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Abstract
The performance of rocket engines depends strongly on the proper injection and mixing between fuel and oxidizer. The 
injection of liquid propellants may be performed using coaxial shear injectors. The hydrodynamic instabilities formed by 
the coaxial shear injector allow the mixing between the propellants through vorticity created by the shear layer instabilities. 
This work investigates the stability characteristics of axisymmetric coaxial jets composed of hydrogen and oxygen using 
both linear stability theory (LST) and high order simulations (HOS). It complements previous investigations related to single 
chemical component coaxial jets and the large number of research on binary mixing layers. The LST shows that when the 
hydrogen is used in the inner jet the amplification rates of the outer shear layer mode are larger than in the homogeneous 
coaxial jet. For the inner shear layer mode, the binary mixing layer results can not be extrapolated for a coaxial binary jet, 
since the confinement effect in the inner jet plays an important role. Using high order simulations (HOS), the main results 
of the LST were simulated. The vortical structures and the nonlinear effect were not shown in related works once those 
only used LST. The HOS of binary cases shown that not all unstable modes promote the mixing between the species. The 
 H2–O2 cases with different velocity ratios and radii ratios show through mass fraction contours that these cases are the most 
appropriated for the mixing between oxygen and hydrogen.

1 Introduction

The performance of combustion systems in rocket engines 
depends strongly on the proper injection and mixing between 
fuel and oxidizer. The injection of propellants in these sys‑
tems may be performed using shear coaxial injectors that 
define the physical initial conditions for the combustion 
process and are the most important initial conditions for 

ignition and flame stability. The hydrodynamic instabili‑
ties formed by the coaxial shear injector allow the mixing 
between the propellants through vorticity. The species that 
leave the injector create a shear interface which is unstable 
to small disturbances.

An experimental work presented by Schumaker and 
Driscoll [16] on coaxial injectors used in a combustion 
chamber evaluated the overall mixing efficiency. The effi‑
ciency was measured using the stoichiometric mixing length, 
which is the distance over the jet axis where two fluids of 
different species have mixed in a defined concentration. The 
inner jet has a high density and low velocity while the outer 
jet is a low density, high velocity jet. Their experiment con‑
siders different velocity ratios, density ratios and Reynolds 
numbers. The controlling parameter for the stoichiometric 
mixing length is the ratio of inner jet to outer jet momentum 
and increase with the square root of this ratio.

Another similar experiment performed by Schumaker 
and Driscoll [15] was used to investigate the mixing of an 
inner oxygen or air jet surrounded by an external hydrogen 
jet. Again the momentum ratio is the controlling param‑
eter for the stoichiometric mixing length, and the effect of 
heat release due to combustion is accounted for through the 
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definition of an effective momentum ratio. This two experi‑
mental works show the relevance of density gradient on the 
proper mixing between reactants.

Talamelli and Gavarini [17] described the instability char‑
acteristics of incompressible coaxial jets using local inviscid 
liner stability analysis. That work described the main geo‑
metrical parameters that affect the stability characteristics of 
coaxial jets. However other works such as those performed 
by Crow and Champagne [4], Michalke [10], and Monkewitz 
and SOHN [11] had identified the main parameters involved 
in a single jet stability that are also present in coaxial jets, 
such as the Mach number, temperature ratio, velocity ratio, 
viscous effects and the transition of convective instability to 
absolute instability. Michalke [10] also described the charac‑
teristics of the acoustic modes present in axisymmetric jets 
at high Mach number.

An inviscid and compressible linear stability analysis of 
coaxial jets with continuous velocity and temperature pro‑
file was performed by Perrault‑Joncas and Maslowe [13]. 
They focused in plane and coaxial jet flows with velocities 
and temperatures similar to the exhaust of aircraft turbofan 
engines. This study investigated several factors that influ‑
ence the stability of coaxial jets such as compressibility, 
density, diameter and velocity ratios between the primary 
and the secondary streams. They found that both the veloc‑
ity ratio and radii ratio control separately the inner and outer 
instability modes. These modes are present due to the dif‑
ferent shear layers formed between the inner and outer jets 
and between the outer jet and the ambient. In a nonlinear 
regime it is important to consider the interaction between 
both modes due to the large range of unstable frequencies. 
For the axisymmetric configuration the most relevant insta‑
bility has zero azimuthal wavenumber. The velocity ratio has 
a greater effect on the external mode while the diameter ratio 
affects mostly the inner mode. Results considering the inner 
to outer momentum ratio studied in previous investigations 
were not reported.

Gloor et al. [6] published a study on the stability and 
acoustic characteristics of compressible viscous coaxial 
jets. The study investigated other parameters that influ‑
ence the development of hydrodynamic instabilities such 
as the Reynolds number, Mach number and momentum 
thickness, complementing the work presented by Perrault‑
Joncas and Maslowe [13]. They highlighted the importance 
of the acoustic modes, which are relevant for the study of 
the jet noise at high subsonic Mach numbers. That study 
also discusses the possible iteration mechanisms between 
the Kelvin‑Helmholtz instability and the acoustic modes.

The investigation performed by Balestra et al. [1] ana‑
lyzed the stability characteristics for coaxial jets using spa‑
tial‑temporal linear analysis. That work explores the influ‑
ence of the temperature and the velocity ratio to describe the 
process of transition between convective to global instability.

Coaxial jets result in the development of two shear layers, 
one between the inner and outer jets and another between 
the outer jet and the ambient as shown in Fig. 1. Besides the 
effect of velocity, radii and momentum ratios, the effects of 
density ratio due to species concentration are also relevant, 
as discussed above [15, 16]. The density ratio is also relevant 
in simple jets and mixing layers with a single shear layer, 
which has been studied more broadly.

Binary shear layers like mixing layers were studied by 
Kozusko et al. [7], due to the need to interpret experimental 
results. It was shown that the species that form the mix‑
ing layer have a significant effect on growth rates and that 
density ratio can be more significant than compressibility. 
Kozusko et al. [7] qualified analytically the effects of density 
ratio in the stability of a binary mixing layer and compared 
the results with a single gas homogeneous mixing layer. The 
results showed that the stability characteristics such as the 
neutral modes and the unstable modes are altered by the 
composition of the mixing layer. The investigation conclude 
that when the heavier gas is on the slowest stream the growth 
rates are greater and the opposite when the heavier gas in 
the fastest stream.

A temporal linear stability analysis in a compressible 
binary shear layer, as well as direct numerical simulations 
was performed by Fedioun and Lardjane [5]. In that inves‑
tigation density radios from 1 to 32, associated with differ‑
ent species at different temperatures, were evaluated at high 
velocities, with convective Mach ( Mc ) up to 2. The extreme 
cases evaluated were oxygen/nitrogen  O2–N2 mixing layers 
and oxygen/hydrogen  O2–H2 mixing layers for Mc > 0.6 , 
with nearly the same maximum amplification factor but dif‑
ferent most amplified wavelengths and phase velocity.

