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ABSTRACT 

 

The oceans play an important role in mitigating climate change by acting as 
large carbon sinks, especially at middle and high latitude regions. The main 
objective of this work is to investigate the behavior of turbulent CO2 fluxes 
at medium- and high-latitude under different atmospheric and oceanic 
conditions, during the trajectories of research ships to the Southwest Atlantic 
Ocean and its portion in the Southern Ocean. The CO2 flux was calculated 
using the eddy covariance and bulk methodology. During the experiment the 
Brazil Current sink more CO2 than Malvinas Current, owing to its proximity to 
the chlorophyll-rich and less saline waters of the La Plata River, and intense 
wind speeds increased the CO2 flux between the ocean and atmosphere. The 
Brazil Malvinas Confluence also behaved as a CO2 sink, and the modulation of 
CO2 fluxes was due to the intense horizontal gradient of SST together with the 
moderate surface wind and turbulence. The MC sequestered less carbon than 
other regions because of the presence of a high-pressure system near the 
region, low atmospheric turbulence, and light surface winds that inhibited mass 
exchange between the ocean and atmosphere. The Bransfield Strait uptake 
38.59% more CO2 than the Drake Passage due to the cold and fresh waters, 
allied to the influence of glacial meltwater dilution. The Drake Passage, on 
average, behaved as a CO2 sink, mainly due to physical characteristics. To 
minimize the uncertainty in bulk methodology for CO2 flux, we found the best fit 
for the gas transfer coefficient was K = 0.2325*u2– 0.4361*u+ 1.764 with R2 of 
0.97, and it showed an adequate representation of ocean-atmosphere fluxes for 
Southwest Atlantic Ocean. The bulk methodology the purpose gas transfer 
coefficient had good agreement with the in situ data (eddy covariance) for the 
ACEx and and Antarctic Operations 32, 33, 34, and 37 (2012 to 2018). The 
Southwest Atlantic Ocean had been increasing the assimilation of carbon along 
the years analyzed (2003 to 2020), mainly due to the increase of CO2 
concentration in the atmosphere. This research contributes to a better 
understanding of the Southwest Atlantic Ocean and Southern Ocean’s role in 
the global carbon balance. 

Keywords: CO2 flux. Bulk methodology. Eddy covariance. Southwest Atlantic 
Ocean. Southern Ocean. 
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OS FLUXOS DE CO2 E SUA RELAÇÃO COM  

AS CONDIÇÕES AMBIENTAIS NO OCEANO ATLÂNTICO SUDOESTE  

E SEU SETOR NO OCEANO AUSTRAL 

 

RESUMO 

Os oceanos desempenham um papel importante na mitigação das mudanças 
climáticas, atuando como grandes sumidouros de carbono, especialmente 
nas regiões de latitudes médias e altas. O principal objetivo deste trabalho é 
investigar o comportamento dos fluxos turbulentos de CO2 em latitudes 
médias e altas sob diferentes condições atmosféricas e oceânicas, durante 
as trajetórias de navios de pesquisa para o Oceano Atlântico Sudoeste e sua 
porção no Oceano Austral. O fluxo de CO2 foi calculado usando a covariância 
de vórtices turbulentos e a metodologia bulk. Durante o experimento, a 
Corrente do Brasil sequestrou mais CO2 do que a Corrente das Malvinas, 
devido à sua proximidade com as águas ricas em clorofila e menos salinas 
do Rio da Prata, e ventos intensos aumentaram o fluxo de CO2 entre o 
oceano e a atmosfera. A Confluência Brasil Malvinas também se comportou 
como um sumidouro de CO2, devido ao intenso gradiente horizontal de 
temperatura da superfície do mar, junto com ventos moderados e turbulência. 
A corrente das Malvinas sequestrou menos carbono do que outras regiões 
devido à presença de um sistema de alta pressão próximo à região, baixa 
turbulência e ventos fracos na superfície que inibiram a troca de massa entre 
o oceano e a atmosfera. O Estreito de Bransfield absorveu 38,59% mais CO2 
do que a Passagem de Drake devido às águas frias e menos salinas, aliadas 
à influência do degelo glacial. A Passagem de Drake, em média, comportou-
se como um sumidouro de CO2, principalmente devido às características 
físicas. Para minimizar as incertezas na metodologia bulk para o cálculo do 
fluxo de CO2, encontramos o melhor ajuste para o coeficiente de 
transferência de gás foi K = 0,2325*u2– 0,4361*u+ 1,764 com R2 de 0,97, 
esse mostrou uma representação adequada dos fluxos para o Atlântico 
Sudoeste. A metodologia de bulk, aplicando o coeficiente de transferência de 
gás proposto, teve boa concordância com os dados in situ (covariância de 
vórtices turbulentos) para o ACEx e para as Operações Antárticas 32, 33, 34 
e 37 (2012 a 2018). O Oceano Atlântico Sudoeste vem aumentando a 
assimilação de carbono ao longo dos anos analisados (2003 a 2020), 
principalmente devido ao aumento da concentração de CO2 na atmosfera. 
Esta pesquisa contribui para uma melhor compreensão do papel do Oceano 
Atlântico Sudoeste e do Oceano Austral no balanço global de carbono. 

Palavras-chave: fluxo de CO2. Metodologia bulk. Covariância de vortíces 
turbulentos. Oceano Atlântico Sudoeste. Oceano Austral. 
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1 INTRODUCTION 

The greenhouse gas carbon dioxide (CO2) has been increasing over 40% since 

industrial revolution due to anthropogenic activities. According to the ”Keeling 

curve” measured at Hawaii island, the annual mean atmospheric CO2 

concentration increases from 278 ppm in 1958 to 415 ppm in 2022. The CO2 

accumulation in the air is considered as one of the important environmental 

factors to boost global warming (IPCC, 2021; TAKAHASHI et al., 2002; SABINE 

et al., 2004; LE QUÉRÉ et al., 2014, 2015). The global average surface 

temperature in July 2022 was 1.15°C above the average for the comparison 

period of 1880-1920 (NOAA, 2022).  

In the last decades, oceans have absorbed over a quarter of the anthropogenic 

CO2 emitted to the atmosphere (LE QUÉRÉ et al., 2018; GRUBER et al., 2019). 

The oceans are responsible for sequestering approximately 1/3 of 

anthropogenic carbon emissions per year (CANADELL et al., 2007). The 

medium- and high-latitude oceanic regions are considered important regions for 

CO2 sinks (LE QUÉRÉ et al., 2018, TAKAHASHI et al., 2009). The Atlantic 

Ocean is the most important CO2 sink, providing about 60% of the global ocean 

uptake of the global anthropogenic CO2 uptake from the atmosphere from 1870 

to 1995 (TAKAHASHI et al., 2009; FRÖLICHER et al., 2015; LE QUÉRÉ et al., 

2016, 2018). The South hemisphere, between 14° S to 50° S, is considered the 

major sink area, sink an average -1.05 Pg C y-1. Therefore, understanding the 

carbon exchange behavior in these regions is very important in the study of 

global carbon fluxes. 

Relevant scientific questions about global climate involve the understanding of 

the interaction between the ocean and atmosphere (SANTINI et al., 2020; 

SOUZA et al., 2021; PEZZI et al., 2021). The CO2 flux between ocean and 

atmosphere is complex because it needs knowledge of ocean physics, 

atmospheric physics, cloud physics, and chemistry, as well as biogeochemical 

cycles in general (ITO et al., 2018; MONTEIRO, et al., 2020; JIANG et al., 

2014). The estimation of ocean CO2 uptake is still biased by the uncertainty of 

parameterization of gas transfer velocity and ocean CO2 fugacity. Moreover, the 
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in-situ data has limitation in terms of spatial and temporal covers. Therefore, the 

utilization of satellite data has been complement the in situ data, which help to 

improve our knowledge of CO2 flux between ocean and atmosphere 

(BENALLAL et al., 2017; WANNIKHOFF et al., 2017; LOHRENZ et al., 2018). 

The Southwest Atlantic Ocean plays a role in the weather and climate of south 

and southwest Brazil and other South American countries (PEZZI et al., 2015). 

The Southern Ocean provides major contributions to maintaining our planet's 

climate and plays an important role in the nutrient distribution to other oceans 

basins (FAY et al., 2018). Furthermore, in the scenario of climate change, 

studies that increase knowledge of how CO2 turbulent flux behaves in 

Southwest Atlantic Ocean and in Southern Ocean is very important for 

assessing the global carbon budget. 
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2 OBJECTIVES 

2.1 General objective 

The main objective of this work is to investigate the behavior of turbulent CO2 

fluxes at medium- and high-latitude under different atmospheric and oceanic 

conditions, during the trajectories of research ships to the Southwest Atlantic 

Ocean and its portion in the Southern Ocean.  

2.2 Specific objectives 

a) Determine how the intense horizontal sea surface temperature 

gradient modulate CO2 fluxes at Southwest Atlantic; 

b) Investigate the behavior of CO2 fluxes at the Drake Passage and the 

Bransfield Strait on high spatiotemporal resolutions; 

c) Determine how the atmospheric stability condition modulates CO2 flux 

between ocean and atmosphere in the Southwest Atlantic Ocean and 

its portion in the Southern Ocean; 

d) Purpose an algorithm for Ocean CO2 fugacity, and a gas transfer 

coefficient for the Southwest Atlantic Ocean, based on in situ data 

collected at that region; 

e) Validate the CO2 fugacity algorithm and gas transfer coefficient for 

other fields campaigns. By comparing the CO2 fluxes obtained with 

bulk parameterization and the fluxes obtained by eddy covariance;  

f) Analyze the temporal variability of CO2 flux in the Southwest Atlantic 

Ocean and investigate how different oceanic and atmospheric 

variables impacts CO2 flux; 

This document structure is based on independent but complementing 

chapters, each chapter is a manuscript published or (to be) submitted to a 

scientific journal. The specific objectives will be met by the following 

chapters: a and c, Chapter 5; b and c by Chapter 4; d to f by Chapter 6. 
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3  DATA AND METHODOLOGY 

3.1 Study area 

The study areas include the Southwest Atlantic Ocean (SAO) (Figure 3.1), and 

the Atlantic sector of the Southern Ocean (SO), comprising Drake Passage 

(DP) and Bransfield Strait (BS), as seen in Figure 3.2.  

 

Figura 3.1 – Route of the Brazilian Navy Polar Vessel (Po/V) Almirante Maximiano 

(H41) at Southwest Atlantic Ocean.  Composite between 14 to 27 

October 2018, Sea surface temperature (°C) - Multi-scale Ultra-high 

Resolution (MUR). 

\ 

Source: Author’s production. 
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Figura 3.2 – Route of the Brazilian Navy Polar Vessel (Po/V) Almirante Maximiano 

(H41) in the Southern Ocean.  Composite between November 08 to 22 

November 2018, Sea surface temperature (°C) derived from Multi-scale 

Ultra-high Resolution (MUR). 

 

White lines: Subantarctic front (SAF), polar front (PF), South Antarctic circumpolar front 

(SACCF), and southern boundary (SBdy) are frontal positions as defined by Orsi et al. 

(1995). 

Source: Author’s production. 

 

The Southwest Atlantic Ocean has great relevance for ocean-atmosphere 

interaction studies, especially because of its atmospheric characteristics. These 

include the frequent passage of atmospheric systems, such as cold fronts, cold 

air incursions, and cyclones, which present seasonal variability (REBOITA et 

al., 2010; HOSKINS; HODGES, 2005; PEZZI et al., 2009; GRAMCIANINOV et 

al., 2019). The climate of this area is characterized by strong seasonality owing 

to the South Atlantic subtropical high. This semi-permanent system is located at 
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approximately 30° S and 25° W. In summer, the system is less intense; it is 

located further south and east, but in winter, its center shifts north and west 

(CAMPOS, et al., 2014). 

An intense horizontal SST gradient was characterized in the Southwest Atlantic 

Ocean. In this region, a front called the Brazil-Malvinas Confluence (BMC) is 

considered one of the most dynamic oceanic regions on the planet (CHELTON 

et al., 1990; CAVALCANTI et al., 2009). It is formed by the encounter between 

the warm waters of the Brazil Current (BC) and cold waters of the Malvinas 

Current (MC).  

The main oceanic structure in the SO is the Antarctic Circumpolar Current. It is 

characterized by strong flows eastward that connect all ocean basins and is 

responsible for distributing physical and biogeochemical properties around the 

world (ORSI et al., 1995; RINTOUL et al., 2001; ITO et al., 2018). The SO is 

characterized by extreme winds, strong meridional temperature gradients, and 

high seasonal climate variability (e.g. sea ice cover; Swart et al., 2019). 

The study region analyzed here is the Atlantic sector of the SO, comprising DP 

and BS at the east coastal region of the South Shetland Islands. They are in the 

northwest region of the Antarctic Peninsula and are influenced by waters 

coming from the southeast sector of DP, BS and the Weddell Sea (WS). The 

DP comprises the Subantartic front (SAF), Polar Front (PF), South Antarctic 

circumpolar front (SACCF), and southern boundary (SBdy, Figure 3.2). The 

region that goes from the Antarctic continent to the PF is the Antarctic Zone, 

and the region between the PF and the Subtropical Front is the Subantarctic 

Zone (ORSI et al., 1995).  

