragmentation indicate secondary degrad-
ation. Any class transitioning to non-forest is
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Figure 1.Main fragmentation classes derived from .Soille and Vogt (2009). (b) Conceptual representation of forest transitional
pathways leading to forest change process over time. The color ramp to represent fragmentation classes aligns with the standard
set by Soille and Vogt (2009).

deforestation, while the opposite trend, regenera-
tion. ‘Unchanged’ forests remained in the same class
over time. (figure 1(b)).

2.2. Study area
Located in a complex landscape formed by heterogen-
eous environmental conditions and rich forest com-
position (figure 2). This region is home to over 72%
of the Brazilian population and three major South
American urban hubs, contributing with approxim-
ately 70% of the Brazilian GDP (SOS Mata Atlântica
2022). According to the MapBiomas, there were
337 663 km2 of AF cover in 1985 (MapBiomas 2023).
Most remaining forests exist as fragments, often smal-
ler than 1 km2, and occasionally isolated. Large forest
patches persist in areas historically unsuitable for
agriculture and human habitation (Ranta et al 1998,
Ribeiro et al 2009).

2.3. Inputs preparation
We used MapBiomas Collection 6.0 (https://brasil.
mapbiomas.org/en/downloads/) Land-use and Land-
cover data from 1985 and 2020 (MapBiomas 2023).
Based on Silva-Junior et al (2020b) method, we
mapped the extent of secondary forests (1986–
2020) (https://github.com/celsohlsj/gee_brazil_sv).
We then produced maps depicting the old-growth
and secondary forests cover between the years 1985
and 2020.

We considered secondary forests as forest pixels
that were replaced by anthropic classes (e.g. agricul-
ture and pasture) and then classified again as forest
during the period 1986–2020. Old-growth forests
were defined as forests that remained in the forest
class throughout the time series. Consequently, we
created three binarymaps: one representing the forest
in 1985, another for 2020, both inclusive of old-
growth and secondary forests. The third map was
built using the map algebra approach by removing

the standing secondary forests accumulated between
1986 and 2020 in the 2020 forest map (figure 3,
step 1). This approach allowed us to evaluate the
impact of secondary forests on fragmentationmetrics
and connectivity within the AF landscape.

2.4. Fragmentationmapping and area calculations
To access fragmentation across the entire AF biome
boundary, we classified the binary maps with
GUIDOS Toolbox MSPA program (Soille and Vogt
2009, Vogt and Riitters 2017). This method utilizes
mathematical morphological operators to describe
image component connections and geometry. The
software automatically assigned each pixel to one
of seven exclusive fragmentation types, as depic-
ted in figure 1(a). The MSPA identifies fragment-
ation classes based on the “edge width,” measured
from the forest’s edge to its interior, in pixels. This
determines the spatial configuration of the other
classes across the landscape. Based on previous
studies, we adopted a 300 meter edge width9 in
the MSPA to account for significant edge effects,
such as increased tree mortality, forest disturb-
ance, wind turbulence, altered tree recruitment,
reduced canopy height, and forest fires in the under-
story (Broadbent et al 2008, Laurance et al 2011,
Numata et al 2011, 2017).

After producing maps containing the frag-
mentation classes, we calculated the area of each
class by forest types (IBGE 2004), protected areas,

9 The choice of a limit of 300 m for mapping fragmentation classes
was designed to cover a broader spectrum of edge effect phenom-
ena, which may vary depending on the penetration edge distance
(Laurance et al 2017). We aimed to ensure a more comprehens-
ive and diverse representation of impacts, associated with varying
degrees of edge penetration.
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Figure 2. Brazilian Atlantic Forest along with its distinct forest formations. Forest types include Open Rainforest, Dense
Rainforest, Araucaria-Mixed Rainforest, Seasonally Dry Semideciduous Forest, Seasonally Dry Deciduous Forest, and Ecotone
regions (areas of ecological transition, occur between different vegetation types and pioneering formations like Restingas,
Savannas, Steppes, Inselbergs). Source data for forest formations: IBGE 3rd edition (2004).

defined as Strict Use: designated only for biod-
iversity conservation; Sustainable Use: allows lim-
ited resource exploration while designating biod-
iversity conservation. Furthermore, we analysed these
conservation units by jurisdiction responsible for
protecting these areas (municipal, state, or federal)
(MMA 2023). We also accounted for Regularised
Indigenous Lands (FUNAI 2023) (figure 3,
step 2).

