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Abstract: In Brazil, irrigated agriculture is responsible for 46% of withdrawals of water bodies and 67%
of use concerning the total water abstracted volume, representing the most significant consumptive
use in the country. Understanding how different crops use water over time is essential for planning
and managing water allocation, water rights, and farming production. In this work, we propose
a methodology to estimate water used in agriculture irrigated by center pivots in the municipality
of Itobi, São Paulo, in the Brazilian Savanna (known as Cerrado), which has strong potential for
agricultural and livestock production. The methodology proposed for the water use estimate is based
on mapping crops irrigated by center pivots for the 2015/2016 crop year and actual evapotranspiration
(ETa). ETa is derived from the Operational Simplified Surface Energy Balance model (SSEBop) and
parameterized for edaphoclimatic conditions in Brazil (SSEBop-Br). Three meteorological data sources
(INMET, GLDAS, CFSv2) were tested for estimating ETa. The water use was estimated for each
meteorological data source, relating the average irrigation balance and the total area for each crop
identified in the map. We evaluated the models for each crop present in the center pivots through
global accuracy and f1-score metrics, and f1-score was more significant than 0.9 for all crops. The
potato was the crop that consumed the most water in irrigation, followed by soy crops, beans, carrots,
and onions, considering the three meteorological data sources. The total water volume consumed by
center pivots in the municipality of Itobi in the 2015/2016 agricultural year for each meteorological
data source was 3.2 million m3 (INMET), 2.5 million m3; (GLDAS), and 1.8 million m3 (CFSv2).

Keywords: water resources; remote sensing; Landsat; SSEBop-Br model; crop water use; irrigation

1. Introduction

According to surveys carried out by the National Agency for Water and Basic Sanita-
tion (ANA) [1], irrigation is responsible for about 50% of water abstraction from springs in
Brazil. Studies have identified an area of 76.2 million hectares with potential expansion
for irrigated agriculture [1,2]. However, this whole expansion scenario must be carefully
evaluated to ensure national water security through water resource management. In many
producing regions, current irrigation practices are not sustainable and even under the most
efficient scenarios water abstraction rates remain unsustainable [3,4]. Although Brazil has
the largest sources of fresh water in the world, about 70% is distributed in the Amazon
region, while the remainder is distributed to about 95% of the country’s population. Due
to its large territorial extension, several conflicts in water use have been observed, mainly
those related to agricultural irrigation. These conflicts have been more evident in the
Northeast and Southeast Regions of Brazil [5].

In this context, water use estimate in irrigated crop areas has been an essential tool
for water resource management. Actual evapotranspiration (ETa) is a key variable in this
process, which describes all processes in which liquid water at or near the land surface
becomes atmospheric water vapor under natural conditions [6]. Estimation of and mapping
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the spatiotemporal distribution of ETa over large areas has been a challenge due to the
great spatial heterogeneity of variables used in the models, as well as the lack of calibration
and validation data in Brazil [7]. However, remote sensing technologies allow consistent
analysis at a lower cost when compared to methods based on field measurements [8]. In
addition, technological advances based on cloud processing, such as the Google Earth
Engine (GEE) platform, and ETa estimation based on moderate spatial resolution thermal
data have allowed water use estimation to be more efficient for large areas [9,10].

Nevertheless, there are still few scientific studies based on remote sensing technologies
to estimate water use in large irrigation areas. In Brazil, ANA [11] estimated the water
use in irrigated agricultural areas in three accumulated periods (May to August 2018,
May to September 2018, and October 2018 to January 2019) from 25 pivots located in the
Brazilian Cerrado. In this context, Cassola [12] estimated the water use in agricultural areas
irrigated by center pivots in the south of Brazil, using possible agricultural scenarios based
on evapotranspiration data obtained from a meteorological station next to the pivot region.
Schauer and Senay [9] performed the spatiotemporal dynamics characterization of water
use in irrigated agricultural areas, combining annual ETa with crop classification in the
Central Valley, California.

Several studies on agricultural mapping based on vegetation indices (VI) and time
series derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) sen-
sor have been proposed in the literature [13–17]. However, its low spatial resolution
(250–1000 m) is not appropriate for mapping small agricultural areas [18]. Bendini et al. [19]
proposed a method for mapping different crops in the Cerrado region using phenological
metrics extracted from dense VI time series (temporal resolution of 8 days) obtained from
Landsat 7 and 8 satellite images, with an accuracy greater than 90%. Phenological metrics
allowed us to infer the crop permanence time in the field as well as the beginning and
end of the cycle. This approach is consistent and robust and has been used to analyze
cropping patterns within the Cerrado pivots, the results of which were published in the
second edition of the Irrigation Atlas [1].

