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Time-delay interferometry (TDI) is the data processing technique that cancels the large laser phase
fluctuations affecting the one-way Doppler measurements made by unequal-arm space-based gravitational
wave interferometers. In a previous publication we derived TDI combinations that exactly cancel the laser
phase fluctuations up to first order in the interspacecraft velocities. This was done by interfering two
digitally synthesized optical beams propagating a number of times clockwise and counterclockwise around
the array. Here we extend that approach by showing that the number of loops made by each beam before
interfering corresponds to a specific higher-order TDI space. In it the cancellation of laser noise terms that
depend on the acceleration and higher-order time derivatives of the interspacecraft light-travel times is
achieved exactly. Similarly to what we proved for the second-generation TDI space, elements of a specific
higher-order TDI space can be obtained by first “lifting” the basis (α, β, γ, X) of the first-generation TDI
space to the higher-order space of interest and then taking linear combinations of them with coefficients that
are polynomials of the six delays operators. Higher-order TDI might be required by future interplanetary
gravitational wave missions whose interspacecraft distances vary appreciably with time, in particular,
relative velocities are much larger than those of currently planned arrays.
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I. INTRODUCTION

Interferometric detectors of gravitational waves may be
thought of as optical configurations with one or more arms
folding coherent trains of light. At points where these
intersect, relative fluctuations of frequency or phase are
monitored (homodyne detection). Interference of two or
more beams, produced and monitored by a nonlinear device
such as a photo detector, exhibits sidebands as a low
frequency signal. The observed low frequency signal is due
to frequency variations of the sources of the beams about
the nominal frequency ν0 of the beams, to relative motions
of the sources and any mirrors (or optical transponders) that
do any beam folding, to temporal variations of the index of
refraction along the beams, and, according to general
relativity, to any time-variable gravitational fields present,
such as the transverse traceless metric curvature of a
passing plane gravitational wave train. To observe gravi-
tational waves in this way, it is thus necessary to control, or
monitor, the other sources of relative frequency fluctua-
tions, and, in the data analysis, to optimally use algorithms
based on the different characteristic interferometer

responses to gravitational waves (the signal) and on the
other sources (the noise).
By comparing phases of split beams propagated along

equal but nonparallel arms, frequency fluctuations from the
source of the beams are removed directly at the photo
detector and gravitational wave signals at levels many
orders of magnitude lower can be detected. Especially for
interferometers that use light generated by presently avail-
able lasers, which display frequency stability roughly a few
parts in 10−13 in the millihertz band, it is essential to
remove these fluctuations when searching for gravitational
waves of dimensionless amplitude smaller than 10−21.
Space-based, three-arm interferometers [1–5] are pre-

vented from canceling the laser noise by directly interfering
the beams from their unequal arms at a single photo detector
because laser phase fluctuations experience different delays.
As a result, the Doppler data from the three arms are mea-
sured at different photo detectors on board the three space-
craft and are then digitally processed to compensate for the
inequality of the arms. This data processing technique, called
time-delay interferometry (TDI) [6], entails time-shifting and
linearly combining the Doppler measurements so as to
achieve the required sensitivity to gravitational radiation.
In a recent article [7] we reanalyzed the space of the TDI

measurements that exactly cancel the laser noise up to the
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interspacecraft linear velocity terms, i.e. the so-called
second-generation TDI space. By first regarding the basis
(α, β, γ, X) of the first-generation TDI space as the result of
the interference of two synthesized light beams propagating
once, clockwise and counterclockwise around the array, we
then showed that exact cancellation of the laser noise terms
containing the interspacecraft velocities could be achieved
by making these beams complete a larger number of loops
around the array before interfering. In the case of the
Sagnac combinations (α, β, γ), the minimum number of
loops made by each beam around the array to exactly
cancel the laser noise linear velocity terms was found to be
three, while for the unequal-arm Michelson combination,
X, the minimum number of loops was equal to two. In
physical terms, by making the synthesized beams go
around the array in the clockwise and counterclockwise
sense a number of times before interfering, one ends up
averaging out the effects due to the rotation of the array and
the time dependence of the interspacecraft light-travel
times. Since the exact cancellation of the laser noise for
any arbitrary time-dependent delays cannot be achieved [8],
in this paper we prove that there exists a correspondence
between the number of clockwise and counterclockwise
loops made by the beams around the array and the order of
cancellation of the laser noise in the kinematic terms of the
interspacecraft light-travel times. In the case of the unequal-
arm Michelson combination this result had already been
noticed through a numerical analysis [9] and in this article
we actually prove it analytically.
The paper is organized as follows. In Sec. II we review

some of the results presented in [7] that are relevant here.
We first summarize the “lifting” [7] technique, in which
elements of a basis of the first-generation TDI space are
rewritten in terms of the six delay operators. Then their
corresponding second-generation and higher-order TDI
expressions are obtained by acting on specific combina-
tions of their data with uniquely identified polynomials of
the six delays. This operation is key to our method as it
allows us to generalize the main property of a basis of the
first-generation TDI space: elements of the second-gen-
eration and higher-order TDI spaces are obtained by taking
linear combinations of properly delayed lifted basis [7].
The higher-order TDI combinations cancel laser noise
terms depending on the second- and higher-order time
derivatives of the light-travel times. In physical terms, the
operation of lifting corresponds to two light beams making
clockwise and counterclockwise loops around the array
before being recombined on board the transmitting space-
craft. In so doing the time variations of the light-travel times
is averaged out more and more accurately. As an exem-
plification, after applying an additional lifting procedure to
the second-generation TDI combinations (α2, β2, γ2, X2)
derived in [7], we obtain the corresponding combinations
(α3, β3, γ3, X3). In Sec. III, after deriving useful identities
of the six delay operators, we mathematically prove that