2.5. Fragmentation class transitionmatrix
(1985-2020), mapping forest changes over time and
area calculations
Based on the 1985 and 2020 fragmentation maps
with old-growth and secondary forests, we gen-
erate a transition map using mapping algebra
functions. This process enabled the pixel-by-pixel
evaluation of the fragmentation classes and the
quantification of their respective areas (figure 3,
step 3).

We use the direct matrix approach (Bucki et al
2012) to identify and map dynamic degradation,
tracking transitions between fragmentation classes
over time. This approach uses fragmentation to

access degradation processes, revealing typical paths
of change, providing information about forest
conditions.

2.6. Estimates of forest carbon emissions and
removals
We applied the method used by Silva-Junior et al
(2020a) to identify forest edges using all maps from
1986 to 2020. 34 forest edge maps were created, with
a 120 meter edge width10. Using annual MapBiomas
maps, changes from forest to non-forest cover since
1986 were identified, enabling deforestation map-
ping since 1986 (figure 3, step 4) (Silva-Junior

10 We adopted a more conservative approach in mapping edges
to calculate carbon emission and removal estimates, employing
a narrower threshold (120 m). Here, our aim was to specifically
target carbon dynamics in tropical forests. The 120 m threshold
was selected based on the understanding that the most substan-
tial loss of aboveground carbon stocks typically occurs within a
100m distance in Tropical Forests (Laurance et al 1997, Melito et al
2018). Considering the spatial resolution of our data at 30 m, we
opted for a width of 120 m, equivalent to four pixels, as defined
by Silva-Junior et al (2020a), to accurately delineate forest edges,
same method used for our analyses. This approach ensures a pre-
cise focus on carbon dynamics within our dataset constraints.
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Figure 3.Workflow diagram of method steps. Acronyms/abbreviations: Frag.= fragmentation; GHG= Greenhouse gas
emissions; LULC= Land use and land cover.

et al 2020b, Silveira et al 2022) (https://github.com/
celsohlsj/amazonia_deforestation).

Our study showed at the biome-scale estim-
ates of C emissions and removals using the map
from Brazil’s 3rd Greenhouse Gas Emissions
Report (MCTI 2016) processed by Google Earth
Engine platform. These calculations accoun-
ted for emissions from forest edges, deforested
areas, and removals from regenerating secondary
forests.

3. Results

3.1. Forest fragmentation extent
In 1985, only 14% (47 195.4 km2) of the remain-
ing forests had core areas. These areas were reduced
to 12.5% (40 436.7 km2) by 2020 (see figure 4 for
a visual depiction of the forest landscape). The pre-
dominant categories in both years remained bridge
and islet, making up 72.5% (244 684.8 km2) of the
remaining forest in 1985 and 73.5% (238 004.4 km2)

5

https://github.com/celsohlsj/amazonia_deforestation
https://github.com/celsohlsj/amazonia_deforestation


Environ. Res. Lett. 19 (2024) 034047 I S Broggio et al

Figure 4. Brazilian Atlantic Forest (AF) map classified into forest fragmentation classes: core, perforation, edge, bridge, loop,
branch and islet (high to low connectivity). (a) Fragmentation map of AF in 1985, (a.1) fixed zoom in black square showing forest
remnants in 1985. (b) Fragmentation map of AF in 2020, (b.1) same fixed zoom area in a black square, evidencing forest
landscape change in fragmentation classes 2020.

in 2020, respectively. The remaining forests, categor-
ized as non-core areas (perforation, edge, loop, and
branch), collectively comprised 13.6% (45 783.6 km2)
of the remaining forest area in 1985, with aminor rise
to 14% in 2020 (45 374.0 km2) (figure 4, table 1).

Between 1986 and 2020, secondary AF area
accounted for 99 450.5 km2. The core class represen-
ted 1.4% of the forest, whereas bridge and islet classes

dominatedwith 88.8%, leaving 12.7% for the remain-
ing classes (table 1). Secondary forests contributed to
all fragmentation classes (table 1).

3.2. Dynamics of forest fragments loss and
recovery (1985-2020)
Tables 2(a) and (b) detail pixel-based transitions from
1985 to 2020. Core forest areas often shift to the bridge

6
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Table 1. Atlantic Forest fragmentation classes for: 1985, 2020, and secondary forest from 1986 to 2020. Percentage distribution of
fragmentation classes and the total forest area (km2).