The BS encompasses a transition zone between the Bellingshausen Sea and 

the WS. According to Lopez et al. 1999 this strait is mainly controlled by the 

interaction of two different fluxes: (i) the warmer and less saline waters from the 

Bellingshausen Sea (which enters on passages further west at South Shetland 

Islands) and (ii) the colder and more saline waters from the WS (which enters 

near the Joinville island). The frontal structure results from the meeting of these 

two currents, named the Bransfield Front. The BS also is influenced by Antarctic 
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Circumpolar Current that promotes intrusions of Circumpolar Deep Water 

associated to climatic modes (BARLLET et al., 2018). The DP waters also enter 

at BS, but stay near to the South Shetland Islands, and their interference at BS 

is negligible (ZHOU et al., 2002). 

3.2 Data 

In this thesis, a combination of in situ data, satellite data, and reanalysis data 

were used in the study area. Meteorological and oceanic data were collected on 

scientific cruises (Table 3.1), which were conducted in the Southwest Atlantic 

Ocean and its portion of the Southern Ocean, by using research ships from the 

Brazilian Marine (BM). These oceanographic cruises are part of the activities 

planned and developed by the Studies Center of Ocean-Atmosphere-

Cryosphere Interaction (CInt) and for the Antarctic Modeling and Observation 

System (ATMOS) Project. Those projects surged in response to a Brazilian 

Antarctic Program (PROANTAR) scientific call. 

 

Table 3.1 - Description of the cruises used in this thesis. 

Oceanographic 
Cruise Period Study region Research Ship 

ACEX 2012 Southwest Atlantic Ocean Cruzeiro do Sul 

OP32 2013 Southwest Atlantic Ocean 
NPo Alm. 

Maximiano 

OP33 2014 Southwest Atlantic Ocean 
NPo Alm. 

Maximiano 

OP34 2015 Southwest Atlantic Ocean 
NPo Alm. 

Maximiano 

OP37 2018 
Southwest Atlantic Ocean and 

Southern Ocean 
NPo Alm. 

Maximiano 

Source: Author’s production. 

 

The data of the Southwest Atlantic Ocean and Southern Ocean from OP37 is 

presented in Chapters 5 and 4, respectively. The data of the Southwest Atlantic 
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Ocean from ACEX, OP32, OP33, OP34, and OP37 were used in Chapter 6. 

The ship tracks are illustrated in Figure 3.1 and 3.2 are overlaid on the sea 

surface temperature (SST) field, which highlights the intense along track SST 

gradients, characteristic of the BMC presence and the Antarctic Circumpolar 

Current (ORSI et al., 1995); those tracks are part of the Chapters 4 and 5. The 

ship tracks used in Chapter 6 are illustrated in Figure 3.3. 
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Figure 3.3 - Routes of the Brazilian Navy research Vessel (RV) Cruzeiro do Sul (blue 
line; H38) and the Brazilian Navy Polar Vessel (Po/V) Almirante 
Maximiano (H41) and study area.   

 

The ship routes are for the ACEX cruise (2012), OP 32, OP 33, OP 34, and OP 37 
cruises (2012, 2013, 2014, 2015, and 2018, respectively). The black rectangle 
indicates the location of the data for variability climate of CO2.  

Source: Author’s production. 

 

3.2.1 Observed data 

The data collected are divided into oceanic and meteorological data. The 

oceanic data are obtained through the thermosalinograph, a sensor attached to 
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the hull of the ships, which collects temperature and salinity values in the ocean 

surface layer. Also includes vertical seawater temperature data collected by 

XBT (Expendable Bathythermograph) probes. 

 Meteorological data are collected by the ship's Automatic Meteorological 

Station and by sensors installed in a micrometeorological tower (collected at 

high and low frequencies) at the bow of the ships. Also, it is used radiosondes, 

which are carried by weather balloons, and provide measurements of the 

thermodynamic (pressure, air temperature, and relative humidity) and dynamic 

(wind speed and direction) states of the atmosphere.  

During the OP37, eight expendable bathy-thermographs were deployed at the 

locations where eight radiosondes were launched. This was because we aimed 

primarily to use ocean–atmosphere measurements made on the BMC to 

investigate its potential to locally change the atmosphere immediately above it. 

Those data are presented in Chapter 5. 

3.2.1.1 Flux tower 

The data sets used here were collected by a micrometeorological tower 

installed on the bow of the Brazilian Navy Polar Vessel (Po/V) Almirante 

Maximiano (H41) and Cruzeiro do Sul during the Atlantic Carbon Experiment 

(ACEX) project and Antarctic Operations 32, 33, 34, and 37 which occurred 

between 2012 and 2018.  

The H41 and micrometeorological tower used in the campaign are shown in 

Figure 3.4. The micrometeorological tower was installed approximately 16 m 

above sea level with a similar setup used in previous cruises in the 

Southwestern Atlantic (PEZZI et al., 2016; OLIVEIRA et al., 2019; SANTINI et 

al., 2020; SOUZA et al., 2021). More recently this same setup was used in an 

oceanic mesoscale eddy turbulent flux study at Brazil-Malvinas Confluence 

(BMC) by Pezzi et al. (2021).  
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Figure 3.4 - Brazilian Navy Polar Vessel (Po/V) Almirante Maximiano (H41) with its 

micrometeorological tower during the OP37, between 14 to 27 October, 

and 08 to 22 November. 

 

Source: Author’s production. 

 

For direct CO2 turbulent fluxes measurements in the ocean-atmosphere 

interface, were used micrometeorological sensors sampling in high- and low-

frequency rate (20 Hz and 0.06 Hz; Table 3.2). The sonic anemometer was 

fixed in a 1 m long metal bar installed perpendicularly to the vertical mechanical 

structure of the micrometeorological towers and forward to the ship’s bows. This 

configuration allowed measurements to avoid the flow distortions of the ships’ 

structure on the vertical component of the wind vector (SANTINI et al., 2020).  
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Table 3.2 - Description of the sensors installed in the micrometeorological tower, during 

the OP37, between 08 to 22 November 2018. 

Data Source 
(sampling 
frequency) Sensor / Manufacturer Meteorological Variable 

Micrometeorological 
Tower (20 Hz) 

3D Sonic Anemometer 
and Gas Analyzer 

(IRGASON/CAMPBELL) 

CO2 concentration (mg m3); 
H20 concentration (g m-3); 

u, v e w (m/s);  

Motion Pack II/ Systron 
Donner 

Angular velocity (deg s-2); 
Acceleration (m s-2) 

 
GPS/Garmin 

Ship heading (°) 
Ship velocity (m/s) 

Micrometeorological 
Tower (0.06 Hz) 

PT101/CAMPBELL Atmospheric pressure (hPa) 

HC2S3/VAISALA 
Air temperature  (°C);  

Relative humidity (%) 

Source: Author’s production. 

 

The tower sensors were tested and calibrated by the Meteorological 

Instrumentation Laboratory of INPE before and after the experiment. The 

Infrared Gas Analyzer (IRGA) is calibrated following the manual instructions 

(CAMPBELL SCIENTIFIC, 2016) using two different gas concentrations of CO2, 

and zero humidity concentration and dew point temperature for the H2O. The 

first part of the procedure simply measures the CO2 and H2O zero and span, 

without making adjustments. This allows the CO2 and H2O gain factors to be 

calculated. These gain factors quantify the state of the analyzer before the zero-

and-span procedure and were used to correct recent measurements for drift. 

The last part of the zero-and-span procedure adjusts internal processing 

parameters to correct subsequent measurements. For zero we used the 

Analytical Nitrogen 5.0 with minimum purity of the 99.999% to CO2 and H20. 

The CO2 SPAN was obtained using N2 balanced CO2 at a concentration of 
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396.45 +/- 0.05ppm. The H2O SPAN was obtained using a Li-Cor LI-610, with 

the accuracy of ± 0.2 °C dew point. 

3.2.2 Satellite and reanalysis data 

The satellite and reanalysis data set were used as auxiliary data to complement 

the understanding of the surface characteristics of the ocean's mesoscale and 

synoptic atmospheric conditions in the study region. More details are presented 

in Table 3.3. 

 

Table 3.3 - Satellite and reanalysis data used in this project. 

Variable 
Data 

Source 
Spatial 

resolution 
Temporal 
resolution 

Chlorophyll 
VIIRS 
Aqua 

MODIS 
4 km 

Daily 
Monthly 

Salinity 
SMOS 
ORAS5 

0.25° 
Daily 

Monthly 

Sea Surface 
Temperature 

ERA5 
MUR 

0.25° 
1 km 

Hourly and Monthly 
Daily  

Wind speed and 
direction 

ERA 5 0.25° Hourly and Monthly 

Sea Level Pressure ERA 5 0.25° Hourly and Monthly 

Air Temperature ERA 5 0.25° Hourly and Monthly 

xCO2 atm 
OCO2 
CAMS 

2x2.5 km 
0.25° 

16 days 
Monthly 

Source: Author’s production. 

 

3.3 Methodology 

3.3.1 Eddy covariance method 

The most used method by the scientific community for calculating turbulent 

fluxes from in situ measurements is Eddy Covariance (EC). EC is based on the 
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covariance between vertical wind velocity and the concentration of gases in the 

atmosphere, which results in fluxes between the surface and the atmosphere 

(ARYA, 2001; STULL et al., 1988). The carbon dioxide flux (𝐹𝐶𝑂2) is 

mathematically defined by Equation 3.1. 

𝐹𝐶𝑂2  =  𝜌𝑎 𝑤′𝑐′ (3.1) 

Where 𝐹𝐶𝑂2 is the CO2 flux in μmol m-2 s-1, the bars correspond to the means 

and the apostrophes indicate the turbulent fluctuations around the mean; 𝜌𝑎 is 

the dry air density (kg m-3), 𝑤′ is the vertical wind component (m s-1), 𝑐′ is the 

ratio of CO2 to dry air density (μmol mol-1). 

The wind data need the corrections prior to fluxes estimation, due to ship 

movement. The spurious fluctuations caused by these movements can be 

removed, with the methodology applied by Miller et al. (2008) and Edson et al. 

(1998) originally based on Fujitani (1981). The actual wind speed collected on a 

mobile platform can be estimated from Equation 3.2. 

�⃗� 𝑟𝑒𝑎𝑙 = 𝑇𝑎𝑒�⃗� 𝑜𝑏𝑠 + 𝑇𝑎𝑒(�⃗� 𝑡 + �⃗⃗�  𝑥 𝑟 ) + �⃗� 𝑛 (3.2) 

Where �⃗� 𝑟𝑒𝑎𝑙 is the real wind speed vector at the moment of measurement; �⃗� 𝑜𝑏𝑠 

is the speed measured by the anemometer; �⃗� 𝑡 and �⃗⃗�  are the angular and linear 

velocities of the measuring equipment itself, respectively; �⃗� 𝑛 is the ship's travel 

speed; 𝑟  is the anemometer position vector in relation to the motion sensor and 

𝑇𝑎𝑒 is the coordinate transformation matrix from the anemometer reference 

system to the earth coordinate system (x-axis, y-axis and z-axis).  

The flux uncertainty from the motion correction procedure is less than 6% 

(DONG et al., 2021). The flux bias due to the instrument calibration (gas 

analyzer, anemometer and meteorological sensors required to calculate air 

density: air temperature, relative humidity and pressure) is up to 4 %. However, 

this bias can reach up to 7% due to imperfection calibration of each sensor. 

After the wind data correction, the turbulent flux calculations will be performed 

from the EC, by using the EddyPro ® software developed by LI-COR 
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Environmental. The gas analyzer used is open path, and it suffers from 

environmental effects that cause changes in air density and compromise the 

measurements, so this needs some corrections. In this software will be 

corrected the environmental interference (humidity, air temperature and 

atmospheric pressure in CO2 density) called Webb Correction (WPL), 

developed by Webb et al. (1982). In addition, in this software will be set to 

remove spurious values and will calculate the average flux for 30 min. 

Similar calculations based on EC were used in SW Atlantic for heat fluxes 

(PEZZI et al., 2016; SANTINI et al., 2020), momentum fluxes (HACKEROTT et 

al., 2018) and CO2 fluxes (OLIVEIRA et al., 2019; PEZZI et al., 2021). Recently 

Pezzi et al. (2021) showed these calculations for heat and CO2 fluxes over a 

warm core eddy in the SW Atlantic. A complementary variable used in this study 

is friction velocity (u*) (Equation 3.3). This variable gives us information about 

how turbulent the environment is (ARYA, 2001). 

𝑢∗ = 𝑘1 𝑈10 (𝑙𝑛
10

𝑧0
)
−1

 
(3.3) 

 

Where 𝑢∗ is the friction velocity; 𝑘1 is the Von Kármán constant; 𝑈10 is the wind 
speed at 10 m above the surface. 

 

3.3.2 Bulk methodology 

The Bulk method development was based on the Monin-Obukhov similarity 

theory, which considers the constant flux in the surface layer that comprises 5 

to 10% closest to the surface (FOKEN, 2008). For determining the gas flux, the 

Bulk method depends on the assumption that the transfer is given by the 

difference in gas concentration at the air-sea interface (MCGUILLIS et al., 

2001). In addition, the method considers the gas solubility coefficient described 

by Weiss (1974) and the gas transfer velocity. An overview of the steps in the 

Bulk methodology is presented in Figure 3.5. This method is presented in 

chapter 6. 

