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Abstract: Continuous monitoring of forest disturbance on tropical forests is a fundamental tool to
support proactive preservation actions and to stop further destruction of native vegetation. Currently
most of the monitoring systems in operation are based on optical imagery, and thus are flaw-prone on
areas with frequent cloud cover. As this, several Synthetic Aperture Radar (SAR)-based systems have
been developed recently, aiming all-weather disturbance detection. This article presents the main
aspects and the results of the first year of operation of the SAR based Near Real-Time Deforestation
Detection System (DETER-R), an automated deforestation detection system focused on the Brazilian
Amazon. DETER-R uses the Google Earth Engine platform to preprocess and analyze Sentinel-1 SAR
time series. New images are treated and analyzed daily. After the automated analysis, the system
vectorizes clusters of deforested pixels and sends the corresponding polygons to the environmental
enforcement agency. After 12 months of operational life, the system has produced 88,572 forest
disturbance warnings. Human validation of the warning polygons showed a extremely low rate of
misdetections, with less than 0.2% of the detected area corresponding to false positives. During the
first year of operation, DETER-R provided 33,234 warnings of interest to national monitoring agencies
which were not detected by its optical counterpart DETER in the same period, corresponding to an
area of 105,238.5 ha, or approximately 5% of the total detections. During the rainy season, the rate of
additional detections increased as expected, reaching 8.1%.

Keywords: time series analysis; forest monitoring; SAR; Sentinel-1

1. Introduction

The CO2 emissions due to the destruction of tropical forests sum up to 5.4 Gt CO2e yr−1,
which is the double of the annual emissions associated to the removal of the remainder of
the global forest formations [1]. New studies show that the critical role of the tropical forest
as the biggest sink of global greenhouse gases, with an annual removal of approximately
7.0 Gt CO2e yr−1 [1], is endangered due to deforestation and climate change [2]. Despite the
multiple initiatives to reduce deforestation, and the growing global public awareness, the
annual tree cover loss is constantly rising since the year 2000, reaching 12 million hectares in
2020 [3]. In these circumstances, near real-time (NRT) forest disturbance detection systems,
which can be defined as a collection of algorithms and procedures able to identify tree loss
or disturbance, on a periodic (monthly, weekly or even daily) basis, become a key aspect
of deforestation reduction initiatives. This kind of system has been a crucial element to
reinforce public policies that have led to significant deforestation rates decrease in Brazil [4],
Peru [5] and more recently, in Indonesia [3].
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In the Brazilian Amazon, the main NRT forest disturbance detection system in op-
eration is the Near Real-Time Deforestation Detection System (DETER) [6]. DETER was
developed to support the Brazilian Institute of the Environment and Renewable Natural
Resources (IBAMA), as well as other associated agencies, in the inspection and control
of Amazon deforestation and forest degradation. As such, one key aspect of DETER is
its ability to alert priority disturbance events in near-real time with a low false-positive
rate. DETER started issuing alerts in 2004, as part of the Action Plan for the Prevention
and Control of Deforestation in the Legal Amazon (PPCDAm), which, coupled with the
deployment of law-enforcement teams on the field and the delimitation of protected areas,
contributed to a 83% decrease on deforestation rates from 2004 to 2012 [4]. Nonetheless, as
DETER is based on optical data, it can be severely affected by the near constant cloud cover
in certain parts of the Amazon in determined periods of the year, as the mean annual cloud
cover on the Brazilian part of the biome is approximately 74% [7]. This is not a problem
exclusive to DETER: a recent survey among NRT forest disturbance systems users pointed
to cloud cover as the most important limiting factor to the effectiveness of these kind of
systems [8].

Orbital active microwave sensors, namely Synthetic Aperture Radar (SAR) satellites,
can help bridging the observational gap caused by cloud cover. SAR observations are
not blocked (though they can be affected) by atmospheric conditions [9], and thus can
continuously deliver land cover information on highly cloud-covered areas such as humid
tropical forests. Following this premise, several operational or semi-operational NRT forest
disturbance systems using data from the Advanced Land Observing System (ALOS)/Phase
Array L-Band Synthetic Aperture Radar (PALSAR) or Sentinel-1A/B C-band sensors have
been implemented in the last decade.

The first operational deforestation detection system based in orbital SAR information
was the JICA-JAXA Forest Alert Warning System in the Tropics (JJ-FAST), an ALOS/PALSAR-
based NRT system developed in 2016 by the Japanese Spatial Agency (JAXA), in cooperation
with the Japan International Cooperation Agency (JICA). JJ-FAST has been continuously
improved since its conception [10,11]. The last version of the system has 50-meter spatial
resolution, a minimum mapping unit (MMU) of 2 ha, and a minimum revisiting time of
42 days.

Shortly after JJ-FAST implementation, the launching of European Space Agency (ESA)
Sentinel-1 (S1) satellites (S1A and S1B), with publicly available images, triggered the
development of several NRT systems based on their data. Here we will highlight the two
main S1 based NRT systems operational nowadays, the RAdar for Detecting Deforestation
(RADD) and the one from the French Centre d’Etudes Spatiales de la Biosphère (CESBIO).

The RADD system was originally developed at the Laboratory of Geo-information
Science and Remote Sensing of the Wageningen University, while researching the suitability
of the Bayesian classification and update approach to detect deforestation in near real-time
using S1 time series [12]. RADD is operational over the entire tropics, using the Google
Earth Engine (GEE, [13]) computing platform as the main computation engine, and the
Global Forest Watch web infrastructure as the publishing framework [14]. It has a minimum
mapping unit of 0.1 ha. The mean revisit time varies between 6 and 12 days.

