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Abstract: Identifying urban patterns in the cities in the Brazilian Amazon can help to understand the
impact of human actions on the environment, to protect local cultures, and secure the cultural heritage
of the region. The objective of this study is to produce a classification of intra-urban patterns in
Amazonian cities. Concretely, we produce a set of Urban and Socio-Environmental Patterns (USEPs)
in the cities of Santarém and Cametá in Pará, Brazilian Amazon. The contributions of this study
are as follows: (1) we use a reproducible research framework based on remote sensing data and
machine learning techniques; (2) we integrate spatial data from various sources into a cellular grid,
separating the variables into environmental, urban morphological, and socioeconomic dimensions;
(3) we generate variables specific to the Amazonian context; and (4) we validate these variables by
means of a field visit to Cametá and comparison with patterns described in other works. Machine
learning-based clustering is useful to identify seven urban patterns in Santarém and eight urban
patterns in Cametá. The urban patterns are semantically explainable and are consistent with the
existing scientific literature. The paper provides reproducible and open research that uses only
open software and publicly available data sources, making the data product and code available for
modification and further contributions to spatial data science analysis.

Keywords: urban pattern; unsupervised classification; amazon; urban morphology; urban
remote sensing

1. Introduction

According to UN-Habitat [1], global population growth has begun to slow and will
continue to decelerate in the coming decades. At the same time, population has become
increasingly urban: globally, the share of people living in cities doubled between 1950
and 2020, increasing from 25% to 50%. Current projections suggest a slow increase to 58%
in the next 50 years, with a decrease in the contribution of cities, semi-dense areas, and
rural areas.

In the Brazilian Amazon, one of nature’s last frontiers, this trend is bucked to some
extent. The most recent demographic census of 2010 revealed that the growth of small-
and medium-sized cities continues apace in this region, following the reorganization of the
national urban network and a new territorial division of labor [2–4]. The Brazilian Amazon
has experienced fast urban population growth, with rates increasing from 37.4% in 1970
to 44.9% in 1980 and 55.2% in 1991. This trend led geographer Bertha Becker [5] to coin
the term “urbanized forest”. Over 70% of the population in the Amazon lives in urban
areas [6], highlighting the relevance of urban issues to regional public policies. Moreover,
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the region presents specific characteristics, which include distinctive historical processes of
human occupation, climatic and physical features, strong cultural identity, and land and
environmental conflicts.

In addition to being labeled “urbanized forests”, the Brazilian Amazon also exhibits
sharp internal economic divisions at the intra-urban scale. Diverse land use patterns
define residential, industrial, and commercial zones. These zones vary in age, location,
size, function, and form [7]. This differentiation within cities results from various spatial
processes, including state intervention and the impact of private investments. As a result,
the objects that compose and define the urban fabric—streets, houses, plots, and blocks—
create variegated patterns that interact with the natural environment [8–10].

The need to develop effective policies to manage these regions calls for efficient infor-
mation systems. In this context, remote sensing has become a valuable tool to complement
urban planning [7,11–17]. Recent research by Santos et al. [18] notes that there is a large
amount of research that applied remote sensing for identifying urban patterns in Brazilian
cities in the southeast, particularly in São Paulo and Rio de Janeiro. Much of this research
predominantly used very-high spatial resolution images from private multispectral sensors.
Furthermore, automated classification techniques have not yet been widely used. Based on
these findings, Santos et al. [18] proposed a framework specifically designed for cities in
the Amazon to make use of publicly available data and machine learning.

With this as a background, the present paper aims to produce a classification of Urban
and Socio-Environmental Patterns (USEP) in Amazonian cities. We adopt the framework of
Santos et al. [18] to identify USEPs in the cities of Santarém, located in western Pará State,
and Cametá, located in northeastern Pará State, both situated in the Brazilian Amazon. The
study uses remote sensing imagery and machine learning, which are complemented with a
field visit to the city of Cametá, where field observations help validate the classification
system of USEPs and to make sure that the classes are semantically explainable.

This research presents a comprehensive approach that combines remote sensing data,
urban morphological evaluation metrics, and socioeconomic indicators to identify and
characterize diverse urban patterns in Amazonian cities. We ensured the transparency and
reproducibility of our study by sourcing all data from publicly available repositories. To
facilitate collaboration and further analysis, we have made our data product and analysis
code accessible through a Zenodo repository linked to our GitHub page [19], aligning with
best practices in spatial data science [20,21]. These contributions enhance our understanding
of urban development in the Amazon region and provide a foundation for further research
and policymaking.

After this introduction, the structure of the article is as follows: Section 2 provides a
brief background on the identification of urban patterns in the Brazilian Amazon; Section 3
outlines the study areas; Section 4 introduces our methodology for identifying and charac-
terizing USEPs; Section 5 presents the classification results; Section 6 discusses the main
findings; and, finally, Section 7 concludes with final considerations.

2. Background

Remote sensing increasingly plays a significant role in urban mapping, particularly in
developing countries [22]. Initiatives such as the Global Urban Footprint (GUF) [23], World
Settlement Footprint Evolution (WSF-Evo) [24], and the World Urban Database [25] have
emerged to map urban areas globally. However, previous studies have faced challenges in
utilizing remote sensing for detailed urban analyses, mainly due to the limited availability
of very high-resolution satellite imagery and efficient algorithms.

To address this limitation, Zhu et al. [22] conducted a global-scale study using Sentinel-
1 and Sentinel-2 satellite data to identify 17 distinct urban patterns with variations in land
use, building density, and verticalization. Their research focused on cities worldwide
with populations exceeding 300,000 inhabitants, filling a gap in understanding urban
morphology globally.
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Additionally, the Global Human Settlement Layer (GHSL) initiative [26] recently pro-
vided valuable spatial information about human settlements over time. By utilizing satellite
imagery, including Landsat, Sentinel, and the China–Brazil Earth Resources Satellite CBERS-
2B, the GHSL offers detailed intra-urban-scale databases. The latest GHSL data package,
released in 2022, encompasses features such as multi-temporal built-up area classification,
identification of residential and non-residential areas, and average building height.

According to Gonçalves et al. [27], these global databases face some difficulties in
identifying less densely built urban areas, for example in the Brazilian Amazon. These
authors analyzed the urban extent in seven mapping bases for 2010 using remote sensing
data and a regular grid to assess the consistency and agreement between databases. The
study focused on six cities in Pará State and found that areas of medium and high building
density had over 90% agreement between databases, while the largest discrepancies were
observed for lower-density urban patterns.

To the best of our knowledge, only two other studies have examined urban patterns
in the Brazilian Amazon using remote sensing: Dal’Asta et al. [28] and Santos et al. [29].
In addition, Cardoso et al. [30] assert the lack of databases and cartographic materials
for Amazonian cities. Although there is an abundance of noteworthy local research on
Amazonian urban areas, there is not much evidence to suggest that public managers have
incorporated these studies into public policy agendas.

Identifying urban patterns in the Amazon is crucial for promoting sustainability in
the region [31]. By analyzing different urban patterns, it becomes possible to identify
zones with lower and higher environmental impact and that might be more compatible
with environmental and cultural living conditions of the region. Additionally, identifying
occupation patterns can help to protect local cultures and preserve the cultural heritage of
the region.

Dal’Asta et al. [28] visually interpreted CBERS-HRC panchromatic (5 m spatial res-
olution) and multispectral images (20 m spatial resolution) to identify five typologies of
human occupation in western Pará: dense settlement (high-density residential and com-
mercial areas), sparse settlement (low-density residential areas with vegetation between
homes), expansion areas (widely sparse low-density residential areas), large nonresidential
buildings (e.g., gyms, community centers, factories), and access roads (undeveloped areas
around highways and rivers).