(α3, β3, γ3, X3) exactly cancel the laser noise up to terms
quadratic in the interspacecraft velocities and linear in
accelerations, and that higher-order TDI combinations
cancel the laser noise up to higher-order time derivatives
of the interspacecraft light-travel times. In Sec. IV we then
present our comments on our findings and our conclusions.

II. THE LIFTING PROCEDURE

Here we present a brief summary of the lifting procedure
discussed in [7]. There it was shown that the operation of
lifting provides a way for deriving elements of the second-
generation TDI space by lifting combinations of the first-
generation TDI space. As it will become clearer below, the
lifting procedure can be generalized so as to provide TDI
combinations that exactly cancel the laser noise containing
delays of any order arising from kinematics.
The one-way Doppler data yi, yi0 are written in terms of

the laser noises using the notation introduced in [6,10]. We
index the one-way Doppler data as follows: the beam
arriving at spacecraft i has subscript i and is primed or
unprimed depending on whether the beam is traveling
clockwise or counterclockwise around the interferometer
array, with the sense defined by the orientation of the array
shown in Fig. 1. Because of the Sagnac effect due to the
rotation of the array, the light-travel time from say space-
craft i to j is not the same as the one from j to i. Therefore
Li ≠ L0

i and so we have six unequal time-dependent time
delays (we choose units so that the velocity of light c is
unity and Li, L0

i have dimensions of time—they are actually
Li=c, L0

i=c.). The corresponding delay operators are
labeled as Di and Di0 and are defined by their action on
an arbitrary time series ΨðtÞ as DiΨðtÞ≡ Ψðt − LiÞ and
Di0ΨðtÞ≡Ψðt − L0

iÞ respectively.
The one-way phase measurements are then given by the

following expressions [6]:

FIG. 1. Schematic diagram of the directed array. The spacecraft
are labeled i ¼ 1, 2, 3 while the optical paths are denoted by Li,
L0
i where the convention is that the index i corresponds to the

opposite spacecraft.
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y1 ¼ D3C2 − C1; y10 ¼ D20C3 − C1;

y2 ¼ D1C3 − C2; y20 ¼ D30C1 − C2;

y3 ¼ D2C1 − C3; y30 ¼ D10C2 − C3: ð2:1Þ

Thus, as seen in the figure, y1 for example is the phase
difference time series measured at reception at spacecraft 1
with transmission from spacecraft 2 (along L3).

1

As emphasized in [7], to generate elements of the second-
generation TDI space with the lifting procedure one first
needs to derive the expressions of the four generators, α, β, γ,
X, of the first-generation TDI that include the six delays
i; i0i; i0 ¼ 1; 2; 3; 10; 20; 30. Since these combinations corre-
spond to two beams propagating clockwise and counter-
clockwise once, the lifting procedure makes these beams
propagate clockwise and counterclockwise a number of
times before being made to interfere. The resulting data
combinations exactly cancel the laser noise terms linear in the
interspacecraft velocities. The lifting procedure is unique and
can be applied iteratively an arbitrary number of times.Aswe
will show below, each iteration suppresses the laser noise
significantlymore than that achieved at the previous iterative
step. To be specific, a second-generation TDI combination
cancels the laser noise up to linear velocity terms, while the
corresponding third generation cancels it up to the accel-
eration and terms quadratic in velocities. It should be noticed
that some elements of the second-generation TDI space, like
the Sagnac combinations α, β, γ, require more than two
“lifting” iterations to exactly cancel the laser noise up to the

linear velocity terms [7]. Therefore we will refer to the nth-
generation TDI space as those TDI combinations that exactly
cancel the laser noise up to the (n − 1)th time derivatives of
the timedelays.We emphasize that, although lifting allowsus
to established a homomorphism between the first-generation
and any higher-order TDI space [7], it does not generate the
entire higher-order TDI space of interest. This is because it
does not construct the basis of such a space.