Concomitantly, researchers from CESBIO developed a different approach to deforesta-
tion detection, based on the shadowing effect caused by forest removal. The researchers
showed that detection of SAR shadows, by simple thresholding (i.e., flagging the pixels
that have a backscatter intensity lower than the time-series mean), can accurately reveal
deforestation patches boundaries [15]. The remainder of the deforested patch will be de-
tected by lowering the original thresholding level. After a tropic wide research [16], an
operational method based on S1 data has been developed and published, showing excellent
results in south Asia [17]. As RADD, it has a minimum mapping unit of 0.1 ha, and a mean
revisit time between 6 and 12 days.

All the previously presented systems use custom thresholds and detection parameters,
defined after detailed heuristic research. As a matter of fact, the definition of the right
thresholding technique and parameters is a key design step for every disturbance detection
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system. Stricter thresholds will produce fewer false alarms, but can raise the false negative
(or omission) rate until it reaches a point where important disturbances will not be detected.
The CFAR (constant false alarm rate) standard can help to define the thresholding parame-
ters, by letting the user of the system to define an a priori rate of false alerts. Although the
CFAR paradigm is mainly used in SAR-based target detection systems, such as the Search
for Unidentified Maritime Objects (SUMO) system [18], or more recently, to preprocess
SAR images which will feed a machine learning target detector [19], it is also used as well
in the image classification domain, for example to detect edges between different land-use
parcels [20].

In [7] the authors developed a detector based on the premises of the CFAR standard, by
studying the statistical distribution of the difference between the mean and the minimum
incident angle-normalized backscattering coefficient (γ0

VH) value associated to an Amazon-
wide sample (n = 4 M) of intact-forest S1 time series. This procedure can be considered
analogous to the procedure used to determine the background clutter model in the CFAR
standard. The forest backscatter distribution proved to be normal, if computed over filtered
images converted to decibel scale following the expression γ0

VH (dB) = 10 × log10γ0
VH . The

modelled distribution had a mean m = −1.31 dB and a standard deviation σ = 0.35 dB.
Following this result, the authors proposed a forest disturbance detection method based
on time-series thresholding, where the false alert ratio could be fixed by the setting of the
number of standard deviations (σ) that determine the threshold below the mean of the
forest minimum values. Fixing the threshold to −2σ, for instance, will theoretically equal
to 97.4% of chances of not having a forest pixel detected as anomaly, or a CFAR of 2.6%.
In this particular case, the value to be used as threshold will be 1.31 + 2× 0.35 = 2.01 dB
below the mean of the time series. Lower σ values will decrease the threshold, decreasing
the false alert ratio but can potentially increase the omission rate.

The results of this study [7] showed that backscattering thresholding, when applied in
such an adaptative fashion, can overcome the results of the bayesian approach proposed
in [12]. The advantage of the so-called Adaptative Linear Thresholding (ALT) method is
the lack of assumptions about the non-forest backscattering distribution, which, due to
its heterogeneity, can be a source of errors and false detections. These findings allowed
the basis of the implementation of DETER companion system based on SAR data, called
DETER-Radar (DETER-R), herein presented.

DETER-R is a fully automated NRT forest disturbance detection system based on S1
data. New images are treated and analyzed daily by an automated scripting scheme hosted
in the GEE platform. After the automated analysis, the system vectorizes clusters of pixels
flagged as forest disturbances and sends the corresponding polygons to the environmental
enforcement agency. After running a prototype of the system from November 2020 to March
2021 over a set of five areas subject to special monitoring by the Brazilian National Institute
for Space Research (INPE), the system was made operational, covering the Brazilian portion
of the Amazon biome.

The main objective of this work is to describe DETER-R early and present routines, as
well as the results generated in its prototype phase and after its first year of operation.

2. Materials
2.1. Project Area

A prototype of DETER-R was initially implemented over a set of 5 experimental areas,
which were subject to special monitoring by INPE in the context of a frequent monitoring
initiative called DETER-INTENSO (Intense DETER). These areas covered 458,000 km2 and
hosted most of the deforested areas in the year 2020 within the Brazilian Amazon. The
operational version of the DETER-R system has as Area of Interest (AOI) the entire Brazilian
Amazon Biome. It covers 4.21 million km2, or 48.7% of the surface of Brazil. The system only
takes in account changes affecting the forest cover within the AOI, which excludes already
deforested areas up to year 2020, savanna, rivers, rocky outcrops, floodplains, and beach
areas. The remaining area, which is being monitored by DETER-R, covers 2.81 million km2,
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or 66.7% of the entire AOI. The extension of both experimental and operational AOIs can
be seen in Figure 1.

Figure 1. Area being monitored by the DETER-R system. The dark line represents the limit of the
Amazon biome within the Brazilian borders. The brown-shaded areas represent regions belonging to
the categories not monitored by the DETER-R system: already deforested areas, rivers, flood plains,
savannas, beaches, and rocky outcrops. Red areas denote the experimental AOI where DETER-R
prototype 2020 testing took place. The hatched circle shows the area of the field validation campaign.

2.2. SAR Images

The SAR images used on the DETER-R system are acquired by the Sentinel-1 (S1)
satellites, and distributed free of charge by the European Space Agency (ESA). The GEE
platform loads and preprocess the S1 data on a daily basis, converting the raw data to
Ground Range Detected (GRD) images following these steps:

1. Orbit file correction: Updates orbit metadata with a restituted orbit file.
2. GRD border noise removal: Removes low-intensity noise and invalid data on scene edges.
3. Thermal noise removal: Removes additive noise in sub-swaths to help reduce discon-

tinuities between sub-swaths for scenes in multi-swath acquisition modes.
4. Radiometric calibration: Computes backscatter intensity using sensor calibration

parameters in the GRD metadata.
5. Terrain correction (orthorectification): Converts data from ground range geometry,

which does not take terrain into account, to normalized backscatter coefficient using
the Shuttle Radar Topography Mission (SRTM) 30 m Digital Elevation Models.

