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ABSTRACT 

 

The Amazon has been pushed into an amplified fire-prone system. The traditional fire 

dynamic has changed over the last decades due to agricultural intensification and 

demographic growth. Deforestation advance and forest degradation intensification result 

in a more fragmented landscape, favoring fire entry into the forest. Worsening this 

scenario, global climate models predict a drier Amazon in the 21st century. The climate 

is changing, and the intensity and frequency of extreme drought events generate ideal 

conditions for an increase in forest susceptibility to fires. In this context, political 

mechanisms to break this cycle and ensure the conservation of tropical ecosystems are 

needed, and protected areas are considered suitable strategies to tackle this challenge. 

Nevertheless, the last few years have been marked by setbacks in the environmental 

governance of these areas and by the rising of illegal activities that result in forest 

degradation. Thus, providing evidence for policy formulation and informing decision-

makers about the role of protected areas in mitigating forest degradation caused by fires 

within protected areas is essential for prioritizing actions in their favor. This thesis, 

therefore, proposes to evaluate, through quantitative analysis and based on empirical data, 

the role of protected areas in curbing fire occurrence in the Amazon basin. In this sense, 

the thesis’s main objective was achieved by answering three main questions: (1) is there 

a quantitative and spatial difference in the relative performance between burned area 

products, considering burned area over the forest and non-forest land covers? (2) Is fire 

an imminent and growing threat to protected areas in the Amazon basin? (3) Have 

protected areas affected fire occurrence in the Amazon basin from 2003 to 2020? As an 

input to data choice to be used to answer critical questions about the role of protected 

areas, we found that global burned area products used interchangeably on a regional scale 

could significantly underestimate the impacts of fire and, consequently, fire-related 

carbon emissions. Further, we estimated an annual average of 79,196 km² of the burned 

area from 2003 to 2020 in the Amazon basin, with the burned area peak registered in 

2010. From the total area that burned throughout this period, only 28% was registered 

within protected areas, and among what annually burns inside protected areas, on average, 

17% are registered within Indigenous lands. On average, 85% of what burns within 

protected areas yearly comes from fires ignited outside them. Differences-in-differences 

econometric estimates revealed a statistically negative effect of the protected area on fire. 

Estimates show that if, on average, one pixel-year became protected, there would be a 

decrease in the burned area of about 0.02 km² (2 ha.pixel-1.year-1). That is, for each piece 

of land of 2,800 ha protected, 2 ha are prevented from being burned yearly. Even though 

protected areas have recorded significantly smaller burned areas than their surroundings 

over the years, the proportion of inside burning in relation to the total burned per year has 

been increasing, signaling an increase in the threat to which these areas are exposed. The 

creation of new protected areas and management improvement of the existing ones, as 

well as law enforcement in their surroundings, should be a priority in national 

environmental agendas, given the relevance of these areas for the conservation of the 

largest tropical forest in the world. 

Keywords: Indigenous lands. Causal effect. Econometrics. Wildfire. Geoprocessing. 
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AVALIAÇÃO DA OCORRÊNCIA DE FOGO EM ÁREAS PROTEGIDAS NA 

BACIA AMAZÔNICA DE 2003 A 2020 

 

RESUMO 

A Amazônia está se tornando um sistema bastante propenso ao fogo. A dinâmica 

tradicional do uso do fogo na região mudou nas últimas décadas, principalmente devido 

à intensificação da agricultura e ao crescimento demográfico. O avanço do desmatamento 

e a intensificação da degradação florestal resultam em uma paisagem mais fragmentada, 

que por sua vez favorece a entrada do fogo na floresta. Agravando esse cenário, modelos 

climáticos globais preveem uma Amazônia mais seca no século XXI. De fato, o clima 

está mudando, e a intensidade e frequência dos eventos de secas extremas geram 

condições ideais para o aumento da suscetibilidade das florestas aos incêndios. Nesse 

contexto, são necessários mecanismos políticos para quebrar esse ciclo e garantir a 

conservação dos ecossistemas tropicais. As áreas protegidas são consideradas estratégias 

adequadas para enfrentar esse desafio. No entanto, os últimos anos têm sido marcados 

por retrocessos na governança ambiental dessas áreas e pelo aumento de atividades ilegais 

que resultam em degradação florestal. Assim, fornecer evidências para a formulação de 

políticas e informar os tomadores de decisão sobre o papel das áreas protegidas na 

mitigação da degradação florestal causada por incêndios em áreas protegidas é essencial 

para priorizar ações em seu favor. Esta tese, portanto, se propõe a avaliar, por meio de 

análises quantitativas e com base em dados empíricos, o papel das áreas protegidas na 

mitigação da ocorrência de fogo na bacia Amazônica. Nesse sentido, o objetivo principal 

da tese foi alcançado ao responder a três questões principais: (1) existe uma diferença 

quantitativa e espacial no desempenho relativo entre os produtos da área queimada, 

considerando a área queimada sobre as coberturas florestais e não florestais? (2) O fogo 

é uma ameaça iminente e crescente às áreas protegidas na bacia amazônica? (3) As áreas 

protegidas afetaram a ocorrência de incêndios na bacia amazônica de 2003 a 2020? Como 

subsídio para a escolha de dados a serem usados para responder a questões-chave sobre 

o papel das áreas protegidas, mostramos que produtos globais de área queimadas usados 

de forma indistinta em escala regional podem subestimar significativamente os impactos 

do fogo e, consequentemente, as emissões de carbono relacionadas a ele. Além disso, 

estimamos uma média anual de 79.196 km² de área queimada de 2003 a 2020 na bacia 

Amazônica, com o pico de área queimada registrado em 2010. Do total de área queimada 

ao longo deste período, apenas 28% foi registrado em áreas protegidas e entre do que 

anualmente queima dentro, em média 17% são registrados em terras indígenas. Em média, 

85% do que queima dentro de áreas protegidas por ano provem de incêndios iniciados 

fora delas. Além disso, a Bolívia é o país que queima relativamente a maior área em 

floresta, considerando a área total de floresta em cada país. As estimativas econométricas 

de diferenças-em-diferenças revelaram um efeito estatisticamente negativo da área 

protegida tanto na área queimada quanto nos incêndios ativos, mostrando assim que a 

proteção foi capaz de reduzir a ocorrência de fogo. As estimativas demonstram que se em 

média um pixel-ano se tornasse protegido, haveria uma diminuição da área queimada em 

cerca de 0,02 km² (2 ha.pixel-1.ano-1). Ou seja, para cada pedaço de terra de 2.800 ha 

protegidos, 2 ha são evitados de serem queimados por ano. Embora as áreas protegidas 
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tenham registrado áreas queimadas significativamente menores do que o seu entorno ao 

longo dos anos e tenham tido seu efeito inibitório contra a ocorrência de fogo confirmado 

com nossas estimativas, a proporção de área queimada dentro delas em relação ao total 

queimado por ano vem aumentando, sinalizando um aumento na ameaça a que essas áreas 

estão expostas. Dada a relevância dessas áreas para a conservação da maior floresta 

tropical do mundo, concomitante ao nível de ameaça a que estão expostas, a criação de 

novas áreas protegidas e o aprimoramento da gestão das existentes, bem como a aplicação 

da lei em seus entornos, deve ser prioridade nas agendas ambientais nacionais. 

Palavras-chave: Terras indígenas. Efeito causal. Econometria. Incêndios florestais. 

Geoprocessamento. 
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1 INTRODUCTION 

Protected areas, including those with resident human populations, are necessary for an 

effective global strategy to minimize climate change and preserve tropical forests and 

ecosystem services (NEPSTAD et al., 2006). They account for more than half of the 

Amazon basin territory and guard strongholds of wild environments and cultural assets, 

essential for maintaining natural resources and ecosystem services for the planet’s health 

and human well-being, regionally and globally. Furthermore, protected areas are effective 

shields against forest loss (AMIN et al., 2019; NEPSTAD et al., 2006; PFAFF et al., 

2015a; SZE et al., 2022), prevent biodiversity loss (GELDMANN et al., 2013; PAIVA et 

al., 2020) and bring critical socioeconomic benefits to the regions where they are 

implemented (FERRARO; HANAUER, 2014; NAIDOO et al., 2019). In addition to 

being home to countless indigenous ethnicities and traditional communities, contributing 

to the protection of the cultural diversity of the Amazon, protected areas also help the 

planet, playing an essential role in climate patterns and constituting a valuable carbon 

sink (NOGUEIRA et al., 2018; SHI et al., 2020). 

Although protected areas are effective in stopping the advance of deforestation while 

bringing several other benefits, these areas are not immune to deforestation, forest 

degradation, or climate change (DE OLIVEIRA et al., 2020; RORATO et al., 2021; 

VILLÉN-PÉREZ et al., 2020). The degree of deforestation has been increasing within 

these areas, leading to consequent forest fragmentation. The climate is also changing. 

Regions such as the southeast of the Brazilian Amazon have already registered an average 

increase of 2.5°C in temperature and a 24% decrease in precipitation (GATTI et al., 

2021). This new climate configuration may transform the Amazon region into a carbon 

source instead of a sink, as it is traditionally described (GATTI et al., 2021). It further 

highlights the role of protected areas in offsetting the region’s carbon emissions. 

Unfortunately, scientists already claim that the Amazon is close to reaching the tipping 

point, beyond which the changes resulting from its drying are irreversible (NOBRE et al., 

2016). Nevertheless, if there is any hope of resilience and adaptation to these changes, it 

lives in the last portions of preserved forests in the region, which are largely within 

protected areas (SOARES-FILHO et al., 2010).  
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Deforestation rise within protected areas reflects the expansion of the agricultural frontier, 

mining activities, weak legislation on land titling, and the weakening of environmental 

policies (ARMENTERAS et al., 2019; ARMENTERAS; SCHNEIDER; DÁVALOS, 

2019; DE OLIVEIRA et al., 2020; MATAVELI; DE OLIVEIRA, 2022). With 

particularities aside, this scenario seems to have occurred in the context of each country 

that is part of the Amazon basin in the last three years (EUFEMIA et al., 2022). Coupled 

with the deforestation process, fire occurrence also rose (SILVA JUNIOR et al., 2022). 