A. Time-varying arms’ lengths and vanishing
commutators

If the arms’ lengths are time dependent, then the
operators do not commute and the laser noise will not
cancel. However, if the arms’ lengths are analytic functions
of time, we can Taylor expand the operators and keep terms
to a specific order in the time derivatives of the light-travel
times. Although in the case of the currently envisioned
missions [1–5] it is sufficient to cancel terms that are only
first order in L̇i and L̇0

i or linear in velocities [6,11].
However, in future missions able to handle the detection of
high interspacecraft beat notes, one may have to account for
higher-order time derivatives of the interspacecraft distan-
ces. In those cases the lifting procedure presented in this
article provides a method for obtaining TDI combinations
that cancel the laser noise up to the order required.
Let us first start by noting the effect of n operators

Dk1 ;…;Dkn applied on the laser noise CðtÞ. We also write
the expressions in a neat form. For three operators we obtain2

D1D2D3CðtÞ ¼ C½t − L3ðt − L2ðt − L1Þ − L1Þ − L2ðt − L1Þ − L1�

¼ C
h
t − L1 − L2 − L3 þ ðL2v3 þ L1v2 þ L1v3Þ − L1v2v3 −

1

2
ðL1 þ L2Þ2f1 þ L2

1f2Þ
i
:

¼ C
�
t −

X3
i¼1

Li þ V3 −Q3 − F3

�
; ð2:2Þ

≈C
�
t −

X3
i¼1

Li

�
þ ðV3 −Q3 − F3ÞĊ

�
t −

X3
i¼1

Li

�
þ 1

2
V2
3C̈

�
t −

X3
i¼1

Li

�
; ð2:3Þ

where

V3 ¼ L1v2 þ ðL1 þ L2Þv3;
Q3 ¼ L1v2v3;

F3 ¼
1

2
½L2

1f2 þ ðL1 þ L2Þ2f3�; ð2:4Þ

1Besides the primary interspacecraft Doppler measurement yi, yi0 that contains the gravitational wave signal, other metrology
measurements are made on board an interferometer’s spacecraft. This is because each spacecraft is equipped with two lasers and two
proof-masses of the onboard drag-free subsystem. It has been shown [6], however, that these onboard measurements can be properly
delayed and linearly combined with the interspacecraft measurements to make the realistic interferometry configuration equivalent to
that of an array with only three lasers and six one-way interspacecraft measurements.

2The operators could refer to either Li or Li0. We do not write the primes explicitly in order to avoid clutter but the identities that we
derive hold in either case. Instead of writing Dkp we have denoted the same by just Dp where p can take any of the values
1; 2; 3; 10; 20; 30.
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where vi ¼ L̇i and fi ¼ L̈i. We have neglected higher-order terms of order oðv3Þ, oðvfÞ etc. while obtaining the above
results. We have kept terms up to the quadratic order in velocities and linear in accelerations. We further denote by V,Q, F,
the terms linear in velocities, quadratic in velocities, and linear in acceleration, respectively. For four operators D1D2D3D4

operating on CðtÞ, we obtain

V4 ¼ L1v2 þ ðL1 þ L2Þv3 þ ðL1 þ L2 þ L3Þv4;
Q4 ¼ L1½v2v3 þ v2v4 þ v3v4� þ L2v3v4;

F4 ¼
1

2
½L2

1f2 þ ðL1 þ L2Þ2f3 þ ðL1 þ L2 þ L3Þ2f4�; ð2:5Þ

with the expression of C being essentially the same as in Eq. (2.3) but V3, Q3, F3 replaced by V4, Q4, F4 etc. Also we find
that there are recursion relations like Q4 ¼ V3v4 þQ3 which makes it convenient to derive the general expressions for n
operators. Accordingly, the general expression for n operators is obtained from the above considerations by induction:

D1D2D3…DnCðtÞ ≈ C

�
t −

Xn
i¼1

Li

�
þ ðVn −Qn − FnÞĊ

�
t −

Xn
i¼1

Li

�
þ 1

2
V2
nC̈

�
t −

Xn
i¼1

Li

�
;

Vn ¼
Xn−1
i¼1

Li

� Xn
j¼iþ1

vj

�
;

Qn ¼
Xn−2
i¼1

Li

� Xn
j¼iþ1;k>j

vjvk

�
;

Fn ¼
1

2

Xn
j¼2

fj

�Xj−1
i¼1

Li

�2

: ð2:6Þ

Let us interpret the right-hand side of this equation. The first
term is just the laser noise at a delayed time that is equal to the
sumof the delays at time t. If the arms’ lengthswere constant
in time this would be the only term that would be present and
would be sufficient to cancel the laser frequency noise. These
are just the first generation TDI and the operators commute.
The second term, on the other hand, involves the multipli-
cation of Ċ evaluated at the delayed time by an expression
involving V,Q, F—it contains terms up to the second order
in velocities and linear in accelerations. This term makes the
operators noncommutative. The third term instead includes
the second derivative of the laser noise and contains terms
quadratic in velocities. As shown in [6,7,12] certain com-
mutators cancel the laser noise up to linear velocity terms in
the following general way:

½x1x2…xn; xσð1Þxσð2Þ…xσðnÞ� ¼ 0; ð2:7Þ

where the “zero” on the right-hand side means up to first
order in the linear velocity and σ is a permutation on the n
symbols. However, as it will be shown in the next section, the
expression on the left-hand side of Eq. (2.7) allows us to
prove that, for a given n and a specific permutation of the
indices, the cancellation of the laser noise achieved is up to
the time derivatives of (n − 1)th order in interspacecraft time
delays.
Since this general result will be proved by induction,

we first provide the expressions for the higher-order

(third-generation TDI) Michelson and Sagnac combina-
tions (α3, β3, γ3, X3) and show they can iteratively be
related to their corresponding previous-order combinations.