During the first year of operational life of the DETER-R system, a total 5111 Sentinel-1
images were treated, with a mean of 14 processed images/day. Around 80.0% of this total
of images (4091 images) were acquired by the Sentinel-1A satellite, and the remainder
by Sentinel-1B. We have recorded two main disruptions of the Sentinel-1 acquisition and
processing pipelines:

1. During the first half of September 2021, issues with the image processing pipeline
substantially reduced the availability of S1 images on the GEE platform. The images
acquired during this period became available later in the same month.

2. On 23 December 2021, a power supply-related issue prevented switching on the
Sentinel-1B SAR acquisition subsystem. Further investigation did not succeed on
fixing the compromised systems. Although the satellite is still orbiting normally, its
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operation is still stopped as of July 2022, and the future of the mission is uncertain.
As a consequence of this incident, the mean number of images been made available
over the DETER-R interest area dropped from 15.4 to 11.4 images/day.

Figure 2 illustrates the cadence of image processing over the first operational year of
DETER-R system. The two mentioned incidents are clearly visible.

Figure 2. Cadence of images processing by the DETER-R system over its first operational year,
illustrating the two main incidents affecting S1 images delivery by ESA: production gap in September
2021 and the stop of Sentinel-1B image production in January 2021.

2.3. Forest/Non-Forest Masks

In order to avoid the issuing of false deforestation warnings provoked by the natural
variations of non-forested areas, the detection algorithm should be precisely informed of
the extent of the evergreen forest. Normally, this information is provided as Forest/Non-
Forest maps, also called Forest Masks. As it has been demonstrated in Sano et al. [21],
no single mask can provide a precise estimate of the areas deprived of dense forest cover.
As an important characteristic of DETER-R is the possibility to minimize the number of
false warnings, we decided to built a non-forest mask by adding forest extent (or absence)
information from different sources:

1. deforestation map produced by the Program for Deforestation Monitoring in the
Brazilian Legal Amazon (PRODES) [22]. This map is updated manually on DETER-R
system every time the INPE/PRODES team issues an update. Normally this happens
twice a year. The used map includes the residual (smaller than 6.25 ha) polygons
which are not publicly available.

2. INPE’s Forest/Non-forest map, built by visual interpretation. This medium resolution
map outlines regional non-forest compounds, such as Roraima’s lavrados. This map is
available at INPE’s terrabrasilis website (http://terrabrasilis.dpi.inpe.br/ (accessed
on 18 January 2022)).

3. The German Aerospace Center (Deutsches Zentrum für Luft-und Raumfahrt - DLR)
Forest/Non-Forest map, built automatically using mainly TerraSAR-X data [23]. This
map contributes to capture small features such as isolated outcrops and savanna
patches among rainforest regions.

4. INPE’s varzea (seasonally flooded) extent [24,25]. Including this dataset will exclude
from monitoring scarcely deforested areas prone to false positives due to the effects
on backscattering of seasonal flooding from monitoring.

5. Flooded and beach areas mapped by the Brazilian Institute of Geography and Statistics
(IBGE) [26]. This ancillary layer will avoid false positives arising from seasonally
flooding and coastline tidal variations.

http://terrabrasilis.dpi.inpe.br/
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2.4. Validation Imagery

During the first year of operation, the warnings issued by DETER-R were validated by
the visual interpretation of optical images. This step is not mandatory for the functioning
of DETER-R and was executed to assess the system potential. The following sets of optical
images were used:

1. The Planet Basemaps Imagery, made available by the Norway’s International Climate
& Forests Initiative (NICFI) program. Monthly and semiannual mosaics with 3 m
spatial resolution are used, both in the visual and normalized analytic modes.

2. Sentinel-2 images, freely distributed by ESA with 10 m spatial resolution and hosted
on the Amazon Web Services (AWS). The two most recent images for each location at
the time of analysis are used.

3. The Landsat images selected and pre-processed by the PRODES team in the previous
year. Pre-processing includes the application of contrast and color composition Short-
wave infrared (R)/Near-infrared (G)/Red (B). Images are used with original 30 m
spatial resolution.

3. Methodology

The DETER-R system uses an hybrid parallel-pipeline processing paradigm. While the
core of the system (the pixel-wise detection algorithm) runs over the parallel architecture
of the GEE platform, the image selection and results of the detection are treated on a
synchronous, sequential workflow. Figure 3 outlines the daily operational workflow of
the DETER-R system. The workflow is triggered daily at 1 AM (Brasília Time-BRT) on a
virtualized Linux box. The code used by DETER-R is open-source and can be downloaded
at: https://github.com/jdoblas/DETER_R_AMZ (accessed on 15 March 2022).

Warning validation and delivery

Image Selection

Disturbance Detection loop (i=1..n)

Update
temporal SAR

mask

Warning raster

Warning polygons

Preprocess i-th
S1 Image

Start

Input parameters

Analysis time interval

Area of interest

Forest/Non-forest mask

Current SAR maskNew S1 images 
(1 to n)

 
 
 
 
 
 
 
 
 

Get warning
raster

Vectorize 
warning
polygons

Get images in
the analysis

interval

INPE 
Database

Current SAR mask

IBAMA 
Database

Field Teams
Human

validation

Merge warning
polygons

Send log to
system admins

Merged warning
polygons

Figure 3. Flowchart depicting the daily operational routine of the DETER-R system.

https://github.com/jdoblas/DETER_R_AMZ
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3.1. Image Selection

The first step on the daily DETER-R routine is to select the images which were made
available on the GEE platform during the selected time interval (normally the day before
the execution).