Regarding the ETa estimate, ANA and the United States Geological Survey (USGS)
adapted the Operational Simplified Surface Energy Balance model to the Brazilian mor-
phoclimatic reality, named SSEBop-Br [11]. Among the models that use energy balance
variables to obtain ETa at a large scale, the SSEBop model is one of the simplest, as it does
not solve the energy balance completely [20]. SSEBop estimates ETa from the evapotranspi-
ration (ETf) fraction obtained from Landsat thermal data and the traditional crop coefficient
(Kc) and the reference evapotranspiration (ETr) estimated by the Penman–Monteith (P-M)
method for an alfalfa or grass surface [21,22].

Therefore, in this study, we aim at estimating the water use in agricultural areas
irrigated by center pivots in the municipality of Itobi, São Paulo, in the Cerrado region, for
the 2015/2016 crop year. In agricultural areas irrigated by center pivots in the Brazilian
Cerrado, up to three crop cycles can be observed in a single crop year. Hence, in this work, it
is essential to determine the crop planting and harvesting dates to better estimate the water
use in each cycle. Agricultural mapping methods based on phenological metrics extracted
from VI time series are very adequate for mapping multiple crop cycles [19]. The water
use estimation methodology implemented in our approach involves an adaptation and
integration of the methods proposed by Schauer and Senay [9] and by Bendini et al. [19].
We used the method proposed by Bendini et al. [19] to obtain a crop classification map.
However, we also used phenological metrics to determine the period that the crop was
cultivated in the field. We propose a methodology capable of being replicated on larger
scales, as we have the necessary data.

2. Study Area and Datasets
2.1. Study Area

The study area comprises the municipality of Itobi (13,844 ha) in the state of São Paulo
and Cerrado biome. The region is in the Tambaú-Rio Verde, a sub-basin located in the
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southeast of the Rio Pardo Basin (Figure 1). In this region, the predominant climate class is
Cwa, characterized as hot subtropical and dry winter [23]. The average annual precipitation
is 1517 mm, with the rainy season occurring from October to March and the rain peak in
December. The dry season occurs from April to September and the lowest precipitation
occurs in July and August [24].
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Figure 1. (a) Study area located in the Brazilian Savanna highlighted in the center of Brazil’s map. The
black rectangle indicates the state of São Paulo; (b) indicates the municipality of Itobi and rain gauge
and flux-tower sites; (c) indicates the municipality of Itobi and the center pivots that were analyzed.

The study area comprises the irrigation pole of Rio Pardo and Mogi Guaçú, covering
an area of 1,097,088 ha and an irrigated area of 129,287 ha. This irrigation pole has a
total and effective potential of 232,575 ha and 65,989 ha, respectively, and is considered
one of the poles with the greatest expansion perspective [1,2]. Center pivot irrigation is
predominantly used for vegetable cultivation, mainly potatoes and onions, from March to
October. In the last two decades, the number of center pivots and total irrigated increased
in this region. However, this region is prone to water use conflicts because the Tambaú-Rio
Verde sub-basin has high water demand, i.e., consumption is greater than 50% of Q7,10
(the lowest average streamflow during 7 days with an average recurrence of 10 years) [25].
In addition, the hub extrapolates the federation unit and contains water bodies under the
Union’s domain, requiring even more integrated efforts in water resource management
and planning.
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2.2. Datasets

Enhanced Vegetation Index (EVI) images [26] were obtained from the GEE plat-
form, through the QGIS plugin, GEE Time Series Explorer (https://geetimeseriesexplorer.
readthedocs.io, accessed on 15 October 2021), for Landsat 7 and 8 satellites [27]. Im-
ages acquired in the 2015/2016 agricultural year from August 2015 to October 2016 were
selected, considering the availability of field data to train the crop classification model.
ETa images were obtained from SSEBop-Br v.1.01 application, which is integrated into
the GEE platform (https://ssebop.users.earthengine.app/view/ssebop-br-v101, accessed
on 10 May 2021). The center pivot irrigated agriculture mask was obtained from the
center pivots irrigated agriculture map, for the year 2014, available on the ANA’s site
(https://dadosabertos.ana.gov.br, accessed on 15 October 2021). In this work, we supposed
that the mask did not change for the agricultural year 2015/2016.

To evaluate the SSEBop-Br model, we employed ETa data measured in a flux-tower
site (Figure 1) located in a sugarcane area belonging to the Santa Rita Electric Company
(21.63◦S, 47.78◦W, altitude of 552 m). Around the flux tower, the sugarcane plantation is
homogeneous in all directions within a radius of 500 m. The average canopy varies by
3.5 m, from crop emergence to harvest [24,28]. The major components of the conservation
of energy equation, often referred to as ‘energy-balance closure’, are radiation balance (Rn),
ground heat flux (G), convective sensible heat exchange (H), and latent heat exchange or
evapotranspiration (LE) [29]:

Rn = H + LE + G + S (1)

where S is the heat storage in the canopy. The variables are measured every 30 min in the
flux tower.