The carbon flux between the ocean and the atmosphere is given by Equation 

3.4. However, partial pressure is sometimes expressed as fugacity that takes 
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into account the non-ideal nature of CO2 gas (WEISS, 1974; EMERSON; 

HEDGES, 2008; TAKAHASHI et al., 2009; LENCINA-ÁVILA et al., 2016). 

The partial pressure difference, 𝑝𝐶𝑂2𝑚𝑎𝑟 
- 𝑝𝐶𝑂2𝑎𝑟

or 𝛥𝑝𝐶𝑂2
, can be transformed to 

fugacity difference, 𝛥𝑓𝐶𝑂2
.  

𝐹𝐶𝑂2 
= 𝑠 . 𝑘 . (𝛥𝑝𝐶𝑂2

)𝑠𝑤 − 𝑎𝑖𝑟      ⇔    𝐹𝐶𝑂2 
= 𝑠 . 𝑘 . (𝛥𝑓𝐶𝑂2

)𝑠𝑤 − 𝑎𝑖𝑟   (3.4) 

Where 𝐹𝐶𝑂2 
is the CO2 flux (g m-2 s-1) at the air-sea interface, the vertical 

gradient (𝛥𝑝𝐶𝑂2
) is the difference of the 𝑝𝐶𝑂2

between air and sea (g m-3); 𝑠 is the 

CO2 solubility in seawater (g m-3 μatm-1), 𝑘 is the gas transfer velocity (m s-1). 

 

Figure 3.5 - Flowchart for CO2 flux calculation by Bulk Methodology. 

 

Source: Author’s production. 

 

 

3.3.2.1 Solubility 

The CO2 solubility in the ocean is calculated as a function of salinity (SSS) and 

SST (WEISS,1974): 

𝑙𝑛 𝑠 =  𝐴1 + 𝐴2(100/𝑇) + 𝐴3 𝑙𝑛 (𝑇/100) + 𝑆[ 𝐵1 + 𝐵2 (𝑇/100)  + 𝐵3 (𝑇/100)2] 

(3.5) 
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where 𝑠 is the solubility (mol kg-1 atm-1); 𝑇 is the SST (K) obtained by the MUR 

SST, and 𝑆 is the salinity obtained by the SMOS. The values of the CO2 specific 

constants (WEISS, 1974)  𝐴1 ,  𝐴2,  𝐴3 , 𝐵1 , 𝐵2  and 𝐵3 , in mol L-1 atm-1, can be 

found in Table 3.4. 

Table 3.4 - Constants in mol kg-1 atm-1. 

Constant Value 

A1 -58.093 

A2 90.5069 

A3 22.294 

B1 0.02777 

B2 -0.0259 

B3 0.00506 

Source: Weiss (1974). 

3.3.2.2 The CO2 partial pressure at the air-sea interface 

The difference in 𝑝𝐶𝑂2
between the ocean and the atmosphere determines the 

direction of the flux. If (𝛥𝑝𝐶𝑂2
)𝑚𝑎𝑟 − 𝑎𝑟 is positive the flux will be from the ocean 

to the atmosphere, thus it indicates a carbon source region. If negative, the flux 

is from the atmosphere to the ocean, and the region would be considered a 

carbon sink (FARIAS et al., 2013; ITO et al., 2016). 

The 𝑝𝐶𝑂2(𝑠𝑤) data collected by Socat, is determined (BAKKER et al., 2013; 2014; 

PFEIL et al., 2013; SABINE et al.; 2013): 

𝑝𝐶𝑂2(𝑒𝑞) = 𝑥𝐶𝑂2(𝑒𝑞)(𝑃𝑒𝑞 − 𝑃𝑤𝑒𝑞)         (3.6) 

where 𝑝𝐶𝑂2(𝑒𝑞) is the partial pressure of CO2 in the equilibrator; 𝑥𝐶𝑂2(𝑒𝑞) is the 

molar fraction of CO2 in the equilibrator (ppm); 𝑃𝑒𝑞 is the atmospheric pressure 

at equilibrator (atm) and 𝑃𝑤𝑒𝑞 is the partial water vapor pressure at the 

equilibrator (atm).  

The calculation of CO2 concentration for seawater is defined according to 

Takahashi et al. (2009): 
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𝑝𝐶𝑂2(𝑠𝑤) = 𝑝𝐶𝑂2(𝑒𝑞)𝑒𝑥𝑝[0.0423(𝑆𝑆𝑇 − 𝑇𝑒𝑞) − 4.35 ∗ 10−5(𝑆𝑆𝑇2 − 𝑇𝑒𝑞
2 )]       (3.7) 

where 𝑝𝐶𝑂2(𝑠𝑤) is the CO2 partial pressure in the ocean; 𝑆𝑆𝑇 is the sea surface 

temperature (K); 𝑇𝑒𝑞 is the temperature in the equilibrator (K). 

The  𝑝𝐶𝑂2(𝑎𝑖𝑟) is calculated as:  

𝑝𝐶𝑂2(𝑎𝑖𝑟) = 𝑥𝐶𝑂2(𝑎𝑖𝑟)(𝑃𝑎𝑡𝑚 − 𝑃𝑤)     (3.8) 

Where 𝑝𝐶𝑂2(𝑎𝑖𝑟) is the CO2 partial pressure in the atmosphere; 𝑥𝐶𝑂2(𝑎𝑖𝑟) is the 

molar fraction of CO2 (ppm); 𝑃𝑎𝑡𝑚 is the atmospheric pressure (atm) and 𝑃𝑤 is 

the water vapor pressure at the temperature and salinity for mixed layer water 

(WEISS; PRICE, 1980). 

3.3.2.3 Algorithm for CO2 fugacity at ocean 

The in-situ data of 𝑓𝐶𝑂2 (𝑠𝑤)
 from SOCAT were used to develop an algorithm, 

based on linear regression with SST from the ERA5, SSS from the SMOS and 

chl data from VIIRS. This algorithm for the determination of the  𝑓𝐶𝑂2 (𝑠𝑤)
has the 

purpose of increasing temporal and spatial resolutions of the data for a better 

comparison with the ship data. 

3.3.2.4 Gas transfer velocity 

The main differences in carbon balance estimation are due to gas transfer 

velocity parameterization. Therefore, several methods of gas transfer velocity 

between the ocean and the atmosphere were assessed (Table 3.5). 

 

 

 

 

 

 



19 
 

Table 3.5 - Commonly used gas transfer (K) models assessed. Where u is the wind 

speed in m s-1 and Sc is the Schmidt number. 

Reference Equation 

Wanninkhof (1992) 
𝑖𝑓 𝑢 ≤ 6 𝑡ℎ𝑒𝑛 𝐾 = 0.31 𝑢2  (

𝑆𝑐

600
)
−0.5

 

 
𝑒𝑙𝑠𝑒 𝐾 = 0.39 𝑢2  (

𝑆𝑐

600
)
−0.5

 

Wanninkhof and 
McGillis (1999) 

𝐾 = 0.0283 𝑢3  (
𝑆𝑐

600
)
−0.5

 

Nightingale et al. (2000) 
𝐾 = (0.222 𝑢2 + 0.333 𝑢) (

𝑆𝑐

600
)
−0.5

 

Jean-Baptiste, Fourré, 
and Poisson (2002) 

𝐾 = 1.45 𝑢1.5  (
𝑆𝑐

310
)
−0.5

 

Ho et al. (2006) 
𝐾 = 0.266 𝑢2  (

𝑆𝑐

600
)
−0.5

 

Sweeney et al. (2007) 
𝐾 = 0.27 𝑢2  (

𝑆𝑐

600
)
−0.5

 

Wanninkhof et al. 
(2009) 

𝐾 = 3 + 0.1 𝑢 + 0.064 𝑢2 + 0.011 𝑢3  (
𝑆𝑐

600
)
−0.5

 

Ho et al. (2011) 
(Equation (a)) 

𝐾 = 0.286 𝑢2  (
𝑆𝑐

600
)
−0.5

 

Ho et al. (2011) 
(Equation (b)) 

𝐾 = 0.0298 𝑢3  (
𝑆𝑐

600
)
−0.5

 

Wanninkhof (2014) 
𝐾 = 0.251 𝑢2  (

𝑆𝑐

600
)
−0.5

 

Pezzi et al. (2021) 𝐾 = 0.34 𝑢2 − 0.32 𝑢 + 0.94 

 

Source: Author’s production. 

 

To determine the best model for the study area, each one was tested with wind 

speed data from ERA5. Then the flux was calculated by the bulk method and 

compared with the EC method. As a result of this process, a gas transfer 
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coefficient was proposed for the study region, which was based on the in-situ 

measurements of carbon fluxes by EC and bulk parameterization. 
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4 OCEAN-ATMOSPHERE TURBULENT CO2 FLUXES AT DRAKE 

PASSAGE AND BRANSFIELD STRAIT1 

 

4.1 Introduction 

The main cause of global warming, according to the Intergovernmental Panel 

on Climate Change (IPCC) (IPCC, 2021), is the increase of greenhouse gases 

(GHG) emissions in the atmosphere since the pre-industrial period. Carbon 

dioxide (CO2), one of the most important GHG, has increased by over 40% 

since the pre-industrial period. These values increased from 278 ppm in 1750 to 

411.97 ppm in 2019, and the average global air temperature increased 0.89 °C 

between the years 1880 and 2019 (NOAA, 2019). 

Relevant scientific questions about global climate involve the understanding of 

the interaction between the ocean and atmosphere (PEZZI et al. 2009; 2016; 

HACKEROTT et al., 2018; SANTINI et al., 2020; SOUZA et al., 2021; PEZZI et 

al., 2021). According to Canadell et al. (2007), the oceans are responsible for 

sequestering approximately 1/3 of anthropogenic carbon emissions per year. 

The CO2 partial pressure in the ocean (pCO2sw) has great spatial and temporal 

variability, being middle and high latitude regions considered CO2 sinks 

(TAKAHASHI et al., 2009). The high latitudes have an important role in CO2 

exchange between ocean-atmosphere, which in turn are controlled by physical, 

chemical, and biogeochemical processes (ITO et al., 2018; MONTEIRo et al., 

2020; JIANG et al., 2014).  

Recent studies show that the Southern Ocean (SO) plays a major role in the 

global CO2 cycle, accounting for 43% (42 Pg C) of the global anthropogenic 

CO2 uptake from the atmosphere from 1870 to 1995 (TAKAHASHI et al., 2009; 

FRÖLICHER et al., 2015; LE QUÉRÉ et al., 2016; 2018).  The SO sinks more 

CO2 during the spring-summer than the autumn-winter due mainly to the sea-

 
 

1 This article chapter is already accepted in the Annals of the Brazilian Academy of Sciences 
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ice cover retreats and biologically driven (RODEN et al., 2016; ITO et al., 2018; 

OGUNDARE et al., 2021).  

Several modelling and observational studies suggest a reduction in the 

efficiency of SO CO2 uptake over the past few decades (LOVENDUSKI et al., 

2013; 2015; LE QUÉRÉ et al., 2010; METZL, 2009). Nevertheless, other 

studies suggest that global ocean uptake of CO2 has increased over the past 

decade, largely due to the SO (LANDSCHÜTZER et al., 2014; MAJKUT et al., 

2014; MUNRO et al., 2015; XUE et al., 2015). There is a need for studies that 

allow a better understanding of the processes involved in the exchange 

between the ocean and the atmosphere, at different spatiotemporal scales. 

Understanding how CO2 turbulent flux behaves in different oceanic regions is 

very important for global carbon budget studies. The Atlantic Carbon and Fluxes 

Experiment (ACEx) project (PEZZI et al., 2016), the Ocean-Atmosphere 

Interaction Program in the Brazil-Malvinas Confluence Region (INTERCONF) 

(PEZZI et al., 2005; 2009), Southern Ocean Studies for Understanding Global 

Climate Issues (SOS-CLIMATE; ORSELI et al., 2017; ITO et al., 2018; 

MONTEIRO et al., 2020), Programme de Coopération avec l’Argentine pour 

l’e´tude de l'océan Atlantique Austral (ARGAU CRUISES; BIANCHI, et al., 

2009) and more recently the Antarctic Modeling Observation System (ATMOS) 

project (PEZZI et al., 2021), are some of the South America research programs 

dedicated to study the exchange of ocean-atmosphere turbulent fluxes in the 

Southwest Atlantic Ocean (SAO) and the SO.  