B. The unequal-arm Michelson X3

To derive the expression for X3 we recall how the
second-generation expression X2 was derived [7,11]. The
unequal-arm Michelson combination include only the four
one-way Doppler measurements (y1, y10 , y20 , y3) from the
two arms centered on spacecraft 1. They enter in X through
the following synthesized two-way Doppler data:

X↑ ≡ y1 þD3y20 ¼ ðD3D30 − IÞC1;

X↓ ≡ y10 þD20y3 ¼ ðD20D2 − IÞC1; ð2:8Þ
where we included the expressions of their residual laser
noises. These expressions imply the following residual
laser noise in the first-generation TDI combination X [6,7]:

X ≡ ðD3D30 − IÞX↓ − ðD20D2 − IÞX↑

¼ ½D3D30 ;D20D2�C1 ≡ X1C1: ð2:9Þ
Herewe have defined the commutatorX1 ¼ ½D3D30 ;D20D2�
as the first commutator which is associated with the
first-generation unequal-arm Michelson combination. It
is different from zero when the delays are functions of
time and is linear in the interspacecraft relative velocities.
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We now rewrite the above expression for X in terms of its
two synthesized beams. They are equal to

X↑↑ ≡D20D2X↑ þ X↓ ¼ ðD20D2D3D30 − IÞC1;

X↓↓ ≡D3D30X↓ þ X↑ ¼ ðD3D30D20D2 − IÞC1: ð2:10Þ

The expression of X2 can then be derived by repeating the
same procedure used for obtaining X. This results in the
following combination:

X2≡ ðD3D30D20D2− IÞX↑↑− ðD20D2D3D30 − IÞX↓↓

¼ ½D3D30D20D2;D20D2D3D30 �C1≡X2C1 ¼ 0; ð2:11Þ

where we have defined the second commutator X2 ¼
½D3D30D20D2;D20D2D3D30 �. The equality to zero, which
means “up to terms linear in velocity,” follows from the
general property of the commutators of the delay operators
proved in [7] and recalled in the previous section. This can
also be understood from the following argument. Since we
need to cancel terms only up to linear order in velocities for
X2, we only need to consider the quantitiesVn ofEq. (2.6) for
the commutator. Here n ¼ 8 because we have a product of
eight delay operators D3D30D20D2D20D2D3D30 in the first
term of the commutator. The explicit expression is

V8 ¼ L3ð3v30 þ 2v20 þ 2v2 þ v3Þ
þ L30 ð2v20 þ 2v2 þ v3 þ v30 Þ
þ L20 ð3v2 þ 2v3 þ 2v30 þ v20 Þ
þ L2ð2v3 þ 2v30 þ v20 þ v2Þ: ð2:12Þ

A permutation of indices 3 ↔ 20, 30 ↔ 2 produces the
second term in the commutator. But under this permutation
of indices as seen fromEq. (2.12) the quantityV8 is invariant.
Since the second term of the commutator has the opposite
sign, the V terms cancel out to give zero.
Let us define A1 ≡D3D30 and B1 ≡D20D2. We have the

following commutator’s identity:

½A1B1; B1A1� ¼ ½½A1; B1�; A1B1�; ð2:13Þ

from which it follows that

X2 ≡ ½D3D30D20D2;D20D2D3D30 � ¼ ½X1;D3D30D20D2�:
ð2:14Þ

Similar to what was done for both X and X2, one can
obtain X3. From the expression for X2 above we can write
the following two combinations corresponding to two
synthesized beams making three zero-area closed loops
along the two arms of the array. We have

X↑↑↑ ≡D3D30D20D2X↑↑ þ X↓↓

¼ ðD3D30D20D2D20D2D3D30 − IÞC1; ð2:15Þ

X↓↓↓ ≡D20D2D3D30X↓↓ þ X↑↑

¼ ðD20D2D3D30D3D30D20D2 − IÞC1; ð2:16Þ

which implies the following expression of the residual laser
noise in X3:

X3 ≡ ðD20D2D3D30D3D30D20D2 − IÞX↑↑↑ − ðD3D30D20D2D20D2D3D30 − IÞX↓↓↓

≡ X3C1 ¼ ½D20D2D3D30D3D30D20D2;D3D30D20D2D20D2D3D30 �C1: ð2:17Þ

From the commutator identity derived earlier we see that X3 can be written in the following way:

X3 ≡ ½D20D2D3D30D3D30D20D2;D3D30D20D2D20D2D3D30 � ¼ ½X2;D20D2D3D30D3D30D20D2�; ð2:18Þ

where X2 is in fact given by Eq. (2.14), the operator of the
second-generation unequal-arm Michelson combination.
We then conclude that the following identity is satisfied
in general:

Xn ¼ ½Xn−1;D20D2D3D30D3D30D20D2…�; ð2:19Þ

where the total number of delay operators on the right-hand
side is equal to 2n, as one can easily infer.
In the following section we will return to the expression

of X3 and higher-order unequal-arm Michelson combina-
tions. There we will show that X3 cancels laser noise
terms that are quadratic in the interspacecraft velocities and

linear in the acceleration, and prove a general theorem by
which TDI combinations of order n (such as Xn) cancel the
laser noise up to (n − 1)th time derivatives of the time
delays.