3.2. Disturbance Detection

During the disturbance detection phase, all the images previously selected are pro-
cessed in order to flag anomalous pixels. Clusters of flagged pixels will be vectorized and
finally merged on a final warning dataset.

3.2.1. Preprocessing

The goal of Sentinel-1 images preprocessing is (1) To correct the variation on backscat-
ter intensity due to variations on the local incidence angle (LIA), (2) to reduce the speckle
associated with the SAR signal, and (3) to reduce backscattering fluctuations due to seasonal
variations of canopy moisture. To achieve this, the DETER-R system employs a standard
processing sequence. As most of the AOI can be considered as being flat or, at most, hilly,
LIA correction was performed following the expression:

γ0 =
σ0

cosθi
(1)

where σ0 represents the normalized backscatter coefficient, θi the local incidence angle
(LIA) and γ0, known as gamma naught, is the backscattering coefficient normalized by
the incidence angle. Disturbance detection in mountainous areas should follow a more
complex procedure than the one applied here, such as the one recently proposed in [27].

Regarding speckle reduction, we decided to apply two different filters sequentially: a
temporal filter (Quegan&Yu), and a spatial filter (Refined Lee 7 × 7 filter). The temporal
filter [28] is applied to a given SAR image by collecting M images acquired on the same
location, and then applying the following expression:

Jk =
〈Ik〉
M

M

∑
i=1

Ii
〈Ii〉

(2)

where Jk (k ∈ [1, M]) is the k-th filtered image, M the total number of collected images, Ii
the intensity value of the image i, and 〈Ik〉 and 〈Ii〉 are the expected values of the image being
filtered and the collected images, respectively. The expected value is computed by applying
a simple spatial filter (in our case, a 5 × 5 box-car filter) to the corresponding image.

As specified in [28], it is advisable to apply a spatial filter to the results of the temporal
filter. After systematic testing [29], we choose to apply a refined version [30] of the original
Lee filter [31], due to its ability to preserve and enhance edge features in the input images.

Seasonal variations of the S1 backscattering signals due to variations on canopy
moisture, the presence of intercepted rain and forest fragmentation have been investigated
recently [32–34]. Here we have applied a harmonic stabilization technique, as described
in [12], which constitutes an efficient and fast way of controlling this seasonality. To
compute the stabilized value of an image at a given location, the algorithm: (1) applies an
harmonic regression to fit a sinusoidal function to the backscattering time series in this
location, (2) computes the difference between the original time series and the harmonic
function, and (3) adds the median of the whole time series to the difference obtained in (2).

3.2.2. Computation of Warning Rasters

The time series forest disturbance detection method applied is analogous to the ALT
method proposed in [7]. It is based on the comparison of the backscatter value of a given
set of filtered images (detection collection) with the median value of the backscatter values
of the images acquired beforehand (learning collection). For a given image being evaluated,
the detection collection comprises all the images acquired in the previous two months,
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including the analyzed image itself. The learning collection will comprise the images
acquired in the three years before the beginning of the learning collection. Any pixel of the
detection collection with a difference value below a given threshold t will be flagged as
potential disturbed pixel. For a given image k belonging to the detection collection, any
pixel at a location (x, y) that verifies the expression (3) will be flagged:〈

γ0
VH(x, y)

〉
k
−ml(x, y) + t(x, y) < 0 (3)

where
〈
γ0

VH(x, y)
〉

k is the backscattering value of a image k of the filtered detection col-
lection, ml(x, y) the median value of the backscattering of the learning collection, both
expressed in dB, and t(x, y) the chosen threshold value at this particular location. It is
worth noting that the learning collection images are not being filtered, as the number of
images ensure that the computed median value will be almost noiseless.

Figure 4 illustrates the steps followed on this particular phase of the system.

Filtered time series

Warning image Vectorized warning polygons

Original time series

VH
 b

ac
ks

ca
tte

rin
g 

(d
B)

Figure 4. Detail of the warning detection procedure. Dotted lines a and a’ denotes the median value
of the learning collection and the threshold value for a particular location, respectively. The red
dots correspond to samples below the threshold, which will be flagged. Two flagged values on the
detection collection implies on a confirmed detection.

One of the most important aspects of the DETER-R system is the use of ancillary
information on past deforestation to modify the detection threshold, trying to mimic the
human interpreter behaviour, which will mistrust any deforestation alert on remote areas
where man-made deforestation is improbable.

In order to quantify the probability of deforestation as a function of the proximity to
previous deforestations, we have computed the distance from every deforestation polygon
centroid mapped by the PRODES system to the previous year closest polygon, from 2016 to
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2019. This procedure generated a probability function that was modeled with the help of the
R library fitdistplus [35] as being a logistic distribution of log10(distance), with parameters
location µ = 2.40633 and scale s = 0.29973. Figure 5 shows the results of this modelling.
These results suggest that most (>90%) of the deforestation on the Brazilian Amazon biome
happens within 1 km of previously deforested areas.

Figure 5. Accumulated probability of deforestation on the Brazilian Amazon, as a function of
the distance to previous deforestations. The modelled distribution is a logistic distribution of
log10(distance).

The results of this statistical study led us to change the deforestation detection method-
ology, which initially used a fixed threshold value, to a new approach, where the threshold
to be applied to every pixel varies as a function of its euclidean distance to the previously
deforested areas. The minimum value of this threshold will correspond to areas limiting
with deforested areas, and the maximum value with correspond to the areas 10 km far
from these areas. The value t of the threshold in between will be computed following the
previously modeled cumulative distribution function:

t(d; t0; tmax; µ, s) = d0 + (tmax − t0)

(
1
2
+

1
2

tanh(
log10(d)− µ

2s

)
(4)

where d is the distance to the nearest deforestation, t0 and tmax are the thresholds cor-
responding to the minimum and maximum distances, and µ and s are the distribution
parameters previously found.

