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Abstract: The great majority of the world population resides nowadays in urban areas. Understanding
their physical and social structure, and especially their urban land use pattern dynamics throughout
time, becomes crucial for successful, effective management of such areas. This study is committed to
simulate and predict urban land use change in a pilot city belonging to the São Paulo Metropolitan
Region, southeast of Brazil, by means of a cellular automata model associated with the Markov
chain. This model is driven by data derived from orbital and airborne remotely sensed images and is
parameterized by the Bayesian weights of evidence method. Several layers related to infrastructure
and biophysical aspects of the pilot city, São Caetano do Sul, were used as evidence in the simulation
process. Alternative non-stationary scenarios were generated for the short-run, and the results
obtained from past simulations were statistically validated using a multiresolution “goodness-of-
fit” metric relying on fuzzy logic. The best simulations reached fuzzy similarity indices around
0.25–0.58 for small neighborhood windows when an exponential decay approach was employed
for the analysis, and approximately 0.65–0.95 when a constant decay and larger windows were
considered. The adopted Bayesian inference method proved to be a good parameterization approach
for simulating processes of urban land use change involving multiple classes and transitions.

Keywords: orbital images; digital terrain model; Google Earth; cellular automata (CA)

1. Introduction

The percentage of the population living in urban areas has been increasing since the
1950s on all continents. On average, the global population has become predominantly
urban since 2008. However, data from the World Urbanization Prospects—The 2018
Revision—show that some geographic regions, such as Africa, will only be affected by this
change in future decades, unlike Latin America and the Caribbean, for example, which have
been predominantly urban since the 1960s [1]. In accordance with the behavior observed
in Latin America, Brazil had its land use converted to primarily urban in the last century.
Around the mid-1960s, the urban population exceeded the rural one and has kept growing
ever since, reaching 84.4% in 2010 [2]. In that same year, the southeastern region registered
an urban population of 92.9%, the highest among all the others. By 2050, it is expected that
92.4% of the Brazilian population will live in urban areas, a percentage above that projected
for all Latin America and the Caribbean, which will remain below 90% on average [3].

Understanding the physical and social structure of cities, and particularly their land
use pattern dynamics throughout time, becomes crucial for successful, effective manage-
ment of such areas. As stated by [4], the success of the majority of mankind′s undertakings
depends on a sound governance of their financial, institutional, and especially physical
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structure, since cities control the world′s economy, handling the flows of financial re-
sources, man-made and natural assets, human capital, information, technical and scientific
knowledge, and decision power.

Models for simulating land use change meet the requirements for such skillful urban
management, and they have been in the spotlight since the very beginning of the digital
computation era, in the 1960s. Seminal modeling attempts were limited though in their
representation of space and time, and the first urban land use models were not essentially
dynamic in their nature [5]; neither were they endowed with a real spatial dimension.
According to Wegener et al. [6], a dynamic model has its inputs and outputs varying along
time, and its current states actually depend on previous states. Truly dynamic models
emerged in the late 1960s and early 1970s, but it was only after the onset of graphical com-
putation in the late 1980s that urban land use change models became spatially explicit [7],
and the raster representation became the universal format for cellular space concepts.

Cellular automata (CA) have become the preferable digital framework for simulation
models. Wolfram [8] defined CA as mathematical abstractions consisting of a regular grid,
where time and space are discrete, and the cells’ states are also discrete (i.e., one state per
cell at each time step). The cells’ states evolve through discrete time steps, in which the
attribute (state) of a given cell is affected by the attributes found in neighboring cells in
the preceding time step. The neighborhood typically includes all cells in the immediate
surroundings of the cell under consideration. The cells′ states are simultaneously updated
after each iteration according to the neighborhood arrangement in the previous time step
and based on a set of local transition rules, which may take into account spatial variables in
addition to the cells′ states themselves.

CA models have been subjected to successive refinements [4], incorporating multiscale
analyses [9–12]; manifold categories of driving variables, such as social, political, economic,
and environmental ones [9–12]; dynamic variables [13–15]; adaptive transition rules [16,17];
diverse representations of space, associating vector and raster approaches [18–20]; as well
as new parameterization methods. Logistic regression has been employed to parameterize
CA land use and land cover change (LUCC) simulation models, as in [13], in which changes
in multiple urban land use classes were simulated for a Brazilian medium-sized town,
Bauru, based on the distance to technical and social infrastructure facilities and information
on the occupation density, or as in the work of [21], whose regional LUCC model for
Guangdong in southeastern China was driven by data on relief, hydrography, and distance
to transport infrastructure. Spatial inference techniques were also used for parameterizing
LUCC models, such as fuzzy logic for modeling urban growth in Indianapolis, USA, using
multitemporal satellite images [22] and analytical hierarchy process—AHP—also meant to
model urban growth in Seremban, Malaysia, considering socioeconomic, soil, and relief
data [23].

More recently, machine learning methods have been explored in the parameteriza-
tion of CA models. Random forest and support vector machines (SVMs) were used to
parameterize models of regional land use/land cover change in the central Guangdong
Province of South China, based on data extracted from Landsat 7 ETM+ imagery and
considering topographic characteristics, also including distances to roads, rivers, and the
central province city [21]. SVM was also employed by [24], who simulated the urban
expansion in Lagos, Nigeria, from 1984 to 2015.

Further studies followed the same line, employing conventional artificial neural
networks (ANNs) such as in [14], where neural networks were conceived to drive a CA
model to simulate land use change in Piracicaba, a city located in the mid-west of São Paulo
state, Brazil, from 1985 to 1999, or in [21], dedicated to model LUCC changes in the Chinese
Guangdong Province, from 2000 to 2014. Predictions of land use change in Irbid city, Jordan,
taking into account ANNs driven by data on relief, soil fertility, and distances to technical
and social infrastructure were conducted for short-term horizons by [25]. Likewise, this
research, [26] also elaborated on predictions of land use change for the Gidabo River Basin,
located in the Main Ethiopian Rift Valley, for the long-run (2050), using a CA-based multi-
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layer perceptron neural network considering population density, topographic features, and
proximity variables. ANN-based CA models also include works at regional scales relying
on the FLUS platform, which operates with the concept of adaptive inertia mechanism and
employs a roulette wheel selection [27–29].

Evolutionary computing has been associated with CA models in several studies of land
use/land cover change simulation [15,30–32]. In the work of [33], genetic algorithms were
integrated in a landscape-driven patch-based CA (LP-CA) model, able to simultaneously
consider landscape similarity and cell-by-cell agreement, to simulate urban land use change
in the Chinese city of Guangzhou. Lately, deep learning (DL) methods have also been
investigated for parameterizing CA models. The study of [21] elaborated a DL-CA model
in which a convolutional neural network was designed to capture latent spatial features
for complete representation of neighborhood effects, and a recurrent neural network was
then executed to extract historical information of LUCC from time-series maps. Another
work in this line was conducted by [34], who idealized a deep learning-integrated LUCC
reconstruction model (DLURM), which was applied in the Zhenlai County of Jilin Province,
China, from 1986 to 2013. DLURM performs classification in the entire study area grid,
considering natural, social, and economic drivers affecting the LUCC system.

In most of the works previously mentioned, the land use/land cover classes are
handled either in a binary form (urban vs. non-urban) or at a regional scale, involving
classes such as urban, agriculture, forest, grasslands, water bodies, and alike. In a diverse
way, this study conceives CA models to simulate land use change at a detailed intra-urban
level for the city of São Caetano do Sul (SP), southeast of Brazil, from 2006 to 2018 and from
2018 to 2021, as well as to generate alternative forecast scenarios of such changes in the short
term (2025). These modeling experiments innovatively deal with more than a dozen intra-
urban land use transitions and twenty-six drivers of land use change, which have not been
reported in the literature so far. These models estimate the total amount of transitions by
the Markov Chain and use Bayesian inference to parameterize positive weights of evidence,
which are customizedly assessed for each categorical distance range of the proximity and
relief variables. The input data were obtained with the aid of IKONOS-2 and airborne
orthophotos. The models employed both static and dynamic variables as drivers of land
use change, and such changes were accomplished by random allocation algorithms.

