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▪ Weather prediction: PDE x Data

▪ A false dilemma

▪ Hybrid prediction:                                                        
Differential. equations + Machine learning (data-driven)

▪ Hybrid prediction for convective events

▪ Next actions for Hybrid Prediction

▪ Final remarks
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    Scientific challenges
▪ Before the 20th Centrury:

We want to know the "Laws of Nature"

▪ During the 20th Centrury: 
We know the Laws, but how can we solve the 
equations?

▪ After the 20th Century
The first decades of this century show that one  of 
the challenges is the extraction of knowledge 
from a tsunami mass of data: "Data Scince".
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    A scientific achievement of the 20th century

▪ The Vilhelm Bjerknes' Theorem (1904) 

▪ Book: Lewis Fry Richardson (1922)

▪ Paper: Charney, Fjørtoft, von Neumann (1950)
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    A scientific achievement of the 20th century
▪ Weather prediction by Differential Equations 
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    A scientific achievement of the 20th century
▪ Weather prediction by differential equations 
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    A scientific achievement of the 20th century
▪ Solving differential equations: Finite Difference 
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    A scientific achievement of the 20th century
▪ Solving differential equations: Spectral Method 

  Numerical weather prediction

8



    A scientific achievement of the 20th century
▪ Weather prediction by differential  equations
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    A scientific achievement of the 20th century
▪ Weather prediction by differential  equations
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     Challenges for the 21-th Century
▪ Severe weather prediction: "Data Science" 

  Data weather prediction
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     Hybrid prediction: Differential Eqs. + Data Science 
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    Hybrid prediction: Differential Eqs. + Data Science
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Período: Fev. 2008-2020; 

Frequência entre as previsões: 3h  

Resolução horizontal: 18 km (90x90)

Níveis na vertical: 33

Projeção: ’Mercator’

Lat/Lon do ponto central da grade: -22.8136 , -43.2675 

Time step: 180s  
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■ Attribute analysis: “p-value” 

■ Data dimension reduction

◻ WRF outputs:          1.8 x 106 attributes

◻ Selection by p-value:       36 attributes
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■ Machine learning (ML) algorithms - performance:
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■ Extreme event at RJ State mountain region (March/2022)
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■ Extreme event at RJ State mountain region (March/2022)

         Precipitação:  (a) WRF                                    (b) Eras-5
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■ EExtreme event at RJ State mountain region (March/2022)
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■ Extreme event at RJ State mountain region (March/2022)
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Modelos
24 horas 48 horas 72 horas

POD FAR CSI POD FAR CSI POD FAR CSI

NaiveBayes* (6) 0.88 0.12 0.78 0.86 0.25 0.67 0.69 0.32 0.52

MultilayerPerceptron* (1) 0.89 0.11 0.80 0.89 0.20 0.73 0.73 0.31 0.55

LMT* (4) 0.89 0.07 0.84 0.70 0.30 0.54 0.61 0.39 0.44

RandomForest* (2) 0.93 0.07 0.88 0.80 0.11 0.73 0.73 0.30 0.56

RandomForest* (3) 0.90 0.04 0.90 0.86 0.25 0.67 0.74 0.29 0.59

RandomForest* (4) 0.95 0.03 0.92 0.90 0.18 0.75 0.78 0.28 0.63

RandomForest* (5) 0.97 0.02 0.94 0.92 0.11 0.82 0.77 0.25 0.65

RandomForest* (6) 0.95 0.09 0.86 0.84 0.17 0.72 0.75 0.30 0.58
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    Hybrid prediction: Differential Eqs. + Data  Science

       Book: 
      Compilation of computacional 
      methods for nowcasting with
      focus on commercial aviation 
      traffic.
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  A person to say thank you

Prof. Ubidio Rubio
Universidad Nacional de Trujillo
President of the SPMAC 

SPMAC: Sociedad Peruana de Matemática 
Aplicada y Computacional
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         Gracias!



Why VO?
Traditional (old faschion) scheme in astronomy:

1. The astronomer asks a time to use a telescope

2. The astronomer colects his/her data

3. Data analysis for colected data: publishing a report (paper)

New schemes:

1. One observatory does a survey of astronomical data

2. Astronomical community can access the data

3. Which is the most efficient strategy to share data?



Astronomical survey

From: Alex Szalay, AustraliAsia e-Research Conference, 2007



Increase of astronomical data



VO communities: IVOA

From: http://www.ivoa.net/



The BraVO project
Declaration of intentions: signed at August 18, 2006

The super-structure: INCT-Astrophysics

http://www.astro.iag.usp.br/~incta/



Brazilian effort for VO: The BraVO project
http://www.lna.br/bravo



The BraVO project
Description

http://epacis.org/jcis.php



BraVO@INPE

2. Decision tree for astronomical data classification

Classification Star/galaxy is not easy task!
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See the figure:
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(c) How to classify?
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(with use of committee 
machine)


