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ABSTRACT

A landslide is a natural phenomenon that becomes a disaster when occurring in urban
areas. Usually triggered by heavy rainfall, the landslides can cause economic damage,
social impact, and fatalities. In Brazil, the region called Serra do Mar is one of the most
affected areas, where several landslides are recorded every year. Therefore, the
identification, analysis, and monitoring of landslide-prone areas are essential to avoid
disasters. This doctoral thesis identifies the landslide-prone areas in the Guaruja
municipality, performs a temporal analysis of urban sprawl from 1990-2021, correlates it
with landslide occurrences, and develops a landslide early warning system, to avoid
disasters. The temporal analysis was performed using satellite images from the Landsat
series and an orthophoto for image classification of the study area. To identify landslide-
prone areas, two mathematical models were tested: TRIGRS (Transient Rainfall
Infiltration and Grid-based Regional Slope-Stability Model), and SINMAP (Stability
Index Mapping). The results were validated using a landslide inventory, prepared from
satellite images and Guarujé Civil Defense data. The susceptibility map developed by IPT
(Technological Research Institute) supports the validation. The performance of both
models was compared using statistical indexes and the TRIGRS model performed the
best. Therefore, an early warning system was developed in Python using TRIGRS to
model the landslide-prone areas. The system automatically acquired weather forecasts
from the Climatempo website, calculates the slope stability, and if necessary, sends an
alert. The results of this study are a landslide susceptibility map for the Vila Baiana
neighborhood in Guaruja municipality, the correlation between rainfall events, landslides,
and urban sprawl, and an early warning system using TRIGRS.

Keywords: Landslides. TRIGRS. Early warning system.
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ANALISE COMPARATIVA ENTRE OS MODELOS TRIGRS E SINMAP PARA
A DETERMINACAO DE AREAS DE DESLIZAMENTO: SUBSIDIOS PARA O
DESENVOLVIMENTO DE UM SISTEMA DE PREVISAO E ALERTA

RESUMO

Deslizamentos de terra sdo um fendmeno natural, que se tornam desastres quando
ocorrem em areas urbanas. Geralmente desencadeados por chuvas intensas, 0s
deslizamentos de terra podem causar prejuizos econémicos, sociais e fatalidades. No
Brasil, a regido chamada de Serra do Mar é uma das areas mais atingidas, registrando
diversos deslizamentos todos os anos. Desta forma, a identificacdo, analise e
monitoramento das areas suscetiveis a deslizamentos de terra sdo essenciais para evitar
desastres. Esta tese de doutorado identifica as areas suscetiveis & deslizamentos de terra
no municipio do Guaruj4, realiza uma anélise temporal da expansao urbana de 1990-2021,
relacionando-a com as ocorréncias de deslizamentos, e desenvolve um sistema de
previsdo e alerta de deslizamentos, a fim de evitar desastres. Uma analise temporal foi
realizada utilizando imagens de satélite da série Landsat, e uma ortofoto para classificar
a area de estudo. A identificacdo das areas suscetiveis a deslizamento de terra foram
realizadas utilizando-se dois modelos matematicos: TRIGRS (Transient Rainfall
Infiltration and Grid-based Regional Slope-Stability Model) e SINMAP (Stability Index
Mapping). Os resultados foram validados a partir de um inventario de cicatriz de
deslizamentos, preparado a partir de imagens de satélite e dados da Defesa Civil do
Guaruja. O mapa de suscetibilidade desenvolvido pelo IPT (Instituto de Pesquisas
Tecnologicas) auxilia na validacdo dos resultados. Comparou-se a performance de ambos
0os modelos usando indices estatisticos, e 0 modelo TRIGRS obteve os melhores
resultados. Diante disso, um Sistema de previsao e alerta foi desenvolvido em Python,
utilizando-se do modelo TRIGRS para a identificacdo das areas suscetiveis a
deslizamento de terra. O sistema automaticamente adquire dados de previsdo do tempo,
a partir do site do Climatempo, calcula a estabilidade das encostas e, se necessario, envia
um alerta. Como resultado desse estudo, gerou-se um mapa da suscetibilidade a
deslizamentos de terra, no bairro da Vila Baiana localizada no municipio do Guaruja, a
correlacdo entre eventos de chuva, deslizamentos e expansdo urbana, e um sistema de
previsdo e alerta usando o modelo TRIGRS.

Palavras-chave: Deslizamento de terra. TRIGRS. Sistema de previséo e alerta.
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1. INTRODUCTION

The number of registered disasters has been increasing worldwide, especially since the
1950s (MARCELINO et al., 2006). Some authors, such as Nicholls (2001) and Pielke
(2005; 2006), associate the increase in disasters with a higher vulnerability of society.
However, for Houghton (2003), there is a correlation between disasters and global climate

change.

In Brazil, landslides are a natural phenomenon, usually triggered by high precipitation
rates. This phenomenon can be called “deslizamento” (landslide) or “escorregamento”
(slip) in Portuguese. Both terms are used to describe a surface rupture with the

displacement of soil and rocks. Despite that, this study will use the term landslide.

When landslides happen in urban areas, they become disasters due to economic damage,
social impact, and fatalities. As an example, in January 2011, several landslides occurred
in the mountainous region of Rio de Janeiro State, killing 947 people, leaving more than
300 missing, and thousands homeless. It was considered one of the worst disasters in the
country (CEMADEN, 2016).

Most landslides registered in Brazil occurred during the rainy season, corresponding to
the summer season (December through March). From 1991 to 2019, 1146 landslides were
registered, and 69% of them happened in the southeast region of the country, as presented
in Figure 1.1. Furthermore, Figure 1.2 shows the distribution of how landslides affected
the population (CENAD, 2013; CEPED-UFSC, 2013; 2020).

Analyzing Figure 1.2, one observes that more than 1.5 million people were affected
somehow by landslides. These people account for the homeless, injured (hurt, disease),
or missing. Therefore, identifying, analyzing, and monitoring landslide-prone areas is
critical. When preventive actions are not applied, there is an increase in the intensity,
magnitude, and frequency of hazard impacts (KOBIYAMA et al., 2006). Moreover, the
development of a warning system with different risk levels also helps avoid and minimize

the disaster impact.

In 1987-1988, several landslides occurred in a region called "Serra do Mar™, in Sdo Paulo
State. Consequently, the Civil Defense Preventive Plan — PPDC (in Portuguese: Plano

Preventivo da Defesa Civil), was created to identify, evaluate, and monitor the susceptible



geological areas, mainly related to landslides. One of the essential actions of PPDC is the
preventive removal of people living in risk areas during rainfall events (MACEDO et al.,
2004; MENDES; FILHO, 2015).

Figure 1.1. Landslides documented in Brazil from 1991 to 2019.
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Figure 1.2. The social impact caused by landslides in the southeastern region of Brazil, from

1991 to 2019.
10.000.000 r
1.547.848 1.441.932
1.000.000 f
100.000 | 20310 62185
10.000 |
1.815
791
563
1.000 | 357
100
10
Total Deads Disease Hurts Missing Homeless Preventive Others
affected removal

Source: Adapted from CEPED-USFC (2020).



With the current climate variability, there is a tendency to increase extreme weather
conditions, either with long periods of drought or heavy and long-term rainfall
(HOUGHTON, 2003). According to Brollo and Ferreira (2016), in Sdo Paulo State from
2000 to 2015, 10,893 geodynamic phenomena were registered, affecting 971,849 people
and killing 534. Among these phenomena, 1,430 had geological nature (landslides, debris
flow, rock displacement), 6,064 hydrological characteristics (flooding, flash flooding),
2,444 were meteorological (rainfall, storms, hailstones), and 955 related to climate
(drought, frost).

Heavy rainfall might trigger landslides; however, the area's susceptibility is strongly
related to its geological and geomorphological characteristics. For that reason, it is crucial
to study how climate and soil’s geotechnical properties interact to understand the hydro-

mechanical aspects responsible for triggering landslides.

The identification of landslide-prone areas can be performed using statistical methods
(CARRARA et al., 1991; BAI et al., 2009; CERVI et al., 2010; LI et al., 2012) and
physically-based models such as the Shallow Slope Stability Model (SHALSTAB)
(MONTGOMERY; DIETRICH, 1994; DIETRICH, W. E.; MONTGOMERY, 1998;
DIETRICH; et. al., 2011), Stability Index Mapping (SINMAP) (PACK et al. 1998),
Transient Rainfall Infiltration and Grid-based Regional Slope Stability Model (TRIGRS)
(BAUM et al., 2008), physically-based Slope Stability Model (dISLAM) (WU; SIDLE,
1995), SLOPE/W and SEEP/W (GEO-SLOPE, 2016).

The Shalstab - Shallow Landsliding Stability Model, developed by Dietrich and
Montgomery (1998), is a deterministic mathematical model to identify landslide-prone
areas. Its formula is based on the infinity slope stability model, defined by the Mohr-
Coulomb Law, and on the steady-state hydrological model, developed by O’Loughlin
(1986). Shalstab calculates the critical threshold of rainfall for the occurrence of a surface
rupture and, consequently, a landslide (MONTGOMERY; DIETRICH, 1994; DIETRICH
AND MONTGOMERY, 1998; VIEIRA; RAMOS, 2015; KONIG et al., 2019).

The Sinmap — Stability Index Mapping, developed by Pack et al. (1998), is a probabilistic
model based on the steady-state hydrologic concepts and the infinite slope stability

model, “that balances the destabilizing components of gravity and the restoring



components of friction and cohesion on a failure plane parallel to the ground surface”

(PACK etal., 1998, p. 1).

Baum et al. (2008) developed the mathematical model TRIGRS (Transient Rainfall
Infiltration and Grid-based Regional Slope Stability Model) to calculate the variations of
the Factor of Safety (FS) due to changes in the transient pore-pressure and soil moisture

during a rainfall infiltration.

The dSLAM software is a distributed, physically based model that combines the
mathematical formulation of an infinite slope model with a groundwater kinematic model.
It uses the continuous changes in vegetation to analyze landslides and the variation of the
Factor of Safety (FS) on steep slope forests (WU; SIDLE, 1995; 1997).

The GeoSlope software, developed by the Geo-Slope company in Canada, is a
mathematical model based on the principle of limit equilibrium to analyze the
deformation and stability of geotechnical structures. It has two modules: Seep/W and
Slope/W. The Seep/W module uses numerical analysis to calculate the water infiltration
process in the soil, for both saturated and unsaturated soil conditions (GEO-SLOPE,
2012, 2016; GHOSH, 2012; MENDES et al., 2018a). The results from Seep/W are used
in the Slope/W module to analyze the terrain’s stability and calculate the Factor of Safety
(FS). (GEO-SLOPE, 2016; MENDES et al., 2018a).

This doctoral research project is committed to use the TRIGRS model to identify
landslide-prone areas based on the successful results reported in the literature (CHIEN-
YUAN et al., 2005; GODT et al., 2008; SORBINO et al., 2010; LIAO et al., 2011; PARK
et al., 2013; ZIZIOLI et al., 2013). The expected outcome is a landslide-prone map for
the Vila Baiana neighborhood in Guaruja municipality, and the evaluation of TRIGRS as

a tool for early warning systems.

This project is based on the hypothesis that TRIGRS has a higher degree of accuracy in
identifying landslide-prone areas. And it can be used as an early warning system,
providing alerts based on the soil moisture and variation from the slope Factor of Safety.
Moreover, a temporal analysis of urban sprawl helps to understand if anthropic changes

in slope areas induced landslides.



2. OBJECTIVES

The main objective of this work is the development of an early warning system using the

mathematical model TRIGRS to identify landslide-prone areas in the Guaruja

municipality.

2.1. Specific objectives

Perform a temporal analysis of urban sprawl, using satellite images and
machine learning techniques, and correlate it with landslide occurrences.
Analyze the correlation between rainfall events and landslides.

Investigate the topographic and lithological aspects of the Guaruja
municipality.

Comparative evaluation of the TRIGRS and SINMAP models for assessing
landslide-prone areas

Development of an early warning system that combines weather forecast and
TRIGRS predictive analysis to determine risk levels, and issue alerts based on

the variation of the Factor of Safety.



3. THEORETICAL FRAMEWORK

3.1 Definitions

Natural phenomena, which occur worldwide, might become a disaster when it affects a
group of people, disrupting their everyday life (KOBIYAMA et al., 2006; KONIG et al.,
2018). Communities that live in areas affected by natural hazards are vulnerable to their
consequences, and these people are at risk due to financial damage and losses of life.
There is a correlation among disaster, hazard, risk, susceptibility, vulnerability, and

resilience; thus, some definitions are necessary.

The hazard is related to the natural phenomena recurrence, affecting different areas
individually or combined (one or more natural phenomena happening simultaneously, in
the same place). It is common for a hazard to cause problems in the affected region. The
risk happens due to a combination of hazard and vulnerability. It is related to social
impacts, economic and structural damages. Risk levels (high or low risks) agree with
vulnerability (e.g., severe hazards affecting a vulnerable group of people constitute high
risk) (KOBIYAMA et al., 2006).

The wvulnerability is related to people and communities. It is associated with the
preexisting conditions of material and a social life affected by natural phenomena. The
susceptibility is related to areas and regions affected by natural hazards (WISNER et al.,
2003; MACEDO; BRESSANI, 2013; TOBIN; WHITEFORD, 2013; KONIG et al.,
2018). For example, Etna is an active volcano with frequent eruptions. The cities near
Etna are in susceptible areas, meaning they are susceptible to volcano hazards. People
who live in those cities are vulnerable to the same hazards. In a Brazilian context, the
neighborhood Vila Baiana in Guaruja-SP is susceptible to landslides, and the population

is vulnerable to the consequences.

The disasters occur when a group of people or a community is affected by a natural
hazard, and there is a disturbance in their development and everyday life (e.g., livestock,
crops, homes, roads, bridges, schools, and hospitals are destroyed) (WISNER et al., 2003;
MACEDO; BRESSANI, 2013).



Resilience is related to the population”s capability to be prepared, cope with, resist and
recover from a significant disruption caused by a natural hazard within an acceptable time
(AVEN, 2011; MACEDO; BRESSANI, 2013; BITAR et al., 2015).

3.2 Pedology and characteristics of mass movements

Pedology is the study of soil formation, its properties characterization, and the mapping
of its geographic distribution (SOUZA, 1995). Moreover, a pedological study determines

the best use for a specific area (i.e.: agriculture, preservation areas, urban expansion).

The soils consist of roughly parallel sections, called horizons (Figure 3.1), which differ
from the parent material (hard bedrock) due to pedogenesis. Pedogenesis is the process
of soil formation, which involves addition, losses, transformation, and translocation of
matter. The types of soils differ accordingly to the parent material, topography, biota,
climate, and length of time during pedogenesis (JENNY, 1945; SOUZA, 1995;
PHILLIPS, 2017; EMBRAPA, 2018). They can be classified based on their
morphological characteristics: color, texture, structure, porosity, and cohesion. It is also
analyzed the concentration of iron, aluminum, silica, clay, and organic matter
(BOCKHEIM et al., 2005). The soil layers have specific characteristics. Horizon O is
characterized by decomposed and undecomposed organic matter. Horizon A (surface
horizon) is characterized as the mineral horizon and has a high concentration of organic
matter. Horizon B is the subsoil, formed due to intense pedogenetic processes, with sandy
loam or finer texture and a high concentration of clay. The C horizon is the substratum
(regolith). In this horizon, the rock is partially weathered with fragments of different sizes
(SOUZA, 1995; EMBRAPA, 2018). There is also a colluvial cover, which is the
accumulation of soil material and small fragments of rocks on the base of slopes, mainly

by gravity.

Each soil has its own physical and chemical properties, which determine the soil’s
susceptibility to landslides and erosive processes (MENEZES; PEJON, 2010).

Gravitational mass movements are surface transformations with a displacement of soil,
rocks, and debris (FELL et al., 2008; KONIG et al., 2019). They can be classified into
four types accordingly to the soil type, water moisture content, velocity, rupture, and
deformation (VARNES, 1978; CRUDEN; VARNES, 1996; CENAD, 2013), as presented
in Table 3.1.



Figure 3.1. Schematic soil horizons.
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Source: Adapted from Larramendy and Soloneski (2019).

Table 3.1. Types of Mass Movements.

Types of Mass -
Movements Description
Slide A large volume of soil displacement moving down on the slope. (i.e.,
translational, and rotational landslides)
Falls Rock and sediment displacement falling through the air.
Flows A mix of soil, rocks, and sediments with high water moisture volume
flowing rapidly down the slope. (i.e., Debris flow, mudflows/lahar)
A very slow process (years) of mass movement that happened deeper in
Creeps
the ground.

In Brazil, the slide is the mass movement type that causes several disasters, thus it will
be emphasized and described as a landslide. According to Cruden and Varnes (1996),
landslides occur when there is a surface rupture, with soil and rock sliding down slopes.

The landslides are classified as rotational and translational slides.



The translational slides occur in steep parallel surfaces when there is a rupture between
the shallow soil layer and the impermeable substrate beneath it. They usually happen in
residual and colluvial soil layers, with the soil rupture occurring at depths from 0.5m to
5.0m (VIEIRA, 2007; VIEIRA; RAMOS, 2015; MENDES et al., 2018a). Subsequently,
the impermeable substrate can be a rock or soil layer with high values of clay. The
rotational slides are characterized by a deep surface rupture that deforms this surface
concavely. Its occurrence usually happens in landfills and dams (AHRENDT, 2005;
ZEZERE et al., 2005). Figure 3.2 presents the two types of landslides.

To understand and predict soil behavior, the knowledge of geotechnical and hydrological
properties is essential. Some geotechnical properties related to the prediction of landslides
are shear strength, soil cohesion, and internal friction angle; while the hydrological
properties are hydraulic conductivity and diffusivity. The definitions of these parameters

are presented in Table 3.2.

Figure 3.2. Representation of a rotational slide (A) and translational slide (B).

Rotational landslide Translational landslide

Source: Adapted from CEMADEN (2016).



Table 3.2. Definitions of soil properties.

Soil . Definitions
Properties
SO'I. It is the force that holds the soil particles.
Cohesion
. Internal .
Geotechnical Eriction The angle between the shear strength and the normal effective
Properties stress in which a failure occurs.
Angle
Shear . . . .
It is related to the maximum shear stress a soil can sustain.
Strength
Hydraulic | Also called the Coefficient of Permeability - It is a measure of
Hydrological | Conductivity |  velocity with which the water can pass through soil layers.
Properties Hydraulic It is the ratio of Hydraulic Conductivity to the effective
Diffusivity porosity, i.e., the water capacity to infiltrate.