Salemi and Mendonca [14] used linear hydrodynamic 
stability theory to study binary mixing layers in compress‑
ible flow, where the base flow was given by the similarity 
solution of the boundary layer equations. They studied the 

Fig. 1  Mixing process between oxidizer and fuel in a shear coaxial 
injector produced by the Kelvin–Helmholtz instability
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effect of compressibility and density ratio on the mixing 
layer stability.

Using linear stability theory and also direct numerical 
simulations Manco et al. [9] studied the stability of binary 
mixing layers modified by mild jet and wake components. 
The base flow was computed with a boundary layer similar‑
ity solution code with additional equations for conservation 
and diffusion of mass for different distribution of oxygen 
and hydrogen without chemical reaction. The results show 
that the presence of a wake or jet component results in more 
unstable mixing layers depending on the distribution of  H2 
and  O2 in the shear layer. The development of vortical struc‑
tures due to the interaction of mixing layers, jets and wakes 
are also considered in that study and show a more complex 
structure due to nonlinear effects.

Vargas and Mendonca [19] extended previous works 
on the stability of binary mixing layers by considering the 
stability of compressible planar jets. Both simple jets and 
coaxial jets were considered for density ratios from 1/8 to 8. 
The effect of density gradients on the growth rates, unstable 
frequency range and disturbance phase speed were inves‑
tigated. For the high density inner jet and choices of radii 
ratio and shear layer thickness configurations, the unstable 
growth rates can be up to four times higher than when the 
low density fluid is in the inner jet, but the range of unstable 
frequencies is much lower. The effect of density gradients on 
phase speed was also reported, showing that the disturbances 
in the presence of density gradients are more dispersive.

From these previous investigations, it is clear that the 
presence of different species in the flow changes the sta‑
bility characteristics of the shear layer. For mixing layers, 
larger growth rates are expected when the heavier species are 
locate in the slower stream. The present paper investigates 
stability characteristics of axisymmetric coaxial jets formed 
by two different species with high density ratio, oxygen  (O2) 
and hydrogen  (H2), using both linear stability theory and 
high order simulation, complementing the study of Perrault‑
Joncas and Maslowe[13], Gloor et al. [6] and Vargas and 
Mendonca [19].

Compared to the works of Perrault‑Joncas and Maslowe 
[13] and Gloor et al. [6], the present study of coaxial jets 
considers the following different aspects, (i) the base flow 
is now composed of two different chemical species in the 
inner and outer jets and (ii) a direct numerical simulation is 
used to view the nonlinear vortical structures developed by 
the instabilities. The following questions are addressed: how 
a high density ratio between the inner and outer jets affects 
the stability characteristics? What is the effect radii ratio on 
the stability characteristics? Is compressibility an important 
parameter to be considered in a coaxial jet configuration 
when species with hight sound speed such as hydrogen are 
considered? How the vortical structures affect the mixing 
between the species in a coaxial jet configuration?

This paper is organized as follow, first the derivation 
of the linear stability equation and the solution methodol‑
ogy are presented. The formulation and numerical meth‑
odology for the high order simulations are presented next, 
followed by the definition of the based flow configuration. 
Then results are presented for the linear stability analysis 
regarding the effect of radii and velocity ratios. High order 
simulation results are presented next and the resulting flow 
topologies are discussed. Finally, the main findings are sum‑
marized in the conclusion.

2  Methodology

The stability analysis of binary coaxial jets was performed 
using the Euler equations in cylindrical coordinates. More 
specifically, the Euler equations for compressible, thermally 
perfect gas with no heat addition and without volume forces. 
In non dimensional form they are expressed by

D�∕Dt = ��∕�t + � ⋅ ∇� represents the total derivative of 
a dependent variable � , � is the density, u⃗ = (u, v,w) the 
velocity vector, Yi the mass fraction of specie i, p represent 
the pressure and � the ratio between the specific heats cp and 
cv . The definition of the ∇ operator in cylindrical coordinates 
is presented in the “Appendix A”.

This non‑dimensional form takes the oxygen jet proper‑
ties as reference values, �0 , �0 and the reference speed of 
sound a0 , which is used as the reference velocity and to 
defined the non dimensional pressure p0 = �0a

2
0
 . The inde‑

pendent time, radial coordinate and streamwise coordinate 
dimensionless variables are defined as t ≡ t∕tc , r ≡ r∕L0 , 
z ≡ z∕L0 ; tc is characteristic time taken from the character‑
istic velocity and the reference length L0 , which is the radius 
of the inner jet.

The non‑dimensional equations of state for the gas mix‑
ture and for each species is

respectively, where p =
∑

pi , using the Dalton’s law of par‑
tial pressures. R and T are the non‑dimensional gas constant 

(1)
D�

Dt
+ �∇ ⋅ � = 0,

(2)�
DYi

Dt
= 0,

(3)�
D�

Dt
= −∇p,

(4)
Dp

Dt
+ (�0�) p∇ ⋅ � = 0.

(5)p�0 = �RT , pi�0 = �iRiT ,
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and temperature, non‑dimensionalized by the oxygen refer‑
ence properties, R0 and T0 , respectively.

2.1  Linear stability analysis

In order to derive the linear stability equations the instanta‑
neous flow is decomposed in a base flow and a perturbation 
component.

This decomposition is substituted in the systems of Eqs. 2–5. 
� represents the variables present in the Euler equations 
and � represents a small parameter that defines the order of 
magnitude of the perturbations �� ′ , which are one order of 
magnitude smaller than the base flow variables �̄�.

The base flow for the coaxial jet is considered parallel, 
i.e., the properties do not depend of the axial z and azimuthal 
� directions,

where the component of the velocity in the axial direction 
w̄ is a function only of the radial coordinate. The base flow 
pressure is constant and to simplify the equations it is cho‑
sen as p̄ = 1∕𝛾0 . Then, the non‑dimensional state equation 
results

With the parallel assumption for the base flow, neglecting 
the high order terms and assuming that the proposed base 
flow satisfies the governing equations, a linear system of 
equations for the perturbation variables can be combined in 
a single equation for the pressure perturbation

The definition of the Laplacian ∇2 operator in cylindrical 
coordinates can be found in the “Appendix A”.

In the above equations, using the parallel base flow veloc‑
ity assumption, the definition of the total derivative is

The pressure perturbation can be approximated using nor‑
mal modes ansatz because of the linearity and the single 
dependence of the coefficient on the radial direction r in 
the above equation. Then, to transform the partial pressure 
disturbances equation in an ordinary differential equation, a 
wave solution is proposed

(6)�(t, r, 𝜃, z) = �̄(t, r, 𝜃, z) + 𝜖��(t, r, 𝜃, z),

(7)�̄ ≡ [0, 0, w̄(r)],

(8)�̄�R̄T̄ = 1.

(9)

D̄

D̄t

[
∇2 −

�̄�

𝛾0𝛾 p̄

(
D̄

D̄t

)2
]
p�

−

(
1

�̄�

d�̄�

dr

D̄

D̄t
+ 2

dw̄

dr

𝜕

𝜕z

)
𝜕p�

𝜕r
= 0.

