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Abstract: Blowdown events are a major natural disturbance in the central Amazon Forest, but their
impact and subsequent vegetation recovery have been poorly understood. This study aimed to track
post-disturbance regeneration after blowdown events in the Amazon Forest. We analyzed 45 blow-
down sites identified after September 2020 at Amazonas, Mato Grosso, and Colombia jurisdictions
using Landsat-8 and PlanetScope NICFI satellite imagery. Non-photosynthetic vegetation (NPV),
green vegetation (GV), and shade fractions were calculated for each image and sensor using spectral
mixture analysis in Google Earth Engine. The results showed that PlanetScope NICFI data provided
more regular and higher-spatial-resolution observations of blowdown areas than Landsat-8, allowing
for more accurate characterization of post-disturbance vegetation recovery. Specifically, NICFI data
indicated that just four months after the blowdown event, nearly half of ∆NPV, which represents the
difference between the NPV after blowdown and the NPV before blowdown, had disappeared. ∆NPV
and GV values recovered to pre-blowdown levels after approximately 15 months of regeneration.
Our findings highlight that the precise timing of blowdown detection has huge implications on
quantification of the magnitude of damage. Landsat data may miss important changes in signal due
to the difficulty of obtaining regular monthly observations. These findings provide valuable insights
into vegetation recovery dynamics following blowdown events.

Keywords: blowdowns; tropical forests; spectral mixture model; Google Earth Engine; PlanetScope
NICFI

1. Introduction

Blowdowns correspond to natural wind gust events that cause damage to forests by
uprooting (windthrow) or breakage of the tree trunk [1]. Such events can affect from one
to hundreds or thousands of trees at once. Tree mortality caused by blowdowns due to
convective storms is a major natural disturbance in the Amazon, being responsible for
about 50% of the annual Amazonian tree mortality [2]. Climate change can make this
scenario worse due to the increased likelihood of windstorms. Feng et al. [2] found that
the Amazon will experience 43% more large blowdown events (of 25,000 m2 or more) by
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the end of the century. The authors also show that the area of the Amazon Impacted by
extreme storms that trigger large windthrows will likely increase by about 50%.

In the more pristine central Amazon, the percentage of tree cover loss in area due to
natural disturbance (e.g., windfalls, river meandering, drought effect, and natural fires
promoted by lightning) has increased compared to other disturbances (e.g., anthropic fires,
forest logging, and agro-industrial clearing for cropland) [3,4]. In the past decades, some
severe windstorms have proven their ability to alter forest landscapes, showing that wind
is one of the main natural disturbances causing tree loss in the central Amazon [5–8].

Quantifying the intensity of blowdowns and subsequent forest recovery has been an
important topic in wind disturbance studies. Before the use of remote sensing, most studies
on forest disturbance damage were based on traditional repeated field surveys [9,10]. Al-
though surveys provide detailed and accurate local information on blowdown damage and
vegetation recovery, their conduction in remote areas of the Amazon is time-consuming
and expensive. Furthermore, the implementation of field surveys cannot occur well after
the disturbance occurrence, affecting the quality of the investigation [11–13]. Another com-
monly used traditional approach is based on aerial surveys. It may use aerial photographs
or lidar point clouds to map tree mortality over large areas based on canopy damage, which
may provide practical details on the mechanisms of tree death [14–19]. However, the lack
of systematic data collection by these systems and substantial uncertainties associated with
light conditions, flight height, viewing angles, and terrain affect the mapping accuracy
when using aerial photographs [20–22]. In addition to the prohibiting cost of lidar data
acquisition, these factors make these approaches not feasible for blowdown damage and
recovery assessment.

In contrast, satellite sensors allow for repeated data collection at a broader spatial
and temporal scale. In this context, studies have used optical remote-sensing imagery
to observe blowdown events, making progress in assessing blowdown size distribution
and frequency [5,6,23–25]. Much progress has also been made in modeling tree mortality
and carbon loss due to blowdowns [5,26–28]. Optical data of different sensors and spatial
resolutions have been used such as MODIS, Landsat, airborne laser scanning, Sentinel-2,
and IkonosWorldView-2 data [29–33]. A recent study investigated how increasing spatial
resolutions from Landsat, Sentinel-2, and WorldView-2 data affected plot-to-landscape
estimates of windthrow tree mortality [33]. This study showed that while uncertainties
decreased systematically with increasing spatial resolution, the use of Landsat-8 data at a
similar scale of the plot data (10 × 25 m) used to calibrate models was the most adequate for
the wind damage estimates. To the best of our knowledge, synthetic-aperture radar (SAR)
data were not used to study blowdowns in the Amazon. An early study has compared the
capabilities of optical and SAR data for blowdown detection, although not in the Amazon
region [34]. SAR offers data that are less affected by weather effects, but the study showed
that it was not suitable for blowdown detection, especially due to the effects of layover and
shadow effects in mountainous areas, and its accuracy is influenced by incidence angle
and polarization.

The most traditional approach for blowdown damage estimates relies on the use of
Landsat-derived net change of non-photosynthetic vegetation (∆NPV) combined with
an aboveground biomass distribution map collected in the field [26]. For instance, one
study using this method showed that in 2005, over the Manaus region in the Amazon,
disturbed forest patches resulting from a single squall line (an aligned cluster of convective
storm cells) produced a mortality of 0.3–0.5 million trees. This was equivalent to 30% of
the observed annual deforestation reported in 2005 or 23% of the mean annual biomass
or carbon accumulation estimated for Amazon Forests [27]. Using the same approach,
another study found that tree mortality was highly non-random within the blowdown event
boundary, where tree mortality rates were highest for trees that were large, had low wood
density, and were located at high elevation [28]. These authors suggested that predictions
of forest carbon loss from wind disturbance are sensitive to not only the underlying spatial
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dependence of observations but also to the biological differences between individuals that
promote differential levels of mortality.

Despite these advances in the use of remote sensing, field surveys, and modeling to
investigate tree mortality and carbon loss, there are still issues to be resolved. Firstly, there
is a lack of sufficient high-spatial-resolution data to identify small blowdowns. Chambers
et al. [5] and Espírito-Santo et al. [6] showed that the majority of natural forest biomass
loss from catastrophic winds is caused by small blowdowns (≤0.1 ha). Although the
commonly used Landsat multispectral data can monitor the extent of large blowdowns,
its 30 m spatial resolution precludes the identification of small-size blowdowns. More
critically, with a Landsat-8 revisit period of 16 days, it is unlikely that a sufficient number
of cloud-free images of blowdown events will be available to detect damage and post-
disturbance vegetation recovery in the tropical forest environment. The aforementioned
previous studies have focused their analyses on pairs of images. Little is therefore known
about the effect of timing of blowdown event occurrence on the spectral mixture signal
considering the post-blowdown recovery. Until now, knowledge of the differences between
Landsat-8 and other high-spatial-resolution orbital instruments for the potential mapping
of blowdowns and vegetation recovery following disturbance is still scarce [12,35]. Given
the fast rates of vegetation recovery in the tropics, we hypothesize that determining the date
of blowdown occurrence is a significant factor for the accurate estimation of damage based
on spectral mixture fraction changes. The use of satellite data with high spatial (3–5 m)
and temporal (daily observations) resolutions, such as those from the Planet’s satellite
constellation, may now contribute to closing part of these knowledge gaps, especially with
the recently open data access from the NICFI program [36,37].

The overall aim of this study Is to comprehensively assess and compare the effective-
ness of Landsat-8 and PlanetScope NICFI satellite data in observing potential blowdown
damage and recovery, and in investigating the timing and variability of forest spectral recov-
ery. Our main research question is: how does post-disturbance recovery age affect ∆NPV
and, therefore, its usefulness for predicting tree mortality in blowdowns? To achieve this
aim, we conducted a detailed evaluation and comparison of the pre- and post-blowdown
spectral trajectories over several sites affected by blowdowns in the Amazon Forest, using
time series data with high spatial resolution (4.77 m) from the PlanetScope NICFI constel-
lation and medium spatial resolution (30 m) from the Landsat-8 satellite. Through this
analysis, we aim to provide precise and accurate estimates of blowdown damage and
vegetation recovery at a finer spatial and temporal scale, thereby contributing to improved
monitoring and management strategies for post-blowdown forest regeneration.

2. Materials and Methods
2.1. Study Sites

Previous studies have shown that blowdowns are most common in the central and
northwestern Amazon. For instance, Espírito-Santo et al. [38] found that large blowdown
disturbances (>30 ha) are concentrated in the western Brazilian Amazon, with the frequency
of large blowdowns being 12 times higher west of 58◦ W compared to the east [6]. Similarly,
Araujo et al. [39] and Negrón-Juárez et al. [40] observed that blowdowns are widespread in
the Amazon, ranging from Peru, Colombia, Venezuela, and western Brazil to central Brazil,
with the highest incidence in northwestern Amazonia.