Source: Ahrendt (2005); Das and Kondraivendhan (2012); Roy et al. (2017).

3.3 Satellite images

Satellite images have been used in several different types of research: change detection
of land use and land cover, occupation, disasters management, and detection of burning
areas or forest degradation, among others (GUILD et al., 2004; HENRIQUE et al., 2008;
NOVACK, 2009; PINHO et al., 2012; RODRIGUES, 2014; LIBONATI et al., 2015;
PECHINCHA; ZAIDAN, 2015; KONIG et al., 2019).

Today, there are several satellite sensors, each of them with specific characteristics. They
have different spectral, spatial, and radiometric resolutions. The revisit frequency and
swath width also change. Some satellite sensors with high spatial resolution have a more
refined spectral resolution, like IKONOS, WorldView-2, and 3, QuickBird, and Planet,
among others. These images are widely used in urban areas studies because they provide
the opportunity to differentiate individual trees, different vegetation species, landslides
scars, and types of constructions (houses, buildings) or roads (PINHO; et. al., 2005;
SANTOS; et. al., 2011; PU; LANDRY, 2012; MENEGHETTI; KUX, 2014; KONIG,
2018).

In 1972, the Landsat 1 was launched into space, and despite the low spatial resolution of
the Landsat program (30 m), they are useful for temporal analysis. Furthermore, this

doctoral project use Planet images to identify landslide scars and the Landsat collection
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(Landsat 5, 7, and 8) for the temporal analysis of the study area. Table 3.3 presents a

summary of each satellite’s spatial resolution that will be used in this project.

Table 3.3. Summary of the sensor’s specifications.

. Spectral Spatial | Radiometric
Satellite | Sensor Bands Resolution | Resolution | Resolution
0.45-0.52
Blue
um
Green 0.50 - 0.60
Landsat ™ pm
5 Red 0.63-0.69
Hum
Near Infrared 0'76u'mo'90
30m
Blue 0.45-0.52 8 bits
um
0.50 - 0.60
Green
um
Landsat ETM+ Red 0.63-0.69
7 um
Near Infrared 0.76 - 0.90
um
Panchromatic 0.52-0.90 15m
um
Coastal 0.43-0.45
aerosol um
Blue 0.45-0.51
um
L andsat Green 0'53u'mo'59 30m
8 oLl 0.64-067 16 bits
Red
Hum
Near Infrared 0.85-0.88
Hum
Panchromatic 0.50 - 0.68 15 m
Um
Blue 0,45-0,51
um
Green 0,50 - 0,59
Dove Planet um 3m 12 bits
Red 0,59 -0,67 um
Near Infrared 0,78 - 0,86
um

Source: Adapted from Engesat (2020).
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3.4 Data mining and image classification

With the advancement of Remote Sensing techniques and the total amount of digital data
available, it is important to determine which data and information are crucial for a specific
study and research. However, the extraction of the most relevant data is laborious and
time-consuming. From that necessity, Knowledge Discovery in Databases (KDD) was
developed. According to Fayyad et al. (1996), KDD is a process that extracts essential
data from a massive volume of information. The steps are data acquisition, pre-
processing, data transformation, data mining, interpretation, and evaluation, resulting in

knowledge (Figure 3.3).

The primary step of KDD is Data Mining. This process automatically finds patterns and
attributes from large data volumes, clustering then. It can be descriptive, which
characterizes the data properties, or predictive, which uses the data information to make
forecasts about them (HAN et al.,, 2012, KONIG et al.,, 2019). Some data mining
algorithms use statistical methods, neural networks, fuzzy logic, or decision tree, among
others (GOLDSCHMIDT; PASSOS, 2005). The statistical methods are used to resume

and describe a group of data, helping in the validation process.

In Remote Sensing applications, the data mining process is used to extract attributes and
characteristics (spatial and spectral information) from pixels or objects (regions) present
in digital images (NOVO, 2010). An example of a system that uses data mining
techniques for digital image analysis is GeoDMA, developed by Korting et al. (2013).
GeoDMA has a decision tree, Self-Organizing Maps (SOM), and neural networks as

algorithm options.

The software WEKA provides the C4.5 algorithm to perform data mining, as presented
in Novack (2009), Carvalho (2011), Pinho, et al. (2012), and Bento (2016) studies.
Moreover, the eCognition platform uses the Classification and Regression Trees (CART)
algorithm for the data mining process (BENTO, 2016; KONIG, 2018; KONIG et al.,
2019), among others.
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Figure 3.3. Steps of the KDD process.
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Once the data mining process is finished, and the data are clustered according to specific
attributes (spectral, texture, form, color), the image classification process starts. The
Object-based Image Analysis (OBIA) paradigm is frequently used for high spatial
resolutions images classification. The OBIA paradigm extracts information from satellite
images in a semi-supervised way. It clusters similar objects, considering the pixel
information and its neighbors. The advantage of this paradigm is to segment the image
objects, which makes the interpretation easier (HAY; CASTILLA, 2006; PINHO et al.,
2012; DRONOVA, 2015; CHEN et al., 2018; KONIG et al., 2019).

3.5 TRIGRS mathematical model

Baum et al. (2008) developed the mathematical model TRIGRS (Transient Rainfall
Infiltration and Grid-based Regional Slope Stability Model) to calculate variations in the
Factor of Safety (FS) due to changes in the transient pore-water pressure (pressure exerted
by water in the soil pores) and soil moisture (soil water content) during a rainfall
infiltration. The Factor of Safety is the ratio of the shear strength to the shear stress acting
on the soil, meant to determine the slope stability. A FS equal to or higher than 1 means
stability, and lower values (FS< 1) indicate unstable slopes (AHRENDT, 2005).

This model, written in FORTRAN, associates the hydrological model based on lverson
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(2000), who linearized the one-dimensional analytical solutions of Richards Equation
(Equation 3.1) and a stability model based on the equilibrium limit principle, giving rise
to its final formulation (Equation 3.2). It represents the vertical rainfall infiltration within

homogeneous isotropic materials (BAUM et al., 2008).

50 = G [xew (55 - 1)) @

where 6 is the soil volumetric moisture content (dimensionless), t is the rainfall time
duration (s), z is the soil depth (m), K (%) is the hydraulic conductivity (m/s kPa) in the
z-direction, and ¥ is the groundwater pressure head (kPa).

FS — (tan(b) + [(c—‘P(Z,t)than (2))] (3.2)

tana YsZsinacos a

where c is the cohesion (kPa), ¢ is the internal friction angle (deg.), ¥;, is the unit weight
of groundwater (KN/m3), Y; is the soil-specific weight (kN/m3), Z is the layer depth (m),

a is the slope angle (0° < a < 90°), and t is the time (5).

The TRIGRS input data are the geotechnical parameters (cohesion, soil specific weight,
hydraulic conductivity, and internal friction angle), hydrological data (initial infiltration
rate and initial groundwater table depth), and rainfall duration and intensity. The model
allows for the variation of input values, such as soil properties cell by cell, because it
considers horizontal heterogeneity. It is possible to have more than one type of soil in the
same area, with specific physical properties. This is called horizontal heterogeneity.
According to Baum et al. (2008, p.2), “the model results are very sensitive to the initial
conditions, particularly the steady component of the flow field and initial groundwater
table depth”. Figure 3.4 represents the components of the TRIGRS model in which,
during a rainfall event, infiltration and surface run-off happen simultaneously. There is
an increase in the groundwater table and, consequently, an increase in pore-water

pressure.
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Figure 3.4. Representation of how the TRIGRS model calculates the variation of the Factor of

Safety, based on the rainfall infiltration in soil layers and the groundwater table

variation.
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3.6 SINMAP

Sinmap is a probabilistic model based upon the steady-state hydrologic concepts with the

infinite slope stability model, “that balances the destabilizing components of gravity and

the restoring components of friction and cohesion on failures plane parallel to the ground
surface” (PACK et al., 1998, p. 1). The approach is appropriated to determine slope

instability due to shallow translational landsliding phenomena.

It obtains the input information, such as slope and specific catchment area, from a digital
elevation model (DEM). According to Pack et. al., (1998) the soil thickness is constant

15



and measured perpendicular to the slope. The transmissivity is also constant. This model
considers the real uncertainties about the estimation of the other input parameters. It
accepts values for upper and lower bounds, using a uniform distribution. Therefore, the
model requires the calibration regions, which are sub-samples of the study area based on
the difference between soil, vegetation, or geological data (PACK, 1998; MEISINA;
SCARABELLLI, 2007; MICHEL,; et. al., 2012, 2014; ZIZIOLI et al., 2013; THIEBES et
al., 2016; CARDOZO; et. al., 2018).

The input parameters are the lower and upper bound of T/R (ratio of transmissivity to the
effective recharge), cohesion, and internal friction angle. The output of Sinmap is a
Stability Index (SI1) defined as the probability of the location being stable, ranging from

0, most unstable, to 1, stable, as presented in Table 3.4.

The term “Lower threshold” refers to regions with a failure probability above 50%, while
“Upper threshold” means the probability of failure below 50%. The “Defended slope
zone” refers to areas where, according to SINMAP, are unstable no matter the parameter
range specified, or the model is unable to compute stability. An example is bedrock

outcrop areas and deep-seated instability such as earth flows and rotational slumps.

According to the Sinmap approach, the Factor of Safety (FS) is calculated when the most
conservative set of parameters still results in stable areas, and they are usually represented
by values greater than 1. Equation 3.3 presents the FS formula.

__ {Cr+Cs+cos20[ps g(D—Dw)+(ps g— pw g)Dw]tane}
- D pgs g sinBcos0

FS (3.3)

Where Cr is root cohesion [N/m?]; Cs is soil cohesion [N/m?]; 0 is slope angle; ps is wet
soil density [kg/m3]; pw is the density of water [kg/m?]; g is gravitational acceleration
[9.81 m/s?]; D the vertical soil depth [m]; Dw the vertical height of the water table within
the soil layer [m] and; ¢ the internal friction angle of the soil [degrees]. The slope angle
@ is the arc tangent of the slope; S is expressed as a decimal drop per unit of horizontal
distance (PACK et. al., 1998). The model computes the slope and wetness at each grid

point assuming the constant distribution of parameters over the study area.
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Table 3.4. Sinmap Stability Index.

. Predicted The possible influence of factors
Condition Parameter range
state not modeled
Stable slope | The range cannot model | Significant destabilizing factors are
SI>15 . - . . -
zone instability required for instability
Moderately | The range cannot model | Moderate destabilizing factors are
1.5>S1>1.25 X - ) . -
stable zone instability required for instability
Quasi-stable | The range cannot model | Minor destabilizing factors could
1.25>S1>1.0 . - ! i
slope zone instability lead to instability
Lower Pessimistic half of the Destabilizing factors are not
1.0>SI>0.5 threshold range required for required 190r instabilit
slope zone instability a y
Upper Optimistic half of range Stabilizing factors may be
0.5>S1>0.0 threshold . . - o
required for stability responsible for the stability
slope zone
Defended | The range cannot model | Stabilizing factors are required for
0.0> Sl L -
slope zone stability stability

Source: Pack et. al. (1998).

3.7 Literature review

3.7.1 SINMAP

The probabilistic model SINMAP has been widely used to identify landslide-prone areas.
Cardozo; et al., (2018) used the Sinmap to study the municipality of Nova Friburgo, Brazil,
located in the mountainous area of Serra do Mar. It is a steep slope area with a declivity
ranging from 15° to more than 35° degrees. The data consisted of a 10-meter DEM, a
landslide scars inventory produced based on GeoEye-1 satellite data, and soil parameters
acquired from the literature. Considering the geotechnical parameters' uncertainty, the
authors simulated three scenarios, changing the range of the cohesion and internal friction
angle. As a result, the model provides excellent results and successfully identified 90% of
the landslides (55% within the unstable zones, and 35% in areas with critical conditions
for soil rupture). However, the authors claim that geotechnical and hydraulic parameters

performed in situ and tested in laboratories would provide more accurate results.

A similar approach was applied by Pechincha and Zaidan (2015). The authors determined

the landslide-prone areas in the Corrego Matirumbide watershed, Juiz de Fora, Brazil. The
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area has clayish soils, an annual average rainfall of 1300 mm, and unauthorized human
settlement on steep slope areas. A DEM with 1 meter of spatial resolution, extracted from
LiDAR images, was used as input. The geotechnical data were acquired from the literature,
and a landslide scars inventory was prepared during the field survey. As a result, the
instability area identified by SINMAP was validated with the presence of landslide scars.
The authors verified a correlation between most of the unstable areas and their location in
the steepest slope areas, with human settlement. The model proved its efficacy for the

identification of landslide-prone areas.

Similar results were acquired by Nery and Vieira (2015), which used the SINMAP model
to identify the unstable areas in the Ultrafertil watershed, in Cubat&o, Brazil. The area,
located in the Serra do Mar mountains, has declivities ranging from 30° to 50° degrees.
Input data were geotechnical and hydrological parameters acquired from the literature. A
2-meter of spatial resolution Digital Terrain Model was used. The landslide inventory was
elaborated based on aerial orthophotos from 1985, the year when more than a thousand
landslides were registered. Three scenarios were proposed to analyze the sensitivity of
each parameter in slope stability. The model correctly identified 90% of the landslides in
unstable areas. The authors concluded that hydraulic parameters are the most sensitive

ones regarding slope stability.

The SINMAP model proved to correctly identify landslide-prone areas when applied on
different terrains and lithologies. Thiebes et al., (2016) applied the SINMAP model in two
different study areas: Swabian Alb, Germany, and Wudu County, China. The lithology of
the area in Germany is characterized by clay soil underlying marl and limestone. The
slopes are covered by debris from previous landslides, usually triggered by rainfall, snow
melting, and earthquakes. A small town, named Eningen, is in the study area. The input
data were a DEM with 1 meter of spatial resolution, geotechnical parameters acquired
from the literature, a landslide inventory extracted from LiDAR images, and field
mapping. As a result, 8% of the study areas were classified as unstable, and the model
correctly identified 80% of the landslides. The high quality of topographic data led to

excellent results.

The lithology from the Chinese study area is characterized by slates, schist, and loess

deposits, and it is predominantly used for agriculture. The landslides are usually triggered
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by rainfall, especially during summer, and by tectonic activity. The input data used was a
30-meters spatial resolution DEM, geotechnical parameters acquired from laboratory tests,
and a landslide inventory prepared from optical remote sensing data. As a result, 22.6% of
the area was classified as unstable, and 67.5% of landslides were correctly mapped. The

low resolution of topographic data justified the relatively poor results for Wudu.

A volcanic area usually suffers from landslides and monitoring the slope stability helps
disaster management. Therefore, Deb and El-Kadi, (2009) applied the SINMAP model in
Oahu — Hawaii, USA. The geology of the study area is the result of volcanism. It has steep
slopes areas with declivities above 80° and a colluvial layer on the slopes formed from
weathered basalt. The annual precipitation ranges from 650 mm to 700 mm (DEB; EL-
KADI, 2009). The topographic characteristics of the study area might generate flash
floods. A landslide inventory was prepared using aerial photography, hydrological and
geotechnical parameters were acquired from the Soil Survey Geographic (SSURGO)
database and literature. A 10-meter DEM was used as input da-ta. Four calibration regions
were chosen, according to geological, geomorphological, and land-cover characteristics.
As a result, the SINMAP correctly identified all the landslides within the most unstable
classes. The model classified 18% of the study area as very high susceptibility, and 21%
as high susceptibility. The authors also compare the SINMAP results with the debris-flow-
hazards maps and realized that the model can be used as a tool to identify both hazard

types.

Pack et. al. (1998) applied the SINMAP in the Kimpala drainage, British Columbia,
Canada. The soils are characterized by coarse granular tills and colluvium derived from
basaltic bedrock. They used a DEM with 10-meters of spatial resolution and a landslide
inventory acquired from the government. The model correctly identified 69.2% of the
landslides. The authors agree that the combination of aerial photos and field mapping

would improve the model results.

The previous studies show that the probabilistic model acquired good results to identify
landslide-prone areas in regions with different geological characteristics. Moreover, the
quality of input data has a significant impact on the SINMAP results. A summary of
studies using SINMAP is presented in Table 3.5.
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Table 3.5. Summary of SINMAP literature review.

Author Study Trlgger_ed Acquisition Validation Results
Area Mechanism data
(CARDOZO; Nova
LOPES; Eriburdo Rainfall Literature Landslides 55% landslides
MONTEIRO, g0, inventory in unstable areas
Brazil
2018)
. Landslides
(PECHINCHA; | Juiz de . 0 .
ZAIDAN, Fora, Rainfall Literature g]t:/siztot?t/)i?ir'][d i7n8h5ngft?lgsalllrz:
2015) Brazil pubifity
maps
(NERY; Cubatao, Rainfall Literature Landslides 90% landslides
VIEIRA, 2015) Brazil inventory in unstable areas
Swabian | Rainfall, Snow — 0 .
(THIEBES et | Germany | Earthquakes y
0,
al., 2016) C\é\ﬁuno,lu Rainfall and Laboratory Sensitivity IangZI,iEZig)s in
nty, Earthquakes tests analysis
China unstable areas
Oahu Landslides
(DEB; EL- Hawai’i Rainfall and Literature inventory and | 92% landslides
KADI, 2009) USA ’ Volcanism Susceptibility | in unstable areas
maps
British . 69.2%
PACK etal, Columbia, Rainfall Literature ITandS“deS landslides in
(1998) inventory
Canada unstable areas
3.7.2 TRIGRS

Several studies have used TRIGRS to identify slope stability. Godt et al. (2008) applied
the TRIGRS model in the steep coastal bluff of Puget Lowland, north of Seattle, USA.

The hydraulic and geotechnical data were collected in situ and tested in a laboratory, and

the landslide inventory was prepared from aerial photography. As a result, the model

tends to underpredict the spatial extent of landslides for this study area.