Figure 6 shows an example of the output of this procedure, as a spatially explicit
threshold map.

Figure 6. Example of variable threshold map, built as a logistic accumulated probability function.
Grey areas represent past deforestation. Notice how the threshold values increase with the distance
to past deforestation.
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3.2.3. Warning Vectorization and Filtering

After the previous detection step, the resulting warning image is vectorized. For every
vectorized polygon, the algorithm will compute three parameters:

1. Number of warnings: the mean value, across the polygon, of the total number of
values below the threshold on the detection collection, computed for every pixel on
the polygon.

2. Day of change: The mode of the Julian day corresponding to the first perturbation on
the detection collection.

3. Intensity of change: median value of the difference between the threshold and the
minimum value of the detection collection.

These polygons are filtered according to two parameters:

1. Number of warnings: Polygon mean must be higher than 1. A value of 1 means that
this polygon pixels were flagged only once, and the polygon should be discarded.
This procedure mainly aims to remove the anomalies related to convection clouds,
which provoke sudden and dramatic drops on backscattering [9].

2. Size of the warning polygon: Polygons smaller than the system MMU will be dis-
carded. Although theoretically this threshold can be fixed to values as low as one
single pixel area, such a reduced MMU will raise the number of warnings caused
by small-scale or spurious events associated with moisture variations [32] or speckle.
Already existing S1-based detection systems [14,17] fix their MMU to values around
0.1–0.2 ha, to reduce the amount of false positives while allowing the detection of small
deforested patches. In our case, after discussion with the system main users and stake-
holders we decided to use a MMU of 1 ha, in order to encompass the main objectives
of the environmental teams’ field campaigns and their budgetary limitations.

The polygons that pass this filter are further classified into two forest disturbance
classes, namely ‘Low Intensity’ and ‘High Intensity’, by thresholding the ’intensity of
change’ value. Polygons with the ‘intensity of change’ value equal or lower than the
threshold are labeled as ‘Low Intensity’, and represent areas that have probably followed a
forest degradation process, such as fires or initial slashing, but in which clear-cut events
were not observed. Therefore, the remaining polygons, with ‘intensity of change’ higher
than the threshold, are labeled as ‘High Intensity’ and correspond to areas of probable
clear-cut deforestation with burning, as well as areas heavily burned/that have suffered
several successive fires. At the initial phase of the project, the threshold was defined as
10.0 dB, based on the observation of sampled warnings. After the analysis of the first results
and comprehensive data from the operational validation, this threshold was corrected to
7.0 dB in 17 June 2021.

3.2.4. Merging

Once all the selected Sentinel-1 images are processed, the corresponding vectorized
warnings are merged and dumped to a PostGIS database. Normally, this will be the end of
the automated detection cycle. Nevertheless, during the first year of DETER-R functioning
it was decided to perform an visual validation procedure, which will be described in the
next section.

3.3. Warnings Validation

The warnings issued in the previous step were validated on a daily basis by a team of
interpreters linked to the project. This validation had three main objectives: (1) to calculate
statistics of accuracy of the data obtained; (2) to eliminate detection errors and false alerts;
and (3) to identify points to be improved in the system.

The validation process is illustrated in Figure 7. First, the warnings are compared to
the deforestation polygons detected by the optical DETER [6]. DETER-R alerts with an
overlap greater than 50% to optical DETER deforestation alerts are automatically validated
as deforestation. A subset of the remaining warnings from DETER-R is then selected to be
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validated based on the visual interpretation of the optical data described in Section 2.4. The
100 warnings with the largest area, and up to other 300 random warnings, are selected in
this validation phase. Therefore, the interpreters validated up to 400 warnings/day, using
an in-house web application [36], in the following classes:

1. Recent Deforestation: complete and recent removal of the forest cover due to clear-cut
or as the result of successive disturbance events. A deforestation process is considered
recent if it occurred within the year of the PRODES project (August to July).

2. Recent Degradation: partial loss of forest canopy and consequent exposure of soil
and/or understory vegetation.

3. Burnt areas: forested areas impacted by fire. It may or may not contain arboreal
vegetation.

4. Residue: old deforestation process, i.e., complete removal of the forest cover that can
be detected in the images used by PRODES in the previous year.

5. Water-flooded areas: previously forested areas that have been flooded or engulfed by
river dynamics. This class was only considered from mid-June 2021. Early validated
warnings of this class were labeled as Non-forest formations.

6. Non-forest formations: recent alterations occurring in areas not originally covered
by forests.

7. False positive: forested areas with no detectable forest disturbances.
8. Cloud: warnings that could not be assessed due to clouds in the optical images used

for validation.
9. No reference data: areas that could not be evaluated due to the absence of recent

optical images at the validation time.

No

Start

Input parameters

DETER-R warnings

Optical DETER deforestation warnings

Comparison

More than 50%
superposition?

YesAutomatic validation

Selection of
100+300 warnings

Visual interpretation

Deforestation in older 
Landsat images?

Deforestation in recent 
Planet images?

Deforestation  
in recent S2 images?

Cloud in recent Planet &  
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Other classes

Recent Degradation

Burnt areas

Non-forest formations
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False positive
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Yes
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No

No

No

No
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Figure 7. Flowchart of validation process.
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The validated alerts were then used to calculate the system’s accuracy. Alerts were
tabulated according to the validated class, in four categories:

1. Agreement: warnings of forest disturbances correctly detected as High/Low Impact.
2. Minor disagreement: warnings of forest disturbances incorrectly detected as

High/Low Impact.
3. Major disagreement: warnings that do not correspond to forest disturbances.
4. Not Evaluated: warnings that could not be evaluated.