To obtain the ETa, the surface energy balance was closed and then H and LE were
calculated through the Bowen ratio method (β = H/LE), as described in [29]. Cases in
which more than 5 observations were missing during the day (8:00–18:00 h), the entire
day was disregarded in the analysis [30,31]. The surface energy balance close to eddy
covariance systems often presents errors, probably due to the data collection time, location
and land cover characteristics, measurement uncertainties, and soil heat storage [29,31,32].
After correcting the energy balance variables, ETa and Kc were obtained from the fraction
of observed ETr and the eddy covariance system, respectively. ETa data were integrated at
a daily scale.

To calculate the irrigation balance, we used rainfall data from INMET’s A738 meteoro-
logical station, located in the municipality of Casa Branca, SP (21.78◦S, 47.08◦W, altitude
of 734 m) (Figure 1). The A738 station in the municipality of Casa Branca was chosen due
to the lack of in situ stations in the study area. In addition, we used field data acquired
during the 2015/16 harvest in the city of Itobi, SP, to train the crop classification model.
In the study area, agricultural dynamics were analyzed in three visits during the year. In
each visit, the sample coordinates were collected with a GNSS device, and crop rotation
information in the center pivots was provided directly by producers. Field boundaries
were identified in the satellite images through visual interpretation. The fieldwork protocol
area is available in Sanches et al. [33]. All 33 polygons were identified to represent the
7 types of crops grown in the period 2015/2016 in the pivots. About 50 random pixels with
a minimum distance of 30 m within each polygon were selected, as shown in Table 1. As
described in [18], a negative buffer of 30 m was applied to them to avoid spectral mixing in
the polygon edges.

Considering the pivot mask, a hexagonal sampling was performed to represent the
entire pivot area, which resulted in an average of 16 points per center pivot. A total of
1294 points in 80 pivots located within the study area were selected. As this approach
analyzes a set of points in each center pivot area, the processing steps require less compu-
tational effort. The area of a given pivot is linearly proportional to the number of points

https://geetimeseriesexplorer.readthedocs.io
https://geetimeseriesexplorer.readthedocs.io
https://ssebop.users.earthengine.app/view/ssebop-br-v101
https://dadosabertos.ana.gov.br
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sampled evenly within the pivot. Points were obtained within a buffer 30 m away from the
pivot edges. Afterward, EVI time series data were extracted for each sample point.

Table 1. Definition of the crop rotation (classes), crop type, and the number of samples for training
and validation of the model.

Crop Rotation Samples Crop Type

Maize + Beans 143 First crop + Winter crop

Maize + Carrot 86 First crop + Winter crop

Maize + Onion 91 First crop + Winter crop

Maize + Potato 183 First crop + Winter crop

Soy + Potato 612 First crop + Winter crop

Maize + Soy 284 First crop + Second crop

Soy 81 Single crop

3. Methods

Considering both irrigation water use and agricultural mapping processes, Figure 2
shows all steps of the methodology proposed in this work.
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Figure 2. General scheme of the methodology used to estimate water use in irrigation. The dashed
rectangle indicates the pre-processing steps of the time series (ETa and EVI). The green rectangle
indicates the processes for obtaining the crop area. The blue rectangle indicates the process of ETa
and precipitation accumulation according to cycle duration based on phenological metrics.

3.1. Crop Classification and Phenological Metrics

The crops present in each center pivot analyzed in this work are classified based on
the methodology proposed by [19]. The authors used a hierarchical classification based on
Random Forest with four levels, from land cover to crop rotation classes. Most of the classes
showed accuracies higher than 90%. They showed that phenometrics derived from dense
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Landsat-like image time series, in a hierarchical classification scheme, have great potential
for detailed agricultural mapping. The flowchart of the processing steps for mapping crops
in the center pivots is shown in Figure 3.
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Phenological metrics were extracted from the EVI time series using the Stmetrics
package (https://github.com/brazil-data-cube/stmetrics, accessed on 20 October 2021),
implemented in Python language [34]. Thirteen phenological metrics were extracted for
each cycle in the analyzed period. Table S1 presents a summary of the metrics used in the
agricultural mapping process [35,36].

The classification algorithm requires time series with regular time intervals and with-
out noise. To reduce noise in the EVI time series caused by clouds, cloud shadows, and Scan
Line Corrector (SLC) failure in Landsat 7, the Kalman filter was used [37]. Subsequently,
bicubic spline interpolation [38] was applied to obtain time series with observations reg-
ularly spaced in time, at a regular interval of 8 days for the period of analysis, totaling
57 observations. Finally, the time series data were smoothed with the Savitzky–Golay fil-
ter [35], with a window size equal to 4. For the study area, pivots with one or two harvests
were observed in the 2015/2016 crop year. The double crop was represented by the 1st
cycle in the summer with the 2nd cycle soon after, or the 1st cycle in the summer with the
2nd cycle in the winter.