Fire is not only used to clear newly deforested lands but also to maintain pastures and 

agricultural areas later implanted. Thus, even with no deforestation, fire is still present in 

the system due to human activities (BARLOW et al., 2020). Moreover, once the 

environment becomes more flammable due to climate change, the fire traditionally used 

in a controlled way starts to reach adjacent forests more frequently, thus causing a relevant 

source of forest degradation and, consequently, carbon emission (BARLOW et al., 2020). 

Indeed, this process generates positive feedback, in which climate change makes the 

rainforest more vulnerable to fire, and the increasingly present fire boosts CO2 emissions, 

ultimately contributing to worsening climate change (COCHRANE, 2003). In another 

perspective, increasing fire frequency transforms forests into ecosystems increasingly 

vulnerable to degradation (ARMENTERAS et al., 2021). Therefore, reversing this trend 

is indispensable to mitigating and adapting to global climate change (ARMENTERAS et 

al., 2021).  

This new climate and landscape configuration scenario threatens the integrity and ability 

of protected areas to play their role. Even avoiding deforestation, these areas may still be 

under increasing threat of degradation, becoming progressively vulnerable to fires. 

Although some research has been done on the role of such land use regulation policies in 

mitigating fire occurrence (NELSON; CHOMITZ, 2011; NEPSTAD et al., 2006; 

TASKER; ARIMA, 2016), they usually use fire as a proxy for deforestation. This way, 

they disregard specific mechanisms of fire occurrence in the Amazon, besides not 

quantifying avoided burned area extent, considering updated fire information. Thus, 

protected areas’ effectiveness evaluation needs to include their role in avoiding fire 

occurrence and extent, considering this changing climate scenario. This thesis, therefore, 

proposes to evaluate, through quantitative analysis and based on empirical data, the role 

of protected areas in curbing fire occurrence in the Amazon basin. The project aims to 
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inform local and global policy, contributing to the production of scientific information to 

aid in decision-making regarding risk assessments and strategies to mitigate and adapt to 

the impacts of environmental changes. 

1.1 Motivation and objectives 

Considering the gap in the scientific literature of detailed and updated studies of the effect 

of protected areas on fire occurrence in the Amazon basin, the main objective of this 

thesis was to establish a methodology capable of formally quantifying such an effect. 

Therefore, the thesis answers two main questions:  

i. Is fire a growing threat to Amazonian protected areas? 

ii. What is the effect of protected areas on fire occurrence in the Amazon basin?  

In this way, the quantification of the effect of the protected areas on fire occurrence 

implemented in this thesis was supported by three specific questions detailed below, 

divided by Chapters.  

Chapter 3 brings an intercomparison in the Brazilian Amazon biome of three global 

burned area products and one regional, considering the total burned area detected and its 

influence on fire-related C emission. The motivation regarding this chapter relies on the 

necessity of having reliable measurements of burned area extent for the region, a 

prerequisite essential for a well-founded estimate of the effect of protected areas on fire. 

Therefore, the following question was proposed: 

Q1: In the Amazon context, are there quantitative and spatial differences in the relative 

performance among burned area products, considering burned area over forest and non-

forest land covers? 

• H1.0: No: Even being developed independently and for different purposes and 

scales, the quantitative and spatial differences between the burned area products 

are negligible for the Amazon region, regardless of land cover. This result is 

probably due to the similarities in the algorithms for burned area detection shared 

among the products. 

• H1.1: Yes: There are quantitative and spatial differences in burned area detection 

provided by the different products, both in forest and non-forest areas, and this 
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confers a significant difference in the fire-related carbon emission estimates in the 

Amazon region. 

The second specific research objective, Chapter 4, is the formal measurement of the fire 

threat level that protected areas have been exposed to over the last 20 years. For this 

chapter, the motivation is based on the recognition that fire is widely used in the Amazon, 

constituting a persistent land cover change and agricultural practice used by all types of 

landowners and populations. Regardless of its purpose, fire can cause several impacts. 

Different factors are linked to a more significant threat to fire, and these factors are not 

always present similarly inside and outside protected areas. With that in mind, the 

following question was proposed: 

Q.2: Is fire an imminent and growing threat to protected areas in the Amazon basin?  

• H2.0: No: Fire occurrence within protected areas is negligible compared to 

outside, and its annual rate has remained constant in recent years. This result is 

probably because the factors that result in an increased fire threat have not 

changed significantly in recent years within protected areas. 

• H2.1: Yes: The share of fire registered inside protected areas compared to the 

outside has been growing over the years. 

Finally, the third specific objective of this research, explored in Chapter 5, considers that 

protected areas’ inhibitory effect on fire can be confounded with other policies or factors’ 

effects. This lack of identification may turn the estimates of the effect of the protected 

areas on fire biased or even non-detectable. Such effect has been estimated before in other 

studies, but never specifically for the Amazon basin and with a long and updated time 

series. Filling this gap is crucial to support policy to subsidize better management of 

protected areas, providing them with conditions to maximize their effectiveness against 

forest degradation. Therefore, the following question was proposed: 

Q.3: Have protected areas affected fire occurrence in the Amazon basin from 2003 to 

2020? 

• H3.0: No: The protected areas had no significant effect on fire occurrence in the 

Amazon basin, considering an unbiased estimate. 
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• H3.1: Yes: The protected areas significantly and negatively affected fire 

occurrence in the Amazon basin, considering an unbiased estimate. 

1.2 Thesis outline 

This document is organized in a paper format, aggregating one paper that has already 

been published and two others in the analysis maturation and finalization process. Five 

chapters are provided, in addition to the introduction chapter, which is divided into a 

literature review, three chapters bringing the three different research papers, and the last 

chapter bringing the final remarks. The chapters are better described below. 

Chapter 2 presents the main concepts of fire types that occur in the Amazon and how they 

are inserted in this tropical environment. It also summarizes the several impacts caused 

by fire, whether they are caused directly or indirectly by fire, such as the impact on human 

health due to smoke inhalation. In addition, it detailed aspects of fire-related carbon 

emissions and how future climate scenarios can worsen fire occurrence. Finally, a brief 

overview of land use regulation by protected areas in the countries of the Amazon basin 

is made, considering particularities in the different national contexts. With all this 

discretized, a fire occurrence chain was produced, showing the factors that directly and 

indirectly interfere in the occurrence of fire, inside and outside protected areas, and factors 

related to protected areas placement. 

The burned area products intercomparison study aimed to base justifications for adopting 

the database used in the other chapters and understand the limitations that might be 

implicit in the estimates of protected areas’ effect on fire. Chapter 3 brings an 

intercomparison of three global burned area products and one regional, developed 

independently and for different purposes and scales. It assessed the differences between 

products regarding total burned area detected, and their influence on fire-related C 

emission, in the Brazilian Amazon biome for 2015. 

Chapter 4 provides a detailed diagnosis of the burned area by land cover inside and 

outside protected areas from 2003 to 2020 in the Amazon basin. From the chain of factors 

related to fire occurrence established in Chapter 2, analyzes are carried out to assess the 

increase in the threat to fire within protected areas. In this chapter, the protection 
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categories are discretized to evaluate the dynamics of fire occurrence according to each 

category. 

Finally, Chapter 5, building on Chapters 2, 3, and 4 in terms of process understanding and 

database performance, provides a simplified attempt to quantity the protected area effect 

on fire occurrence based on an Econometric hybrid approach, combining Matching with 

Differences-in-Differences techniques. This combined approach allows for measuring the 

causal effect of protection on fires by considering several sources of bias. Moreover, using 

it obtains more reliable estimates given the many tests of methodological consistency and 

robustness required by the technique. 
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2 LITERATURE REVIEW 

2.1 Fire occurrence in the Amazon: an environmental context  

Before approaching the threat imposed by fires to Amazonian ecosystems, it is necessary 

to understand how fire is inserted into this system. Firstly, naturally occurring fires are a 

rare event in the Amazon with return intervals of hundreds if not thousands of years  

(BUSH et al., 2008). However, fires are often used as a tool to clear the land and maintain 

existing farmland and pasture, which makes their occurrence primarily associated with 

human activity (COCHRANE, 2003; PAUSAS; KEELEY, 2009). Furthermore, the slash-

and-burn agriculture practice has been used in Amazon for many centuries (PEDROSO 

JUNIOR; MURRIETA; ADAMS, 2008), and it consists of cutting, drying, and burning 

the natural vegetation in a patch, which is cultivated for years and then left to regrow 

(PIVELLO, 2011). At first, the traditional burning activities were highly controlled to 

ensure the continued regeneration of forest resources (PIVELLO, 2011). Nonetheless, 

this dynamic changed over the last decades, mainly due to agricultural intensification and 

rural demographic growth (PEDROSO JUNIOR; MURRIETA; ADAMS, 2008), and the 

modern slash-and-burn practices have been shown to result in net deforestation, 

compromising the sustainability of these systems.  

Increasing demand for agricultural land and forest-related products has exacerbated the 

link between fire and tropical deforestation by creating conditions conducive to expanded 

forest access (BARBER et al., 2014) and indirectly changing climatic patterns 

(ARAGÃO et al., 2008; MALHI et al., 2008). In addition, forests are facing extensive 

degradation in the Amazon. Consequently, the environment has become more conducive 

to fire ignition sources leaking into adjacent forests, mainly due to boosting the fuel 

concentration and altering the conducive to combustion and propagation (PARISIEN; 

MORITZ, 2009). Indeed, such degradation happens mostly on already fragmented and 

degraded forests that are more likely to burn (ARAGÃO et al., 2007; ARMENTERAS et 

al., 2017; CANO-CRESPO et al., 2015; COCHRANE, 2003; SILVA JUNIOR et al., 

2018). This greater fire probability occurrence in places already previously burned can be 

used to fire prediction, a piece of useful information for fire risk alert systems 

(ANDERSON et al., 2021). Furthermore, this scenario sets up positive feedback, where 

fragmented forests are more likely to be affected by uncontrolled fires, which degrade the 
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vegetation even more, resulting in increased carbon emissions. This synergism between 

forest fragmentation and fire is becoming increasingly important, with an annual 

increment of up to 11,770 + 3,546 km² of new forest edge in the Amazon (SILVA 

JUNIOR et al., 2020a).   