Santos et al. [29] identified typologies of precarious settlements in Altamira, Cametá,
and Marabá in the state of Pará. To achieve this goal, the authors used the Geographic
Object-Based Image Analysis (GEOBIA) and data mining techniques on WPM images from
the CBERS-4A satellite (2 m spatial resolution for the panchromatic band and 8 m for the
multispectral bands), along with biophysical indices, Gray Level Co-occurrence Matrix
metrics, context metrics, and neighborhood metrics. This work was the first study to apply
remote sensing to identify precarious settlements in Amazonian cities and classify them
into distinct typologies.

The contributions of Santos et al. [29] to identifying urban patterns in Amazonian
cities include the following: (i) the development of a methodology for preprocessing
and classifying data using open-source software and analyzing free-access data; (ii) the
use of imagery provided by the WPM sensor from the CBERS-4A satellite to classify
urban land cover using the GEOBIA approach and a machine learning algorithm as a
classifier; and (iii) the use of a cellular grid to aggregate data from several types and
sources. Moreover, this work concluded that an integrative approach is necessary to identify
precarious settlements in Amazonian cities. Unlike many Brazilian metropolitan areas, non-
metropolitan Amazonian cities have precarious areas that are not easily distinguishable
from non-precarious development.

Based on the recognition that it is necessary to develop urban pattern classification
models specifically for Amazonian cities, Santos et al. [18] proposed a framework to
classify Urban and Socio-Environmental Patterns (USEPs). A USEP is defined as an ele-
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ment in the urban fabric with homogeneous environmental, urban morphological, and
socioeconomic characteristics.

The USEPs framework is built on the use of publicly available satellite imagery with
high and medium spatial resolution and the adoption of automated classification techniques
that do not rely on prior classifications or monitoring. The framework is based on two
assumptions: (i) distinctive urban patterns can be observed within a city based on the
environment, socioeconomic factors, and urban morphology; and (ii) the combination of
remote sensing imagery, demographic census, and Volunteered Geographic Information
(VGI). In this research, we validate the framework proposed by Santos et al. [18].

Although not strictly in the remote sensing tradition, it is worth mentioning several
urban morphology studies that have made significant methodological contributions to the
identification of urban patterns in cities of the Brazilian Amazon. For instance, studies
focused on Belém–PA investigate the transformations that occurred in the land tenure
system [32], urban expansion [33,34], identification of morphological patterns [35] and
evaluation of building cycles in plots [36]. Gomes and Cardoso [37] used the Conzenian
concepts of the morphological region and peripheral belts to understand Santarem’s forma-
tion and expansion process. Such studies describe how real estate market agents act in the
Pará cities of Belém, Marabá, and Parauapebas.

Some authors have been calling for new approaches to urban studies, which understand
the city as a space dependent on ecosystem resources [38] and allow the coexistence between
humans and nature [39]. However, especially for Amazonian cities, new approaches are
needed to value traditional and native practices already facing disappearance situations.

3. Study Areas

The study areas combined encompass approximately 187 km2 and are situated on
the municipal centers of Santarém (143 km2) and Cametá (44 km2) (Figure 1). Both cities
are in the state of Pará, within the Brazilian Amazon. The study site also includes ru-
ral areas in the vicinity of both cities. The delimitation of Cametá follows the delin-
eation by Santos et al. [29]. For Santarém, we adopted the delimitation method described
by Gonçalves et al. [27], which utilizes nighttime light images to identify potentially
populated areas.

Both cities were founded by Portuguese Jesuits in the 16th century with Portuguese
territorial expansion as a backdrop. This expansion aimed to extract and export valuable
products from the Amazon rainforest to Europe, in a process known in Brazil as “drugs
of the hinterlands” (Drogas do Sertão, in Portuguese). Condiments, medicines, ornaments,
and construction materials were extracted by indigenous people, stored by the Jesuits, and
shipped to Portugal through Belém, forming an urban network commanded by the capital
of Para [40].

Santarém is located at the confluence of the Tapajós and Amazonas Rivers, in an area
of fertile soil, dense forest, and high biodiversity. Evidence of human presence in the region
dates back as early as the 10th century [37,41]. Santarém emerged as a result from the
combination of settlements established by indigenous, Portuguese, and black populations.
According to [37], the myth that it was an uninhabited region with infinite resources
contributed to the migration of people to the Amazon region at different times, such as
northeasterners escaping drought in 1915, rural settlers in the 1970s, and recent workers
involved in infrastructure projects such as highways and reservoirs. As of 2021, Santarém
has an estimated population of 308,339 inhabitants, covering an area of 17,898.389 km2,
with a population density of 12.87 inhabitants per km2 [42].

According to research on Regions of Influence of Cities (REGIC) [43], Santarém is the
most relevant municipality in the western region of Pará and is classified as a Regional
Capital. Regional Capitals are urban centers with a high concentration of management
activities relative to their region. Santarém holds a central position in the state of Pará
and plays a crucial role in providing medium- and low-complexity health services to
the surrounding municipalities. In addition, it is part of the Metropolitan Region of
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Santarém, established in 2012, along with Belterra and Mojuí dos Campos. The area
between these three cities is contested by various land uses, including agro-extractivist
settlements, soybean plantations, rural communities, private condominiums, and housing
developments [37].

Cametá served as the initial point for Portuguese colonization in the Baixo Tocantins
region and became a significant facilitator of Catholicism expansion through Jesuit camps
aimed at converting indigenous peoples [44,45]. The Portuguese colonization involved
multiple attempts to enslave indigenous populations and import enslaved Africans, result-
ing in the formation of fugitive black communities known as Quilombos and indigenous
communities in forested areas in the Cametá region, which were difficult to access. These
communities played an important role in the region’s territorial occupation. The land occu-
pation in the area also involved the cultivation of cocoa and later sugar cane as strategic
endeavors. In both cases, the Portuguese attempted to establish plantation systems based
on monoculture, slave labor, and large land properties, with a focus on foreign markets [46].

According to REGIC [43], Cametá is classified as a Local Center. The estimated
population of Cametá municipality was 140,814 inhabitants in 2021, distributed in an area
of 3081 km2 and a demographic density of 39.23 inhabitants per km2 [42].

Both study areas exhibit distinct spatial dynamics of occupation, characterized by
varying sizes, population growth rates, roles within the urban network, and proportions
of urban and rural population. These differences make these cities ideal study areas
for applying the classification model as they demonstrate how the model performs in
cities with diverse characteristics. Furthermore, both cities are located in regions that
offer potential opportunities for future field visits by researchers from the Laboratory of
Socioenvironmental Investigations (LiSS) [47].
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Figure 1. Study areas: (a) Santarém and (b) Cametá [6,48,49].

4. Materials and Methods

The USEPs model classification is based on remote sensing and machine learning
techniques, used to analyze environmental, urban morphological, and socioeconomic
dimensions. The variables are formed based on assessment criteria and grouped under the
three dimensions of analysis. Additionally, the approach differs from prior methods that
solely concentrate on either urban morphology or socioeconomic factors as they strive to
integrate both dimensions and incorporate an environmental focus.

The framework organizes a database and creates assessment criteria based on three
dimensions of analysis. After defining the assessment criteria, variables are created based
on these criteria and integrated into a cellular grid (Figure 2). Unsupervised classification
techniques are applied to identify clusters in the data, initially using only environmental
variables and later using urban morphology variables. Although these two dimensions
may be related, the decision to split them into separate clusters is intended to highlight
the unique environmental characteristics of Amazonian cities and to assess how these
characteristics vary across different urban patterns. In this way, the two analysis dimensions
are used as levels of information. The resulting clusters represent these information’s levels
and provide insights into the environmental and urban nature of the study area.
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Next, a new clustering is performed using only the results of the previous two clus-
terings but this time utilizing a categorical clustering algorithm. Categorical clustering
is preferred due to the potentially large number of combinations between the two layers
of information, making manual clustering impractical. At the end of this process, the
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resulting clusters synthesize information from the environmental and urban morphological
dimensions. Unsupervised classification is appropriate in this research as it allows for the
classification of urban patterns directly from the data, without requiring prior knowledge
of the study area or previous labelling of the analytical units. Ending the process, we profile
the clusters with socioeconomic indicators.