After extracting the phenological metrics, the Random Forest (RF) model [39] was
trained using field samples collected in the center pivots. The classification was performed
in R programming language using the Random Forest package [40], with parameters ntree
and mtry equal to 90 and 5, respectively [19]. The parameter ntree represents the number
of decision trees to be generated, which is determined by observing error stabilization.
The mtry parameter represents the number of variables to be selected and tested for the
best split during the growth of the trees [41]. The model evaluation was performed using
metrics based on the confusion matrix after applying Monte Carlo simulation [42]. In this

https://github.com/brazil-data-cube/stmetrics
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case, the model was trained 1000 times, randomly selecting 70% of the data for training
and 30% for validation. In each simulation, the global accuracy of the model [43] and the
f1-score [44] for each class were calculated. Afterward, the mean global accuracy values
and f1-score were calculated.

For each class, its area was obtained proportionally to the number of points classified
within each pivot, as shown in Figure 4. For example, if 100% of points within a pivot are
classified as a given class, the area for this class in that pivot is equal to the total area of
the pivot.
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3.2. ETa Estimation and SSEBop-Br Assessment

ETa images were obtained through the SSEBop-Br model, which is integrated into the
GEE platform. According to [22], the SSEBop-Br model estimates ETa as follows:

ETa = ET f × ETr (2)

Equation (2) combines Landsat thermal data used in ETf estimation (range from 0
to 1) and climatic data used in the ETr estimation by P-M method for an alfalfa or grass
surface. The P-M method uses climatological data, e.g., solar radiation, air temperature,
humidity, and wind speed. In SSEBop-Br, we used ETr based on grass surface compiled
by Xavier et al. [45]. The SSEBop-Br model stands out for solving the latent heat flux
without the need to solve the other components of the energy balance. This model redefines
the limits of the difference between hot and cold reference pixels for each pixel, unlike
traditional models based on energy balance, which establish a set of hot and cold pixels for
a limited region [46].

The climatic data used in the ETr calculation are derived from 3 data sources: a grid
built from meteorological stations of the National Institute of Meteorology (INMET), the
Global Land Data Assimilation System (GLDAS), and the National Centers for Environ-
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mental Prediction Climate Forecast System (CFSv2). To analyze the differences between
the model results obtained by different data sources, the ETa estimate was calculated for
each one of them.

Processing ETa time series is similar to processing EVI time series, except for the
bi-cubic spline function [38], which is used to generate time series with daily observations
to obtain the ETa accumulated throughout the crop cycle. ETa values estimated by the
SSEBop-Br model were compared to ETa values obtained by a flux tower located in a
sugarcane area (Figure 1). Model evaluation was performed based on the mean absolute
error (MAE) [47], bias [48], Willmott agreement index [49], and Nash–Sutcliffe coefficient
(NSE) [50].

MAE measures the error magnitude of the estimate, in the same unit as the
analyzed variable:

MAE =
1
n ∑n

i=1|Si −Oi| (3)

where MAE is the mean absolute error (mm); Si is the ETa value estimated by the model
(mm); Oi is the ETa value observed in the field (mm). The closer to zero, the better the fit
concerning the observed series.

PBIAS measure indicates whether there is an under- or overestimation of the reference
data in percentage:

PBIAS = 100 ∑n
i=1
|Si −Oi|

Oi
(4)

The Willmott (dimensionless) agreement index, d, is a normalized measure of the
degree of prediction error in a model:

d = 1 − ∑n
i=1(Oi − Si)

2

∑n
i=1(|Si −O|+ |Oi −O|)2 (5)

where O is the mean of the ETa values observed in the field. Values of “d” equal to 1 indicate
a perfect fit to the observed data [48].

The normalized index, NSE, determines the relative magnitude of the residual variance
compared to the variance in the observed data [49]:

NSE = 1 − ∑n
i=1(Oi − Pi)

2

∑n
i=1(Oi −O)2 (6)

where NSE is the Nash–Sutcliffe (dimensionless) coefficient.
To evaluate data concerning NSE values, Van Liew et al. [51] propose the following clas-

sification: NSE = 1 means perfect fit of the data predicted by the model; NSE > 0.75 indicates
that the model is adequate and good; 0.36 < NSE ≤ 0.75 indicates that the model is consid-
ered satisfactory; and NSE < 0.36 indicates that the model is not satisfactory.

3.3. Irrigation Balance and Water Use

The irrigation balance represents the difference between the ETa and the accumulated
precipitation. The start and end dates of the cycle used in the aggregation of ETa and
precipitation were obtained through the metrics Strt and End. The Strt metric represents
the moment when a significant increase in the rise of the EVI curve is observed, and
not the actual planting date. On the planting date, there is not enough plant response
to be expressed by the vegetation index. Thus, the actual planting date was empirically
estimated by subtracting 15 days from the date corresponding to the Strt metric [52].
Therefore, irrigation balance is calculated assuming that all precipitation that occurred in
the cycle was effective, knowing that this may underestimate water use [9]. In addition, we
considered the return flow is negligible in the sprinkler-irrigated field [53], which is the
type of irrigation present in center pivots in our study area.
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The irrigation water estimate was based on the methodology proposed by [9], in which
the authors relate the ETa obtained by the SSEBop model with crop area, as follows:

Water volume =
Irrigation balance × Crop area × 10

0.85
(7)

where Water volume is water used to irrigate a crop in a given cycle (m3), and irrigation
balance is the difference between the average accumulated ETa for points classified as a
given crop (mm) and accumulated precipitation (mm). Crop area is the estimated area of a
given crop (ha), 10 is the conversion factor, and 0.85 is the adopted efficiency of a center
pivot [11].