On the other hand, Chien-Yuan et al. (2005) had excellent results applying the TRIGRS

model in Tenliao Mountain, the northern part of Taipei County, Taiwan. The geotechnical

and hydrological parameters were acquired during fieldwork. Soil samples were collected

and analyzed in a laboratory to provide the input parameters. However, the analysis’s

initial condition consists of saturated soil due to more than 500 mm of rain in the previous

days. The rainfall infiltration and the soil moisture had a significant impact on triggering

landslides and debris flow.
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Tan et al. (2008) investigated the landslide-prone areas in the Ta-Chia River watershed,
in Taiwan. Due to the difficulty in acquiring soil samples, this research assumed that the
soil’s geotechnical properties are strongly related to geology and used these values as
input to the TRIGRS model. As a result, the model underestimated the unstable zone
compared with the landslide occurrences. The results might be related to the initial
conditions: differences in the initial groundwater table and the soil layer’s shear strength.
These results show how the model results can be very sensitive to the initial conditions
(BAUM; et. al., 2008).

The quality and accuracy of the input parameters allowed TRIGRS to provide better
results. Listo and Vieira (2015) compared the TRIGRS performance in two scenarios:
first using geotechnical and hydrological parameters collected in situ, and in the second
scenario, data were acquired from the literature. The study area was the Guaxinduba River
watershed, in the municipality of Caraguatatuba, Brazil. The results were validated using
landslides inventory and statistical analysis, such as Scar Concentration (SC), Landslide
Potential (LP), and Probability of Detection — POD. The authors concluded that the first

scenario had better results than the second one.

Related results are presented in the research conducted by Park et al. (2013), who applied
the TRIGRS model in Woomyeon Mountain, South Korea. Geological investigations
were conducted by governmental institutions, providing accurate geotechnical and
hydrological parameters for the area. This data was used as input, and the results
corroborated the reality: TRIGRS classified the areas with landslide scars as unstable.

The input parameter's accuracy contributed to TRIGRS's excellent results.

The most typical application of TRIGRS models is to identify landslide-prone areas and
validate the results using a landslide inventory. Statistical analysis, such as the Receiver
Operating Curve (ROC) analysis, guantitative indexes (Scar Concentration — SC and
Landslides Potential — LP; Probability of Detection — POD, False Alarm Ratio - FAR,
Critical Success Index — CSI, and Success-Error index (SI and EI) also help to assess the

performance and reliability of the model.

To exemplify, Paul et al. (2018) identified the landslide-prone areas in Rio do Sul, Brazil,
using the TRIGRS model. The geotechnical and hydrological parameters were acquired

in situ. A rainfall series of 2011 events were used as input. Statistical indexes, such as
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Success Index (S1) and Error Index (EI), were used to validate the results. Past landslide
events have been used to evaluate the model’s efficiency, and the results were accurate.
Related studies were presented by Listo (2016); Schwarz and Michel (2016); Marin et al.
(2018); Garcia-Aristizabal et al. (2019) and Ciurleo et. al. (2019).

The mathematical model has proven to be an appropriate tool to identify landslide-prone
areas, and Listo et al. (2018) decided to analyze the models' capability to identify the
surface rupture depth. TRIGRS was applied in Caraguatatuba, Brazil, to analyze the FS
variation in different soil depths. The geotechnical and hydrological parameters were
acquired in situ, and a landslide inventory from the 1967 event was prepared to validate
the results. Statistical analysis, such as Scar Concentration (SC), Landslide Potential (LP),
and Probability of Detection — POD, was used to validate the results. The model identified
areas between 2 and 2,5 m depth with FS<1, which corroborate the surface ruptures from
the 1967 landslides. Therefore, the TRIGRS model correctly identified the most unstable
areas and the depth of surface rupture.

Marin and Salas (2017) evaluated the influence of vegetation in landslide susceptibility
analysis. They applied a model for the prediction of rainfall interception in forest
canopies. The results of real rainfall infiltration were used in TRIGRS as initial soil
moisture input to calculate the FS. The results show that areas without vegetation tend to
be more unstable than those with arboreal cover. However, the authors agreed that tree
roots and specific weight might have more influence on slope stability than rainfall

interception, thus, future studies are necessary.

Some studies evaluate how TRIGRS predicted slope stability during rainfall events, as
shown in Liao et al. (2011). This study tested if the TRIGRS model could predict the most
unstable areas during hurricane Ivan. The geotechnical parameters were extracted from
the State Soil Geographic, which mapped the soil in the USA, and the River Forecast
Center provided hourly rainfall data from Ivan'. The initial conditions of analysis
consisted of a saturated soil layer due to the passage of hurricane Frances a week earlier.
As a result, the model could predict almost 98% of the landslides, proving to be a useful
tool for early warning systems of landslides events. The input parameters were very

accurate, which provide even more precise results.
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Similar results were presented by Zhuang et al. (2017), which analyzed the TRIGRS
performance during a 24-hour rainfall in Yan’an, China. As a result, the model generates
four slope stability maps, corresponding to 6:00, 12:00, 18:00, and 24:00 hours. TRIGRS
predicted how the total amount of unstable areas (FS<1) scaled with increased rainfall
duration. At the beginning of rainfall (6:00), the areas with FS< 1 represented just 0.2%
of the total area. As time passed, the area increased to 3.3%, 3.8%, and 5.1%, respectively.

A summary of studies using TRIGRS is presented in Table 3.6.

Table 3.6. Summary of research on TRIGRS.
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Authors | Study Area Trlgger_ed Acquisition Validation Results
Mechanism data
Godt et Laborator 80% landslides
al., Seattle - USA Rainfall Y| roC analysis in unstable
tests
(2008) areas
. Landslides Variation of
Chien- inventory and pore-water
Yuan et | Taipei County : Laboratory oy pressure
. Rainfall Variation of
al., -Taiwan tests changes the
pore-water ;
(2005) ressure soil rupture
P mechanism
Landslides and
Tan et Tai Chi - Rainfall and _ _ Landslides unstable areas
al., Taiwan Tvphoon Literature inventory and agree with
(2008) yp Typhoon data typhoon
trajectory
Macon
Liao et County, Rainfall and 98% landslides
al., North Hurricane Literature | POD/FAR/CSI in unstable
(2011) Carolina, areas
USA
Park et V&%%?é?gn thgi]a(;[ure ROC analysis, | 33% landslides
al., Seoul - Sou'th Rainfall Laborator SI/EIl, SC/LP, in unstable
(2013) " Y| PODIFARICSI areas
orea tests
Literature Several
Zhuang , Landslides landslides
Yan’an - . and . . .
etal., China Rainfall Laborator inventory and registered in
(2017) tests Y | roC analysis areas with
FS<1
Literature The
Listo and Landslides parameters
L Caraguatatuba . and ; .
Vieira - Brazil Rainfall Laboratory inventory collected in
(2015) SC/LP/ POD situ have a
tests
better result
continue



Table 3.6. Conclusion.

Authors Study Area Trlgger_ed Acquisition Validation Results
Mechanism data
Literature Landslides
Listo Caraguatatuba Rainfall and inventory | 70% of the study
(2016) - Brazil Laboratory SC/LP/ area has FS<1
tests POD
Landslides e
Listo et | Caraguatatuba Rainfall Laboratory inventory Igfﬂggff:iﬁg
al., (2018) | - Brazil tests SCILP/ . thp
POD P
The rainfall
Comparison interception has

Marin and Vale de Rainfall and ampon little influence on
Salas Aburra - tree Literature di fferegr]\t slope stability
(2017) Colombia interception - and further

scenarios .
analysis are
necessary

Paul etal., | Riodo Sul - . Laboratory _Landsllde 80,3% landslides

; Rainfall inventory, :
(2018) Brazil tests SI/EI in unstable areas
The identification
Literature Landslide Ofrl)inedzlr:aies_
Marin et | Copacabana - Rainfall and inventory, F;Ilows the
al.; (2018) Colombia Laboratory ROC .
. calculation of
tests analysis -
vulnerability and
risk
Schwarz Landslide 50% of the
and Ibirama - - Laboratory . landslides
. . Rainfall inventory, ;
Michel Brazil tests SI/E happened in
(2016) areas with FS<1
Garcia-

Avristizabal | Envigado - . . Reliability 1,05% of the
et al., Colombia Rainfall Literature analysis area has FS< 1
(2019)

Accuracy of 80%

Ciurleo et | Favazzina - . . _Landslide . _in_ the:

al., (2019) Ital Rainfall Literature inventory, identification of
N ' y SI/EI landslide-prone

areas

Each studied area had different geological and geomorphological aspects, proving that

this model’s application is not limited to specific conditions. Several studies from all over

the World were presented, including America (Brazil, Colombia, and EUA), Europe

(Italy), and Asia (China, Taiwan, and South Korea). A few similarities should be

highlighted: the landslides usually happened in the colluvial soil layer, and the most
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unstable areas have declivities above 25°. Some geotechnical data were acquired from the
literature, while others were measured in situ. There is an agreement that TRIGRS is very
sensitive to the quality of input data, especially those related to the initial soil moisture

content.

Notwithstanding, the best results were presented in the studies with the most precise
geotechnical and hydrological parameters, which were usually measured in situ. The
prevailing validation method used was a landslide inventory. Still, the statistical analyses

also supported the results produced by TRIGRS.

Furthermore, the model proved to be a useful tool to identify landslide-prone areas and
predict slope stability. Despite the excellent results from Liao et al. (2011) and Zhuang et
al. (2017), more studies using TRIGRS as a tool that predicts the most unstable areas

during a rainfall event are necessary.

TRIGRS has the potential to become an early warning system, and the use of weather
forecasts and soil moisture monitoring sensors might enhance its applicability. Knowing
the soil moisture content of the area favors modeling the slope stability with higher
accuracy. Furthermore, the weather forecast allows the preparation of slope stability
scenarios, identifying the critical areas. Such information is essential for disaster
prevention. Therefore, the governments can anticipate the landslide-prone areas related
to the actual rainfall event and act in preventive removal of the population at risk.

This project aims to test TRIGRS as a tool for early warning systems, using weather
forecasts from the Climatempo website (https://www.Climatempo.com.br/) and sensor-
based soil moisture information from CEMADEN. Moreover, a risk alert can be defined
based on the variation of FS, which is different from the critical rainfall threshold currently
in use for alerts. An early warning system based on FS will be provided using the TRIGRS

model. And the landslide-prone map produced will be compared with SINMAP results.
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4. STUDY AREA

The study area of this work is the Vila Baiana neighborhood, within the municipality of
Guaruj, located within the Brazilian southeastern State of Sao Paulo, as presented in
Figure 4.1.

Figure 4.1. Study area location.
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According to IBGE (2019), the municipality has 320,459 inhabitants and a territorial
extension of 144,794 km2. The mean annual precipitation is 3,000 mm, and the mean
annual temperature is 22°C.

As for its geology, the area is on a crystalline plateau, with gneiss and granite from the
Pre-Cambrian period. Tropical forests cover the area, and the coastal plain has quaternary
coastal sediments of fluvial-marine origin. In some areas, the crystalline basement

becomes apparent. Elevations may reach 150 m, such as Morro do Botelho (ARAKI et
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al., 2001). There are four types of soil in Guaruja, classified according to the Brazilian
Soil Classification System (SBCS): Haplic Cambisols, Humiluvic Spodosol!, Gleysols?,
and Lithic Neosoils® (EMBRAPA, 2018), as presented in Figure 4.2.

Figure 4.2. Types of soils in Guaruja.
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The Haplic Cambisols is a developed soil composed of mineral material and characterized

by an incipient B horizon. There is a predominance of clay texture and an aluminic

1 Humiluvic Spodosols are classified as Podzols by World Reference Base for Soil Resources (WRB), recognized
by International Union of Soil Science (IUSS). More information: <<http://www.fao.org/3/a-i3794e.pdf>.

2 Gleysols are classified as Solonchaks by World Reference Base for Soil Resources (WRB), recognized by
International Union of Soil Science (IUSS). More information: <<http://www.fao.org/3/a-i3794e.pdf>.

3 Lithic Neosoils are classified as Leptosols by World Reference Base for Soil Resources (WRB), recognized by
International Union of Soil Science (IUSS). More information: <<http://www.fao.org/3/a-i3794e.pdf>.
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qualifier (EMBRAPA, 2018). The Humiluvic Spodosol is soil with mineral compound
and a spodic B horizon with 200 cm depth. Spodic B horizon is a subsurface horizon,
with 2,5 cm depth, with the presence of organic matter and aluminum (Al). Iron (Fe) can
be found as well (EMBRAPA, 2018). The Gleysols have a “Gley” horizon in the upper
50 cm. A Gley horizon is a mineral layer, characterized by the losses of Iron (Fe) due to
the presence of water; is a saturated soil horizon (EMBRAPA, 2018). The Lithic Neosoils
are characterized as poorly developed soils (20 cm thick), without a B horizon. It is
composed of mineral or organic material. The A horizon is directly in contact with the C
horizon or the rock and presents coarse fragments such as quartz gravel bed, gravel,
pebbles, and boulders (EMBRAPA, 2018).

The urban occupation started in flat and mangrove areas. However, the city has
experienced considerable population growth since the 1950s, intensified in the 1970s,
with the economic development due to industries, port-related activities, civil
constructions, and tourism. Consequently, the price of land increased sharply, and people
with low income started to build their houses in steep areas, on cheap but improper terrain
(ARAKI et al., 2001). Figure 4.3 presents the population growth from 1980 to 2020.

Figure 4.3. Population growth from 1980 to 2020.

350.000 320458
290526
300.000 264 .235
250.000
202910
200000
150.347

150.000
100.000

50.000

0 T T
1980 1990 2000 2010 2020
M Population

Source: Adapted from SEADE (2020).
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The Guaruja municipality presents several registered landslide occurrences. According to
COMPDEC-Guaruja data, from 1991 to 2019, February is the month with the most

landslide records, totalizing 292 events.

Vila Baiana neighborhood is one of the most landslide-susceptible areas, followed by
Morro da Cachoeira and Morro do Engenho (COMPDEC-Guaruja). Table 4.1 presents

the number of landslides per area, from 1991 to 20109.

Table 4.1. Landslide occurrences per risk area, from 1991 to 2019.

Risk areas | Total number of occurrences (1991-2019)
Vila Baiana 331
M. da Cachoeira 172
M. do Engenho 127
V. da Morte 62
M. Bela Vista 70

Source: Adapted from COMPDEC (2019).

Vila Baiana has a population of 10,835 inhabitants, equivalent to 3,7% of the Guaruja
municipality population. The demographic density is 6442,88 inh./km2, and on average
there are 3,5 people per household (IBGE 2019). This population density in a landslide-

prone area tends to enhance the order of magnitude of disasters in the area.

On March 3™ of 2020 after heavy rainfall, several landslides were registered. The most
affected areas were Vila Baiana, Morro do Engenho, and Morro do Macaco Molhado. The
impacts extended over 140 houses, causing structural damages and 33 deaths. The
accumulated rainfall expected for that month was 263 mm. However, 320 mm of rainfall
was recorded in 24 hours. The total amount of precipitation registered in only 24 hours was
more than the expected volume for March (CEMADEN, 2020).

The recurrent disasters triggered by landslide events, associated with a large population

density in risk areas, justify choosing Vila Baiana as the study area for this project.
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5. MATERIALS AND METHODS

The materials used in this work were four Landsat satellite images of the study area, one
orthophoto with a 1-meter resolution for the image classification of the Vila Baiana
neighborhood, soil geotechnical parameters for modeling with TRIGRS and SINMAP,
IPT susceptibility map, the landslide inventory from Guaruja Civil Defense, historical
rainfall data acquired from DAEE, CEMADEN and weather forecast from Climatempo
website. The software’s used were ArcGIS, eCognition, and ENVI. Figure 5.1 presents

the methodological workflow. The methods applied are further detailed.

The first part of the work is an investigation of the urban sprawl from Guaruja city,
analyzing its influence on the increase of landslide-prone areas and disasters. Therefore,
four images of Landsat satellites from the years 1990 (Landsat 5), 2013 (Landsat 8), 2020
(Landsat 8), and 2021 (Landsat 8) were acquired and preprocessed. To improve the
understanding of land use and occupation and how they influenced landslide disasters, a
detailed classification of Vila Baiana, which frequently suffers from landslides, was
provided. Using an orthophoto with 1-meter of spatial resolution and eCognition
software, the Vila Baiana neighborhood was classified accordingly to the types of soil

covers (ceramic roof, concrete roof, vegetation).

The satellite images were pre-processed, which consisted of two steps: pansharpening
and orthorectification. Both processes were performed using ArcGIS and ENVI software.
The orthorectification corrects distortions in the images caused by topographical variation
between the terrain and the sensor’s position. It was carried out using the 2021 image
from Landsat 8 as a reference. The pansharpening operation provided an image with the
best spatial resolution from the panchromatic band while retaining the spectral content
from the multispectral bands. This study used imagens from both Landsat 5 and 8,
however, Landsat 5 images do not have a panchromatic band, therefore, the
pansharpening process was only performed for Landsat 8 images. To better understand

the pansharpening procedure, an example is presented in Figure 5.2.
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Figure 5.1. Methodological workflow.
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Figure 5.2. Example of pansharpening procedure using Gram-Schmidt method with IKONOS

image: a) panchromatic band, b) multispectral band and c) pansharpened image.

Source: Adapted from Konig (2018).

Figure 5.2 presents the panchromatic and multispectral bands from the IKONOS sensor
and the pansharpening result using the Gram-Schmidt method. Figure 5.2a represents the
panchromatic band, which has the best spatial resolution. The multispectral bands,
presented in Figure 5.2b, have the best spectral resolution. The pansharpening process

was performed using the Gram-Schmidt method, and the result is shown in Figure 5.2c.

The next step consisted of the segmentation procedure (Figure 5.3), which helps the
classifier algorithm to better discriminate the boundaries of targets (also known as

objects) (e.g., vegetation, houses, buildings, roads, rivers, among others).

Figure 5.3a presents the pansharpened image, and Figure 5.3b shows the segmentation
procedure. The segments divided the image into adjacent regions, named Objects, such
as roads and trees. Object samples are then collected from the segmented image (Figure
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5.4). The samples were input to data mining algorithms and based on the available
attributes, automatically identified patterns from these large data volumes.

Figure 5.3. Example of Segmentation procedure.

Source: Adapted from Konig (2018).

Figure 5.4. Representation of sample collection.

Legend

- Vegetation

- Houses/ Urban occupation

Source: Adapted from Konig (2018).