The observations in the Drake Passage (DP) show higher pCO2sw values 

located in the north of the Antarctic Polar Front (PF) than to the south (MUNRO 

et al., 2015). Additionally, the seasonal cycle amplitude north of the front is 

much larger and well defined than south of the front. In the south of the PF has 

been a persistent CO2 sink, due to the pCO2sw being lower than the CO2 partial 

pressure in the atmosphere (pCO2atm) (CAETANO et al., 2020), influenced by 

the cold sea surface temperature (SST) during the summer and the presence of 

the upwelling of waters with low anthropogenic CO2 content (PARDO et al., 

2014) and mixed layer depths greater in winter (STEPHENSON et al., 2012). 

https://www.frontiersin.org/articles/10.3389/fmars.2020.614263/full#B66
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The upwelling of old and CO2 rich waters around Antarctica influences the 

carbonate system in the NAP environments (LENCINA-AVILA et al., 2018, 

MONTEIRO et al., 2020). It increases the macronutrients and CO2 and 

decrease the carbonate concentration; however, those changes vary depending 

on mixing processes in response to sea ice, eddies formation, topography, and 

atmospheric forces (HENLEY et al., 2019). At the Northern Antarctic Peninsula, 

the coastal waters of the straits and bays are considered the most productive 

areas in the SO (COSTA et al., 2020). However, according to Caetano et al. 

(2020), the Bransfield Strait (BS) in late spring indicates a near-neutral air-sea 

CO2 flux with a slight source to the atmosphere. Those authors suggest the 

temperature-sensitive metabolic and physical-chemical process cause 

significant impact on the spatial distribution of pCO2sw at the BS. 

Due to the major role in understanding climate, the biogeochemical cycles, the 

global energy balance, mass and energy fluxes are important study fields 

(TRENBERTH, 2009; TAKAHASHI, et al. 2009; LE QUÉRÉ et al., 2018; FAY et 

al., 2018). Changes in energy and mass fluxes between the ocean and 

atmosphere are controlled mainly by wind speed, air and sea temperature, 

humidity, radiation and evaporation (SATO, 2005). The SO provides major 

contributions to maintaining our planet's climate and plays an important role in 

the nutrient distribution to other oceans basins (FAY et al., 2018). However, due 

to its distance and hostility and adverse nature, it is difficult to collect in situ data 

(PEZZI et al., 2021; MONTEIRO et al., 2020). In situ data is typically collected 

in the summer because the complex environment for experimentation. 

Therefore, the utilization of satellite data have been complement the in situ 

data, which help to improve our knowledge of the role of the SO in the global 

climate (SHUTLER et al., 2016; BENALLAL et al., 2017; WANNIKHOFF et al., 

2017; LOHRENZ et al., 2018). 

The main objective of this work is to investigate the behavior of CO2 fluxes at 

the Drake Passage and the Bransfield Strait west coastal areas under different 

atmospheric and oceanic conditions, during the Spring of 2018 on high 
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spatiotemporal resolutions when compared with traditional CO2 fluxes 

estimations. 

4.2 Results and discussion 

The study region was split into two areas during H41 cruise, the DP and the BS, 

due to the different oceanic and atmospheric characteristics found between 

them. The CO2 fluxes varied along the ship's route. Table 4.1 summarizes all 

data for the study region (DP, BS and total area). The CO2 fluxes data were 

discarded under atmospheric stable conditions when the Monion-Obukhov 

stability parameter was greater than 0.2 (here, ζ> 0.2). This is due to the 

inaccuracy in measuring turbulent fluxes when the turbulence is very small or 

intermittent (SUN et al., 2018; YUSUP; LIU, 2016; PATTEY et al., 2002). 
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Table 4.1 - Mean, maximum and minimum of the atmospheric and oceanic variables 
during ship’s route. 

 

CO2 

flux SLP 

Wind 

speed u* SST-Tar SSS SST chl 

Drake 

Passage 

mean -1.70 980.94 15.48 0.33 -0.24 34.00 1.45 0.27 

max 21.38 993.40 20.29 0.56 2.47 34.28 5.31 0.64 

min -11.46 967.35 1.30 0.08 -1.99 33.64 -0.76 0.10 

Bransfield 

Strait 

mean -2.77 972.04 7.17 0.37 -1.21 33.76 -0.13 0.26 

max 47.84 994.35 20.73 0.90 1.70 34.22 0.32 0.41 

min -41.05 953.08 1.00 0.08 -5.92 33.40 -0.76 0.19 

Total area 

mean -2.49 973.22 9.27 0.36 -0.97 33.80 0.26 0.26 

max 47.84 994.35 20.73 0.90 2.47 34.38 5.31 0.64 

min -41.05 953.08 1.00 0.08 -5.92 33.40 -0.76 0.10 

Mean, maximum, and minimum values of the Ocean-atmosphere CO2 fluxes (CO2 
Flux) (mmol m−2d−1); Sea Level Pressure (SLP) (hPa) (Air Pressure), Wind speed (m 
s−1); and Friction velocity (u*) (m s-1), Sea Surface Salinity (SSS); Sea Surface 
Temperature (SST) (°C); Chlorophyll-a concentration (chl) (mg m−3); for the Drake 
Passage, Bransfield Strait and Total area.  Values obtained along the ship track and 
the data were collected in the OP37 during the period of 08 to 22 November 2018. 
Source: Author’s production. 

 

Our experiment was conducted during the Spring of 2018 (08 to 22 November 

2018), which may have impacted on fluxes direction, and as a result both areas, 

DP and BS, acted on average as CO2 sink. Those results agree the mean 

behavior for those areas for the entire season (MUNRO et al., 2015; 

MONTEIRO et al., 2020). However, the variability of the pCO2sw, may affect the 

flux results during the season. The pCO2sw at DP changes during the spring, as 

seen by Fay et al. (2018), where their values were higher at the beginning of the 

season. Munro et al. (2015) found at DP, at the south of the PF, that the 

increasing pCO2sw is slower than pCO2atm, making this area a persistent CO2 

sink. The phytoplankton blooms typically occur at south of DP during spring 
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(CARRANZA; GILLE, 2015). At the BS for late spring, photosynthesis 

decreases the CO2 partial pressure in the surface seawater, enhancing ocean 

CO2 uptake (CAETANO et al., 2020).   

The BS uptake on average 38.59% more CO2 than DP, as shown in Table 4.1. 

This difference is attributed to the variability of both atmospheric and oceanic 

conditions along the H41's route. During the study period, the mean SST 

decreased from the DP towards BS (Figure 3.2 and Table 4.1). The SSS data 

did not cover the entire area, there was just some data especially for the BS 

region. The chl data also has gaps, due to clouds cover in this area during 

cruise period. These gaps are a result of how chl is obtained, which is through a 

passive sensor that suffers interference from the clouds on its quality 

measurements. The BS presented more turbulence in the atmosphere 

boundary layer, with a maximum u* value of 0.9, allied to that the wind speed 

reached maximum value, 20.7 m s-1.  

The BS is characterized by colder waters than DP, which increases the CO2 

solubility and due the difference of partial pressure of carbon dioxide (pCO2) 

between ocean and atmosphere, that may direct the fluxes to the ocean. In 

addition, during the sampled period, the BS had a predominance of stable 

atmospheric conditions contributing to the region act as a CO2 sink. The stability 

condition is observed in the marine atmospheric boundary layer (MABL), it is 

due to the difference between SST - Tair (Figure 4.1). The SST-Tair at the near-

surface interface is an atmospheric stability parameter that indicates the 

preferential surface flux direction. When SST - Tair > 0, MABL is unstable, and 

when SST - Tair < 0, MABL is stable (PEZZI et al. 2005; 2009; 2016; 

CAMARGO et al., 2013). Besides, during the ship’s route, light to moderate rain 

occurred on some days. This rainfall allied to the influence of glacial meltwater 

dilution could reduce the salinity concentration in the ocean, also could induce 

the upwelling of nutrient-rich water supporting declines in pCO2sw if light is not 

limiting for primary producers. The glacial meltwater inputs could influence in 

carbonate chemistry, by the dilution of carbonated ion concentration, so with a 

reduction of pCO2sw. This condition, combined with colder waters that increase 
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the ocean CO2 solubility, could favors the CO2 fluxes to be directed to the 

ocean. This result suggests the complexity of the factors controlling the spatial 

distribution of pCO2sw in BS. Similar results were found by Ito et al. 2018, for this 

region. The authors also investigated the role played by surface waters in 

controlling the pCO2sw and sea-air CO2 fluxes in the Northern Antarctic 

Peninsula region. For the BS, during the Summer of 2009, the physical effects 

such as glacial meltwater discharges, oceanic fronts and eddies, 

thermodynamic effects and stratification of the mixing layer also modified the 

pCO2sw variability. When considering the BS, the biological processes were 

responsible for the CO2 sink in this area, but during 2009, the physical 

processes dominated, and the area was a weak source of CO2. Caetano et al. 

(2020) suggested the temperature might cause significant variability in the 

ocean surface distribution of CO2 over short shoreline distances in the Northern 

Antarctic Peninsula. During the period from 14 to 15 November 2018, the ship 

was near to a low pressure atmospheric system as seen in Figure 4.2a e 4.2b 

and produced strong winds at the surface (~ 17 m s-1) as well as high-friction 

velocities (~ 0.8 m s-1; Figure 4.1). These factors favored the vertical mass 

movement and the ocean surface mixing that driving the fluxes to the ocean. 

According to Wanninkhof and Triñanes (2017), the increase in wind speed 

affects the absorption of CO2 by the oceans regardless of the direction of flow. 
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Figure 4.1 - Time series of oceanographic and meteorological variables along the 

ship’s track. 

 

Time series of oceanographic and meteorological variables taken along the Po/V H41 
route, from 08 to 22 November 2018.  Ocean-atmosphere CO2 fluxes (CO2 Flux) (μmol 
m−2 s−1); Sea Surface Temperature - air temperature (TSM-Tar) (°C), Sea Surface 
Temperature (SST), and Air temperature (Tair) (°C); Sea Surface Salinity (SSS); 
Chlorophyll-a concentration (chl) (mg m−3); Wind speed (m s−1); Sea Level Pressure 
(hPa) (SLP) and Friction velocity (u*) (m s-1) The green rectangle separates the 2 
areas: Drake Passage and Bransfield Strait. 

Source: Author’s production. 
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Figure 4.2 – Mean sea level pressure (blue lines), wind direction (arrows) and Po/V 

H41 location (black point) during the days 14, 15 e 19 November 2018, 

00H for each day. Data from ERA5. 

 

Source: Author’s production. 

 

However, changes in pCO2sw under the influence of glacial meltwater input in 

the BS region, could influence the CO2 flux behavior. The glacial meltwater and 

sea-ice melting input modify the surface layer stability and favors the 

development of phytoplankton blooms (VARELA et al., 2002). Changes in the 

salinity, derived from freshwater input, may cause the nitrate (NO3-) reduction 

caused by biological utilization reducing seawater alkalinity that has as 

consequence the increase of the pCO2sw becoming sources of CO2 

(TAKAHASHI et al., 2014) as observed some peaks on days of November 15, 

18 and 19. Monteiro et al. (2020) found the Northern Antarctic Peninsula 

absorbed more CO2 in the Spring and Summer than Autumn and Winter. Those 

authors showed in the Northern Antarctic Peninsula, in autumn and winter, 

upwelling events that increased the remineralized carbon in the sea surface, 

leading the region to act as a CO2 source to the atmosphere. Furthermore, the 

peak on 19 November 2018, where the ocean acted as a source of CO2, was 

due to a combination of some other factors: proximity of a low atmospheric 

pressure system, with approximately 950 hPa (Figure 4.2c) and light to 

moderates surface winds (less than 10 m s-1). Those factors contributed to the 

vertical movement in the MABL, thus decreasing CO2 concentrations in the 

atmosphere near the ocean surface. As a result, the CO2 fluxes were directed 

from ocean to atmosphere, with a mean value of 20 μmol m−2 s−1 (Figure 4.1). 
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On the other days 10, 12, 16, 17 and 20 of November 2018, the CO2 fluxes 

were near the neutrality, with a stable MABL and low turbulence, thus inhibiting 

the mass exchange at the ocean-atmosphere interface 

The DP on average behaved as a sink of CO2 as seen in Table 4.1 and Figure 

4.3a. The main causes were associated with the colder SST (1.45 °C), and 

fresher (34.44) waters as seen in Table 4.1. Thereby, the water properties such 

as SST and SSS had more impact on CO2 fluxes compared to the presence of 

chl, which had low concentration at DP. The Figure 4.3a shows in the south of 

the PF has acted as a CO2 sink, due to the pCO2sw being lower than the 

pCO2atm (MUNRO et al., 2015), influenced by the cold and fresh water. 

However, the CO2 fluxes at DP are less intense than at BS, due to the presence 

of the intense upwelling process around 60 – 65 °S, which increases 

remineralized carbon to the surface (TAKAHASHI et al., 2012; HENLEY et al., 

2020). The mean pCO2sw for the DP was 368 µatm, value higher than as found 

by Fay et al. (2018), it was approximately 355 µatm in November of the period 

between 2002 and 2016, in DP. Similar results were found for Ito et al. 2018 in 

this region, for summer 2008. In their study which took place in the Northern 

Antarctic Peninsula and observed the role of surface water on controlling 

pCO2sw and air CO2 flux, the DP also presented a low concentration of chl. 

However, in this study in the summer of 2008, DP acted as a source of CO2. 

The surface chl concentration is a proxy for the presence of primary production 

that has a role in the air-sea CO2 fluxes as they may have a significant control 

on the gas partial pressure in the seawater (MONTEIRO et al., 2020; HENLEY 

et al., 2020).  Song et al. (2015) discovered in their investigation the role of 

mesoscale eddies in modulating air-sea CO2 flux in DP. In this study, the 

mesoscale eddies SST had a negative correlation with pCO2sw in the ocean 

during the summer. Moreover, they highlighted that the dissolved inorganic 

carbon has more impact on CO2 modulation than it does on temperature. 