Compounding this fire-conducive loop is climate change. Global climate models predict 

a drier Amazon in the 21st century (LI et al., 2008), and extreme drought events’ intensity 

and frequency increase may push Amazonia toward an amplified fire-prone system 

(MALHI et al., 2009). The reason why droughts influence the occurrence of fires includes 

several factors, which ultimately culminate in increasing vegetation fire susceptibility 

(COCHRANE, 2003). Silva Junior et al. (2019) showed that in 2010 and 2015/2016, there 

were significant rainfall and temperature anomalies in the Brazilian Amazon biome. 

Especially during the extreme drought in 2015/2016, positive active fire anomalies 

resulted from increased burned forests. As dry seasons get longer and drier, low humidity 

generates ideal conditions for intentional fires, an agricultural management practice with 

undesired and often uncontrollable effects due to anomalous weather conditions (BUSH 

et al., 2008; NEPSTAD et al., 1999). In this way, considering this new climatic scenario 

in the region, even the traditional fire use embedded in the culture of several traditional 

communities and indigenous peoples can be harmful to the maintenance of forests.  

Among the Amazonian countries, only Brazil had a significant negative temporal trend 

in deforestation from 2001 to 2015 (- 773 km² year−1) (SILVA JUNIOR et al., 2020a). 

This considerable decrease in deforestation in Brazil, accompanied by climate change 

consequences, caused a relative decoupling of fire occurrence and deforestation, opposing 

to what would be expected for controlled fires (ARAGÃO et al., 2018). Between 2004 

and 2017, there was a 75% reduction in deforestation rates (INPE, 2022). However, in 

2017 there was an increase of approximately 18% in the number of active fires per square 

kilometer deforested, compared to the average of the last 13 years. It suggests an 

intensification of environmental degradation due to increased fire occurrence. 

Notwithstanding the growing deforestation dynamics in recent years, these processes are 

highly related. In 2019, the Brazilian Amazon registered abnormal increases in monthly 

active fire occurrence in the states of Roraima, Amazonas, and Acre, which also reached 

extreme levels of annual deforestation (SILVEIRA et al., 2020). 



9 

 

With all that understood, it is relevant to discretize the fire types in the Amazon. Fires in 

the region can be broadly classified as deforestation, maintenance, and forest fires with 

different temporal patterns related to climate conditions. However, in some cases, they 

are related to the ignition cause (ARMENTERAS et al., 2017). Deforestation fires are 

related to the process of forest clearing. Firstly, the vegetation is felled and left to dry, 

and then fire is used to prepare the area for agriculture or pasture (BARLOW et al., 2020). 

Maintenance fire is used on previously cleared lands as a soil management tool. These 

two fire types are supposed to be controlled and are still widely used in the Amazon 

(COCHRANE, 2003; MALHI et al., 2008; MORTON et al., 2008). However, fire has its 

most significant impact when it escapes from its intended purpose (COCHRANE, 2003). 

When these uncontrolled fires strike forest formations, they are called forest fires, a 

synergistic consequence of drought and human activity (BUSH et al., 2008). Hereafter, 

the term ‘fire’ will generally refer to all fire types. Current literature addresses the 

difference between controlled and uncontrolled fires considering forest fires alone or the 

total effect of fire. The impacts caused only by controlled fires still need to be better 

studied, especially as regards their contribution to greenhouse gas (GHG) emissions.  

2.2 Fire occurrence in the Amazon: a political context  

The Amazon basin countries do not have the same land use policies and climate action 

plans nor the same economic or infrastructure development (ARMENTERAS et al., 

2017). Thus, the fire occurrence dynamic is expected to obey different patterns in each 

country. Nevertheless, all tropical forest edges in all countries are becoming increasingly 

more exposed to further disturbances (ARMENTERAS et al., 2017). As a result of the 

increased desiccation, forest structure and composition are being affected, causing forest 

degradation, a decline in living biomass, and finally, a reduction in their capacity to act 

as a carbon sink (BALCH et al., 2015). The following paragraphs will, however, bring 

particularities of the Amazonian territory occupation and consequently of fire occurrence 

in some of the different countries of the Amazon basin. 

Deforestation in the Amazon is driven by the competitive use of land and the weak land 

titling regulation, which facilitates the illegal appropriation of public lands. Historically, 

Brazil’s livestock contribution to deforestation has already hit 80% of the total deforested 

area (BRASIL, 2004). However, in the early 2000s, the expansion of mechanized soybean 
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agriculture in the Brazilian Amazon significantly changed the nature of deforestation 

activities, requiring a larger cleared area than pastures and ultimately converting the land 

in less than one year (MORTON et al., 2006). This recent land dynamic also includes the 

use of fire and intensifies the dependence on it since the same land patch needs to be 

cleared more often (MORTON et al., 2008). Furthermore, unlike the traditional slash-

and-burn practice, this newly deforested land is not later left to regrow, which may 

compromise soil quality over the years (BALCH et al., 2011).  

Land grabbing is also a relevant process of land occupation in the Brazilian Amazon. The 

weak land titling legislation (BRITO et al., 2019) and the history of recurring amnesties 

for environmental liabilities make it common to appropriate public lands. Land grabbers 

clear the forest to signal land occupation and claim land rights (BRITO et al., 2019), 

which culminates in an increase in deforestation and fire occurrence. A Law revision in 

2017 (BRASIL, 2017) extended to 2017 the cutoff date when landholders that occupied 

federal public areas could request a land title from the federal government upon 

compliance with some requirements. This extension can cost between 1.1 and 1.6 million 

hectares of the deforested area until 2027 (BRITO et al., 2019). It is just another sign of 

a government that prioritizes the privatization of public lands at a price well below the 

market (BRITO et al., 2019) at the cost of using these lands for the benefit of Brazilian 

society. This dynamic is especially alarming, knowing that 360,000 km² of public land 

overlaps with private property. Almost half of this area is represented by undesignated 

lands, with low governance power and a high risk of illegal appropriation (CARVALHO 

et al., Submitted).  

In Bolivia, the expansion of land cultivation and cattle during the 90’s also triggered high 

deforestation rates in the Amazon region of the country (PERZ; ARAMBURÚ; 

BREMNER, 2005). However, as in Brazil, most deforestation appears not to ensue due 

to the activities of smallholders, who most often focus on labor-intensive and land-

efficient coca production rather than land-extensive soybeans, cattle, or timber (PERZ; 

ARAMBURÚ; BREMNER, 2005). In addition, agricultural and livestock expansion in 

Bolivia is boosting forest fragmentation, which, combined with the droughts experienced 

in the region in the last decades, are causing greater fire permeability in tropical forests 

of that country (MAILLARD et al., 2020).  
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As in most Amazonian countries, the Colombian Amazon went through economic cycles 

of occupation, which included agricultural and livestock production. However, 

deforestation in Colombia has relevant particularities regarding that country’s insurgency, 

coca production, and oil exploration. Peasant resistance to rural violence partly underlies 

insurgency movements such as the FARC, which have curbed, in some sense, the 

transformation of vast forests in many parts of Colombia (ARMENTERAS; 

SCHNEIDER; DÁVALOS, 2019). Since the signing of Colombia’s peace accords late in 

2016, deforestation probability within Colombian protected areas increased by 52%, and 

fire occurrence in that country is strongly correlated with forest loss (ARMENTERAS; 

SCHNEIDER; DÁVALOS, 2019). This correlation is not a defense of armed conflicts 

within these areas but, instead, evidence that urgent actions should have accompanied 

guerrilla demobilization in Colombia. Such actions include real-time forest monitoring, 

expanding programs to pay for ecosystem services at the frontier, and integrating 

demobilized armed groups as staff of protected areas (ARMENTERAS; SCHNEIDER; 

DÁVALOS, 2019). Unlike the other Amazonian countries, Colombia’s deforestation 

roots are deep, institutional, and societal (ARMENTERAS et al., 2019). Land grabbing 

also constitutes a significant threat to the forests of this country since institutional 

incentives for land speculation coupled with extreme inequality in tenure are the main 

engine of deforestation (ARMENTERAS et al., 2019).  

Land settlement in Ecuador’s Amazon also has proceeded slowly and over a long time 

but accelerated in the 1970s following oil discoveries during the 1960s. Consequently, 

the Ecuadorian Amazon has experienced profound land use and cover changes during the 

last decades. In this country, the Amazonian region occupation is mostly related to oil 

exploration-led frontier expansion, various social responses, and spillovers from Plan 

Colombia1, which led coca producers to migrate to Ecuador (PERZ; ARAMBURÚ; 

BREMNER, 2005). These well-documented changes are slowly modifying the physical 

environment of the region from one dominated by the classic humid tropics to one more 

reminiscent of the eastern Amazon basin with cyclical moisture and temperature 

gradients, consequent emergent fire regimes, and persistent deforestation (MESSINA; 

COCHRANE, 2007). In contrast to the Amazon in Bolivia and parts of Brazil, land use 

 
1 Plan Colombia was a military operation to protect oil infrastructure and eradicate coca plantations 

(PETRAS, 2001). 
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in the Ecuadorian Amazon is not generally geared for exports (PERZ; ARAMBURÚ; 

BREMNER, 2005), other than the coca plantations that were brought into the country in 

response to Plan Colombia.  

Peruvian Amazon became more occupied during the 80s and 90s when the insurgent 

group Sendero Luminoso encouraged smallholder coca production to finance land 

settlement. At the same time, cattle ranching has emerged as an important activity in the 

region, largely a response to national economic growth during the 90s and plans for a 

transoceanic highway through Brazil and Peru (PERZ; ARAMBURÚ; BREMNER, 

2005). Moreover, as in Ecuador, the oil industry also set an important economic activity 

in the region and is highly related to road opening (FINER et al., 2015). Unlike other 

Amazonian regions, in Peru, fire frequency increases with drought and proximity to 

roads. However, particularly in this region of the Amazon was found that decreases in 

rural population also increase fires, probably due to increased flammability of emptying 

rural landscapes and reduced capacity to control fire (URIARTE et al., 2012).  

In Venezuela, the main deforestation processes were historically concentrated in the 

northern region of the Orinoco River (PACHECO; AGUADO; MOLLICONE, 2014). 