The definition of each of the validation categories is illustrated in Table 1. We calculated
the proportion of each validation category considering, separately, the number and the area
of the validated warnings.

Table 1. Validation categories.

Validation Class Detection Class
High Intensity Low Intensity

Automatic (deforestation) Agreement Minor disagreement
Recent Deforestation Agreement Minor disagreement
Recent Degradation Minor disagreement Agreement

Burnt areas Minor disagreement Agreement
Residue Minor disagreement Minor disagreement

Water-flooded areas Major disagreement Major disagreement
Non-forest formations Major disagreement Major disagreement

False positive Major disagreement Major disagreement
Cloud Not evaluated Not evaluated

No reference data Not evaluated Not evaluated

3.4. Warning Delivery

Alerts validated as ‘Recent Deforestation’, ‘Residue’, ‘Cloud’, and ‘Not evaluated’
are then sent automatically to the National Center for Monitoring and Environmental
Information (CENIMA/IBAMA), via File Transfer Protocol (FTP), for further investigation
on the field. These classes correspond to those that are either confirmed as deforestation
by the operational validations, or those that could not be discarded as such. The protocol
when using only S1 data (i.e., without the operational validation based on optical images)
is to transfer the warnings issued as of ‘High Intensity’. Currently, DETER-R data are not
publicly available. Besides INPE and IBAMA, the Operations and Management Center of
the Amazonian Protection System (CENSIPAM) also has access to the generated data.

4. Results
4.1. Preliminary Field Validation

During the month of November of 2020, a joint mission CENIMA/INPE overflew
100 randomly chosen warnings issued by the DETER-R prototype, around the region of
Porto Velho (Rondonia State). The objective of the mission was to test the reliability of the
warnings on an operational context. Another 170 preliminary warnings (with no second-
image confirmation) were verified as well. Figure 8 shows the targets and the results of this
validation mission.
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Figure 8. Detailed map of the field validation results. The outer yellow circumference corresponds to
the limits of the monitored special area.

Results showed that 99 out of 100 of the inspected confirmed warnings corresponded
to recently deforested areas. The preliminary warnings had a lower rate of success: 70%
was confirmed, being the remainder false warnings provoked by convective clouds. These
results stressed the need for two-image confirmation and the reliability of the confirmed
warnings issued automatically by the system.

4.2. Forest Disturbance Warnings

The DETER-R system detected a total amount of 88,572 warning polygons through
its first year of operation (from 21 April 2021 to 20 April 2022), which represents a mean
detection rate of 242 warnings/day.

As expected, warnings were concentrated around the so-called ‘arch of deforestation’
(Figure 9). Meanwhile, some disturbance hotspots appear to penetrate further on previ-
ously preserved areas, such as the south of the Amazonas (AM) state, on its borders with
Rondonia (RO) and Acre (AC). The analysis of the recent dynamics of deforestation in the
Brazilian Amazon is out of the scope of this work. Interested readers may refer to [37].

Figures 10 and 11 show some examples of the detections carried out by the system. In
these figures, the warnings are superimposed over optical Planet Labs images, for reference.

Temporally, the warnings were distributed unevenly during the year (Figure 12), being
the central months of the year the most prolific on warnings. These results support the
assumption that deforestation tasks are reduced during the wetter months of the year
(November to March), which were months with reduced observations from the optical
based systems.

DETER-R needs two anomalous SAR observations over a two-month S1 pre-processed
time series to confirm a warning. This implies on a delay between the actual date of
forest disturbance and the day the warning is issued to the institutions responsible for law
enforcement and potentially other stakeholders. The time between the acquisition of the
data and its availability on the GEE servers also adds up to this delay.
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Figure 9. Heatmap of the forest disturbance warnings issued by the DETER-R system on its first year
of operation. Disturbance density refers to the area in m² disturbed per hectare, integrated along a
circular kernel of 50 km. For clarity purposes, areas with a disturbance density lower than 0.2 m2/ha
were masked out.

(a) September’20 (b) September’21 (c) Warning polygons

Figure 10. Example of deforestation warnings issued by the DETER-R system in September 2021 near
the city of Apui (AM), besides the BR-230 (Transamazônica) highway. In this case deforestation is
linked to cattle-ranching. Satellite background true-color image by Planet Labs Inc.



Remote Sens. 2022, 14, 3658 15 of 21

(a) January’21 (b) April’22 (c) Warning polygons

Figure 11. Example of deforestation warnings issued by the DETER-R system inside the Kayapó
Indigenous Territory, in the state of Pará. Clearings are caused by illegal sand and gold mining.
Notice the small features not captured by the detection algorithm due to the Minimum Mapping
Area constraint. Satellite background true-color image by Planet Labs Inc.

Figure 12. Timeline of the DETER-R detections. (A) The horizontal axis represents the date when the
warning was issued (B) The horizontal axis represents the date of the detected disturbance.

After a year of regular operation, we have a mean issuing delay of 24 days, with a
median value of 23 days. The maximum of the probability density distribution corresponds
to 18 days (Figure 13). It is worth noting that the density distribution has a long right tail,
instead of an expected symmetric, normal distribution. This asymmetry is probably due to
the warnings issued after the late ingestion of some S1 images on the GEE platform, which
can provoke delays of more than 60 days. Thus, we should expect a nominal issuing delay
of 18 days during the normal operation of the system.
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Figure 13. Density distribution of the issuing delay (the difference in days between the date of the
actual forest disturbance and the date of the issuing of the corresponding warning).