(10)
D̄

D̄t
≡

𝜕

𝜕t
+ w̄

𝜕

𝜕z
and

D�

D�t
≡ �� ⋅ ∇( ) ≡ u�

𝜕

𝜕r
.

where “*” represent the complex conjugate and p̂ represent 
the amplitude and phase of the perturbations p′ . The com‑
plex amplitude p̂ depends exclusively of the radial coor‑
dinate r. The disturbance frequency is represented by � , 
k is the wavenumbers in the axial direction z and n is the 
wavenumber in the azimuthal direction �.

Using this ansatz in the pressure disturbance Eq. (9) and 
rearranging, results

This equation is know as the compressible Rayleigh equa‑
tion where Ω = (𝜔 − kw̄) and ā = 𝛾∕�̄� is the nondimensional 
local speed of sound.

2.1.1  Spectral solution method

The compressible Rayleigh equation represents a general‑
ized eigenvalue problem for the wave number k in a spatial 
stability analysis

where � and � are matrices, �̂ is the generalized eigenvector 
and k is the generalized eigenvalue of the Rayleigh equation 
to be found. The definitions of the matrices � and � , the 
eigenvector �̂ and the complete generalize eigenvalue prob‑
lem are presented in the “Appendix B”. To solve this gener‑
alized eigenvalue problem the spectral collocation method 
is used along with the QZ algorithm.

2.2  High order simulation

A High order numerical code was used to solve the non 
dimensional Navier‑Stokes Eqs. 2–4 for binary coaxial jets 
using low dissipation, low dispersion, high order numerical 
methods, to represent appropriately the waves characteris‑
tics. The spatial discretization uses a 4th order dispersion 
relation preserving finite difference (DRP) proposed by Tam 
and Webb [18] such that the derivative of the function f in 
the x direction is approximate by

This is a central scheme with 7 points and grid spacing Δx , 
which coefficients aj were calculated in order to decrease the 
dispersive error of the central difference traditional scheme. 
The coefficients were optimized for a wave number band 

(11)p�(r, 𝜃, z, t) = p̂(r)ei(kz+n𝜃−𝜔t) + p̂∗(r)ei(k
∗z+n∗𝜃−𝜔∗t),

(12)

d2p̂

dr2
+

(
1

r
−

1

�̄�

d�̄�

dr
+

2k

Ω

dw̄

dr

)
dp̂

dr

+

[
Ω2

ā2
−

(
n2

r2
+ k2

)]
p̂+ = 0.

(13)��̂ = k��̂,

(14)
�f

�x
=

1

Δx

3∑
j=−3

ajf (x + jΔx).
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between 0 and �∕2 by Tam and Webb [18] and are defined 
as:

For the temporal advancement a 6 steps, low storage Runge 
Kutta specialized in non‑linear operator implemented by 
Berland et al. [2] was used. The algorithm of this method 
is defined

where �u∕�t = F(u, t) , Δt is the time step and s is the number 
of steps. u0 = un , un+1 = us , �0 = 0 and ti = (n + ci)Δt . �i 
and �i are the coefficients of the algorithm defined in Berland 
et al. [2].

Non‑reflecting boundary conditions (NRBC) were 
implemented to avoid reflections of outgoing waves at the 
boundaries of the computational domain. More specifi‑
cally a buffer zone was used. The buffer zone is based on 
numerical damping and requires to increase the domain, 
including zones where the numerical damping will be 
applied. Within the buffer zone the amplitude of outgoing 
waves is damped to a value determined by a damping func‑
tion � . Defining � n

= (�, u,w, p,Yi) as the solution vector at 
each time step, the buffer zone can be applied as:

Where �n+1 is the solution vector for each time step after 
the application of the damping. The �target used in (17) sets 
the required value � on the buffer zone, which is defined 
depending on the problem. The NRBC shows the most effi‑
cient results for hydrodynamic stability problems [8]. A 4th 
order, 13 points low dispersive and low dissipative explicit 
selective filter was implemented, following the work of 
Bogey and Bailly [3], to avoid the grid‑to‑grid oscillations 
caused by the use of central finite difference schemes. This 
filter removes the short waves without affecting the instabil‑
ity long waves, that in this case are the Kelvin–Helmholtz.

2.3  The mean flow profiles

The mixing process in a coaxial injector is hastened by the 
hydrodynamic instabilities formed by two shear layers. The 
first shear layer is formed between the inner and outer jet and 
the respective hydrodynamic mode is known as Mode I. The 
second shear layer is formed by the outer jet and the ambient 
and its hydrodynamic mode is known as Mode II. The shear 
layers and the instability modes are shown in Fig. 1.

(15)

a0 = 0, a1 = a−1 = 0.79926643,

a2 = a−2 = −0.18941314, a3 = a−3 = −0.02651995.

(16)
�i = �i�i−1 + ΔtF(ui−1, ti)

ui = ui−1 + �i�i

}
for i = 1...s

(17)� n+1 = �
n+1

− �(�
n+1

− �target ).

The base flow proposed by Perrault‑Joncas and Maslowe 
[13] was used both for the linear stability analysis and for the 
high order numerical simulations. The velocity and density 
profiles for the base flow are defined by canonical profiles. 
The axial velocity is given by the hyperbolic tangent profile

where

and, h represents the velocity ratio between the primary 
stream, defined by the value of the velocity at radius R1 , and 
the velocity of the secondary stream, defined by the veloc‑
ity at R2 of the coaxial jet. M represents the Mach number 
of the inner jet in relation to reference properties where the 
oxygen is located. In the present investigation M = 0.6558 
was selected because as shown by Joncas and Maslowe, 
above M > 0.8281 radiating modes exist which have dif‑
ferent behavior than the well known instability mode, the 
Kelvin–Helmholtz mode. For the other parameters, b1 and 
b2 are related to the momentu �1 and �2 of the shear layer for 
the two streams, and are defined by the relation bn = Rn∕4�n , 
where �n is the momentum thickness. Another important 
parameter that defined the base flow configuration is the 
radii relation Γ = R2∕R1.

As reported by Perrault‑Joncas and Maslowe [13], the 
geometric parameter Γ and the velocity ratio h control the 
two instability modes, Mode I and Mode II. Density gradi‑
ents are due only to the choice of species, since the flow is 
considered isothermal. A typical base flow density distri‑
bution is presented in Fig. 2. In this base flow h = 0.7 and 
Γ = 2.0.

The reference properties, shown in the Fig. 2, are chosen 
always with respect to the oxygen, regardless of whether it is 
on the inner or outer jet. This corresponds to keep the Con‑
vective Mach number Mc , discussed in Sect. 2.3.1, constant.

The first species that appears in the nomenclature in the 
label indicates the species used in the inner jet and the sec‑
ond represent the species used both in the outer jet and the 
external ambient. The homogeneous case, without density 
gradients, formed by a single species in both the inner and 
outer jet, either oxygen or hydrogen, has �̄� = 1.