C. The Sagnac combination α3

A TDI Sagnac combination, αn, represents the result of
the interference of two synthesized light-beams on board
spacecraft 1 after making an equal number of clockwise
and counterclockwise loops around the array. In [7] we
obtained the expression of α2, the second-generation
TDI Sagnac combination, that exactly cancels laser noise
up to terms linear in the interspacecraft velocities. In what
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follows we derive α3 by first recalling the expressions of α,
α1.5, and α2, and their residual laser noises

α≡ α↑ − α↓ ¼ ðD3D1D2 −D20D10D30 ÞC1; ð2:20Þ
where α↑ and α↓ are equal to the following combinations of
the one-way heterodyne measurements [7]:

α↑ ≡ y1 þD3y2 þD3D1y3 ¼ ðD3D1D2 − IÞC1;

α↓ ≡ y10 þD20y30 þD20D10y20 ¼ ðD20D10D30 − IÞC1:

ð2:21Þ
The Sagnac combination α1.5 is then obtained by making
the beams go around the array one additional time and
results in the following expression:

α1.5 ≡ ðD20D10D30 − IÞα↑ − ðD3D1D2 − IÞα↓
≡ σ1.5C1 ¼ ½D20D10D30 ;D3D1D2�C1: ð2:22Þ

From the properties of commutators derived in [7], we
recognize that the right-hand side of Eq. (2.22) does not
cancel the laser noise containing terms linear in the
velocities. However, by making the beams go around the
array one more time, we obtain the following expression of
the second-generation Sagnac combination α2:

α2 ¼ ðD3D1D2D20D10D30 − IÞα↑↑
− ðD20D10D30D3D1D2 − IÞα↓↓;

≡ σ2C1 ¼ ½D3D1D2D20D10D30 ;D20D10D30D3D1D2�C1:

ð2:23Þ

In Eq. (2.23) α↑↑, α↓↓ are equal to the following combi-
nations of the six delay operators Di;Dj; i ¼ 1; 2; 3; j ¼
10; 20; 30 [7]:

α↑↑ ¼ D20D10D30α↑ þ α↓

¼ ðD20D10D30D3D1D2 − IÞC1;

α↓↓ ¼ α↑ þD3D1D2α↓

¼ ðD3D1D2D20D10D30 − IÞC1: ð2:24Þ

The operator in Eq. (2.23) acting on C1 is the commutator
of two delay operators, each containing the same number of
primed and unprimed delay operators and related by
permutations of their indices. We therefore conclude, from
the commutator identities derived in the previous section,
that the above expression results in the exact cancellation of
the laser noise up to linear velocity terms.
Let us now consider the following two combinations

entering in α2:

α↑↑↑ ¼ D3D1D2D20D10D30α↑↑ þ α↓↓

¼ ðD3D1D2D20D10D30D20D10D30D3D1D2 − IÞC1;

α↓↓↓ ¼ D20D10D30D3D1D2α↓↓ þ α↑↑

¼ ðD20D10D30D3D1D2D3D1D2D20D10D30 − IÞC1:

ð2:25Þ

From Eq. (2.25) above we obtain the following expression
for α3 and its residual laser noise:

α3 ¼ ðD20D10D30D3D1D2D3D1D2D20D10D30 − IÞα↑↑↑ − ðD3D1D2D20D10D30D20D10D30D3D1D2 − IÞα↓↓↓
≡ σ3C1 ¼ ½D20D10D30D3D1D2D3D1D2D20D10D30 ;D3D1D2D20D10D30D20D10D30D3D1D2�C1: ð2:26Þ

If we now define A1 ≡D20D10D30 , B1 ≡D3D1D2, we see that the right-hand-side of Eq. (2.26) can be written as
½A1B1B1A1; B1A1A1B1�, which is also equal to ½½A1B1; B1A1�; A1B1B1A1� from the commutator’s identity derived earlier.
From these considerations we finally have,

σ3 ¼ ½σ2;D20D10D30D3D1D2D3D1D2D20D10D30D3D1D2D20D10D30D20D10D30D3D1D2�: ð2:27Þ
As in the case of the expression for the operator Xn derived in the previous section, here too we can relate the operator σn to
the operator σn−1 in the following way:

σn ¼ ½σn−1;D20D10D30D3D1D2D3D1D2D20D10D30D3D1D2D20D10D30D20D10D30D3D1D2…�; ð2:28Þ

where the total number of delay operators on the right-hand
side is equal to 3 × 2n, as one can easily infer.