We can summarize the USEPs model classification methodology in six steps. The
first step defines data collection to analyze the cities. The second step consists of defin-
ing assessment criteria for the environmental, urban morphological, and socioeconomic
dimensions. The third step involves creating the variables for the assessment criteria and
integrating each variable into a cellular grid. The fourth step consists of obtaining clusters
generated through unsupervised classifications and identifying the USEPs. In the fifth step,
we use socioeconomic indicators and a decision tree algorithm to characterize the USEPs.
Finally, the sixth step involves evaluating the classifications. We tested the methodology in
Santarém and evaluated it in Cametá. This research included a field visit to Cametá during
the evaluation process.

4.1. Data Sources

For this work, we used the following:

• WPM images from the CBERS-4A satellite: orthorectified images, one panchromatic
and one multispectral, dated in 2020. The WPM sensor provides panchromatic and
multispectral images simultaneously. The panchromatic images have 2 m of spatial
resolution, with a spectral range between 0.45 and 0.90 µm. Multispectral images
have a spatial resolution of 8 m, with spectral bands: blue (blue, 0.45–0.52 µm), green
(green, 0.52–0.59 µm), red (red, 0.63–0.69 µm), NIR (near infrared, 0.77–0.89 µm). The
radiometric resolution of the images is 10 bits. The imaged swath width is 92 km, and
the revisit period is 31 days [48];

• Urban land cover classification from the amazonULC package [50]. The amazonULC
package is a project that makes land cover classification maps available for some
Brazilian Amazonian cities. Imagery from the CBERS-4A satellite’s WPM sensor
was used for a classification model that includes the GEOBIA method, data mining
strategies, and the Random Forest machine learning algorithm. The maps present the
following land cover classes: “Shrub Vegetation”, “Herbaceous Vegetation”, “Water”,
“Exposed Ground”, “High Gloss Cover”, “Ceramic Cover”, “Fiber Cement Cover”,
“Asphalt Road”, “Terrain Road”, “Cloud” and “Shadow”;

• Digital Elevation Models (DEM) and their derivations: a DEM (elevation), a slope
grid (in percentage), and a vertical curvature grid of the relief, obtained from the
TOPODATA portal [51]. The images have a spatial resolution of 30 m and a radiometric
resolution of 8 bits;

• Road network: road data generated by Volunteered Geographic Information (VGI),
extracted from OpenStreetMap [49], available in vector format (line) with different
types of roads, bikeways, and pedestrian paths. As it is a VGI source data, the road
network has no date information and no elaboration scale;

• Multitemporal GHSL-BUILT image: images from the Global Human Settlement Layer
program, with multitemporal information about the built-up area [52]. The Global
Land Survey (GLS) Landsat image collection (GLS1975, GLS1990, GLS2000, and
Landsat 8) was the basis for this data construction. We used images with 30m spatial
resolution, 8 bits radiometric resolution, classified into the following classes: built-up
area before 1975, the built-up area between 1975 and 1990, the built-up area between
1990 and 2000, the built-up area between 2000 and 2014, no built-up area, water, and
no data;

• Census data: data from the 2010 Demographic Census, provided by the Instituto
Brasileiro de Geografia e Estatística (IBGE) [6], available in comma-separated-values
(.csv) and aggregated by census sector, in addition to the 2010 and 2020 census tracts,
available in shapefile format (.shp).
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The following software was used:

• QGIS 3.18 [53]: for database preparation and construction of the thematic maps;
• Python Programming Language [54]: for data preparation and mining, classifying

clusters, and identifying the USEPs;
• TerraView 5.6.3, with GeoDMA 2.0.1 [55] and TerraHidro [56] plugins: for preprocess-

ing the satellite images and generating the cell surface, extracting attributes, filling the
cell surface, and building Height Above the Nearest Drainage (HAND).

• DepthMapX [57]: for the construction of axial maps.
• Figure 3 shows how the different data and software were used to identify the USEPs

in the study areas.
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4.2. Assessment Criteria

For each dimension, environmental, urban morphological, and socioeconomic, we
defined assessment criteria to build the variables. The criteria seek to emphasize the main
aspects of each dimension that are relevant to Amazonian cities.

4.2.1. Environmental Dimension

The environmental dimension helps identify urban patterns in Amazonian cities, with
a focus on periurban characteristics and addressing limitations of morphological analysis
methodologies. Two competing urban patterns are recognized in the region [37]: one rooted
in traditional indigenous knowledge and the other reflecting urban-industrial practices
causing environmental degradation. Traditional settlements tend to have closer proximity
to rivers and more vegetation, while urban-industrial settlements have more significant
changes in topography and higher building densification.

As criteria for the environmental dimension, we use the following: (a) area of the
land cover classes “Shrub Vegetation”, “Herbaceous Vegetation”, “Water”, and “Exposed
Ground”; (b) slope (in percent) and the vertical curvature base; and (c) the HAND built
with the DEM image and according to Rennó et al. [58]. The land cover classes, such
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as vegetation and water, have a direct impact on human health and provide important
ecosystem services, such as regulating pollution and microclimates [59]. The slope indicates
areas prone to flooding [60], while curvature helps understand erosive and hydrological
processes that affect hillside orientations [61]. HAND indicates the elevation of settlements
and their potential flood risk [58].

4.2.2. Urban Morphological Dimension

The urban morphological dimension provides an understanding of the physical form
of the cities, including their building patterns, streets, lots, and blocks. It also enables the
identification of key players and processes involved in city formation. The morphological
analysis methods proposed are adapted from Conzen [62,63] and Morpho [64], taking into
account the unique characteristics of Amazonian cities, which differ greatly from traditional
industrialized societies.

Therefore, we build variables based on the following elements of analysis: Accesses,
which consider road infrastructure and waterways as means of transportation; Blocks and
Occupation Areas, which are defined based on the road network and river boundaries and
include occupation areas where block boundaries are not present; Roofs, which replace
the traditional “building” element in the morphological analysis due to the difficulty of
obtaining high-resolution building imagery.

As in the case of Morpho [64], we provide bases for integrated morphological analysis,
not focusing on a specific element of the urban form. Figure 4 presents the evaluation
criteria and how they are related to the urban elements.
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We used Spatial Syntax to analyze spaces of movement, as well as social and economic
activities. This approach utilizes techniques and computational models to associate quanti-
tative values with mathematical expressions for spatial analysis. The technique quantifies
the relationships within a road network, revealing areas of natural movement where the
configuration of the road network itself has the potential to concentrate the movement of
people, benefiting developments and other activities [65]. It is also possible to assess the
accessibility potential of roads using axial lines, which represent the intersection of line
segments in the road system of the studied area [66,67]. Table 1 presents the assessment
criteria used in this dimension, with their descriptions.
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Table 1. Assessment criteria of the urban morphological dimensions and their descriptions.

Assessment Criteria Description

Adapted Axial Maps

We applied adapted axial maps of integration and choice on a regional scale using a
50 km buffer around the study area. The metrics were developed using the Access base,

consisting of the road network and perennial rivers. Rivers were represented by a
hexagonal grid with 500 m and 2 km hexagons. The following parameters were used:

Number of bins—16, Metrics—choice, integration, node count, and total depth,
Radius—500 m, 1 km, 5 km, and all accesses.

Ratio area to perimeter of the block
Jacobs [68] states that short block lengths lead to more diversity of use along the streets

and make it easier for the population to move around, fostering diversity of use
of buildings.

Roofing Class Area
The area of the High Gloss, Ceramic, and Fiber cement roofing classes identifies areas
with a higher or lower proportion of roof types among settlements and areas of higher

or lower building density.

Built-up Area Period

We use the built-up area period to reflect the urban palimpsest, which refers to
overlapping periods of construction reflecting the ideologies that guided land use over

time. The urban form shows the record of civil and public actions. The period of the
area was obtained from the GHS-BUILT Multi-temporal database [52].