1985 2020 Secondary forest (1986–2020)

Fragmentation
class km2

% of
forest km2

% of
forest km2

% of
secondary
forest

regarding total

% of secondary
forest contribution
to 2020’s frag-

mentation classes

Core 47 195.4 14.0 40 436.7 12.5 1,419.5 1.4 3.5
Perforation 1,091.2 0.3 923.1 0.3 53.7 0.1 5.8
Edge 11 979.0 3.5 10 751.7 3.3 1,118.3 1.1 10.4
Bridge 137 829.3 40.8 123 477.0 38.1 32 014.4 32.2 25.9
Loop 16 190.0 4.8 15 735.3 4.9 4,503.2 4.5 28.6
Branch 16 523.4 4.9 17 963.9 5.5 6,980.8 7.0 38.9
Islet 106 855.5 31.6 114 527.4 35.4 53 360.5 53.7 46.6
Total forest 337 663.8 323 815.1 99 450.5

Table 2. Transition matrices quantifying shifts in the Atlantic Forest area across fragmentation classes over the period from 1985 to 2020.
The transitions are provided in both percentage values (a), and corresponding area in square kilometres (km2) (b). The values in bold
remained within the same fragmentation class in the period.

Area in 2020 (%)

(a) Core Perforation Edge Bridge Loop Branch Islet Background

Area in
1985
(%)

Core 66.4 0.7 3.0 17.9 2.0 0.7 0.8 8.4
Perforation 32.7 17.2 6.6 23.2 10.7 0.9 0.3 8.4
Edge 7.6 0.7 31.5 30.9 7.0 3.1 3.5 15.6
Bridge 4.3 0.1 2.5 54.2 3.1 4.2 7.2 24.4
Loop 6.0 0.7 5.4 26.7 17.0 4.7 15.9 23.6
Branch 0.3 0.0 1.3 27.7 4.5 20.6 16.5 29.1
Islet 0.1 0.0 0.3 7.1 2.7 2.7 55.2 31.9
Background 0.1 0.0 0.1 2.3 0.4 0.5 4.6 92.1

Area in 2020 (km2)

(b) Core Perforation Edge Bridge Loop Branch Islet Background

Area in
1985
(km2)

Core 31 338.1 337.6 1,420.0 8,449.1 952.2 323.8 387.7 3,987.0
Perforation 356.5 187.7 71.6 253.5 116.9 9.9 3.4 91.7
Edge 909.3 79.3 3,772.0 3,707.2 841.9 375.0 423.1 1,871.2
Bridge 5,907.7 168.3 3,428.8 74 762.5 4,319.0 5,791.5 9,861.7 33 589.5
Loop 979.0 116.5 873.2 4,326.0 2,746.1 761.9 2,572.7 3,814.6
Branch 43.7 4.8 210.5 4,580.0 745.6 3,396.3 2,734.4 4,808.1
Islet 134.6 0.2 292.3 7,608.8 2,896.3 2,909.0 58 931.4 34 082.8
Background 767.7 28.7 683.4 19 789.8 3,117.2 4,396.4 39 612.8 796 136.2

class, while the bridge class tend to shift to deforest-
ation or to transition to the islet class. Bridge class
emerges as a crucial transition target, transitioning to
classes like perforation and edge, as well as classes like
loop and branch (table 2(a)). The islet class exhib-
its limited potential for transitioning to non-forest
compared to other fragmentation classes. Similarly,
the background class frequently transitions to the islet
class over other fragmentation classes (table 2(a)).

We analysed forest change processes using frag-
mentation class transitions: primary degradation,
secondary degradation, deforestation, regeneration,
and unchanged areas (figure 5(a)). Additionally,
we mapped forest change across the entire biome
extent (figure 5(b)). Of the forest transitions occur-
ring in about 10% of the total biome extent

(20 227 003.3 km2), regeneration covered the
largest extent, corresponding to 4.3%, followed
by deforestation at 3.7%, secondary degrada-
tion at 0.9%, and primary degradation at 0.5%
(figure 5(a)).