Compared to other Amazonian countries, the Venezuelan Amazon historically registered 

low deforestation rates (PERZ; ARAMBURÚ; BREMNER, 2005), possibly associated 

with its remoteness from most development planning and population change (PERZ; 

ARAMBURÚ; BREMNER, 2005). Although in the mid-80s, the agricultural census 

indicates a low percentage of cropland and cattle production in the Venezuelan Amazon, 

recent forest loss and fires are most likely resulted from the expansion of the agricultural 

frontier (PACHECO; AGUADO; MOLLICONE, 2014). Venezuela was already the third 

Amazonian country most affected by wildfires from 2001 to 2018 (DA PONTE et al., 

2021). Along with Ecuador, it had its Indigenous lands most affected by fires in numbers 

relative to each country’s total Amazon Basin area (SILVA JUNIOR et al., 2022).  

2.3 Fire impacts 

Both controlled and uncontrolled fires have many direct and indirect impacts on the 

environment, economy, and population (ANDERSON et al., 2015; BARLOW et al., 

2020; CAMPANHARO et al., 2019, 2021) (Table 2.1). Environmental impacts are those 

related to the atmosphere, biodiversity, soil, and water. Besides, forest fires can 
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destabilize the carbon stocks of tropical ecosystems, promote direct economic losses to 

the forestry, agriculture, and transportation sectors, and impact the population’s health 

(CAMPANHARO et al., 2021).  

Table 2.1 - Fire impacts and their respective effect and scale information. 

 Effect Scale 

Social impacts   

Death D and/or I L 

Injured D and/or I L 

Respiratory diseases I R 

Psychological traumas D and/or I R 

Accidents D and/or I R 

Economic impacts   

Tourism drop I R 

Cultural resources losses D L 

Production loss D and/or I L 

Infrastructure damage D R 

Environmental impacts   

Atmosphere   

Aerosols and CO2 emissions D and/or I G 

Changes in weather patterns I G 

Atmosphere heating I G 

Biodiversity   

Biodiversity reduction D L 

Changing habitats D L 

Biota death D and/or I L 

Soil   

Change in physical soil properties D L 

Soil organic matter burn D L 

Increase erosive processes I L 

Water   

Change water quality I L 

Hydrological cycle change I R 

Note: D = direct; I = Indirect. G = Global; R = Regional; L = Local. 

When evaluating fire impacts, it is also important to consider the effect and scale. First, 

fire impacts can be classified as direct or indirect. Direct effects are those caused by fire 

and its sub-products, such as smoke and ash. The indirect ones, in turn, are those caused 

due to the consequences of fire occurrence (RYAN et al., 2012). The extent of impacts 

can be evaluated from a local to a global scale, affecting several agents differently. In 

general, fire impacts interconnect, forming a complex chain so that the few direct effects 

trigger others at different scales and affect different actors (Table 2.1). 
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Wood burning, such as forest and agricultural fires, emits significant quantities of known 

health-damaging pollutants, including several carcinogenic compounds 

(CAMPANHARO et al., 2021; NAEHER et al., 2007). The increased accidental forest 

fires and long-burning events resulted in a growing concern about woodsmoke’s potential 

health impacts. Carmo et al. (CARMO et al., 2010) suggested that the particulate matter 

levels of burnings in the Amazon are associated with adverse effects on children’s 

respiratory health. Corroborating, Campanharo et al. (CAMPANHARO et al., 2021) 

found a positive effect of fire on hospitalizations due to respiratory illnesses. 5% of 

respiratory hospitalizations were estimated to be attributable to fire-induced pollution, 

corresponding to 822 cases per month. In addition to respiratory diseases and other social 

impacts, the overload of aerosols released into the atmosphere during fires can affect the 

water cycle, the pollution burden of the atmosphere, and the dynamics of atmospheric 

circulation (ANDREAE et al., 2004).  

When it reaches forest formations, fire affects local diversity. Besides the immediate 

direct effect, the impact caused by fire on the forest ecosystem can last for years, reducing 

forest biomass by enhancing tree mortality rates (SILVA et al., 2018a). In the Amazon, 

fire-induced tree mortality increases by up to 462% in a drought year, causing a sharp 

decline in canopy cover and aboveground live biomass, favoring widespread invasion by 

flammable grasses across the forest edge area where fires are more intense (BRANDO et 

al., 2014). Silva et al. (2018a) found that fire-affected forests in Amazon have biomass 

levels 24.8 + 6.9% below unburned forests after 31 years, showing that biomass loss 

through mortality is not sufficiently compensated by incremental growth and recruitment. 

These two studies prove that fire-affected ecosystems do not fully recover even after 

many years of regeneration.  

Translating fire impacts into economic costs, Campanharo et al. (2019) estimated a total 

economic loss for Brazilian Acre state in 2010 of US$ 243.36 + 85.05 million, and from 

2008 to 2012, US$ 307.46 + 85.41 million. This cost estimation included direct impact 

on land use and land cover, carbon stocks, CO2 emissions, and indirect impact on human 

illness. Investing this amount in environmental initiatives could favor positive feedback 

by potentially reducing the fire incidence, and the economic cost of the impact caused. 

Therefore, increasing human presence in fire-prone ecosystems requires increased efforts 
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to actively manage fires for ecosystem conservation and human well-being (ANDELA et 

al., 2019; MORITZ et al., 2014). 

Despite many impacts, using fire as a tool also confers some benefits. It consists of an 

inexpensive and accessible soil management tool for agricultural producers, allowing 

low-cost land preparation, low-cost elimination of slashed vegetation during 

deforestation, low-cost pasture management, and low-effort subsistence production. 

These benefits are considerable, even with repeated burnings reducing soil quality in the 

long term, considering a shorter fallow. Because of this, it is important to contextualize 

its use in impact assessments. 

2.3.1 Fires and carbon emissions  

Despite so many negative impacts, perhaps the biggest concern worldwide is the 

contribution of fires to increasing CO2 in the atmosphere, making them play an essential 

role in climate change (ANDERSON et al., 2015; SILVA JUNIOR et al., 2021c; 

SILVEIRA et al., 2020). One of the international scenario’s most prominent fire-related 

environmental impacts is its contribution to CO2 emissions (ARAGÃO; 

SHIMABUKURO, 2010; GATTI et al., 2014; SILVA et al., 2018a; SILVA JUNIOR et 

al., 2021c). Forest fires contribute significantly to climate change, removing plant 

biomass and transferring the associated carbon (C) to the atmosphere (GATTI et al., 

2014). Consequently, the atmospheric C concentrations increase, influencing the 

greenhouse effect. Fire-related C emissions are accounted for by national-level 

inventories indirectly by accounting for deforestation. However, the emissions not 

associated with deforestation are not properly accounted for yet, which could 

underestimate a gross release of 989 + 504 Tg CO2 in the Amazon, an amount more than 

half as great as from old-growth forest deforestation during drought years (ARAGÃO et 

al., 2018; SILVA JUNIOR et al., 2021c). Therefore, the increasing fire susceptibility 

imposed by droughts (SILVA JUNIOR et al., 2019) and the projection of future drier 

conditions turn the C emission in the Amazon more dominated by forest fires, rather than 

the prevalence of emissions from fires directly associated with deforestation processes 

(ARAGÃO et al., 2018).   

During extreme drought, gross C emissions can be up to 1.7 times higher than in a normal 

climatic year (GATTI et al., 2014). Moreover, fire-related C emissions can destabilize 
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Amazon’s C balance once drought tends to increase the variance of the photosynthetic 

capacity of Amazon forests (ANDERSON et al., 2018). For example, considering C 

losses from fire under extreme drought conditions, Gatti et al. (2014) found that 

vegetation turned from a net C sink to being C neutral.  

In 2010, the fire-related C emissions were 0.51 + 0.12 Pg C year-1 (GATTI et al., 2014) 

for the entire Amazon basin, corresponding to 57% of global emissions resulting from 

land use change (0.9 + 0.7 Pg C year-1). In the same year, forest fires in Legal Amazon 

alone contributed 86% (68% to 103%) of the annual C emissions target set by the National 

Climate Change Plan, Decree nº 7,390/2010 (ANDERSON et al., 2015). Silva Junior et 

al. (2019) estimated that, during the droughts registered in 2010 and 2015/2016, fire-

related CO2 emissions were 0.47 Pg CO2. When considering Brazil’s national target for 

reducing carbon emissions (approximately 0.11 Pg CO2 per year from 2006 to 2017), fire-

related CO2 emissions only in 2010 represented 209% of it. Besides, Silva et al. (2018a) 

found that the carbon stock depletion caused by drought-induced forest fires can last for 

more than 30 years, significantly reducing forest biomass and high wood density trees. 

The increased frequency and extent of these drought-induced forest fires can slow down 

or stall the post-fire recovery of Amazonian forests (SILVA et al., 2018a).  

Finally, it is evident the considerable participation of fires in C emissions and the growing 

tendency of this contribution if considering the projections of future climate change. 

Therefore, in order to comply with national C emission reduction targets established 

under international agreements, it is essential that this contribution is duly accounted for 

(SILVA JUNIOR et al., 2021c). Policymakers, then, must review current fire-related legal 

instruments and the already adopted anti-deforestation policies and focus on adapting 

them or designing new instruments capable of properly incorporating the effects of 

climate change on C emissions. This revision must include a coherent plan for 

regularizing and protecting the public and indigenous lands and actions committed to 

Amazonia’s local social, environmental, and economic development (SILVA JUNIOR et 

al., 2021a). 

2.4 Land use regulation policies  

Land use regulation is a political mechanism ensuring that strategic public or private lands 

are safeguarded to guarantee common goods for society. Then, protected areas can be 
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defined as all public or private areas under land-use restrictions that contribute to protecting 

native ecosystems, even if they were created for purposes other than environmental 

conservation (SOARES-FILHO et al., 2010). Studies have shown that protected areas, 

including those with resident human populations, are necessary for an effective global 

strategy to minimize climate change and preserve tropical forests and ecosystem services 

(MELILLO et al., 2016; NEPSTAD et al., 2006, 2009; NOGUEIRA et al., 2018; 

RICKETTS et al., 2010; SOARES-FILHO et al., 2010). For example, it is estimated that 

protected areas in the Brazilian Amazon biome accounted for 54% of the forest remnant 

and contained 56% of its carbon up to 2010 (SOARES-FILHO et al., 2010). If properly 

implemented, protected areas have the potential to avoid 8.0 + 2.8 Pg of C emissions by 

2050 (SOARES-FILHO et al., 2010), albeit the benefits associated with their 

implementation go far beyond avoided carbon emissions. Protected areas are also 

recognized as effective instruments for reducing biodiversity loss (GELDMANN et al., 

2013) and improving socioeconomic conditions (FERRARO; HANAUER, 2014; 

NAIDOO et al., 2019).  

