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Abstract—This work is an additional exploration inspired by
the results of an earlier study of the geo-localization problem
over a densely forested region of the Brazilian Amazon forest.
Light Detection and Ranging (LiDAR) data was post-processed
from 3D cloud point format to 2D elevation images and template
matching was used with normalized cross-correlation. Within a
constrained search area it was possible to geo-localize the 2D
patches of surface images on Interferometric Synthetic Aperture
Radar (InSAR) elevation data. The transect 3D cloud point was
transformed into a 12.5m resolution 2D surface image with the
circular binning procedure, a resolution compatible with the
Advanced Land Observation Satellite (ALOS) elevation maps
used as reference. This application of template matching achieved
36m root mean square error, or about 4 pixels of error, over
the LiDAR transect route. Position estimation is essential for
autonomous navigation of aerial vehicles, and experiments with
LiDAR data show potential for localization over densely forested
regions, where Computer Vision methods using optical camera
data may fail to acquire distinguishable features.

Index Terms—aerial drone, autonomous navigation, template
matching, LiDAR data, InSAR images

I. INTRODUCTION

Autonomous navigation of Unmanned Aerial Vehicles
(UAV) is a desirable capability in science, engineering, and
many other applications. It is commonly achieved by combin-
ing readings from an Inertial Motion Unit (IMU) and a Global
Navigation Satellite System (GNSS), such as the Global
Positioning System (GPS) [1]. The combination is desirable
because position estimations using only an IMU will deviate
from the real position of a moving vehicle. This happens
because an IMU doesn’t measure positions directly but ac-
celerations and angular velocities, that must first be integrated
along with the small measurement errors to generate a path. An
UAV may also drift due to a constant wind, a difficult deviation
to detect and compensate without additional inputs [2]. A
positioning system such as GPS provides positions without
the drawback of the ever increasing deviation of an IMU
but the GNSS-derived measurements tend to be sparser. The
combination of an IMU and a GNSS on a UAV provides
good position estimations with fine sensibility, derived from
the IMU, and with bounded uncertainty, derived from the

GNSS. A drone designed in such a way can, therefore, go
to geographical locations by applying appropriate corrections
to its control system to keep itself on its desired route.

The usefulness of this established solution is dependant on
the reliability of each positioning system used. GNSS signals
are of particular importance – without them the uncertainty
of the system becomes the uncertainty of the IMU, i.e.
unbounded in time. There are multiple reasons why the GNSS
signals may become unavailable or unreliable, for instance,
through interference. Malicious interference of the GNSS
signals, such as jamming and spoofing [3], can be mitigated
by the use of better antennas, spacial and frequency filtering,
and vector tracking [4]. Outages and denial of service can be
mitigated by the use of more than one GNSS. An UAV is also
subject to natural phenomena interference [5]–[7]. One natural
phenomenon directly associated with the signal interference of
a GNSS is the ionospheric scintillation [8]–[11]. It is character-
ized by irregularities in the atmospheric electronic density. The
ionospheric scintillation may cause the complete disruption of
GNSS signals [12]–[14]. Ionospheric bubbles [15]–[17] are
events linked to the scintillation phenomenon. They mostly
occur on the equatorial magnetic zone on the Earth, including
the northern region of Brazil [18].

Alternatively to a GNSS, Computer Vision (CV) techniques
have been applied to provide position estimations. Multiple
approaches exist depending on the imaged scene and on the
utilized sensor. Recent approaches may use Convolutional
Neural Networks [19] and can estimate positions using the
simple down-facing RGB cameras present in many UAV,
or specific sensors may be needed depending on the cir-
cumstances or scene, for example a thermal imaging sensor
for night position estimation [20], or a Light Detection and
Ranging (LiDAR) sensor for position estimation over coastal
regions [21].