Observed transition classes vary across the biome,
showing degradation and deforestation frontiers,
regeneration frontiers, and stable frontiers in dif-
ferent AF locations (figures 5(b1)–(b4)). Examples
include forest regeneration areas (figure 5(b.1)), con-
solidated secondary degradation and deforestation
areas (figure 5(b.2)), small-scale deforestation and
primary degradation within an unchanged forest
matrix (figure 5(b.3)), and primary degradation
areas with secondary degradation and deforestation
(figure 5(b.4)).
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Figure 5. (a) Atlantic Forest Chart proportions of forest change areas. Values are reported in both percentage and the
corresponding area in square kilometres (km2), relative to the total biome area. (b) Atlantic Forest change map from 1986 to
2020, displaying categories derived from the transition matrix. These categories encompass Non-Forest, Unchanged,
Regeneration, Primary Degradation, Secondary Degradation, and Deforestation. The map includes zoomed-in red squares that
highlight distinct dynamics of the forest landscape: Frontiers of Regeneration (b.1), Fragmentation Frontiers dominated by
deforestation and secondary degradation (b.2), Stability Frontiers dominated by areas of no change with minor instances of
deforestation and regeneration (5(b.3)), Fragmentation Frontiers dominated by deforestation and primary degradation (b.4).

3.3. Characterizing fragmentation patterns across
forest types and protected areas
We assessed fragmentation classes in strict use, sus-
tainable use, and indigenous conservation units.
Strict use mainly includes core, edge, and bridge
forests. Sustainable use and indigenous lands con-
tain core, bridge, and islet classes. Regularized
Indigenous Lands preserve more core forest (42.9%)
than Sustainable Use Conservation Units (26%)
(table 3(a)). The analysis of protected areas showed
that federal conservation units had 47.1% of core
forests, 27.9%of bridges, and 9.1%of islets. State con-
servation units exhibit 38.8% of core forests, 36.5% of
bridges, and 11.5% of islets. Municipal conservation
units had 44.2% of bridges, 22.6% of core forests, and
16.6% of islets (table 3(b)).

We found that Bridge and islet classes were
dominant in 1985 and 2020. In the AF biome,
Rainforests had the largest core area (26.7% Dense
Rainforest, 8.3% Araucaria-Mixed Rainforest, 7.1%
Open Rainforest), while Seasonally Dry formations
had the lowest (5.8% Seasonally Dry Semideciduous
Forest, 3.7% Seasonally Dry Deciduous Forest).
Over 35 years, proportions of the different frag-
mentation classes stayed almost stable. The core
area of Open Rainforest class increased by 4.4%,

Araucaria-Mixed Rainforest reduced by 3.7%. The
bridge class area in Araucaria-Mixed Rainforest and
Seasonally Dry Deciduous Forest shrank (4.9% and
2%, respectively), while this fragmentation class in
Open Rainforest expanded by 3%. Islet area increased
for Seasonally Dry Deciduous Forest (2.2%) and
Araucaria-Mixed Rainforest (7.9%) but was reduced
by 16.7% in Open Rainforest. Secondary forests con-
tributed to all fragmentation classes, expanding the
area of bridges and islets (table 4).

3.4. Quantifying andmapping the carbon balance
due to fragmentation in the Atlantic Forest
(1985-2020)
Our estimates show that secondary forest regenera-
tion removed 1346 TgCO2, from 1985 to 2020, off-
setting around 82.62% of the total emissions in the
AF biome during the analysed period. This estimate
excluded all emissions from deforestation before this
period. Our findings demonstrated parity between
C emissions from deforestation (818 TgCO2) and
those arising from the forest edge effect (810 TgCO2)
(figure 6(a)), emphasizing the substantial impact
of both processes on C emissions. This suggests
that despite long-term trends of deforestation reduc-
tion, the AF continues to lose C stocks due to the

8
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Figure 5. (Continued.)
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Figure 6. (a) Atlantic Forest Total Carbon committed emissions (Tg CO2) from 1986 to 2020. (b) Total Carbon committed
emissions (TgCO2) presented by AF States. ∗ States whose boundaries are entirely within the AF Biome.

edge effect. Consequently, if fragmentation contin-
ues, the dominant source of emissions may no longer
be attributed to deforestation, but rather to edge
effects.

We calculated net emissions by considering emis-
sions from both deforestation and edge effects, and
removals from secondary forests in each AF state.
The consistent pattern of equivalence between defor-
estation and edge emissions held for each State
(figure 6(b)). We showed the overall net balance,
for the period analysed, indicates a source of 283
TgCO2 to the atmosphere. Individually assessing
each state, only five (from a total of 15)—Santa
Catarina, Bahia, Paraná, Mato Grosso do Sul, and
Rio de Janeiro—were unable to have secondary forest
removals completely offsetting emissions from defor-
estation and edge effects. In contrast, Pernambuco,
Alagoas, and Minas Gerais outperformed other
states in offsetting recent deforestation emissions
(figure 5(b)).