Percentage of Block with Built-up Area Identifies areas of higher and lower building density.

Road Coverage Class Area The area of Asphalt and Terrain Road coverage classes identifies the proportion and
type of roads in settlements.

Textural Metrics Textural metrics obtained from Gray Level Co-occurrence Matrices (GLCMs) [69] are
used by several authors to identify urban differences at the local scale.

4.2.3. Socioeconomic Dimension

The socioeconomic dimension characterizes the conditions of the households, their
surroundings, and the resident population. This dimension uses the socioeconomic in-
dicators proposed by Santos et al. [70] after adaptations from indicators provided by the
IBGE [8] (Table 2). These adapted indicators take into account cultural practices and experi-
ences with alternative water and sewage treatment techniques to establish what constitutes
adequate housing conditions in the region, adopting only the base of the demographic
census universe aggregated at the census tract level.

Table 2. Indicators of the socioeconomic dimension and their descriptions.

Assessment Criteria Description

Percentage of households with inadequate sewage disposal
We adopted the following as inadequate: the landfilling of garbage
on the property; thrown garbage in empty lots, rivers, lakes, seas, or

other destinations without collection.

Percentage of households with inadequate water supply

We adopted the following as inadequate: the existence of
households without a toilet; the disposal to a rudimentary septic
tank; the disposal to a ditch; the disposal to a river, lake, sea, or

other destinations without collection.

Percentage of households with adequate garbage disposal
We adopted the following as inadequate: water supply by well or
spring outside the property (or village), rainwater stored in a way

other than in cisterns, and supply only by tank trucks.

Total people per household Number of people divided by the number of households

Average monthly income of private households Total monthly household income divided by the total number
of residences.

Young Dependency Ratio Total young population (under 15 years old) divided by the
economically active population (between 15 and 65 years old).
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Table 2. Cont.

Assessment Criteria Description

Old Dependency Ratio Total elderly population (over 65 years old) divided by
economically active population (between 15 and 65 years old).

Sex Ratio Total male population divided by the total female population

Household heads who are over 10 years old and literate Population responsible for the household over 10 and literate.

4.3. Creating and Integrating Variables into Cell Grids

After defining the assessment criteria, we integrated all data into a regular grid of
100 × 100 m square cells (10,000 m2). These cells were used as reference units to aggregate
data from various sources. The cell space was created from the IBGE statistical grid [71]
using a cell size commonly used to identify urban patterns [72–75]. We decided to use
a cellular grid because this spatial structure can be easily generated for any study area
and is the most suitable spatial unit to integrate data from different formats and sources.
Furthermore, cells have the advantage of being spatial temporally stable because they are
not subject to changes in their physical boundaries [76].

To fill the cells, we extracted the landscape metrics “Class area” (measured in ha) and
“Number of patches” from the land cover base using the GeoDMA plugin [55]. To avoid
misclassification, we excluded areas that were blocked by clouds and/or shadow in the
remotely sensed images, when the blocked area was greater 0.4 ha. After this, with the
cell grid prepared, we separated the cells that had the presence of built-up areas (occupied
area) and the cells without the presence of built-up areas (non-occupied area) (Figure 5).
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Next, we transferred all data to the grid cell. Data related to urban morphological or
socioeconomic dimensions were transferred only to the occupied area, while data from the
environmental dimension were transferred to all areas analyzed. Socioeconomic data were
transferred grid cells using Pycnophylactic Interpolation [77], following the methodology
of Santos et al. [70]. This technique allows us to change the unit of support while preserving
the total mass of the variable. For vector-type data, we adopted the area-weighted average
operator for polygons and average for lines, both methods available in the GeoDMA
plugin [55]; for variables in matrix format, we extracted the values of mean, maximum,
minimum, sum, standard deviation, range, and variance [53].

After assembly of all data in grid cells, we filled in possible missing values and normal-
ized the variables, removing highly correlated variables. At this point, we generated a map
for each feature and eliminated the variables that showed limited ability to differentiate
between clusters based on a visual analysis. The outcome of this process was eight environ-
mental variables, eleven urban morphological variables, and nine socioeconomic variables.

4.4. Clustering Process

To identify clusters in the environmental and urban morphological dimensions, we
compared several unsupervised classification algorithms, namely k-means, Self-Organizing
Maps (SOMs), and hierarchical clustering. After comparing the results, we found that
hierarchical clustering [78] was the most effective approach. While k-means and Self-
Organizing Maps classified homogeneous settlements with significant cluster variability,
hierarchical clustering had higher generalization capabilities, resulting in almost the entire
settlement falling within the same urban pattern type.

Furthermore, hierarchical clustering is easier to parameterize because it does not
require a previously defined number of clusters, unlike k-means. Additionally, hierarchical
clustering was less sensitive to parameter changes compared to Self-Organizing Maps. The
hierarchical clustering algorithm works by creating a dendrogram, a tree-like representation
of instances where the leaves represent the instances, and their clustering is based on
similarity. The clustering progresses until all instances are connected to form a single trunk.
The analyst then evaluates the dendrogram and decides how many clusters to create by
cutting the tree at a desired point. We defined the number of clusters after analyzing the
dendrograms and plotting the cluster maps. We used the Scikit-learn python library [79]
with parameters set to agglomerative clustering, ward linkage, and Euclidean affinity.

After clustering of environmental and urban morphological data, we have two cat-
egorical variables that need combining. Following the approach of Cunha et al. [80], we
decided to use the k-modes algorithm to cluster our categorical variables. The k-modes is
a clustering method developed by Huang [81] based on the evaluation of cluster modes
instead of cluster means. The k-modes algorithm determines clusters from categorical data
by using the simple matching distance as a measure of dissimilarity and minimizing the
cost function by adjusting the modes of clusters. The simple matching distance between
two vectors can be calculated as the total number of mismatches between the corresponding
attribute categories of the two objects. The “iteration” parameter in the k-modes algorithm
determines the number of rounds the algorithm undergoes to converge on a solution.
During each iteration, the algorithm updates the cluster assignments and centroids. This
process continues until a convergence criterion is satisfied, indicating that the algorithm
has reached a stable solution. For the estimation of the clustering algorithm, we used the
k-modes python library [82], parameters set to 300 iterations, and “Hang” as the method for
initialization. The clusters generated by the k-modes algorithm integrate the information
from the environmental and urban morphological dimensions.

4.5. Socioeconomic Profiling

The result of the procedure described above is a set of environmental–urban clusters.
Following Victoriano et al. [83], we used a decision tree to obtain socioeconomic profiles of
the clusters. Decision trees are advantageous due to their simple, explicit, binary partitions,
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which make them a “white-box” model. We treated the environmental–urban clusters as
a categorical dependent variable and the socioeconomic indicators as the independent
variables that determined the partitions. The outcome of the decision tree was a partition
of the sample into terminal nodes that gave the socioeconomic profile of each cluster.

To define the parameters of the decision trees, we used a grid search method with
cross-validation to determine the parameters that return the best accuracy value. In this
technique, several hyperparameters and many values are selected to be tried. The algorithm
evaluates all possible combinations between the different hyperparameter values, using
cross-validation and a performance measure. Grid Search uses cross-validation, dividing
the training base into k parts (folds), and the model is trained and evaluated k times. For
each iteration, the algorithm selects a part (fold) that will serve as an evaluation and trains
the model on the other k-1 parts.

Through the grid search, we selected the best decision tree to profile the clusters.
We adopted a maximum value of 100 parameter combinations (iterations), F1-Score as a
performance metric, and 5-fold cross-validation. For the decision tree estimation, we used
the Scikit-learn python library [79].

4.6. Evaluation

Given that the patterns were derived from an unsupervised classification technique,
our study sought to ascertain the semantic significance of each USEP. Specifically, we
investigated the potential for the analytical explanation of the USEPs and their capac-
ity to represent the various typologies in Santarém and Cametá, based on the scientific
literature [37,84,85].