III. HIGHER-ORDER TDI

In the previous section we showed that an order-n TDI
combination can be written in terms of its corresponding
(n − 1)-order one through a commutator identity [see

Eqs. (2.19) and (2.28)]. In this section we will take
advantage of this property by first proving that the third-
order TDI combinations α3, β3, γ3, X3 cancel the laser noise
up to terms quadratic in the interspacecraft velocities and
linear in the accelerations. We will then generalize this
result and prove that combinations of order n cancel exactly
the laser noise up to the (n − 1)th time-derivative terms of
the interspacecraft time delays. Since the proof proceeds
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similarly for both the unequal-arm Michelson and the
Sagnac combinations, in what follows we will just focus
on the Michelson combinations.
To take advantage of the dependence of X3 on its lower-

order combinations X2 and X, let us first focus on the
expressions for the residual laser noises in X and X2. Using
our previous notation of Sec. II B, namely, A1 ≡D3D30 and
B1 ≡D20D2, to first order we can write the residual laser
noise in X in the following form:

X ¼ ½A1; B1�C1ðtÞ ¼ C1ðt − LA1
ðtÞ − LB1

ðt − LA1
ðtÞÞÞ

− C1ðt − LB1
ðtÞ − LA1

ðt − LB1
ðtÞÞÞ;

≃ Ċ1ðt − LB1
ðtÞ − LA1

ðtÞÞðL̇B1
LA1

− L̇A1
LB1

Þ; ð3:1Þ
where LB1

, LA1
are the two round-trip light times in the

two unequal arms and the overdot symbol represents the
usual operation of time derivative. Equation (3.1) simply
states that the residual laser noise in X is linear in the
interspacecraft velocities through an “angular momentum-
like” expression. We note that A1 and B1 also represent time
delays and are time-delay operators in their own right, and
therefore follow the same algebraic rules as the elementary
delay operators Dj. For reasons that will become clearer
later on, we will denote such an expression as

Sð1Þ ≡ L̇B1
LA1

− L̇A1
LB1

: ð3:2Þ

Since Sð1Þ contains terms linear in velocities, the laser noise
in X is not canceled at this order.
Let us now see how we can cancel the terms linear

in velocities. Let us consider the following two delay
operators: A2≡D3D30D20D2 ¼ A1B1, B2≡D20D2D3D30 ¼
B1A1. We can formally write the expression of the first-
order residual laser noise in X2 in the following way:

X2 ¼ ½A2; B2�C1ðtÞ ¼ C1ðt − LA2
ðtÞ − LB2

ðt − LA2
ðtÞÞÞ

− C1ðt − LB2
ðtÞ − LA2

ðt − LB2
ðtÞÞÞ;

≃ Ċ1ðt − LA2
ðtÞ − LB2

ðtÞÞðL̇B2
LA2

− L̇A2
LB2

Þ; ð3:3Þ

where we have denoted with (LA2
, LB2

) the two delays
resulting from applying to the laser noise the two operators
(A2 ¼ D3D30D20D2, B2 ¼ D20D2D3D30) respectively.
In analogy with the expression of Sð1Þ in Eq. (3.2), which

quantifies the first-order expression of the residual laser
noise in X, it is convenient to introduce the following
combination that defines the magnitude of the first-order
residual laser noise in X2:

Sð2Þ ≡ L̇B2
LA2

− L̇A2
LB2

: ð3:4Þ
To assess its magnitude we need to expand the two delays
(LA2

, LB2
) in terms of the round-trip light times and their

time derivatives through the following expressions:

LA2
¼ LA1

ðtÞ þ LB1
ðt − LA1

ðtÞÞ ≃ LA1
ðtÞ þ LB1

ðtÞ − L̇B1
ðtÞLA1

ðtÞ;

L̇A2
¼ L̇A1

ðtÞ þ d
dt

LB1
ðt − LA1

ðtÞÞ ≃ L̇A1
ðtÞ þ L̇B1

ðtÞ − d
dt

ðL̇B1
ðtÞLA1

ðtÞÞ;
LB2

¼ LB1
ðtÞ þ LA1

ðt − LB1
ðtÞÞ ≃ LB1

ðtÞ þ LA1
ðtÞ − L̇A1

ðtÞLB1
ðtÞ;

L̇B2
¼ L̇B1

ðtÞ þ d
dt

LA1
ðt − LB1

ðtÞÞ ≃ L̇B1
ðtÞ þ L̇A1

ðtÞ − d
dt

ðL̇A1
ðtÞLB1

ðtÞÞ: ð3:5Þ

By substituting the expressions given by Eq. (3.5) into Eq. (3.4), after some algebra we get,

Sð2Þ ¼
�
d
dt

ðL̇A1
LB1

Þ − ðL̇A1
þ L̇B1

Þ
�

Sð1Þ þ ðLA1
þ LB1

− L̇A1
LB1

ÞṠð1Þ: ð3:6Þ

Since Sð1Þ is linear in the interspacecraft velocities, from the
above expression we conclude that Sð2Þ (and therefore the
residual laser noise in X2) only contains terms that are
quadratic in the relative velocities and linear in the accel-
erations. The rest of the terms are of higher order than those
that we retain here. This is the consequence of the
symmetry of the terms which occur in the Taylor expansion
and the antisymmetry of the commutator. We provide a
detailed mathematical analysis in Appendix which con-
firms this assertion. Mathematically this is because of the
dependence of X2 on X as shown in Eq. (2.14). Thus we
find that the terms linear in velocities are canceled in X2.