However, Munro et al. (2015) reported the importance of the DP in the CO2 sink 

for the SO during winter, especially in the south of the PF.  Previous studies had 

reported the impacts of the SST and SSS on CO2 fluxes, e.g., Wolf et al. 

(2016). And, found that SST has more considerable effects on the CO2 ocean 
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solubility (WOLF et al., 2016).  This can may the main cause that led to less 

CO2 assimilation by the ocean, at DP, where the warmer waters in this region 

produced less solubility of CO2 in the ocean when compared to the BS.  

Figure 4.3 - a) Ocean-atmosphere CO2 fluxes (CO2 Flux) (μmol m−2 s−1), and b) 

pCO2sw (μatm) with Po/V H41 route at Drake Passage during the days 

8, 9, 21 e 22 November 2018.  

a) 

 

b)

Source: Author’s production. 
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At DP the ocean acted as a source of CO2 to the atmosphere as seen in the 

CO2 flux peaks during 8 and 22 of November 2018 (Figure 4.1 and 4.3a). Those 

days the ship was located at the north of the PF, that region has similar pCO2sw 

and pCO2atm, indicating near-neutral air-sea CO2 flux or slight source to the 

atmosphere, those results are similar to the Munro et al. 2015 and Caetano et 

al. (2020). The pCO2sw on the PF north was higher than to the south (Figure 

4.3b), with mean values of 375 µatm, similar values found Ito et al. 2018. 

Moreover, this fact is also related to the unstable condition observed in the 

MABL observed during those days produced an intensification of the wind 

speed at surface and above it within MABL vertical extension. Consequently, 

more turbulence was produced and shown by the u*, which favored the transfer 

of mass between the sea surface and the atmosphere (WANNINKHOF; 

TRIÑANES, 2017). On the following days, 9 and 21 November 2018, when the 

ship was surveying over DP, the CO2 fluxes were near to zero as seen in Figure 

4.1 and 4.3a. In other words, there was no mass exchange between the ocean 

and the atmosphere. In this period, there was a predominance of low turbulence 

of less than 0.5 m s-1 (Figure 4.1), which inhibited the CO2 fluxes.  

 The climate modes of variability, such as El Niño-Southern Oscillation (ENSO) 

and Southern Annular Mode (SAM), impact the variability of the surface 

carbonate system especially on interannual scale. During the November of 

2018 the El Niño was active and SAM was in a positive phase, in this case, 

some studies indicate more CO2 uptake in the Northern Antarctic Peninsula 

(BROWN et al., 2019, COSTA et al., 2020). However, other studies have 

opposites results, they found that in the positive SAM phase the ocean acted as 

a CO2 source due to the reduction in biological activities (LOVENDUSKI et al., 

2007; LEUNG et al., 2015). Another study did not find any effect of the SAM on 

the CO2 carbon sink variability for 35 years (KEPPLER; LANDSCHÜTZER, 

2019). Our study period (8 to 22 November 2018) was conducted during a 

positive and active phase of the SAM and El Niño, and the area was a sink of 

CO2. The results could have some influence of those climate modes of 

variability. However, it is difficult to address the sink CO2 behavior in the area 

due to the climate modes of variability. The influence of ENSO and SAM 
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changing the carbonate system parameters still not well understood in the 

scientific community. 

4.3 Conclusions 

This study showed the impacts of different atmospheric and oceanic conditions 

on the ocean-atmosphere CO2 fluxes based on a combination of in situ, 

satellite, and reanalysis data sets. The in situ CO2 fluxes data were collected in 

the DP and the BS in the second phase of OP37, covering the period from 8 to 

22, November 2018. The CO2 fluxes were obtained with the Eddy Covariance 

method (MILLER et al., 2008; PEZZI et al., 2021). The synoptic oceanic 

conditions were analyzed with chlorophyll, SSS and SST from satellites. The 

atmospheric synoptic conditions were obtained through ERA5 reanalysis data 

set analyzing Tair, SLP, wind speed and direction. 

The BS and DP behaved as CO2 sinks on average, where the main cause was 

attributed to the colder water that intensified the CO2 solubility in the ocean. 

Comparing the mean value of CO2 fluxes, the BS uptake on average 38.59% 

more CO2 than DP. The DP, on average, behaved as a sink of CO2 mainly due 

to physical characteristics. The south of the PF, DP has acted as a persistent 

CO2 sink, due to the pCO2sw being lower than the pCO2atm, influenced by the 

cold and fresh water. However, the CO2 fluxes at DP are less intense than at 

BS, due to the presence of the intense upwelling process around 60 – 65 °S, 

which increases remineralized carbon to the surface. There were some peaks 

of source of CO2 in the north of the PF at DP, due to the unstable conditions of 

the atmosphere. 

The BS was characterized by its colder waters compared to the DP, that 

contributes to the ocean act as sink. Furthermore, during the ship’s route, light 

to moderate rainfall was recorded in some days. This rainfall may have 

contributed to the reduction of salinity concentration in the ocean, thus 

decreasing pCO2sw, directing the fluxes toward the ocean, or minimizing the 

CO2 outgassing. In addition, during the sampled period, the BS had a 

predominance of stable atmospheric conditions contributing to the region act as 

a CO2 sink. However, during the period there were some peaks of CO2 source 
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at BS, due to the reduction of seawater alkalinity by the glacial meltwater and 

sea-ice melting inputs, as consequence the increase of the pCO2sw. Allied to 

that, the proximity of a low atmospheric pressure system and light to moderate 

turbulence and wind at the surface, thus it contributed to the vertical movement 

in the MABL. 

This study supports the hypothesis that ocean-atmosphere CO2 fluxes are 

highly dependent on oceanographic and meteorological conditions. This study 

also contributes to an improved understanding of the importance of the SO in 

the global carbon balance. The provided evidence shows that it is necessary to 

continue with observational campaigns in this region, to expand the knowledge 

about the SO’s role in the global carbon dioxide cycle. 
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5 CO2 FLUXES UNDER DIFFERENT OCEANIC AND ATMOSPHERIC 

CONDITIONS IN THE SOUTHWEST ATLANTIC OCEAN 

5.1 Introduction 

Atmospheric CO2 concentrations, one of the most important greenhouse gases, 

has increased 40% since the beginning of the pre-industrial period (1750) and 

reached 416 ppm in 2021. This is considered a critical threshold for global 

climate change; the average global air temperature increased by 0.89 °C over 

the period 1880–2019 (NOAA, 2019). Therefore, there has been an increase in 

research focused on determining factors that may lead to intensification or 

reduction in CO2 effects on the Earth’s climate (LE QUÉRÉ et al., 2017).  

Oceans are responsible for sequestering approximately 1/3 of anthropogenic 

carbon emissions annually (CANADELL et al., 2007), thereby attracting interest 

in the study of the CO2 flux from the atmosphere to the ocean in response to the 

increasing CO2 concentration in the atmosphere. Takahashi et al. (2009) 

showed that medium- and high-latitude oceanic regions are considered 

important regions for CO2 sinks. The South Atlantic Ocean is the most important 

CO2 sink, providing approximately 60% of the global ocean uptake, whereas the 

Southern Ocean contributes about 20% of the global carbon sink (TAKAHASHI 

et al., 1997). Bianchi et al. (2009) affirmed that the Southwest Atlantic Ocean 

represents one of the largest global carbon sinks. Using data obtained from 14 

cruises between 2000 and 2008, Padin et al. (2010) demonstrated that the open 

ocean area behaved as a CO2 source (sink) in spring (fall), whereas the 

continental shelf behaved as a CO2 source in both seasons. Lencina-Avila et al. 

(2016) investigated the CO2 flux and the sea-air CO2 fugacity along the 35° S 

latitude between the South America and South Africa continent during the 

spring and summer of 2011. They found that owing to the physical variables of 

the South Atlantic Ocean, the entire area behaved as a CO2 sink, with an 

average of -3.1 mmol m-2 d-1. Moreover, Carvalho et al. (2021) identified that 

phytoplankton groups in the coastal South Atlantic Ocean are responsible for 

decreasing the partial pressure of CO2 in the ocean (pCO2sw) in the region. 

However, Ito et al. (2016) found that the coastal water in the Southwestern 
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Atlantic Ocean acted as a CO2 source owing to the mesoscale physical 

processes during spring 2010 and summer 2011. Arruda et al. (2015) used a 

regional ocean biogeochemical model to investigate the processes responsible 

for the spatio-temporal variability in pCO2 and the air-sea CO2 fluxes in the 

southwestern Atlantic Ocean. They found that the continental shelf acted as a 

weak CO2 source; south of 30° S, the region acted as a CO2 sink, but to the 

north, there was an equilibrium between CO2 of the ocean and the atmosphere. 

According to them, biological production and solubility are the main processes 

that regulate pCO2 in the ocean. Pezzi et al. (2021) showed clear spatial 

correlations in CO2 fluxes with the marine atmospheric boundary layer (MABL) 

stability over a warm core eddy surrounded by cold waters, which acted as a 

CO2 source with an average of 0.3 mmol m-2 d-1. 

Many important scientific questions about the global climate involve 

understanding the interaction between the ocean and atmosphere (PEZZI et al., 

2009; 2016; HACKEROTT et al., 2018; SANTINI et al., 2020). Therefore, 

understanding the carbon exchange behavior in these regions is very important 

in the study of global carbon fluxes. The Atlantic Carbon and Fluxes Experiment 

(ACEx) project (PEZZI et al., 2016), Ocean-Atmosphere Interaction Program in 

the Brazil-Malvinas Confluence Region (INTERCONF) (PEZZI et al., 2005; 

2009), Southern Ocean Studies for Understanding Global Climate Issues (SOS-

CLIMATE; ORSELI et al., 2017; ITO et al., 2018; MONTEIRO et al., 2020), 

Programme de Coopération avec l’Argentine pour l’étude de l’océan Atlantique 

Austral (ARGAU CRUISES; BIANCHI et al., 2009), and more recently the 

Antarctic Modeling Observation System (ATMOS) project (PEZZI et al., 2021), 

are some of the South American research programs dedicated to studying the 

exchange of ocean-atmosphere turbulent fluxes in the Southwest Atlantic 

Ocean and Southern Ocean. 

Investigation of the behavior of the MABL in these interactions is of great 

scientific importance, because the exchange of properties in this layer between 

the atmosphere and ocean plays an important role in understanding climate 

variability, biogeochemical cycles, and the global energy balance 
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(TRENBERTH, 2009). Changes in energy and mass fluxes between the ocean 

and atmosphere are controlled mainly by wind speed, air and sea temperatures, 

humidity, radiation, and evaporation (SATO, 2005). 

The Southwest Atlantic Ocean plays a role in the weather and climate of south 

and southwest Brazil and other South American countries (PEZZI et al., 2015). 

Thus, studies that increase knowledge of the ocean-atmosphere processes in 

this region are important for improving weather forecasts (PEZZI; SOUZA, 

2009). Despite their importance, ocean-atmosphere fluxes are poorly sampled 

throughout the Southwest Atlantic Ocean compared with other regions, and 

there remains a critical need for systems designed to provide high-quality 

measurements in all seasons and sea states.    

The main objective of this study was to investigate the behavior of turbulent 

CO2 fluxes and quantify them over an intense horizontal sea surface 

temperature (SST) gradient in the Southwest Atlantic. This focus was provided 

by the opportunity for observing distinct synoptical atmospheric conditions 

during an oceanographic cruise aboard the Brazilian polar ship in the austral 

spring of 2018.  

5.2 Results and discussion 

The results and discussion is divided in the follow way: Section 3.1 brings the 

temporal series for CO2 flux and other oceanic and atmospheric variables, 

during the trajectory of the ship between October 14 to 27, 2018. And the 

influence of those variables in CO2 flux. The Section 3.2 presents a synoptic 

snapshot of the thermal structure of the MABL and ocean mixed layer produced 

at the BMC between October 16 and 17, 2018. And it’s influence on the CO2 

flux. 

5.2.1 Superficial analysis 

The trajectory of Po/V H41 (Figure 3.1) started on October 14, 2018 in the warm 

waters of the Brazilian Coastal Current (BCC) and ended on October 27, 2018 

in the cold waters of the MC. During this trajectory, the study region was split 

into four areas using satellite data from SST (Figure 3.1), SSS, and chl (Figure 
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5.1) because of the different oceanic and atmospheric conditions between 

them. The regions were the BCC, BC, BMC, and MC. Table 5.1 summarizes all 

data for the study region (BCC, BC, BMC, MC, and total area). The CO2 flux 

varied along the path of the ship (Table 5.1 and Figure 5.3a). For detecting the 

differences between average CO2 values between the regions, the Tukey’s test 

was applied at 95% confidence level. Differences between the study areas were 

detected (Table 5.2). These differences are attributed to the variability in 

atmospheric and oceanic conditions along the path of the ship. The CO2 flux 

data were discarded under stable atmospheric conditions when the Monin–

Obukhov stability parameter was greater than 0.2 (here, ζ > 0.2) as 

inaccuracies occur in measuring turbulent fluxes when turbulence is very small 

or intermittent (SUN et al., 2018; YUSUP; LIU, 2016; PATTEY et al., 2002). 