According to Cardoso and Lima [86], the land register aspect has determined the
urban expansion in Amazonian cities by the conversion of areas of rural use into urban
areas. Thus, we used the 2010 and 2020 census track bases to evaluate the existence of one
(or more) USEPs in areas classified as rural in 2010 but urban in 2020. Therefore, from the
evaluation with the overlap of the 2010 and 2020 census tracks, we adopted the manual
decision tree in Figure 6, classifying the cells between “Old urban” (areas considered urban
already in 2010), “New urban” (areas considered urban only in 2020), and “Rural” (rural
areas in 2020).
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In addition, we also used 2020′s AGSN (from the Portuguese Aglomerados Subnormais),
a dataset on irregular settlements, to assess the existence of patterns that can be considered
precarious. According to the IBGE [87], an AGSN is a form of irregular occupation of land
owned by others—public or private—for residential purposes, characterized by an irregular
urban pattern, lack of essential public services, and location in areas with occupation
restrictions. The AGSNs are distributed both in rural and urban areas.
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To further validate our findings, we conducted a field visit to Cametá. The field visit
took place between 17 and 18 November 2022. The field team used a field sheet to collect
information about the density of the settlements, the width and condition of the streets,
street arborization, street lighting conditions, and materials used in the building of the
houses. GPS equipment and cameras registered the geographical coordinates and general
aspects of the physical environment, respectively.

5. Results
5.1. USEPs Identification in Santarém

Concerning the Santarém study region, 93% of the area was deemed suitable for
analysis, while the remaining 7% could not be analyzed due to the prevalence of clouds
and/or shadows in the Amazon-ULC land cover database. Of the area analyzed, 46%
was classified as “occupied” (63 km2), indicating that the cells contained a built-up area
according to the Amazon-ULC land cover database. The remaining 54% of the analyzed
area was classified as “non-occupied”, comprising areas of dense vegetation or rivers.

A series of experiments and visual analyses were carried out to ascertain the optimal
number of clusters. Through the examination of the dendrograms (Figure 7), we identified
six clusters for the environmental dimension and seven clusters for the urban morphological
dimension. We determined this based on the significant reduction in the Euclidean distance,
which served as the dissimilarity index, with a reasonable number of observations in each
cluster, and a visually coherent spatial pattern in the study area.

Remote Sens. 2023, 15, x FOR PEER REVIEW 15 of 31 
 

 

5. Results 
5.1. USEPs Identification in Santarém 

Concerning the Santarém study region, 93% of the area was deemed suitable for 
analysis, while the remaining 7% could not be analyzed due to the prevalence of clouds 
and/or shadows in the Amazon-ULC land cover database. Of the area analyzed, 46% was 
classified as “occupied” (63 km2), indicating that the cells contained a built-up area 
according to the Amazon-ULC land cover database. The remaining 54% of the analyzed 
area was classified as “non-occupied”, comprising areas of dense vegetation or rivers. 

A series of experiments and visual analyses were carried out to ascertain the optimal 
number of clusters. Through the examination of the dendrograms (Figure 7), we identified 
six clusters for the environmental dimension and seven clusters for the urban 
morphological dimension. We determined this based on the significant reduction in the 
Euclidean distance, which served as the dissimilarity index, with a reasonable number of 
observations in each cluster, and a visually coherent spatial pattern in the study area. 

 
Figure 7. Dendrograms and maps used to define the ideal cluster quantity: (a) dendrogram of the 
urban morphological dimension variables; (b) dendrogram of the environmental dimension 
variables; (c) map with the distribution of urban morphological dimension clusters; (d) map with 
the distribution of environmental dimension clusters. The red boxes show the clusters obtained in 
each unsupervised classification. 

Figure 7. Dendrograms and maps used to define the ideal cluster quantity: (a) dendrogram of
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variables; (c) map with the distribution of urban morphological dimension clusters; (d) map with the
distribution of environmental dimension clusters. The red boxes show the clusters obtained in each
unsupervised classification.
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Upon deciding the number of environmental and urban morphological clusters, we
applied the k-modes algorithm to conduct an unsupervised classification over the two
categorical variables based on the prior clustering. After several experiments, we settled
for seven final clusters for Santarém, considering the best trade-off between identifying
meaningful clusters and their number. Each final cluster can be interpreted as a distinct
USEP, with the socio-economic profiling conducted in the subsequent subsection. Figure 8
presents the USEP map for Santarém.
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5.2. Profiling the USEPs in Cametá

In order to designate the various Urban Socio-Environmental Patterns (USEPs), Fig-
ure 9 illustrates the mean values of the selected features employed during the clustering
process. The distinct shades indicate the relative variability of the features across the USEPs.
The seven clusters were labeled based on their predominant environmental and urban
morphological characteristics, namely, “USEP 1–Riverside”, “USEP 2–Medium-density”,
“USEP 3–Periurban”, “USEP 4–High integration”, “USEP 5–Main roads”, “USEP 6–High-
density informal”, and “USEP 7–Housing complex”. Table 3 presents a detailed description
of the environmental and urban morphological characteristics of each USEP in Santarém.
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Figure 9. Average values of a selected group of features for each USEP. The variation of hue in each
column represents the variation of attribute values among the clusters.
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Table 3. USEPs of Santarém, comparison with the natural composition WPM image (2 m spatial
resolution), and their description.

USEP WPM RGB (3, 2, 1) Pattern Description
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Medium-density 14.59 0.00 0.07 0.36 35 0.06 0.13 0.02 36.33 0.52 0.26

Periurban 13.45 0.01 0.43 0.27 51 0.02 0.03 0.00 95.40 0.16 0.08

High integration 13.18 0.01 0.01 0.08 150 0.04 0.36 0.12 33.78 0.83 0.07

Main roads 12.64 0.00 0.30 0.23 794 0.03 0.07 0.01 88.14 0.27 0.12

High-density informal 16.13 0.00 0.01 0.11 67 0.07 0.27 0.01 27.39 0.80 0.38

Housing complex 9.47 0.00 0.01 0.03 7 0.70 0.02 0.01 30.72 0.84 0.14

USEP-1: Riverside. This pattern is characterized by a built-up area along the
waterfront with high connectivity and infrastructure for navigation. Most of the area is
occupied by the land class “water.”
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Medium-density 14.59 0.00 0.07 0.36 35 0.06 0.13 0.02 36.33 0.52 0.26

Periurban 13.45 0.01 0.43 0.27 51 0.02 0.03 0.00 95.40 0.16 0.08

High integration 13.18 0.01 0.01 0.08 150 0.04 0.36 0.12 33.78 0.83 0.07

Main roads 12.64 0.00 0.30 0.23 794 0.03 0.07 0.01 88.14 0.27 0.12

High-density informal 16.13 0.00 0.01 0.11 67 0.07 0.27 0.01 27.39 0.80 0.38

Housing complex 9.47 0.00 0.01 0.03 7 0.70 0.02 0.01 30.72 0.84 0.14

USEP-2: Medium-density. This pattern is located on the periphery of Santarém’s
urban area with low integration and accessibility. It has medium building density and
rectangular-shaped blocks with buildings that have fiber cement roofs. The area has a
significant herbaceous vegetation cover, which presents about 35% of the cell, and is
situated at an average slope of 5.3%.
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Periurban 13.45 0.01 0.43 0.27 51 0.02 0.03 0.00 95.40 0.16 0.08

High integration 13.18 0.01 0.01 0.08 150 0.04 0.36 0.12 33.78 0.83 0.07

Main roads 12.64 0.00 0.30 0.23 794 0.03 0.07 0.01 88.14 0.27 0.12
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USEP-3: Periurban. This pattern is situated far from the center of Santarém, usually
bordering highways or close to the river, presenting moderate accessibility. It has low
building density and no specific observed roofing type. The area has the highest
vegetation cover among the identified patterns, with shrubs and herbaceous
vegetation accounting for over 40% of the area. It is located at an elevation of 13.5 m
and features the steepest slope among the identified patterns, measuring 6.4%.
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Periurban 13.45 0.01 0.43 0.27 51 0.02 0.03 0.00 95.40 0.16 0.08