In this study, the analyzed blowdown events encompassed a wide range in the Ama-
zon Basin from 15◦S–75◦W to 2◦N–50◦W (Figure 1). Although the search was not exhaustive
or systematic in nature, we identified 45 blowdowns occurring in Brazil (Amazonas and
Mato Grosso states) and Colombia after September 2020. The blowdowns were visually
identified in the images from signals of treefalls observed in specific spatial patterns such
as the fan-shaped spatial pattern [23]. These spatial patterns were directly associated with
changes in NPV and GV fractions caused by blowdowns. Therefore, the occurrence of these
spatial patterns separated changes in NPV and GV fractions caused by disturbance from
eventual modifications in these fractions derived from vegetation phenology. However, it
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is important to note that these identified blowdown sites do not represent all blowdown
events that occurred during this period but rather a collection used for analysis, which
must have occurred after September 2020 in order to have access to the readily available
monthly data from PlanetScope NICFI. Thirty-three blowdown events were concentrated
in the northern municipality of Barcelos, located in the Brazilian state of Amazonas, north-
west of Manaus (0.03◦S–61.16◦W to 1.22◦S–4.81◦W). Additionally, five blowdowns were
detected in southeast Colombia, along the border with Peru and Brazil (1.35◦S–69.96◦W
to 2.52◦S–72.71◦W). These areas are predominantly pristine wet rainforest reserves and na-
tional parks characterized by a tropical rainforest climate. Furthermore, seven blowdowns
occurred in northeast Mato Grosso, Brazil (10.67◦S–53.63◦W, 11.80◦S–53.83◦W), which is
a transition zone with savanna vegetation. All three regions receive an annual rainfall of
over 2000 mm and have less than 4 months with rainfall below 100 mm per year [41].
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Figure 1. Study sites with related blowdown events found in the Amazon Forest. The background
image corresponds to the areas covered by rainforests and other land covers in the Amazon Forest,
according to the Tropical Moist Forests product [42].

2.2. Landsat-8 and PlanetScope NICFI Satellite Data

Surface reflectance data were acquired from the Landsat-8 OLI and PlanetScope NICFI
products for the period from September 2020 to May 2022. The atmospherically corrected
surface reflectance data from the Landsat-8 OLI sensor are included in Google Earth Engine
(GEE)’s USGS Landsat-8 Level 2 Collection, and these images contain four visible, a NIR,
and two SWIR bands [43]. Landsat images are selected to form a time series by choosing
images where cloud cover does not obscure the blowdown event within each month. In
typical cases, Landsat-8 may have several consecutive months where the blowdown event
cannot be observed due to cloud cover. In this study, cloud masking using the quality
assessment (QA) band was applied to the Landsat-8 images. Similarly, the PlanetScope
NICFI monthly mosaics are derived from surface reflectance data from the PlanetScope
Dove constellation, having three visible bands and a NIR one [31]. The PlanetScope NICFI
data have been subjected to a series of pre-processing, including atmospheric correction,
cloud masking, stitching, and seamline removal. Additionally, the PlanetScope NICFI data
were already normalized using BRDF-corrected Sentinel-2 data. This strategy reduces the
variability added by variable view-illumination conditions, resulting in more reliable and
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consistent reflectance measurements [37]. Band information and resolution parameters for
both datasets are shown in Table 1. Satellite data were acquired using the GEE platform [44].

Table 1. Specifications of Landsat-8 OLI and PlanetScope NICFI data.

Landsat-8 OLI PlanetScope NICFI

Band
(µm)

Blue 0.45–0.512 0.455–0.515
Green 0.533–0.590 0.500–0.590

Red 0.636–0.673 0.590–0.670
Near-Infrared 0.851–0.879 0.780–0.860

SWIR 1 1.566–1.651 /
SWIR 2 2.107–2.294 /

Spatial resolution (m) 30 4.77

Temporal resolution
(Revisit time) 16 days

Daily, but monthly
product mosaics

available in NICFI

2.3. Spectral Mixture Analysis (SMA)

SMA estimates the fractional abundance of “pure” spectral components in a pixel [45].
These pure components are called spectral endmembers, for example, non-photosynthetic
vegetation (NPV; dry leaves or bare trunk and branches) and green vegetation (GV; pho-
tosynthetically active vegetation). Nelson et al. [23] found that the spectral reflectance of
recent blowdowns (<1–2 years old) in Landsat imagery showed higher NPV and lower
GV fractions compared to the surrounding and pre-blowdown forest. Therefore, the
change in NPV (∆NPV) can be calculated to detect and quantify the intensity of a recent
blowdown [26]. In this study, we applied the Linear Spectral Unmixing (LSU) algorithm
available on GEE. LSU assumes that the reflectance of a pixel is a linear combination of
the endmember spectra (e.g., NPV, GV, and shade). The role of LSU is to unmix their
corresponding abundance fractions [46].

Assuming that n is the number of spectral bands for remote-sensing data, we used
separately the first seven reflectance bands of Landsat-8 and the four reflectance bands
of PlanetScope NICFI as input data to LSU. In this study, NPV, GV, and shade are the
endmembers of interest. Additionally, a corresponding vector represents their contributions
to the surface reflectance for each pixel, which refers to the cover fractions of endmembers:
f = [f 1, f 2, f 3]T. Then, using an n-dimensional vector to represent the pure spectrum of
each endmember, the three endmembers are represented as an n × 3 matrix M. Finally, the
mixed spectrum of the pixel can be expressed as an n-dimensional vector:

r = M f + ε (1)

where ε is noise or residual error between the model and image reflectance values.
The first step in the SMA procedure is the identification of endmember spectral

signature M. M can be obtained from reference spectral libraries derived from field or
laboratory measurements [47] but can also be derived directly from the image data [48].
The second step is the estimation of abundance fractions. This requires inversion models to
solve for f, and the least squares regression is commonly used to minimize the error term.
The output fractions were not constrained to sum to one.

In this study, to avoid differences in data variability caused by instrumental signal-to-
noise, we selected the endmembers directly from the images instead of using field or lab
reflectance data. This image selection approach has been used in several studies addressing
spectral mixture analysis, e.g., [46,49]. Here, we inspected typical areas of endmember
occurrence in the images with the support of red–NIR scatterplots. The endmembers were
selected on the GEE platform (Figure 2) to represent NPV, GV, and shade endmembers.
Endmembers were selected to represent NPV, GV, and shade, and then the training data
points were marked for sampling reflectance values (n = 1009 pixels). NPV was collected
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from the pixels of the fallen crowns and trunk within the blowdown events observed above;
GV was sampled from a broad range of green crowns, including secondary forest, recently
flushed crowns, and crowns with dark-green mature leaves; shade was collected under
clouds. The PlanetScope NICFI product has only four bands in the VNIR interval. Thus, the
spectral information is not as complete as that from Landsat-8. There are also differences
in the spectral curves of the same endmember between the two datasets (Figure 2). For
example, the GV of PlanetScope NICFI has lower reflectance in the green and NIR bands
than the reflectance recorded in the corresponding bands of Landsat-8. This is likely
because more secondary forests were sampled for the Landsat GV endmembers than for
the PlanetScope GV endmembers. We do not expect these differences between sensors
to cause significant issues in the analyses, because the focus will not be on the absolute
magnitude of fractions but on their change over time.
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2.4. Amazon Blowdown Event Mapping and Data Collection

To compare the effects of spatial resolution between PlanetScope NICFI and Landsat-8
on estimating blowdown area, we selected blowdown events with similar acquisition
times from both satellite datasets. Specifically, we defined threshold values of ∆NPV (0.3
and 0.5) to quantify the blowdown areas derived from PlanetScope NICFI and Landsat-8
data, and investigated whether there were significant differences between the two datasets.
Such ∆NPV thresholds corresponded approximately to minimum and maximum values
following disturbance. For GV, the average value pre-disturbance was selected for analysis.