4.3. Operational Validation

DETER-R was primarily designed to provide field teams with reliable forest distur-
bance information. As such, it is tailored to minimize Major disagreements, which are
warnings that would probably waste field efforts. This characteristic is reflected in Table 2,
that presents the results of the operational validation for the first year of DETER-R data.
As can be seen, DETER-R achieves a low rate of Major disagreements, both considering
the number and the area of the warnings. Furthermore, the major source of misdetections
leading to Major disagreements occurred in areas of Non-forest formations, which can
potentially be corrected using improved masks.

Around 96.7% of the issued warnings (97.6% of the detected area) were considered
as valid (Agreement + Minor disagreement categories). Although a high proportion of
the warnings has been automatically validated, DETER-R was capable to correctly detect
23,060 polygons of Recent Deforestation, corresponding to 77,899.3 ha of deforestation
warnings that were not detected by its optical companion DETER at the emission date.
In this sense, the existence of warnings validated as ‘Residue’ also show that DETER-R
was capable to alert a deforestation event not previously registered either by DETER or
PRODES, which are regarded as accurate systems.

There is a relative high confusion among ‘High Intensity’ and ‘Low Intensity’ classes,
reflected in the existence of 23,237 warnings (27.2%)/67,380.2 ha (14.9%) of Minor disagree-
ment. However, the majority of these disagreements come from areas misdetected as of
‘Low Intensity’, which are currently not of interest to field teams, so this confusion is not
detrimental to the effectiveness of the system.

Table 2. Validated warnings between 21 April 2021 and 20 April 2022.The values in percentage are
given in parentheses.

Validation Class
Detected Polygons Detected Area (ha)

High
Intensity

Low
Intensity

High
Intensity

Low
Intensity

Automatic (deforestation) 33,933 (39.7) 12,980 (15.2) 288,798.8 (63.9) 32,482.9 (7.2)
Recent Deforestation 23,060 (26.9) 6443 (7.5) 77,899.3 (17.2) 12,815.4 (2.8)
Recent Degradation 460 (0.5) 670 (0.8) 1214.0 (0.3) 1349.3 (0.3)
Burnt areas 1322 (1.5) 1859 (2.2) 17,550.6 (3.9) 5771.3 (1.3)
Residue 1580 (1.8) 462 (0.5) 2619.8 (0.6) 697.6 (0.2)
Water-flooded areas 1 126 (0.1) 11 (<0.1) 170.5 (<0.1) 20.1 (<0.1)
Non-forest formations 1 449 (0.5) 194 (0.2) 1535.0 (0.3) 393.2 (0.1)
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Table 2. Cont.

Validation Class
Detected Polygons Detected Area (ha)

High
Intensity

Low
Intensity

High
Intensity

Low
Intensity

False positive 1 224 (0.3) 119 (0.1) 434.7 (0.1) 233.1 (0.1)
Cloud 2 467 (0.5) 165 (0.2) 3527.4 (0.8) 360.0 (0.1)
No reference data 2 737 (0.9) 319 (0.4) 2997.1 (0.7) 898.6 (0.2)

Agreement 59,522 (69.6) 378,818.6 (82.7)
Minor disagreement 23,237 (27.2) 67,380.2 (14.9)
Major disagreement 1123 (1.3) 2786.5 (0.6)
Not evaluated 1688 (2.0) 7783.0 (1.7)

1 Classes that led to Major disagreements. 2 Classes considered as Not evaluated. Note: Agreements are
highlighted in bold font and Minor disagreements are highlighted in italic.

4.4. Delivered Warnings

During its first year of operation, DETER-R sent 83,332 forest disturbance warnings
to IBAMA. From these, 33,096 warnings (39.7%) did not present a superposition of 50%
or more to the warnings sent to IBAMA by the optical DETER in the same period. These
values correspond to an area of 105,238.5 ha of forest disturbances alerted either first or
only by DETER-R, or approximately 5% of the total area of warnings sent to IBAMA during
the period. If we analyse only the rainy season, from November to March, this percentage
increases to 8.1%. The distributions of the warnings of interest detected only by DETER-R
is illustrated in Figure 14.

Figure 14. Timeline of DETER-R warnings not seen by the optical DETER in the same period sent
to the Brazilian Institute of the Environment and Renewable Natural Resources (IBAMA) for field
investigation (A) Number of warnings (B) Area of warnings.

5. Discussion

In this section, we will discuss the results obtained by DETER-R in its first year of
operation in three main aspects: (1) Divergencies to other SAR based NRT systems in
operation within the Brazilian Amazon; (2) System caveats, as identified in the present
study; (3) Potential usefulness of the system to field enforcement teams.

5.1. Differences among DETER-R and Other Operational NRT Systems

Whereas general NRT systems aim to accurately detect most forest disturbances
occurring in the AOI, with a given rate of misdetections allowed, DETER-R was tailored
to assist field enforcement teams. As such, one fundamental premise of DETER-R is
that it must issue no (or very few) false positives, to avoid costly displacements to non-
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deforested areas, even at the cost of a higher rate of false negatives. Furthermore, the
system was designed with a MMU fixed to 1 ha, since the field intervention teams will only
be triggered to inspect medium to big-sized areas, due to operational and budgetary limits.
These constraints led to a system with very low rate of misdetections, as suggested by the
validation results. Expert-labeled validations evaluated Major disagreements to be 0.6%
of the total detected area, while Minor disagreements, mainly caused by heavily burned
or degraded areas, represent 14.6% of the total detected area. If we assume the Major
disagreement to represent the misdetections of the DETER-R system, we can conclude that
our system has a User’s Accuracy of 99.4%. This rate can be compared with those presented
in [38] (86.5%) over the Peruvian dense forests (GLAD system), 97.6% reported in [14]
by the RADD system in the Congo basin, and 95.0% reported in [17] on its operational,
S1-based system in South-Asia.