2. Study Area

The municipality of São Caetano do Sul is located in the southeastern section of
São Paulo Metropolitan Region (in Portuguese, Região Metropolitana de São Paulo—RMSP)
and belongs to one of the country’s most important industrial regions, the so-called ABC
(Figure 1). The city of São Caetano do Sul, the seat of the municipality with the same name,
is entirely urbanized and conurbated with cities São Paulo, Santo André, and São Bernardo
do Campo. Its population in 2021, according to the Brazilian Institute for Geography and
Statistics [35], was estimated at 162,763 inhabitants, distributed over a surface of 15.33 km2.
In 2010, the demographic density was already close to 10,000 inh./km2, which shows a
dense rate of urban occupancy.

The city is situated nearby the Atlantic Forest biome, with coordinates 23.62◦S and
46.55◦W, and an average elevation of 751 m. According to the Köppen climate classification,
São Caetano do Sul has a Cfa—humid subtropical climate, which means that temperatures
exceed 22 ◦C in the summer and, even in the driest months, it reaches precipitation indices
of slightly over 30 mm monthly [36,37]. The average annual temperature is approximately
18 ◦C, with July being the coldest month (average temperature of 15 ◦C) and February
the hottest one (average temperature of 21 ◦C). The annual precipitation index is about
1361 mm.
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Figure 1. Location map of the study area.

To the north, the city is bordered by the Tamanduateí River, and to the west and south,
by the Meninos Brook, both canalized. The hydrographic network is also composed by
Utinga, Tijucussu, and Moinho Creeks, and the latter one is channeled under an avenue.
The micro drainage system contains six micro-watersheds, differentiated from each other
according to the topography and the installed storm water drainage network [38]. At
the macro drainage scale, the municipality is contained within the Billings-Tamanduateí
sub-basin, which is part of the Alto Tietê River watershed, characterized by an intense
urbanization process [39].

3. Materials and Methods

The database is composed of five themes, namely: land use, public facilities, trans-
portation system, urban drainage, and traffic generating poles (Figure 2). The land use maps
were elaborated based on urban zoning maps created by the Municipality of São Caetano
do Sul for the years 2006 and 2018. These dates were decisive for defining the simulation
periods. The 2006 Zoning Map [40] was derived from topographic charts produced by the
Brazilian Institute for Geography and Statistics at a scale 1:25,000, 1 m spatial resolution
IKONOS-2 images, and digitized orthophotos acquired during surveys undertaken in the
years 2002 and 2003 with 0.45 m resolution. The 2018 Zoning Map [41] consisted in an
updated version of the 2006 Zoning Map, while the 2021 land use map was elaborated
by us based on a revision of the 2018 Zoning Map, considering that the year 2021 was
the latest date during the data processing of this research. All such zoning maps were
crosschecked with Google Earth Pro images [42] and virtual tours within the Google Street
View [43] environment to generate the respective land use maps according to [44], since
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zoning maps are one of the manifold prescriptive urban management tools used by local
governments, and hence, they do not always reflect the reality of the city′s land use in the
analyzed years. Figure 3 shows an example of a land use change that occurred in 2021,
in which a multi-sports facility was demolished, and thus, it was reassigned as an urban
vacant plot in the 2021 land use map.
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Figure 3. Example of a land use change update for generating the 2021 land use map: (a) street view
of a multi-sports facility in 2018, (b) satellite view of this facility in 2018, (c) street view of this plot
after demolition in 2021, (d) satellite view of this vacant plot in 2021. Sources: [42,43].

Considering that land use change occurs at each time step of the simulation, the
distances to these land uses have to be accordingly recalculated at each time step, and
thus, these variables are called dynamic. Such dynamic variables are internally generated
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by the modeling platform and are transparent to the user. The latest four themes include
sets of static driving variables for land use change, which are those that remain constant
throughout the simulation run. The public facilities concern education, culture, leisure,
health services, and alike. In its turn, the “transportation system” comprises the regional
intermodal terminal and the city′s main roads, differentiated into collector roads, arterial
roads, and expressways. For the “urban drainage” theme, data on hydrographic network
and floodable areas were considered since floods are a recurrent problem in the analyzed
city. Finally, the “traffic generating poles” involve commercial centers, shopping centers,
and university campuses. Figure 2 shows the database structure.

The vector editing was performed in QGIS 3.16.14 long-term release (Open Source
Geospatial Foundation, Beaverton, OR, USA), with coordinates reference system WGS 84,
UTM Zone 23 S. The polygons representing each land use class were edited based on the
visual identification performed on the Google Earth Pro satellite image of the corresponding
year. Next, a topology checking algorithm was implemented to identify and subsequently
correct vector editing errors associated with gaps and overlaps between polygons (Figure 4).
The land use vector maps were then rasterized with a pixel size of 5 m × 5 m.
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All land use maps were clipped with a mask corresponding to the city boundary.
Cross-tabulation operations were performed between the 2006 and 2018 as well as between
the 2018 and 2021 land use maps, aiming to remove incorrect transitions by means of
reclassification tables directly assigned to the cross-tabulation maps (Figure 4). These
spurious transitions occur in the form of isolated pixels or small sets of pixels that appear
in the generated cross-tabulation maps as a result of undesirable errors arisen during the
vector–raster conversion processes. In total, 16 land use transitions were identified in the
first simulation period (2006–2018) and five transitions in the second one (2018–2021). They
are indicated in Table 1, which also shows the respective numerical codes for the eight land
use classes.

The variables belonging to the themes of “public facilities”, “traffic generating poles”,
and particularly the variable “regional intermodal terminal” were created in vector format
composed of polygons, while the variables of the “transportation system” theme associated
with roads were elaborated in vector format consisting of lines. The variables belonging to
the “urban drainage” theme, in their turn, were generated from a digital elevation model
(DEM) elaborated through photogrammetric stereoscopic procedures using aerial VNIR
orthophotos (Figure 5). In all cases, the vectors were rasterized in order to integrate the
input variables’ layers stack (raster data cube).
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Table 1. Land use transitions observed in the analyzed simulation periods. The colors are associated
with the respective classes in the land use maps.

2006–2018 2018–2021

Initial Land Use Final Land Use Initial Land Use Final Land Use

1—Residential 2—Commercial/services 1—Residential 5—Institutional
1—Residential 3—Mixed 3—Mixed 7—Urban vacant plot
1—Residential 5—Institutional 5—Institutional 7—Urban vacant plot
2—Commercial/services 3—Mixed 7—Urban vacant plot 1—Residential
2—Commercial/services 7—Urban vacant plot 7—Urban vacant plot 6—Green areas
3—Mixed 1—Residential
4—Industrial 2—Commercial/services
4—Industrial 7—Urban vacant plot
6—Green areas 5—Institutional
7—Urban vacant plot 1—Residential
7—Urban vacant plot 3—Mixed
7—Urban vacant plot 5—Institutional
7—Urban vacant plot 6—Green areas
7—Urban vacant plot 8—Right-of-way *
8—Right-of-way * 3—Mixed
8—Right-of-way * 7—Urban vacant plot

* Right-of-way is associated with power transmission lines, railway lines, and gas pipelines.
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Figure 5. DEM generated through photogrammetric stereoscopic procedures using aerial VNIR
orthophotos. This DEM was used as input for generating the map of floodable areas.