The mass fraction profiles is defined by

and

(18)w̄ = (1 − h)w1 + hw2,

(19)wn =
1

2

{
1 + tanh

[
bn

(
Rn

r
−

r

Rn

)]}
M n = 1, 2,

(20)Ȳ1 =
1

2

{
1 + tanh

[
b1

(
R1

r
−

r

R1

)]}

(21)Ȳ2 = 1 − Ȳ1.



 Journal of the Brazilian Society of Mechanical Sciences and Engineering          (2022) 44:403 

1 3

  403  Page 6 of 17

b1 , related to the momentum thicknesses, and h are the same 
used in the velocity profile.

2.3.1  Convective Mach number

Kozusko et al. [7] defined the convective Mach number Mc 
as the Mach number that defines the subsonic and sonic 
characteristics of the binary mixing layer. It is given by 
Mc = M∕M∗ , where M is the Mach number and M∗ is the 
Mach number at which the sound speeds of the two streams 
of the mixing layer are equal. For the two shear layers that 
define the different instability modes of the coaxial jet, Mode 
I and Mode II, two convective Mach numbers can be define. 
For the shear layer between the inner and outer jets

and for the shear layer between the outer jet and the ambient,

where M = wi∕ai is the Mach number with respect to the 
species on the inner jet stream, wi and ai are the jet velocity 
and the sound speed for the inner jet, wo and ao are the jet 
velocity and the sound speed for the outer jet, and wa and aa 
are the ambient stream velocity and the sound speed. The 
Mach number at which the sonic speeds of the two streams 
are equal for the different modes is M∗

1
 and M∗

2
 . The veloc‑

ity ratio between the different jet streams was defined as 
h = wo∕wi and h2 = wa∕wi , inner jet to outer jet and outer 
jet to ambient, respectively. If the ambient is stationary 
h2 = 0 , as will be assumed for the linear stability analyses. 
In the HOS simulation the ambient velocity is not zero and 
h2 = 0.1 , in order to avoid numerical problems in the solu‑
tion of the compressible Euler equations.

(22)Mc1 =
M

M∗
1

=
wi − wo

ai + ao

(23)Mc2 =
M

M∗
2

=
wi − wa

ai + aa

It is important to highlight that in order to keep the con‑
vective Mach number constant with different species, the ref‑
erence variables are taken with respect to the stream where 
the oxygen is located. The convective Mach number for the 
evaluated cases is Mc1 ≈ 0.04 and M = 0.6558 with respect 
to the oxygen.

3  Results

In this section the results from linear stability analysis and 
high order numerical simulations are presented for binary 
jets formed by H2 and O2 streams and evaluated for different 
base flow radii ratios Γ and velocity ratios h. Only axisym‑
metric modes ( n = 0 ) are considered.

3.1  Linear stability analysis of binary coaxial jets

Figure 3a presents the growth rates for compressible and 
incompressible coaxial jets using different species in each 
stream and also using a homogeneous configuration with‑
out density or temperature gradients in the base flow. The 
incompressible configuration can be identified by the use of 
a thick line but the same color and line type of the compress‑
ible case. Differently than what happens with the change in 
Γ and h, for the homogeneous coaxial jet where compress‑
ibility has little effect on Mode I [13], the change in the 
density profile induced by the use of different species in 
the inner and outer jets, changes both modes I and II. This 
can be observed both in the incompressible as well as in the 
compressible cases.

As can be seen in Fig. 3a, the growth rates of the second 
mode are higher when the oxygen is positioned in the outer 
jet. However, in both H 2–O2 and O 2–H2 cases the the growth 
rates are larger than the compressible homogeneous case. 
Furthermore, when the incompressible approximation is 

(a) Base flow Density. (b) Base flow Mass Fraction.

Fig. 2  Base flow density and mass fraction profiles for different binary coaxial jets non‑dimensionalized with respect to the oxygen jet at the 
centerlinet temperature T(r = 0) , Γ = 2 and h = 0.7
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used to compare the results, the largest amplification rate is 
given by the H 2–O2 configuration, which is consistent with 
Kozusko et al. [7] results that concluded that when the heav‑
ier species is in the lower velocity stream the amplification 
rates are larger. This results show that the compressibility 
effects of hydrogen, which has a speed of sound almost 4 
times the oxygen speed of sound, is not so pronounced in 
reducing the amplification of the jet, which is clear in the 
value of the convective Mach number Mc1 ≈ 0.04.

This is most evident in the  O2–H2 configuration, where 
the compressibility does not change visually the growth 
rates. In this case, the outside ambient where the coaxial jet 
is ejected is composed by hydrogen too, making the speed 
of sound larger than that of the inner jet with oxygen. This 
implies that it can be considered as an incompressible case.

Considering the above discussion on the effect of den‑
sity gradients in the external shear layer and corresponding 
compressibility effects associated with the speed of sound in 
the  O2 and  H2 streams, it is necessary to consider also that 
the second instability mode (Mode II), originated by the 
instability of the outer shear layer, would be less affected 
by the use of the different species. It is in the inner shear 
layer where the gradient of density is actually placed and 
where the binary effects over the growth rate must be more 
evident (Mode I). However, when Hydrogen is used as the 
inner jet, Mode II shows traces of absolute instability for 
low wave numbers, as shown in Fig. 3a. This behavior was 
also reported by Perrault‑Joncas and Maslowe [13] for the 
stability of plane jets.

It is important to note in Fig. 3a that amplification rates 
of the first mode when two species are considered are much 
smaller than the amplification rates of the homogeneous 
case, approximately one third lower. This contrasts with a 
behavior observed in the mixing layer, where the amplifica‑
tion rates when the heavier gas is located in the slow stream 
are the largest [7].

The phase velocities of both modes are presented in 
Fig. 3b. When the oxygen is located in the inner jet, the 
phase velocity of mode I is higher and the perturbation 
travels at the speed close to the speed of the fast stream. 
The opposite can be observed when the hydrogen is located 
in the inner jet, where the phase velocities reduce to about 
half the fast stream velocity. Another important comment 
is about the dispersive behavior of Mode II, which is much 
more dispersive than the Mode I. Again, for the phase veloc‑
ity also, compressibility effects do not play a important role 
at Mach number of M = 0.6558 . The first mode for  H2–O2 
and  O2–H2 configurations, with is almost non‑dispersive and 
have smaller growth rates, is almost a neutral mode. For 
Mode II the configuration  H2–O2 has a lower phase velocity 
than the homogeneous and  O2–H2 configurations, which are 
very similar.

3.2  Effects of radii ratio 0.

By changing the radii ratio, the mass flow rate in the outer jet 
can be increased in relation to the mass flow in the inner jet 
changing the momentum �̄�w̄ of the second jet stream, Fig. 4.

The stability characteristics of these different Γ configura‑
tions can be seen in Fig. 5 for the  H2–O2 arrangement. The 
second mode is strongly affected by the choice of Γ , having 
the largest amplification rate with Γ = 2 . It seems that traces 
of absolute instability appears for the lowest Γ ratios and 
practically are not found in Γ = 4 . Mode I also changes with 
Γ , with a reduction in the growth rate with respect to the 
homogeneous case. The phase velocities for both modes are 
little affected by Γ . The phase velocities for the binary cases 
are smaller than the phase velocities of the homogeneous 
case. In Fig. 5b, Mode I is almost non‑dispersive.