The Amazon forest region is a challenging area of study
for autonomous navigation. It presents a scenario of multiple
difficulties at once. First, it is near the magnetic equator
(Fig. 1, top), where the influence of ionospheric effects (e.g.
ionospheric bubbles) is most accentuated. The GNSS signals
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Fig. 1. An example of the Total Electron Content (TEC) map over South
America is shown on the top, displaying the magnetic equator (red line) and
the location of the study (black dot). Strong variation on TEC values can affect
the radio wave transmissions, including GNSS. On the bottom, an image for
the visible band over the location of the study on the Amazon forest, showing
no distinguishable features. TEC is a good parameter to monitor for possible
space weather impacts. TEC is measured in electrons per square meter. By
convention, 1 TEC Unit TECU = 1016 electrons/m2. Vertical TEC values
in Earth’s ionosphere can range from a few to several hundred TECU.

might be completely disrupted and unavailable for use due
to the phenomena, making the CV an attractive alternative or
redundancy. Second, the forest presents an uniformity of visual
features (Fig. 1, bottom), i.e. distinguishing features are scarce
and, consequently, problematic for multiple CV techniques
that work really well on urban or mixed scenarios.

The LiDAR sensor can be used for navigation aid when
LiDAR mappings are available [22], but LiDAR mappings
of the Amazon region are almost nonexistent. Most of the
existing elevation maps were derived from Interferometric
Synthetic Aperture Radar (InSAR) data due to the large extent
of the forest and the usual presence of clouds. This work
explores how height data from the active sensor LiDAR can
be related and used against elevation maps generated from an
InSAR to estimate positions. A small flight trajectory error is
obtained on a LiDAR transect used for testing the proposed
methodology, presenting a 36 m root mean square error
(RMSE), an acceptable deviation for many critical missions

over the region.
The next section, Theory and Methods, explore basic con-

cepts of LiDAR, InSAR, template matching, and how to make
both data compatible for position estimation. The Experiment
and Results section describes the experiment made by post-
processing LiDAR data from the Amazon region, and it
is followed by Discussion and Conclusion section, where
differences from the original experiment are considered.

II. THEORY AND METHODS

A. The LiDAR sensor

An airborne LiDAR sensor is an optical and active sensor
built with a laser unit that emits laser pulses and is able to
record its reflections, translating those to distances, and an
oscillating mirror that regularly changes the laser pointing
direction. Current LiDAR sensors are able to record the whole
reflection history and are called full waveform LiDAR. More
commonly, LiDAR sensors process and record the reflections
over an intensity threshold and are called discrete-return
LiDAR. The combined information of vehicle attitude, laser
pointing direction and range measured produces a gridless 3D
point set called cloud point data. Although of optical origin,
the 3D cloud point data is not readily usable with standard
CV techniques dealing with 2D images. The data must first
be transformed from a 3D point list to a fixed grid 2D image.

B. The SAR sensor and the InSAR

The Synthetic Aperture Radar (SAR) is an active sensor
that uses side-looking antennas to emit microwave pulses and
to read the backscatter while the platform moves, combining
the multiple readings into a synthetic aperture (i.e. a larger
antenna) for better resolution. The Interferometric SAR (In-
SAR) combines two single-look complex images generated
from SAR with a predefined separation (baseline), unwrapping
the phase differences into an elevation model [23].

This simplified description serves two purposes here. The
first is to illustrate how different from LiDAR the generated
elevation maps of InSAR are at the origin of the process [24].
Secondly, it is considered that SAR sensors with longer
wavelengths have better penetration on forested areas, corre-
sponding well to the underlying terrain, but this has not been
our experience when comparing it to LiDAR derived terrains
on the Amazon region, at least regarding the shape of the
measured elevations. In fact, this is the reason why the surface
elevation model of LiDAR, related to the canopy of trees, is
used instead of the terrain one in this work (see Section IV).

