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ABSTRACT 

This paper describes a new application of the technique known as Gradient Pattern Analysis (GPA), focused here on 

computer vision. In the GPA domain, the image is translated into a tessellation triangulation field based on the vectors 

positions that make up the gradient lattice of the matrix image. The GPA version considered here generates three 

attributes (G1, G2 and G3) that can be used as labels for a supervised machine-learning model. The case study presented 

here shows that GPA is a useful tool for real-time fetal biometry from 2D ultrasound images. The application in obstetrics 

indicates that the technique can also be useful for learning diagnostic imaging in gynecology, hepatology and oncology. 

The generalization of the technique to other applications in practical learning in health is discussed.  

KEYWORDS 

Gradient Pattern Analysis, Computer Vision, Supervised Machine Learning, 2D Endoscopic Ultrasound Biometry 

1. INTRODUCTION 

Gradient Pattern Analysis (GPA) is a technique for analyzing the dynamics of nonlinear 2D-spatiotemporal 

systems, which is based on the gradient symmetry-breaking properties of a matrix snapshot sequence. 

Originally, GPA has found numerous applications in 2D dynamic systems [Rosa et al., 1999, da Silva et al., 

2000, Faria et al., 2007; Baroni et al., 2006, Freitas et al., 2010]. GPA was originally inspired by 2D 

turbulence analysis in space (Andrade et al., 2006) and environmental physics (Velho et al. 2001). In the last 

five years, the technique has been improved for automatic morphological classification associated with 

supervised training of machine learning models, especially with hybrid Deep Learning (CNN combined with 

RNN). In the scope of computer vision, GPA "sees" different morphologies in both the gradient field and the 

correspondent triangulation domains from where a set of metrics are extracted as in the application in galaxy 

morphology (Barchi et al., 2019, Rosa et al, 2018). The gradient field metrics (the so-called “gradient 

moments”) are extracted based on the geometry of the gradient field (via Delaunay triangulation) and also on 

the norm and phase matrices of the correspondent gradient field. GPA is therefore a set of computational 

operations on a given numerical lattice (as a matrix) and on the gradient pattern of a digital image.  

In the field of medical images, diagnostic ultrasounds offer information about internal areas and parts of 

the body, such as the liver, kidneys health, and reproductive organs. The main application explored here 

examines an unborn baby and checks its health and growth status. Therefore, identifying the baby (especially 

the head and face) by 2D ultrasound is a detection task that will be used here as a case study to test the 

feasibility and usefulness of GPA in diagnostic medical imaging. 

 

 



2. DATA, METHODOLOGY AND RESULTS 

Our approach uses ultrasound recordings provided by the Projeto FAPESP database (process No 

2021/15114-8) in partnership with the Brazilian company Hipocampus EdTech. The basic example consists 

of a set of 2 movies composed by 542 snapshots each, recorded in gray scale, for an 18 and 15-week-old 

baby. 

The GPA as an analytical method explores a new paradigm proposing to analyze, instead of the absolute 

values of the matrix amplitudes, the symmetry breaking in the gradient field of a given matrix. The symmetry 

to be broken, considered in the original version of the technique (Rosa, Sharma, Valdivia, 1999; Rosa et al., 

2018), are the bilateral symmetries in relation to the vertical and horizontal axes. In the first operation of 

GPA, the Matrix Gradient Lattice is computed in the x-direction and the y-direction, whenever possible,  

with Central Finite Difference. The boundaries are measured with forward and backward finite differences.  

The gradient lattice (GL) of a matrix is composed of V vectors of which a portion VA is asymmetric 

(bilaterally symmetric pairs in the gradient lattice are those that, for a given tolerance, have the same module 

and opposite phases). After obtaining the GL from a matrix, the first three gradient moments are calculated as 

follows: 
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where TA is the number of edges that represent the connection between the VA asymmetric vectors obtained 

from the Delaunay triangulation performed on the GL. The measure, G2, based on the norms of each 

asymmetric vector vi, is de defined as: 
 

𝐺2 =
𝑉𝐴
𝑉
(1 −

|∑ 𝑣𝑖
𝑉𝐴
𝑖=0 |

2∑ |𝑣𝑖|
𝑉𝐴
𝑖=0

) 
 

(2) 

 

Note that if all vectors are symmetrical, G2 = 0.0. The measure, G3, based on the phase of each 

asymmetric vector vi, depends on the vector phases (φ) and the angle of each vector with respect to the 

symmetry center (θ) of the matrix, and is defined as: 
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Note that, the dot product is maximum (u.v = 1) when the position of the vector is aligned with its phase, 

zero when they are perpendicular, and minimum (u.v = −1) when they are opposite. 