3.1. Input Raster Data Cube

The input data cube is a multilayer file generated from the fusion of several images.
For this procedure, all images, which correspond to the input variables, must have the
same coordinates system and projection, the same resolution (5 m), and contain the same
number of rows and columns. The raster data cube used in this work comprised static
variables—continuous and categorical—referring to the year 2006 in the case of the first
simulation period (2006–2018) and to the year 2018 for the second simulation period
(2018–2021). The continuous variables were represented in the form of distance maps
associated with the last four themes. The raster data cube (Figure 6) was created in the
Dinamica EGO 6.0 modeling platform using the routine “create cube map”, which had as
inputs the distance maps of all variables of the themes “community public facilities”, “trans-
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portation system”, “traffic generating poles” and the variables “floodable areas—distance
map” and “hydrographic network” of the theme “urban drainage”, which also contained
the categorical variable “floodable areas”. The descriptions of all input data are presented
in Table 2.
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Figure 6. Static driving variables of urban land use change in São Caetano do Sul city associated with
distances to: (a) college campuses, (b) commercial centers, (c) shopping centers (only available for
the 2018–2021 simulation period), (d) floodable areas, (e) hydrographic network, (f) social assistance
facilities, (g) public security facilities, (h) health facilities, (i) regional intermodal terminal (bus
and rail), (j) recreational facilities, (k) sports facilities, (l) educational facilities, (m) cultural facilities,
(n) cemeteries, (o) collector roads, (p) arterial roads, (q) expressways, and (r) static categorical variable
indicating floodable (black) and non-floodable areas (gray).

Table 2. Input data description.

Name Type Metadata Processing
Operations Resolution Source

Land Use in 2006
Urban

Landscape
Map

2006 Zoning Map derived
from topographic charts

(1:10,000), IKONOS-2
images (1 m), and digitized

ortophotos 2002/2003
(0.45 m)

Refined with
Google Earth Pro 1:10,000 [40,42]
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Table 2. Cont.

Name Type Metadata Processing
Operations Resolution Source

Land Use in 2018
Urban

Landscape
Map

2018 Zoning Map derived
from topographic charts

(1:10,000), IKONOS-2
images (1 m), and digitized

ortophotos 2002/2003
(0.45 m)

Refined with
Google Earth
Pro/Google
Street View

1:10,000 [41–43]

Land Use in 2021
Urban

Landscape
Map

Derived from the 2018
Zoning Map

Updated and
refined with
Google Earth
Pro/Google
Street View

1:10,000 [41–43]

Distance to Land
Use Classes Dynamic variables Extracted from the Land

Use Maps

Euclidean distance
to pixels belonging

to the land
use classes

5 m -

Distance to
Community

Public Facilities
Static variable Extracted from Google Earth

Pro/Google Street View

Euclidean distance
to pixels belonging

to the facilities
5 m [42,43]

Distance to the
Transportation

System
Static variable

Extracted from the City’s
Master Plan and from

Google Earth Pro/Google
Street View

Euclidean distance
to pixels belonging

to the terminal
and roads

5 m [42,43,45]

Distance to the
Hydrographic

Network
Static variable Extracted from the City’s

Drainage Plan (1:5000)

Euclidean distance
to pixels belonging

to the
water streams

5 m [46]

Floodable Areas Static variable Categorical Map

Assessed in
HEC-RAS using

the DEM and data
from water flow

rate stations

5 m [47]

Distance to
Floodable Areas Static variable Distance Map

Euclidean distance
to the categorical
floodable areas

5 m -

Distance to Traffic
Generating Poles Static variable Extracted from Google Earth

Pro/Google Street View

Euclidean distance
to pixels belonging

to the poles
5 m [42,43]

3.2. Parameters Setting

This step was developed in Dinamica EGO 6.0 and consisted in determining the global
and annual transition matrices, i.e., transition rates for the whole simulation period and
decomposed in yearly time steps, respectively, as well as defining the positive weights of
evidence for all input variables (static and dynamic ones). The calculation of the annual
transition matrices for both simulation periods was based on the Markov model, according
to Equation (1) [48].

MTannual = H ∗ V1/n ∗ H−1 (1)

where MTannual = annual transition matrix; H = eigenvectors of the global transition matrix,
which is obtained by means of a cross-tabulation between the initial and the final land use map
for a given simulation period; V = eigenvalues of the global transition matrix; n = number of
annual time steps; and H−1 = inverse of the global transition matrix eigenvectors.

In order to identify where land use changes will occur at a local level, which corre-
sponds to the calculation of the cells’ transition probabilities themselves, it is necessary
to discretize the continuous variables, since the weights of evidence method exclusively
operates with categorical variables. The discretization was executed using the line general-
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ization method, described in [49,50], adopting a tolerance angle of 5◦. As a result of this
process, a file containing ranges of distance intervals is produced, and these intervals are
customized for each land use transition. In this way, a given variable may have a sequence
of distance intervals for a certain land use change, for instance, for the transition from
residential to institutional use, and a totally different sequence for another land use change,
e.g., from urban vacant plot to green areas.

In the next processing step, a positive weight of evidence (W+) is calculated for each
distance range and for each category of the discrete static variable (i.e., floodable and non-
floodable areas). The ranges’ limits for the continuous variables, including the dynamic
ones, which are directly extracted from the initial land use map, are defined by plotting in
a graph the cumulative number of cells per increment in the x axis, where the increment
corresponds to the distance grid resolution (5 m) or, in some cases, multiples of this value,
and in the y axis the product between this cumulative number of cells by Euler’s number
raised to the power of a preliminary W+. The produced curve in this graph is the basis
for generating the distance ranges according to a so-called tolerance angle. This angle
is formed by two tangent lines, in which the first one is defined by the initial point and
the current (final) point of the immediately preceding range and the second line by the
current point and a candidate (final) point for a new range. Whenever this tolerance angle
surpasses a threshold set by the user, usually 5◦, a new range is created.

The calculation of the preliminary W+ is performed in accordance with the Bayesian
weights of evidence method [51] by extracting the Napierian or natural logarithm of a ratio
relating two conditional probabilities, as indicated in Equation (2).

W+ = loge
P(Vi/T)
P
(
Vi/T

) (2)

In the numerator of the natural log, we have the probability of occurring variable Vi in
face of the previous presence of a certain land use transition T, computed as the number
of cells where both Vi and T are found divided by the total number of cells where T is
found, while in the denominator we have the probability of variable Vi given the previous
absence of transition T, reckoned as the number of cells where both Vi and T are present,
divided by the total number of cells where T is not encountered. These calculations are
executed for each increment belonging to the x axis of the graph meant for the definition of
distance ranges.

Finally, the definitive value of the positive weight of evidence W+def [49,50], which is
used for generating the maps of cells’ transition probabilities, is calculated as shown in
Equation (3).

W+def = ln
(

Yn=k − Yn=k−1
An=k − An=k−1

)
(3)

where An accounts for the cumulative number of cells per increment, Yn is given by the
product An ∗ eW+ for the n-th increment, and k corresponds to break points (initial and final
point) defined for each range. Based on Equation (3), local transition probabilities are then
calculated for each cell according to Equation (4):

Px,y

(
T

V1 ∩V2 ∩ . . . ∩Vn

)
=

O(T)× e∑n
i=1 Wi+de f x,y

1 + O(T)×∑t
j=1 e∑n

i=1 Wi+de f x,y
(4)

where Px,y = probability of transition in a cell with coordinates x,y; T = land use transition;
Vi = variables i selected to explain T, totaling n variables; and O(T) = odds of T, which
corresponds to the ratio P(T)/P

(
T
)
.