Regarding producer’s accuracy, it is a known issue within DETER-R that this low rate
of false positives leads to the omission of real warnings. In the parallel study conducted by
Doblas et al. [39], the authors compared the performance of DETER-R to the previously
cited SAR based NRT detection systems (CESBIO, JJ-FAST, and RADD), as well as the state
of the art optical system GLAD-S2 [40]. This comparison showed that whereas all systems
present User’s Accuracies higher than 94%, only DETER-R achieved values comparable
to GLAD-S2 (100%). Conversely, DETER-R achieved a poor Producer’s Accuracy (around
50%) when compared to GLAD-S2 (85%). It roughly means that, while all the detections
from DETER-R where true positives, half of the real deforestation warnings were omitted.
Nonetheless, the Producer’s Accuracy for DETER-R is higher than the one obtained by JJ-
Fast (23%). Others SAR based systems presented higher values, ranging from 89% (CESBIO)
to 92% (RADD).

The authors [39] also concluded that the methodology behind DETER-R can be adapted
to improve the detection rate, at the price of a slight increase of the rate of false detections.
For instance, they proposed an example of such a process, in which results of the tuned
system are comparable to other SAR NRT detection systems, with User’s Accuracy of
around 98% and Producer’s Accuracy around 90%.

5.2. System Caveats

As presented in Section 4.2, DETER-R warnings are issued with a nominal delay of
18 days and a mean delay of 24 days after the first perturbation, which, even if it is not
optimal to guide rapid field incursions to stop deforestation processes, can allow for a
intervention on cloudy areas not covered by standard optical NRT warning systems. We
expect these delays to improve after the launching of the Sentinel-1C, scheduled for 2023.
It is worth mentioning that the main source of detection delay is the actual need for redun-
dancy while looking for time-series anomalies on a pixel-wise basis. One single anomalous
backscattering value on the time series might be caused by the passage of a dense con-
vection cloud [9] or by a transient, local perturbation of the canopy structure. Being so,
neighbourhood-aware algorithms such as machine learning pattern recognition based on
textural features and convolutional neural network-based deep-learning classification can
be exploited to reduce or even eliminate the need for redundancy. Also, experimental
techniques using ancillary precipitation data to mask storm-related SAR observations has
been developed [41]. Until the date of writing of this article, no NRT system has been able
to apply these kind of techniques on an operational basis, although approaches based on
deep learning algorithms have shown promising results [42–44].

Regarding the results presented in Section 4.3, DETER-R presented 23,237 warnings
evaluated as Minor disagreements, corresponding to 27.2% of the detected polygons and
14.9% of the detected area. As previously mentioned, these disagreements do not preclude
the use of DETER-R for field validation efforts. Furthermore, we would like to highlight the
relatively simple threshold method used to classify the level of impact of the warnings. To
our knowledge, these classes are not easy to automatically separate using C-band SAR data
due to the heterogeneity of the backscattering response to fire, drought or selective-logging
degradation, as shown in [45].
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5.3. DETER-R Data as a Field Enforcement Tool

So far, DETER-R has operated in a scientific capacity only, with the generated warn-
ings not available to the public. Still, this system is supposed to run parallel to the optical
DETER. Therefore, as important as the total amount of issued warnings, are the ones
issued first/only by DETER-R, i.e., the warnings not previously detected by DETER and/or
PRODES systems. In its first year of operation, DETER-R contributed with 105,238.5 ha
of deforestation warnings not detected by the optical DETER in the same period, and
3317.4 ha of relatively old deforestation not previously detected by PRODES. These addi-
tional warnings can be of uttermost importance, particularly in areas that are being severely
affected by the expansion of the deforestation fronts with high cloud cover, such as the
BR-319 [46]. Illegal mining spots, which normally expand during the rainy season, usually
are not readily detected with optical imagery. DETER-R warnings can be of great help in
this case as well.

6. Conclusions

This study presented the DETER-R system early and current routines, as well as the
results generated in its prototype phase and after its first year of operation. The proposed
system, designed to support the optical DETER in issuing forest disturbance warnings
during periods of constant cloud cover in the Brazilian Amazon, generated very few false
positives results (less than 0.5% of the detected polygons as false positives). DETER-R
were able to provide additional areas of deforestation warnings to monitoring teams,
not detected by its optical counterpart DETER in the same period, as well as areas not
previously detected by PRODES, with very little need for human intervention. Our results
also show that the contributions of DETER-R are more expressive during the rainy season.

We also explored the caveats of the system, such as the delay from the first detection
and the issuing of the warning, caused by the need of confirmation of the disturbance,
the source of the observed disagreements, and general caveats when compared to other
NRT systems in operations. These results suggest that the actual parametrization of the
DETER-R system is provoking a high rate of omissions, with approximately half of the
deforested areas not being detected by the system. This kind of configuration impedes,
for example, the use of our detection results as a deforestation accounting system for a
particular area and period. It is important to note that this is a consequence of a design
option on a particular application, and not a system flaw by itself. Ultimately, it is up to the
user of the system to set the detection parameters (namely the minimum mapping unit and
the false alert ratio) most adequate to the studied problem.

These findings, together with the analysis herein presented, highlight the usefulness
of DETER-R within the Brazilian monitoring of Amazon, as well as indicate important
paths for the improvement of DETER-R in the future, such as enlarging the feature space of
the algorithm to add textural or precipitation information, or to explore the possibilities
of deep learning both to increase the system speed, as well to better identify subclasses
of forest disturbance. Furthermore, we believe that DETER-R might be applied on other
tropical regions, constituting an important tool for forest disturbance detection and control.
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