Additionally, because there are few available geolocation data for blowdowns from
previous research, a visual interpretation of images was conducted where 45 blowdown
events were identified between September 2020 and May 2022. These events showed canopy
gap openings varying from less than 1 ha and up to 2026 ha. Landsat-8 and PlanetScope
NICFI imagery were interpreted to vectorize the blowdown shapes as polygons in ArcGIS
Pro 2.8.3 [50]. For each blowdown, the delineated polygons corresponded to the gaps
left by the dead trees in the forest. The geographic reference coordinate system of the
polygons was set to WGS84, and each polygon’s area (i.e., geodesic) was then calculated.
The first visible month on the image of each blowdown was added as a field of the attribute
table. During vectorization, we qualitatively compared the visualization of Landsat-8 and
PlanetScope NICFI imaging of blowdown gaps.
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2.5. Analysis

Monthly Landsat-8 and PlanetScope NICFI time series were analyzed for each blow-
down. This time series started from the three months of available cloud-free images before
the blowdown gap was first visible until the gap was not observed at all, or until May
2022. If there were clouds obscuring the blowdown gaps, the image was excluded from the
analysis. To observe the vegetation signal recovery process, sample points and polygons
were set for the forest gap areas. For samples, the mean NPV, GV, and shade fractions for
all Landsat and PlanetScope NICFI time series images were then calculated, along with a
95% confidence interval (CI) around their mean values of three pre-blowdown images. In
this way, the chronological changes in the signals and fractions of two satellite data were
prepared, and comparisons were performed of the completeness of the change trajectory.

For the image with each blowdown first visible and all images afterwards, the differ-
ence in the NPV of the sample pixels between them and the pre-blowdown images (i.e.,
∆NPV) was calculated. ∆NPVfirst thus refers to the difference between the average NPV
of the first post-blowdown image and of the three pre-blowdown images (NPVpre−mean).
This step allowed us to assess the magnitude of ∆NPV right after the blowdown, that is,
the signal closer to the “true maximum change”, and to determine when the blowdown
signals reached pre-disturbance levels. The higher the value of ∆NPVfirst, the more severe
the damage to the forest [27]. In addition, it is also important to consider that blowdown-
affected areas may suffer from delayed tree mortality and browning after the first visible
image is acquired, so ∆NPV may increase compared to ∆NPVfirst. To find the maximum
∆NPV, we also search the NPVmax for each blowdown, which is the maximum NPV value
of the blowdown among all months. The difference between NPVmax and NPVpre−mean is
the maximum ∆NPV.

We then recorded the ∆NPV change after blowdowns. Instead of recording from the
first month the blowdown was found, because the recovery of each blowdown can differ
significantly, and starting from the most damaged month (highest ∆NPV) provides a more
accurate representation of the recovery process, the average of ∆NPV for all blowdowns
and 95% CI were then calculated for each time step, recording the decline process from
their maximum value (i.e., 1) to pre-blowdown level.

Similarly, to reflect the process of GV fraction recovery to pre-blowdown levels, the
ratio was calculated:

GVi Ratio =
GVi

GVpre−mean
, (2)

where GVi is the average GV value of the ith month from also the month when the blow-
down had highest NPV (i = 0); GVpre−mean is the average GV of the sample pixels of the
three pre-blowdown images. The average and its 95% CI of the GV ratio was then calcu-
lated for all blowdowns, recording its increase to 1 from the month of the ∆NPV maximum.
When this ratio is greater than or equal to 1, the GV fraction has reached or exceeded the
average pre-blowdown GV. This calculation is not the same as NPV because a simple ratio
can reflect blowdowns’ GV changes.

3. Results
3.1. OLI Landsat-8 and PlanetScope NICFI Images of Blowdown Disturbance

If classified according to the shape of canopy gaps, the blowdowns identified in this
study can be divided into three categories: (1) single large gaps (Figure 3(A1,A2)); (2) fan-
shaped aggregated gaps (Figure 3(B1,B2)); and (3) discrete clusters of small gaps, whose
gaps may not have obvious directional linear characteristics (Figure 3(C1,C2)). Figure 3
also shows the visibility of blowdowns at the different spatial resolutions of Landsat-8
and PlanetScope NICFI images. The single large gaps will usually have a distinct canopy
gap which is above 30 ha in size. Fan-shaped aggregated gaps, on the other hand, are
fan-shaped aggregations of canopy gaps, which can vary in size from large to small. For
discrete clusters of small gaps, they can be seen as a collection of small gaps.
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When comparing the ability of Landsat-8 and PlanetScope NICFI satellite datasets to
map the area affected by 25 blowdown events using a ∆NPV threshold greater than 0.3 or
0.5 (Table 2), Landsat-8 mapped a larger area (total area = 3809 ha) than PlanetScope NICFI
(total area = 3244 ha) when using a threshold of 0.3. However, the use of a higher threshold
(∆NPV > 0.5) reduced the mapped area and led to a similar affected area being mapped
by Landsat-8 and PlanetScope NICFI (1962 and 1963 ha, respectively). Furthermore, the
number of individual canopy gaps (clusters of pixels mapped as disturbed areas) mapped
by PlanetScope NICFI was greater than that of Landsat-8, with 1.4 million pixels of gaps
in PlanetScope versus 42 thousand pixels of gaps in Landsat-8. This difference can be
observed in Figure 4, where Landsat-8 displays larger contiguous areas of gaps compared
to PlanetScope NICFI.

3.2. Changes in Endmember Fractions after Blowdown

The difference (∆NPVfirst) between the mean NPV in the blowdown first visible image
and the mean pre-blowdown raw NPV for both satellites was not significantly different
considering a 5% significance level (Figure 5). Most of the ∆NPVfirst values were between
0.3 and 0.8, meaning that the blowdown events generally caused a moderate to substantial
decrease in NPV relative to the pre-disturbance conditions, with some sites experiencing
more severe damage. However, the fact that the majority of the values fall within this range
suggests a relatively consistent impact across the study sites. The maximum ∆NPV for
PlanetScope NICFI is larger than its ∆NPVfirst, whereas for Landsat-8, the two attributes
are not significantly different. Furthermore, the maximum ∆NPV of PlanetScope NICFI
was relatively higher than the distribution of OLI Landsat-8. This indicates that, while
the recovery of reflectance values after a disturbance varies between the two satellites,
the blowdown events generally caused a moderate to substantial decrease in NPV, with
some sites experiencing more severe damage, highlighting the significant impact of these
disturbances on the forest ecosystem.
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Table 2. Pixels and areas (ha) of blowdown gaps mapped by PlanetScope NICFI and Landsat-8.

∆NPV > 0.3 ∆NPV > 0.5

ID
Planet
Pixel

Count

Landsat
Pixel

Count

Planet
Area (ha)

Landsat
Area (ha)

Planet
Pixel

Count

Landsat
Pixel

Count

Planet
Area (ha)

Landsat
Area (ha)

10 468 40 1.06 3.60 60 2 0.14 0.18
11 5957 312 13.55 28.08 1853 100 4.22 9.00
13 4827 238 10.98 21.42 1857 111 4.23 9.99
16 21,633 730 49.22 65.70 6062 164 13.79 14.76
17 483 11 55.62 72.45 127 0 15.17 15.66
18 24,446 805 0.27 0.54 6669 174 0.03 0.00
19 1249 35 2.84 3.15 247 4 0.56 0.36
20 120 6 1.10 0.99 11 0 0.29 0.00
21 727 26 2.35 2.97 389 10 0.41 0.63
22 1031 33 18.97 21.87 180 7 7.43 8.19
23 247 8 4.70 8.01 39 0 1.24 2.25
24 2064 89 0.56 0.72 544 25 0.09 0.00
25 8337 243 2.46 3.06 3265 91 1.00 1.26
26 1081 34 1.65 2.34 439 14 0.89 0.90
27 2976 80 6.77 7.20 1183 31 2.69 2.79
28 3052 226 6.94 20.34 674 62 1.53 5.58
32 258,982 12,345 589.26 1111.0 79,301 3342 180.43 300.78
34 6256 271 14.23 24.39 1142 38 2.60 3.42
36 7413 280 16.87 25.20 2916 40 6.63 3.60
40 2483 89 5.65 8.01 1324 49 3.01 4.41
41 1069 43 2.43 3.87 395 14 0.90 1.26
42 829,011 20,827 1886.2 1874.4 605,299 14,535 1377.2 1308.1
43 116,685 2585 265.49 232.65 66,241 1319 150.72 118.71
44 74,618 1862 115.36 99.90 47,439 997 79.91 60.30
45 50,701 1110 169.78 167.58 35,121 670 107.94 89.73
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Figure 4. Examples of PlanetScope NICFI basemap (A), blowdown mapping considering a ∆NPV
threshold greater than 0.3 for PlanetScope NICFI (B), and Landsat-8 (C). The longitude and latitude
of this blowdown are 63.75◦W, 2.31◦S; image data: October 2020.
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interval around the median.