Let us now move on to X3. From the expression of its
residual laser noise given in Eq. (2.17), after defining the two
delay operators A3 ≡ A2B2 ¼ D3D30D20D2D20D2D3D30 ,
B3 ≡ B2A2 ¼ D20D2D3D30D3D30D20D2, we can write the
expression of its first-order residual laser noise in the
following way:

X3 ≃ Ċ1ðt − LB3
ðtÞ − LA3

ðtÞÞðL̇B3
LA3

− L̇A3
LB3

Þ: ð3:7Þ

By defining Sð3Þ to be equal to

Sð3Þ ≡ L̇B3
LA3

− L̇A3
LB3

; ð3:8Þ
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we will now show that Sð3Þ can be written as a linear
combination of Sð2Þ and Ṡð2Þ, similarly to Sð2Þ being a linear
combination of Sð1Þ and Ṡð1Þ. To prove this result, we expand
the two delays (LA3

; LB3
) and their time derivatives in terms

of the delays (LA2
; LB2

) and their time derivatives (which
define Sð2Þ). We obtain

LA3
¼ LA2

ðtÞ þ LB2
ðt − LA2

ðtÞÞ ≃ LA2
ðtÞ þ LB2

ðtÞ
− L̇B2

ðtÞLA2
ðtÞ;

L̇A3
¼ L̇A2

ðtÞ þ d
dt

LB2
ðt − LA2

ðtÞÞ ≃ L̇A2
ðtÞ þ L̇B2

ðtÞ

−
d
dt

ðL̇B2
ðtÞLA2

ðtÞÞ;
LB3

¼ LB2
ðtÞ þ LA2

ðt − LB2
ðtÞÞ ≃ LB2

ðtÞ þ LA2
ðtÞ

− L̇A2
ðtÞLB2

ðtÞ;

L̇B3
¼ L̇B2

ðtÞ þ d
dt

LA2
ðt − LB2

ðtÞÞ ≃ L̇B2
ðtÞ þ L̇A2

ðtÞ

−
d
dt

ðL̇A2
ðtÞLB2

ðtÞÞ: ð3:9Þ

After substituting Eq. (3.9) into Eq. (3.8), we finally obtain
the following expression for Sð3Þ in terms of Sð2Þ and Ṡð2Þ:

Sð3Þ ¼
�
d
dt

ðL̇A2
LB2

Þ − ðL̇A2
þ L̇B2

Þ
�
Sð2Þ

þ ðLA2
þ LB2

− L̇A2
LB2

ÞṠð2Þ: ð3:10Þ

SinceSð2Þ only contains terms that are either proportional to the
square of the interspacecraft velocities or to their relative
accelerations, and Ṡð2Þ is further suppressed over Sð2Þ by a time
derivative of these terms, from the structure of Eq. (3.10) we
conclude thatSð3Þ is of orderV smaller thanSð2Þ,withV beinga
typical interspacecraft velocity. Therefore in X3, terms quad-
ratic in velocities and linear in acceleration are canceled out.
From the derivations of the expressions for Sð2Þ and Sð3Þ

above it is now clear that the combination Sð4Þ, associated
with the residual laser noise in X4, will cancel laser noise
terms that are cubic in the velocity or of order velocity
times acceleration or linear in the time derivative of the
acceleration, and that in general the expression SðnÞ
associated with the residual laser noise in Xn will depend
on the order n − 1 combinations Sðn−1Þ and Ṡðn−1Þ through a
linear relationship similar to those shown by Eqs. (3.6) and
(3.10). This is because of the mathematical structure of SðnÞ
and because its defining delays can be written in terms of
the delays entering the expression of Sðn−1Þ. By induction
we therefore conclude that the residual laser noise in the
n-order unequal-armsMichelson combinationXnwill cancel
exactly the laser noise up to (n − 1)th time derivatives of the
interspacecraft time delays.

IV. CONCLUSIONS

Since the exact cancellation of the laser noise for any
arbitrary time-dependent delays cannot be achieved [8], in
this article we have presented a technique for constructing
TDI combinations that cancel the laser noise up to nth-order
time-derivative terms of the interspacecraft light-travel times.
The lifting procedure, which provides a way for constructing
suchTDI combinations, entailsmaking two synthesized laser
beams going around the array along clockwise and counter-
clockwise paths a number of times before interfering back at
the transmitting spacecraft. In so doing the time variations
of the light-travel times is averaged out more and more
accuratelywith the number of loops performed by the beams.
We derived the expressions of the third-order TDI combi-
nations (α3, β3, γ3, X3) as an example application of the
lifting procedure, and showed their expressions cancel the
laser noise up to terms quadratic in the velocity and linear in
the acceleration thanks to the theorem we proved in Sec. III.
This result had previously been noticed through a numerical
analysis [9] and here we have proved it analytically.
Although the higher-order TDI combinations have been