4. Results
4.1. SSEBop-Br Assessment

Table 2 shows performance measures of the SSEBop-Br model to produce ETa in
the sugarcane crop under a rainfed regime. Figure 5 presents a comparison between
estimated and observed data, considering three data sources, named INMET, GLDAS, and
CSFv2. Figure 6 shows the evapotranspiration profile observed in the field and estimated
by SSEBop-Br.

Table 2. Validation of ETa based on SSEBop-Br model for the three sources of meteorological
data available.

Data Source MAE RMSE NSE PBIAS r2

GLDAS 0.40 0.49 0.88 −12.10 0.95

INMET 0.53 0.66 0.77 20.20 0.98

CFSv2 0.59 0.91 0.57 15.70 0.94

MAE e RMSE em mm d−1.
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The estimated ETa using INMET data explained 98% of the values observed in the
field, followed by GLDAS data (95%) and CFSV2 (94%). When observing the trend line
concerning the 1:1 straight line, one can observe that ETa estimation based on INMET and
CSFV2 data tends to overestimate ETa. For GLDAS data, one can observe the best fit of
the trend line, indicating greater proximity between the data observed in the field and the
data estimated by the SSEBop-Br model. The CFSv2 model showed greater overestimation
during the crop growth phase, which occurred during the rainy season, with the highest
ETa values. The INMET model presented a tendency to overestimate the ETa values during
most of the cycle. PBIAS values corroborate these results, in which ETa values based on
INMET and CFSv2 data were overestimated at 20.2% and 15.7%, respectively, while GLDAS
data underestimated ETa values at 12.1%. Although ETa values based on INMET data
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showed higher r2, one can observe in Table 2 that ETa values based on GLDAS data resulted
in lower MAE and RMSE values, as well as the highest NSE coefficient.
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Oliveira [31] estimated ETa for this same study area and under the same conditions as
the present work using the METRIC model in two scenarios: (1) using meteorological data
as input to the model, obtained from the micrometeorological tower itself, and (2) using
GLDAS meteorological data. In the first scenario, r2 equal to 0.95, MAE equal to 0.21 mm
d−1, and RMSE equal to 0.35 mm d−1 were obtained, when compared to ETa estimated by
the METRIC model and field data. In the second scenario, Eta values were overestimated in
25%, and obtained r2, MAE, and RMSE values equal to 0.86, 1.03 mm d−1, and 1.17 mm d−1,
respectively. Table 2 shows an opposite behavior (underestimation) when GLDAS data
were used as input to the SSEBop-Br model. Oliveira [31] states that the overestimation
results for the METRIC model are due to the automatic selection of cold pixels for the
internal calibration of sensible heat (H).

4.2. Crop Mapping and Area Estimates

The total area and the average area of pivots in the study area are 1584.3 and 20 ha,
respectively. The average area of pivots in the Cerrado biome is 68.8 ha, 70.1% greater than
the average area of pivots in the study area. The profile illustrated in Figure 7 shows the
cropping pattern in the summer crop season and the second season soon, represented by
the class maize + soy. The maize planting was conducted from September to November,
while the harvest took place mostly in January and February. Soy planting occurred soon
after the maize harvest, in June and July. For the cropping pattern characterized by the
first cycle of summer and second cycle of winter, the first cycle planting, represented
mainly by maize, took place between September and December, while the harvest took
place between February and April. In this work, winter cycles are represented by potato,
onion, carrot, and bean crops, the planting periods of which vary mainly between May
and July and the harvesting of which occurs in September and October. These cultivation
periods corroborate Silveira et al. [54], who carried out the center pivot identification in
the Tambaú-Verde watershed using remote sensing technologies. Bendini et al. [19] also
obtained similar results in the analysis of the same classes, in the same place and period of
the present study.
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Table 3 presents the f1-score value for each class, as well as the global accuracy of
the model. The results are similar to those obtained by Bendini et al. [19]. Figure 8 shows
classification results in the center pivots in the municipality of Itobi, SP, for the 2015/2016
agricultural year. Figure 9 shows the total area for each class.

4.3. Water Use
4.3.1. Summer Crop Season

Figure 10 shows ETa values, rainfall, and the irrigation balance of the first cycle (soy
and maize) for each meteorological data source used in the SSEBop-Br model. Regarding
evapotranspiration, one can observe the highest ETa values based on the INMET data
source. The lowest ETa values were obtained for the CFSv2 data source.