 

Figure 5.1 - Composite for the period between 14 to 27 October 2018, Sea surface 

salinity data from Soil Moisture Active Passive (SMAP) (left); Chlorophyll 

(mg m-3) data from VIIRS SNPP (right). 

 

Source: Author’s production. 
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Table 5.1 - Mean, maximum, and minimum values of the variables during ship’s track. 

    CO2 Flux SST SSS chl Tair u u* P 

BCC 

MEAN -1.05 17.03 31.52 1.41 16.51 3.30 0.09 1014.05 

MAX -0.19 17.52 32.27 2.56 16.89 4.73 0.22 1014.45 

MIN -1.79 16.70 30.09 0.87 16.16 2.56 0.06 1013.45 

SUM -18.91 
       

STD 0.54 0.28 0.49 0.53 0.27 0.67 0.04 0.23 

BC 

MEAN -2.90 19.29 35.55 0.38 16.84 11.66 0.36 1011.94 

MAX 0.30 22.26 36.31 1.95 19.71 20.80 0.69 1021.00 

MIN -17.11 16.71 31.92 0.21 9.92 1.48 0.16 1005.78 

SUM -529.97 
       

STD 3.52 1.14 1.08 0.28 1.79 4.64 0.11 4.53 

BMC 

MEAN -2.07 14.11 34.01 1.24 11.12 7.26 0.36 1018.39 

MAX 11.88 24.64 36.28 4.38 16.95 13.42 0.71 1027.43 

MIN -13.58 6.95 31.98 0.05 6.83 1.24 0.11 1006.80 

SUM -397.69 
       

STD 3.80 5.44 0.79 0.96 2.31 3.05 0.13 7.12 

MC 

MEAN -0.48 9.22 33.15 0.78 7.51 8.87 0.32 1017.24 

MAX 16.12 17.26 34.16 2.36 9.95 18.88 0.74 1025.47 

MIN -19.43 6.41 31.72 0.13 5.99 2.92 0.10 997.29 

SUM -111.63 
       

STD 4.48 2.70 0.62 0.45 0.87 3.81 0.18 8.49 

ALL 

MEAN -1.69 13.83 34.06 0.88 11.55 9.03 0.34 1015.97 

MAX 16.12 24.64 36.31 4.38 19.71 20.80 0.74 1027.43 

MIN -19.43 6.41 30.09 0.05 5.99 1.24 0.06 997.29 

SUM -1058.19 
       

STD 4.07 5.39 1.35 0.73 4.23 4.29 0.15 7.46 

Mean, maximum, and minimum values of the Ocean-atmosphere CO2 fluxes (CO2 
Flux) (μmol m−2 s−1);   Sea Level Pressure (SLP) (hPa) (Air Pressure), Wind speed (m 
s−1); Friction velocity (u*) (m s-1), Sea Surface Temperature - air temperature (TSM-Tar) 
(°C); Sea Surface Salinity (SSS); Sea Surface Temperature (SST) (°C); Chlorophyll-a 
concentration (chl) (mg m−3); for the Brazil Coastal Current (BCC), Brazil Current (BC), 
Brazil Malvinas Confluence (BMC), Malvinas Current (MC) and Total Area (All).  Values 
obtained along the ship track and the data were collected in the OP37 during the period 
of 14 to 27 October 2018. 

Source: Author’s production. 
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Table 5.2 - Tuckey test with 95% confidence for average CO2 fluxes (CO2 Flux) (μmol 

m−2 s−1) for Brazil Current, Brazil-Malvinas Confluence, Malvinas Current 

and Brazil Coastal Current in the OP37 during the period of 14 to 27 

October 2018. 

 

      Areas                   CO2 Flux (μmol m−2 s−1)    Test results 

-------------------------------------------------------------------------------- 

Brazil Current                         -2.90           a1 

Brazil-Malvinas Confluence        -2.07           a1 

Malvinas Current                     -0.48          a2 

Brazil Coastal Current                -1.05          a3 

-------------------------------------------------------------------------------- 

Source: Author’s production. 

 

The BCC was strongly influenced by discharge from the La Plata River; the 

mean value of chl concentration was 1.41 mg m-3 and the lowest SSS value 

was 27.70 (Table 5.1). These characteristics favored the behavior of this region 

as a CO2 sink (Kerr et al., 2015), with an average of -1.05 μmol of CO2 m-2 s-1 

(Table 5.1). These biochemical processes (SSS and chl) have more impact on 

the flux direction than do the physical processes such as SST, with an average 

of 17.03 °C. The chl data had gaps owing to cloud cover in this area during the 

cruise period. These gaps are because chl is obtained through a passive sensor 

which is affected by interference from clouds and thereby influences the quality 

of measurements. Carvalho et al. (2021) recently identified phytoplankton 

groups that strengthen the CO2 uptake in the BCC. A similar behavior was 

found by Orselli et al. (2019) in their study of the impact of Agulhas eddies on 

sea–air CO2 fluxes in the South Atlantic Ocean. They found that the entire 

region along the Agulhas corridor in the South Atlantic Ocean acted as a CO2 

sink in July 2015 (austral winter). However, Ito et al. (2016) found that the South 

Atlantic Ocean on the Southern Brazilian Shelf acted as a CO2 source during 

the late spring of 2010 and the early summer of 2011. According to them, both 
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regional upwelling and mesoscale physical processes, such as fronts, 

meanders, and eddies, have a major influence on the spatial distribution of the 

sea surface pCO2sw over the region. Arruda et al. (2015) found that the 

southwestern South Atlantic Ocean on the inner continental shelf acts as a 

weak CO2 source. In addition, the MABL was under neutral conditions on 

October 14 and 15, 2018, as can be seen by the SST-Tair difference (Figure 

5.2), which inhibits intense exchange between the ocean and atmosphere. The 

stability parameter is based on the difference between the SST and Tair, and the 

surface layer is unstable when SST > Tair (PEZZI et al., 2005; 2009; 2016; 

CAMARGO et al., 2013). 

 

Figure 5.2 - Time series of atmospheric and oceanographic variables along the ship’s 

track. 

 

Time series of atmospheric and oceanographic variables taken along the Po/V H41 
route, from 14 to 27 October of 2018.  Ocean-atmosphere CO2 fluxes (CO2 Flux) (μmol 
m−2 s−1); Sea Surface Temperature (SST) (°C); Air Temperature (Tair); Sea Surface 
Salinity (SSS); Chlorophyll-a concentration (chl) (mg m−3); Wind speed (u) (m s-1); and 
Friction Velocity (u*) (m s-1); Sea Level Pressure (SLP) (hPa). The gray lines separate 
the four areas BCC, BC, BMC and MC. 
Source: Author’s production. 
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The characteristics of BC favor the ocean to behave as a source of CO2, such 

as the highest mean SSS value (35.55), highest mean SST value (19.29 °C), 

and lowest chl concentration (0.38 mg m-3) (Table 5.1). However, this area has 

higher uptake of CO2 than the other regions, with an average of -2.90 µmol of 

CO2 m-2 s-1 (Table 5.1). A similar pattern was found by Padin et al. (2010), who 

used data obtained from 14 cruises between 2000 and 2008 and showed that 

the open ocean in the southwestern South Atlantic Ocean behaved as a CO2 

sink in spring. The largest uptake of CO2 by the ocean occurred on October 15 

and 22, 2018 (Figure 5.2) owing to the proximity to the chl-rich and less saline 

waters of the La Plata River and the cold and less saline waters of the MC, 

respectively. On October 15, 2018, the meeting of less saline water from BCC 

with the more saline water from BC resulted in a density difference owing to 

which there was a subduction of BC, thus contributing to CO2 assimilation on 

this day (Figures 3.1, 5.1, and 5.2). On October 22, 2018, there was a meeting 

between the BC and MC, and the presence of chl and low SST resulted in a 

CO2 sink (Figures 3.1, 5.1, and 5.2). Furthermore, the intensification of wind 

speed (Figure 5.2) favors mass transfer to the ocean (Wanninkhof; Triñanes 

2017) and such increases in wind speed affect the CO2 exchange between the 

ocean and atmosphere, regardless of the direction of the fluxes. On the 

remaining days, October 16 and 21, 2018, the ship was in the BC and the CO2 

fluxes were practically null. This is because the high-pressure system acting on 

the study region (Figure 5.4a and 5.4b) with low turbulence (u* < 0.5 m s-1) 

inhibited vertical movements in this region.  

The BMC was the second region that absorbed a large amount of CO2, with an 

average of -2.07 µmol CO2 m-2 s-1; however, according to the Tukey test, there 

was no significant difference when compared with the BC (Table 5.2). Padin et 

al. (2010) found that the BMC area has the highest CO2 uptake along the 

Atlantic Ocean owing to the variability in SSS, SST, and strong winds. The BMC 

is a region that presents an intense horizontal temperature gradient (PEZZI et 

al., 2016; HACKEROTT et al., 2018; SANTINI et al., 2020) formed by the 

meeting of the warm waters of the BC with the cold waters of the MC (Figures 

3.1 and 4.5b). Thus, this region exhibits an intense oscillation in the CO2 flux 
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(Figures 5.2 and 5.3a). On October 19, 2018, there was increased absorption of 

carbon by the ocean owing to the position of the ship in the cold and less saline 

water, in addition to the predominance of a moderate wind speed of 10 m s-1 

and turbulence of approximately 0.5 m s-1 (Figures 5.1 and 5.2), which 

contributed to the mass exchange between the ocean and atmosphere. There 

were peaks in the CO2 fluxes between October 17 and 18, 2018, when the 

ocean acted as a source of CO2 to the atmosphere (Figures 5.2 and 5.3a). This 

is related to the presence of warm and saline water owing to the route of the 

ship being close to the BC waters (Figures 3.1, 5.1, and 5.2). Moreover, 

turbulence was moderate, with u* approximately 0.5 m s-1 (Figure 5.2), which 

contributed to the CO2 exchange. There was also a peak during October 20, 

2018, owing to the instability of the atmosphere, as SST > Tair, combined with 

turbulence greater than approximately 5 m s-1 and wind speed of approximately 

10 m s-1. In such a case of an unstable atmosphere, there is more turbulence 

and agitation of the particles, resulting in a decrease in the CO2 concentration in 

the atmosphere close to the ocean. In addition, in this region, the presence of 

hot water (>20 °C) reduces CO2 solubility and increases the pCO2 in the 

oceans. This difference in pCO2 between the ocean and atmosphere directs the 

fluxes to the atmosphere. Several studies have reported the effect of SST and 

salinity on CO2 fluxes; however, SST has the greater effect on CO2 fluxes 

(WOLF et al., 2016). 
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Figure 5.3 - a) Ocean-atmosphere CO2 fluxes (CO2 Flux) (μmol m−2 s−1), b) Sea 

Surface Temperature (SST) (°C) and, c) Sea Surface Salinity (SSS) with 

Po/V H41 route at Brazil Malvinas Confluence from 14 to 27 October of 

2018.  

 

a)                                                b)                                            c) 

 

Source: Author’s production. 
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Figure 5.4 – Mean sea level pressure (blue lines), wind direction (arrows) and Po/V 

H41 location (black point) during the days 16, 21, 22, 24 and 25 October 

2018, 00H for each day. Data from ERA 5.   

Source: Author’s production. 
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In the beginning of October 23, 2018, a large CO2 sink was observed in the MC 

because of the fresh, cold water which increased the solubility of CO2 in the 

ocean, along with a high wind speed of approximately 20 m s-1, turbulence 

greater than approximately 0.5 m s-1, and the presence of chl (Figure 5.2). 

Thus, the CO2 flux was directed to the ocean. However, until October 25, 2018, 

CO2 fluxes at MC were close to zero owing to the proximity of the ship to high-

pressure systems, weak winds at the surface (Figures 5.2a, 5.3c and 5.3d), and 

low turbulence, thus inhibiting the mass exchange between the ocean and 

atmosphere. According to Bianchi et al. (2005), the CO2 sink south of 48° S is 

not as strong as that in the northern region in the South Atlantic Ocean during 

spring. However, between October 26 and 27, 2018, the ocean behaved as a 

CO2 source, mainly because of the high turbulence in the layer, which 

intensified mass exchange between the ocean and atmosphere (Figure 5.2). 

Gonçalves and Innocentini (2018) reported that turbulence increases mass 

exchange between the ocean and atmosphere. During the cruise, the MC 

behaved as a CO2 sink with an average value of -0.48 µmol of CO2 m-2 s-1, with 

cool and fresh waters, average 9.01 °C and 33.13, respectively (Table 5.1). 

Similar results were obtained by Padin et al. (2010), who found that MC 

behaved as a CO2 sink in spring because of the low SSS value of 32.9. 

Therefore, atmospheric variables modulate the CO2 exchange between the 

ocean and atmosphere. 