3.3. Post-Blowdown Vegetation Regeneration Process

From the total of 45 analyzed blowdowns, 10 have recovered to a level within the
95% CI of their pre-disturbance NPV mean within 12 months for both Landsat-8 and
PlanetScope NICFI data. Whenever the NPV fractions were detected as recovered in the
Landsat-8 time series, they were also detected as recovered in PlanetScope NICFI. The op-
posite was not always the case; 10 blowdowns were identified as recovered in PlanetScope
NICFI but not in Landsat-8, likely due to the lack of image acquisitions from Landsat-8.
Furthermore, 25 of the 45 blowdowns did not return to pre-disturbance NPV levels after
20 months of observation. For the 20 blowdowns whose time to recover to pre-disturbance
levels was detected in PlanetScope NICFI, the shortest recovery was three months and the
longest was 20 months, with a mean of 12.2 ± 4.8 months. For the same ten blowdowns in
Landsat-8, the average recovery time was similar (14.1 ± 3.1 months) to PlanetScope but
with a smaller variance, with a minimum of 8 months and a maximum of 15 months.

Figure 6 shows the trends in ∆NPV for both PlanetScope NICFI and OLI Landsat-
8. The start date of each blowdown was determined as the month of the earliest image
in which it was detected in either of the two datasets. The trend in NPV fractions in
PlanetScope NICFI for all 45 blowdown events is shown in Figure 6A. The trajectory of
NPV chronological changes in the PlanetScope NICFI monthly time series was broadly
complete and, although fluctuating, showed a generally declining trend. Additionally,
many blowdowns did not reach their peak NPV when they were first visible, so NPV
did not always fall. This suggests that the extent of damage caused by blowdown events
may be underestimated if only the first visible image is used to assess NPV changes.
All available Landsat-8 images of blowdowns were included in Figure 6B. Compared to
PlanetScope NICFI, the OLI Landsat-8 was not able to provide a consistent ∆NPV trajectory
with recovery (Figure 6B) due to difficulties in obtaining regular monthly observations.
Although a decrease in ∆NPV over time can be seen, the details of the chronological change
are not clear. In the 15 months analyzed after the blowdown, there was an average of
12.9 available cloud-free PlanetScope NICFI images for all blowdown events, compared to
only 5.1 images from Landsat-8.
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Figure 6. Changes in ∆NPV over time for all 45 blowdowns based on (A) PlanetScope NICFI and
(B) Landsat-8.

To gain a deeper understanding of the recovery trend of permanent vegetation after
blowdown events, we analyzed PlanetScope NICFI images due to limited availability of
OLI Landsat-8 images. Upon considering all blowdown events, we observed that the mean
∆NPV curve reached around pre-blowdown level at approximately 15 months or more,
and about 17 months to fall completely into the 95% CI of the mean pre-blowdown NPV
(Figure 7). This recovery time is longer than the average of 12.3 months and 14.1 months
required for the NPV to surpass the lower bound of the 95% confidence interval (CI) around
the mean of pre-disturbance NPV. Furthermore, the lower limit of the 95% CI of the mean
curve decreased to pre-blowdown level at around 6 months, while the upper limit remained
above 0 throughout the study period, which is significantly different from the mean curve,
indicating substantial differences in the ∆NPV curves of individual blowdowns.

Remote Sens. 2023, 15, x FOR PEER REVIEW 12 of 19 
 

 

 
Figure 7. Changes in ΔNPV over time based on PlanetScope NICFI. (Blue line: mean ΔNPV values; 
grey curve: each blowdown event; green shades: 95% CI.) 

The ratio of the monthly average GV to pre-blowdown GV also showed that the GV 
fraction returned to pre-blowdown levels at approximately 15 months, similar to ΔNPV 
(Figure 8). Overall, it can be considered that these blowdowns recovered to pre-disturb-
ance levels at around 15 months. Similarly, the upper limit of the 95% CI of the average 
GV ratio curve increased to 1 at about seven months. Moreover, the average GV ratio 
would continue to grow over time after it reached 1.  

 
Figure 8. Changes in GV ratio (GV/pre-blowdown mean GV) over time based on PlanetScope NICFI. 
(Blue line: mean values; gray curve: each blowdown event; green shades: 95% CI.) There are nega-
tive GV values because the SMA did not apply non-negativity constraints. 

Figure 7. Changes in ∆NPV over time based on PlanetScope NICFI. (Blue line: mean ∆NPV values;
grey curve: each blowdown event; green shades: 95% CI.)



Remote Sens. 2023, 15, 3196 12 of 19

Although the recovery process varied among the blowdowns, we observed a general
trend of ∆NPV decreasing from fast to slow until it reaches around pre-blowdown level. We
calculated the average monthly drop starting from the largest observable ∆NPV (Figure 7).
It is important to note that the decrease in ∆NPV over time was not linear. The most
significant decrease occurred in the first two months, with a drop of 28.05% in the first
month and 7.91% in the second month. Additionally, by the fourth month, the average
∆NPV had decreased cumulatively by 52.93%, indicating that the average NPV was less
than half of the average maximum NPV during this period.

The ratio of the monthly average GV to pre-blowdown GV also showed that the GV
fraction returned to pre-blowdown levels at approximately 15 months, similar to ∆NPV
(Figure 8). Overall, it can be considered that these blowdowns recovered to pre-disturbance
levels at around 15 months. Similarly, the upper limit of the 95% CI of the average GV
ratio curve increased to 1 at about seven months. Moreover, the average GV ratio would
continue to grow over time after it reached 1.
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Figure 9 depicts the complete course of one blowdown from pre-blowdown to its
NPV return to the 95% CI of pre-blowdown mean NPV by 17 months of regeneration. The
blowdown reached its maximum NPV in the second month of visibility (October 2020),
after which it began to decline gradually. The NPV seems to decrease more quickly for the
smaller gaps, whereas the larger gaps decrease more slowly. In the last image of the panel
(February 2022), the southern part of the blowdown is no longer visible in the PlanetScope
NICFI optical imagery.
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4. Discussion

The current study employed both PlanetScope NICFI and Landsat-8 data to analyze
the trajectory of spectral recovery in vegetation after blowdown events. Our findings
indicate that determining the date of blowdown disturbance plays a key role when esti-
mating damage using traditional remote-sensing-based methodologies based on the ∆NPV.
PlanetScope NICFI data provide a more effective monitoring capability compared to Land-
sat data due to its enhanced temporal resolution, which allows it to identify the precise
date of blowdown occurrence. Furthermore, our findings also show that the apparent
effects of blowdown on vegetation as observed by the satellite imagery may fade away
after 15 months of recovery. Therefore, blowdown detection at annual intervals would
likely be required in order not to miss disturbance events, which could be achieved either
using Landsat or PlanetScope NICFI datasets. Then, determining the date of disturbance
can come on a later stage using a denser time series of PlanetScope, Sentinel-2 or Landsat
satellites to achieve a more exact date of disturbance. Moreover, our results highlight
the importance of considering a regular monthly time scale as a minimum requisite for
estimating the date of which blowdown events occurred. Using this approach, we can
more accurately estimate damage caused by blowdowns. In contrast, missing this time
window may result in underestimating the disturbance by a significant percentage. For
instance, ∆NPV decreased in 28.47% in the first month post-disturbance, and up to 50% by
four months post-disturbance. Therefore, if the change in ∆NPV is used as a way to esti-
mate wind damage, time since disturbance becomes a crucial factor that must be considered
in the analysis. This study is the first to address the spectral trajectory of blowdown events
on a regular monthly basis using the PlanetScope NICFI program. Our results demonstrate
its strong potential for accurate estimation of vegetation damage and subsequent recovery.
Further use of daily observations can refine this knowledge.

Our findings show that identifying the precise date of blowdown occurrence can have
significant impact for consistent damage estimation using the ∆NPV approach. When
detecting the disturbance of blowdown with the variation in non-photosynthetic vegetation
(∆NPV), a simple threshold method is usually used in the literature [25,51,52], that is, when
the ∆NPV of a pixel is greater than a critical value, it is considered to be turned into a
blowdown gap. For instance, Negrón-Juárez et al. [25] consider 0.06 and Marra et al. [51]
set it to 0.16. According to our results, this critical value depends on how many months of
recovery have gone by when the imagery is obtained. Therefore, in order to apply the ∆NPV
method over larger areas, one would need to know the exact date of blowdown occurrence,
or one would incur an underestimation of the actual tree mortality. For example, a linear
regression between field and remote-sensing data for imagery acquired six months after
blowdown [27] will have much lower NPV values than if the imagery was acquired right
after disturbance. The use of such an equation would have to be cautious to consider at
the same time since disturbance. Therefore, we strongly suggest that integrating field data
with remote-sensing estimates must take into account time since disturbance; otherwise,
the established relationships will not be reliable for extrapolation in other areas. While
we have only investigated spectral mixture fractions—the most traditional data used for
blowdown damage estimates—the presented results can likely be generalized to other
vegetation indices, as the spectral recovery with vegetation recovery is also reflected on
other spectral bands and vegetation indices [53].