As observed in Figure 10, the average accumulated ETa value for the maize class (first
cycle of the double crop) was 542.5 mm for CFSv2 data, 589.2 mm for GLDAS, and 634.5 mm
for INMET. Radin et al. [55] obtained ETa values between 575 and 732 mm per cycle (average
of 656 mm) when evaluating ETa values during four seasons. According to the authors,
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the variation was mainly due to the evaporative demand in the atmosphere, which is
mainly determined by solar radiation. The cycle period varied from 136 to 168 days. The
maize irrigation balance was negative for all classes except for the maize + soy class, which
presented balances of 4.1 and 19.9 mm based on GLDAS and INMET data, respectively.

Table 3. Global accuracy and f1-scores obtained in each class.

Class f1-Score

Maize + Beans 0.9964

Maize + Carrot 0.9954

Maize + Onion 0.9983

Maize + Potato 0.9952

Maize + Soy 0.9998

Soy 0.9742

Soy + Potato 0.9947

Global Accuracy 0.9951
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Details of the crop variability within center pivots are illustrated in figure (b,c).

In the case of soy, the average accumulated ETa values were 490 mm (CFSv2), 534.6 mm
(GLDAS), and 566.52 mm (INMET). Alves et al. [56] obtained similar results when estimat-
ing ETa for soy in the Cerrado biome using the FAO 56 Dual method [57]: a value equal
to 515 mm accumulated during the crop cycle. The soy cycle period varied from 131 to
137 days. The soy cycle period can vary from 70 to 180 days according to the maturation
group, usually called early, semi-early, medium, semi-late, and late [58]. However, the
number of days of a certain group can still vary depending on the management conditions
and the soil and climate conditions of the planting region [59]. For the irrigation balance,
one can observe in Figure 10 that soy, a single cycle in the agricultural year, presented
positive values for GLDAS and INMET data. On the other hand, soy cultivated in a double
system obtained negative values for the irrigation balance concerning all data sources.
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Figure 9. Crop area for each class in the 2015/2016 agricultural year.
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Figure 10. Average accumulated evapotranspiration (a–g), precipitation, and the irrigation balance
(h–n) of the first cycle of the classes (a–n). The first cycle of the classes is mainly represented by the
maize crop. The soy crop in the first cycle is observed in two classes, soy + potato and soy. The
accumulated precipitation values are represented in the first row of the table below the graphs.
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4.3.2. Second/Winter Season

Figure 11 shows ETa, rainfall, and the irrigation balance for the second cycle, which
corresponds to winter crops (beans, carrots, onions, and potatoes) and second cycle soy
(grown after maize) for each data source. Among the meteorological data sources, the
INMET data obtained the highest ETa values, followed by GLDAS and CFSv2 for all crops,
similarly to what occurred in the analysis of the first cycle.
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Figure 11. Average accumulated evapotranspiration (a–g) and precipitation and irrigation balance
(h–n) of the second cycle of the classes (a–n). The second cycle of the classes is mainly represented by
winter crops, such as beans, carrot, onion, and potato. The soy crop in the second cycle is observed in
one class (maize + soy). The accumulated precipitation values are represented in the first row of the
table below the graphics.

The carrot was the crop that presented the highest ETa values equal to 463.6 mm
(INMET), 436.9 mm (GLDAS), and 387.4 mm (CFSv2) for a cycle of 136 days. Using a
lysimeter, Lunardi and Filho [60] obtained an ETa value equal to 423 mm for the carrot
cultivated in a region close to our study area, in a cycle of 117 days. On the other hand,
Moura et al. [61] obtained an ETa value equal to 365 mm for a 110-day cycle.

ETa values in the carrot cycle agree with values reported by EMBRAPA [62], which
reported that the crop’s water requirement varies from 350 to 550 mm per cycle, depending
on climatic conditions and the cycle period. Furthermore, it is highlighted that carrot is
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highly sensitive to water deficit and requires soil moisture close to field capacity with water
application corresponding to the evapotranspiration of the crop.

In the common bean crop, the ETa values were 302 mm (INMET), 283.3 mm (GLDAS),
and 253.7 mm (CFSv2). Using drainage evapotranspirometers, Matzenauer et al. [63]
obtained ETa values from 228.2 mm to 361.4 mm for the bean cycle. ETa values based on
the SSEBop-Br model also agreed with values presented in [64], which varied from 250 mm
to 350 mm during the cycle. The crop is highly sensitive to water stress during flowering
and the beginning of pod formation and, to a lesser extent, in the vegetative phase.

The average onion crop cycle was 112 days. ETa values were equal to 389.2 (IN-
MET), 343.1 mm (GLDAS), and 313.4 (CFSv2), which can vary according to the crop water
requirement. In [65], ETa values varied from 350 mm to 650 mm and the cycle period
varied from 100 to 210 days. In addition, the longest duration for late planting occurred in
southern Brazil.

According to the Brazilian Potato Association (ABBA) [66], the total potato evapotran-
spiration varies between 250 mm and 550 mm, depending on the crop cycle length and the
evaporative demand. According to ABBA [66], the cycle varies between 85 and 120 days
and can be less than 85 days in seed potato production. For potato crops, the average ETa
values estimated by the SSEBop-Br model were 267.5 mm, 244.7 mm, and 213.8 for INMET,
GLDAS, and CFSv2 data, respectively. The potato crop cycle determined from phenological
metrics varied from 80 to 112 days. Potato is considered a water-demanding crop and
requires an adequate water supply during all stages of its growth.

