
Proceeding Series of the Brazilian Society of Computational and Applied Mathematics 

Gradient Pattern Analysis of Coupled Map Lattices:
Insights into Transient and Long-Term Behaviors

Rubens A. Sautter1, Reinaldo R. Rosa2, Luan O. Baraúna3

Lab for Computing and Applied Mathematics, INPE-MCTI, São José dos Campos, SP

Abstract. Gradient Pattern Analysis (GPA) is a useful technique for analyzing the dynamics of
nonlinear 2D-spatiotemporal systems, which is based on the gradient symmetry-breaking properties
of a matrix snapshot sequence. GPA has found numerous applications in dynamic systems, particu-
larly in studying logistic Coupled Map Lattices (CMLs) and Swift-Hohenberg amplitude equations.
In this work, we propose a new mathematical operation related to the first gradient moment (G1)
defined by the GPA theory. The performance of this new measure is evaluated by applying it to
two chaotic CML models (Logistic and Shobu-Ose-Mori). The GPA using the new parameter (G1)
provides a more accurate analysis, allowing the identification of conditions that partially break the
gradient symmetry over time. Based on the GPA measurements (G1, G2 and G3), including a
combined analysis with the chaotic parameters, our results demonstrate the potential to analyze
chaotic spatiotemporal systems improving our understanding of their underlying dynamics.
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1 Introduction
Coupled Map Lattices (CMLs) act as a mathematical model to study the behavior of non-linear

dynamical systems that may exhibit chaotic behavior. Different CML models (1D and 2D), in
relation to the master equation, have been employed across diverse areas, including physics [2, 13],
social sciences [11], and cryptography for generating pseudo-random numbers [3]. These systems
exhibit complex dynamics, such as oscillatory relaxation [4, 8], kink, anti-kink, and synchronization
[2], whose understanding can have important practical implications. A key feature that can alter
the local instability that defines pattern formation is the symmetry imposed by the initial condition,
boundary conditions and the nonlinearity of the model. The Gradient Pattern Analysis (GPA)
formalism allows investigation of the formation of non-linear patterns directly in the gradient lattice
of the system (e.g., [1, 6]). The main advantage of this approach is to understand the formation of
spatiotemporal patterns from the small phase and modulus fluctuations that occur in the gradient
lattice of a CML. In this work, based on the improved application of the GPA, described in section
2, on the CMLs presented in section 3, we present a parameter space analysis that contributes to
strengthening the conclusions presented in the last section.

2 Gradient Pattern Analysis
Gradient Pattern Analysis (GPA)4 is a mathematical-computational formalism proposed to

characterize two-dimensional spatial patterns from the gradient lattice of an amplitude matrix.
1rubens.sautter@gmail.com
2reinaldo.rosa@inpe.br
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4The source code is public-available at: https://github.com/rsautter/GPA
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In this technique, the Gradient Lattice (GL) is computed in the x-direction and the y-direction,
whenever possible, with Central Finite Difference. The boundaries are measured with forward and
backward finite differences.

An important feature of describing underlying physical processes is symmetry, which is an
indicator of balance and stability. This feature has been generalized to GLs in GPA formalism,
where the vector lattice is segmented into symmetrical, asymmetrical, and homogeneous regions.
The Asymmetric Gradient Method (AGM) is a technique to detect symmetry breaking, which had
major importance in recent works[1, 6]. In this method, vectors equidistant to the matrix center
are compared with each other. The first step is to determine homogeneous regions, where the
modulus is smaller than ξ. Then, symmetry and asymmetry are sought in the remaining regions.
If there is at least one vector where the vectorial sum produces a vector with a size smaller than
ξ, then it is classified as symmetrical, otherwise, they are asymmetrical.

In this way, the mathematical representation of gradients can assume different designs that
highlight intrinsic information of the two-dimensional partial derivatives. In order to organize the
metrics, Rosa et al. [7] proposes the classification of those metrics with a similar methodology to
classical physics moments and statistical moments to the Gradient Lattice represented in Figure
1, known as Gradient Moment (GM).

Figure 1: Scheme representing the GPA operations and respective Gradient Moments (GM). Fil-
tering the information from matrices to compose a new numerical lattice can enhance or diminish
aspects of the observed pattern. Thus, every metric extracted from a given numerical lattice is
a GM in GPA formalism. The spatial variances form the Gradient Lattice (GL): which is the
first GPA output. The modulus and the phases from the GL are the second and third numerical
lattices. Finally, the complex notation of the GL composes the fourth Lattice.