An important mechanism of protected areas is their categorization. The categories are 

fundamental to ensure the strict protection of critical ecosystems because they are highly 

threatened or contain endangered species. However, they also guarantee the legality of 

occupation and traditional activities by communities that depend on the natural resources 

of these areas. Another important case is the possibility of coupling the protection of 

ecosystems and ecologically based tourism, which is done in all Amazonian countries 

through national parks and natural monuments (SALVIO; GOMES, 2018). Creating a 

protected area intrinsically imposes restrictions on land use, and, therefore, the correct 

categorization is essential to achieving its specific objectives. It is common to encompass 

protected natural areas and indigenous lands for more comprehensive studies on protected 

areas. Other areas are often not included in national inventories, making it difficult to 

obtain spatial data on them, and/or their size makes the analysis scale incompatible with 

the spatial data most used today2.  

 
2 This is the case of Brazilian quilombolas territories and private areas protected under the Brazilian Forest 

Code.  
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Indigenous lands are generally a portion of the national territory inhabited by one or more 

indigenous tribes. They are intended to guarantee their productive activities, 

indispensable for preserving the environmental resources necessary for their well-being 

and physical and cultural reproduction, according to their customs and traditions 

(BRASIL, 1988). Although there is a consensus that indigenous peoples have the original 

right to their lands of traditional occupation, the legislation of each Amazonian country 

for the recognition of these lands differs. Therefore, the administrative process of 

demarcation goes through different spheres according to each country. Likewise, there 

are differences in the management and land use rules within these areas, but all 

Amazonian countries reaffirmed their objective to guarantee the way of life of indigenous 

populations.   

Protected natural areas, broadly referred to in this thesis as protected areas, are those 

provided for in the National Systems of Protected Areas. Each Amazonian country 

designates and describes specific protected categories provided by law that are possible 

to be created (Table 2.2). These systems are also unique by country; despite many 

nomenclature overlaps, they also have many national particularities. The same name often 

describes quite different categories between countries, and the opposite is true; two 

different names may refer to the same type of land use regulation in two countries 

(SALVIO; GOMES, 2018). Table A.1 presents the specific national description of each 

category found in each country. 

In an international context, to understand the role of different protection categories for 

environmental conservation and human well-being, national-specific categories must be 

homogenized in a common spectrum among all countries. Only this way, a minimum of 

coherence in intra-category analyses is guaranteed. In this sense, the International Union 

for Conservation of Nature (IUCN) proposes seven broad categories into which national 

categories can be classified. IUCN protected area management categories classify 

protected areas according to their management objectives. The categories are recognized 

as the global standard for defining and recording protected areas and, as such, are 

increasingly being incorporated into government legislation. However, like all 

generalizations, the suggested IUCN categories do not accommodate the particularities of 
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each country, and often the original national description does not fully fit IUCN definitions 

(SALVIO; GOMES, 2018).  

Table 2.2 - National systems of Protected Areas of the Amazonian countries. 
Country Original system name Creation year 

Bolivia Sistema Nacional de Áreas Protegidas (SNAP) 1992 

Brazil 
Sistema Nacional de Unidades de Conservação da 
Natureza (SNUC) 

2000 

Colombia Sistema Nacional de Áreas Protegidas (SINAP) 1994 

Ecuador Sistema Nacional de Áreas Protegidas del Ecuador (SNAP) 1976 

French Guiana Espaces protégés de Guyane 2013 

Guyana National Protected Areas System (NPAS) 2011 

Peru 
Sistema Nacional de Áreas Naturales Protegidas por el 
Estado (SINANPE) 

1997 

Suriname - - 

Venezuela Áreas Bajo Regime de Administración Especial (ABRAE) 1989 

Based on the original national descriptions, a simpler categorization was suggested in this 

thesis. It considers whether the protected area is indigenous land or the restriction level on 

the use of natural resources (Table A.1). This type of category generalization has been used 

before in other studies (e.g., NOLTE et al., 2013; PFAFF et al., 2015b; SOARES-FILHO 

et al., 2010). Each protected area was categorized in one of the three categories based on 

its original definition and with subsequent confirmation by specialist collaborators in each 

country3.  

In addition, protected areas can still be classified according to the jurisdiction of their 

creation. Jurisdiction for managing protected areas can be federal, departmental, or 

municipal. The national categories are often followed in other jurisdictions, such as Brazil 

and Peru. However, it is also the case that each jurisdiction adopts different categories, 

nomenclatures, and descriptions according to the jurisdiction, as in Bolivia. Although 

jurisdiction has already been proven as a relevant factor in the effectiveness of these areas 

 
3 We thank Dr. Galia Selaya (Bolivia), Dr. Dolors Armenteras (Colombia), MSc. Lorena Benitez (Ecuador), 

Ms. Géraldine Derroire (French Guiana), Ms. Odacy Davis (Guyana), MSc. Eddy Mendoza (Peru), Ms. 

Kaminie Tajib (Suriname), Dr. Roberto Rivera-Lombardi (Venezuela) for their valuable contribution in 

reviewing the final categorization used in this chapter. 
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(HERRERA; PFAFF; ROBALINO, 2019), this aspect will not be addressed in this thesis, 

considering all protected areas, regardless of their jurisdiction. 

The role of protected areas in curbing deforestation has already been the subject of many 

studies (ANDAM et al., 2008; NEPSTAD et al., 2006; PFAFF et al., 2015a; SOARES-

FILHO et al., 2010). Despite being often portrayed scientifically, there is still a gap in the 

literature on the role of these areas in mitigating fire occurrence in the Amazon. Nepstad et 

al. (2006) found that protected areas, including those that allow human residency, have 

reduced fire in the Brazilian Amazon. However, their analysis only included data from 

1998, which does not give us a long-term and up-to-date idea about the process. Nelson 

and Chomitz (2011) found that from 2000 to 2008, indigenous lands reduced forest fire 

incidence by 16 percentage points in Latin America. This study provides important 

evidence of the protected areas’ role in fire occurrence. However, it does not detail the 

results at the national level, which makes it difficult to incorporate relevant information 

into policy decisions, in addition to not including important political and economic 

dynamics in the post-2008 Amazon region.   

2.5 Fire within land use regulation policies: when and where is it legal to use fire? 

Fire ecology, or simply the study of the interaction of fire with the environment, is still a 

topic that has not been properly addressed in the legislature of the Amazon countries. 

Indeed, there is a gap in the Amazonian country’s legal frameworks to address fire use 

and management (MISTRY et al., 2019). In contrast with the substantial progress in 

environmental legislation and establishment of national and regional forest programs over 

the last 20 years, the current Brazilian government has also highlighted national 

governments’ virtual inability to control or limit increasing deforestation and forest 

degradation (EUFEMIA et al., 2022). Rather than preventative and (sustainable) 

management, regulations are frequently focused on fire suppression and risk adaptation 

approaches, such as capacity building for fire brigades. (EUFEMIA et al., 2022). Then, 

the following paragraphs will present a brief review of relevant points of each Amazonian 

country’s fire regulations. 

In Brazil, the fire was mentioned in the second Forest Code in 1998. Despite prohibiting 

fire use, by any means, in forests and other vegetation formations, it included an exception 

to the use of fires in farming and forestry practices if regional or local particularities could 
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justify it. This exception activity was later regulated by Decree nº 2661/1998. Considering 

the precautionary rules, this decree authorized fire use under a controlled burning regime, 

defined as the fire used as a production and management tool, and for scientific and 

technological research purposes, in areas with previously defined physical limits and 

subject to prior license. The Decree nº 2661/1998 has regulated the National System for 

Prevention and Combating Forest Fires (PREVFOGO) under the Brazilian Institute of 

Environment and Renewable Natural Resources (IBAMA) coordination. PREVFOGO is 

responsible for developing programs to order, monitor, prevent and combat forest fires, 

including raising the population's awareness of inadequate fire use risks (BRASIL, 1998). 

The new Forest Code, which came into force in 2012, also brings the same regulation for 

fire use. However, it brings the authorization for controlled burning in protected areas, 

considering fire as a tool for the management of the native vegetation, whose ecological 

characteristics are associated evolutionarily to fire occurrence (BRASIL, 2012). These 

regulations, however, do not define the permitted burning area or specific seasons at 

which burnings are allowed. Furthermore, an aggravating factor in fire fighting, control, 

and prevention actions is the stratification and distribution of roles across administrative 

levels. The lack of more concrete role definitions contributes to uncoordinated and 

inefficient practices in combatting fires in the Brazilian Amazon (EUFEMIA et al., 2022). 

Unlike other Amazonian countries, Brazil stood out in deforestation reduction during the 

last 20 years (INPE, 2022). Political efforts highlight the importance of combating 

deforestation and forest degradation. Brazil has already accomplished an 84% reduction 

in deforestation rate in 2012 compared to 2004 (INPE, 2022). The reduction in 

deforestation followed the adoption of a set of policies. The most notable one is the Action 

Plan for Prevention and Control of Deforestation in Amazonia (PPCDAm). However, 

even with the reduction in deforestation, the proportion of fire per kilometer deforested 

increased (INPE, 2017), showing that fire can be a process uncoupled from deforestation 

(ARAGÃO et al., 2018). In addition, since 2019, deforestation rates have sharply 

increased (SILVA JUNIOR et al., 2021a), going back to rates found two decades ago 

(INPE, 2022). No different, fire occurrence has broken records year after year since 2019, 

forcing the government to adopt urgent and often ineffective and costly measures 

(EUFEMIA et al., 2022; SILVEIRA et al., 2020; VALE et al., 2021). This dynamics of 

coupling-decoupling between deforestation and fire is evidence that anti-deforestation 
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policies alone may not be enough to contain and prevent fires, especially considering the 

social aspect of fire use in the Amazon region. Besides, climate change, coupled with a 

lack of governance, is boosting fire occurrence and stifling any positive effect policies 

might have on fire. 