The algorithm Classification and Regression Trees - CART, implemented by the

eCognition software, was used to extract the most relevant attributes, generating a
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decision tree. Based on this decision tree, the images were classified using the Object-
based Image Analysis (OBIA) paradigm (KONIG et al., 2019). The OBIA paradigm
extracts semi-supervised information from satellite images. It clusters similar objects,
considering the pixel information and its neighbors (HAY; CASTILLA, 2006;
DRONOVA, 2015). The error matrix was calculated to assess the classification accuracy,
and to determine the global accuracy. Notwithstanding, the NDVI (Normalized
Difference Vegetation Index) was calculated, to determine the environmental

degradation.

A temporal study was conducted to verify how the urban expansion from 1990 to 2020
affected the area, comparing the four satellite image classifications. The central queries
solved were: Was there an increase in the number of people living in steep slope areas?
Did the number of landslides also increase in these areas? Is it possible to link urban
sprawl and landslide disasters? Is there a correlation between the irregular occupation of
slope areas, precipitation, and landslide events?

This study compared the urban sprawl with the number of landslide events from 1990 to
2020 and analyzed if anthropic changes in steep slope areas have been fostering

landslides, or otherwise if there was an increase in extreme rainfall events.

Historical rainfall data from 1991 to 2020, acquired from DAEE, were used to determine
if there was a correlation between rainfall events and landslide occurrences. The analysis
of topographic and lithological aspects correlated with landslides was conducted to verify
how Guaruja geology influences the landslide distribution. Such analysis helps to identify
the most critical landslide-triggering factors to support decision-making for urban

planning and management.

The next step consisted in modelling the landslide-prone areas using the mathematical
models TRIGRS and SINMAP. These data are the input for modelling landslide-prone

areas.

The historical rainfall data was acquired from the DAEE website and applied to determine
the correlation between rainfall events and landslide occurrences. Using rainfall data from
March 3 2020, and July 1%t 2022, the model TRIGRS was calibrated, and its
applicability was verified. As a result, the model generates a landslide-prone map of Vila
Baiana. The validation was based on the landslides inventory, prepared with satellite
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images and landslides documented by the Guaruja Civil Defense, and comparing the
unstable areas from TRIGRS with the IPT susceptibility map.

Furthermore, an automated early warning system was developed using the TRIGRS
model as its engine. After the geotechnical parameters were established, a Python script
acquired the rainfall data (weather forecast) from Climatempo’s public API (Application
Programming Interface) and simulated the stability scenarios using TRIGRS. The rain
values from Climatempo are shown in millimeters per hour (mm/h), while TRIGRS uses
meters per second as a unit. Therefore, the rainfall values are converted to the units used
in the mathematical model. The following step is to define and set TRIGRS configuration
parameters for 3 days of rain forecast. The model is executed, creating the three maps of
FS for 24h, 48h, and 72h. To quantify the FS variation, the program calculates the sum
of the FS values of the area for each timeframe. An alert was displayed based on the
variation of the Factor of Safety (FS). This product is relevant for Civil Defenses, which
predicts the most unstable areas for the preventive removal of the affected population.

The same input data used in TRIGRS was used in the SINMAP model to produce another
susceptibility map. The distinct methodologies might generate different results. The
reliability of both models was evaluated through the Contingency table, Success and Error
Index (SI/EI index). Therefore, a discussion about these approaches and their influence

on the susceptibility maps was conducted in this work.

This study generated landslide-prone maps of Vila Baiana and Guaruja, produced using
the mathematical model TRIGRS, with a thorough analysis of the landslide-triggering
factors. Furthermore, an early warning system was developed, helping the Civil Defense
to quickly identify unstable areas and act preventively to remove and safeguard the

population at risk.
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6. RESULTS AND DISCUSSIONS

6.1 Temporal analysis of urban expansion from 1990 to 2021
6.1.1 Pan-sharpening process

A pansharpening procedure was performed to acquire the best spectral and spatial
characteristics. The Gram-Schmidt method was chosen because it provides the best
distinction of objects (vegetation, urban area, sand/bare soil, water) in the scene for the
Principal Components Analysis (PESCK; DISPERATI, 2011; POLIZEL etal., 2011; PU;
LANDRY, 2012; MENEGHETTI; KUX, 2014). Figure 6.1, Figure 6.2, and Figure 6.3
present the results of the pansharpening process for the years 2013, 2020, and 2021.

Figure 6.1. Pansharpening process for 2013 image: a) multispectral band, b) panchromatic band,

c) result of pansharpening.
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Figure 6.2. Pansharpening process for 2020 image: a) multispectral band, b) panchromatic band,

¢) result of pansharpening.

Figure 6.3. Pansharpening process for 2021 image: a) multispectral band, b) panchromatic band,
c) result of pansharpening.
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6.1.2 Segmentation, samples acquisition, and data mining

The image segmentation and the sample acquisition were performed using the eCognition
software. The multiresolution segmentation was applied. The parameters used in the
multiresolution segmentation procedure of the Landsat images are presented in Table 6.1.
It is important to highlight that the values of shape and compactness vary from 0 to 1,

indicating each parameter's weight in the segmentation process.

Table 6.1. Segmentation parameters applied in the satellite images.

Year Satellite/Sensor Scale Shape | Compactness
1990 Landsat-5/ TM 50 0.1 0.5
2013 Landsat-8/OLI 350 0.1 0.5
2020 Landsat-8/OLI 300 0.1 0.5
2021 Landsat-8/OLI 300 0.1 0.5

The results of the segmentation process and sample acquisition for each satellite image
are presented in Figure 6.4, Figure 6.5, Figure 6-6, and Figure 6.7.

Figure 6.4. Segmentation (a) and samples acquisition (b) from 1990 satellite images of Landsat-
5.
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a) b)
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Figure 6.5. Segmentation (a) and samples acquisition (b) from 2013 satellite images of Landsat-
8.
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Figure 6.6. Segmentation (a) and samples acquisition (b) from 2020 satellite images of Landsat-
8.
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Figure 6.7. Segmentation (a) and samples acquisition (b) from 2021 satellite images of Landsat-
8.
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The Vila Baiana classification is characterized by different land covers, such as variable
types of roofs, roads, and vegetation. An orthophoto with 1-meter of spatial resolution
was used. Due to the different sizes of the objects in the scene, two segmentation levels
were applied: level 1 to discriminate larger objects, such as blocks and streets, and level
2 to identify the types of roofs and vegetation cover. The first level consisted of the
distinction between blocks and streets. A multiresolution segmentation was performed
using a thematic layer considering the following parameters: scale 500, shape 0.9, and

compactness 0.5 (Figure 6.8).
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Figure 6.8. Segmentation (a) level 1 and classification (b) of blocks and roads.

Segmentation Level 1 : Classification Level 1

Following, the “elliptic fit” attribute was performed to identify if an object fits in an
elliptic with similar proportions, in which 0 means that the object does not fit, and 1 that
it fits. The block objects range from 0.6 to 0.8. Afterward, using the “assign class”
algorithm, two threshold conditions were defined: objects >= 0.6 are assigned as blocks,

and objects <= 0.1 are assigned as roads.

The second segmentation level is performed to identify smaller objects, such as types of
roofs and vegetation cover. In segmentation level 2, the class Blocks was used as a filter,
meaning that the segmentation procedure occurs only within the blocks. The
multiresolution segmentation algorithm was applied, using the following parameters:

scale 30, shape 0.1, and compactness 0.5. (Figure 6.9).

41



Figure 6.9. Multiresolution segmentation Level 2.

The last step before the classification was the sample acquisition. It consists of the
selection of image features that correctly represent the class objects. Five classes were
described: ceramic roofs, concrete roofs, roofs with different materials (named “other
roofs”), arboreal vegetation, and grass vegetation. Figure 6.10 presents the sample
selection in Vila Baiana orthophoto.
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Figure 6.10. Samples acquisition in Vila Baiana orthophoto.
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Data mining is important to determine the most relevant attributes to classify the image.
This study used the CART algorithm, available on the eCognition platform. The process
was carried out in three stages: training operation (Train), analysis operation (Query), and
application of data mining results (Apply). The first step consists of generating a file with
the statistics information from the objects selected (the samples). This statistical
information is based on selected attributes and parameters set by the user. It results in a
decision tree containing the variables and determining thresholds for the identification
and separation of each class. The analysis operation (Query) allows the visualization and
analysis of the decision tree (Appendix A) generated in the Train operation. And the last

step consists of the application of thresholds and variables to classify the image.
6.1.3 Image classification, NDVI index, and discussion

The urban sprawl is a direct consequence of population growth and the development of

Guaruja municipality. During the past 31 years (1990-2021), deforestation of native
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vegetation increased to open space for urbanization. Figure 6.11 presents the temporal
analysis of urban sprawl for 1990, 2013, 2020, and 2021.

Figure 6.11. Urban sprawl from 1990, 2013, 2020, and 2021.
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Analyzing Figure 6.11, it is possible to verify an intense increase in the urban area from

1990 to 2021, represented in gray. Moreover, the urban sprawl continues to intensify

rapidly since, in 2021, the increase was 7,9% above the amount in 2020. Furthermore, the

removal of natural vegetation continues, giving space to the city's expansion. Table 6.2

shows the built-up area occupied by the town and the vegetation cover for the years 1990,
20213, 2020, and 2021. Appendix B shows the urban sprawl from 2013 to 2021.

44




Table 6.2 shows a correlation between the increase in urban areas and the decrease in
vegetation-covered areas. From 1990 to 2021, the urbanization process increased by 30%,

while the vegetation area suffered a 12% reduction.

An error matrix was calculated to assess the classification accuracy, as presented in Table
6.3, Table 6.4, Table 6.5, and Table 6.6. The diagonal values, highlighted in yellow,
represent the count of correctly classified polygons, and the columns show the number of
polygons classified in each class. The producer’s reliability is the percentage of a
reference polygon to have been correctly classified, and the user’s accuracy is the

percentage of the classified polygon being in the correct class. Values closer to or equal

Table 6.2. Variation of urban and vegetation area (km?2) from 1990 to 2021.

Year | Urbanarea(km?) | Vegetation (km?)
1990 36.252 96.003
2013 37.618 89.912
2020 43.764 88.734
2021 47.252 84.252

to 1 indicate the best results (NAGAMANI et al., 2015).

Table 6.3. Error matrix of 1990 classification.

1990
Reference polygon
Water Urban Sand/_bare Vegetation | Total User's
area soil accuracy
Water 10 0 0 1 11 0.91
§ | Urban 0 54 3 1 58 | 0.93
2 area
o
8 | Sand/bare | 1 10 1 12 | 083
S soil
= | Vegetation 2 3 0 129 134 0.96
3| Total 12 58 13 132 215
© [Producer's
0.83 0.93 0.77 0.98
accuracy
Global 0.94
accuracy
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Table 6.4. Error matrix of 2013 classification.

2013
Reference polygon
Water Urban Sand/_bare Vegetation | Total User's
area soil accuracy
Water 40 0 0 3 43 0.93
g | Urban 0 157 1 2 160 | 0.98
> area
g | Sand/bare |, 1 57 1 50 | 097
- soil
D
£ | Vegetation 2 4 0 315 321 0.98
[72]
8 Total 42 162 58 321 583
Producer’s | o5 | 097 | 098 0.98
accuracy
Global 0.98
accuracy
Table 6.5. Error matrix of 2020 classification.
2020
Reference polygon
Water Urban Sand/_bare Vegetation | Total User's
area soil accuracy
Water 24 0 0 2 26 0.92
§ | Urban 0 | 124 1 3 128 | 097
2 area
g | Sand/bare | 1 24 1 2% | 092
S soil
% Vegetation 1 2 0 255 258 0.99
© Total 25 127 25 261 438
(@] '
Producer’s | 546 | gg 0.96 0.98
accuracy
Global 0.97
accuracy
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Table 6.6. Error matrix of 2021 classification.

2021
Reference polygon
Water Urban Sand/_bare Vegetation | Total User's
area soil accuracy
Water 21 0 0 2 23 0.91
5 | Urban 0 | 174 1 4 179 | 097
2 area
g | Sandfbare |, 2 37 1 20 | 093
5 soil
£ | Vegetation 3 2 0 259 264 0.98
@ Total 24 178 38 266 506
U 1 ]
Producer’s | a5 | 0og | 097 0.97
accuracy
Global 0.97
accuracy

All the classification’s error matrices presented a global accuracy higher than 0.9.
However, there is spectral confusion between vegetation and urban areas. The probable
cause is the proximity of some constructions to the forest canopy in Guaruja.

The development of urban areas destroys vegetation. To improve the distinction between
the urban area and the vegetation, the Normalized Difference Vegetation Index (NDVI)
was calculated. The NDVI is used to differentiate the vegetation areas from the non-
vegetation areas. The leaves have a strong reflectance in the near-infrared band, while
chlorophyll and other leaf pigments have a weak reflectance in the visible wave band red
(LUDEKE; et. al., 1996; MENG; et. al., 2013). The NDVI formula is presented in
Equation 6.1, and the temporal analysis of vegetation changes using NDVI is shown in
Figure 6.12.

(NIR-Red)

NDVI =
NIR+Red

(6.1)
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Figure 6.12. Temporal analysis of variation in NDVI for 1990, 2013, 2020, and 2021.
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The analysis of Figure 6.12 shows the vegetation changes in the past 31 years. The water,
represented in red, has low reflectance and, consequently, lower values of NDVI. The
colors orange and yellow characterized the urban areas according to the degree of
urbanization (high level of urbanization and medium level, respectively). The vegetation
is represented by green: the light green areas have lower biomass than those in dark green.
In the 1990 classification, it was observed that the vegetation cover is denser and spreads
over most of Guaruja municipality. Dark green is the predominant color, meaning that
most forest areas were preserved. However, in 2021, a reduction of the vegetation-
covered areas and the green-leaf density is perceptible. Few forest areas were maintained,
and the leaf-area density decreased.

There is a strong annual building activity due to the city's development. Land prices
increased sharply, and low-income people made their homes in steep areas on cheap but
improper terrain (ARAKI et al., 2001), as presented in Figure 6.13. Moreover, the
deforestation processes are directly related to the construction on steep slope areas. In
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Figure 6.13, it is possible to identify steep slope areas overlapping urban areas. These are

landslide-prone areas, and people living there are at risk; they can lose their houses and

lives.

Figure 6.13. Overlap between slope and the classification of urban areas for 2021.
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Those people who cannot afford a house or land in the central part of Guaruja start to
build their houses on the slopes, favoring deforestation (MODENESI-GAUTTIERI;
HIRUMA, 2004; KONIG et. al., 2019). To build houses under such conditions, the

vegetation is destroyed and vertical cuts in the slope are made without retaining walls.

Most of these constructions have low building standards, which decrease the slope

stability, and increase the risk of accidents to the population (MENDES et al., 2018b;

KONIG et. al, 2020).
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The weight of several constructions on steep slope areas, associated with improper water
drainage and deforestation, could change the soil moisture and thus, any amount of rain
can trigger landslides. Vila Baiana neighborhood is one of these areas, where several
houses were improperly constructed in slope areas, which are commonly affected by
landslides.

Therefore, to identify and distinguish the types of construction in Vila Baiana, a

classification of the orthophotos was performed, as presented in Figure 6.14.

Figure 6.14. Classification of Vila Baiana.
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Figure 6.14 identifies several constructions built on the edge of the arboreal vegetation,
especially in steep slope areas. Generally, these constructions have a low building
standard, and most have a concrete roof.

Moreover, the roads are well delimited in the flat land but not on the upper slopes. There
is any pavemented street in high declivity areas, becoming difficult to access the area.
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Furthermore, the government did not authorize construction in these areas. Besides that,
sanitation and garbage collection are nonexistent.

Areas with high declivities are susceptible to landslides, and the inappropriate ways of
land use and occupation can induce landslides, putting at risk everyone living there
(AHRENDTH, 2005; MENDES et. al., 2018a). Table 6.7 presents the values of the area
and the perimeter of each class related to the classification of Vila Baiana.

Table 6.7. Values of area and perimeter by class.

Class Area (m?) | Perimeter (m)
Roads 25.136 5.764
Ceramic roof 8.254 5.958
Concrete roof 74.340 48.348
Other roofs 22.930 17.154
Arboreal vegetation 240.684 73.172
Grass vegetation 26.719 16.518

Table 6.7 shows a predominance of constructions with concrete roofs in Vila Baiana,
totaling 74.340 m2. The houses localized on slope sections, meaning on the edge of
arboreal vegetation, have mostly concrete roofs, and just a few present different types of
roofs (“other roofs” in the classification). In these slope areas, it is not possible to identify
roads, but many houses are observed in a small area.

Notwithstanding, the ceramic roof class is the less representative roof type, with only
8.254 mz of constructed area. They occur in places where it is still possible to determine
the blocks and the roads, meaning that these areas are part of the urban planning of
Guaruja municipality.

The grass vegetation predominates in two blocks, and both are soccer fields. The arboreal
vegetation occurs mostly in steep slope areas, with only a few polygons mixed with the

constructions.

The error matrix was calculated to assess the classification accuracy, as presented in Table
6.8. It shows that the class “Road” was correctly classified because a thematic layer with

all the street vectors was used in the segmentation and classification process. However,
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there is a spectral confusion between the classes “Other roof” and “Concrete roof.”
Analyzing the orthophoto, it is observed that some concrete roofs are lighter than others.
The material used in these constructions probably has a similar composition to those used

by the class “Other roof,” justifying the confusion in the classification process.

Table 6.8. Error Matrix of Vila Baiana classification.

Reference polygon

Ceramic | Concrete | Other | Arboreal Grass User's
Roads . . Total
roof roof roofs | Vegetation | Vegetation accuracy
Roads 2 0 0 0 0 0 2 1.00
Ceramic | 64 1 1 0 0 66 | 0095
roof
_ | Conerete | 0 369 8 2 1 380 | 097
S roof
(@)
2 | Other 0 1 11 325 3 2 342 | 095
o roofs
o]
& | Arboreal |, 0 2 1 728 15 746 | 098
@ | vegetation
©
O | Grass 0 0 7 1 3 76 87 0.87
vegetatlon
Total 2 64 386 337 740 94 1623
FLIEIELBERS | g 5 0.98 0.96 0.96 0.98 0.81
accuracy
Global 0.96
accuracy

Moreover, there is spectral confusion between the grass vegetation and the concrete roof.
Most polygons wrongly classified as grass vegetation are in the areas with high declivity
because these sections were covered with forest, and to build houses, the trees were
removed, and the grass is regrowth. Therefore, a grass pixel in a polygon that can
confound the algorithm, classifying it incorrectly. Due to the spectral similarity, the
classes “Arboreal vegetation” and “Grass vegetation” also presented some

misclassification.