Similar results are observed for the  O2–H2 arrangement as 
shown in Fig. 6, with a more pronounced effect of Γ on the 

(a) Growth rates (b) Phase velocity

Fig. 3  Effect of species configuration and compressibility (thin lines) on the coaxial jet growth rates −ki and phase velocity Cp with Γ = 2 and 
h = 0.7
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phase velocity of Mode II, Fig. 6b. In this case no signs of 
absolute instability at low wavenumbers are noticed.

Is relevant to note that there is an important behavior 
when Γ = 1.3 where only one unstable mode was found. 

When the set up of the coaxial jet is  H2–O2 this mode 
behaves like the second instability mode (with traces of 
absolute instability in the low wave number range, and 
growth rates around 0.1‑‑0.3, Fig. 5a). However when the 
configuration is  O2–H2, Fig. 6a, this single mode behaves 
like the first instability mode and its growth rates are almost 
zero. This is consistent with Kozusko et al. [7] results when 
the heavier species is in the faster velocity stream the ampli‑
fication rates are smaller. In the homogeneous case this 
mode behaves like Mode II [13]

A direct comparison between the different arrangements 
with respect to the effect of Γ is presented in Fig. 7 and 
allows a conclusion about the arrangement that promotes 
the best mixing between oxygen and hydrogen. In Fig. 7a, 
it is evident that the largest amplification rates are reached 
when the oxygen is in the slower jet stream, in the outer jet, 
which is consistent with results founded in a mixing layer by 
Kozusko et al. [7]. However, in the first instability mode the 
homogeneous case shows growth rates as large as those of 

Fig. 4  Mass fraction Ȳ
1
 and Ȳ

2
 base flow profiles together with base 

flow axial velocity profiles obtained using different Γ ratios

(a) Growth rates ki (b) Phase velocity Cp = ω/kr

Fig. 5  Effect of Γ ratio on instability characteristics of the coaxial binary jet configuration  H2–O2 with h = 0.7

(a) Growth rates ki (b) Phase velocity Cp = ω/kr

Fig. 6  Effect of Γ ratio on instability characteristics of the coaxial binary jet configuration  O2–H2 with h = 0.7
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 O2–H2 case. This behavior can be explained by the confine‑
ment of species in the inner jet, in mixing layers both stream 
are unbounded. For the second mode, Fig. 7b, this limitation 
is less evident because it is formed by almost a homogene‑
ous density profile, which is also unbounded on one side. 
Nonetheless the influence of the species in the growth rates 
in this mode are evident, achieving the largest amplification 
rates with Γ = 2 and apparently with an onset of absolute 
instability at small wavenumbers.

In the next section, the effects of velocity ratio on the 
stability of the binary coaxial jet will be investigated.

3.3  Effects of velocity ratio h

As was done by Perrault‑Joncas and Maslowe [13] for the 
homogeneous case with constant density profile, the effect 
of velocity ratio h are evaluated for binary configurations 
with oxygen and hydrogen. Figure 8a shows the variation 
of growth rate with streamwise wavenumbers for different 

h ratios in a  H2–O2 configuration. The results are compared 
with the most unstable case of a homogeneous coaxial jet, 
�̄� = 1 . Differently than what happens in the homogeneous 
cases, the change in h changes notably the growth rates and 
the behavior of the second instability mode. Increasing h the 
amplification rates decrease. Traces of absolute instability 
are present at low frequencies.

Regarding Mode I, as was observed with the radii rela‑
tion, the biggest amplification rates are reached with the 
homogeneous case. The h relation modifies significantly 
the first mode, but the result for h = 0.7 corresponds to the 
least amplified velocity ratio. The phase velocity is shown 
in Fig. 8b. The phase velocity decreases with decreasing 
h. This is true for both modes. For h = 0.5 , which was the 
lowest phase velocity reached for Mode I, the magnitude 
and variation is similar to the results for the homogeneous 
coaxial jet. Again Mode II is more dispersive in relation to 
the almost non‑dispersive behavior of Mode I when binary 
coaxial jet are considered.

(a) First Instability mode, Mode I (b) Second Instability mode, Mode II

Fig. 7  The most relevant cases evaluated to illustrate the effect of Γ ratio on of the growth rate and phase velocity of coaxial binary jets with 
h = 0.7

(a) Growth rates ki. (b) Phase velocity Cp = ω/kr.

Fig. 8  Effect of h ratio on instability characteristics of the coaxial binary jet configuration  H2–O2 with Γ = 2 . �̄� = 1 is the most unstable homoge‑
neous case for Mode I
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The effect of the confinement, induced by the coaxial con‑
figuration, can be diminished using Γ = 4 with h = 0.5 . The 
increment of the growth rates is evident, Fig. 9a. The first 
instability mode is larger than with h = 0.7 , which has the 
largest amplification rates for Mode I in the present investi‑
gation. The Γ changes the second mode, as shown in Fig. 9b, 
where the amplification rate is reduce considerably.

Changing to the  O2–H2 configuration, Fig. 10a, the sta‑
bility characteristics of Mode II are not very sensitive to h 
but the phase velocity increases (Fig. 10b). The amplifica‑
tion rates of Mode I are reduced with increasing h and are 
smaller with respect to the homogeneous and  H2–O2 cases, 
but the phase velocity is relatively insensitive and the dis‑
turbances are non‑dispersive.

To conclude the study of the effects of h ratio, the most 
unstable case of the  H2–O2 and homogeneous case, both 
with h = 0.5 and Γ = 2 , were also compared with the  O2–H2 
results in Fig. 10a. This figure shows that the growth rates 

are always less pronounced in relation to the homogeneous 
case and with  H2–O2 configuration. There was no need to 
compare with other Γ because in this configuration the only 
effect is felt in the second instability mode, which is less 
unstable. Then, when the oxygen is placed in the faster jet 
stream  (O2–H2) the first mode is less unstable with the larger 
h, as happened in the other cases, but with the difference 
that the amplification rate of this configuration are always 
smaller.

3.4  High order simulation of Binary Coaxial Jets

In order to shown the binary configuration effects on the 
vortical structures of unstable coaxial jets the most relevant 
cases founded with the linear stability theory will be evalu‑
ated with high order simulations.

To verify the HOS of Euler equations the linear stability 
theory employed in the previous section was used. To this 

(a) Mode I, Growth rates ki. (b) Mode II, Growth rates ki

Fig. 9  Effect of h ratio on (a) Mode I and (b) Mode II. �̄� = 1 , h = 0.5 is the most unstable homogeneous case for Mode I and Γ = 4 with h = 0.5 
has the most unstable binary Mode I

(a) Growth rates ki. (b) Phase velocity Cp = ω/kr.