Since the maps of variables employed in the calculation of the weights of evidence
for a given land use change must be spatially independent to avoid bias in the model,
it is necessary to perform pairwise tests for spatial association assessment. In Dinamica
EGO, this procedure employs the Joint Information Uncertainty Index (JIU), described
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in [51]. This index is based on an area proportions matrix for map A and map B. Initially,
the individual entropies of A and B are calculated as shown in Equations (5) and (6):

H (A) = −∑m
j=1

[
pj − ln(pj)

]
(5)

H (B) = −∑n
i=1[pi − ln(pi)] (6)

The joint entropy of maps A and B are calculated next, as indicated in Equation (7):

H (A, B) = ∑n
i=1 ∑m

j=1 pijln pij (7)

The Joint Information Uncertainty index (JIU) of two maps A and B, U(A, B), used as a
metric of spatial dependence, is then defined according to Equation (8):

U (A, B) = 2
[

H(A) + H(B)− H(A, B)
H(A) + H(B)

]
(8)

JIU varies from 0 to 1, and these values are associated with complete independence
and total dependence, respectively. The threshold for independence has been empirically
set as less than 0.5 [51], which indicates less association rather than more. Whenever JIU
surpasses 0.5, one of the variables of the pairwise test must be discarded from the model,
since the Bayesian weights of evidence method relies on the assumption of independence
between variables, as previously exposed. In such cases, we preferably discard the one
with less explanatory power for the land use change at issue. Figure 7 shows the flowchart
for the parameterization stage.
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3.3. Calibration and Simulation

The final stages of the modeling process concern the calibration and the simulation
of land use change properly speaking. The calibration comprises: (1) the fine tuning of
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parameters for discretizing the continuous variables, (2) adding or removing variables
selected to explain each of the observed urban land use transitions, and (3) estimating
morphological metrics for the transition patches to be generated during the model run.

The latter task is accomplished externally to Dinamica EGO, and it involves assessing
the percentage of transitions executed by its two change allocation algorithms (“expander”
and “patcher”), besides calculating the mean size and the size variance of patches generated
by these algorithms. “Expander” executes land use transitions in the immediate vicinities
of cells belonging to the destination class, i.e., through expansion, while “patcher” performs
land use change by means of diffusion, i.e., in the adjacencies of cells owning a land use
class diverse from the destination class of the given transition [52]. Another parameter
related to the patches’ formation is the isometry index. The Patch Isometry Index (PII)
lies within the interval from 0 to 2 and accounts for a multiplicative factor applied to the
probability values of the eight cells belonging to the Moore neighborhood (3 × 3 pixels)
before the execution of the “expander” and “patcher” algorithms. Values close to 0 generate
more fragmented patches, while values close to the upper threshold will produce more
compact patches. These values are heuristically set [53,54].

All the procedures related to the patches’ morphology were carried out in QGIS and
Terra View 5.4.1. In QGIS, the cross-tabulation map was recovered to generate individual-
ized maps of transitions for the 16 observed types of land use change in the first simulation
period (2006–2018), and 5 types of change in the second period (2018–2021). These in-
dividualized maps of transition consist in binary maps, where one class represents the
transition of interest, and the other class accounts both for all permanence of the destination
land use of the transition under analysis as such and for all transitions from the origin
class other than the one of interest to the destination class of interest. The remaining
transitions and permanences are assigned null value. All these raster layers, already in
TerraView 5.4.1, were polygonalized to be used as inputs for the calculation of the patches’
morphological metrics.

Due to the polygonalization, the resulting vector files present in most cases isolated
pixels on the edges of large polygons. This flaw compromises the calculation of the land use
transition patches and must be corrected by employing a spatial query. This procedure was
performed for each transition in Terra View using Spatial SQL. Once identified and exported
in shapefile format, these files were submitted to simple map algebra operations. First,
isolated pixels are united with their respective larger neighboring polygons. The original
problematic polygons are subtracted from the vector layers, and lastly, the newly generated
polygons are then merged to the vector files resulting from the subtraction operation.
Thus, the resulting layers are error-free vector files where isolated pixels detached from
larger neighboring polygons are no longer found. Such files were exported to QGIS,
where new Spatial SQL routines were implemented for calculating the percentage of
patches accomplished by the “expander” change allocation algorithm as well as the mean
size and the size variance of patches generated by the “expander” and the “patcher”
algorithms. Since these two change allocation functions are complementary, i.e., the sum
of their percentages total 1.0, the Dinamica EGO platform only requires as input data
the percentage of “expander”, and the residual transitions that were not achieved by
“expander” are automatically transferred to the “patcher” function [55,56]. Figure 8 shows
the flowchart of the reported procedures.

With the percentage of “expander” and the values of mean size and size variance
of patches for both “expander” and “patcher”, the urban land use change simulation is
then executed at annual time steps. As a result, sixteen transition probability maps and a
simulation map were generated for each year in the first period (2006–2018) as well as three
probability maps and a simulation map for each year in the second period (2018–2021).
Figure 9 highlights the inputs and emphasizes the different ways through which static and
dynamic explaining variables drive the model.
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3.4. Statistical Validation

In this last modeling step, Hagen’s method [57] was used to validate the simulation
results, but with a masking operation applied to the areas of “no change”, aiming to remove
the bias in overestimating the similarity between the real and the simulated land use maps.
This method relies on a multiresolution approach based on multiple-sized neighborhood
windows, which assesses the agreement between two maps by means of either constant or
exponential decay. The former one assigns full similarity (1 or 100%) to any cell within the
window placed on the map being compared, regardless the position of the cell containing
the expected land use class in relation to the central cell (observed land use class) of the
corresponding window in the reference map. For the exponential decay, in its turn, there is
a proportional decrease in the similarity as a function of how far the cell with the expected
land use class is located in the map under comparison with respect to the central cell of
the window in the reference map. This operation produces the so-called fuzzy similarity
index (FSI).

The validation employed in this research adopted windows of size 3 × 3, 5 × 5, 7 × 7,
9 × 9, and 11 × 11 pixels. The masking operation was achieved by subtracting the initial
land use map from both the final real and the final simulated land use maps, and these
resulting maps of difference, exclusively indicating areas of changes, were then reciprocally
compared with each other. The FSI is evaluated based on a correspondence between the
values obtained for the constant and exponential decay. If, for instance, a constant decay
maximum value of around 0.80 is obtained for a 3 × 3 window, and an exponential decay
maximum value of nearly 0.3 is achieved for the same window size, then 0.3 is regarded
as a satisfactory agreement with respect to the 3 × 3 pixels resolution for the exponential
decay. Figure 10 illustrates the flowchart of the validation process.
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4. Results

The land use maps produced for the years 2006, 2018, and 2021 according to the
methodological procedures described in Section 3 are presented in Figure 11.

4.1. Transition Matrices

Table 3 shows the annual and global transition matrices for both simulation periods.
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Table 3. Transition matrices.

Annual Matrix Global Matrix

2006 to 2018

Transition Rate * Transition Rate *
7–1 0.034225 7–1 0.293553
7–3 0.022976 7–3 0.197070
7–6 0.005735 2–3 0.059461
2–3 0.005075 1–3 0.053347
1–3 0.004489 7–6 0.049189
7–5 0.001653 8–3 0.019065
8–3 0.001599 3–1 0.017492
3–1 0.001263 7–5 0.014176
7–8 0.001064 6–5 0.010162
6–5 0.000816 7–8 0.009124
8–7 0.000609 8–7 0.007261
4–7 0.000324 4–7 0.003875
4–2 0.000131 4–2 0.001567
2–7 0.000089 2–7 0.001038
1–2 0.000056 1–2 0.000667
1–5 0.000033 1–5 0.000394

2018 to 2021

7–6 0.016998 7–6 0.051108
5–7 0.004367 5–7 0.013050
7–1 0.000816 7–1 0.002454
3–7 0.000603 3–7 0.001808
1–5 0.000091 1–5 0.000273

* Values obtained in Dinamica EGO 6.0.