We spatially analysed emissions from deforesta-
tion, edge effect, removals from regeneration, and
the resulting net balance (figures 7(a)–(d)). Net
emissions were characterized by the dominance of
removals in low latitudes in the northeast region, in
the central part of the biome, mainly in the Midwest
portion and in the southern regions. We observed
prominent emissions in the southern region of Bahia,
the northeast region of Minas Gerais, and in eastern
São Paulo, Paraná, Santa Catarina, and Rio Grande
do Sul, which are areas near metropolitan regions.
(figure 7(d)).

4. Discussion

4.1. Atlantic Forest fragmentation status and
dynamics
We provided a comprehensive biome-scale perspect-
ive on AF fragmentation using the MSPA approach
(Vogt et al 2007), updating the previous assessment
by Ribeiro et al (2009) and Rezende et al (2018). Our
results show a decrease in total mapped forest cover
from 1985 (337 663.8 km2) to 2020 (323 815.1 km2)
(table 2). Although the proportions of the fragment-
ation classes remained consistent, there was a loss of
6758.7 km2 in the core area, a reduction in the bridge
area of 14 352.3 km2 and an increase of 7671.9 km2 in
the islet area (table 1).

Core areas provide essential habitats that sup-
port larger populations, enabling species to thrive and
maintain healthy population dynamics (Gaston et al
2006, Belote et al 2017). These large, mature frag-
ments are vital for preserving taxonomic, genetic, and
functional diversity (Smith et al 2021, Schweizer et al
2022). Moreover, old-growth forests enhance seed
input and facilitate the recolonization of neighbour-
ing fragments (Rodrigues et al 2009).

The bridge class comprises most remaining
forests (38%), prone to converting into loops,
branches, or islets, intensifying fragmentation, and
deforestation. Bridges serve as transitional boundar-
ies, offering opportunities for regeneration into core
forests. They aid in countering fragmentation effects
by reducing isolation and enhancing connectivity
(Bennett 2003, Wickham and Riitters 2019).
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Figure 7. Total Carbon committed emissions map (1986–2020). Carbon estimation (MgCO2) was calculated by 0,25◦ Grid cell
resolution. Values range from more positive (green) to more negative (red). Deforestation emissions (a), Edge effects emissions
(b), Secondary Forest removals (c) and, Net Balance (d).

Islets constitute 35.3%of AF and face threats from
both nature- and human-related causes. Our trans-
itionmatrix reveals a risk of substantial loss of forests,
as only around 13% transitioned to classes with low
fragmentation level. Islets are vital for mitigating the
non-forest matrix’s impact on ecosystem processes.

Strategically using islets as stepping stones
enhances population permeability through the mat-
rix, benefiting endangered species in fragmented

forests. This approach strengthens landscape resi-
lience against fragmentation and degradation threats
(Baum et al 2004, Antongiovanni and Metzger 2005,
Pardini et al 2009, Brancalion et al 2018, Cardoso
et al 2022).

Isolation and patch size significantly influence
biodiversity in fragmented landscapes (Fahrig 2013).
Prioritizing islet integrity and ecological restora-
tion can enhance structural connectivity, benefiting
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conservation, C goals, and cost reduction (Strassburg
et al 2019, Grantham et al 2020, de la Sancha et al
2021).

Around 86% of mapped secondary forests belong
to the bridge and islet categories. Their contribu-
tion to the 2020 fragmentation classes increases pro-
gressively from core to islet, enhancing landscape
connectivity. Secondary forests contributed 3.5% of
the entire core area mapped in 2020. They serve
as crucial stepping stones, aiding species movement
(Crouzeilles et al 2017, Matos et al 2020). Strategic
placement of secondary forests near remnant patches
or creating corridors can further reduce isolation and
enhance connectivity (Marshall et al 2022, Schweizer
et al 2022, Wills et al 2022).

Landscape planning in the AF should prior-
itize spatial configuration, connectivity promo-
tion, and core area enhancement and preservation.
Understanding fragmentation spatial patterns and
processes leading to temporal changes can help
identifying highly vulnerable areas, informing effect-
ive conservation strategies (Lira et al 2012, Maxwell
et al 2020).