Despite some incorrectly classified polygons, the global accuracy is 0.96, meaning a good
accuracy of the classification processes. Visualizing the classified map, it is possible to

affirm that several constructions in slope areas contributed to deforestation. Furthermore,
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the high density of houses, close to each other, increases the soil weight, making it more
fragile and susceptible to suffer fractures and landslides (MENDES et al., 2018a, 2018b).

6.1.4 Correlation between urban sprawl and landslide occurrences

Analyzing the populational growth and the landslide occurrences, it is possible to verify
that from 1990-2000, the population went from 202.910 in 1990 to 264.235 in 2000 (see
Figure 4.3). There was an increase of 30.22% in the population of Guaruja within ten

years.

Therefore, during this period, more than 60 thousand people settled and built houses all
over the municipality. The area suffers from environmental degradation and an increase
in the weight of the new constructions, justifying the 482 landslide occurrences.
Notwithstanding, from 2000-2010 the population increased by 9.95% when compared
with the previous decade, and 473 landslides were documented. Table 6.2 shows, in 2013,

a decrease of 6.34% in vegetation cover.

Furthermore, from 2010-2020, the populational growth increases by 10.30%, totalizing
320.459 people. Consequently, the vegetation-covered area was reduced by 5.05%, and
the urban area was incremented by 7.97%. Therefore, the environmental degradation
caused by population growth and urban sprawl has consequences in soil changes and
induces landslides.

Moreover, from the 336 landslides documented during 2010-2020, 138 happened due to
an extreme climatic event on March 3™, 2020. Most landslides in Brazil are triggered by
rainfall, thus the correlation between heavy rainfalls and phenomena like EI-Nifio and La-

Nifia is important to the identification and monitoring of landslides-prone areas.
6.2 Correlation between landslides and rainfall

According to the Civil Defense of Guaruja, from 1991-2020, 1319 landslides were
recorded, as presented in Figure 6.15. The years with higher landslide occurrences were:
1991, 1993, 2005, 2009, 2010, and 2020.
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Figure 6.15. Landslides Occurrences in Guaruja from 1991 to 2020.
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The Vila Baiana neighborhood is one of the most affected areas, followed by Morro da
Cachoeira, Morro do Engenho, Morro Bela Vista, and Vale da Morte (COMPDEC —
Guaruja). During 1991 - 2020, more than 338 landslides happened in Vila Baiana. Figure

6.16 presents the distribution of landslides over the years.

Figure 6.16. Landslide occurrences in Vila Baiana during 1991-2020.
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As we can see, the years with higher landslide occurrences in Guaruja (1991, 1993, 20009,
and 2010) had more landslides in Vila Baiana as well. The landslide occurrences

corroborate with the annual average rainfall, shown in Figure 6.17.

Figure 6.17. Comparison between annual average rainfall and landslide occurrences in Guarujé.
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Figure 6.17 shows a correlation between the annual average rainfall and landslide
occurrences. There is a tendency for more landslides during the rainy years, such as in
1991, 1993, 2005, 2009, and 2010. However, in 1996 the annual rainfall average was
189,6 mm, but the number of landslides was only 32 when compared with the year 2005,
which had 75 landslides and a yearly rainfall average of 188,8 mm. A similar result
happened in 2015 when only 20 landslides were documented, but the annual rainfall
average was 218.05 mm. It is also important to notice that 46 landslides were registered
in 1995, the year with the lowest rainfall annual average (46,0 mm). Notwithstanding,
during the year 2020, 138 landslides were documented, and the annual rainfall average
was 118.54 mm. This means that the annual rainfall average was lower than in other years,

such as 1993 and 2010, but more landslides occurred.

Therefore, it is important to determine if an extreme rainfall phenomenon happened and
might have triggered those landslides. It is considered an extreme rainfall event when
20% or more of the total amount of rain expected for a month, falls in one day
(LIEBMANN et. al., 2001; CARVALHO et. al., 2002). The Civil Defense of Guaruja
determined a threshold of > 70,0 mm in 24h as a heavy rainfall event (COMPDEC —
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Guarujd). Table 6.9 presents statistical values of landslides triggered by heavy rainfall

events. The years selected represents those with higher annual rainfall averages and with

documented landslides triggered by heavy rainfall both in Guaruja and Vila Baiana.

Table 6.9. Heavy Rainfall events with a threshold >70 mm in 24h.

Total Landslides triggered (%) Landslides triggered
Year Location . by heavy rainfall > 70 | by heavy rainfall > 70 mm
Landslide . .
mm in 24h in 24h
Guaruja 97 21 21.65
1991 - -
Vila Baiana 49 10 20.41
Guaruja 106 68 64.15
1993 - -
Vila Baiana 38 22 57.89
Guaruja 65 47 72.31
2009 - -
Vila Baiana 31 20 64.52
Guaruja 101 57 56.44
2010 - -
Vila Baiana 26 20 76.92
Guaruja 17 14 82.35
2013 - -
Vila Baiana 2 2 100
Guaruja 20 12 60
2015 - -
Vila Baiana 3 3 100
Guaruja 138 138 100
2020 y .
Vila Baiana 7 7 100

The analysis of Table 6.9 shows an increase in landslides triggered by heavy rainfall,
from 1991 to 2010, in Vila Baiana. Moreover, in 2013, 2015, and 2020, 100% of the

landslides in Vila Baiana were triggered by rainfall with a threshold of >70mm in 24h.

Furthermore, these results corroborate the years with a higher annual rainfall average in

Guaruja, as presented in Figure 6.18. The years in navy blue are those with a higher yearly

standard.
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Figure 6.18. Annual rainfall average (mm) in Guaruja.
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Source: Adapted from DAEE (2021).

Analyzing Figure 6.18, it is possible to identify that those years with higher annual
averages are the same with most landslides triggered by heavy rainfall. The exception is
in 1996 because, despite an average of 189,6 mm, only 46,88% of documented landslides
in Guaruja (and 44,44% in Vila Baiana) were triggered by rainfall with a threshold >70
mm. In 2019, the rainfall average was 196,6 mm, and only 30 landslides were recorded
in Guaruja (none in Vila Baiana). The year 2020 is interesting, because the annual rainfall
is 118.54 mm, but presented more landslide occurrences. This case is further discussed,
because extreme rainfall happened, triggering 138 landslides in 24h.

Since Vila Baiana is the study area, further analysis will examine the relationship between
some landslides and rainfall events. Figure 6.19, Figure 6.20, Figure 6.21, and Figure
6.22, are presented the accumulated volume of rainfall for 24h and 72 hours on the same
days of the landslides occurrences.
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Figure 6.19. Accumulated rainfall (mm) for 24h and 72h in Vila Baiana in 1991.
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In 1991, 97 landslides were recorded in Guaruja, of which 47 happened in Vila Baiana.
The PPDC (Preventive Plan of Civil Defense — in Portuguese) determined that 80 mm is
the threshold of accumulated rainfall during 72h. Values above 80 mm/72h indicate that
landslides might happen. Analyzing Figure 6.19, it’s possible to observe that since March
21st, the areas have been affected by several rainfalls, justifying the higher values of
accumulated rain in 72h. Furthermore, on March 25th, with 95,9 mm of accumulated
precipitation, 12 landslides were registered in Vila Baiana (COMPDEC — Guarujd).
However, 9 landslides occurred with a threshold < 80 mm, indicating that anthropic

changes and human influence might have contributed to triggering some landslides.

In 1993 (Figure 6.20), 38 landslides happened in Vila Baiana. On February 18th, after a
heavy rainfall of 74,5 mm in 24h (90,0 mm in 72h), 60 landslides were recorded in
Guaruja, and 19 of them occurred in Vila Baiana (COMPDEC — Guaruja). Although
several landslides were triggered by heavy rainfall, 6 of them happened with a threshold
< 80,0 mm. That’s the case on February 11th, when a landslide occurred with accumulated

precipitation for 24h and 72h of 2,9 mm and 3,3 mm, respectively. Another landslide was
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reported on April 6th, despite the lowest rainfall values (0,0 mm in 24h and 2,9 mm in
72h) (COMPDEC — Guaruja).

Figure 6.20. Accumulated rainfall for 24h and 72h in Vila Baiana in 1993.
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In 2009, 31 landslides were documented in Vila Baiana, and only 3 of them happened
with a threshold < 80,0 mm. It is interesting to enhance that on May 13th, a landslide
occurred, but it wasn’t triggered by rainfall (0 mm was registered for both 24h and 72h)

(COMPDEC - Guarujd). This disaster probably has anthropic influence.

59



Figure 6.21. Accumulated rainfall for 24h and 72h in Vila Baiana in 2009.
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Similar results were founded in 2010 when 26 landslides were documented in Vila
Baiana, and 6 of them were triggered with a threshold < 80,0 mm. A landslide happened
on April 14th, despite the absence of rain for 72h (COMPDEC — Guaruja). These cases

foment the idea of anthropic contribution to trigger landslides.

Figure 6.22. Accumulated rainfall for 24h and 72h in Vila Baiana in 2010.
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In 2020 (Figure 6.23), extremely heavy rainfall occurred, triggering 138 landslides in
Guaruja municipality, of which 7 of them were at Vila Baiana. Despite the several days
with constant rainfall, on March 3™ more than 320 mm of rainfall were registered by rain
gauges and PCDs in 24h.

Figure 6.23. Accumulated rainfall for 24h and 72h in Vila Baiana in 2020.

450
400
350 320
300
250
200
150

100 63,3
38,1

<0 25,2 252
0  — I -

01/03/2020 02/03/2020 03/03/2020

383,3

B Accumulated rainfall (mm) 24h B Accumulated rainfall (mm) 72h

Source: Adapted from DAEE (2020).

Most landslides happen during the summer (December to March), but January, February,
and March are the months with higher landslide records. From 1991 to 2020, March was
the month with more landslide events, followed by February (COMPDEC — Guaruja), as
presented in Figure 6.24.

Figure 6.24. Total landslide events per month from 1991-2020
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Therefore, the analysis of the rainfall average is essential to determine if the mentioned
months had experienced extreme climatic events, such as heavy rainfalls. The DAEE
(Water and Electrical Energy Department of S&o Paulo State - in Portuguese:
“Department Departamento de Aguas e Energia Elétrica do Estado de SP”) provides
rainfall data since 1937; thus, Figure 6.25 presents the monthly average rainfall for the
years 1991, 1993, 2009, 2010 and the global average (timeframe 1937-2020).

Figure 6.25. Monthly average rainfall (mm).
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Figure 6.25 shows that both years 1991 and 1993 had higher rainfall values during March.
In 2009, the month with the highest rainfall average was February and March was the
month with the lowest volume of rain. Similarly, March of 2010 registered lower values

of rainfall. However, January was the month with the most rainfall events.

Furthermore, Figure 6.26 compares the variation of monthly rainfall for the mentioned
year with the global average.
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Figure 6.26. Comparison among rainfall variation.
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Figure 6.26 shows that in January 1991, the total amount of rainfall was 36% lower than
the global rainfall (1937-2020). However, February and March presented an increase of
0,15% and 81,52%, respectively, compared with the worldwide average. In 1993,
February registered a rainfall value of 3,02% lower than the global one. But during
January and March, the registered rainfall was higher than the global (3,25% and 62,26%,

respectively).

In 2009, the month with the highest precipitation values was February, with 14,42% more
rain than globally expected. In January, the total amount of rain (209,2 mm) was 30,59%
below the global average. And March presented 44% less rainfall than expected for this
month. The year 2010 registered the highest rainfall values for January, with a total of
476,8 mm, corresponding to 58,19% more rain than expected. February also had higher

rainfall values (357,4 mm), meaning an increase of 34,87% of the global average rainfall.

A correlation between the rainy years with EI-Nifio and La Nifia phenomenon was also
investigated. The EI-Nifio South Oscillation (ENOS in Portuguese) and La Nifia are
natural phenomena related to the abnormal variation of the Sea Surface Temperature
(SST). These variations are calculated based on NOAA’s National Oceanic and
Atmospheric Administration) indicator Ocean Nifio Index (ONI). ONI tracks the rolling
3-month average SST in the east-central tropical Pacific. It is considered EI-Nifio when a

positive variation of 0,5 or higher of the SST occurs, meaning a warning in Pacific Ocean
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water. La Nifia is the opposite when the sea temperature decreases by -0,5 or more.
Moreover, these phenomena can be classified by their intensity: weak (variation of SST
between 0,5 - 0,9), moderate (1,0- 1,4), Strong (1,5 — 1,9), and very strong (> 2,0). Table

6.10 presents the occurrences of both phenomena and their intensity from 1991-2021.

Table 6.10. EI-Nifio and La Nifia events during 1991-2021.

Period Phenomeno Intensity
1991-1992 El Nifio Strong
1994-1995 El Nifio Moderate
1995-1996 La Nifia Moderate
1997-1998 El Nifio Very Strong
1998-2000 La Nifa Strong
2002-2003 El Nifio Moderate
2004-2007 El Nifio Weak
2007-2008 La Nifa Strong
2009-2010 El Nifio Moderate
2010-2012 La Nifa Strong
2014-2015 El Nifio Weak
2015-2016 El Nifio Very Strong
2017-2018 La Nifia Weak
2018-2019 El Nifio Weak

2020-Present La Nifia Moderate

Source: Adapted from Golden Gate Weather Service (2022).

In the southeast Brazilian region, the consequence of EI-Nifio is an increase in rainfall
volume and intensity, while in the northeast region, droughts are common. Meanwhile,
the La Nifla phenomena generate a dry clime in the southeast region and a rainy season

in the northeast of the country.

Analyzing Table 6.10, it is possible to associate the volume of rainfall for 1991, 2009,
and 2010 with EI-Nifio. Moreover, the years 2005 and 2015, both marked by the influence
of EI-Nifio (intensities weak and very strong, respectively), had an average annual rainfall
>188,0 mm (Figure 6.18). Notwithstanding, from 1990-2000, the EI-Nifio phenomenon
occurred three times, with intensities varying from Very Strong, Strong, and Moderate,
and as mentioned in Section 6.1.4, 482 landslides were documented. From 2000-2010,

moderate EI-Nifio had its influence and was associated with the urban sprawl, inducing
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473 landslides. This corroborates the hypothesis that a climatic phenomenon justifies

some heavy rainfalls.

However, the exception happened during 1996, which was marked by the influence of La
Nifia but also had an annual rainfall average of 189,6 mm. During 2010-2020, the La-
Nifia was more representative, but heavy rainfalls happened and triggered landslides. That
is the case of March 3" 2020, when a heavy rainfall with almost 320mm of rain, triggered

138 landslides all over the Guaruja municipality.

Heavy rainfalls have been proved to trigger landslides, and the EI-Nifio impacts the rainy
season. Therefore, knowing if the current year under study is influenced by EI-Nifio helps

to determine the probability of more heavy rainfall events and their consequences.
6.3 Analysis of topographic and lithological aspects correlated with landslides

Certain areas are prone to suffer more from landslides than others. Different geology and
lithologies might contribute to landslide susceptibility. Therefore, thematic maps
(hypsometry, aspect, curvature, slope, and pedology) and tables containing the Frequency
of Distribution (Fd) of each class, Scars Concentration (SC), and the Landslides Potential
(LP), were prepared to identify which characteristics prevail in landslide-prone areas. The
scar concentration (SC) determines the scar distribution in each stability class. It is the
ratio between the number of cells (of each class) affected by the landslide with the total
cells of that class. The landslide potential (LP) indicates the distribution of the landslides
among the stability classes. It is the ratio between the number of cells of each class
affected by the landslides with the total cell affected in the study area. And the Frequency
of Distribution (Fd) represents the distribution of each stability class, calculated by the
ratio of the cell number per class to the total cells in the study area (VIEIRA, 2007;
LISTO; VIEIRA, 2015; VIEIRA; RAMOS, 2015; LISTO; et. al., 2018).

The altitude might influence the landslide-prone areas due to the pluviometry variation at
different heights, meaning that the orographic rain varies accordingly to the altitude.
Observing the hypsometry map, presented in Figure 6.27 and Table 6.11, it is noticed that
91.09% of the landslides happened in elevations ranging between 30-150 m above sea

level.
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Table 6.11. Percentage distribution of scar concentration, landslide potential, and frequency for
each hypsometry class.

Hypsometry
Class Scar Concentration Land_slide Frequency Distribution

(%) Potential (%) (%)

0-20m 59.11 0.47 72.12
20 - 90m 36.60 0.29 9.92
90 - 150m 3.95 0.03 9.05
150 - 200m 0.33 0.00 6.28
200 - 320m 0.00 0.00 2.63

Figure 6.27. Hypsometry map of Guaruja municipality.
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In agreement with the hypsometric map, the declivity map (Figure 6.28), and the
distribution of landslides for each slope declivity (Table 6.12), indicates that the
landslide scars are concentrated in declivities above 15%. Moreover, in Guaruja
municipality, 16.3% of the area has declivities higher than 15%, as presented in the

Frequency distribution.

Figure 6.28. Declivity Map of Guaruja Municipality.
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Table 6.12. Percentage distribution of scar concentration, landslide potential, and frequency in
each declivity class.

Slope
Class Scar Concentration | Landslide Potential | Frequency Distribution
(%) (%) (%)

0-5% 17.72 1.60 65.78

5-10% 17.28 1.56 7.73
10-15% 15.78 1.43 10.19
15-30% 25.83 2.34 10.84

>30% 23.39 2.11 5.46

Notwithstanding, these areas suffer from deforestation to open space for several houses
in irregular occupations. The urbanization process decreases vegetation in such areas,
reducing evapotranspiration. Consequently, soil moisture rapidly increases during rainfall
events. When associated with slope overload, leakages, and irregular settlements, the
landslides are easily triggered (PRIETO et al., 2017; MENDES et al., 2018a; KONIG et
al., 2019, 2020, 2022). Similar results were founded by Larsen and Torres-Sanchez
(1998). Studying the frequency of landslides in three mountainous areas in Puerto Rico,
these authors identified a higher frequency of landslides in the slopes modified by human

settlements.