1) LiDAR and InSAR data: Fig. 2 illustrates a discrete-
return airborne LiDAR laser pulse interacting with a tree. It
records three reflections, the distances measured shown as
dots. Surface maps, including the canopy, are created from
the first reflections (gray dot) while terrain maps are created
considering the last reflections (green dot). Intermediate reflec-
tions may occur (red dot) and may be recorded by discreet-
return LiDAR sensors capable of registering more than two
returns. At the same time, two distinct near orbit captures of
an InSAR satellite system is shown. Two SAR backscatters are

2414



Fig. 2. Aerial vehicle equipped with a LiDAR sensor. The first reflection
(gray dot) is used for surface mapping and the last reflection (green dot) is
used for terrain mapping. Satellite InSAR data is also captured (blue dot).

combined and processed to estimate a height position from a
ground plane or rougher terrain model, and is shown as the
blue dot in the illustration.

C. Position estimation by template matching

In general, the template matching algorithm takes a smaller
image, called the template, against a larger image, called the
reference, usually through cross-correlation or a resembling
method, producing a map of similarities, where the position
of the greatest correlation (i.e. similarity) is assumed as the
position estimation. The search is exhaustive on the reference
image and the speed and memory costs increase if the size of
the template or the size of the reference image are increased.
When the reference image is geo-referenced, the estimated
pixel position can be translated to a geographic location.

Figure 3 illustrates the template matching algorithm. The
measurement of similarity used was the normalized cross-
correlation. Although cross-correlation can be used, it is not
well suited for the template matching of elevation estimations,
as explained later. Equations 1 and 2 use the same notation
displayed on Fig 3.

1) Cross-Correlation limitations on elevation data: The
Cross-Correlation (CC) is a well known similarity measure-
ment for image matching between a template and a reference.
It is defined as

c(s, t) =
∑
x,y

f(x, y)w(x− s, y − t) (1)

where f is a reference 2D image of dimensions M ×N , w is
the template (or window) of dimensions J ×K, smaller than
M × N , that is being cross-referenced and c is the cross-
correlation result. The translation from origin is estimated
from the corresponding pair (s, t) where the value of c is

Fig. 3. Reference f (InSAR) and template window w (LiDAR).

greatest. This approach is only valid when the different regions
of the reference image have similar average values [25].
Elevation images have naturally occurring regions of lower and
higher average values corresponding to valleys and mountains,
invalidating the assumption and skewing the results towards
higher average regions.

2) Normalized Cross-Correlation alternative: The Normal-
ized Cross-Correlation (NCC) adjusts cross-correlation for
regions of different average values, and the result is better
estimations in terms of correlating the shape of terrain or
surface maps, the essential information for geo-localization.
It is defined as

ncc(s, t) =

∑
x,y

[f(x, y)− f̄s,t][w(x− s, y − t)− w̄]√∑
x,y

[f(x, y)− f̄s,t]2
∑
x,y

[w(x− s, y − t)− w̄]2

(2)
where the numerator is the same as the cross-correlation
presented earlier minus the average of the region under the
template f̄s,t and minus the constant average of the template
or window w̄. The denominator normalizes the adjusted values
producing results ncc(s, t) on the range [-1,1], where 1 means
the same feature was found, 0 means completely unrelated
features, and -1 means an inverted feature was found. The
latter only occurs when negative values exist therefore, for
most of elevation reference maps and templates, the expected
range is actually [0,1]. Note that the NCC is not computable
flat surfaces.

D. Compatibilization of LiDAR and InSAR data

InSAR geo-referenced elevation maps are 2D images where
geographical coordinates can be obtained for each pixel posi-
tion. Pixels have a spacial resolution, called pixel spacing, and
an associated value, in this case the elevation itself. Differently,
LiDAR 3D cloud point data must first be transformed into
a 2D image of compatible characteristics, i.e. a regular grid
of same orientation and pixel spacing. This process is called
binning [26], and it is employed for the application of the
template matching algorithm.