Our results underscore the importance of protec-
ted areas for core forest preservation and landscape
connectivity. Secondary forests play a vital role in
the mosaic of Protected and Indigenous areas, high-
lighting their significance. However, concerns raised
due to recent trends in deforestation that were iden-
tified following our mapping in 2020. These findings
emphasize the necessity for collaboration among fed-
eral, state, andmunicipal authorities in effective forest
resource management.

Our findings revealed marked alterations in AF’s
landscape due to shifts in land use. Native vegetation
decreased from 360 000 km2 in 1985–333 000 km2

by 2022. Activities such as agriculture, and expan-
sion of urbanized regions can be associated to this
decline. Pasture areas reduced from 390 000 km2

to 300 000 km2, while agricultural land doubled
from 120 000 km2 to 240 000 km2. Native vegeta-
tion predominantly regrew in former pasture areas
(MapBiomas 2023).

Landscape planning is crucial to address declin-
ing forest areas. Observing the changes in land cover
in AF highlights extensive transitions from pastures
to agriculture, mosaic of uses, and native vegetation.
These three classes dominated the shifts frompastures
to other uses from 1985 to 2022 (MapBiomas 2023).
Approximately 65.6% of Brazil’s pastures (2010–
2018) showed signs of mild, moderate, or severe
degradation (Santos et al 2022). Utilizing MSPA to
map fragmentation classes is advantageous for man-
aging the AF landscape. Leveraging the regrowth
potential in degraded pastures near bridge, loop, and
branch areas, which serve as connectors, can facilit-
ate the expansion of connections between forest frag-
ments through natural regeneration.

AF has the potential to adopt crop-livestock-
forest systems, replacing degraded pastures and
monocultures across extensive areas. These com-
bined systems can prevent additional fragmentation
or deforestation (Rodrigues et al 2023). Recognized
for its integrated role in enhancing water, energy,
and food security, this approach is becoming a cru-
cial strategy to engage stakeholders and local com-
munities in seeking nature-based solutions (Melo et al
2021).

4.2. Fragmentation impact on Atlantic Forest
carbon balance
Our analysis also permitted a comprehensive under-
standing of the components of the net C emissions in
the AF biome. Secondary forest regeneration offsets
around 82.62% of total emissions. From this total C
emissions, deforestation and edge effect contributes
equally. In Amazonian forests, edge areas contribute
to 37% of deforestation (Silva-Junior et al 2020a),
underscoring that the Atlantic Forest exhibits an even
more pronounced influence from edges, approaching
nearly 50%. This highlights the ongoing C stock loss,
despite nearly 90% of the forest land use remained
unchanged over the last 35 years. This pattern is
mainly associated to the extensive fragmentation of
AF landscape, which allows edge effect to become a
major contributor to C loss in this biome. Therefore,
urgent efforts are needed to reduce deforestation to
nearly zero, with forest regeneration aiming at redu-
cing fragmentation and forest edge area, contribut-
ing positively to the stability of biome’s functions
in the future. An additional area of approximately
1.96 million hectares (19 600 km2) of forests would
be required to grow in the coming years to offset car-
bon emissions from 1985 to 2020 in the AF. An area
about a third of Belgium.

It is a challenge to reduce emissions from defor-
estation in tropical forests. Smith et al (2021) found
a strong negative relationship between the loss of
primary forests and the recovery of secondary forests
for countries in the Amazon region. AF stands as
a hope spot for regeneration (Rezende et al 2018),
with its natural regrowth forests being a cost-effective
strategy for restoration goals (Crouzeilles et al 2020).

Our study demonstrates that secondary forests are
dominant in the classes bridge and islet, which are
more susceptible to deforestation than others with
better connectivity. This result confirms the vulner-
ability of secondary forests to subsequent deforest-
ation. Factors such as steeper slopes, proximity to
rivers and existing forests, higher agricultural pro-
ductivity areas, and lower rural-urban population
ratios increases the persistence of regenerated forests
(Piffer et al 2022).

Another important point is the need for not only
preserve forests in lower fragmentation class, but also
those in higher fragmentation classes to increase the
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resilience of AF functions to climate change. A recent
model predicting the impact of climate change on
AF above-ground biomass (AGB) showed that the
most significant loss of AGB, up to 40%, compared
to the baseline value, is likely to occur between latit-
udes 13◦ and 20◦ south (Ferreira et al 2023). Our res-
ults showed deforestation and degradation leading to
core area loss in southern and south-eastern forests
at these latitudes, which may decrease the capacity
of forests to counteract the effects of changes in
climate.