2.1 The Gradient Moments

The GM1 combines spatial GL information of the position, modulus, and phases. A method-
ology to combine that information is the Delaunay triangulation, where every vector of the GL is
added to its position, and then the set of resulting points is triangulated [5–7]. The triangulation
criterion was established to maximize the space occupied with the smallest possible number of
triangles since the Delaunay triangulation maximizes the internal angles. With the triangulation
set, several features can be extracted, such as the classical metric GC

1 = (NC − NV )/NV , where
which GC

1 is a relation between the number of Delaunay connections NC and the number of vectors
NV . This metric is bounded to the interval [0, 2[, as the pattern becomes more intricate the metric
increases, a result that can be observed by measuring GC

1 in random matrices [5]. In this work, we
explore a new metric for GM1, which is a relation between the distribution of Delaunay connection
size. Given the set of connection lengths that are larger than the median connection lengths Lsup,
and the set of connection lengths that are smaller than the median connection lengths Linf, G1 is
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measured as:

G1 =
Lsup − Linf

max(L)
, (1)

that is a relation between the Lsup average and the Linf average normalized by the largest Delaunay
connection length max(L). If all triangles are equal Lsup = Linf, and thus G1 = 0. On the other
hand, a sparse pattern has a large variation of triangle connections, in an extreme scenario, Linf ≈ 0
and Linf ≈ max(L), in which G1 ≈ 1.

In a more refined approach, the extraction of features from vector modules is sought. A proce-
dure adopted in GM2 is:

G2 =
VA

V

1−

∣∣∣∣VA∑
i=0

vi

∣∣∣∣
2

VA∑
i=0

|vi|

 , (2)

which describes the relation between every vector modulus |vi| and the modulus of the overall
vector |

∑
vi|, in a lattice with V vectors and VA asymmetrical vectors. When all vectors in the

lattice are misaligned, |
∑

vi| = 0, and therefore G2 = VA/V . On the other hand, if all vectors are
aligned, for instance, a ‘gradient image’, then |

∑
vi| = k |vi| =

∑
|vi| and G2 = VA/(2V ). Thus,

the term |
∑

vi| /
∑

|vi| is a gradient alignment term.
Another approach to pattern characterization is phase metrics, which belong to GM3. Although

the GM3 has been formally defined [7], until the present work, no metric has been proposed for a
practical application. We introduce the metric:

G3 =
VA

2V
+

VA∑
i=0

cos(θi) cos(ϕi) + sin(θi) sin(ϕi) + 1

4VA
, (3)

that is a relation between each phase θi and the corresponding direction of the phase location
ϕi. In a scenario where all vectors of the lattice are aligned outwards, θi and ϕi have the same
direction, which implies in cos(θi) cos(ϕi) + sin(θi) sin(ϕi) = 0, and therefore G3 = (2VA + V )/4V .

To summarize the gradient moments we can describe the information about the vector’s loca-
tion, modulus, and phase that compose the first Gradient Moment (GM1), the second Gradient
Moment (GM2) is related to the gradient modulus, and the third Gradient Moment (GM3) is
related to the phases of the gradient lattice and the direction of each individual vector. To validate
and understand the presented technique, we define the CML as a canonical application of the
technique, which is presented in the following section.

3 Coupled Map Lattices
Spatially related chaotic systems can show a wide variety of dynamical behaviors, such as spatial

synchronization, frozen chaos, and spatially driven chaos depending on the parametrization and
initial condition [2, 10, 12]. The spatial term in those systems can induce stability in unstable local
dynamics, or vice-versa. Many of these systems have been proposed in the literature to describe
natural processes, where the regime is known as the Edge of Chaos [10]. Here we present the
Coupled Map Lattice (CML)5, a dynamical system that has been proposed as an extension to
classical chaotic maps.

The CML is composed of oscillators f(ut
x,y) in a regular grid, in which spatial interaction is

controlled by a coupling parameter ϵ. The system state ut
x,y is updated at every time step according

to:
5The source code is public-available at: https://github.com/rsautter/CML-CoupledMapLattice
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ut+1
x,y = (1− ϵ)f(ut

x,y) +
ϵ

4

(
f(ut

x+1,y) + f(ut
x−1,y) + f(ut

x,y+1) + f(ut
x,y−1)

)
. (4)

In CML studies, the logistic map has become a standard case [4, 12, 13], which has the form:
f(u) = λu(1 − u). The term λ is a parameter that controls the local regime of the series. In a
range λ = [3, 4], the map presents all 2N periodic orbits and chaotic regimes.

Another interesting map to study is the so-called Shobu-Ose-Mori (SOM) map. It has been
proposed to study intermittent turbulence [9], which is given by the following piece-wise linear
map:

f(u) =

 u+ 0.2, u < γ
α(u− 0.8) + 1 γ ≤ u < 0.8

(1− u)/β u ≥ 0.8
, (5)

where the parameter γ = 1/(0.8 + α). The intermittency proposed in SOM map is related to the
difference in linear dynamic for u < γ and the bursting dynamic for u ≥ 0.8. The map also presents
an almost-unstable dynamic for the set of parameters: α = 0.6, β = 0.2. Any small increase in the
α parameter (i.e. 10−5) leads to instability.