The thematic map of the aspect (Figure 6.29) shows the slope directions. These directions
could affect, directly and indirectly, the slope stability, due to the frequency of solar
incidence, soil moisture, and vegetation type (VIEIRA, 2007). Table 6.13 presents the
distribution of scar concentration, landslide potential, and frequency for each Aspect

class.

68



Table 6.13. Distribution of scar concentration, landslide potential, and frequency in Aspect classes

of Guaruja.
Aspect
Class Scar Concentration Landslide Potential Frequency Distribution

(%) (%) (%)

N 25.84 12.87 11.94
NE 5.93 2.95 10.22
E 12.63 6.29 12.27
SE 2.39 1.19 15.27
S 2.36 1.18 11.90
SW 3.10 1.54 10.36
W 10.71 5.33 11.25
NW 37.05 18.45 16.79

Figure 6.29. Aspect map of Guaruja municipality.
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Analyzing Figure 6.29 and Table 6.13, it is observed that most slopes have Northwest
(16.79%) and Southeast (15.27%) directions. Additionally, the slopes with a north
direction (N, NE, and NW) represent 38.95% of the area, while the south-oriented slopes
(S, SE, and SW) occupied 37.53% of the site. Observing the scar concentration, the slopes
facing NW present 37.05% of the landslides, and 25.84% happened in the North. Those
slopes facing E, NE, and SE sum up 20.94% of the landslides registered, while slopes
facing W, SW, and NW sum up 50.86% of documented landslides.

Some studies found a correlation between the slope aspect and landslide susceptibility.
For example, both Vieira (2007) and Gao (1993) identified that the most frequent
landslides in their respective study areas occur on slopes with a South orientation (S, SE,
and SW). However, Guimardes (2000) identified that the susceptibility in the Tijuca
watershed is higher on slopes facing NW. A similar result is found in Guaruja; although
the frequency of class distribution is similar, the slopes facing NW and N have together
62.89% of the landslide scars. These areas deserve more attention during the rainy season
since the landslide susceptibility is higher than in other areas. Further analysis will

determine if there is a correlation between landslides with the curvature and pedology.

The curvature map shows if a slope is convex, rectilinear, or concave. The type of
curvature is related to the processes of water accumulation and changes in the soil’s
amount of organic matter and minerals due to gravity. Observing the curvature map
(Figure 6.30) and the distribution of frequency, scar concentration, and landslide
potential (Table 6.14), it is noticed that 32.63% of Guaruja slopes are concave and 31.19%

are convex. The rectilinear areas represented 36.17% of the municipality.
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Figure 6.30. Curvature map of Guaruja municipality.
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Table 6.14. Distribution of scar concentration, landslide potential, and frequency according to

slope's curvature.

Curvature
Scar Concentration Landslide Potential Frequency Distribution
Class (%) (%) (%)
Concave 40.03 0.44 32.63
Rectilinear 0.69 0.01 36.17
Convex 59.28 0.65 31.20

The convex area is usually more susceptible to landslides due to water accumulation and
increased soil moisture (CANAVESI et al., 2013). According to IPT (1986 and 1988) and

Vieira (2007), the slopes in the Serra do Mar are predominantly rectilinear and steep. In
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the mid-slope sectors, the rectilinear and convex profiles alternate, and if associated with
declivities above 15%, the landslide susceptibility of the area increases. Analyzing the
distribution of the landslide’s scars, it is noticed that 59.28% of the landslide happened

on a convex slope and 40.03% on a concave one.

Additionally, the landslide susceptibility should be analyzed accordingly to the soil types.
Each soil has unique physical properties, and these characteristics change the slope
susceptibility. Figure 6.31 shows the correlation map between the landslides and the soils
in Guaruja. Table 6.15 presents the landslide scars in each soil class, its distribution, and

landslide potential.

Table 6.15. Distribution of scar concentration, landslide potential, and frequency according to

pedology classes in Guaruja.

Pedology

Class Scar Concentration Landslide Potential Frequency Distribution
(%) (%) (%)
Urban area 25.44 0.57 26.94
Cambisols 65.12 1.46 34.15
Podzols 0.00 0.00 18.44
Solonchaks 9.43 0.21 13.50
River 0.00 0.00 6.87
Neosoil 0.00 0.00 0.09

Most landslides (65.12%) happened in Cambisols, followed by 9.43% registered in
Solonchaks. There is no record of landslides in the Neosoil and Podzol classes. However,
25.44% of the landslides occurred in urban areas on the edge of the Cambisols and steep
slopes. Colluvial layers and landfill deposits cover these areas, and as mentioned in item
3.1, this type of soil cover could suffer ruptures and become a landslide (MENDES et al.,
2018a). Furthermore, 34.15% of the municipality is covered by Cambisols, and 26.94%

is an urban area.

In Guaruja municipality, a combination of geological and physical aspects characterizes
the most susceptible areas. Therefore, convex, or rectilinear slopes with altitudes above
30 m, declivities higher than 15%, Cambisols, and urban areas covered by colluvium and

landfill deposits are very likely to suffer landslides.
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Figure 6.31. Correlation between landslides and pedology in Guaruja.
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Nonetheless, the soil behavior is modified due to the variation of moisture content, thus,
saturated soils can trigger landslides. Further analysis of soil saturation during a landslide

event was prepared using the PCD (data acquisition platform) data from CEMADEN.
6.4 Analysis of landslide events and soil moisture

When combined, some geological and physical characteristics increase the probability to
develop into a landslide. The knowledge of rainfall intensity and the influence of
phenomena such as EI-Nifio helps to understand the quantity of landslides occurrences,

providing a “global” parameter of the situation.
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The identification of landslide-prone areas demands more data such as soil moisture.
Some landslides happened without rainfall to justify the disaster. In this case, two possible
situations could have triggered such events: human influence (anthropic changes in slope)
or high soil moisture values. Below it was analyzed the landslides from March 3rd, 2020,
and the soil moisture behavior. Soil moisture and pluviometry data were acquired from
the CEMADEN PCD, installed in Vila Baiana.

On March 3rd, heavy rainfalls hit Guaruja municipality, and 138 landslides were
recorded. According to CEMADEN, the rain gauge registered 320,0 mm in 24 hours,
10% above of what was expected for the entire month (monthly average of 289,66 mm).
Figure 6.32 shows the soil moisture and the pluviometry recorded during 72 h (March 1st
to March 3rd of 2020) by a PCD installed in Vila Baiana.

Figure 6.32 shows that the accumulated rainfall rapidly increased after 54 hours. An
extreme heavy rain occurred in the early morning of March 3rd, increasing the volume of
accumulated rainfall. All the sensors indicate that the soil moisture changes agreed with
the rainfall intensity. The initial soil moisture (Oh) at 0.5m depth was 38.64%, and the
sensor's registered the highest value (39.27%) after 60h. The initial soil moisture at the
1.0m depth sensor was 40.94%, with the highest value of 41.49% at 66h. Moreover, the
1.5m sensor depth had minimal variation (0.26%) of soil moisture during the analyzed
period. At Oh, this sensor registered soil moisture of 42.92%, and the maximum registered
was 43.18% after 66h. At 2m depth, the initial soil moisture was 34.38% and increased
to 35.8% after 66 hours. Furthermore, the 2.5m sensor registered initial soil moisture of
46.84%, and after 66h, the sensor indicated an increase of soil moisture to 47.28%. This
is the highest soil moisture value documented during this 72 h.
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Figure 6.32. Variation of soil moisture and rainfall intensity during 72 h (March 1% to March 3
of 2020) in Vila Baiana.
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According to CEMADEN (2020), soil moisture of 50% means saturated soil, and with
low cohesion between its particles, prone to fractures and landslides. The deepest sensor,
at 3m depth, had a different behavior: the initial soil moisture (0Oh) was 44.65%. During
the first 12h, the soil moisture decreases to 44.60%. But due to the rainfall, it increased,
reaching 45.02% at 66h.

Despite the soil moisture variation in agreement with the rainfall intensity, it is essential
to remind that the initial values of soil moisture at all depths were above 34%, meaning
that the soil wasn't very cohesive and had the propensity to fracture and trigger landslides.
The soil moisture sensors show lower values on days without rain, as presented in Figure
6.33.

Figure 6.33 represents the soil moisture during 72h, from July 1st to July 3rd, 2022. In
July, there are usually fewer rainfall events in Guaruja, with extended drought periods.
Therefore, it is possible to compare the soil moisture values during drought and rainfall.
Figure 6.33 shows that no rainfall was registered during the 72h considered. The sensor
at 0.5m depth indicates a decrease in soil moisture values, from 34.76% at Oh to 34.33
after 72h. Similar behavior is shown at the 1.0m depth sensor: the initial soil moisture
(Oh) was 38.45% and decreased to 38.35% after 72h. Both sensors at 1.5m and 2.0m depth
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presented the minimum variation: initial soil moisture of 40.09% and 30.07%,
respectively, with a decrease to 41.02% (at 1.5m) and 29.99% (at 2.0m). A reduction in
soil moisture values was also observed at 2.5m depth, yet this sensor had the highest
values. At Oh, the soil moisture was 43.86%, and after 72h, the value decreased to 43.74%.
At 3.0m depth, the last sensor had initial soil moisture of 38.97% which changed to
38.81% after 72h.

Figure 6.33. Variation of soil moisture and rainfall intensity during 72 h (July 1% to July 3" of
2022) in Vila Baiana.
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Comparing both soil moisture values presented in Figure 6.32 and Figure 6.33, one
verifies that the highest soil moisture values occurred at 2.5m depth. Most of the landslide
surface ruptures in Guaruja had depths ranging between 0.5 to 3.0m. During the landslides
of March 3rd, 2020, the 2.5m sensor indicated 47.28% of soil moisture. In July of 2022,
the lowest soil moisture value registered was 43.74%, meaning that even during periods
of drought, the soil moisture at 2.5m is above 40%. Therefore, any rainfall rapidly

increases the soil moisture, and this soil layer can be saturated, triggering landslides.

To predict and avoid disasters, the knowledge of the soil's initial conditions, such as soil

moisture, besides geotechnical and physical parameters, is necessary.
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6.5 Modeling with TRIGRS

The mathematical model TRIGRS was chosen to determine the landslide-prone areas in
Guaruja municipality and the Vila Baiana neighborhood. As mentioned in Section 3.4, this
model calculates the Factor of Safety (FS) variation using the soil’s physical and

hydrological parameters.

The geotechnical parameter used to model the landslide-prone areas were acquired from
Wolle (1988) and are presented in Table 6.16.

To verify the influence of the soil moisture in the initial conditions for the assessment of
slope stability, a comparison between the FS of Vila Baiana and Guaruja between March
3% 2020, and July 1st, 2022, was performed using the model TRIGRS.

Table 6.16. Geotechnical parameters used as TRIGRS inputs.

. Internal Hydraulic Hydraulic Specific

Zones D(enﬁ;h C?EFE,Z:)O” friction Corzlductivity Di)lifusivity V\Beight
angle (9 (m/st (m/s™ (KN/m3)
1 0-1m | 4.00E+03 39 1.0x10-5 6.0x10-6 1.95E+04
2 1-2m 1.00E+03 34 1.0x10-5 6.0x10-6 1.71E+04

In March 2020, during the summer and rainy seasons, the soil moisture was higher (as
presented in Section 6.4), whereas in July 2022, during the dry winter season, there are
lower soil moisture levels. Table 6.17 shows the rainfall values used for both periods. The
results of the comparison between the landslide-prone areas from March 1% 2020, and July
1%t 2022, are presented in Figure 6.34 for Guaruja municipality and Figure 6.35 for Vila

Baiana. Black circles in both figures highlight areas with major changes in the FS.

Table 6.17. Rainfall values were used as inputs for March 1st, 2020, and July 1st, 2022.

Date Rainfall (m/s)
March 1% 2020 5.21x10-7
July 1% 2022 2.31x10-8

Regarding Figure 6.34 and Figure 6.35 it is observed that on March 1st of, 2020, more
areas are susceptible to landslides, with FS < 0.5. On July 1st of, 2022, some areas that had
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FS< 0.5 in March 2020 now display FS 0.5 — 1.2. The black circle in both images indicates
areas with expressive changes in the FS. Table 6.18 presents a comparison with the

proportion of areas according to FS.

Table 6.18. Comparison between the proportion of stability classes on March 1st of 2020 and July
1st of 2022 for both Vila Baiana and Guaruja.

Count (%) class Vila Baiana Count (%) class Guaruja

March 1st 2020 | July 1st 2022 | March 1st 2020 | July 1st 2022
FS<05 6.07 3.99 4.05 1.14
05-1.0 16.58 16.71 14.94 14.06
1.0-1.2 21.59 22.40 11.84 14.95
1.2-15 6.10 7.12 2.58 3.07
FS>15 49.66 49.79 66.60 66.78
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Figure 6.34. Comparison between landslide-prone areas from March 1st, 2020, and July 1st, 2022, for Guaruja.
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Figure 6.35. Comparison between landslide-prone areas from March 1st, 2020, and July 1st, 2022,

for Vila Baiana.
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Analyzing Table 6.18, it is noted that in March 2020 at Vila Baiana, 6.07% of the area had
FS<0.5, while in July 2022, only 3.99% of the area presented FS lower than 0.5. A similar
pattern is observed in Guaruja: 4.05% of the area has FS<0.5 in March 2020, and only
1.14% during July 2022. These results indicate that these areas easily decrease the FS

during rain events and, consequently, must be monitored cautiously.

However, even during periods of drought, there are slopes with FS< 0.5, which means that
these areas are very unstable and have a high chance of suffering from soil ruptures.
Besides that, fewer changes in the proportion of regions with FS between 0.5 -1.0 are
noticed. In Vila Baiana, 16.58% of the areas have FS between 0.5 and 1.0 during March,
while in July, the proportion is 16.71%. For Guaruja, in 2020, 14.94% of the areas have FS
from 0.5 to 1.0, and 14.06 in 2022. These areas are unstable, no matter if it is a rainy or

drought season and must be constantly monitored to avoid disasters.

To determine if the model TRIGRS is suitable to become an early warning system, a
rainfall period was chosen to analyze how the model calculates the FS variation. From
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February 29th to March 3rd, several heavy rainfalls occurred in Guaruja and triggered
landslides (CEMADEN, 2020). Table 6.19 shows the precipitation levels used in TRIGRS.

Table 6.19. Rainfall values from February 29th to March 3™ of 2020.

Date Time (h) Rainfall (m/s)
Feb 29 24h 1.8x10-7
March 1 48h 5.21x10-7
March 2 72h 8.4x10-7
March 3 96h 1.96x10-6

Modeling 96 hours allows to observe the changes in slope stability. With several
consecutive rainy days, the soil moisture increases, and consequently, the slope stability
decreases. The variation of the Factor of Safety represents the changes in slope stability,
indicating those areas are more susceptible to a soil rupture. Figure 6.36 and Figure 6.37
present the results of the FS variation from February 29" to March 3" in Guaruja and Figure
6.38 in Vila Baiana.

In Figure 6.36, Figure 6.37, and Figure 6.38, it is noteworthy that the FS changes are in
agreement with the rainfall intensity. On February 29th, the volume of rainfall registered
was 15.51 mm, and only a few sections had a FS<1 (represented in red). During the next
72h, March 1% and 2", the rainfall volume was 45.05 mm and 52.78 mm, respectively. Due
to the increase in soil moisture and the constant rainfall, more areas become susceptible to
landslides, which is represented by the increase of areas with FS<1. On March 3rd, heavy
rainfall in Guaruja triggered several landslides. After 96h and four days of consecutive
rainfall, most areas of Vila Baiana have a FS<1, and several landslides were registered in
areas with FS<0.5.

The results show that the FS changes agree with the rain intensity and duration. The
landslide scars corroborate with the areas computed by TRIGRS as unstable (FS<1),
validating the model’s performance. To validate the TRIGRS modeling, a landslide
inventory was used. The landslide scars were collected from both satellite images of
Google Earth and documents from Guaruja Civil Defense. Moreover, 197 landslides were
registered in the landslide inventory from 2019-2020, which were used to validate the
TRIGRS results.
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Figure 6.36. FS variation from February 29" to March 3™ in Guaruja.
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Figure 6.37. FS variation from March 2" and 3 in Guaruja.
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Figure 6.38. FS variation from February 29th to March 3rd in Vila Baiana.
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Two statistical indexes were defined to confirm TRIGRS efficiency: the Success Index (Sl)
and the Error Index (EI). The SI, presented in Equation 6.2, corresponds to the percentage
of correctly classified unstable classes, and the El (Equation 6.3) indicates when the
computed unstable class does not correspond to verified landslide scars (SORBINO et al.,
2010; SCHWARZ; MICHEL, 2016; PAUL et al., 2018; CIURLEO et al., 2019; KONIG
etal., 2022).

SI = (/i—:) %100 (6.2)

The variable A;,, is the computed unstable areas within the triggering areas, and A4,,,,; are

the triggering areas.

El = (M) %100 (6.3)

Astb
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The variable 4,,; is the computed unstable areas outside the triggering areas, and Ay, IS
the stable area.

This statistical index was calculated only for Guaruja municipality because in Vila Baiana,
on March 3, 2020, only seven landslides were registered, which is not enough to calculate

statistical indexes. Table 6.20 presents the Sl and El index for Guaruja municipality.

Table 6.20. Success and Error index for Guaruja municipality.

Location | Success Index (SI) | Error Index (El)
Guaruja 54.24 % 17.11%

Analyzing the SI and EI of TRIGRS results, it is observed that the model had a Sl of
54.24% and an El of 17.11%. High values of Sl and lower values of El indicate the model’s
efficiency in correctly identifying landslide-prone areas and its usefulness as an early
warning tool. Notwithstanding, the scar concentration (SC), landslide potential (LP), and
Frequency of distribution (Fd) were calculated to improve the validation of the TRIGRS

results. These indexes' results are presented in Figure 6.39.

Figure 6.39. Scar concentration, landslide potential, and Frequency of distribution for March 3rd
of 2020 in Guaruja.
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Figure 6.39 shows that 67.44% of the landslide scars are in FS < 1.0, and these classes
represent 18.43% of the Guaruja area. The classes considered stable (FS > 1.0) have
landslide scars (32.56%), which corroborates the assumption that anthropic influences

enhance the chances of soil rupture.