Fig. 10  Effect of h on instability characteristics of the coaxial binary jet configuration  O2–H2 with Γ = 2 . �̄� = 1 is the most unstable homogene‑
ous case for Mode I, and  H2–O2 case with h = 0.5 is the most unstable mode
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end two special cases of coaxial jet where only one mode 
is presented, Γ = 1.3 for the homogeneous and Γ = 2 for 
 O2–H2 cases were used. These test cases that have a single 
instability mode were chosen because to excite separately 
the different modes of the coaxial jet using a acoustic pulse 
is not possible.

In order to perturb the flow, an acoustic pulse given 
by Eq.  is applied as a source term in the pressure energy 
equation

where A0 is the amplitudes and �b is the thicknesses for 
the acoustic pulse. The positions xb and yb are the points 
of application of the different pulses. The frequency of the 
disturbance is � . All pulses used in this work have unitary 
amplitude, a thickness of �b = 0.03 and were located at the 
origin of the domain ( z = 0 ) at the inner ( r = 1.0 ) and outer 
( r = 2.0 ) shear layer positions.

The growth rates calculate by the HOS and the LST are 
presented in Fig. 11 for the homogeneous case, Γ = 1.3 . 
In this figure several computational meshes with different 
grid spacing in both radial ( Δz ) and axial coordinates ( Δz ) 
were used to evaluated the agreement between the LST and 
the HOS in hight frequencies. It is clear that with a more 
refined mesh, hight frequency waves are better resolved and 
the comparison between the two approaches are better.

The amplification rates were calculated by HOS using an 
instantaneous approximation, where the base flow is sub‑
tracted from the solution to find the perturbation variables. 
Once the perturbation variables are found, their perturba‑
tion kinetic energy ek = u�2 + w�2 can be calculated assum‑
ing exponential growth, similar to the LST. This linear 
growth of the perturbation can be achieved in HOS when 

s(r, z, t)

= −A0sin(�t)exp

[
−ln(2)

(
(x + xb)

2 + (y + yb)
2

�b

)]
,

the non‑linearities are sufficiently small, then the vortices 
are not completely developed.

The main parameters of the numerical method used in the 
high order simulation described in Sect. 2.2 are presented 
in Table 1.

3.4.1  HOS Homogeneous Coaxial Jet

As a first step in the HOS study, several simulations using a 
homogeneous base flow were carried out to show the vorti‑
cal structures that are produce in a coaxial jet configuration 
when Γ and h are varied. This vortical structures were not 
shown by Perrault‑Joncas and Maslowe [13], who used only 
LST to study linear behavior.

The first homogeneous case simulated is shown in 
Fig. 12, with Γ = 2 and h = 0.7 . The most unstable fre‑
quencies of this configuration are � = 0.5 and � = 1.35 for 
Mode I and Mode II, respectively. The variable plotted in 
Fig. 12 is the density contour. In this figure the presence of 
the two unstable modes is clear, the inner and outer modes. 
The most unstable mode is the second mode, presenting the 
well known Kelvin–Helmholtz (K–H) vortices. Contrary 
to the strong development K–H of the second mode, the 
first mode, that has small amplification rate, needs a larger 
domain to develop.

As presented by Perrault‑Joncas and Maslowe [13] the 
change of instability characteristics with Γ and h, which con‑
trol the the first and second unstable modes, was verified 
with the density contour presented in Figs. 13 and 14. The 
radii ratio Γ = 1.3 produces only one unstable mode and 
the behavior of the coaxial jet is like a single jet, Fig. 13a. 
This single mode develops at the inner shear layer and can 

Fig. 11  Growth rates ki , for a coaxial binary jet calculate with 
HOS ans LST as a function of wave frequency � , with h = 0.7 and 
M∞ = 0.1 for different grid spacing in both radial ( Δz ) and axial coor‑
dinates ( Δz )

Table 1  Main parameters of the numerical schemes used in HOS

Parameters high order simulation

Domain size (r) and (z) (0–5) and (− 3.5–24.5)
Filter parameter � 0.1, applying each time step.
Size NRBC buffer zone Dr = Dz 80 mesh points
Parameters NRBC buffer zone C

1
= 0.01 , C

2
= 20 , C

3
= 50

MPI process 24 × 12
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Fig. 12  Density contour of an homogeneous coaxial jet, showing the 
two unstable modes with Γ = 2 and h = 0.7
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be classified as a Mode I. Although the second mode is not 
present, this single mode can be very useful to mix the two 
species.

Increasing the radii ratio Γ , Mode I seems to become 
more stable, whereas mode II starts to grow. The develop‑
ment of the unstable modes is slow, resulting in more struc‑
tured vortices further downstream, close to the end of the 
computational domain. This is evident in the density con‑
tours with Γ = 4.0 shown in Fig. 13b.

Regarding the dependence on the velocity ratio, the 
growth rates of the inner mode are expected to be larger 
with the smallest ratio, h = 0.5 . While for the largest velocity 
ratio, h = 0.9 , the growth rates of Mode I are smaller. This 
behavior is presented in Fig. 14. The second mode remains 
unaltered when h is changed but the phase velocity changes 
considerably as was shown in the linear stability Sect. 3.1, 
being slower with h = 0.5 and faster with h = 0.9 . Figure 14 
shows that the vortical structures do not develop further 
downstream for h = 0.5 . This is due to the slower phase 
velocity of this structures, whereas for h = 0.9 , Fig. 14, the 
vortices are more intense.

This apparent higher intensity of the vortical structures 
of the second mode with h = 0.9 induces to think that this 
mode is more unstable with relation to h = 0.5 and h = 0.7 
cases, which is contradictory to the LST results, where all 
cases have the same growth rates. However, this is due to 
the simulated chosen time, t=70, which is not sufficient to 

allow the complete development of this mode due to its low 
phase velocity [13]. This is also shown in the next figure.

A special case is found with h = 0.5 that results in a large 
growth rate of the inner mode, without modification of the 
outer mode with respect of h = 0.7 and h = 0.9 cases, a 
possible interference between these two modes may result. 
Firstly, the same case with different frequencies, the maxi‑
mum and the minimum growth of Mode I were evaluated 
and shown in Fig. 15. The intention is to see if the first 
mode interferes nonlinearly in the development of the sec‑
ond mode. The interference is clear, showing that the second 
mode is modified, flattening the vortical structures.

It is important to comment that, Fig. 15 correspond to 
t = 100 , different from t = 70 used in the previous figures. 
This is necessary for the complete development of the vorti‑
cal structures due to the low phase velocity of the outer K–H 
structures reached with h = 0.5 . A longer simulation time, 
t = 160 , shows that when the non‑linear interaction between 
the inner and outer mode is observed the vortical structures 
of the second mode leads to a breakdown, Fig. 15.

3.4.2  HOS binary coaxial jet

The simulated cases are those with larger growth rates found 
in the LST analysis, both for the  H2–O2 and  O2–H2 systems, 
with different radii ratios Γ and different velocity ratios h. 
The most important parameter is the mass fraction Yi of each 
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(b) Γ = 4

Fig. 13  Vortical structures of coaxial homogeneous jet shown using density contour for different radii ratio Γ , with velocity ratio of h = 0.7
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(b) h = 0.9

Fig. 14  Vortical structures of coaxial homogeneous jet shown using density contour for different velocity ratios h, with radii ratio of Γ = 2
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species, which shows how the oxygen and the hydrogen are 
mixing due to the instabilities.