The irrigation balance was positive for all crops in the second cycle, indicating that
there was water supplementation. In terms of average consumption, the carrot was the crop
that presented the highest consumption per area (mm or L/m2;), ranging from 312.3 mm to
236.1 mm for INMET and CFSv2 data sources, respectively. Beans were the second crop
that most used water per area, ranging from 198 mm (INMET) to 149.8 mm (CFSv2). The
potato crop, present in two classes, used 185.7 mm (INMET) and 117.4 mm (CFSv2) in
the soy + potato class, and 122.8 mm (INMET) and 83.8 mm (CFSv2) in the corn + potato
class. Then, soy, cultivated after corn, presented an average irrigation balance of 153.5 mm
(INMET) and 57.1 mm (CFSv2). The crop with the lowest average consumption per area
was onion, varying from 122.6 mm to 46.2 mm for INMET and CFSv2 data, respectively.

4.3.3. Total Water Volume Used in the Center Pivots

Figure 12 shows the water use in the crops that showed a positive irrigation balance
in the 2015/2016 agricultural year. The water use volume can be understood as irrigation
balance in m3. One can observe that there was water use in all second cycles of the
agricultural year due to the lack of sufficient rainfall during the crop development period.

The potato was the crop that used the most water in the irrigation process. The water
use volume was around 2 million m3 (INMET) and 1.3 million m3 (CFSv2). Although
potato did not present the highest water use per area, it was the crop that presented the
largest planted area (Figure 9). The second crop that most used water was soybean, with
values ranging from 220 thousand m3 (CFSv2) to 800 thousand m3 (INMET). The soybean
crop also had the greatest variation between the source that presented the lowest volume
and the source that presented the highest estimated water volume (~264%). Therefore, the
largest variations were obtained by onion (~165%) and potato (~57%) crops. This result
highlights the importance of carrying out studies to assess the influence of meteorological
variables used in the model to estimate water use in agricultural areas.

The water volume used in the bean crop varied from 252 thousand m3 (CFSv2) to
333 thousand m3 (INMET). Although the carrot crop presented the highest water use per
area in irrigation (Figure 11), the total water volume was 52 thousand m3 (CFSv2) and
68 thousand m3 (INMET) due to the proportion of planted area in Itobi. Finally, the water
use in the onion crop was 37 thousand m3 (CFSv2) and 98 thousand m3 (INMET).
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Figure 12. Water use volume estimated in the irrigation crops cultivated in the center pivots located
in the study area for the agricultural year 2015/2016. The volume was estimated for crops that
presented positive irrigation balance.

Finally, the total volume of water used by center pivots in the municipality of Itobi, SP,
during the 2015/2016 agricultural year was equal to 3.2 million m3 (INMET), 2.5 million m3

(GLDAS), and 1.8 million m3 (CFSv2), which represents a variation of approximately 78%
between estimates obtained from CFSv2 and INMET data. Figure 13 shows the number of
pivots and the areas irrigated by center pivots in our study area from 2000 to 2019, obtained
in the Survey of Agriculture Irrigated by Center Pivots carried out by ANA [67]. From
2000 to 2019, the area irrigated by center pivots in Itobi increased by about 245%, and the
number of pivots increased by about 718%. The pivot mapping used in our study was
performed in 2014. From 2014 to 2019, the planted area and the number of pivots increased
by approximately 9% and 13%, respectively.
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5. Discussion

When compared to METRIC, SSEBop is considered a simpler alternative because
it requires fewer input data and has more objective parameterization that facilitates its
implementation without significant loss of precision in the ETa estimate [11,68]. Since 2015,
ANA has been using the SSEBop-Br model to estimate water use in irrigated agriculture in
Brazil, and the results have been very effective [11].

The irrigation balance is the difference between the ETa value and the precipitation
that occurred during the crop cycle. It can be used as an indicator of irrigation water use
considering that water supplementation is necessary when the precipitation is low. For the
first cycle which occurs during the rainy season, the irrigation balance was negative for
most classes. However, we cannot state that there was no irrigation because some crops
have periods of high sensitivity to water deficit. For maize, this period is relatively short,
and it goes from the flowering to the beginning of grain filling [69]. In addition, maize
is one of the crops most affected by water deficits [70]. Although rainfall throughout the
year is sufficient for summer crop cultivation, poor rain distribution can cause a drop in
productivity. The occurrence of dry spells in the Cerrado region is very common, with dry
periods in the middle of the rainy season [71]. In this situation, the producer can use center
pivot irrigation to meet the crop’s water demand during summer and then ensure that the
productive potential is minimally affected.