derived using analytic techniques, they could have also
been formulated using matrices. This would have resulted
in the same higher-order TDI observables derived here
albeit numerically [10,13,14]. This implies that represen-
tations of operators using matrices lend themselves to easy
numerical manipulations.
It is important to note that currently planned GW

missions do not need to cancel laser noise terms quadratic
in the velocities or linear in the accelerations because of
their benign interspacecraft relative velocities (≈10 m=s)
[1–5]. However, future interplanetary missions capable of
measuring interspacecraft relative Doppler of 10 km=s or
larger will need to synthesize third-order TDI combinations
to suppress the laser noise to the required levels.
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APPENDIX: PROOF OF THE ASSERTION

For completeness we start with the expression of the
Taylor expansion of two delays A1 and B1 applied
successively [see Eq. (2.6)],

ðA1B1ÞC ¼ Cðt − LA1
− LB1

Þ þ
�
LA1

vB1
−
1

2
L2
A1
fB1

�
Ċ

þ 1

2
L2
A1
v2B1

C̈; ðA1Þ
where we have retained terms quadratic in v and linear in f
and where vA1

¼ L̇A1
and fA1

¼ L̈A!
etc. Also instead of
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writing the D operators explicitly, in order to avoid clutter,
we have indicated those operators in terms of their delays.
Further we mention that the time derivatives are evaluated
at the delayed times.
Interchanging A1 and B1 provides the action B1A1

on C. Then combining the two expressions we obtain
the commutator:

½A1; B1�C ¼
�
ðLA1

vB1
− LB1

vA1
Þ − 1

2
ðL2

A1
fB1

− L2
B1
fA1

Þ
�
Ċ

þ 1

2
½L2

A1
v2B1

− L2
B1
v2A1

�C̈: ðA2Þ

Now we proceed to the second nested commutator of the
delays A2 ¼ A1B1 and B2 ¼ B1A1. We note that the
commutator of A2 and B2 gives formally the same
expression as Eq. (A2) with 1 replaced by 2. We write
this commutator as

½A2; B2�C ¼
�
U −

1

2
V

�
Ċþ 1

2
WC̈; ðA3Þ

where U ¼ LA2
vB2

− LB2
vA2

, V ¼ L2
A2
fB2

− L2
B2
fA2

, and
W ¼ L2

A2
v2B2

− L2
B2
v2A2

. We now need to write U, V, and W
and the commutator in terms of A1 and B1. For this, we
require the following relations:

LA2
¼ LA1

þ LB1
− LA1

vB1
þ 1

2
L2
A1
fB1

;

LB2
¼ LB1

þ LA1
− LB1

vA1
þ 1

2
L2
B1
fA1

;

vA2
¼ vA1

þ vB1
− vA1

vB1
− LA1

fB1
;

vB2
¼ vB1

þ vA1
− vB1

vA1
− LB1

fA1
: ðA4Þ

Note that we write all expressions so that a given quantity is
expressed up to the required order only. We first compute

U. Because of the symmetry of the terms and the
antisymmetry of the commutator, several terms cancel
out. Further we drop terms of order oðv3Þ, oðvfÞ, oðf2Þ.
The result is

U ¼ ðvA1
þ vB1

ÞðLB1
vA1

− LA1
vB1

Þ
þ ðLA1

þ LB1
ÞðLA1

fB1
− LB1

fA1
Þ≡ −Sð2Þ: ðA5Þ

From here we see that U ¼ −Sð2Þ is quadratic in velocities
and linear in acceleration. We now show that this is the only
term that contributes at this order.
We now show that V andW are of higher order and so are

zero at this order. Differentiating the velocity equations in
Eq. (A4) with respect to time we obtain to this order [the
rest of the terms are oðvfÞ and oðḟÞ],

fA2
¼ fA1

þ fB1
¼ fB2

: ðA6Þ
A similar argument shows that LA2

¼ LA1
þ LB1

¼ LB2

(only these terms contribute at the required order). Thus
V ¼ 0 at this order.
We argue similarly for W. We have L2

A2
v2B2

¼ ðLA1
þ

LB1
Þ2ðvA1

þ vB1
Þ2 ¼ L2

B2
v2A2

at this order. Thus W ¼ 0. So
it is only the leading term U that contributes at this order
which is essentially Sð2Þ.
One can further ascertain that Sð3Þ ¼ 0 at this order. To

obtain Sð3Þ (except for a sign) we replace 1 by 2 in Eq. (A5).
Thus,

Sð3Þ ¼ ðvA2
þ vB2

ÞðLB2
vA2

− LA2
vB2

Þ
þ ðLA2

þ LB2
ÞðLA2

fB2
− LB2

fA2
Þ: ðA7Þ

At this order, apart from LA2
¼ LB2

and fA2
¼ fB2

as
shown above, we also have vA2

¼ vA1
þ vB1

¼ vB2
. This

produces the required result that Sð3Þ ≈ 0.
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