For each LiDAR point coordinate, a corresponding bin is
located, and the elevation value of the point is attributed as
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Fig. 4. The pixel spacing defines an exact square bin. Conversely, by defining
a bin size, a 2D matrix can be generated to accommodate LiDAR point values.
A circular bin (right) allow points that would be outside the pixel spacing
defined area to influence the matrix generation.

the value of the bin if null, or if greater or less than the
previous value. Keeping the greatest values result in a surface
2D elevation map and keeping the lowest values result in a
2D terrain elevation map. As Fig. 4 shows, the bin is not
necessarily limited to a square bin exactly representing the
pixel limits and in this work a circular bin was used.

E. Flowchart of the geo-localization procedure

Figure 5 illustrates the whole procedure of position estima-
tion applied using 3D LiDAR cloud point data over an InSAR
reference image.

1. The LiDAR transect to be post-processed is selected and
the largest template that fits on its width is established based
on the reference image resolution. In this work the reference
image resolution was 12.5m so a safe size for the template of
30×30 pixels.

2. The cloud point data is processed through binning with
the intention of generating a surface elevation map, i.e. a 2D
representation of the canopy is generated.

3. The generated data is sampled according to the trajectory
into templates for matching.

4. Each template is searched using the template matching
algorithm with NCC against the InSAR reference image and
the highest peak of correlation is assumed as the position
estimation.

5. The center pixel position can be translated to a geographic
coordinate.

The template matching search can be limited to an area
where the UAV is expected to be, such as an area around
the IMU estimated position. The most immediate benefit is to
hasten and save computing resources, but limiting the search
area also improve the rate of correct matches. Considering the
assumed position of the UAV, a limited search around it can
be established.

In this work, an area half the size of the template was
searched (around 180m).

III. LOCATION AND DATA

The area of this study is approximately 4×4 km and
located on the Tapajós National Reserve (Fig 6). Of the nine
LiDAR transects originally acquired on that region by the
EBA project1 the transect NP T-1016-001 was selected to

1The LiDAR transects are part of Estimating the Biomass of Ama-
zon (EBA) project from CCST/INPE. They are named NP T-1016-001 to
NP T-1016-009. The authors would like to thank the project coordinator Dr.
Jean Ometto for the access to this data.

Fig. 5. The flowchart of the experiment. Source data is transformed from
3D to 2D through binning and templates (green) are used against the InSAR
reference, through template matching, producing an estimated translation on
x/y axis, that can be converted to a position or geographic coordinate. The
search can be in the full reference image or limited to an assumed sufficient
area of search (the encompassing dotted red area).

Fig. 6. Location of the experiment with ever increasing detail. Last image
shows the combined LiDAR cloud point intensity rendered over a satellite
image.

reproduce an earlier experiment [22], but this time over an
InSAR elevation reference map of low resolution, instead of
the LiDAR derived map. The LiDAR sensor specifications and
setup for the EBA dataset acquisition are listed on Table I.

The InSAR elevation map used as the reference image for
the experiment has been acquired as part of the Advanced
Land Observation Satellite (ALOS) mission, by using the
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TABLE I.
TRIMBLE HARRIER 68I LIDAR SYSTEM SPECIFICATIONS.

Specification Value
LiDAR sensor HARRIER 68i

Wavelength 1550nm
Scan frequency 5 Hz to 200 Hz
Field of view Up to 30o

Pulse density requested 4 pulses / m2

Footprint 30 cm
Flying height 600 m

Track width on the ground 494 m (avg)

data from the Phased Array type L-band Synthetic Aperture
Radar (PALSAR) sensor, which enables day-and-night and all-
weather land observation. The ALOS satellite was launched on
January 24, 2006. The terrain corrected product is derived from
a single look complex SAR image pair. It is provided in UTM
coordinates and is corrected for terrain by using SRTMGL1
- Shuttle Radar Topography mission at 30m resolution. Addi-
tional corrections by the Alaska Satellite Facility (June 2015,
version 1.1), responsible for the distribution.