The difference in the soy irrigation balance observed in the two cultivation types
(single crop and first + second crop) can be explained by the planting date. Single-cycle soy
is planted later, which extends to December in some cases. Soy in the first + second crop
system (soy + potato) was grown until November. In single-cycle soy, the accumulated
precipitation is lower (497.4 mm), which indicates that part of its cycle occurred in periods
of lower precipitation and that water supplementation by irrigation was performed. In
the first crop + winter crop, water use is concentrated in the second cycle due to the low
precipitation level in the Cerrado region, which corroborates with the results obtained in
our study.

The study area is characterized by the heterogeneous cultivation of vegetables, mainly
potatoes and onions. In addition, there is an intense use of center pivot irrigation, which can
reach up to three production cycles in one agricultural year [19,54]. This heterogeneity as
well as the presence of more than one crop per pivot were identified through phenological
metrics extracted from VI dense time series as proposed by Bendini et al. [19]. The use of
phenological metrics allows us to infer the period in which the crop was in the field. Works
related to irrigation water in agriculture at a large scale usually use fixed time intervals in
the agriculture analysis.

The SSEBop-Br model estimates ETa from ETr, which in turn is obtained by the P-M
method using three meteorological data sources. Wind speed, temperature, radiation, and
relative air humidity are the main climatic variables used to estimate ETr [72,73]. Any vari-
ation in one of these variables can influence the result, and the radiation variable requires
greater precision [74]. As INMET provides meteorological variables based on stations
distributed across the country, it is expected that it best represents ETa in the Brazilian
territory. However, no study confirms this fact. The variation of approximately 78% among
the results obtained for the estimation of irrigation water use based on three meteorological
data sources demonstrates the need to evaluate these data sources to guarantee more
reliable results.

Crops of the first cycle presented negative irrigation balance, except for maize preceded
by soy and soy crop cultivated in a single cycle, which presented values of up to 19.9 mm
and 44.5 mm, respectively. A negative irrigation balance indicates that the precipitation
supplied the crop water demand. However, if pivots were activated to supplement water
demand caused by dry spells, it was not possible to quantify their use. All second-cycle
crops showed positive irrigation balance, indicating water supplementation by pivots. This
was expected, given that these crops were not planted in the rainy season.
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The potato was the crop that used the most irrigation water, which was estimated
at 2 million m3 (INMET) and 1.3 million m3 (CFSv2). Next, soy water use was estimated
at 220,000 m3 (CFSv2) and 800,000 m3 (INMET). The irrigation water use for bean crops
was estimated at 252,000 m3 (CFSv2) and 333,000 m3 (INMET). The water volume used
for carrot irrigation was 52,000 m3 (CFSv2) and 68,000 m3 (INMET). Finally, irrigation
water estimation for onion was 37,000 m3 (CFSv2) and 98,000 m3 (INMET). The total
irrigation water volume used in the center pivots in the region of Itobi, SP, during the
2015/2016 agricultural year was 3.2 million m3 (INMET), 2.5 million m3 (GLDAS), and
1.8 million m3 (CFSv2). The irrigation water use estimated for the same crop varied up to
72%, which depends on the meteorological data sources used for the ETa estimate.

6. Conclusions

This paper presents a method to estimate water use in irrigation agriculture combining
phenological metrics and time series of ETa obtained by remote sensing technologies
and precipitation data. Information regarding the phenological crop cycle, such as the
beginning and the end of the cycle, was effective in the estimation of water use in irrigated
crops. This allows us to infer the period when the crop is in the field. In addition, the
use of phenological metrics extracted from the EVI time series was effective in classifying
the crop within the mask of center pivots. The crops referring to the first cycle in the
classes presented negative irrigation balance, except for the maize class preceded by soy,
which presented water use of up to 19.9 mm, and the soy crop cultivated in a single cycle,
which presented values of up to 44.5 mm. The negative irrigation balance indicates that
the precipitation supplied the water demand for the crops. However, if the pivots were
activated to supplement the water demand caused by dry spells, it was not possible to
quantify the water use in these cases. The crops referring to the second cycle showed
positive irrigation balance in all cases, indicating that there was water supplementation
by the pivots, which was expected since these crops were not planted in the rainy season.
Potato was the crop that used the most irrigation water, followed by soy, bean, carrot, and
onion. The total irrigation water used by center pivots ranged from 3.2 million m3 (INMET)
to 1.8 million m3 (CFSv2). In addition, the irrigation water use for the same crop varied up
to 72%, depending on the meteorological data sources used for the ETa estimate. In future
work, we suggest evaluating the meteorological data source’s performance to generate more
assertive irrigation water use estimates. In addition, we suggest scaling up the methodology
proposed in this work to larger regions, such as for the entire Cerrado Biome. This work is
in the context of the project “Irrigated Agriculture Based on Remote Sensing Technologies
to Update and Improve ANA’s Atlas Irrigation”, developed by INPE and ANA (Process
CNPq 423959/2021-2), which aims at developing a method for automatically mapping
irrigated agricultural land and estimating water use in Brazilian irrigated agriculture.
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