PlanetScope NICFI data provided a more reliable identification of the maximum ∆NPV
after blowdown occurrence than Landsat-8. The reason is that the continuous cloudless
images make PlanetScope NICFI data easier to identify the true maximum change. For
instance, we had an average of 12.9 PlanetScope NICFI images available in 15 months of
analysis. In contrast, Landsat-8 had a much lower number of cloud-free images (average
5.1 in 15 months). The first available post-blowdown image of Landsat-8 was found
on average after ~1.1 months; therefore, recovery is already in place and the maximum
change can be lost. As we already presented, our analyses show that ∆NPV decreases by
28.47% in the first month post-disturbance. For example, in a study of tree mortality in
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the Amazon Forest following a squall line event in 2005 [27], the first image captured after
the blowdown occurred 6 months later, potentially underestimating tree mortality due to
rapid growth of pioneer species that covered the dead trunks and branches, decreasing
the NPV fraction [25,27,51]. According to our analyses, after six post-disturbance months,
the ∆NPV signal may have recovered an average of around 60%. Therefore, while models
relating ∆NPV to tree loss may work well if calibrated locally for specific sets of images,
they would not be easily applied to other areas if imagery is collected with a different time
since disturbance.

Additionally, the spatial resolution of the satellite sensor used for mapping blowdowns
can affect the accuracy of the estimates. In particular, we observed that Landsat-8 OLI
tends to overestimate the area of disturbance, especially when using a lower threshold
(∆NPV > 0.3) to capture more subtle changes. This overestimation may be due to the coarser
resolution of Landsat-8 data compared to PlanetScope NICFI. However, when a more
conservative or higher threshold (∆NPV > 0.5) was used, therefore mapping only the more
severely damaged areas, the area mapped by Landsat-8 and PlanetScope NICFI was similar.
It is important to consider these differences in mapping blowdowns for accurate estimation
of the extent of disturbance and its impact on ecosystem dynamics. Further research is
needed to investigate the effect of spatial resolution on other ecosystem disturbances and
to determine the appropriate threshold values for different satellite sensors.

Similarly, the use of high-spatial-and-temporal-resolution data is important for further
estimating the loss of biomass and carbon in forest ecosystems caused by wind distur-
bances. Previous studies have focused on the loss of carbon and biomass caused by
blowdowns [6,25,54]. However, using open optical imaging data such as Landsat-8 and
Sentinel-2 to identify forest disturbances may inaccurately estimate tree mortality rates
and the loss of biomass and carbon. In contrast, higher-spatial-and-temporal-resolution
data can detect smaller blowdowns and potentially obtain more usable images closer to
the most severe disturbance, enabling more accurate estimation of these damages. Against
the backdrop of global warming, windthrow density in the Amazon region may further
increase [2], which could result in more blowdown events in the future. With the goal
of carbon neutrality in mind, the increase in blowdowns will undoubtedly increase the
pressure on carbon sequestration in the Amazon Forest. Accurately measuring the loss of
biomass and carbon after blowdowns in the future could be helpful for forest conservation
policies and carbon offset programs.

For all the 45 blowdowns, we show that the spectral response of vegetation recovers
on average after about 15 months since disturbance (Figures 7 and 8). It is expected that
the small gaps recover faster than the large ones, which, although not explicitly quantified,
can be seen in the example of Figure 9. This is in line with previous studies estimating
recovery time to be around one year [25,27,29]. However, it is important to note that
even though the ∆NPV reaches pre-blowdown levels, it does not necessarily indicate full
recovery of vegetation but merely that the spectral properties of the vegetation resemble
those of pre-disturbance. The gap contours and shape of blowdowns (Figure 9) are still
visible after recovery, suggesting that the pioneer vegetation within the gap is still in the
growing stage and has not yet fully reached the level of the surrounding mature forest.
Thus, longer observation periods are needed to determine if the regenerated vegetation will
eventually reach maturity. The previous literature on gap recovery in tropical forests also
shows that small gaps fully close in less than two years and larger gaps may take longer
and up to five years to close while some may still be visible [15]. This could be due to the
larger area occupied by fallen tree bases in bigger gaps, which can hinder the growth and
regeneration of seedlings [55]. Therefore, we suggest future studies to stratify analysis of
blowdown recovery time by gap size to further quantify these effects.

Comparing Figure 6A,B, PlanetScope NICFI is more appropriate for monitoring the
post-blowdown vegetation recovery process because it produces more coherent curves
than Landsat-8. In terms of forest regeneration models, blowdowns are one of the gap
disturbances, while the land cover type does not change, and the forest will gradually regen-
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erate [56,57]. Furthermore, Figure 6A also shows that post-blowdown forest regeneration is
a complex process. NPV fraction sometimes fluctuates upwards during the gradual decline
following blowdown disturbance. This phenomenon could be attributed to delayed tree
mortality following the disturbance, as noted by Henkel et al. [58]. Possible contributing
factors to this phenomenon include further damage to native and emergent vegetation by
additional strong winds during the revegetation period or increased mortality of old trees
within the sample pixels due to the gap created by the blowdown, which exposes them
to disturbance, changes in microclimate, or other unknown reasons. In conclusion, not
all trees perish during blowdown disturbances, and determining the exact cause of tree
mortality post-blowdown remains a complex and unresolved issue [28].

However, it is important to highlight here that the vegetation recovery tracking in this
study only included the blowdowns in the early growth stages of pioneer species. It did not
follow blowdowns for longer than two years. This is because the NICFI program is only
open for monthly mosaics whose date is after September 2020, before which only 3-month
or 6-month mosaics are open. To obtain consistent monthly images, only blowdown events
occurring after September 2020 and no later than May 2022 have been selected for this
study. The PlanetScope NICFI catalog can be used in further studies which encompass
mosaics produced monthly up to this day and expected until August 2024. While we have
only investigated spectral mixture fractions—the most traditional data used for blowdown
damage estimates—the presented results can likely be generalized to other vegetation
indices, as the spectral recovery with vegetation recovery is also reflected on other spectral
bands and vegetation indices [53].

One of the main contributions of this study is the understanding of ∆NPV variability
over time with recovery after blowdown occurrences. The studies on the detection of post-
blowdown forest regeneration are limited to several discrete time points (e.g., six months,
two years) after the blowdowns, but now, we raise the point that if we want to make
consistent tree mortality estimates due to wind disturbances, a time series of observations
would be required to correct for time since disturbance. One of the next steps in this research
subject is to model ∆NPV over time for blowdowns that consider multiple influencing
factors. The observed relationships between time since disturbance and ∆NPV may be used
to calibrate models that assess forest damage due to blowdowns. Since the window for
detecting blowdowns is short, if this period is missed, then the approximate loss can also be
predicted from the model. Another point is to consider differential recovery rates in tropical
forests, which was not explored in this study due to the limited database of blowdowns.
A more comprehensive database of blowdowns needs to be gathered in order to analyze
effects of recovery due to environmental and climate gradients [59,60]. Furthermore, SAR
data have not traditionally been used for blowdown analyses in the Amazon, but due to
the relationship between SAR and vegetation structure [61], it could potentially be used to
analyze the blowdown trajectories over time and determine the exact date of disturbance.
SAR data in general are less affected by weather conditions than optical data [62], and this
factor should contribute to obtaining a reliable time series for the accurate retrieval of the
date of blowdown disturbance.

5. Conclusions

We investigated the patterns of blowdowns in tropical forests, including their poten-
tial mapping using Landsat-8 and PlanetScope satellite optical sensors, estimating their
damage and tracking post-disturbance forest regeneration and dynamics. We concluded
that the higher temporal and spatial resolution of PlanetScope NICFI imagery, compared
to Landsat-8 OLI, allowed for monitoring the effects of blowdown disturbances and veg-
etation recovery much more consistently. We highlighted the importance of detecting
the precise date of disturbance in order to consistently estimate tree mortality associated
with blowdowns. The regular monthly time scale of the NICFI product used here can be
considered as a minimum requisite for estimating the date of occurrence of the blowdown
events. This information can be further refined with daily observations of other products.
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The consistent estimation of tree mortality associated with blowdown occurrence in future
studies should require the detection of blowdown occurrence. Otherwise, damage may
be significantly underestimated, for instance, in 52.93% in only four months of delay from
disturbance to the first acquired image. Moreover, our study revealed that the NPV fraction
obtained from the PlanetScope NICFI monthly mosaics recovered to pre-disturbance levels
(95% confidence interval) after an average of 12.2 months since disturbance. We note the
recovery may vary with differences in gap size. Thus, the stratification of blowdowns by
gap size is a future research direction that deserves further investigation.