All computations involving geographical coordinates were
done using the Universal Transverse Mercator (UTM) coordi-
nate system. The LiDAR and InSAR data were considered to
be correctly corregistered as provided, after careful inspection.

IV. EXPERIMENT DESCRIPTION AND RESULTS

The experiment is an alternative exploration of the flight
transect used in [22] where the following differences must
be noted. i) An ALOS InSAR elevation map was used as the
reference image, instead of a combination of LiDAR transects;
ii) The ALOS InSAR elevation reference covers the flight
transect completely, including where previously there was no
LiDAR reference data on the beginning and end of the flight
transect; iii) The pixel spacing resolution of the 2D images
is 12.5m instead of 5m; and iv) Due to the lower resolution,
the template windows used were adapted to 30×30, instead
of 70×60. Other aspects remain the same, with the exception
of the lower total number of systematic templates generated
throughout the route, an inevitability of the lower 12.5 m
resolution. In particular, it must be noted that the x-axis of
Fig. 8, if compared to similar graphs on the earlier work,
represent the same total distance.

The trajectory is a straight line with no deviation, using
only the transect NP T-1016-001 as a source of LiDAR data.
Figure 7 illustrates the straight line route (red), along with the
estimated positions by template matching (blue). A limited
search was used with a search area of 187 m, or half the size
of the template window, around the template.

A graph similar to the ones of the earlier study is shown on
Fig. 8. The normalized cross-correlation value of the matches
is very high (NCC(max), orange) but, in this LiDAR×InSAR
study, doesn’t ensure a good matching. The worse correlation
values for each application of the algorithm is also displayed
(NCC(min), yellow), for comparison. The estimated errors are
shown in blue, in the form of the Euclidian distance (pixels).

Fig. 7. Flight transect with route in red and estimated positions using template
matching in blue. The estimations were plotted as dots and are not connected.

Fig. 8. Position estimation errors of the template matching algorithm (blue)
and respective NCC values, highest (orange) and lowest (yellow).

Table II summarizes and displays the root mean square
error and the standard deviation for the whole flight route in
pixel values and in meters. Although the achieved error of
36 m is rather large and around five times the error of the
earlier study (7 m of error), it is only around three pixels of
lower resolution. In one hand, one important difference is that
the earlier LiDAR×LiDAR study used the whole reference
image with very good results. On the other hand, the lack of
LiDAR coverage on the Amazon region makes the template
matching with InSAR data an interesting alternative, as free
low resolution InSAR data exists covering all the Amazon.
InSAR elevation maps of better resolution could be used, if
available, with the expectation of reduced matching errors.

TABLE II.
ESTIMATION ERRORS FOR THE EXPERIMENT.

Search Range RMSE STDDEV
Limited (pixels) 2.87 4.17
Limited (meters) 35.92m 52.12m
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V. DISCUSSION AND CONCLUSION

The results using data from the experiment indicate that
it is possible to correlate LiDAR surface data with InSAR
elevation maps for aid in navigation over a densely forested
region of the Brazilian Amazon forest. In that region, visual
aid techniques using RGB cameras may fail to acquire distin-
guishing features. The occurrence of ionospheric scintillation
events can generate interference or even inhibit the use of
GNSS signals for positioning. The main contribution of this
work is to approach the difficult problem of geo-localization
over a densely forested region of the Brazilian Amazon while
adapting the earlier experiment to use an InSAR reference
image.

The results of this experiment were limited by the low
resolution of the InSAR elevation maps, as the LiDAR data
could easily be scaled for use with better resolution InSAR
elevation maps. Conversely, InSAR elevation maps of lower
resolution are plentiful and were proved sufficient for basic
guidance on that difficult region. Imposing a restriction of the
search area of template matching algorithm was essential to
eliminate bad matches and to better estimate positions. It is
possible to notice that, while the proposed solution works most
of the time, there are still areas where geo-localization is not
achieved, even with the constraint of the search area. It must
be noted, however, that the flight transect is over a very plain
region of the forest.
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