4.2. Spatial Dependence Assessment

The paired test of spatial dependence between the explaining variables (both static
and dynamic ones) showed that out of the 2028 generated pairs, 11 pairs presented a Joint
Information Uncertainty Index (JIU) above 0.50 (Table 4).
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Table 4. Spatial dependence between variables (JIU > 0.50).

Transition First Variable Second Variable JIU

2–7 Floodable areas (distance map) * Expressways 0.61
6–5 Floodable areas (distance map) * Expressways 0.59
2–3 Floodable areas (distance map) * Expressways 0.59
2–3 Distance_to_1 Public security facilities * 0.54
1–5 Floodable areas * Expressways 0.54
4–7 Commercial centers Cultural facilities * 0.53
3–1 Commercial centers Cultural facilities * 0.52
2–3 Public security facilities * Social assistance facilities 0.52
7–3 Commercial centers Cultural facilities * 0.52
4–2 Commercial centers Cultural facilities * 0.52
2–3 Distance_to_1 Social assistance facilities * 0.51

* Discarded variables.

The explanatory power of a variable was the decisive criterion to determine whether
it would remain in the model or be otherwise discarded. In the case of the transition from
residential use (1) to institutional use (5), for instance, it was found that the proximity to
expressways was much more influential than floodable areas in forcing people to move out,
since the disturbance caused by noise pollution to residents is continuous, and floods occur
only occasionally. Hence, the variable “floodable areas” was discarded from the model for
such a transition in particular. Similar reasoning was applied to further pairs of variables
with spatial dependence.

4.3. 2006–2018 Model Calibration and Preliminary Simulation Results

The first results obtained for the simulated 2018 land use map included all input
variables, excluding those discarded as a result of the spatial dependence test (JIU > 0.50)
and the noisy ones. Noisy variables commonly present null values for W+ and are charac-
terized, in the specific case of continuous variables, by not being subject to discretization
(often presenting only one range). Noisy continuous variables are generally associated
with the distance to the origin class of a transition. For example, in the transition 2–7, the
variable distance_to_2 would be noisy. Considering that even keeping all input parameters
unaltered, each run will generate a different output due to the random nature of the change
allocation algorithms. We carried out 15 simulations with a constant value of PII (1.5) for
all transitions, and the best achieved result is presented in Figure 12.
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It can be noticed that in this simulation without calibration adjustment there was
substantial disagreement in the transitions to mixed use (3). To the northwest, northward of
the biggest commercial center, the model was not able to predict the complete conversion
of the area, which in 2006 sheltered commercial/services use and changed to mixed use. In
the vicinities of such commercial center, a vacant plot erroneously changed to residential
use. To the northeast, southward of the industrial area, there was an exaggerated expansion
of mixed use. The model, however, even though not yet calibrated in a refined way, was
able to predict the two most expressive changes in land use in this period: the complete
conversion of a vacant plot into mixed use to the west, and the conversion from vacant plot
into residential use to the southeast.

4.4. 2006–2018 Model Calibration Adjustment and Final Simulation Results

Once all non-explanatory variables were removed from the model, we returned to the
evidence weights calculations and then performed the simulation. The best result out of
fifteen runs is shown in Figure 13.
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After calibration, the simulation became more refined with respect to transitions
1–3 and 7–3. The model was able to predict the conversion of western sites to mixed
use, residential use, and green areas, although with some morphological disparities. The
changes to mixed use were more similar to reality as compared to the uncalibrated model
simulations, but they still presented problems of incorrect expansions, especially in the
northeastern portion of the city. The statistical validation of the simulation outputs provided
the fuzzy similarity indices (FSI) presented in Table 5.

Table 5. Statistical validation by Hagen’s method: 2006–2018.

Window
FSI-Constant Decay FSI-Exponential Decay

Maximum Minimum Maximum Minimum

3 × 3 0.59 0.56 0.58 0.56
5 × 5 0.61 0.58 0.59 0.57
7 × 7 0.62 0.59 0.59 0.57
9 × 9 0.64 0.60 0.59 0.57

11 × 11 0.65 0.62 0.59 0.57
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4.5. 2018–2021 Model Calibration and Simulation Results

All the steps performed in the simulation between the years 2006 and 2018 were
replicated in this simulation period. However, in the raster data cube, distances to shopping
centers were inserted in the theme “traffic generating poles”, as they did not exist in the
year 2006.

In the first attempts to generate the model, the Patch Isometry Index (PII) values were
set to 2, aiming at generating more compact patches. In the sequence, a simulation was
generated adopting a value of 1.5, but not all transitions presented satisfactory results. Thus,
the PII values of the “expander” algorithm were replaced by 1.8 and 2.0 for the transitions
7 to 1 and 5 to 7, respectively. Regarding the “patcher” allocation function, the values for
transitions 1 to 5 and 6 to 7 were set at 1.8 in both cases. The remaining transitions kept the
PII value of 1.5. Ten simulations were generated, of which the best result is presented in
Figure 14, together with the corresponding actual land use map in 2021.
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and disagreement.

It was observed that in the transitions involving vacant plots there was some confusion
with the institutional use, which can be observed both in the areas to the south and to
the west of the city. Furthermore, confusion was also observed in the transitions related
to vacant plots and green areas. Nevertheless, the final simulation presents a satisfactory
similarity with the real land use map of 2021. Table 6 presents the maximum and minimum
values of fuzzy similarity indices (FSI) for the second simulation period (2018–2021),
calculated using the constant and exponential decay methods for different window sizes.

Table 6. Statistical validation by Hagen’s method: 2018–2021.

Window
FSI-Constant Decay FSI-Exponential Decay

Maximum Minimum Maximum Minimum

3 × 3 0.81 0.26 0.78 0.25
5 × 5 0.85 0.28 0.80 0.26
7 × 7 0.87 0.29 0.81 0.27
9 × 9 0.92 0.30 0.82 0.27

11 × 11 0.95 0.31 0.82 0.27
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4.6. Forecast Scenarios

For the generation of forecast scenarios, the behavior of the land use dynamics in the
city of São Caetano do Sul in the immediately preceding simulation period, namely from
2018 to 2021, was extrapolated to a future short-term horizon. Both land use changes and
transition rates from 2018 to 2021 have driven the forecast simulation models for the year
2025. Based on the works of [58–60], we have created three scenarios. The first one, named
“Natural Development”, kept the observed transitions and excluded an occasional change.
Scenario 2 was nominated “Urban Diversification” since it fostered the conversion from
residential to mixed use. Also, Scenario 3, in its turn, was called “Business as Usual” (BAU),
for it prevented urban greening initiatives on large vacant plots located in the margins of
rivers running along the city borders.

In Scenario 1, the transitions observed in the second simulation period (2018–2021)
remained in the model, excluding the one from 5 to 7, i.e., from institutional use to urban
vacant plot, since this is regarded as an occasional change. The internal parameters of
Dinamica EGO, i.e., percentage of “expander” and “patcher” allocation functions, mean
size and size variance of patches, and isometry indices, were all kept the same as those
defined for the second simulation period (2018–2021).

All transitions observed in the second simulation period were kept in the model of
Scenario 2, and the change from residential to mixed use (1 to 3) was included, since it
presented a high transition rate in the first simulation period (2006–2018). Considering
that there is a limited number of vacant plots in the city and no open space left for urban
expansion in the city surroundings, it is somehow expected that the future land use
dynamics will involve the changes with high rates observed in previous years, as it is the
case of the transition from 1 to 3.