5.2.2 Vertical analysis 

Figure 5.5 presents a synoptic snapshot of the thermal structure of the MABL 

and ocean mixed layer produced at the BMC between October 16 and 17, 

2018. The expendable bathy-thermograph data were used only to describe the 

main water temperature distribution along the BMC transect, which is important 

for the MABL analysis. The figure shows the thermal contrast between the 

warm waters from the BC (red color), with a thermocline of 400 m and 18 °C, 

and the cold water from MC, with a thermocline of 50 m and 8 °C. Over the 

warm BC waters, the atmosphere is warmer and presents weaker winds at the 

sea surface. However, in this study, the MABL was not always well-mixed 

(unstable) with a small vertical wind shear over warmer waters, as classically 
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expected for SST forcing through the static stability mechanism (WALLACE et 

al., 1989). Pezzi et al. (2016) found similar behavior in their investigation of the 

influence of the cross-shelf oceanographic front occurring between the BC and 

BCC on the local MABL. They associated the differences from the classical 

adjustment models with the presence of cyclogenesis and atmospheric frontal 

passages in their study area. In the well-known vertical mixing mechanism, air 

buoyancy and turbulence intensity increase over warm waters (PEZZI et al., 

2005; 2009; 2021). Consequently, the MABL vertical wind shear is reduced, and 

stronger winds are generated at the sea surface (PEZZI et al., 2021). The 

differences from the classical adjustment models are a consequence of the 

presence of high pressure in our study area, which inhibited the MABL 

convective process owing to the subsidence of the air to the near surface.  

 

Figure 5.5 - Temperature profiles (°C) of the atmosphere and ocean (colors) taken 
simultaneously by radiosondes and XBTs along the Brazilian Navy Polar 
Vessel (Po/V) Almirante Maximiano (H-41) route while crossing the 
Brazilian Malvinas Confluence between 16 and 17 October 2018.  

 

The lower part of this figure displays the oceanic sounding positions (black vertical 
lines). Wind magnitude (m s-1) in vectors is also displayed, superimposed on the air 
temperature. The vector size reflects the wind magnitude. 
Source: Author’s production. 
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Over cold MC waters, the MABL is not well-developed and has a weak wind at 

the surface (Figure 5.5). The MABL is stable as the wind shear increases and 

surface wind decreases, which agrees with the vertical mixing mechanism 

(WALLACE et al., 1989). Pezzi et al. (2021) identified the impact of the eddy on 

the turbulent fluxes and its surrounding environment, such as the dynamic and 

thermodynamic characteristics of the MABL. They found that the mechanisms 

of pressure adjustment and vertical mixing that could make the MABL unstable 

were both identified. 

Figures 5.6a and 5.6b show the CO2 flux and stability parameter represented by 

SST and Tair, and CO2 flux and u*, respectively, during October 16, 2018. The 

atmosphere was close to neutral conditions at the warm side of the BC with 

some peaks of instability and low turbulence (<0.4 m s-1). The factors 

associated with the high-pressure system modulated the CO2 flux and inhibited 

the intense mass exchange between the ocean and the atmosphere; the area 

behaved as a mild CO2 sink. Under the influence of the MC atmosphere, the 

BMC was stable above the cold waters (Figure 5.5); however, it had increased 

turbulence owing to the intense SST gradients, which increased the turbulence 

and CO2 flux between the ocean and atmosphere. 
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Figure 5.6 - a) Sea Surface Temperature (SST) (°C), Air Temperature (Tair) (°C), and 

CO2 Flux (μmol m−2s−1)  b) Friction velocity (u*) (m s-1). Values obtained 

along the ship while crossing the Brazilian Malvinas Confluence between 

16 and 17 October 2018. 

 

a) 

 

b) 

 

Source: Author’s production. 
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5.3 Conclusions 

This study showed the impacts of different atmospheric and oceanic conditions 

on the ocean-atmosphere CO2 flux exchange based on a combination of in-situ, 

satellite, and reanalysis data. The in-situ data were collected during one 

scientific cruise on board a polar vessel that is part of a Brazilian scientific effort 

called the ATMOS Project. The in-situ data were collected in the Southwest 

Atlantic Ocean during the first phase of Antarctic Operation 37, covering 

October 14–27, 2018. The CO2 fluxes were obtained using the eddy covariance 

method (MILLER et al., 2008; PEZZI et al., 2021). Oceanic conditions were 

analyzed using chl, SSS, and SST data from satellites. The atmospheric 

synoptic conditions were obtained through the ERA5 reanalysis dataset by 

analyzing the air temperature, sea level pressure, wind speed, and direction. 

CO2 fluxes exhibit complex behavior at the ocean-atmosphere interface 

because they are modulated by different oceanic and atmospheric conditions. 

The BCC behaved as a sink because of the high chl concentration and fresh 

water, which directed the fluxes to the ocean. In this layer, biochemical 

parameters, such as chl and SSS, rather than SST, modulate CO2 flux. The BC 

was the area with the highest CO2 absorption during the study period. This 

result is mainly because of the proximity to the chl-rich and less saline waters of 

La Plata River and to the cold and fresh waters of the MC. Moreover, this is 

owing to the intense wind speed, which increases the CO2 flux between the 

ocean and atmosphere. On average, the BMC behaved as a CO2 sink, and the 

modulation of CO2 fluxes was due to the intense horizontal gradient of SST 

combined with moderate wind and turbulence, which contributed to the mass 

exchange between the ocean and atmosphere. The MC sequestered less 

carbon than the BC and BMC because of the proximity of the ship to high-

pressure systems coupled with low turbulence and light winds on the surface 

that inhibited the exchange of mass between the ocean and atmosphere. 

The MABL over the BMC, on the cold side of the MC waters, had weak winds at 

the surface and a highly stable MABL, supporting the existence of MABL 

modulation by the vertical mixing mechanisms. However, on the warm side from 
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the BC waters, the MABL was more developed, but the wind was not strong and 

wind shear was present. In this case, the MABL was modulated by the high-

pressure system, which decreased turbulence. However, the intense mass 

exchange between the ocean and atmosphere was inhibited, and the area 

behaved as a light CO2 sink because of the high-pressure system. 

These results demonstrate that atmospheric and oceanic conditions modulate 

CO2 fluxes between the ocean and atmosphere. The collection of in-situ data is 

fundamental to improving our knowledge of the mass exchange between the 

ocean and atmosphere. Data collection efforts in this region should be 

continued to expand our knowledge of the importance of the Southwest Atlantic 

in the global carbon balance. 
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6 DIRECT AND INDIRECT MEASUREMENTS OF CO2 TURBULENT 

FLUXES IN THE SOUTHWEST ATLANTIC OCEAN 

6.1 Introduction 

The ocean acts as a major sink of CO2 soaking up about 25%-48% of the total 

anthropogenic emissions (SABINE et al., 2004; CANADELL et al., 2007; 

DONEY et al., 2009, TAKAHASHI et al., 2009; LE QUERE et al., 2018). There 

are several methods for quantifying carbon flux between the ocean and the 

atmosphere (MILLER et al., 2010; TAKAHASHI et al., 2009; FARIAS et al., 

2012). One of them is the direct method, eddy covariance (EC), which obtains 

mass and energy turbulent fluxes, between the surface and the atmosphere, by 

using micrometeorological instrumentations (BUTTERWORTH; MILLER, 2016). 

There is also the indirect method called bulk parameterizations, based on 

characteristics of the air–sea interface (KARA et al., 2000), formulations based 

on empirical parameterization of turbulence (FAIRALL et al., 1996).  

However, those indirect estimations result in uncertainties about the CO2 

balance in the ocean-atmosphere system (PEZZI et al., 2015). The estimation 

of ocean CO2 uptake is still biased by the uncertainty of parameterization of gas 

transfer velocity (K). The K coefficient is considerate the major source of 

uncertainty in the Bulk methodology. The K is traditionally estimated using wind 

speed because it is considered an indirect parameter for the ocean surface 

roughness (PHILLIPS, 1977), which is a fundamental role in gas exchange. 

Despite bulk research on this subject, our perception of the gas transfer 

processes remains to be enhanced. However, other processes are also 

important, such as boundary layer instabilities and wave parameters, which are 

not affected solely by wind speed (WOOLF et al., 2005; 2007; ZHAO et al., 

2003). In addition, there is a need to integrate the chemical, physical and 

biological knowledge, which are essential to the CO2 exchange processes 

(BRÉVIÈRE et al., 2015; NEUKERMANS et al., 2018). 

Understanding how CO2 turbulent flux exchange behaves in different oceanic 

regions is very important for assessing the global carbon budget. The CO2 

partial pressure (pCO2) in the ocean has great spatial and temporal variability, 
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especially at the middle and high latitude regions, considered CO2 sinks 

(TAKAHASHI et al., 2009). The spatial distribution and temporal variability of 

pCO2 have not yet been fully comprehensively in the southwestern Atlantic 

Ocean. The in situ fCO2 data have gaps in coverage spatial and temporal 

resolution (TAKAHASHI et al., 2009; CARVALHO et al., 2018; LENCINA-AVILA 

et al., 2016). There is a need for improving our understanding of the processes 

involved in the exchange between the ocean and the atmosphere, particularly at 

different spatiotemporal scales. The in situ data is typically collected in the 

summer, which makes it a scientifically complex environment for 

experimentation, due to its distance, hostility and adverse nature (PEZZI et al., 

2021; MONTEIRO et al., 2020). To solve this issue, there is regional 

climatology of sea surface fCO2 (TAKAHASHI et al., 2018), or algorithms 

developed from the hydrographic or carbonate system datasets (ITO et al., 

2016; LENCINA-AVILA et al., 2016; BENALLAL et al., 2017; ORSELLI et al., 

2019a). Those algorithms allied to satellite data can increase the spatial and 

temporal resolution of the sea surface fCO2 distribution (ZHU et al., 2009; 

BENALLAL et al., 2017). Which improve our knowledge of the role of the SAO 

in the global climate (SHUTLER et al., 2016; BENALLAL et al., 2017; 

WANNIKHOFF et al., 2017; LOHRENZ, et al., 2018). Changes in the sea 

surface fCO2 are associated to sea surface temperature (SST), sea surface 

salinity (SSS), total alkalinity (Alk), and total dissolved inorganic carbon (DIC) 

(SIGNORINI et al., 2013).  

The CO2 flux between ocean and atmosphere is quite complicated because it 

needs knowledge of ocean physics, atmospheric physics, cloud physics, and 

chemistry, as well as biogeochemical cycles in general (ITO et al., 2018; 

MONTEIRO, et al., 2020; JIANG et al., 2014). The Atlantic Ocean is the most 

important CO2 sink, providing about 60% of the global ocean uptake of the 

global anthropogenic CO2 uptake from the atmosphere from 1870 to 1995 

(TAKAHASHI et al., 2009; FRÖLICHER et al., 2015; LE QUÉRÉ et al., 2016, 

2018). The Southwest Atlantic Ocean plays a major role in the weather and 

climate of the south and southwestern areas of Brazil and other South American 

countries (PEZZI et al., 2015).  
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The main objective of this work is to purpose a gas transfer coefficient for the 

Southwest Atlantic Ocean based on in situ data collected at that region. 

Furthermore, we will validate the gas transfer coefficient for other fields 

campaigns. Also, it will be used this transfer velocity coefficient to estimate a 

CO2 flux with bigger spatiotemporal resolution for the region.  

6.2 Results and discussion 

The results are composed by the algorithm for the determination of the fCO2sw 

for the study region. Also, the comparisons between the calculated FCO2 with in 

situ (EC) and with the Bulk methodology with different gas transfer velocity, 

developed by several researchers. Furthermore, the purposed gas transfer 

coefficient for the study area. For validation of the fCO2sw and K was made by 

the comparisons between FCO2 flux computed results and field measurements 

taken during the oceanographic cruises where EC was used. The last part was 

the climate variability of CO2 flux between ocean and atmosphere for the study 

region. 

6.2.1 CO2 fugacity at ocean 

The fugacity of carbon dioxide is not the same as its partial pressure (the 

product of mole fraction of CO2 and total pressure), but rather takes account of 

the non-ideal nature of the gas phase (WEISS 1974; DOE, 1994).  According to 

the the fugacity and partial pressure of CO2 differ by only about 0.4 % (LISS; 

JOHNSON, 2014). 

The fCO2sw model was created with SST and fCO2sw data from SOCAT for the 

OP37 (Figure 6.1). We found the best fit was fCO2sw = 0.3181*SST2 - 9.51*SST 

+ 397.9 with R2 of 0.64 at 95 % of confidence. Different results were found for 

Benallal et al. (2017), which found a better model using the feedforward neural 

networks, for the Southern Ocean from the south of Australia to the Antarctica 

coasts based on SST and chl. Zhu et al. (2009) found a better fit for fCO2sw with 

SST and chl, for the northern China Sea, because it is a more productive area 

and closer to the coast than our study area. 
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Figure 6.1 - Linear regression between SST and fCO2sw during the OP37, for the period 

from October to November 2018. 

 

Source: Author’s production. 

 

6.2.2 Gas transfer coefficient 

Several researchers have developed the gas transfer velocity since 1980s for 

different regions in the World Ocean and environmental conditions. In this 

study, we tested the most used equations, which are based on wind speed 

(Table 6.1), for OP37. Table 5 presents a comparison between the calculated 

FCO2 with both in situ (EC) and with the Bulk methodology. The results were 

similar for all models, with RMSE between 5.95 to 7.43 and Pearson correlation 

between 57 and 74% at the 95% confidence level. The best equation was 

Wanninkhof (1992), which includes the chemical effects and the exchange 

between ocean and atmosphere. Pezzi et al. (2021) equation show good 

correlation as well, however the coefficient was developed including eddy 

effects. 
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Table 6.1 - Model results for CO2 flux using different gas transfer velocities for OP 37. 