The first relevant case is the Γ = 2.0 with higher ampli‑
fication rates for Mode II in relation to the homogeneous 
cases. In Fig. 16 the mass fraction contours and the density 
contours of this configuration are shown using the axial sym‑
metry of the coaxial jet. For r > 0 the mass fraction of the 
inner species is plotted and for r < 0 the density distribution 
is shown for the same instant of time.

The inner shear layer between the inner and outer jet can 
be recognized in the following figure by the mass fraction 
gradient Yi at r = 1 . The outer shear layer may be recognized 
by the strong vortices that develop at r < 0 , below r = −2.

In the same way, as was made for the homogeneous HOS, 
an acoustic pulse was used to excite the different modes of 
the coaxial jet and can be visualized as density disturbances 
in the the following figures. This acoustic disturbances are 
shown only for Mode II due to the the scale used for the 
density contours to highlight the vortical structures for this 
mode. This mode is the only one that is unstable for the 
binary cases in HOS. The mass fraction contours were used 
to shown the entrainment between the species induced by 
the growing of the vortical structures.

The LST shows that there are different configurations 
where the growth rates of the unstable coaxial jet are large, 
favoring the mixing between the species. However as can 

be seen in Fig. 16, not all unstable modes promote the 
mixing between the species. In this case the first insta‑
bility mode, Mode I, does not appear in the  H2–O2 case. 
Although the first instability mode exits its amplification 
rate is not sufficient to form the K–H instabilities waves 
and mix the reactants.

The entrainmet between the species, the process of 
mixing one species with another which in this case the 
hydrogen is transported to the oxygen layer, is due to the 
growth of the vortical structures of the second mode. The 
first mode it not relevant in this configuration, so it does 
not contribute to the mixing. These vortical structures are 
shown in the density contours for r < 0 in Fig. 16 and are 
evident for z > 12 , when the growth rates of the initial 
linear process have reached larger values. The different 
behavior of these structures in relation to the homogene‑
ous cases is evident. These structures are larger and more 
developed, but they developed not only in space but also in 
time and are not bounded for all points in the z direction. 
This is evident when a comparison with earlier simula‑
tion times is made, showing that this is not similar to the 
convective instability of homogeneous cases.

Nonetheless, these structures are not stationary and 
grow not only in time for all points in space, as in a classic 
absolute instability. This traces of absolute stability were 
also present in the LST results for binary cases, Fig. 5.

A coaxial jet formed by  O2–H2, with the same radii 
ratio Γ = 2.0 and velocity ratio h = 0.7 was simulated, as 
shown in Fig. 17. As was expected, the inner shear layer 
is almost stable, although the LST analysis has shown 
that this is an unstable shear layer. Its small growth rates 
are not captured by the HOS. The outer shear layer has a 
higher growth rate and its growth is captured by the HOS. 
Mode II is the most important mode to promote the mixing 
between the species in the  O2–H2 configuration.

The mixing between the species in this case is due to 
the growth of the vortical structures of the second mode. 
These vortical structures grow linearly initially, but in 
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Fig. 15  Vortical structures of coaxial homogeneous jet using density 
contour for velocity ratio h = 0.5 and Γ = 2 at different simulation 
times, a  t = 100 and b t = 160, to shown the interference between the 
two unstable modes. For r > 0 the frequency that produces an almost 

null growth rate of the first mode is used and for r < 0 the frequency 
that produces the maximum growth rate of the first mode is used 
(negative values of r are used only to indicate the use of different fre‑
quencies in the same figure)
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Fig. 16  Mass fraction contours and density contours, showing the 
vortical structures for  H2–O2 coaxial jet at t = 70 . Mass fraction con‑
tours are shown for r > 0 and density contour for r < 0 . The radii and 
velocity ratios used were Γ = 2 h = 0.7 , respectively
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the non‑linear regime they reach the inner shear layer at 
R1 = 1 , where the oxygen is found.

Although  O2–H2 configuration allows the mixing between 
the species, the amount of oxygen that leaves the inner jet 
and mix with hydrogen is very small compared with the 
previous case and it depends completely on the growth of 
Mode II.

When the radii ratio is larger, Γ = 3.0 or Γ = 4.0 , the 
growth rates of the inner mode are larger by the reduction 
of the confinement cause by the outer jet. The second mode 
amplification is decreased, being smaller with a larger Γ 
ratio. The case  H2–O2 with Γ = 3.0 was simulated and the 
result is presented in Fig. 18. The effects of absolute insta‑
bility can be identified in this case by comparing two time 
frames and searching for temporal growth at a given stream‑
wise position (not shown in the plot). As in all binary cases 
with  H2–O2 configuration, this result confirms the hypoth‑
esis raised by Perrault‑ Joncas and Maslowe [13]. However 
they are not so pronounced as with Γ = 2.0 . Although the 
inner mode amplification rates are larger, they continue to 
contribute almost nothing to the mixing process.

It is important to note that, although more vortical 
structures are present in this case in relation to the previ‑
ous  H2–O2 case, the amplification rates are not enough to 
allow the entrainment between the species. However, as can 
be seem in the LST results, the amplification rates for the 

above simulated cases are similar to the second instability 
mode, even in the homogeneous case Fig. 7. Therefore, the 
different behavior of the  H2–O2 cases reveals that a con‑
vective instability present in the homogeneous cases and 
reported by Perrault‑ Joncas and Maslowe [13] does not 
explain completely the larger structures and the entrainment 
achieve between the species. As stated previously, a pos‑
sible transition between convective to absolute stability is 
happening. A more detailed analyses of absolute instability 
must be performed.

For  O2–H2 the configurations with Γ = 3.0 or Γ = 4.0 are 
not interesting cases because increasing the radii ratio the 
growth rates of the second instability mode are reduced and 
it remains unaltered for the first mode in values that are not 
relevant for the mixing process.

Next, the most relevant cases obtained changing the 
velocity ratio h for the different species configuration are 
analyzed. The first case evaluated was the  H2–O2 with 
h = 0.5 presented in Fig. 19. This cases is important because, 
according to LST results, it allows the growth of both modes, 
Mode I and Mode II, where Mode II has the largest amplifi‑
cation rates of all cases tested, including the homogeneous 
cases, Fig. 10. Traces of absolute instability are observed as 
in other  H2–O2 cases and, effectively, the vortical structures 
develop faster and are larger than others cases. For this rea‑
son, this configuration will be the most promising for the 
species mixing process. The structures seen at the upper part 
of Fig. 19 for the mass fraction are due to the vortices gener‑
ated at the outer mixing layer and not do to the growth of 
disturbances at the inner mixing layer. But they will be very 
effective in mixing the two gases as this structures brake 
down further downstream.