Author Contributions: Conceptualization, D.P., R.D. and P.d.C.B.; methodology, D.P., R.D. and
P.d.C.B.; software, D.P.; validation, D.P.; formal analysis, D.P. and R.D.; investigation, D.P. and
R.D.; resources, D.P., R.D. and P.d.C.B.; data curation, D.P.; writing—original draft preparation, D.P.;
writing—review and editing, R.D., L.S.G., B.N., F.W., D.M.S. and P.d.C.B.; visualization, D.P.; supervi-
sion, R.D. and P.d.C.B. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The shapefile of polygons of blowdown events in this study are
available at: https://zenodo.org/record/7036241 (accessed on 20 April 2023).

Acknowledgments: The authors thank the Department of Geography, School of Environment Educa-
tion and Development (SEED) at the University of Manchester (UK) for the support on this research.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Negrón-Juárez, R.I.; Jenkins, H.S.; Raupp, C.F.; Riley, W.J.; Kueppers, L.M.; Magnabosco Marra, D.; Ribeiro, G.H.; Monteiro,

M.T.F.; Candido, L.A.; Chambers, J.Q. Windthrow Variability in Central Amazonia. Atmosphere 2017, 8, 28. [CrossRef]
2. Feng, Y.; Negrón-Juárez, R.I.; Romps, D.M.; Chambers, J.Q. Amazon Windthrow Disturbances Are Likely to Increase with Storm

Frequency under Global Warming. Nat. Commun. 2023, 14, 101. [CrossRef] [PubMed]
3. Tyukavina, A.; Hansen, M.C.; Potapov, P.V.; Stehman, S.V.; Smith-Rodriguez, K.; Okpa, C.; Aguilar, R. Types and Rates of Forest

Disturbance in Brazilian Legal Amazon, 2000–2013. Sci. Adv. 2017, 3, e1601047. [CrossRef] [PubMed]
4. Gora, E.M.; Bitzer, P.M.; Burchfield, J.C.; Gutierrez, C.; Yanoviak, S.P. The Contributions of Lightning to Biomass Turnover, Gap

Formation and Plant Mortality in a Tropical Forest; John Wiley & Sons: Hoboken, NJ, USA, 2021; ISBN 0012-9658.
5. Chambers, J.Q.; Negron-Juarez, R.I.; Marra, D.M.; Di Vittorio, A.; Tews, J.; Roberts, D.; Ribeiro, G.H.; Trumbore, S.E.; Higuchi, N.

The Steady-State Mosaic of Disturbance and Succession across an Old-Growth Central Amazon Forest Landscape. Proc. Natl.
Acad. Sci. USA 2013, 110, 3949–3954. [CrossRef] [PubMed]

6. Espírito-Santo, F.D.; Gloor, M.; Keller, M.; Malhi, Y.; Saatchi, S.; Nelson, B.; Junior, R.C.O.; Pereira, C.; Lloyd, J.; Frolking, S. Size
and Frequency of Natural Forest Disturbances and the Amazon Forest Carbon Balance. Nat. Commun. 2014, 5, 1–6. [CrossRef]

7. Peterson, C.J.; Ribeiro, G.H.P.d.M.; Negrón-Juárez, R.; Marra, D.M.; Chambers, J.Q.; Higuchi, N.; Lima, A.; Cannon, J.B. Critical
Wind Speeds Suggest Wind Could Be an Important Disturbance Agent in Amazonian Forests. For. Int. J. For. Res. 2019, 92, 444–459.
[CrossRef]

8. Esquivel-Muelbert, A.; Phillips, O.L.; Brienen, R.J.; Fauset, S.; Sullivan, M.J.; Baker, T.R.; Chao, K.-J.; Feldpausch, T.R.; Gloor, E.;
Higuchi, N. Tree Mode of Death and Mortality Risk Factors across Amazon Forests. Nat. Commun. 2020, 11, 5515. [CrossRef]
[PubMed]

9. Lindenmayer, D.; McCarthy, M.A. Congruence between Natural and Human Forest Disturbance: A Case Study from Australian
Montane Ash Forests. For. Ecol. Manag. 2002, 155, 319–335. [CrossRef]

10. Kimmins, J.P. Forest Ecology. In Fishes and Forestry: Worldwide Watershed Interactions and Management; Wiley-Blackwell: Hoboken,
NJ, USA, 2004; pp. 17–43.

11. Feng, Y.; Negrón-Juárez, R.I.; Chambers, J.Q. Remote Sensing and Statistical Analysis of the Effects of Hurricane María on the
Forests of Puerto Rico. Remote Sens. Environ. 2020, 247, 111940. [CrossRef]

12. Urquiza Muñoz, J.D.; Magnabosco Marra, D.; Negrón-Juarez, R.I.; Tello-Espinoza, R.; Alegría-Muñoz, W.; Pacheco-Gómez, T.;
Rifai, S.W.; Chambers, J.Q.; Jenkins, H.S.; Brenning, A. Recovery of Forest Structure Following Large-Scale Windthrows in the
Northwestern Amazon. Forests 2021, 12, 667. [CrossRef]

13. Gorgens, E.B.; Keller, M.; Jackwon, T.D.; Marra, D.M.; Reis, C.R.; Almeida, D.R.A.; Coomes, D.; Ometto, J.P. Tracking Canopy Gap
Dynamics across Four Sites in the Brazilian Amazon. bioRxiv 2022, preprint. [CrossRef]

14. Chambers, J.Q.; Asner, G.P.; Morton, D.C.; Anderson, L.O.; Saatchi, S.S.; Espírito-Santo, F.D.; Palace, M.; Souza, C., Jr. Regional
Ecosystem Structure and Function: Ecological Insights from Remote Sensing of Tropical Forests. Trends Ecol. Evol. 2007,
22, 414–423. [CrossRef] [PubMed]

https://zenodo.org/record/7036241
https://doi.org/10.3390/atmos8020028
https://doi.org/10.1038/s41467-022-35570-1
https://www.ncbi.nlm.nih.gov/pubmed/36609508
https://doi.org/10.1126/sciadv.1601047
https://www.ncbi.nlm.nih.gov/pubmed/28439536
https://doi.org/10.1073/pnas.1202894110
https://www.ncbi.nlm.nih.gov/pubmed/23359707
https://doi.org/10.1038/ncomms4434
https://doi.org/10.1093/forestry/cpz025
https://doi.org/10.1038/s41467-020-18996-3
https://www.ncbi.nlm.nih.gov/pubmed/33168823
https://doi.org/10.1016/S0378-1127(01)00569-2
https://doi.org/10.1016/j.rse.2020.111940
https://doi.org/10.3390/f12060667
https://doi.org/10.1101/2022.09.03.506473
https://doi.org/10.1016/j.tree.2007.05.001
https://www.ncbi.nlm.nih.gov/pubmed/17493704


Remote Sens. 2023, 15, 3196 18 of 19

15. Dalagnol, R.; Phillips, O.L.; Gloor, E.; Galvão, L.S.; Wagner, F.H.; Locks, C.J.; Aragão, L.E. Quantifying Canopy Tree Loss and Gap
Recovery in Tropical Forests under Low-Intensity Logging Using VHR Satellite Imagery and Airborne LiDAR. Remote Sens. 2019,
11, 817. [CrossRef]

16. Dalagnol, R.; Wagner, F.H.; Galvão, L.S.; Streher, A.S.; Phillips, O.L.; Gloor, E.; Pugh, T.A.; Ometto, J.P.; Aragão, L.E. Large-Scale
Variations in the Dynamics of Amazon Forest Canopy Gaps from Airborne Lidar Data and Opportunities for Tree Mortality
Estimates. Sci. Rep. 2021, 11, 1388. [CrossRef] [PubMed]

17. Reis, C.R.; Jackson, T.D.; Gorgens, E.B.; Dalagnol, R.; Jucker, T.; Nunes, M.H.; Ometto, J.P.; Aragão, L.E.; Rodriguez, L.C.E.;
Coomes, D.A. Forest Disturbance and Growth Processes Are Reflected in the Geographical Distribution of Large Canopy Gaps
across the Brazilian Amazon. J. Ecol. 2022, 110, 2971–2983. [CrossRef]

18. Jucker, T. Deciphering the Fingerprint of Disturbance on the Three-dimensional Structure of the World’s Forests. N. Phytol. 2022,
233, 612–617. [CrossRef] [PubMed]

19. Simonetti, A.; Araujo, R.F.; Celes, C.H.S.; da Silva e Silva, F.R.; dos Santos, J.; Higuchi, N.; Trumbore, S.; Marra, D.M. Gap
Geometry, Seasonality and Associated Losses of Biomass–Combining UAV Imagery and Field Data from a Central Amazon
Forest. Biogeosciences Discuss. 2023. [CrossRef]

20. McConnell, T.J. A Guide to Conducting Aerial Sketchmapping Surveys; US Department of Agriculture, Forest Service: Washington,
DC, USA, 2000.