High integration 13.18 0.01 0.01 0.08 150 0.04 0.36 0.12 33.78 0.83 0.07

Main roads 12.64 0.00 0.30 0.23 794 0.03 0.07 0.01 88.14 0.27 0.12
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USEP-4: High integration. This pattern is located in central areas close to the
Santarém waterfront, boasting highly integrated access routes and well-maintained
asphalt roads. It has small, densely built blocks with a regular shape and a high
proportion of buildings with fiber cement roofs. The area is situated on flat terrain,
with a slight slope of 4.3%, and features large warehouses, suggesting commercial and
logistic activities in the region.
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USEP-5: Main roads. This pattern pertains to the primary interconnecting highways
in the wider region outside of Santarém’s city center. This pattern features both
asphalt and dirt road access, with the highest level of connectivity and integration. In
general, the area closer to the urbanized zone exhibits regular, densely built blocks,
whereas building density and conformity decrease closer to rural areas.
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On the left side of the tree, where the average household income is below BRL 
1207.41, new partitions help to differentiate the patterns. In the first two branches from 
left to right are the samples that present an elderly dependency ratio below 4.5% and an 
average household income below BRL 757.93—these two values are the lowest registered 
in the entire tree. After that, the samples were split based on the inadequacy rate of the 
sewage treatment service between the “USEP 2–Medium-density” and “USEP 3–
Periurban” patterns. However, the last division related to the inadequacy of sewage 
treatment starts from a very high value (98.78%), so it is possible to see that both patterns 
have high inadequacy rates of this public service. 

The “USEP 3–Periurban” category tends to have an elderly dependency ratio of 
between 4.5% and 5.3%, indicating a low number of elderly (people above 65 years old) 
relative to the total population. In addition, this pattern is associated with a youth 
dependency ratio above 27.7%, indicating a high number of young people (under 15) 
relative to the total population. On the left side of the tree, the “USEP 4–High integration” 
category is practically non-existent in the branches. In turn, “USEP 6–High-density 
informal” appears with a high proportion only in the branch referring to an elderly 
dependency ratio above 5.3% and a youth dependency ratio below 27.7%. These two 
patterns appear more frequently on the other side of the tree, where the average 
household income exceeds BRL 1207.41. 

USEP-6: High-density informal. This pattern is located on the periphery of
downtown Santarém, with expansion largely guided by highways. Access is
moderately integrated, with most of the roads being dirt roads. This pattern exhibits
medium regularity and high-density blocks, with block sizes varying between 100 and
220 m in length. It features a high proportion of buildings with fiber cement roofs, but
buildings with ceramic tops are also present. It has no vegetation within the blocks,
situated on flat terrain, with the highest average elevation (16 m) among the identified
patterns. The high building density, irregular block shapes, and unpaved streets
suggest an informal settlement type.
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USEP-7: Housing complex. This pattern describes a recent housing complex located
far from the city center, built after 2010, in areas that were recently converted from
rural to urban use. Access to these areas is poorly integrated, and the roads are paved.
The developments in this class consist of regular, large blocks with high construction
density. The buildings are generally small and lack backyards, featuring ceramic roofs,
with some exceptions that have high-gloss roofs. This pattern is situated in areas of
low elevation, on flat terrain with no slope. Vegetation within the blocks is absent.
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To obtain socioeconomic profiles of the USEPs, a decision tree was trained. Due
to the COVID-19 pandemic, the most recent and available demographic census data in
Brazil is from 2010. Because of this, it was necessary to exclude “USEP 7–Housing com-
plex” from the socioeconomic analysis, as this urban pattern was created after 2010. We
also excluded “USEP 1–Riverside” and “USEP 5–Main roads” from the analysis, as both
especially compromise the access and uninhabited areas, referring to the river and the
roads, respectively.

Figure 10 presents the results of the decision tree. The tree was partitioned a total of
13 times, resulting in 14 terminal nodes with different compositions of urban patterns. The
first partition of the tree separates the patterns in terms of household income, separating to
the left the samples with average income below BRL 1207.41 and to the right the samples
with average income above this value. On the left side of the tree, the “USEP 2–Medium-
density” and “USEP 3–Periurban” patterns are predominant, while on the right side, the
“USEP 4–High integration” and “USEP 6–High-density informal” patterns are predominant.
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On the left side of the tree, where the average household income is below BRL 1207.41,
new partitions help to differentiate the patterns. In the first two branches from left to
right are the samples that present an elderly dependency ratio below 4.5% and an average
household income below BRL 757.93—these two values are the lowest registered in the
entire tree. After that, the samples were split based on the inadequacy rate of the sewage
treatment service between the “USEP 2–Medium-density” and “USEP 3–Periurban” pat-
terns. However, the last division related to the inadequacy of sewage treatment starts from
a very high value (98.78%), so it is possible to see that both patterns have high inadequacy
rates of this public service.

The “USEP 3–Periurban” category tends to have an elderly dependency ratio of be-
tween 4.5% and 5.3%, indicating a low number of elderly (people above 65 years old)
relative to the total population. In addition, this pattern is associated with a youth depen-
dency ratio above 27.7%, indicating a high number of young people (under 15) relative
to the total population. On the left side of the tree, the “USEP 4–High integration” cate-
gory is practically non-existent in the branches. In turn, “USEP 6–High-density informal”
appears with a high proportion only in the branch referring to an elderly dependency
ratio above 5.3% and a youth dependency ratio below 27.7%. These two patterns appear
more frequently on the other side of the tree, where the average household income exceeds
BRL 1207.41.
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“USEP 4–High integration” has a strong presence in the branch of higher income, with
the lowest youth ratio (below 22.5%) and lowest sewage treatment service inadequacy ratio
(below 5.17%), representing almost 80% of this branch. It also has an 80% representation in
the branch with a lower proportion of young people (below 22.5%), a higher proportion of
elderly (above 5.8%), and low household density (below 4.18 persons per household).

“USEP 6–High-density informal” tends to have a higher proportion of young people
than “USEP 4–High integration”, but still lower than that recorded among “USEP 2–
Medium-density” and “USEP 3–Periurban”. It also has a strong presence in the rightmost
branch (almost 60%), demarcated by a youth dependency ratio above 22.5%, a sex ratio
above 105% (meaning a higher proportion of males compared to females), and a sewage
treatment inadequacy rate above 66.20%.

By analyzing Figures 10 and 11, “USEP 4–High integration” presents the greatest
urbanity of the study area. As is typical in the central regions of urban areas, “USEP 4–
High integration” has better income conditions and sanitation services, as well as lower
domiciliary density. Concerning the resident population, this pattern tends to have a higher
proportion of the elderly population and a lower proportion of the young population when
compared to the other patterns.
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Household income and sanitation services both decrease as the patterns become more
rural, as seen in “USEP 3–Periurban”. In this case, there is a lower fraction of the elderly
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population and a higher fraction of youth in relation to the total population. In addition, the
higher sex ratio makes explicit a higher proportion of the male population when compared
to the female population. Regarding household density, this pattern presents the highest
amount of people per household.

Thus, “USEP 2–Medium-density” and “USEP 6–High-density informal” are patterns
of intermediate characteristics, with “USEP 2–Medium-density” approaching the profile
of “USEP 3–Periurban” and “USEP 6–High-density informal” approaching the profile of
“USEP 4–High integration”. “USEP 6–High-density informal”, although being in a more
urbanized area, presents low levels of sanitation services. Approximately 50% of this
pattern does not have access to adequate sewage treatment or disposal systems. In addition,
75% of the households have an inadequate water supply which is comparable to the rural
area of Santarém.