Source: Author’s production. 

 

The EC is considered the best method to quantify the ocean–atmosphere CO2 

fluxes because its uncertainties are of the order of only 5% (DONG et al., 2021). 

These uncertainties are much smaller than those associated with the bulk 

methods that use (uncertain) parameterized transfer coefficients. The ocean–

atmosphere CO2 transfer velocity coefficient, computed with our data and 

quadratically fitted to wind speed, yielded good performance by agreeing with K 

determined in other CO2 studies as shown in Figure 6.2. 

Reference RMSE PEARSON 

Wanninkhof (1992) 7.44 0.75 

Wanninkhof and McGillis (1999) 6.09 0.69 

Nightingale et al. (2000) 6.11 0.57 

Jean-Baptiste, Fourré, and 
Poisson (2002) 

7.02 0.62 

Ho et al. (2006) 6.13 0.59 

Sweeney et al. (2007) 5.92 0.67 

Wanninkhof et al. (2009) 6.10 0.59 

Ho et al. (2011) (Equation (a)) 5.96 0.67 

Ho et al. (2011) (Equation (b)) 6.12 0.69 

Wanninkhof (2014) 6.08 0.60 

Pezzi et al. (2021) 6.39 0.61 
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In order to assess the quality of the CO2 fluxes calculated in this study, the CO2 

ocean–atmosphere transfer velocity coefficient (K) was computed and 

compared to some classic values found in the literature (Figure 5.4). We found 

a quadratic adjustment (K = 0.2325*u2– 0.4361*u+ 1.764 with R2 of 0.97 and 95 

% of confidence) between the CO2 transfer coefficients and the neutral wind 

speed collected at 10 m during the cruise. For u less than 5 m s−1 our curve 

showed a good agreement with Wanninkhof (1992) and Pezzi et al. (2021) for 

less than 10 m s-1 good agreement with Wanninkhof and McGillis (1999) and 

Ho et al. (2011) (Equation (b)). However, for u greater than 5 and 10 m s−1, the 

K values were lower than those curves used for comparison. Even so, it is 

possible to observe that the K curve was able to well represent the expected 

behavior compared to the other curves, but for the winds bigger than 15 m s-1, 

values are higher compared to those curves. When the wind speed is zero then 

K = 1.764 cm h−1, which is higher than most of the studies used here for 

comparison. However, it is smaller than the Wanninkhof et al. (2009), which the 

wind is zero, K= 3 cm h−1. We can associate this value to the turbulence 

processes at the ocean surface (intense horizontal SST gradients) or the 

biological activity (waters from the Rio del Plata) that is characteristic of this 

region. The BMC has an important natural contributor to the atmospheric 

carbon budget throughout their intense SST gradient. 
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Figure 6.2 - Relationship between the CO2 transfer velocity coefficient and the neutral 

wind speed at 10 m calculated from the data collected in this 

experiment.  

 

 

Source: Author’s production. 

 

6.2.3 Validation 

Satellite and reanalysis data were used at SAO for computing CO2 flux using 

the bulk methodology using the estimated parameters, fCO2sw and K. 

Comparisons were made between computed results and field measurements 

taken during the oceanographic cruises where EC was used. We used ACEX 

data (2012), OP 32, 33, 34 and 37 (2013, 2014, 2015, and 2018, respectively), 

for the SAO. The results shown RMSE between 2.64 to 8.17 and Pearson 

correlation between 54% and 85% at the 95% confidence level (Table 6.2). The 

ACEX campaign has the lowest correlation and highest RMSE, due to the 

location of the route, more to the north and near to the coast, in the Brazil 

Coastal Current (BCC).  The others had similar statistical results because they 

have similar routes. Thus, they crossed Brazil current (BC), Brazil-Malvinas 

Confluence (BMC) and Malvinas current (MC). This suggests the effects of 
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biological activities on the spatial and temporal changes in FCO2 in the BCC 

cannot be ignored, and an algorithm dependent on both SST and chl is a better 

fit for the target region. However, the fCO2sw and transfer velocity algorithms 

have satisfactory results when compared to in situ data.  

Further optimization of this algorithm based on a larger pool of in situ data is 

nevertheless advocated. Nevertheless, there are significant discrepancies 

between each pair of data, due mainly to the differences in the time and spatial 

scales of remote sensing, reanalysis and in situ data. The remote-sensing and 

reanalysis data used here are on hourly, daily, weekly and monthly time scales, 

while the temporal resolution of the in situ data was obtained at high frequency 

as 20 data per second. Also, the spatial resolution for satellite and reanalysis 

data varies between 2.2 x 2 km to 0.25°. It is clear, that the relatively drastic 

short-term changes in FCO2, such as high frequency variability or even the 

diurnal cycle variability, cannot be captured in the remote-sensing and 

reanalysis data. Furthermore, the different spatial and temporal resolution 

between remote sensing / reanalysis and in situ data do not affect the 

comparison between different algorithms.  
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Table 6.2 - Comparison between FCO2 between ocean and atmosphere, calculated 

with in situ data (eddy covariance) and with the satellite / reanalysis data 

(bulk methodology) with the estimated parameters fCO2sw and K. 

Ship campaign Statistical 

ACEX  
(2012) 

RMSE= 8.17 
R2= 0.54 

OP 32 
(2013) 

RMSE= 4.85 
R2= 0.74 

OP 33 
(2014) 

RMSE= 7.29 
R2= 0.73 

OP 34 
(2015) 

RMSE= 7.81 
R2= 0.67 

OP37 
(2018) RMSE= 2.64 

R2= 0.85 

The in situ data used were ACEX (2012), OP 32 (2013), OP 33 (2014), OP 34 (2015) 

and OP 37 (2018). 

Source: Author’s production. 

 

6.2.4 Climate variability 

The time series analysis shown in Figure 6.3, reveals some interesting CO2 

behavior along the years. The BC and MC had been increasing the assimilation 

of carbon (Figure 6.3) along the analyzed years. The Figure 5 show negative 

anomaly between 2012 and 2020 for CO2 flux and SSS. The negative tendency 

in SSS may contributed to the increased sink of CO2 sink by the ocean, due to 

the increase CO2 solubility. However, the SST in BC and MC presented almost 

neutral tendency. The chl has a week positive tendency, it could contribute for 

the CO2 flux negative anomaly. Allied to that, the salinity had more impact on 

the CO2 flux than SST between January of 2003 and December of 2020.  
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Figure 6.3 - CO2 flux anomaly (FCO2 flux anomaly), sea surface temperature anomaly 

(SST anomaly), sea surface salinity anomaly (SSS anomaly) and 

chlorophyll anomaly (chl anomaly), during January 2003 and December 

2020.  

 

Source: Author’s production. 
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Furthermore, the CO2 concentration in the atmosphere has increased 9% 

between 2003 and 2020. This consistent increased of CO2 in the atmosphere, 

may have directed the CO2 to the ocean, due to the difference of partial 

pressure of carbon dioxide between ocean and atmosphere. Similar results 

were found by Benallal et al. 2017, for the Southern Ocean that has becomes a 

stronger sink of CO2 throughout the years, from an overall average absorption 

of about 2 mmol CO2 m–2 day–1in 2002/2003 to about 7 mmol CO2 m–2 day–1 in 

2014/2015. According to the authors, the persistent increase of fCO2sw in the 

atmosphere make the region absorbing more and more atmospheric CO2, 

which may probably lead to ocean acidification in this area. 

The anomaly of the in situ and climatology data for the OP37 are show in Figure 

6.4, from where we can see the positive values for CO2 flux and SST. However, 

SSS anomaly display negative values in the MC and positive values in the BC. 

Thus, the SST modulates the CO2 flux direction.  The region absorbed less CO2 

than the climatology, especially because of the high-pressure atmospheric 

system that was present at the moment, which inhibit the exchange of mass 

between ocean and atmosphere. The high pressure in the OP37 contributed to 

modulated CO2 flux, which was responsible for the difference between the OP 

37 and the climatology, which was not capture in the bulk methodology.  
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Figure 6.4 - CO2 flux anomaly (mmol m-2 d-1), sea surface temperature anomaly (SST 

anomaly) (°C), sea surface salinity anomaly (SSS anomaly), for the 

OP37 compared with the climatology data (October of 2003 to 2020). 

 

Source: Author’s production. 

 

The analyzed region shows a marked seasonal variability, acting more as a 

CO2 sink during the winter and spring, as shown in Figure 6.5). The same 

results were found by Takahashi et al. (2009), where in their study in the South 

Atlantic (14S to 50S) sank more CO2 during August to November. However, the 

entire area behaved as a CO2 sink for the 4 seasons, the same behavior was 

found by Takahashi et al. (2009). According to the Bianchi et al. (2009) the 

Southwest Atlantic Ocean is one the most important area for CO2 sink in the 

world, with an average of -3.7x10-3 mol C m-2 d-1. During the summer the north 

of 40° sink less CO2 than other seasons, due to the increase of SST, which 

reduces the CO2 solubility in the ocean, thus it reduces CO2 sink. Similar results 

were found by Bianchi et al. (2009), the region between the 39 to 43 °S closer 

to the coast reduced the sink of CO2 flux about 20% in the area, due to the 

increase SST and pCO2 in the ocean. 
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Figure 6.5 - CO2 flux distribution during Spring, Summer, Autumn and Winter in the 

Southwest Atlantic Ocean for the period between January 2003 and 

December 2020. 

 

Source: Author’s production. 

 

6.3 Conclusions 

• The fCO2sw modeled using SST data, has satisfactory performance in the 

Southwest Atlantic Ocean. 

• The ocean–atmosphere CO2 transfer velocity coefficient, computed with 

our data and quadratically fitted to wind speed, yielded good 

performance by agreeing with K determined in other CO2 studies. 

• The bulk methodology for CO2 flux between ocean and atmosphere, 

using the two parameterization fCO2sw and K, had a good agreement with 

the in situ data (eddy covariance) for the Southwest Atlantic Ocean. 

• The BC and MC had been increasing the assimilation of carbon along 

the years analyzed (2003 to 2020). This increasing of assimilation is 

mainly due to the increase of CO2 concentration in the atmosphere, allied 

to the negative tendency of SSS. 

• The anomaly between in situ data for October 2018 and climatology data 

(2003 to 2020), shows that the SST anomaly modulates the CO2 flux 

between Ocean and atmosphere. Also, during the route has high 

pressure system, which inhibited the flux between ocean and 

atmosphere. The discrepancy between CO2 flux for OP37, using in situ 
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data with eddy covariance and the climatology data, using bulk 

methodology is related to the different temporal and spatial resolution. 

• The seasonal variability in CO2 flux shows the Southwest Atlantic Ocean 

sink more CO2 during winter and spring. 
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7 FINAL REMARKS 

There are many aspects that could be enhanced for CO2 flux with in-situ, 

satellite and reanalysis data. For in-situ data, which is used in eddy covariance 

for CO2 flux calculation, should have more data collection during the year, which 

could expand the knowledge of CO2 behavior in seasonal studies with high 

resolution. However, it is comprehensively the difficult access in the Southern 

Ocean, due to the distance and adverse nature. For the satellite and reanalysis 

data, that need to apply the bulk methodology, could improve if we have more 

in-situ data such as wave parameters and biochemical parameters for the 

development of more robust gas transfer velocity and CO2 fugacity parameter.  

We were able to focus on the in-situ data collected in Spring and Summer of 

each field campaign and in the bulk methodology validated with those in-situ 

data. Furthermore, our findings highlighted the importance of the of collection of 

in-situ data to improving our knowledge of the CO2 exchange behavior in the 

Southwest Atlantic Ocean and Southern Ocean. We also highlighted the 

importance of satellite, reanalysis, and in-situ data combinations for improve the 

understanding of CO2 flux between ocean and atmosphere. The CO2 fluxes 

exhibit complex behavior at the ocean-atmosphere interface because they are 

modulated by different oceanic and atmospheric conditions. The Malvinas 

Current sank less CO2 than Brazil Current and Brazil Malvinas Confluence in 

the OP 37, even though it has more cold and fresh water. This behavior was 

due to the high-pressure system and stable atmosphere, which inhibited the 

CO2 flux. The Bransfield Strait uptake 38.59% more CO2 than the Drake 

Passage due to the cold and fresh waters, allied to the influence of glacial 

meltwater dilution. Moreover, the study was conducted during a positive and 

active phase of the SAM and El Niño, which could influence the area behaved 

as CO2 sink. The Southwest Atlantic Ocean is sinking more CO2 flux along the 

years due to the increasing of CO2 concentration in the atmosphere may 

probably lead to ocean acidification in this area. 

It is very important to maintain the in-situ datasets and improve the sampling 

methods for evaluating the performance of the satellite and reanalysis data. 

Thus, the effort to keep long-term in situ sampling is essential for monitor CO2 
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exchange behavior and produce reliable information for decisions about 

mitigating climate change.  
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