An important point to discuss is that the first instability 
mode, Mode I, does not appear in none of the  H2–O2 cases 
that were simulated. Although the first instability mode exits 
its amplification rate was not sufficient to form the K–H 
instabilities waves. This is clear in Fig. 19, where Mode I 
does not appear due to the confinement effects making it 
smaller than the homogeneous counterpart.
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Fig. 17  Mass fraction contours and density contours, showing the 
vortical structures for  O2–H2 coaxial jet at t = 70 . Mass fraction con‑
tours are shown for r > 0 and density contour for r < 0 . The radii and 
velocity ratios used were Γ = 2 h = 0.7 , respectively
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Fig. 18  Mass fraction contours and density contours, showing the 
vortical structures for  H2–O2 coaxial jet at t = 70 . Mass fraction con‑
tours are shown for r > 0 and density contour for r < 0 . The radii and 
velocity ratios used were Γ = 3 h = 0.7 , respectively
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Fig. 19  Mass fraction contours and density contours, showing the 
vortical structures for  H2–O2 coaxial jet at t = 50 . Mass fraction con‑
tours are shown for r > 0 and density contour for r < 0 . The radii and 
velocity ratios used were Γ = 2.0 h = 0.5 , respectively
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To finished the HOS study and looking for improved 
mixing between species, the  O2–H2 case with lower veloc‑
ity ration h = 0.5 and with the radii ratio Γ = 2 was simu‑
lated. This radii ratio was chosen because in this configu‑
ration the confinement effects are not so pronounced and 
the outer mode has the largest growth rate. The inner mode 
has smaller growth rates, as can be seen in the LST section 
and specifically in Fig. 10. Therefore in the  O2–H2 arrange‑
ment with h = 0.5 and Γ = 2.0 is expected that the growth 
of Mode II leads to a better mixing. Figure 20 shows that the 
outer mode transports the oxygen situated in the inner jet, 
as the vortical structures formed by the velocity gradients in 
the hydrogen outer shear layer reach the inner stream. How‑
ever this configuration is similar to the case  O2–H2 already 
simulated with h = 0.7 , Fig. 17, since the second mode is 
not modified by the velocity ratio. This result shows that the 
results of HOS and LST are consistent.

4  Conclusion

This work had as main objective the understanding of the 
stability characteristics of axisymmetric coaxial jets com‑
posed of different gases, specifically hydrogen and oxygen. 
To analyze the stability characteristics of coaxial binary jets 
linear stability theory and high order simulations were used.

For the cases where the hydrogen was used as the species 
in the inner jet  H2–O2 the amplification rates of Mode II are 
larger than the homogeneous coaxial jet. This is opposed to 
what happens in the  O2–H2 configuration where the ampli‑
fication rates are smaller than the amplification rates of the 
homogeneous case. This agrees with previous studies in 
binary mixing layers, in which when the heavier species is 
in the lower velocity stream the amplification rates are larger 
and vice versa [7].

However, For Mode I the binary mixing layer results 
can not be extrapolated for a coaxial binary jet, since the 
confinement effect, caused by the finite quantity of spe‑
cies that can be place in the inner jet, plays an important 
role. This effect reduces the amplification rates, which 

are smaller than in the homogeneous cases. The  H2–O2 
configuration turn to be more unstable than the  O2–H2 
configuration.

Using an incompressible formulation, the compressibil‑
ity effects were neglected. This formulation together with 
the results allows the understanding of the compressibility 
effects cause by the different speeds of sound in each spe‑
cies. The use of the hydrogen, where the speed of sound 
is almost 4 times higher than the oxygen speed of sound, 
results in a reduction in the compressibility effects. This was 
more evident in the  O2–H2 configuration, that may be con‑
sidered as a low Mach number case due to fact that the outer 
jet and the ambient contain hydrogen. Then, for the outer 
shear layer formed only by hydrogen the compressibility 
effects are negligible. For the inner jet the use of hydrogen 
also reduced the compressibility effects.

Using HOS, the main results from the LST analysis were 
simulated in order to verify nonlinear effects neglected by 
LST. The HOS simulation also allows the use of realistic 
velocity and species distribution profiles, not based on 
canonical equations for the base flow.

Several simulations using a homogeneous base flow were 
carried out to shown the vortical structures that are produce 
in a coaxial jet configuration when Γ and h are varied and to 
shown the non‑linearly interference between the first mode 
in the development of the second mode. This vortical struc‑
tures were not shown by Perrault‑Joncas and Maslowe [13], 
who used only LST to study linear behavior.

The HOS of binary cases shown that not all unstable 
modes promote the mixing between the species. If the 
inner mode (Mode I) amplification rates are smaller than 
−ki = 0.1 , these unstable modes grow very little and are not 
important to the mix of oxygen and the hydrogen. In these 
cases the entrainment between the species depends exclu‑
sively on the growth of outer mode (Mode II). High order 
simulations of the  H2–O2 cases with different velocity ratios 
and radii ratios show through mass fraction contours that 
these cases are the most appropriated for the mixing between 
oxygen and hydrogen. As seen in the LST results, the most 
unstable case for this configuration for Mode II are reached 
with h = 0.5 and Γ = 2.0.

To further study the effect of absolute stability, suggested 
in the  H2–O2 cases and observed both with LST and HOS, it 
is necessary to conduct an absolute stability analysis.

Appendix A: Cylindrical Operators

Defining the scalar field � and a vector field ��� , representing 
the dependent variables of the Navier‑Stokes equations, the 
following operation are defined in cylindrical coordinates.

The gradient of scalar field is defined as:
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Fig. 20  Mass fraction contours and density contours, showing the 
vortical structures for  O2–H2 coaxial jet at t = 70 . Mass fraction con‑
tours are shown for r > 0 and density contour for r < 0 . The radii and 
velocity ratios used were Γ = 2.0 h = 0.5 , respectively
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where eeer , eee� and eeez represent the unit vector in cylindrical 
coordinates. The divergent of vector field is defined as:

Finally, the Laplace operator applied to a scalar quantity is 
defined as:

Appendix B: Generalized Eigenvalue 
problem

Expanding the compressible Rayleigh Eq. 12 and rearrange, 
it can be written as

This is explicitly a eigenvalue problem for k and the eigen‑
function p̂ . Using D = d∕dr and D2 = d2∕d2r to represent 
the first and second derivative respectively and defining
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ā2
,

(B7)
Lq1 ≡ −w̄D2 − w̄

1

r
D + w̄

1

�̄�

d�̄�

dr
D

+ 2
(
dw̄

dr

)
D −

3𝜔2w̄

ā2
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(B9)k3R1p̂ + k2Lq2p̂ + kLq1p̂ + Lpp̂ = 0.

This is a non‑linear eigenvalue problem, where the eigen‑
value k appears in a polynomial form. In order to transform 
it in a linear eigenvalue problem a change of variable may 
be used Morris [12], defining

The polynomial eigenvalue problem results

This system can be written in matrix form

or

with � and � being the matrices in left and right side of the 
Eq. B12 and � the eigenvector, where one of their compo‑
nents is the eigenfunction p̂.
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