Figure 1 shows the application of preprocessing GPA on a snapshot of the one of the ultrasound videos 

analyzed in this work. In order to enable visualization of the corresponding gradient lattice, the original 

image is reduced (to 32x32) in order to intensify the typical bilateral asymmetry of the baby's head contour 

(image (b) immersed in the original image (a)). The corresponding gradient lattice is shown in Figure 1c.  

The yellow grid with vertical and horizontal axes identifies the references for bilateral symmetry breaking. 

The tip of the baby's nose, for example, imposes a strong break in symmetry between the fourth and second 

quadrants. For the calculation of G1 the triangulation between the vectors is performed. As shown in Figure 

2, the triangulation is also useful to highlight fluctuations in norms and phases throughout the dynamics 

whose main objective is to identify the baby in the video. 

 



 

Figure 1. (a) The original image (a snapshot from the ultrasound video); (b) the reduced image and (c) the superposed 

correspondent gradient lattice with the bilateral symmetry axis 

In our approach GPA is applied to each snapshot within a dashboard context. As shown in Figure 2,  

the measures G1, G2 and G3 work as monitoring scores and are shown on a dashboard developed in Python 

(dash library). Figure 2 shows the application of the dashboard on the complete ultrasound, in a monitored 

way, and indicates the moment (peak) in the G3 metric (of the phases) when the head (with details of the face 

and arm) are detected with great emphasis. The dashboard shows the original snapshot (left), the same with 

triangulation (middle) and the histogram of all phases of the vectors that make up the gradient field. 

Figure 2 shows the application of the dashboard on the complete ultrasound, in a monitored way,  

and indicates the moment (peak) in the G3 metric (of the phases) when the head (with details of the face and 

arm) are detected with great emphasis. The dashboard shows the original snapshot (left), the same with 

triangulation (middle) and the histogram of all phases of the vectors that make up the gradient field.  

 

 

Figure 2. The GPA dashboard for the Ultrasound Diagnosis. The high performance of G3 is remarkable even when the 

arm of the baby is in scene. The histogram of the phases of the asymmetric vectors works as a less accurate indicator of 

target detection 



 

Figure 3. Confusion Matrix based on G3 as a label 

The total sample has 1084 snapshots. Of this total, the sought pattern (baby face) was identified 3 times in 

each one, totaling 6 positive identifications. The G3 label was within the range from 0.27 to 0.38 for 5 

identifications and only one identification was outside of this range (G3=0.21) for a snapshot that was also 

visually validated. Based on this sample, a confusion matrix prototype was created (Figure 3) with these 

values to guide the exploration of supervised training based on GPA (G3). 

3. CONCLUSION 

The preliminary analysis applied to the chosen case study makes it clear that the GPA-G3 metric is adequate 

to capture the morphological information sought in ultrasound imaging diagnosis (especially when applied in 

real time). In two applications having 6 positive patterns in a sample of 1084 snapshots, the expected positive 

result was 83% (5/6). This result indicates the G3 metric as the most suitable to be used as a label for 

supervised training of a hybrid deep learning model that is under development (using CNN with LSTM). 

It is noteworthy that the methodology presented here can be useful in diagnosis by medical imaging in 

other paradigms of health sciences, emphasizing that it can also be effective in the training and learning 

process in identifying patterns in ultrasound exams and other techniques that require training to detect 

patterns in endoscopic medical footage or equivalent applications in other fields of computer vision.  

More recently, testing of new computer vision techniques for diagnostics based on AI is encouraged within 

the space medicine program under the ISI and Artemis mission (Krittanawong et al. 2023).  
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