In the model of Scenario 3, the transitions observed in the second simulation period
were kept, excluding the transition from urban vacant plot to green areas (7 to 6), and
including the transition from residential to mixed use (1 to 3) for the same reasons presented
in Scenario 2. As previously explained, since there is a small amount of vacant land in
the city and no room for urban sprawl in the city outskirts, it is most probable that vacant
plots (7) will yield space to residential use and not to green areas (6). The transition rates
used in the three scenarios are shown in Table 7, and the 2025 land use change simulations
generated for each scenario are presented in Figure 15.

Table 7. Multiple step transition matrices for Scenarios 1, 2, and 3.

Scenario 1

Transition Rate *

1–5 9.09103701215367e-05
3–7 0.000602999254309266
7–1 0.000816081815647958
7–6 0.0169978183887818

Scenario 2

1–3 0.00149636496595477
1–5 9.09103701215367e-05
3–7 0.000602999254309266
7–1 0.000816081815647958
7–6 0.0169978183887818

Scenario 3

1–3 0.00149636496595477
1–5 9.09103701215367e-05
3–7 0.000602999254309266
7–1 0.000816081815647958

* Values obtained in Dinamica EGO 6.0.
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5. Discussion

In 2006, the entire urban perimeter (which corresponds to the city itself) had already
been occupied, and residential use prevailed, followed by industrial, mixed, and institu-
tional uses, respectively. Residential use was not found in the northern section of the city.
Industrial use, on the other hand, was concentrated in the north, along the railway line,
and was not observed in the southern part of São Caetano do Sul. Mixed use presented
patches along collector and arterial roads and in areas close to industries and to the main
commercial center. Institutional use showed a homogeneous distribution, always contained
within areas of residential use.

In 2018, it was observed that residential use remained predominant, however, respec-
tively followed by mixed, industrial, and institutional uses. The increase in mixed use was
mainly due to the conversion from strictly residential use to this class. In fact, this type of
change (residential to mixed use) presented the highest transition rate. Another frequent
transition between 2006 and 2018 was commercial/services to mixed use. Two further
changes were also important: the first one, from vacant plot to mixed use was associated
with high-rise multifamily buildings and office towers, and the second one, from vacant
plot to high-rise exclusively residential buildings.

From 2018 to 2021, the number of transitions was limited and comprised residential to
institutional use, mixed use to vacant plot, institutional use to vacant plot, vacant plot to
residential use, and vacant plot to green areas. This fact can be explained by the reduced
time period considered for analysis (only three years) in contrast to the previous interval.

Both in the annual and global transition matrices of the first simulation period, the
highest transition rates were respectively observed for the transitions from urban vacant
plot (7) to residential use (1) and from urban vacant plot (7) to mixed use (3), which
shows a clear trend of residential occupation in available areas, since mixed use comprises
both residential and commercial/services use. Some vacant plots (7) were converted
into institutional use (5), which concerns initiatives of the local government in providing
citizens with community facilities. In some cases, even public green areas (6) were used for
this purpose.

A peculiar transition still in the first simulation period was the conversion from right-
of-way (8) to mixed use (3). This was due to an urban redesign operation carried out in
the western section of the city, in which part of a power transmission line was displaced
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in order to increase the availability of space for the construction of a mall surrounded by
office towers, high-rise multifamily buildings, and walled high-standard neighborhoods in
a great area formerly occupied by a ceramic factory (Figure 16). As a consequence, some
vacant plots (7) were converted into right-of-way (8).
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Figure 16. (a) Aerial photo of the former ceramic industry site in 1998, with the intersecting power
transmission line, (b) aerial view of this site nowadays, with the residential and office towers and the
rounded mall building in the back. The relocated transmission line contours the site. Sources: [42,61].

In the second simulation period (2018–2021), two land use changes are worthy of
mention. The first one regards the transition from institutional use (5) to urban vacant
plot (7), corresponding to the demolition of a multi-sports gymnasium (Figure 3). The
second one, the transition from mixed use (3) to vacant plot (7), concerns the demolition of
a mixed-use building, probably as an effect of the economic and humanitarian crisis caused
by the COVID-19 pandemic.

The set of static and dynamic variables selected to explain each of the sixteen observed
transitions in São Caetano do Sul from 2006 to 2018 are presented in Table 8 together with
explanations on their roles as drivers of such land use changes.

Table 8. Observed transitions from 2006 to 2018 and variables used for calibration.

Transition Calibration Description

1–2
(residential to

commercial/services use)

In this transition, the dynamic variables “distance_to_2”, “distance_to_3”, “distance_to_4”, and
“distance_to_5” were selected. The proximity to areas where commercial/services and mixed
uses prevail induces the conversion of residential use to commercial/services use for several
reasons, such as real estate market pressure, expansion trend of pre-existing uses, emergence of
neighborhood centralities, and the option of certain groups of residents to migrate to strictly
residential areas, among others. The proximity to industrial areas may repel residential use due to
certain nuisances and attract fewer sensitive uses, such as commerce or services. The proximity to
institutional areas, in view of their inherent potential to attract people, can favor the consolidation
of commercial/services axes along the neighboring access roads. As for the static variables, the
“distances to collector and arterial roads” are justified in view of the fact that they are less
favorable to residential use and more favorable to commercial/services use. Distances to
community facilities, such as commercial centers, college campuses, basic education, and health
facilities, were as well kept in the model, for they attract a diversified public, which constitutes
the consumers’ market of commercial and services enterprises. Besides these variables, the
“distance to floodable areas” also integrated the model, for representing a risk factor, not only for
commercial and services activities, but also for all the other land use classes.
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Table 8. Cont.

Transition Calibration Description

1–3
(residential to

mixed use)

The dynamic variables “distance_to_2”, “distance_to_3”, “distance_to_4”, “distance_to_5”,
“distance_to_6”, and “distance_to_8” integrated the model. Besides the justifications presented in
the previous transition, we can add the fact that mixed use comprises residential use, the
proximity of which to green areas (6) is attractive to high-standard multifamily buildings. The
“distance to the right-of-way” could calibrate the model well since the physical and visual
nuisance generated by the infrastructure buffers repel part of the residential use, rendering the
plots in its adjacencies available for other uses, such as services. As for the static variables, since
residential use demands the direct support of several facilities, and most of them are contained
within the mixed use, all of them were kept in the model, except for “distance to the
hydrographic network”, “distance to floodable areas”, and “distance to expressways”, as these
variables did not show any explanatory power for this transition.

1–5
(residential to

institutional use)

In this particular transition, the dynamic variable “distance_to_5” was selected in the model since
most of land use conversions occur through expansion processes. As to the static variables,
“floodable areas” (categorical format) remained in the model in view of the threat represented by
floods to institutional installations. The “distance to main roads” integrated the model for this
transition as well since institutional facilities are rarely built along local roads. Finally, all the
variables related to community facilities (including “distance_to_3”) were also kept in the model
because they attract a great number of users, who are in turn also potential users of institutional
facilities, hence fostering the occurrence of the institutional use.

2–3
(commercial/services to

mixed use)

The dynamic variables “distance_to_1”, “distance_to_3”, “distance_to_4”, “distance_to_5”, and
“distance_to_6” integrated the model. As previously explained, mixed use contains residential
use, and it is thus expected that the proximity to residential areas will favor this transition.
Furthermore, residential use provides the consumer market with commerce and services
available in mixed use. In turn, institutional and green areas meet the residents’ demands, when
they are present in mixed use. In addition, the proximity to industrial areas was also included in
the model due to the fact that they are commonly adjacent to mixed-use areas in the city of São
Caetano do Sul. As for the static variables, we adopted the same criteria of transition 1–3.
Nevertheless, during the sensitivity tests, we noticed an improvement in the result when the
variables of distance to “expressways”, “cemeteries”, “social assistance facilities”, “public
security facilities”, “interurban mobility facilities”, “recreational facilities”, “sports facilities”,
“educational facilities”, and “cultural facilities” in particular were removed from the model.