21. Stone, C.; Carnegie, A.; Melville, G.; Smith, D.; Nagel, M. Aerial Mapping Canopy Damage by the Aphid Essigella Californica in a
Pinus Radiata Plantation in Southern New South Wales: What Are the Challenges? Aust. For. 2013, 76, 101–109. [CrossRef]

22. Stone, C.; Mohammed, C. Application of Remote Sensing Technologies for Assessing Planted Forests Damaged by Insect Pests
and Fungal Pathogens: A Review. Curr. For. Rep. 2017, 3, 75–92. [CrossRef]

23. Nelson, B.W.; Kapos, V.; Adams, J.B.; Oliveira, W.J.; Braun, O.P. Forest Disturbance by Large Blowdowns in the Brazilian Amazon.
Ecology 1994, 75, 853–858. [CrossRef]

24. Chambers, J.Q.; Negrón-Juárez, R.I.; Hurtt, G.C.; Marra, D.M.; Higuchi, N. Lack of Intermediate-scale Disturbance Data Prevents
Robust Extrapolation of Plot-level Tree Mortality Rates for Old-growth Tropical Forests. Ecol. Lett. 2009, 12, E22–E25. [CrossRef]

25. Negrón-Juárez, R.I.; Chambers, J.Q.; Marra, D.M.; Ribeiro, G.H.; Rifai, S.W.; Higuchi, N.; Roberts, D. Detection of Subpixel Treefall
Gaps with Landsat Imagery in Central Amazon Forests. Remote Sens. Environ. 2011, 115, 3322–3328. [CrossRef]

26. Chambers, J.Q.; Fisher, J.I.; Zeng, H.; Chapman, E.L.; Baker, D.B.; Hurtt, G.C. Hurricane Katrina’s Carbon Footprint on US Gulf
Coast Forests. Science 2007, 318, 1107. [CrossRef] [PubMed]

27. Negrón-Juárez, R.I.; Chambers, J.Q.; Guimaraes, G.; Zeng, H.; Raupp, C.F.; Marra, D.M.; Ribeiro, G.H.; Saatchi, S.S.; Nelson, B.W.;
Higuchi, N. Widespread Amazon Forest Tree Mortality from a Single Cross-basin Squall Line Event. Geophys. Res. Lett. 2010,
37, L16701. [CrossRef]

28. Rifai, S.W.; Urquiza Muñoz, J.D.; Negrón-Juárez, R.I.; Ramírez Arévalo, F.R.; Tello-Espinoza, R.; Vanderwel, M.C.; Lichstein, J.W.;
Chambers, J.Q.; Bohlman, S.A. Landscape-scale Consequences of Differential Tree Mortality from Catastrophic Wind Disturbance
in the Amazon. Ecol. Appl. 2016, 26, 2225–2237. [CrossRef]

29. Chambers, J.Q.; Robertson, A.L.; Carneiro, V.M.; Lima, A.J.; Smith, M.-L.; Plourde, L.C.; Higuchi, N. Hyperspectral Remote
Detection of Niche Partitioning among Canopy Trees Driven by Blowdown Gap Disturbances in the Central Amazon. Oecologia
2009, 160, 107–117. [CrossRef] [PubMed]

30. Weishampel, J.F.; Drake, J.B.; Cooper, A.; Blair, J.B.; Hofton, M. Forest Canopy Recovery from the 1938 Hurricane and Subsequent
Salvage Damage Measured with Airborne LiDAR. Remote Sens. Environ. 2007, 109, 142–153. [CrossRef]

31. Wulder, M.A.; White, J.C.; Gillis, M.D.; Walsworth, N.; Hansen, M.C.; Potapov, P. Multiscale Satellite and Spatial Information
and Analysis Framework in Support of a Large-Area Forest Monitoring and Inventory Update. Environ. Monit. Assess 2010,
170, 417–433. [CrossRef]

32. Cushman, K.C.; Burley, J.T.; Imbach, B.; Saatchi, S.S.; Silva, C.E.; Vargas, O.; Zgraggen, C.; Kellner, J.R. Impact of a Tropical Forest
Blowdown on Aboveground Carbon Balance. Sci. Rep. 2021, 11, 11279. [CrossRef]

33. Emmert, L.; Negrón-Juárez, R.I.; Chambers, J.Q.; Santos, J.D.; Lima, A.J.N.; Trumbore, S.; Marra, D.M. Sensitivity of Optical
Satellites to Estimate Windthrow Tree-Mortality in a Central Amazon Forest. Preprints 2023, 2023051631. [CrossRef]

34. Schwarz, M.; Steinmeier, C.; Holecz, F.; Stebler, O.; Wagner, H. Detection of Windthrow in Mountainous Regions with Different
Remote Sensing Data and Classification Methods. Scand. J. For. Res. 2003, 18, 525–536. [CrossRef]

35. Negrón-Juárez, R.I.; Holm, J.A.; Faybishenko, B.; Magnabosco-Marra, D.; Fisher, R.A.; Shuman, J.K.; de Araujo, A.C.; Riley, W.J.;
Chambers, J.Q. Landsat Near-Infrared (NIR) Band and ELM-FATES Sensitivity to Forest Disturbances and Regrowth in the
Central Amazon. Biogeosciences 2020, 17, 6185–6205. [CrossRef]

36. NICFI Securing Tropical Forests for the Future. 2023. Available online: https://www.nicfi.no/ (accessed on 19 April 2023).
37. Planet NICFI DATA Program User Guide. 2022. Available online: https://assets.planet.com/docs/NICFI_UserGuidesFAQ.pdf

(accessed on 29 August 2022).
38. Espírito-Santo, F.D.; Keller, M.; Braswell, B.; Nelson, B.W.; Frolking, S.; Vicente, G. Storm Intensity and Old-growth Forest

Disturbances in the Amazon Region. Geophys. Res. Lett. 2010, 37, L11403. [CrossRef]
39. Araujo, R.F.; Nelson, B.W.; Celes, C.H.S.; Chambers, J.Q. Regional Distribution of Large Blowdown Patches across Amazonia in

2005 Caused by a Single Convective Squall Line. Geophys. Res. Lett. 2017, 44, 7793–7798. [CrossRef]

https://doi.org/10.3390/rs11070817
https://doi.org/10.1038/s41598-020-80809-w
https://www.ncbi.nlm.nih.gov/pubmed/33446809
https://doi.org/10.1111/1365-2745.14003
https://doi.org/10.1111/nph.17729
https://www.ncbi.nlm.nih.gov/pubmed/34506641
https://doi.org/10.5194/bg-2022-251
https://doi.org/10.1080/00049158.2013.799055
https://doi.org/10.1007/s40725-017-0056-1
https://doi.org/10.2307/1941742
https://doi.org/10.1111/j.1461-0248.2009.01398.x
https://doi.org/10.1016/j.rse.2011.07.015
https://doi.org/10.1126/science.1148913
https://www.ncbi.nlm.nih.gov/pubmed/18006740
https://doi.org/10.1029/2010GL043733
https://doi.org/10.1002/eap.1368
https://doi.org/10.1007/s00442-008-1274-9
https://www.ncbi.nlm.nih.gov/pubmed/19194726
https://doi.org/10.1016/j.rse.2006.12.016
https://doi.org/10.1007/s10661-009-1243-8
https://doi.org/10.1038/s41598-021-90576-x
https://doi.org/10.20944/preprints202305.1631.v1
https://doi.org/10.1080/02827580310018023
https://doi.org/10.5194/bg-17-6185-2020
https://www.nicfi.no/
https://assets.planet.com/docs/NICFI_UserGuidesFAQ.pdf
https://doi.org/10.1029/2010GL043146
https://doi.org/10.1002/2017GL073564


Remote Sens. 2023, 15, 3196 19 of 19

40. Negrón-Juárez, R.I.; Holm, J.A.; Marra, D.M.; Rifai, S.W.; Riley, W.J.; Chambers, J.Q.; Koven, C.D.; Knox, R.G.; McGroddy, M.E.;
Di Vittorio, A.V. Vulnerability of Amazon Forests to Storm-Driven Tree Mortality. Environ. Res. Lett. 2018, 13, 054021. [CrossRef]

41. de Assis Diniz, F.; Ramos, A.M.; Rebello, E.R.G. Brazilian Climate Normals for 1981–2010. Pesqui. Agropecuária Bras. 2018,
53, 131–143. [CrossRef]

42. Vancutsem, C.; Achard, F.; Pekel, J.-F.; Vieilledent, G.; Carboni, S.; Simonetti, D.; Gallego, J.; Aragao, L.E.; Nasi, R. Long-Term
(1990–2019) Monitoring of Forest Cover Changes in the Humid Tropics. Sci. Adv. 2021, 7, eabe1603. [CrossRef]

43. USGS Landsat Collection 2 Surface Reflectance. 2022. Available online: https://www.usgs.gov/landsat-missions/landsat-
collection-2-surface-reflectance (accessed on 18 August 2022).

44. Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial
Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [CrossRef]

45. Roberts, D.A.; Smith, M.O.; Adams, J.B. Green Vegetation, Nonphotosynthetic Vegetation, and Soils in AVIRIS Data. Remote Sens.
Environ. 1993, 44, 255–269. [CrossRef]

46. Bangira, T.; Alfieri, S.M.; Menenti, M.; Van Niekerk, A.; Vekerdy, Z. A Spectral Unmixing Method with Ensemble Estimation of
Endmembers: Application to Flood Mapping in the Caprivi Floodplain. Remote Sens. 2017, 9, 1013. [CrossRef]

47. Roberts, D.A.; Gardner, M.; Church, R.; Ustin, S.; Scheer, G.; Green, R.O. Mapping Chaparral in the Santa Monica Mountains
Using Multiple Endmember Spectral Mixture Models. Remote Sens. Environ. 1998, 65, 267–279.

48. Combe, J.-P.; Le Mouélic, S.; Sotin, C.; Gendrin, A.; Mustard, J.F.; Le Deit, L.; Launeau, P.; Bibring, J.-P.; Gondet, B.; Langevin, Y.
Analysis of OMEGA/Mars Express Data Hyperspectral Data Using a Multiple-Endmember Linear Spectral Unmixing Model
(MELSUM): Methodology and First Results. Planet. Space Sci. 2008, 56, 951–975. [CrossRef]

49. Yang, J.; Weisberg, P.J.; Bristow, N.A. Landsat Remote Sensing Approaches for Monitoring Long-Term Tree Cover Dynamics in
Semi-Arid Woodlands: Comparison of Vegetation Indices and Spectral Mixture Analysis. Remote Sens. Environ. 2012, 119, 62–71.
[CrossRef]

50. ESRI, A.P. 2.8. 3; Environmental Systems Research Institute. 2021. Available online: https://www.esri.com/content/dam/
esrisites/en-us/media/legal/vpats/arcgis-pro-28-vpat.pdf (accessed on 20 April 2023).

51. Marra, D.M.; Chambers, J.Q.; Higuchi, N.; Trumbore, S.E.; Ribeiro, G.H.; Dos Santos, J.; Negrón-Juárez, R.I.; Reu, B.; Wirth, C.
Large-Scale Wind Disturbances Promote Tree Diversity in a Central Amazon Forest. PLoS ONE 2014, 9, e103711. [CrossRef]
[PubMed]

52. Di Vittorio, A.V.; Negrón-Juárez, R.I.; Higuchi, N.; Chambers, J.Q. Tropical Forest Carbon Balance: Effects of Field-and Satellite-
Based Mortality Regimes on the Dynamics and the Spatial Structure of Central Amazon Forest Biomass. Environ. Res. Lett. 2014,
9, 034010. [CrossRef]

53. Galvão, L.S.; dos Santos, J.R.; da Silva, R.D.; da Silva, C.V.; Moura, Y.M.; Breunig, F.M. Following a Site-Specific Secondary
Succession in the Amazon Using the Landsat CDR Product and Field Inventory Data. Int. J. Remote Sens. 2015, 36, 574–596.
[CrossRef]

54. Wohl, E. Redistribution of Forest Carbon Caused by Patch Blowdowns in Subalpine Forests of the Southern Rocky Mountains,
USA. Glob. Biogeochem. Cycles 2013, 27, 1205–1213. [CrossRef]

55. Sapkota, I.P.; Odén, P.C. Gap Characteristics and Their Effects on Regeneration, Dominance and Early Growth of Woody Species.
J. Plant Ecol. 2009, 2, 21–29. [CrossRef]

56. Peterson, C.J.; Pickett, S.T. Forest Reorganization: A Case Study in an Old-growth Forest Catastrophic Blowdown. Ecology 1995,
76, 763–774. [CrossRef]

57. Yamamoto, S.-I. Forest Gap Dynamics and Tree Regeneration. J. For. Res. 2000, 5, 223–229. [CrossRef]
58. Henkel, T.K.; Chambers, J.Q.; Baker, D.A. Delayed Tree Mortality and Chinese Tallow (Triadica Sebifera) Population Explosion in a

Louisiana Bottomland Hardwood Forest Following Hurricane Katrina. For. Ecol. Manag. 2016, 378, 222–232. [CrossRef]
59. Heinrich, V.H.; Dalagnol, R.; Cassol, H.L.; Rosan, T.M.; de Almeida, C.T.; Silva Junior, C.H.; Campanharo, W.A.; House, J.I.;

Sitch, S.; Hales, T.C. Large Carbon Sink Potential of Secondary Forests in the Brazilian Amazon to Mitigate Climate Change. Nat.
Commun. 2021, 12, 1785. [CrossRef] [PubMed]

60. Heinrich, V.H.A.; Vancutsem, C.; Dalagnol, R.; Rosan, T.M.; Fawcett, D.; Silva-Junior, C.H.L.; Cassol, H.L.G.; Achard, F.; Jucker, T.;
Silva, C.A.; et al. The Carbon Sink of Secondary and Degraded Humid Tropical Forests. Nature 2023, 615, 436–442. [CrossRef]
[PubMed]

61. Bispo, P.D.C.; Pardini, M.; Papathanassiou, K.P.; Kugler, F.; Balzter, H.; Rains, D.; dos Santos, J.R.; Rizaev, I.G.; Tansey, K.; dos
Santos, M.N.; et al. Mapping Forest Successional Stages in the Brazilian Amazon Using Forest Heights Derived from TanDEM-X
SAR Interferometry. Remote Sens. Environ. 2019, 232, 111194. [CrossRef]

62. Vaglio Laurin, G.; Liesenberg, V.; Chen, Q.; Guerriero, L.; Del Frate, F.; Bartolini, A.; Coomes, D.; Wilebore, B.; Lindsell, J.;
Valentini, R. Optical and SAR Sensor Synergies for Forest and Land Cover Mapping in a Tropical Site in West Africa. Int. J. Appl.
Earth Obs. Geoinf. 2013, 21, 7–16. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1088/1748-9326/aabe9f
https://doi.org/10.1590/s0100-204x2018000200001
https://doi.org/10.1126/sciadv.abe1603
https://www.usgs.gov/landsat-missions/landsat-collection-2-surface-reflectance
https://www.usgs.gov/landsat-missions/landsat-collection-2-surface-reflectance
https://doi.org/10.1016/j.rse.2017.06.031
https://doi.org/10.1016/0034-4257(93)90020-X
https://doi.org/10.3390/rs9101013
https://doi.org/10.1016/j.pss.2007.12.007
https://doi.org/10.1016/j.rse.2011.12.004
https://www.esri.com/content/dam/esrisites/en-us/media/legal/vpats/arcgis-pro-28-vpat.pdf
https://www.esri.com/content/dam/esrisites/en-us/media/legal/vpats/arcgis-pro-28-vpat.pdf
https://doi.org/10.1371/journal.pone.0103711
https://www.ncbi.nlm.nih.gov/pubmed/25099118
https://doi.org/10.1088/1748-9326/9/3/034010
https://doi.org/10.1080/01431161.2014.999879
https://doi.org/10.1002/2013GB004633
https://doi.org/10.1093/jpe/rtp004
https://doi.org/10.2307/1939342
https://doi.org/10.1007/BF02767114
https://doi.org/10.1016/j.foreco.2016.07.036
https://doi.org/10.1038/s41467-021-22050-1
https://www.ncbi.nlm.nih.gov/pubmed/33741981
https://doi.org/10.1038/s41586-022-05679-w
https://www.ncbi.nlm.nih.gov/pubmed/36922608
https://doi.org/10.1016/j.rse.2019.05.013
https://doi.org/10.1016/j.jag.2012.08.002

	Introduction 
	Materials and Methods 
	Study Sites 
	Landsat-8 and PlanetScope NICFI Satellite Data 
	Spectral Mixture Analysis (SMA) 
	Amazon Blowdown Event Mapping and Data Collection 
	Analysis 

	Results 
	OLI Landsat-8 and PlanetScope NICFI Images of Blowdown Disturbance 
	Changes in Endmember Fractions after Blowdown 
	Post-Blowdown Vegetation Regeneration Process 

	Discussion 
	Conclusions 
	References