5.3. USEPs Identification for Cametá and Field Visit

The methodology was replicated for the city of Cametá, and we found eight USEPs
(as shown in Figure 12), one more than in Santarém. Compared to Santarém, the city of
Cametá has a lower density, less urban sprawl, and smaller population size. The highway
in Cametá was built parallel to the river, causing urban growth to be concentrated along
the sides of the city and parallel to the river, with little penetration into the interior of the
territory. Despite the differences between the two cities, we identified some similarities
in the urban patterns formed by “USEP 3–Periurban”, “USEP 4–High integration”, and
“USEP 5–Main roads”. These patterns have similar characteristics in terms of integration
and construction density in both cities.
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We also identified specific urban patterns for Cametá, such as “USEP 1–Riverside
and riparian communities”, “USEP 2–Low-density”, “USEP 6–Medium-density”, “USEP
7–Housing complex”, and “USEP 8–Medium-density informal”. However, all urban pat-
terns in Cametá, except for “USEP 4–High integration”, have low levels of attendance
to sanitation services. This lack of coverage in public services for water supply, sewage
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treatment, and garbage collection is common throughout the city, regardless of whether it
is a consolidated urban area or a more rural area.

However, the “USEP 1–Riverside and riparian communities” include areas with both
high and low coverage of sanitation services. This is because this urban pattern’s main
characteristic is the presence of water in the inner cell, encompassing the more touristic edge
of the river, as well as riverside houses with exclusive access by boats. Unlike the “USEP
1–Riverside” pattern of Santarém, the “USEP 1–Riverside and riparian communities” not
only includes areas with infrastructure for navigation but also inhabited areas. It is a USEP
of high integration and connectivity of its accesses, motivated mainly by the accessibility
provided by the river. In the riverfront area, there are high-end housing buildings separated
into lots within blocks, and there are shops. There is vegetation present on the riverfront
and within the lots.

On the islands near the town of Cametá, “USEP 1–Riverside and riparian communities”
includes wooden houses built on the banks of the Tocantins River in a traditional riverine
pattern (Figure 13). The river is the main way to access the city and other settlements on
the mainland. In general, these houses are inserted within a community formed by other
houses in a floodable area, around a community center. The house is positioned facing
the river, and behind the house, there is a yard. After the yard, there are working areas
dedicated to extractive activities where a single crop is generally planted, usually açaí. The
figure shows residences in the riparian settlements and visualization on satellite images.
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Regarding housing conditions, “USEP 1–Riverside and riparian communities” has the
highest housing density (about 4.80 persons per house) along with “USEP 3–Periurban”.
It also has a high proportion of the young population (28.5%) and the second-highest
proportion of the elderly (5.9%) among the standards.

“USEP 2–Low-density” is characterized by areas of low building density, with built-up
area classes representing only about 13% of the block or the occupation block on average.
These areas are recent, spontaneous, and of low financial standards, resulting from the
conversion of rural to urban use. Houses are made of unfinished masonry or good-quality
wood, and public lighting is provided clandestinely by residents using spotlights on rustic
electric poles (Figure 14b). These areas are not integrated with the rest of the city, with
dirt roads as the only means of transportation. This pattern has low-income levels (an
average of BRL 878.17 per household), a high proportion of young people (28.5%), and a
low proportion of elderly people (5.9%). Moreover, this pattern has the highest sex ratio,
with 117 men for every 100 women.
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Figure 14. Photographs from the field visit. (a) Point 1: “USEP 1–Riverside and riparian com-
munities”; (b) Point 2: “USEP 2–Low-density”; (c) Point 3: “USEP 4–High integration”; (d) Point
4: “USEP 6–Medium-density”; (e) Point 5: “USEP 7–Housing complex”; and (f) Point 6: “USEP
8–Medium-density informal”.

“USEP 3–Periurban” in Cametá includes areas of traditional extractive settlements
(Figure 15a,b). These settlements are of the terra firme type (dry land), with a clear demarca-
tion between the plantation area, the housing area, and the monoculture area. In this case,
roads determine transportation, and they are generally connected to regional highways.
This pattern has the lowest household income (an average of BRL 813 per household).
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The “USEP 4–High integration” pattern in Cametá represents the best socio-economic
conditions with an average household income above BRL 2180 and a literacy rate of
95%. The housing density is the lowest at 4.4 people per household, and there is a higher
proportion of elderly people (8%) and a predominance of the female population. The central
area of the city is where commercial activities, public health, and education buildings are
concentrated (Figure 14c). The streets are paved and have regular layouts, and public
lighting is available. Houses are generally made of masonry with good finishing, and there
are three- to four-story buildings.

“USEP 6–Medium-density” is an area of medium-high density located in the outskirts
of the central area of Cametá. The streets are paved near the center and unpaved as they
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move away, with trees lining the streets. The houses are made of masonry with a good
exterior finish, and the area is well-integrated with the rest of the city (Figure 14d). Similar
to USEP 4, the female population predominates.

“USEP 7–Housing complex” consists mainly of medium-density housing complexes,
including those from the “Minha Casa, Minha Vida” program. The streets have poor paving
and lighting, and the electric grid has clandestine connections (Figure 14e). There is
minimal greenery in the area, and the houses are built with unfinished masonry on plots
of approximately 10 × 20 m. The area is almost exclusively residential, with a population
density of 4.73 residents per household, a predominance of the male population, and
the highest proportion of young people (32.24%). The income level is one of the lowest
(BRL 916 per household) among the different patterns.

Finally, the “USEP 8–Medium-density informal” pattern consists of a spontaneous,
medium-density occupation with vegetation inside the block. The area has grown infor-
mally towards the BR-422 highway, with unpaved and narrow streets and low public
lighting, and it is poorly integrated with the rest of the city. The occupation is relatively
recent, with a little more than ten years of occupancy, and is continuously expanding
and densifying construction. There is no basic sanitation in the area, and the houses are
mostly made of masonry with a population density of 4.43 people per house. The income
level is below the municipality’s average, around BRL 1025 per household, and there is a
high proportion of young people (32.18%) and the smallest proportion of elderly people
(below 4%).

6. Discussion
6.1. Santarém’s Results

According to Figure 15a, the urban patterns in the occupied area of Santarém are
dominated by the “USEP 3–Periurban” class (42%), followed by “USEP 6–High-density
informal” (20%) and “USEP 2–Medium-density” (16%). Higher building density patterns,
such as “USEP 4–High integration”, only make up one-third of the area. The distribution
of these patterns differs within the city, with the “High integration” pattern concentrated in
the older urban areas, while the “USEP 7–Housing Complex” pattern is mostly found in
recently converted urban areas. Rural areas exhibit patterns of low building density.

In Santarém’s occupied area, most cells are classified as “Old urban” (78%), with
smaller proportions classified as “New urban” (18%) and “Rural” (4%). The “Old urban”
areas are characterized by a mix of urban patterns, with the “USEP 4–High integration”,
“USEP 2–Medium-density”, and “High-density informal” patterns predominating. On the
other hand, the “New urban” areas show a higher concentration of the “USEP 7–Housing
Complex” pattern, indicating a pattern of recent conversion from rural to urban use. Rural
areas display patterns associated with low building density, such as “USEP 1–Riverside”,
“USEP 3–Periurban”, and “USEP 5–Main Roads”.

A significant portion (36%) of the occupied area in Santarém overlaps with AGSN.
The classes “USEP 3–Periurban”, “USEP 6–High-density informal”, and “USEP 2–Medium-
density” are most found within the AGSN. However, the “USEP 2–Medium-density”
class is 34% more likely to be in a precarious area compared to other cells, while the
“High integration” class is 62% less likely to be in a precarious area. This aligns with the
socioeconomic characteristics of these patterns, with “USEP 4–High integration” having
higher income and better sanitation indicators.