4.3. Policy implications
Over the past 35 years, our findings reveal that des-
pite the AF’s success in preserving much mature
forest and expanding secondary forest coverage
until 2020, deforestation, edge effects, and degrad-
ation have eroded connectivity and reduced core
areas (Rosa et al 2021). This scenario jeopard-
izes Brazil’s commitment to reforesting 12 million
hectares. Additionally, MP 1150/2022 (National
Congress 2022), aiming to relax restrictions on
native vegetation removal placing core, bridge,
and islet classes at risk, protected only by AF
law.

If implemented, this measure could authorize
deforestation for infrastructure projects, bypassing
environmental assessments and ecological compens-
ation requirements (Ribeiro et al 2023). The pro-
posed law might also extend the timeframe for envir-
onmental restoration, obstructing financing agen-
cies from enforcing restoration as a precondition for
credit (Disclosures 2017).

4.4. Uncertainties and validations
The dataset used as input to fragmentation map-
ping relies on MapBiomas Collection 6.0, which
maintains an overall accuracy for AF biome by
90,6% ± 2,9% (https://brasil.mapbiomas.org/en/
analise-de-acuracia/). No changes to the spatial res-
olution of the input were made in any steps of the
methods. Since Guidos toolbox can be settled to work
in the same resolution of the input that is provided,
we guarantee the same accuracy for our fragmenta-
tion mappings of 1985, 2020 and secondary forests.
The method used to map secondary forests based on
MapBiomas was validated by comparing secondary
forest areas with TerraClass secondary forest map
using a bootstrap approach with 10 000, resulted
in an R2 = 0.6(0.03) and p < 0.001 (Silva-Junior
et al 2020b).

The model used to estimate carbon loss due
to edge effect was proposed by Silva-Junior et al
(2020a)—the model was built based on light detec-
tion and ranging data, which provides information
on the forest structure in high detail. The model in
question corresponds to a Michaelis–Menten kinetic

equation, which was applied to the average carbon
loss stratified by the chronosequence of the age of
the forest edges, having an R2 = 0.780 and a mean
squared error of 5.767 Mg C.

5. Concluding remarks

Our study conducts a spatiotemporal analysis of
the entire Brazilian Atlantic Forest landscape using
MSPA, contributing to valuable insights to the field.
Beyond comparing changes in seven fragmentation
classes over three decades, we explored the role of
secondary forests. We also updated fragmentation
status for main Forest formations, Protected Areas,
and Indigenous Lands. Our results explicitly accoun-
ted for impact of deforestation and fragmentation on
carbon dynamics across the entire biome and indi-
vidual AF states.

5.1. Key findings
Continuous Fragmentation: Over the last 35 years,
the AF biome witnessed the loss of crucial core
(33.6%) and bridge (38.9%) areas (table 2(a)).

Contribution of Secondary Forests: Regeneration
by secondary forests significantly contributed to all
fragmentation classes from 1986 to 2020.

Parity in Carbon Emissions: Deforestation
(818.41 TgCO2) and edge effects (809.78 TgCO2)
almost equally contribute to carbon emissions,
requiring the growth of approximately 1.96 million
hectares of forest for offsetting.

5.2. Conservation priorities, management and next
steps
Reach zero deforestation: Even with 90% stability in
forest change, deforestation impacted the reduction
of total forest, reflecting the loss of important frag-
mentation classes.

Core and bridge preservation: Essential classes to
maintain the structural integrity of the existing forest.
We Mapped 40 436.7 km2 of total core forest, those,
only 25 749.5 km2 are within conservation units, leav-
ing 36.3% unprotected. Andmight face the imminent
risk of degradation or deforestation.

Islet preservation and management: It is the
second largest class (35.4%). In Seasonally Dry form-
ations, this class dominates, representingmainly what
is left of them. The use of these areas in the imple-
mentation of restoration projects to enhance forest
connectivity is urgent.

Promoting Sustainable Forest Management:
Orientate secondary forests growth potential aim-
ing on the replacement of degraded pastures with
agroforestry systems highlighting non-forest matrix
integration. Reducing turnover rates and ensuring
long-term sustainability of regenerated forests.
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These actions are central in sustaining AF’s per-
sistence and regeneration, aligning with Brazil’s ded-
icated sustainable development strategies.
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