Therefore, it is important to analyze the correlation among the susceptibility map from IPT,
the landslide inventory, and TRIGRS results. Figure 6.40 presents the IPT susceptibility

map and the landslide occurrences.

Figure 6.40. IPT's susceptibility map of Guaruja and landslide occurrences.
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Figure 6.40 shows that most declivity areas have high or medium levels of susceptibility,
with several landslides recorded. The areas with a high level of susceptibility registered
83.93% of the landslides. Areas with medium susceptibility levels recorded 7.14% of
landslides and 8.93% in classes with a low level of susceptibility.

Figure 6.41 shows the comparison between the instability areas from TRIGRS (FS< 1.0)
and the IPT susceptibility map. The red color is usually used to represent the most unstable
areas. To differentiate the landslide-prone areas, a light red was applied to indicate
TRIGRS unstable areas, and yellow to represent the IPT unstable areas.

Figure 6.41. Comparison between the instability areas from TRIGRS and IPT susceptibility map.
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Figure 6.41 shows that TRIGRS unstable areas match the high susceptibility class from the
IPT map. The results show the applicability of TRIGRS to identify the landslide-prone
areas in Guaruja, and the possibility to be applied as an early warning system for landslides.
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6.6 Modeling with SINMAP

With a different approach, the mathematical model SINMAP is a probabilistic model to
determine the landslide-prone areas in Guaruja municipality and the Vila Baiana

neighborhood. The Stability Index (SI) indicates the most susceptible areas.

The SINMAP uses a range of values (lower and higher values) to determine the landslide-
prone areas. Therefore, the range of values is the same parameters used in both scenarios
of the TRIGRS model. Table 6.21 presents the geotechnical parameters used in SINMAP,
which were acquired from Wolle (1988). Figure 6.42 shows the SINMAP model result

for Guaruja municipality, and Figure 6.43 for Vila Baiana.

Table 6.21. Geotechnical parameters used in SINMAP.

Cohesion _ In_ternal Hyd raqli_c Spepific

(kPa) friction angle | T/R (m/h) Conductivity Weight

) (m/ s?) (KN/m3)
Lower | 4.00E+03 39 46 1.0x10-5 1.71E+04
High | 1.00E+03 34 142 1.0x10-5 1.71E+04

Analyzing the results of the landslide-prone areas of Guaruja (Figure 6.42), it is observed
that the lower and upper threshold limits encompassed more than 17.11% of the area,
characterizing the area as a region with a high probability of landslides. However, the
stable class, which represents the flat area of Guaruja, represents 74.05% of the
municipality area. Therefore, excluding the stable class, it is observed that 65.92% of the

area has high susceptibility to landslides.

For Vila Baiana, the lower and upper threshold limits represent 27.75% of the area. By
excluding the stable class, which represents 57.72% of the neighborhood, the landslide-
prone area is 65.65%. Moreover, three landslides were registered in the lower threshold

limit, two in the Quasi-stable class, and two in the Moderate-stable limit.

To validate the SINMAP results, the Success Index (SI), Error Index (EI), Scar
Concentration (SC), Landslide Potential (LP), and Frequency of distribution (Fd) were
calculated. The statistical indexes were calculated for Guaruja only, due to the lower value
of landslides (only seven) in Vila Baiana. The Sl and EI results are presented in Table
6.22.
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Table 6.22. SINMAP's Success and Error indexes.

SINMAP
Success Index (SI) Error Index (EI)
17.48 6.71

The statistical index of SINMAP identified a Success Index of 17.48 and a 6.71 Error
Index. The model has lower values of Sl and El, indicating that the model’s performance
was not satisfactory. To understand the model's Sl and El, it is necessary to analyze the

correlation between the landslides and the model’s unstable areas.
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Figure 6.42. Results of landslide-prone areas with Sinmap model for Guaruja.
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Figure 6.43. Results of landslide-prone areas with Sinmap model for Vila Baiana.
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Figure 6.44 shows the values of Scar Concentration, Landslide Potential, and Frequency

of distribution.

Figure 6.44. SC, LP and Fd of SINMAP model for Guaruja.
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Figure 6.44 identified that 37.87% of the landslide scars happened in the stable class,
followed by a high threshold limit (30.66%). The upper threshold limit has 10.86% of the
landslide’s scars, while the Quasi-stable class has 13.10%. These values corroborate with
the Success and Error index (Table 6.22) since several landslides’ scars were in areas with

medium or low susceptibility.

The SINMAP results were compared with the IPT susceptibility map, as presented in
Figure 6.45. The red-light color indicates the unstable classes from the SINMAP (SI <
1.0) and in yellow the high susceptible areas from the IPT map.

Figure 6.45. Comparison between SINMAP unstable areas and IPT susceptibility map.
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Figure 6.45 shows that the probabilistic model SINMAP classified fewer areas as unstable
than the IPT map. This result confirms the lower value for the SI index and explains why
several landslides were in areas with medium or low susceptibility. The model

underestimates the landslide-prone areas.

92



6.7 Comparison between TRIGRS and SINMAP results

The two mathematical models TRIGRS and SINMAP were applied to identify the
landslide-prone areas. Due to the specificity of each model, the results are different. Their

different approach was summarized in Table 6.23.

Table 6.23. Comparison between SINMAP and TRIGRS different approaches.

SINMAP TRIGRS
Cohesion Cohesion
Internal friction angle Internal friction angle
RIT Soil depth
Input parameters DEM DEM

Hydraulic Conductivity
Hydraulic Diffusivity

Rainfall
Data from the study area Multi-resolution calibration Parameter cell by cell
Output results Stability Index (SI) Factor of Safety (FS)
Output File format Shapefile ASCII
Interface ArcView 3.3 Command Line
Mathematical approach Probabilistic Deterministic

Therefore, the reliability of both models was evaluated through the Contingency table
(FAWCETT, 2006), and SI/El index (SORBINO; et. al., 2010). Figure 6.46 presents the
comparison between the SINMAP and TRIGRS results for Vila Baiana.
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Figure 6.46. Comparison between SINMAP and TRIGRS results for Vila Baiana.
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Observing Figure 6.46, there is a visual difference in the unstable classes for both models.
The SINMAP model classified 27.75% of areas within the upper and lower threshold
limit (SI < 1.0) and the TRIGRS model identified 22.65% of the area as unstable (FS
<1.0). Moreover, the probabilistic model classified only 5.21% of Vila Baiana as Quasi-
stable (1.0 > Sl < 1.2), and TRIGRS computed 21.57% of the area. The model SINMAP
estimated 63.05% of Vila Baiana as stable (S| > 1.2; Moderately stable and stable limits)
and 55.78% of the area for TRIGRS. Figure 6.47 presents the comparison between
stability classes computed by both models.
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Figure 6.47. Stability classes computed by TRIGRS and SINMAP for Vila Baiana.
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Figure 6.48 shows the comparison between SINMAP and TRIGRS results for Guaruja

municipality, and the stability areas computed by both models are presented in Figure

6.49.

TRIGRS model estimated 18.98% of the study area as unstable (FS < 1.0), while
SINMAP calculated 17.11% of areas with SI < 1.0 (upper and lower limits).
Notwithstanding, the probabilistic model determined 5.21% of the area as Quasi-stable
(1.0 > S1 < 1.2), and TRIGRS computed that 11.83% of Guaruja has 1.0 > FS <1.2. The
stable classes represented 69.19% of the municipality for TRIGRS and 77.68% for

SINMAP.
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Figure 6.48. Comparison between SINMAP and TRIGRS results for Guaruja.

SINMAP

Legend

* Landslides
[ vila Baiana
I Upper threshold
[ Lower threshold
4 [ Quasi-stable
Coordinate System: SIRGAS 2000 UTM Zonk;n 23S - MOderately_Stable

Projection: Transverse Mercator I stable
Datum: SIRGAS 2000

TRIGRS

Legend

* Landslides
[ Vila Baiana
FS
ElFs<05
Elo5-1.0
CJ1.0-1.2
Coordinate System: SIRGAS 2000 UTM Zone 23S - 12-135

Projection: Transverse Mercator Brs>15
Datum: SIRGAS 2000

96



Figure 6.49. Stability classes computed by TRIGRS and SINMAP for Guaruja.
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Comparing the Sl and EI indexes from both models (Table 6-24), the model SINMAP
had a lower value of Sl and EI than TRIGRS. According to Sorbino et al., (2010), the
ratio between SI and EI indicates the model’s efficiency to represent the area’s reality.

The model with a higher value of SI/EI had the best performance.

Table 6.24. Comparison between Success and Error indexes from both mathematical models.

Model Success Index (SI) Error Index (EI) | SI/EI
SINMAP 17.48 6.71 2.60
TRIGRS 54.24 17.11 3.17

The analysis of Table 6.24, shows that TRIGRS had the best performance to identify
landslide-prone areas in comparison with SINMAP.

The contingency table, based on Fawcett (2006), is a two-by-two confusion matrix, that
compares the model’s results. The comparison is determined by the four outcomes: true
positive (TP), false negative (FN), true negative (TN), and false positive (FP). For a
landslide analysis, the TP is when a landslide occurred in unstable areas. A false negative
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is a landslide in stable areas. True negative refers to stable areas without landslides scars,
and False positive is related to unstable areas without landslides. Table 6.25 presents the
contingency table. Therefore, the following indexes can be determined: accuracy,
precision, sensitivity, and specificity, as presented in Table 6.26. The performance is
determined by the ratio between sensitivity and the False Positive Ratio (FPR); thus,

higher values indicate better performance.

Table 6.25. Contingency table, based on Fawcett (2006).

Positive (P)

Negative (N)

True Positive (TP)

False Positive (FP)

False Negative (FN)

True Negative (TN)

Table 6.26. Statistical indexes are calculated from the Contingency table.

Index Parameters Performance
VP +VN
Accuracy —_
P+ N
.. TP
Precision -
TP + FP
L TP Sensitivity
Sensitivity 5 PR
TN
Specificit _
P y FP+ TN
False Positive Ratio FP
(FPR) N
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Table 6.27 presents the results of the contingency table for both TRIGRS and SINMAP.




Table 6.27. Contingency table for SINMAP and TRIGRS models.

Index SINMAP TRIGRS
Accuracy 0.829 0.820
Precision 0.003 0.026

Sensitivity 0.415 0.965
Specificity 0.829 0.819
False Positive Ratio 0.171 0.181
Performance 2.435 5.348

The analysis of Table 6.27 shows that the TRIGRS model had a better performance than
SINMAP. Since SINMAP is a probabilistic model, there is a tendency to overestimate
the unstable areas. The best model to identify unstable areas is that one whose results of
the most unstable class coincide with the landslides scars, and which represents the minor
area of the study basin (HUANG; KAO, 2006; DIETRICH; et. al., 2011; PARK; et. al.,
2013; ZIZIOLI et al., 2013; MICHEL,; et. al., 2014; NERY; VIEIRA, 2015).

The TRIGRS model has provided the most realistic scenarios when compared to Sinmap,
due to its capability to evaluate the transient pore-water pressure during rainfall events.
The steady-state hydrology approach from Sinmap leads to widespread landslide- prone
areas (FRATTINI et al., 2004; SORBINO; et. al., 2010; ZHUANG et al., 2017).
Notwithstanding, TRIGRS can be applied as an early warning system for landslides.

6.8 Landslides early warning system using TRIGRS

The model TRIGRS shows its applicability in predicting landslides-prone areas during a

rainfall event. Therefore, this model can be used as an early warning system.

To accomplish that, a Python script was developed to automatically acquire the weather
forecast data from Climatempo’s API and perform the TRIGRS modeling for Vila Baiana.
The script (presented in Appendix C) provides the variation of FS for the next 24h, 48h,

and 72h, and if needed, an alert is sent.

The script uses Climatempo’s API to request Guaruja’s weather forecast, hourly for the
following 72h. The rain values from Climatempo are shown in millimeters per hour
(mm/h), while TRIGRS uses meters per second as a unit. Therefore, the rainfall values are
converted to the units used in the mathematical model. The following step is to define and

set TRIGRS configuration parameters for 3 days of rain forecast. The model is executed,
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creating the three maps of FS for 24h, 48h, and 72h. To quantify the FS variation, the
program calculates the sum of the FS values of the area for each timeframe. Following that,
the Python script compares the values for the periods considered. Moreover, the automated
process provides the percentage of cells with FS <1 for each map. The alert is sent when

the FS sum decreases by 0.22%. This workflow is presented in Appendix D.

To determine the FS threshold, several landslides that happened in Vila Baiana were chosen
(Table 6.28), and the FS variation was computed using TRIGRS. The PPDC determined a
rainfall threshold of 80mm in 72h for Guaruja. Therefore, to verify the FS variation and its
correlation with the rainfall, nine landslides were selected. Three of the landslides selected
happened with rainfall values lower than 80mm/72h. Three occurrences had values closer
to 80mm/72h, and the last three selected data happened during extreme rainfall events

(values above 80mm/72h).

Table 6.28. Landslides in Vila Baiana to determine the FS threshold.

Data Rainfall 24h (mm) | Rainfall 72h (mm) | FS 24h (%) | FS 72h (%)
10/02/2010 7.3 38.6 -0.03 -0.19
19/03/2009 43.0 43.0 -0.16 -0.43
18/10/2009 49.2 66.9 -0.18 -0.59
14/12/2010 59.4 79.6 -0.22 -0.74
17/04/2005 80.0 80.0 -0.30 -0.91
27/02/2013 82.7 82.7 -0.31 -0.95
26/03/1991 70.9 95.9 -0.26 -0.93
26/02/2009 82.1 191.5 -0.31 -1.37
23/03/1991 70.4 230.5 -0.26 -1.44

Table 6.28 shows that the decrease in slope stability is directly related to the accumulated
rainfall. Notwithstanding, this correlation validates the use of an FS threshold as an alert.
The improvement of using TRIGRS as an early warning system is the fact that the model
computes slope stability based on how much rain infiltrates in the soil, and the increase in
soil moisture decreases the FS. In addition to that, the results are maps, that help visualize
how the area will be affected by the predicted rain. Today, the early warning defined by
PPDC analyzes only the accumulated rainfall in 72h. Using this new system, the alerts will

be based on FS variation that takes soil moisture over time into consideration.
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It is important to observe that extreme events in a very short period, have become
commonplace. As presented in Table 6.9, several landslides were triggered by heavy
rainfall in 24h. From 1991-2020, 48.58% of the landslides happened with a threshold
higher than 70mm in 24 hours.

Moreover, to determine an FS threshold that could predict these extreme events, an analysis
using the methodology proposed by Tatizana et al., (1987a, 1987b) and applied by Molina
et al. (2015) e Santoro et al. (2010) e Tachini et al. (2021), among others were conducted.

This methodology consists of determining the correlation between landslides and

precipitations levels, using scatter plots adjusted accordingly with Equation 6.4.

I =k=x(Pac)™® (6.4)

In Equation 6.4, “I”” is the hourly intensity, Pac is the accumulated precipitation, k and b
are constant values of geometric adjustment. The respective values of k and b were
automatically defined by the software (Excel) using the Least Squares method, and hourly

intensity referring to the previous 24h of accumulated rainfall.

The coefficient of determination, denoted as R2, was calculated to validate the curve

projected by the scatter plot, and values close to 1 mean an improved curve adjustment.

Two criteria were used to determine the best correlation of landslide and rainfall in 24h
and 72h, as shown in Table 6.29. The results are presented in Figure 6.50 and Figure 6.51.

Table 6.29. Criteria to determine the correlation between landslide and rainfall events.

Rainfall threshold criteria
Criteria | 24 hours | 72 hours

1 60 mm 80 mm

2 80 mm 100 mm
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Figure 6.50. Scatter plot of Criteria 1 to determine the best correlation of landslides and rainfall.
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Figure 6.51. Scatter plot of Criteria 2 to determine the best correlation of landslides and rainfall.
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The best-adjusted curve corresponds to a threshold of 60 mm and 80 mm for 24 hours.
Therefore, most of the landslide occurrences happened withing this range of accumulated
rainfall values. Consequently, considering the landslide involucre from criteria 1 and 2, an

additional threshold of 60mm for 24 hours is recommended.

The PPDC already uses an accumulated of 80mm/72h as an alert. Then, to improve the
reliability of the alerts, and predict extreme events, a few tests of the FS variation,
considering 60mm of rainfall in 24h was performed. To determine the FS threshold for
24h, TRIGRS simulated scenarios for 55mm, 60mm, 65mm, 70mm, 75mm and 80mm of

rainfall in 24h, as presented in Table 6.30.

102



Table 6.30. Simulated scenarios for 24h accumulated rainfall.

Rainfall 24h (mm) FS variation in 24h (%)
55.0 -0.20
60.0 -0.22
65.0 -0.24
70.0 -0.26
75.0 -0.28
80.0 -0.30

According to Table 6.30, with 60mm of rainfall in 24h, the FS variation is 0.22%. The FS
decreases according to the increase in rainfall, thus this correlation is a linear regression,
as presented in Figure 6.52.

Figure 6.52. Correlation between the rainfall infiltration in 24 and the FS variation.
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For the early warning system, TRIGRS will calculate the slope stability based on the
weather forecast and rainfall infiltration. Rainfall of lower intensities, but with long
duration, could trigger landslides due to the increase in soil moisture. Therefore, the
advantage of using TRIGRS as an early warning system is because this model calculates
the slope stability based on how the rain forecast will increase the soil moisture of Vila

Baiana. Moreover, the results presented in Table 6.30 indicate that the FS threshold for
this early warning system is 0.22%.
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When the system starts, it acquires the weather forecast from Climatempo’s website and
calculates the slope stability. If the scenario computed indicates an FS variation equal to or
higher than the defined threshold for 24h (FS > 0.22), an alert will be emitted. Despite the
alert, the script always shows the forecast and FS variation for 24h, 48h, and 72h. The

unstable areas can be observed in the map that results from the TRIGRS calculation.

To better illustrate using concrete examples, four dates were chosen: August 8", December
12™ 13" and 16™ of 2022. August 81" was chosen because it exemplifies how the variation
of soil moisture during time changes slope stability. December 12" and 13" were chosen
due to the strong rainfall events happening in the study area. And December 16" represents
a day with a lower rainfall forecast.

Figure 6.53 presents the results of the FS variation forecast for August 8" of 2022.