Two classes, “USEP 6–High-density informal” and “USEP 5–Main roads”, have a
higher likelihood of overlapping with the AGSN. Over 45% of the cells in the “High-density
informal” class overlap with the AGSN. This pattern exhibits characteristics such as high
building and population density, lack of tree planting and paving, and lower levels of
sanitation coverage and income, meeting the criteria of an AGSN. On the other hand,
although “USEP 3–Periurban” has many areas overlapping with the AGSN (33% of its
cells), it has a lower probability compared to the overall occupied area, suggesting that its
overlap is due to its distribution rather than inherent precariousness.
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The alignment plan implemented by Portuguese colonizers in the Santarém region
aimed to structure urban expansion by adhering to the Land Law of 1850 [37]. Although
not fully executed, this plan established a pattern of urban occupation with regularly
shaped, high-density blocks. Our classification of urban patterns, particularly the “USEP
4–High integration” class, overlaps with this plan, indicating some agreement between the
observed features and the historical alignment plan.

Our results align with the findings of previous studies. The “USEP 2–Medium-density”
and “USEP 3–Peri-urban” classes represent more traditional occupation styles [37] charac-
terized by unplanned layouts, adapted roads, and multi-purpose backyard areas. “USEP
6–High-density informal” resembles organized informal settlements resulting from the
conversion of rural land, leading to poverty and limited opportunities. “USEP 7–Housing
Complex” resembles formal settlements with standardized typologies and alterations to
the natural landscape [84].

According to Tourinho [85], Santarém is a mid-sized Amazonian city that combines
traditional and riverside influences with the impacts of highways. Our classification is
consistent with this model, which places high-income populations, services, and commerce
near the riverfront (“USEP 4–High integration”) and then successively expands into areas of
medium-low income and high density (“USEP 6–High-density informal”), low income and
high or medium density (“USEP 2–Medium-density”), and low income and low density
(“USEP 3–Periurban”). The only difference between this model and our classification is the
inclusion of a high-density, low-income urban pattern (“USEP 7–Housing Complex”) on
the outskirts of the city.

6.2. Cametá’s Results

According to the Figure 16d, in the occupied area of Cametá, the “Periurban” class
has the highest prevalence (35%), followed by “Medium-density” (19%), “Low-density”
(12%), “Housing Complex” (12%), “Riverside and riparian” (9%), “Main roads” (6%), “High
integration” (5%), and “High-density informal” (2%). Low-density classes account for over
56% of the area, indicating a lower level of density compared to Santarém.

In Cametá, the distribution of urban patterns differs from Santarém. The “Old urban”
class represents 56% of the area, while “New urban” and “Rural” make up 18% and 27%,
respectively. Similar to Santarém, “USEP 4–High integration” and “USEP 2–Medium-
density” are concentrated in the “Old urban” part, while “USEP 7–Housing Complex” is
mostly in “Old urban” with a smaller portion in “New urban”.

In Cametá, only 17% of the occupied area overlaps with an AGSN and the distribution
of AGSNs among patterns is more balanced compared to Santarém. However, assessing
how the patterns are distributed along the AGSNs provides interesting information. Over
85% of “USEP 8–High-density informal” and 31% of “USEP 7–Housing complex” are in
AGSN areas, which are high rates compared to the rest of the cells. In contrast, only 4% of
“USEP 4–High integration” overlaps with an AGSN. Similar to Santarém, although 25%
of the cells that overlap an AGSN are from “USEP 3–Periurban”, the class has a lower
likelihood of overlapping when compared to the rest of the occupied area (30% less). This
suggests that most of the AGSNs overlap the periurban areas not because this class is
usually precarious but because of its high proportion and distribution in the study area.

Cametá follows a similar urban pattern to other riverine towns where road access has
become more important than waterways. Like the model of Tourinho [85], in our work, the
highest-income population resides in the area between the river and the parallel highway,
which also accommodates commercial activities along the waterfront. Moving away from
the highway, there is a decrease in income and building density, transitioning through areas
of medium income and density, informal medium-density areas, and eventually lower
income and density areas. However, like Santarém, Cametá does not have a high-density,
low-income urban pattern on the outskirts of the city.
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6.3. Study Limitations and Considerations about the Classification Model

Our study has some limitations. In Cametá, the classification did not differentiate
between the Riverside and Riparian classes, which refer to occupations along the river and
the islands, respectively. Both classes were combined under “USEP 1–Riverside and ripari-
ans” due to their shared characteristic of being near water. To address this, we recommend
identifying new clusters for mixed classes in future studies to allow better differentiation.

Another limitation is the use of the 2010 census data for constructing the socioeconomic
indicators due to the cancellation of the 2020 census amid the COVID-19 pandemic and
budget constraints. However, the socioeconomic indicators can be updated once new
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census data becomes available. Despite these limitations, our study contributes to the
understanding of sanitation conditions in Amazonian cities. Some urban patterns still
exhibit low sanitation coverage, highlighting the need for improved services beyond
central areas. Moreover, we adapted methodologies for analyzing urban morphology in
Amazonian cities, incorporating rivers as transportation routes, occupation areas, and
environmental variables.

The separate clustering of environmental and urban morphological dimensions al-
lowed for a meaningful explanation of the USEPs. These two analysis dimensions are
used as levels of information compartmentalization, where the clusters of each dimension
represent these levels and provide information about the environment and urban nature
of the study area. We decided to separate these two dimensions to explicitly highlight the
environmental characteristics of these Amazonian cities. Utilizing unsupervised classifica-
tion methods was crucial in the absence of comprehensive databases and prior mappings,
revealing distinct patterns in the data. Although classifications were conducted separately,
certain patterns showed high similarity, particularly in central areas, periurban regions,
roads, and housing complexes. This suggests the existence of regional urban patterns that
are replicated across different cities, varying in size and population.

Cametá, in comparison to Santarém, exhibits more rural characteristics and lower
socioeconomic indicators. Its patterns are less dense, and while Santarém has higher
construction density despite higher income levels, Santarém is more similar to the Belém
Metropolitan Area, presenting areas of more regular blocks and streets, as well as more
areas of informal settlements and intersections with the AGSN. The promotion of housing
complexes, which deviates from the traditional Amazonian way of living, raises concerns
in both cities.

The use of machine learning algorithms played a central role in our methodology,
surpassing manual classification models and enabling the identification of the USEPs. We
combined machine learning algorithms with expert knowledge obtained through field
research. This combination allows a better understanding of the results produced by
machine learning models, particularly when the inner workings of the algorithm are
not well defined. Experts contribute by guiding the selection of important variables
and identifying data sources, while machine learning algorithms facilitate updates and
application in different areas [88].

However, some machine learning algorithms may require significant computational
power and an ample amount of training data, which can be insufficient for different urban
patterns in Brazilian municipalities, including Amazonian cities [29].

Regarding the data sources, two datasets were essential: amazon-ULC, which provided
the land cover classifications with intra-urban classes; and the Topodata MDE bases, which
enabled the construction of evaluation criteria for the environmental dimension. Finally,
our work relied on publicly accessible data and free software, facilitating its replication in
other cities by researchers.

7. Conclusions

The main objective of this study was to identify USEPs in Amazonian cities, specifi-
cally in Santarém and Cametá in Brazil, through the framework of Dos Santos et al. [18].
The USEPs were characterized by their environmental, urban morphological, and socioe-
conomic characteristics, including building density, integration, access road conditions,
and terrain conditions. The study adapted morphological evaluation metrics and socioe-
conomic indicators to the unique reality of Amazonian cities. The findings confirmed the
existence of diverse urban morphological patterns in Amazonian cities and highlighted the
importance of specific classification models for accurate identification.

Future research directions are also suggested as follows: (i) conduct a new socioeco-
nomic characterization with data from the demographic census scheduled to be published
in 2023, (ii) study the identification of urban patterns in different study areas in a combined
manner, identifying clusters that are common in all cities, (iii) evaluate the possibility of
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plotting temporal trajectories of the identified urban pattern, and (iv) expand the applica-
tion of the USEPs classification framework to other Amazonian cities.

To conclude, the Amazon region is of global relevance due to its unique environmental
characteristics and biodiversity. Identifying urban patterns in the Amazon provides a
foundation for sustainable urban planning and protects the region’s cultural heritage. This
work can aid in the proposition of more effective public policies to improve the urban
population’s quality of life and promote sustainable urban development in the region.
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