In Bolivia, the environmental agenda has been dampened by adopting incentives for 

predatory development in terms of exploiting or even destroying natural resources. Since 

2013, the government has passed several regulations allowing for agricultural expansion, 

unsustainable infrastructure development (such as regional road networks), violations of 

land rights and land tenure in forested areas, and the promotion of deforestation 

(FUNDACIÓN SOLÓN, 2020). Two regulations mark this recent setback in the Bolivian 

environmental agenda; firstly, Law 1171, from 2019, established the guidelines for the 

National Policy of Integrated Fire Management. Although this law regulates all 

administrative sanctions for unauthorized burning, its enforcement was soon put on hold 

due to pressure from the agroindustry sectors (FUNDACIÓN SOLÓN, 2020). Again in 

2019, Supreme Decree 3973 authorized land clearing for agricultural activities in two 

large departments of eastern Bolivia adjacent to the Amazon rainforest, clearing the way 

for the pressure over natural resources to get even closer to the forest. This political 

approach reflects the high rates of deforestation in the region and, consequently, the rising 

occurrence of fires.  

In the Colombian Amazon, fires are associated with advances in agricultural and livestock 

activities, tenure inequality, the weakness of property rights, and poor fire-management 

practices (ARMENTERAS et al., 2019). In Colombia, the political context is particularly 

relevant in deforestation and forest degradation dynamics. Armed guerrillas occupied 

regions with the highest concentration of protected areas for decades (EUFEMIA et al., 

2022). Although these regions have been impacted by coca production, deforestation and 

forest degradation intensified after a peace agreement between the largest guerrilla group, 

FARC-EP, and the Colombian government was signed in 2016 (ARMENTERAS; 

SCHNEIDER; DÁVALOS, 2019). The increase in forest degradation in the Colombian 

Amazon reflects, in part, the weak governance of fire use in the region. Indeed, there are 

regulatory gaps in farmers' and local communities' fire use and management (EUFEMIA 

et al., 2022). Like Bolivia, the few pro-environmental initiatives that emerge in Colombia, 
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such as Fire Management Law 221, soon prove largely ineffective and unimplemented. 

This scenario is strongly linked to an extractive (often centralized) political and economic 

agenda (EUFEMIA et al., 2022). Indeed, this contradicts Colombia's leading role in 

legally recognizing the Colombian Amazon as a “subject of rights.”  

The Ecuadorian Amazon is also highly impacted by deforestation and forest fires, 

reflecting the historical disconnection of environmental policies regulating fire use and 

protected areas (EUFEMIA et al., 2022). However, the importance of ecotourism to the 

regional economy has led to the adoption of preventive measures and alternative practices 

for using and managing fire in agricultural activities. These measures became the core of 

the national program “Amazon without Fire” (PASF) and the creation of the National 

Committee for Integrated Fire Management (Conamif), both public policy instruments 

established in the Regulations of the National Environmental Code (EUFEMIA et al., 

2022). Among the Amazonian countries, Ecuador is taking the leading role in recognizing 

the importance of fire-regulated and controlled use by implementing alternative practices 

that contribute to protecting the environment and improving community living conditions 

(EUFEMIA et al., 2022). 

As a French overseas department, French Guiana responds to French and EU legislative 

frameworks on environmental policies (EUFEMIA et al., 2022). Disregarding site-

specific fire use, culturally or economically, the French Environmental Code, the national 

forest law, and several decrees on national parks make fires in protected areas illegal. In 

Guiana, incorporating REDD+ into the National Forest Plan and Policy and the Code of 

Practice for Timber Harvesting includes regulations supporting fire suppression and 

prevention (EUFEMIA et al., 2022). These regulations are mostly based on the 

implementation of forest carbon financing mechanisms and capacity-building schemes of 

national forest fire management (RODRÍGUEZ et al., 2011). The mismatch between such 

regulations and the extensive burning in the region evidences the governance lack and 

weak institutions to properly implement them (EUFEMIA et al., 2022). Suriname has 

comparatively few environmental policy instruments at the national level, which reflects 

the lack of fire management capacity (EUFEMIA et al., 2022). Going against the 

recognition of the fundamental role of indigenous lands in environmental conservation, 

the Surinamese government accumulates conflicts with indigenous peoples with its 
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inadequate approach to protected areas implementation, including violation of human and 

land rights (HAALBOOM; CAMPBELL, 2012). 

Likewise, the Brazilian approach, the Peruvian fire legal framework, is more reactive, 

focusing primarily on effective fire suppression rather than on preventive measures to 

control and regulate fires or on the development of forestry (MOURAO; MARTINHO, 

2019). For instance, regulations in the National Service of Natural Protected Areas and 

National Plan for Risk Management and Adaptation to Climate Change in the 

Agricultural Sector include mechanisms to deal with existing fires in a timely and planned 

manner, aiming to minimize their impacts, especially on rainforests (EUFEMIA et al., 

2022). However, as in Brazil, the lack of concrete roles in fire management, and in the 

Peruvian case, the shared responsibility among different ministries (environmental and 

agriculture) may lead to a lack of coordinated approach, limiting the implementation of 

current legislation (EUFEMIA et al., 2022). 

Venezuela, on the other hand, is moving in the opposite direction. Its fire-management 

programs and policies prioritize proactive and preventive measures rather than being 

simply reactive (EUFEMIA et al., 2022). The new Forest Law, from 2013, provides a 

new set of activities related to human–forest relations that promotes popular consultation 

at both regional and local levels. This approach has been called “intercultural and 

participatory fire management.” It is a space for dialogue and collaborative research that 

supports a new paradigm based on the knowledge exchange between indigenous people, 

farmers, scientists, and authorities (ELOY et al., 2019). However, Venezuela historically 

faces several challenges regarding the socio-economic and political aspects. These 

challenges undermine its capacity to fight illegal activities in the Amazon region, mainly 

related to mining. Even though its protagonist role in participative fire management 

shows an important advance in recognition of traditional knowledge as part of the solution 

to environmental degradation, and as such, it should be seen as a model by other countries 

in the Amazonian region.  
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3 INTERCOMPARISON OF BURNED AREA PRODUCTS AND ITS 

IMPLICATION FOR CARBON EMISSION ESTIMATIONS IN THE 

AMAZON4  

3.1 Introduction 

Naturally occurring fires are a rare event in the Amazon, with return intervals of hundreds 

if not thousands of years (BUSH et al., 2008). However, fires are often used as a tool to 

clear the land after deforestation or maintain existing farmland and pasture, which means 

their occurrence in the Amazon is primarily associated with human activity 

(COCHRANE, 2003; PAUSAS; KEELEY, 2009). These two fire types, deforestation 

fires and management fires, impose risks on adjacent forests, and when these are 

impacted, the third main type of fire occurs, the forest fires. Forest fires contribute 

significantly to global climate change, consuming plant biomass and transferring part of 

the carbon (C) stock to the atmosphere (GATTI et al., 2014). For example, the gross C 

emissions from forest fires across the Brazilian Amazon (270 ± 137 Tg C year−1) 

(ARAGÃO et al., 2018) corresponded to 80% of the Brazilian emissions resulting from 

land use change (338 ± 142 Tg C) (DE AZEVEDO et al., 2018) during drought years. 

Additionally, forest fires in the Brazilian Legal Amazon contributed 86% (68% to 103%) 

to the annual C emission reduction target (ANDERSON et al., 2015) set by the Brazilian 

National Climate Change Plan (BRASIL, 2018). 

Despite this remarkable contribution, forest fire-related C emissions are not yet accounted 

for in national-level inventories. The quantification of deforestation-related fire emissions 

in these inventories takes into account the strong relationship between these two processes 

(r² = 84%, p < 0.004) (ARAGÃO et al., 2008). However, in the last decade, a relative 

decoupling between deforestation and fire incidence has been observed, disaggregating 

these two processes in terms of emissions (ARAGÃO et al., 2018). This pattern has been 

associated with an amplification of forest fragmentation (SILVA JUNIOR et al., 2018) 

and an increase in extreme drought frequency (ARAGÃO et al., 2018), favoring the 

leakage of deforestation and management of fires into surrounding forests. These 

anomalous climate events have happened more often during the last few decades 

 
4 This chapter is an adapted version of the paper: PESSÔA, A. C. M. et al. Intercomparison of Burned Area 

Products and Its Implication for Carbon Emission Estimations in the Amazon. Remote Sensing, v. 12, n. 

23, p. 3864, 25 nov. 2020. 
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(JIMÉNEZ-MUÑOZ et al., 2016; MARENGO et al., 2011), and global climate models 

predict a drier Amazon in the 21st century (COX et al., 2008; LI; FU; DICKINSON, 

2006). Recently, the area of burned forests relative to the total burned area has increased 

during extreme droughts. For example, an increase of 51–99% in the forest burned area 

was observed in the 2015/2016 extreme drought years in relation to the average from 

2006 to 2016 (SILVA JUNIOR et al., 2019). In addition, fires reduce forest carbon 

storage by approximately 25% compared to pristine forests (SILVA et al., 2018a), 

highlighting the impact of forest fires on the carbon balance. Therefore, the prevalence of 

forest fires during extreme droughts makes it urgent to account for non-deforestation fire-

related carbon emissions (SILVA JUNIOR et al., 2019). 

In order to have fire-related C emissions adequately accounted for, it is essential to 

accurately estimate the extent, location, and land cover affected. In this sense, several 

methodological approaches have been developed using remote sensing applications to 

detect and monitor fires (ANDERSON et al., 2015; GIGLIO et al., 2018; PENHA et al., 

2020; PETTINARI; CHUVIECO, 2018; SHIMABUKURO et al., 2015). The burned area 

can be detected by remote sensing in various ways. The diversity of methodologies, the 

availability of multiple sensors, and the fast development of new technologies reflect the 

high number of burned area products. They can be developed for different purposes, reach 

different scales, and present different spatial resolutions, varying considerably in 

distribution, size, and frequency of mapped fires (MOUILLOT et al., 2014). Therefore, 

there is a need for reliable burned area extent estimation to improve fire-related C 

emission estimates in this region. In this sense, intercomparison is an important and 

practical tool for characterizing burned area products according to their performance 

(HUMBER et al., 2019; PADILLA et al., 2015) when field validation points are not 

available. 