There are several manners to study dynamical systems, the following subsections concentrate
on two approaches that are more common in the CML literature and the GPA applications. The
former approach is the study of transient regimes, where a given metric is measured over time to
generate a time series. The latter is a classification approach, where the parameters of the model
are correlated with the metric.

3.1 Transient Regime Characterization
Predicting the exact dynamics of a system is often unfeasible, due to numerical-computational

problems. An alternative to this problem is to determine the time series regime, where the system
is characterized by a set of common characteristics at a given time range. Most GPA applications
aim to characterize transient regimes in a matter of symmetry/asymmetry and GM [4, 5, 7]. Since
the GM are all GMs are measured at every snapshot of the system, resulting in a time series, having
some instance Figure 2. In these examples, the system begins in a symmetrical 2D Gaussian, which
is transformed into more complex structures as the system iterates, until the symmetry breaks.
Subsequent analyses are related to oscillations metrics, statistical metrics, or clustering processes,
with the objective to determine the transient stages and series extremes.

The observed regimes have been divided into four categories, according to the nature of the
transient stability; (i) stable regime, (ii) boundary-driven unstable regime, (iii) local chaos-driven
unstable regime, and (iv) a mixing of boundary-driven and local chaos-driven unstable regime.
The logistic CML and SOM CML have different symmetry-breaking processes. SOM CML and
logistic CML follow a dynamic of type (i) in the beginning, where all GMs are zero. The symmetry-
breaking process is different in both systems; the logistic CML reaches a type (ii) regime, whereas
SOM CML reaches type (iii). Afterward, both systems reach a type (iv) regime, in which the
metrics are relaxed.

3.2 Classification of Long-term Regimes
Ideally, the analysis of the dynamics of a system should be carried out during the transient to

understand the processes involved and determine whether the system achieved relaxation. However,
some observational data is limited in terms of history. Therefore, another common challenge is
long-term regime characterization, such as galaxy morphology classification [1, 6].

The long-term characterization is also important to understand the effects of the parameter in
CMLs. Once, the presence or absence of symmetry in the system is an indicator of the underlying
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Figure 2: Gradient Moments of a 128x128 CML and some snapshots. (a) Logistic CML in locally
stable conditions (λ = 3.54, ϵ = 0.3). (b) Logistic CML in locally unstable conditions (λ = 4.00,
ϵ = 0.3). (c) SOM CML in locally stable conditions (α = 0.6, ϵ = 0.3). (d)SOM CML in locally
unstable conditions (α = 0.6 + 10−5, ϵ = 0.3).
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Figure 3: Parametric-spaces of 32x32 CMLs with Gaussian initial condition. For every parameter
set, the system is iterated 1,000 times and the Gradient Moment is measured. The charts (a),(b),
and (c) are Logistic CML. The plots (d), (e), and (f) are the SOM CML. (a) and (d) are G1

parametric space, (b) and (e) are G2 parametric space, (c) and (f) are G3 parametric space.

physical processes. In this sense, we propose a long-term analysis of 32x32 logistic CML, which
results are presented in Figure 3. In this analysis, the system starts with a 2D-Gaussian initial
condition. Then, the system is iterated 1,000 times and the GMs are measured in the last snapshot
to compose the so-called Parametric-space.

Without coupling (ϵ = 0.0), all oscillators follow a dynamical behavior of a single map. Thus,
for the parameter λ < 3.57 the system tends to a 2N periodic orbit configuration, that preserves
the system symmetry. Also, small numerical errors are magnified in an uncoupled chaotic regime
(λ > 3.57), which breaks the symmetry in systems with symmetrical initial conditions. However,
the coupling process can induce some instabilities or stability depending on the initial condition and
parametrization. For instance, a parametrization (ϵ = 0.3, λ = 3.2) has some localized instabilities
that break the symmetry.

Concluding Remarks

In this paper, we have explored the dynamics of Coupled Map Lattices (CMLs) and their
applications in the Gradient Pattern Analysis (GPA) context. Our results demonstrate that GPA
is a powerful tool for understanding transient and long-term behaviors, which is important in a
wide variety of applications, from physical and biological to social and economic systems. The
analysis of symmetry-breaking in CMLs allows us to gain insights into the underlying processes
that drive the evolution of these systems. Our work emphasizes the importance of characterizing
the dynamics of a system during the transient phase, as this can provide valuable information and
help determine whether the system has reached a state of relaxation. Additionally, we have shown
the significance of long-term regime characterization for understanding the effects of parameters
in CMLs, which may be useful for future studies on spatiotemporal chaos. Overall, our findings
highlight the potential of GPA as a useful tool for the analysis of nonlinear spatiotemporal patterns.
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