Figure 6.53. FS variation forecast for August 8™, 2022, in Vila Baiana.
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Figure 6.53 shows a decrease in the FS of Vila Baiana for the following 72h. The weather
forecast indicates a 7.20 mm/h of rainfall in the next 24h, thus TRIGRS calculates a
decrease of 0.03% on the FS. For 48h, with a forecast of 38.40 mm/h of rainfall, the model

indicates a decrease in the FS (- 0.16%), when compared to the initial condition. And for
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60 mm/h of rainfall, the model determined that Vila Baiana FS decreases by 0.31%. This

means that there is an increased possibility of landslides occurring.

This example perfectly illustrates how the water infiltration in the soil over time, decreases
the slope stability. The accumulated rainfall for 72h is 60mm, lower than the PPDC
threshold. However, there is an increase in soil moisture during this period, decreasing the
FS. The model can prevent landslides that would occur even when the rainfall forecast is
lower than the PPDC threshold.

Figure 6.54 presents the maps with FS variation for 24h, 48h, and 72h forecast, and the

most unstable areas (in red).

Figure 6.54. FS variation for 24h, 48h, and 72h forecast in Vila Baiana on August 8" of 2022.
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Figure 6.54 presents the TRIGRS results for a 72h forecast. It is observed an increase in
areas with FS <1, and mostly the areas in red, indicating FS<0.5. These areas have higher

chances of suffering from landslides.

Figure 6.55 shows the early warning system for December 12" of 2022, and Figure 6.56

presents the maps, resulting from TRIGRS calculations.

Figure 6.55. FS variation forecast for December 12th of 2022 in Vila Baiana.

Figure 6.55 shows the FS variation of Vila Baiana for the following 72h. It is expected to
rain 8.40mm in the next 24h, indicating a decrease in the FS of 0.03%. For 48h, the
forecast is 88.60mm, thus TRIGRS calculates that FS decrease by 0.36%. With this
volume of rainfall, the soil moisture rapidly increases, and landslides can be triggered.
And for 72h forecast, the accumulated rainfall is 93.4mm, with an FS varying by 0.56%,
therefore the landslide alert is emitted. Figure 6.56 shows the maps with the FS variation

in Vila Baiana.

In Figure 6.56, the FS variation is easily perceptive. There is an increase in areas with
FS<1 for 48h forecast, and a few more for 72h. Vila Baiana is known for its high number

of landslides, and TRIGRS demonstrates how fast the slope stability can change.
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Figure 6.56. FS variation for 24h, 48h, and 72h forecast in Vila Baiana for December 12th of
2022.
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The early warning system was tested on consecutive days, to see its performance with a
possibility of changes in the rainfall forecast. Therefore, Figure 6.57 presents the results
obtained on December 13™ of 2022.

Figure 6.57 shows the forecast for December 13" of 2022. The weather forecast shows
heavy rainfall with 80.20mm in 24h, and an accumulated of 85.0mm in 72h. This early
warning system emitted the alert of a decrease in FS. Extreme rainfall in a short time can
trigger landslides and become a disaster. The FS during 24h decreased by 0.30%. For 48h
and 72h, the FS continued at 0.30% since the accumulated for the next few days was only

5mm.
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Figure 6.57. FS variation forecast for December 13th of 2022 in Vila Baiana.

Figure 6.58 presents the three maps produced by TRIGRS with the visual variation of FS
for December 13" of 2022.
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Figure 6.58. FS variation for 24h, 48h, and 72h forecast in Vila Baiana for December 13th of
2022.
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Analyzing two consecutive days (December 12" and 13™) of heavy rainfall events shows
how the forecast can change within 24h. For example, on December 12, the forecast
predicted 88.60mm of rainfall in the next 48 hours (meaning December 13"). And on
December 13", the rainfall expected for the first 24h was already 80.20mm. Either way,
the alert was emitted, due to the decrease in FS. The early warning system adapted the FS

variation, according to the new rainfall forecast.

The last example was performed on December 16" of 2022, as presented in Figure 6.59.
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Figure 6.59. FS variation forecast for December 16th of 2022 in Vila Baiana.

For December 16™, the rainfall forecast predicted 4.80mm in 24h, and the FS decreased
by 0.02%. During 48h, it is expected 9.60mm of accumulated rainfall, and the FS of Vila
Baiana decreased to 0.05%. And for 72h, the FS was 0.12% with a, accumulated rainfall
of 26.4mm. This scenario is under the FS threshold (FS > 0.22%), and no alert was
emitted. The variation of FS is presented in Figure 6.60.

Figure 6.60 shows the FS variation for 72h from December 16™. The areas with a decrease
in the FS are minimal, and a visual comparison of the maps is difficult. However, the area
represented in red, has FS<0.5, even with lower values of rainfall. Meaning that these
areas are the most susceptible ones for landslides.

The script was tested with different rainfall forecasts, and the results are promising. Using
TRIGRS as an early warning system allows for the identification of unstable areas. The
FS variation threshold increases the chances of predicting landslides that happen with

lower values of precipitation, or rainfall events of long duration.
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Figure 6.60. FS variation for 24h, 48h, and 72h forecast in Vila Baiana for December 16th of
2022.
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7. CONCLUSIONS

The identification and analysis of landslide-prone areas are essential to avoid disasters.
The use of satellite images from the Landsat sensor allows a temporal analysis of the
urban sprawl from 1990-2021. Moreover, the populational growth foments the
construction of houses in steep slope areas. Consequently, the natural vegetation was
removed, and the total vegetation cover of Guarujd has decreased. Machine learning
techniques and data mining contributed to classifying the orthophoto of the Vila Baiana
neighborhood and discriminated the objects of the area. Several constructions were
observed in steep slope areas, and most of them have precarious building standards.
Pavement streets are present only in flat areas, where it is possible to discriminate the
blocks. A vegetation cover is rare. Therefore, the area has a lot of anthropic changes,

which contribute to become more susceptible to landslides.

The rainfall events have correlations with the documented landslides in Guaruja.
However, several occurrences happened with lower levels of rainfall. And an increase in
heavy rainfalls (extreme events) in a short period, has become more common. The
importance of developing an early warning system based on the variation of Factor of
Safety is to predict the landslides considering not only the rainfall values but also the soil

moisture.

Two mathematical models were tested to verify which has better results to become part
of the early warning system: SINMAP and TRIGRS. The results show that TRIGRS has
the best capability to identify landslide-prone areas and calculate how the FS decreases

according to the volume of rainfall expected.

The early warning system, developed in Python, used TRIGRS to determine the slope
stability of Vila Baiana, and the results are coherent with reality. The model sends an alert
when the predicted FS is lower than the defined threshold. It can be replicated in different
areas, adapting it to a different context. Thus, this system does not replace the rainfall
threshold determined by PPDC and applied by the Civil Defense. On the contrary, it
should be used in parallel, as a new tool to predict landslides based on FS variation.
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8. RECOMMENDATIONS FOR FUTURE STUDIES

For future studies, it is recommended to use geotechnical parameters collected in situ, to
improve the reliability of the results. The mathematical model TRIGRS determines slope
stability based on both weather forecasts and rainfall infiltration. The soil moisture has
an important impact on triggering landslides. CEMADEN has sensors installed in several
risk areas to analyze the soil moisture at different depths. Therefore, a partnership with
the CEMADEN project is recommended, allowing automatic access to this data, through
an API. More precise soil moisture data will improve the reliability of this early warning

system, leading to improved results and accurate alerts.
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APPENDIX A - DECISION TREE GENERATED BY CART ALGORITHM IN

VILA BAIANA CLASSIFICATION.
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APPENDIX B - COMPARISON BETWEEN URBAN SPRAWL FROM 2013
AND 2021.

Legend
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[ Vegetation
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Coordinate System: WGS 1984 UTM Zone 23S Urbansarea !n AU
Projection: Transverse Mercator - Urban area in 2021
Datum: WGS 1984
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APPENDIX C - SCRIPT OF THE MATHEMATICAL MODEL TRIGRS USED
AS AN EARLY WARNING SYSTEM.

import json

import requests
import pandas as pd
import subprocess
import pathlib
import numpy as np
import os

# Climatempo's API access token
token = '' # Removed to preserve the confidentiality of the token

# API URL for the 72h forecast - 4234 = Guaruja

api url =
'https://apiadvisor.Climatempo.com.br/api/vl/forecast/locale/4234/hour
s/72?token=" + token

# Receives the APIs response
response = requests.get (api url)
response_json = response.json|()

# Turns the API's response into a Pandas' DataFrame
response df = pd.DataFrame (response json['data'])

# Creates variables for each day of forecast
rain 24 sum = 0
rain 48 sum = 0
rain 72 sum 0

# Iteration control variable
prediction hour = 0

# For each of the 72h of forecast, sum the hour's precipitation of the
appropriate variable
for prediction rain in response df['rain']:
if prediction hour < 24:
rain 72 sum += prediction rain.get ('precipitation')
rain 48 sum += prediction rain.get ('precipitation')
rain 24 sum += prediction rain.get ('precipitation')

else:
if prediction hour < 48:
rain 72 sum += prediction rain.get ('precipitation')
rain 48 sum += prediction rain.get ('precipitation')

else:
rain 72 sum += prediction rain.get ('precipitation')

# Increases the hour counter ahead of the loop wrap
prediction hour += 1

# Prints the forecast on the console

print ('24h forecast: %04.2f mm/h' % round(rain 24 sum, 2))
print ('48h forecast: %04.2f mm/h' % round(rain 48 sum, 2))
print ('72h forecast: %04.2f mm/h' % round(rain 72 sum, 2))
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# Converts mm/24h to m/s

rain 24 sum ms = rain 24 sum / 86400000
rain 48 sum ms = rain 48 sum / 86400000
rain 72 sum ms rain 72 sum / 86400000

# TRIGRS runs 1in 24-hour windows
rain 48 sum ms window = rain 48 sum ms - rain 24 sum ms
rain 72 sum ms window = rain 72 sum ms - rain 48 sum ms

# Defines and sets TRIGRS configuration parameters for 3 days of rain
forecast

trigrs input text = """Name of project (up to 255 characters)
PrevisaoScript

imax, row, col, nwf, tx, nmax

15889 141 165 21874, 1, 30

nzs, mmax, nper, zmin, uww, t, zones

10, 100, 3, 0.001, 9.8e3, 259200, 2

zmax, depth, rizero, Min Slope Angle (degrees)

-3.001, -2.4, 1.0e-9, 0.

zone, 1

cohesion,phi, uws, diffus, K-sat, Theta-sat,Theta-res,Alpha
4.0e+03, 39., 1.95e+04, ©6.0e-06, 1.0e-05, 0.45, 0.05, -0.5
zone, 2

cohesion,phi, uws, diffus, K-sat, Theta-sat, Theta-res,Alpha
1.0e+03, 34., 1.71e+04, ©6.0e-06, 1.0e-05, 0.45, 0.06, -8.
cri(l), cri(2), ..., cri(nper)

$.2e, %.2e, %.2e

capt (1), capt(2), ..., capt(n), capt(ntl)
0,86400,172800,259200.

File name of slope angle grid (slofil)
{file/location/for/slope}

File name of property zone grid (zonfil)
{file/location/for/zone}

File name of depth grid (zfil)
{file/location/for/zmax}

File name of initial depth of water table grid (depfil)
{file/location/for/depthwt}

File name of initial infiltration rate grid (rizerofil)
None

List of file name(s) of rainfall intensity for each period, (rifil())
None

None

None

File name of grid of D8 runoff receptor cell numbers (nxtfil)
{file/location/for/TIdscelGrid}

File name of list of defining runoff computation order (ndxfil)
{file/location/for/TIcelindxList}

File name of list of all runoff receptor cells (dscfil)
{file/location/for/TIdscellList}
File name of list of runoff weighting factors (wffil)

{file/location/for/TIwfactorList}
Folder where output grid files will be stored (folder)
%S

Identification code to be added to names of output files (suffix)

ThesisScript

Save grid files of runoff? Enter T (.true.) or F (.false.)

F

Save grid of minimum factor of safety? Enter Enter T (.true.) or F
(.false.)
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T

Save grid of depth of minimum factor of safety? Enter Enter T (.true.)
or F (.false.)
F

Save grid of pore pressure at depth of minimum factor of safety? Enter
Enter T (.true.) or F (.false.)

F

Save grid files of actual infiltration rate? Enter T (.true.) or F
(.false.)

F

Save grid files of unsaturated zone basal flux? Enter T (.true.) or F
(.false.)

F

Save listing of pressure head and factor of safety ("flag")? (Enter -2
detailed, -1 normal, 0 none)

-2

Number of times to save output grids

4

Times of output grids
0,86400,172800,259200.

Skip other timesteps? Enter T (.true.) or F (.false.)

F

Use analytic solution for fillable porosity? Enter T (.true.) or F
(.false.)

T

Estimate positive pressure head in rising water table zone (i.e. in
lower part of unsat zone)? Enter T (.true.) or F (.false.)

T

Use psiO=-1/alpha? Enter T (.true.) or F (.false.) (False selects the
default value, psi0=0)

F

Log mass balance results? Enter T (.true.) or F (.false.)

T

Flow direction (enter "gener", "slope", or "hydro")

gener

Add steady background flux to transient infiltration rate to prevent
drying beyond the initial conditions during periods of zero
infiltration?

T
""" % (rain 24 sum ms, rain 48 sum ms window, rain 72 sum ms window,
str(pathlib.Path( file ).parent.resolve()) + "\Outputs\\")

# Creates a new, or replaces the current 'tr in.txt' in the folder
with open('tr in.txt', 'w') as f:
f.write(trigrs input text)

# Checks whether an Outputs folder exists and creates one 1f necessary
pathlib.Path(str(pathlib.Path( file ).parent.resolve()) +
"\Outputs") .mkdir (parents=True, exist ok=True)

# Runs TRIGRS to calculate the safety factors
subprocess.run([str(pathlib.Path( file ).parent.resolve()) +
"\TRIGRS.exe"], stdout=open(os.devnull, 'wb'), stderr=open (os.devnull,
'wb'))

# Reads TRIGRS safety factor output files

trigrs output 1 = np.loadtxt ('Outputs\TRfs min Previsao 1l.txt',
skiprows=6)

trigrs output 2 = np.loadtxt ('Outputs\TRfs min Previsao 2.txt',
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skiprows=6)

trigrs output 3 = np.loadtxt ('Outputs\TRfs min Previsao 3.txt',
skiprows=6)
trigrs output 4
skiprows=6)

np.loadtxt ('Outputs\TRfs min Previsao 4.txt',

# Replaces the '-9999.' into '0O' in order to be ignored (Forces the
data to be within the values 0 and 10)

np.clip(trigrs_output 1, 0, 10, out=trigrs output 1)
np.clip(trigrs_output 2, 0, 10, out=trigrs output 2)

np.clip(trigrs output 3, 0, 10, out=trigrs output 3)
np.clip(trigrs output 4, 0, 10, out=trigrs output 4)
# Calculates the sum of all values

trigrs output 1 sum = np.sum(trigrs_ output 1
trigrs output 2 sum np.sum(trigrs output 2
trigrs output 3 sum = np.sum(trigrs_ output 3
trigrs output 4 sum = np.sum(trigrs output 4

)
)
)
)

# Calculates the percentage of FS that dropped compared to the initial
state
output percent 24h

(100 * trigrs output 2 sum / trigrs output 1 sum)

- 100
output percent 48h = (100 * trigrs output 3 sum / trigrs output 1 sum)
- 100
output percent 72h = (100 * trigrs output 4 sum / trigrs output 1 sum)
- 100

# Writes the initial condition and forecasts on the console
print ('\nInitial condition FS sum: %d' % round(trigrs output 1 sum))
print ('24h forecast FS sum: %d (%d / %.2f%%)' %

(round (trigrs output 2 sum), trigrs output 2 sum -

trigrs output 1 sum, output percent 24h))

print ('48h forecast FS sum: %d (%d / %.2f%%)' %

(round (trigrs_output 3 sum), trigrs output 3 sum -

trigrs output 1 sum, output percent 48h))

print ('72h forecast FS sum: %d (%d / %.2f%%)' %

(round (trigrs_output 4 sum), trigrs output 4 sum -

trigrs output 1 sum, output percent 72h))

# Counts the number of cells where the safety factor is 1 or lower,
ignoring zeros

trigrs output 1 sublcount = np.count nonzero
trigrs output 2 sublcount = np.count nonzero
trigrs output 3 sublcount = np.count nonzero
trigrs output 4 sublcount = np.count nonzero

trigrs output 1 <=
trigrs output 2 <=
trigrs output 3 <=
trigrs output 4 <=

AAAA
e
- - — —

# Writes the initial condition and forecast FS cell count on the
console

print ('\nInitial condition FS <= 1 cell count: %d' %

trigrs output 1 sublcount)

print ('24h forecast FS <= 1 cell count: %d (+%d / +%.2f%%)"’
(trigrs _output 2 sublcount, trigrs output 2 sublcount -
trigrs output 1 sublcount, (100 * trigrs output 2 sublcount /
trigrs output 1 sublcount) - 100))

print ('48h forecast FS <= 1 cell count: %d (+%d / +%.2£%%)"’
(trigrs_output 3 sublcount, trigrs output 3 sublcount -
trigrs output 1 sublcount, (100 * trigrs output 3 sublcount /
trigrs output 1 sublcount) - 100))

o\

o\
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print ('72h forecast FS <= 1 cell count: %d (+%d / +%.2f%%)"' %
(trigrs output 4 sublcount, trigrs output 4 sublcount -
trigrs output 1 sublcount, (100 * trigrs output 4 sublcount /
trigrs output 1 sublcount) - 100))

# In case the forecast predicts a decrease of 0.22% or greater, a
warning is issued

if (output percent 24h <= -0.22) | (output percent 48h <= -0.22) |
(output _percent 72h <= -0.22):

# Commands that make it bold and red

print ("\n' + '\033[1m"' + '\033[91m' + "Alert: Factor of safety
indicates risk of landslide"™ 4+ '\033[0Om"')
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APPENDIX D - EARLY WARNING SYSTEM WORKFLOW

Weather forecast
API

!

Rainfall values
in mm/h

)

Convert to
m/s

l

Insert rainfall
values in TRIGRS
model

l

calculate the sum of
the FS values of the
area for each
timeframe

!

compare the FS
values for the 3
periods

i

Send alert if the
FS sum decreases
by 0.22%.
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