Nonetheless, intercomparison implicitly assumes that, as a whole, the products being 

compared provide a reasonable approximation of the conditions on the ground 

(HUMBER et al., 2019). It should be recognized as a complementary evaluation to 

product validation. Since no product is a ground portrait, and all have limitations, 

choosing which product to use should consider the advantages and disadvantages of the 

data use objective, considering the regional performance. It must be recognized that the 
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main challenge is trying to precisely balance the pros and cons and identifying the 

implications of choice.  

Only a few studies have been conducted to compare different burned area products 

(FORNACCA; REN; XIAO, 2017; HUMBER et al., 2019; PADILLA et al., 2014; RUIZ 

et al., 2014; TSELA et al., 2014). Currently, there is a dearth in the literature providing a 

regional intercomparison of burned area products for the Amazon (HUMBER et al., 

2019). Therefore, it is critical to evaluate the relative performances of the most-used 

global burned area products in forest and non-forest areas to provide clear information 

regarding their limitations and implications. This work performed an intercomparison of 

three global burned area products and one regional; all developed independently and for 

different purposes and scales. The study considered the total burned area detected and its 

influence on fire-related C emission in the Brazilian Amazon biome for 2015. The 

specific objectives were as follows: (i) evaluate the differences and similarities among 

the products regarding the total burned area detected, considering burned areas detected 

over forest and non-forest land covers; (ii) evaluate the differences and similarities in fire-

related carbon emission estimates, and (iii) evaluate the spatial differences and 

similarities among the products. We hypothesize that the product variation increases in 

forest areas due to the difficult distinction of the burned areas in this land cover type 

(ANDERSON et al., 2017; PEREIRA et al., 2004; ROY; BOSCHETTI, 2009).  

The next sections are organized to provide a brief review of burned area detection 

techniques with remote sensing data, followed by the description of the study area and 

the burned area products considered in this study. We finally describe our 

intercomparison approaches and present their results regarding the burned area and 

committed C emissions. 

3.2 Burned area detection by remote sensing 

The detection and mapping of burned areas aim to produce spatially-explicit data on the 

extent of fire-affected areas, usually using data from optical sensors on the solar spectrum 

(CHUVIECO et al., 2019). This data ranges from the visible light (0.4–0.7 µm) to the 

short wave infrared (SWIR) bands (1.4–2.2 µm). The radiation reflected by the Earth’s 

surface in these spectral regions (reflectance) is influenced by the target chemical and 

physical characteristics and the sun–target–sensor geometry (CHUVIECO et al., 2019). 
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Data from the thermal infrared spectrum (0.7–2.2 µm) can also be used to map burned 

areas, but they are commonly integrated with other optical bands (PEREIRA et al., 1999). 

The near-infrared (NIR, 0.7-1.0 µm) and SWIR (1.4–2.2 µm) spectral regions are 

especially sensitive to forest structure changes (PLENIOU; KOUTSIAS, 2013b). 

Therefore, they are widely used to generate spectral indices or ratios for burned area 

detection (BOSCHETTI; STROPPIANA; BRIVIO, 2010; CHUVIECO; MARTÍN; 

PALACIOS, 2002; LONG et al., 2019; MITHAL et al., 2018; PLENIOU; KOUTSIAS, 

2013a; SILVA et al., 2004). However, due to a strong variability in the spectral 

characteristics of both pre- and post-fire conditions and the fire intensity and severity, 

using such indices may lead to the misclassification of burned areas, especially in forest 

environments (BOSCHETTI; STROPPIANA; BRIVIO, 2010). Furthermore, as all of 

them are based on reflectance changes related to the immediate charcoal/ash deposition 

and lingering changes in the vegetation structure, they are also highly dependent on the 

temporal behavior of such conditions (CHUVIECO; MARTÍN; PALACIOS, 2002; 

MELCHIORRE; BOSCHETTI, 2018).  

A burned area mapping algorithm based on spectral indices derived from moderate 

resolution imaging spectroradiometer (MODIS) imagery and daily active fire data is 

described by Giglio et al. (GIGLIO et al., 2018). Their final product, MODIS Direct 

Broadcast Monthly Burned Area Product Collection 6 (MCD64A1), presented a global 

omission error of 0.73 (BOSCHETTI et al., 2019), showing the conservative aspect of 

their methodology, and the underestimation that unsupervised algorithms can generate. 

When considering tropical forest ecosystems, the omission and commission errors are 

still higher (0.9060 and 0.6350, respectively) (BOSCHETTI et al., 2019). Bastarrika et 

al. (2014) developed a supervised burned area mapping software (BAMS), which 

analyzes the temporal behavior of a multispectral index derived from Landsat images. 

However, their algorithm has only been tested in temperate forests, and its application for 

burned area mapping in tropical regions is more complex. Some of the challenges 

regarding burned area mapping in tropical forests are the high and persistent cloud cover 

and canopy closure, which can preclude the detectability of understory fires. 

Another way to highlight features of interest, such as burned areas, is through a linear 

spectral mixing model (LSMM) (ANDERSON et al., 2005). LSMM is based on a linear 
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relation representing the spectral mixture of different targets within a pixel. The data 

dimensionality (the number of reflectance bands) is reduced by generating fraction 

images to represent the proportion of each target of interest within the resolution cell. 

Usually, the LSMM is processed to represent three targets (e.g., vegetation, soil, and 

shade). Shade fraction images are more efficient than spectral indices in mapping burned 

areas in the Amazon (ANDERSON et al., 2005). Many studies have used LSMM to detect 

burned areas in the Brazilian Amazon (ANDERSON et al., 2005; CARDOZO et al., 2014; 

LIMA et al., 2012; SHIMABUKURO et al., 2009, 2014). They use moderate and/or 

coarse-resolution images (e.g., MODIS and/or Landsat, respectively) to perform LSMM, 

followed by shade fraction image segmentation and unsupervised classification. This 

approach proved to be an efficient method for mapping burned areas. However, all these 

studies require a final manual image interpretation procedure to minimize 

misclassifications.  

A fundamental parameter that influences the detection of burned areas by satellites is the 

sensor resolution, both spatial and temporal. Most fire occurrence products are developed 

with satellite data with a coarse spatial resolution (> 250 m). Coarse spatial resolution 

images make the development of automatic mapping very challenging due to the 

variability in the spectral characteristics of the burned area. On the other hand, a medium 

spatial resolution (~30 m) gives more reliability to evaluating the burned area 

(SHIMABUKURO et al., 2015). However, these sensors often have worse temporal 

resolutions, and their longer revisit time decreases the chances of obtaining cloud-free 

images. This can be critical for burned area mapping over tropical regions, where the 

recovery of the spectral signal of vegetation can be quick, and cloud cover is persistent 

(LONG et al., 2019). The spatial resolution can also induce the underestimation of small 

fires, leading to a considerable underestimation of the global burned area (GIGLIO et al., 

2018; RANDERSON et al., 2012). For example, this limitation can underestimate fires 

in croplands by as much as ten times (GIGLIO et al., 2018). 

3.3 Study area  

The study area corresponds to the Brazilian Amazon biome below the equator line. The 

area comprises about 74% of the Legal Amazon, and 73% of its 3,583,565 km² was 

covered by forest in 2016 (Figure 3.1). The study area includes the states of Acre (AC), 
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Rondônia (RO), and portions of the states of Amazonas (AM), Pará (PA), Amapá (AP), 

Maranhão (MA), Mato Grosso (MT), Tocantins (TO) and Roraima (RR) (Figure 3.1).   

Figure 3.1 - Study area located in the Legal Amazon. Forest proportion in a 10x10 km grid cell, 

extracted by the PRODES forest mask of 2016 used to select burned areas over 

forest. It is presented the total area of each Brazilian state that intersects the study 

area and their respective percentage area and forest area within the considered 

boundaries. 

 

Table 3.1 - List of Brazilian states included in the study area, their respective total area, and forest 

area within the study area boundaries. 

State  State area 
(km²) 

State area 
within the 
study area 

(km²) 

Proportion of the 
state area within 

the study area 
(%) 

Forest area 
within the 
study area 

(km²) 

Forest 
proportion 

within the study 
area (%) 

Rondônia RO 237,765 237,765 100 121,777 51 
Acre AC 164,124 164,124 100 142,368 87 
Amazonas AM 1,559,147 1,413,520 91 1,288,699 91 
Roraima RR 224,301 21,393 10 18,475 86 
Pará PA 1,247,955 1,110,326 89 742,538 67 
Amapá AP 142,829 15,304 11 12,415 81 
Tocantins TO 277,721 23,973 9 2,288 10 
Maranhão MA 278,157 114,860 41 25,583 22 
Mato 
Grosso 

MT 903,198 480,699 53 260,016 54 

 Total 5,035,197 3,581,964 71 2,614,158 73 

For the regional analysis, we considered only the percentage of area that falls within the 

study region of states with more than 40% of their area considered and under similar 

rainfall regimes (dry season from July to October) (Figure 3.1, Table 3.1). In addition, 

since the TREES product does not consider the northern hemisphere region in its mapping 
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due to the difficulty in obtaining cloud-free images, we excluded this region from our 

analyses to consider the common mapping area among all four products. 

3.4 Materials and methods  

3.4.1 Burned area products  

Currently, more than 13 open-access burned area products are available worldwide (Table 

B.1), which are widely used. We considered three global burned area products and one 

regional product for the intercomparison evaluation (TREES, MCD64A1, GABAM, and 

Fire_cci) (Table 3.2). The products were chosen to consider the spatial scale since we 

would like to compare the global products with a regional one and the spatial resolution. 

In addition, we would like to analyze the effect of higher-resolution inputs in burned area 

detection. Therefore, we chose two global products that are widely used in the literature 

(MCD64A1 and Fire_cci), a recently published global product that has a spatial resolution 

of 30 m (GABAM), and a regional product developed particularly for the Amazon region 

(TREES). 