2–7
(commercial/services use to

urban vacant plot)

As for this transition, the dynamic variables “distance_to_1” and “distance_to_3” were included
in the model. As this transition occurred in an isolated way, and considering that there is
evidence of new construction sheltering the previously existing use but in a densified form
(multistory buildings), we considered that the proximity to residential areas may have induced
such a process since they constitute a consumer market for commercial and services activities.
The same justification applies to the proximity to mixed-use areas. As for the static variables,
since the commercial/services use is favored by intense traffic, all of them were kept except for
“hydrographic network”, “floodable areas”, and “college campuses”, as these variables are not
explanatory for the transition at issue.

3–1
(mixed to residential use)

The dynamic variables “distance_to_1”, “distance_to_2”, “distance_to_5”, and “distance_to_6”
were selected for this transition since residential areas tend to occur close to other residential
areas, mainly with green areas nearby and where there is easy access to commercial/services and
institutional areas. As for the static variables, since residential use demands direct support from
several facilities, all of them were kept, except for “hydrographic network”, “floodable areas”,
and “expressways”, as these variables are not explanatory for this transition.

4–2
(industrial to

commercial/services use)

In this case, the dynamic variables “distance_to_1”, “distance_to_2”, “distance_to_3”, and
“distance_to_5” integrated the model. Such land use classes provide consumers with commercial
and services activities. As for the static variables, the same criteria applied to the transition 1–3
were adopted, but during the sensitivity tests, an improvement in the result was noticed when
the variables of distance to “expressways”, “cemeteries”, “public security facilities”, “recreational
facilities”, “sports facilities”, “educational facilities”, and “health facilities” were removed.

4–7
(industrial use to urban

vacant plot)

Only the variable “distance_to_7” remained in the model because all the others did not show any
explanatory power in the sensitivity tests. A similar situation occurred for the static variables,
and only “collector roads”, “arterial roads”, and “floodable areas” could calibrate the model well.
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Table 8. Cont.

Transition Calibration Description

6–5
(green areas to

institutional use)

In this transition, only the dynamic variables “distance_to_1”, “distance_to_3”, and
“distance_to_5” were used in the model since the proximity to residential, mixed-use, and
institutional areas justifies the construction of community facilities on sites previously occupied
by green areas. Regarding the static variables, “floodable areas” remained due to the reasons
already explained, as well as all the community facilities variables, except for “cemeteries”,
“interurban mobility “, and “public security” facilities.

7–1
(urban vacant plot to

residential use)

In this case, the dynamic variables “distance_to_1”, “distance_to_2”, “distance_to_3”,
“distance_to_5”, “distance_to_6”, and “distance_to_8” integrated the model for the same reasons
presented for the transition 3–1. The “distance to the right-of-way” was added because the
availability of urban vacant areas in the considered period was limited to sites either intercepted
or adjacent to them. As for the static variables, it would be expected that all facilities would be
influential in the conversion to residential use. Despite that, because such transition is possible
just in certain areas of the city, it was noticed that only “floodable areas”, “educational facilities”,
“sports facilities”, “recreational facilities”, and “health facilities” acted as explanatory variables.

7–3
(urban vacant plot to

mixed use)

The dynamic variables “distance_to_1”, “distance_to_2”, “distance_to_3”, “distance_to_5”,
“distance_to_6”, and “distance_to_8” were selected for the same reasons presented for the
transitions 3–1 and 7–1. As for the static variables, it would be expected that all facilities
supporting residential use, which is present in mixed use, would calibrate the model well.
Nonetheless, because this transition has occurred only in a certain area of the city, it was observed
that only “collector roads” acted as an explanatory variable.

7–5
(urban vacant plot to

institutional use)

In this transition, the dynamic variables “distance_to_1” and “distance_to_5” were included in
the model, as the proximity to residential and institutional areas is an influential factor in the
installation of institutional facilities. As for the static variables, only the proximity to “floodable
areas”, “commercial centers”, “college campuses”, and “hydrographic network” were considered
non-explanatory, as they do not show any influence for this land use change in particular.

7–6
(urban vacant plot to

green areas)

In this particular case, the dynamic variables “distance_to_1”, “distance_to_3”, “distance_to_6”,
and “distance_to_8” were selected after sensitivity tests because they were the ones that best
adjusted the model. For this transition, no static variables were considered because it was isolated
and refers to the construction of a mall surrounded by office towers, high-rise multifamily
buildings, and walled high-standard neighborhoods (Figure 16).

7–8
(urban vacant plot to

right-of-way)

The dynamic variables “distance_to_2”, “distance_to_4”, “distance_to_5”, and “distance_to_6”
could calibrate the model well after sensitivity tests. For this transition, no static variables were
considered, as the transition also refers to the rounded mall shown in Figure 16.

8–3
(right-of-way to mixed use)

and 8–7 (right-of-way to urban
vacant plot)

In these transitions, the dynamic variables “distance_to_1”, “distance_to_2”, “distance_to_3”,
“distance_to_4”, “distance_to_5”, “distance_to_6”, and “distance_to_7” integrated the model
since they were the ones that best adjusted it. No static variables were considered for these two
transitions, as they occurred in an isolated way, designed to grant feasibility for the construction
of the residential and mixed-use complex presented in Figure 16.

The driving variables that integrated the urban land use change model for São Caetano
do Sul from 2018 to 2021 are presented in Table 9 with the respective justifications for
their selection.

Table 9. Observed transitions from 2018 to 2021 and variables used for calibration.

Transition Calibration Description

1–5
(residential to

institutional use)

In this transition, the “distance_to_3” was considered, because residential areas comprise the
target users of institutional areas. The “distance_to_5” is justified by the fact that new
institutional facilities tend to be located near already existing ones. In relation to the continuous
static variables, “distances to collector and arterial roads and to expressways” were inserted,
because they offer accessibility to the users of institutional facilities, besides allowing the income
of inputs necessary for their functioning, coming both from São Caetano do Sul and nearby cities.
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Table 9. Cont.

Transition Calibration Description

3–7
(mixed use to urban

vacant plot)

The variables “distance_to_2”, “distance_to_4”, “distance_to_5”, and “distance_to_6” were
inserted in the model due to the fact that they represent future uses or even consist in attracting
factors for future uses of the urban vacant plots. The variable “distance_to_7” was maintained
because there is a trend of such conversions occurring nearby areas already experiencing them.
The “distance to arterial roads” is justified by the fact that these roads generally offer high
construction potential along their margins, which attracts other uses, such as commercial and
services use, which can be the final destination of urban vacant plots. The “distances to collector
and arterial roads and to expressways” were maintained due to the fact that they represent
strategic accessibility to different land uses that may become the final use of vacant plots.
Shopping centers and cultural, educational, leisure, mobility, and health facilities were inserted in
the model, as they are attractive variables for consumers from residential, mixed use or
commercial/services uses, into which the vacant plots can be converted. The variable “distance to
university campuses” was also considered, since it also represents an attractive factor for future
conversion of vacant plots into residential areas, mainly due to the possibility that professors,
students, and other employees of these institutions purchase dwelling units in these areas. Finally,
the static variable “floodable areas” was included because it represents a risk factor for all land
use classes, including those into which the vacant plots may be converted.

5–7
(institutional use to urban

vacant plot)

Transition 5 to 7 refers to the demolition of a multi-sports gymnasium in the considered period.
To calibrate this transition, the variables “distance_to_1”, “distance_to_2”, “distance_to_3”,
“distance_to_4”, and “distance_to_ 8” were used, because they represent future uses or even act
as attracting factors for future uses of such urban vacant plots. The “distance to expressways” is
justified in view of the fact that it offers accessibility to different uses that could occupy these
plots. With respect to the static variable “floodable areas”, it was maintained because it represents
a risk factor for all land use classes that may emerge on these vacant lands.

7–1
(urban vacant plot to

residential use)

The variable “distance_to_1” was taken into consideration, given the fact that residential use
tends to occur in the proximity of previously existing residential areas. Since residential use
depends on the logistical support provided by commercial/services and mixed uses, the
“distance_to_2” and “distance_to_3” were included in the model. The “distance_to_5” and
“distance_to_6” were also inserted, for the reason that institutional facilities and green areas are
attractive for residential use. Likewise, the variables of “distances to education”, “sports
facilities”, “leisure facilities”, “health facilities”, and “shopping centers” were kept in the model,
since residential areas act as a consumer market for these social infrastructure facilities. As
explained above, the variable “distance to university campuses” was included as well, since it
also represents an attractive factor for residential use in view of the possibility that professors,
students, and other employees of these institutions purchase dwelling units in these areas. The
static variable “floodable areas” was kept because it consists in a risk factor for all land use
classes, especially for the residential use.

7–6
(urban vacant plot to

green areas)

The variable “distance_to_1” was inserted in the model, since residential areas concentrate the
target users of green areas. The “distance_to_3” complies with this argument, considering that
mixed use contains residential use. In turn, the “distance_to_6” is justified by the fact that some
new green areas tend to occur in the proximity of previously existing ones. In addition, the
“distance_to_8” can be explained by the fact that this transition, particularly in the city of São
Caetano do Sul, occurs in the proximity of right-of-way areas, consisting in a buffer zone to such
areas. Finally, the variable “floodable areas” was included, since it represents a risk factor for all
land use classes.

As for the scenarios, it is worth mentioning that the simulation generated for Scenario
1 indicated changes from urban vacant plot to residential use (7 to 1) in the southwest and
east of São Caetano do Sul. Furthermore, in the east, there was a transition from urban
vacant plot to mixed use (7 to 3). Additionally, a change from residential to institutional use
(1 to 5) was observed in the central area of the city. There was a decrease in urban vacant
plots in the northwest, corresponding to a transition to mixed use (7 to 3), and in the upper
northwestern sector, represented by a transition from vacant plot to green areas (7 to 6).

In Scenario 2, it is noticeable that the insertion of the transition from 1 to 3 produced
changes in the upper northeastern part and also in the northeastern portion of the city
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below the large industrial area. Changes were also seen in the southwestern portion and in
the far eastern region of the city, corresponding to the transition from urban vacant plot to
residential use (7–1), as well as in the northwestern region, relative to the transition from
urban vacant plot to green areas (7–6).

Conclusively, in Scenario 3, transitions from residential to mixed use (1 to 3) occurred
in the far northeastern area of the city and in the northeastern sector just below the industrial
zone. A change from residential to institutional use (1 to 5) occurred in the central area of
São Caetano do Sul, where numerous institutional facilities already existed, fostering the
further emergence of new facilities of this kind. There was a transition from urban vacant
plot to residential use (7 to 1) in the southwestern and in the far eastern regions of the city.

The achieved results were enabled by the versatility of the adopted modeling platform,
Dinamica EGO. It offers the possibility of dealing with dynamic variables (which are
those that undergo changes along the simulation run and are updated at each time step);
it works with random change allocation algorithms; it copes with processes of change
both through expansion and diffusion (based on seed cells); it enables the user to set a
patch isometry index, which is responsible for generating either more fragmented or more
compact landscape patches; it simultaneously takes into account all the possibilities of
change that exist in a cell since a residential cell, for instance, may change to commercial
use, to services use, to mixed use, to institutional use, and so on; it has the weights of
evidence method implemented in it, but it is open to further parameterization methods,
such as logistic regression, ANN, genetic algorithms; and it has a friendly graphical user
interface and is endowed with parallel architecture.

This work has innovatively simulated manifold land use transitions associated with
eight classes at the intra-urban level and handled twenty-six drivers of land use change,
which have not been reported in the literature hitherto. There are a few works dealing
with the simulation of change of multiple intra-urban land use classes [13,14,20], but
their number of effective transitions is smaller as compared to this study. The adopted
parameterization method—weights of evidence—is operationally and conceptually easy to
handle and does not work as a black box as do the majority of non-parametric approaches.
Furthermore, different from most parametric and non-parametric methods, which assign
only one weight to each of the continuous variables (represented as numerical grids), the
“weights of evidence” method assigns different weights for each of the discretized ranges
of a continuous variable, and hence, the information on the variable’s behavior is enhanced
through the assignment of customized multiple weights to a grid.

Some limitations, however, became evident during the execution of this work. The
land use data availability constrains the modelers’ decisions as to defining the boundaries
of simulation periods. Moreover, not all the strategic and decisive drivers of intra-urban
land use change are available, especially those related to real estate ownership and the
real estate market. We faced operational drawbacks as well, such as the fact that even
with high values of PII, the compactness of some land use patches was not well simulated.
Besides that, omission and commission errors were directly derived from the randomness
of the change allocation algorithms. In any case, this is an inherent characteristic of the
modeling platform.

In terms of policy implications of our modeling results, we must say that the simula-
tions turned the spotlight on transitions that should be discouraged, as in the case of the full
conversion of green areas into institutional use. The local government should foster a smart
combination of both uses so as to preserve as much urban soil perviousness as possible
in order to inhibit the occurrence of floods. In the same line of thought, the BAU Scenario
warns of threats represented by the possibility of occupying green areas located on the
margins of rivers in the northwestern sector of São Caetano do Sul, a fact that will enhance
the problem of flash floods in the city. Finally, the observed transitions from residential
and commercial uses to mixed use should be encouraged, for they are in compliance with
guidelines towards the diversification of urban land use established by the City Master
Plan [62] and also with Goal n.◦98 of the UNO New Urban Agenda [63].
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6. Conclusions

The CA-based simulation models of urban land use change parameterized by the
Bayesian weights of evidence method proved to be efficient in detecting the main trends
of land use transitions in the analyzed city within the time span extending from 2006 to
2021, indicating the main driving forces of such changes and their respective degree of
importance. Overall, we can state that (1) the model performed satisfactorily, even when a
long simulation period was unintentionally employed in view of the absence of detailed
documentary land use data; (2) since most of the errors were verified in the simulations
and not in the probability maps themselves, the model needs to be better calibrated with
regard to the shares of the “expander” and “patcher” allocation functions as well as to the
patches’ mean sizes and variances; (3) the statistical validation demonstrated that even
when relying on more restrictive sizes of neighborhood windows, such as 5 × 5 pixels, it
was possible to achieve a reasonably high similarity, but when adopting larger window
sizes, such as 11 × 11 pixels, the fuzzy similarity indices based on the exponential decay
were not significantly higher as expected; and (4) the model showed to predict major land
use changes in the short-term horizon with a high degree of plausibility, thus revealing
itself as a useful tool for the city management and planning.

A more in-depth historical analysis of the land use change trajectory in São Caetano
do Sul indicates that it was characterized by ineffective planning initiatives, disregard
of planning guidelines, and over-use of urban space, what altogether has led in former
times to the rectification of water streams crossing the city and an irregular occupation
of their floodplains. Considering this, as directions for future work we intend to use the
herein generated forecast simulations to drive a hydrodynamic model designed to simulate
and predict the occurrence of severe flood events in view of extreme rainfalls, taking into
account the increase in soil imperviousness and modifications in the surface roughness
coefficients derived from the foreseen changes in urban land use.
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