Table 3.2 - Specifications of the burned area products to be compared. 

Name Developer Scale Time Span Sensors/Inputs 
Spatial 

Resolution 
Reference 

TREES TREES—INPE 
Regional (Brazilian 

Amazon) 
2006–2016 MODIS 250 m (1) 

MCD64A1 c6 NASA Global 2000–present 
MODIS (surface reflectance 

and active fires) 
500 m (2) 

GABAM 

Institute of 
Remote Sensing 

and Digital 
Earth—Chinese 

Academy of 
Sciences 

Global 
2000, 2005, 

2010, 2015 and 
2018 

Landsat 8 OLI 30 m (3) 

Fire_cci v.5.0 ESA Global 2001–2016 

MOD09GQ (surface 
reflectance) 

MOD09GA (quality flags) 
MCD14ML (active fires) 

250 m (4) 

Note: (1) (ANDERSON et al., 2005, 2015; SHIMABUKURO et al., 2009); (2) (GIGLIO et al., 2018); (3) 

(LONG et al., 2019); (4) (CHUVIECO et al., 2018). 

The Tropical Ecosystems and Environmental Sciences lab (TREES), based on the 

National Institute of Space Research (INPE), developed their burned area product on a 

regional basis that covers 86% of the Amazon biome, developed as part of multiple 

projects5 (ANDERSON et al., 2005, 2015; SHIMABUKURO et al., 2009). Their product, 

 
5Project Amazonica—NERC/grant: NE/F005806/1; Project Estimativa de emissões de CO2 por 

desmatamento e degradação florestal utilizada como subsidio para definição de municípios prioritários 

para monitoramento e controle—CAPES/grant; Project Mapping and monitoring forest degradation using 

remote sensing data with medium and moderate spatial resolution—FAPESP/grant: 16/19806-3. 
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called here TREES, is available upon request for 2006 to 2016 in an annual composite 

dataset. The product was developed using a hybrid classification method to delineate 

burned areas. First, the images of bands 1, 2, and 6 (red, near-infrared, and medium 

infrared) of the product MOD09A1Q1 were used as input to the LSM model. Then, a 

water mask is applied to avoid the detection of water pixels, and unsupervised 

classification of the shade fraction image is carried out. In this fraction image, the burned 

areas are highlighted, facilitating the distinction of these targets on the terrestrial surface 

(SHIMABUKURO et al., 2009). Subsequently, an expert inspection is carried out to 

improve the accuracy of the final map, especially in forested areas, where burned areas 

can be easily confused or undetected (ANDERSON et al., 2005, 2015). Finally, the map 

accuracy resulting from the methodology adopted by TREES was quantified using a 

point-based method, considering a study case in Mato Grosso state for 2010 

(ANDERSON et al., 2017). This product presents an overall accuracy for forested 

(0.9920) burned areas slightly higher than for non-forested (0.9630) burned areas (Table 

3.3). 

Table 3.3 - Accuracy information of four burned area products. 

Burned Area 
Product 

Overall 
Accuracy 

Omission 
Error 

Commission 
Error 

Validation Method Summary Reference 

TREES      

Forest areas 0.9920 0 0.1600 Point-based validation. A stratified random sample of 
300 points was distributed over the burned and 
unburned forest on Landsat images for Mato Grosso 
state, 2010. The points are verified by experienced 
interpreters. 

(ANDERSON 
et al., 2017) Non-forest 

areas 
0.9630 0.4852 0.1067 

MCD64A1 c6      

Global 0.9970 0.7260 0.4020 Globally distributed reference dataset from March 1st, 
2014, to March 19th, 2015, consisting of high-
resolution reference maps derived from 1116 Landsat 
images visually interpreted. These independent 
reference data were selected using a stratified 
random sampling approach that allows for the 
probability sampling of Landsat data in both time and 
space. 

(BOSCHETTI 
et al., 2019) Tropical 

forests 
0.9940 0.9060 0.6350 

GABAM 0.9392 0.3013 0.1317 

It considered 80 validation sites globally, from where 
it acquired data from Landsat 8, CBERS-4 MUX, and 
Gaofen-1 WFV. The reference burned areas were 
mapped with a semi-automatic classification method 
and refined with the manual edition. 

(LONG et al., 
2019) 

Fire_cci v5.0 0.9972 0.7090 0.5123 
A stratified random sample of 1200 pairs of Landsat 
images, covering the whole globe from 2003 to 2014. 

(CHUVIECO 
et al., 2018) 

MCD64A1 is a global dataset on burned areas developed by the National Aeronautics and 

Space Administration (NASA). The product has been freely available from 2000 to the 

present. Incorporating MODIS surface reflectance data coupled with 1 km MODIS active 
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fire observations, its algorithm uses a burn-sensitive vegetation index (VI) to create 

dynamic thresholds applied to produce the monthly composite data (GIGLIO et al., 2018). 

The current collection (c6) algorithm has already improved from older ones. In addition, 

there is a continuous effort to minimize its limitations (more details in Table A.1). The 

product has been applied as input for the development of other burned area products 

(ARTÉS et al., 2019; GIGLIO; RANDERSON; VAN DER WERF, 2013), as well as for 

the development of the Global Fire Atlas. The Global Fire Atlas includes information on 

ignition locality, fire line, speed, and direction of spread, which is essential to 

understanding the dynamics of individual fires and, therefore, better characterizing the 

changing role of fire in the Earth system (ANDELA et al., 2019). It has also been used as 

input for biomass burning emissions models (RANDERSON et al., 2012; SHI; 

MATSUNAGA; YAMAGUCHI, 2015) to study the relation between fire and land cover 

change (FANIN; VAN DER WERF, 2015), and to track the response of fire occurrence 

to climate change (CHEN et al., 2017). 

The Global Annual Burned Area Mapping (GABAM) is a recently released burned area 

product developed by Long et al. (2019). It is built from an automated algorithm 

implemented on Google Earth Engine (GEE). It uses reflectance data from the Landsat 8 

Operational Land Imager (OLI) and spectral indexes information as input for a Random 

Forest model. A final step consists of burned area shaping through a region growth 

approach (LONG et al., 2019). GABAM is currently the global dataset with the highest 

spatial resolution (30 m). However, it is only available for 2000, 2005, 2010, 2015, and 

2018 and in a yearly composite, which does not allow seasonal analysis within a year. 

Nevertheless, its validation process showed lower omission (0.3013) and commission 

(0.1317) errors compared to Fire_cci and MCD64A1 (Table 3.3). Implementing the 

algorithm in GEE constitutes a great advance in mapping approaches since the tool is 

open source, provides an extensive catalog of medium-resolution images, and allows for 

cloud processing, which considerably increases the data incorporated in the process. 

The product Fire Disturbance (Fire_cci) is part of the Climate Change Initiative (CCI) 

program developed by the European Space Agency (ESA). A MODIS dataset is used to 

map the burned areas, including reflectance images (MOD09GQ), quality masks 

(MOD09GA), and active fires (MOD14ML) (CHUVIECO et al., 2018) (Table 3.2). The 
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images are aggregated into monthly composites, and the classification algorithm is based 

on region growth after selecting seed pixels. Spatial and temporal parameters are then 

used to reduce commission and omission errors (CHUVIECO et al., 2018). The final 

product is made available on a global scale. Version 5.0 was used in this work since it 

was the most updated version when this work was developed. Among the products 

developed using coarse spatial resolution data, Fire_cci was the first to provide a global 

dataset with a 250 m resolution. Its validation process indicated an overall accuracy of 

0.9972, with 0.7090 global omission errors and 0.5123 commission errors (Table 3.3). A 

new version of Fire_cci (version 5.1) was recently released (LIZUNDIA-LOIOLA et al., 

2020). The new version brings improvements to the burned area detection algorithm, 

which has allowed the detection of more burned areas globally compared to version 5.0, 

and expands the time from 2001 to 2019 (LIZUNDIA-LOIOLA et al., 2020). However, 

even with the improvements, the product has omission and commission errors similar to 

the previous version. Evaluating the southern hemisphere of South America, the product 

detects less burned area than the product MCD64A1 for the period 2005–2011. Its 

performance improvement seems much smaller than the results obtained for the African 

continent (LIZUNDIA-LOIOLA et al., 2020).  

In the following sections, these products will be called TREES, MCD64A1, GABAM, 

and Fire_cci. We considered only burned area polygons detected between June and 

November 2015 to guarantee temporal compatibility among the products analyzed. For 

GABAM, burned areas throughout the year were considered, as this is the only temporal 

resolution available. In order to extract the burned area over the forest, we applied the 

old-growth forest mask of 2016, produced by the Amazon Forest Deforestation 

Calculation Program (PRODES) (INPE, 2022) (Figure 3.1). It covers the period of 

August 2015 to July 2016 and is thus a conservative mask for forest cover. The non-forest 

class corresponds to other land covers. It is important to highlight that, despite the TREES 

product presenting the best results regarding errors of omission and commission. Because 

it is a product designed specifically for the study region involving a visual interpretation 

correction phase, we did not consider it as reference data. Our objective here was to 

compare the products with each other and to analyze the relative performance of each one 

in mapping burned areas in the Amazon, not to validate them based on a reference. We 

emphasize that each product has its development methodology, which incorporates 
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advantages and limitations and even assumes that, as a whole, the product provides a 

reasonable approximation of the conditions on the ground, none of which is the truth to 

be used as a reference. 

3.4.2 Committed gross carbon emission estimation 

To estimate the committed gross carbon emission, we used the above-ground biomass 

(AGB) map developed by Environmental Monitoring via Satellite in The Amazon Biome 

- MSA/Amazon Fund - Subproject 7 - Estimating Biomass in the Amazon (EBA). The 

above-ground biomass (AGB) was estimated at three different levels based on 836 

LiDAR transects randomly distributed across 3.5 million km² of the Amazon forest. The 

methodology was based on LiDAR AGB estimates (LONGO et al., 2016) and validated 

using field inventory AGB data (CHAVE et al., 2014). Then, the LiDAR AGB was 

extrapolated for the Amazon biome by using a nonparametric regression method 

(Random Forest) to model the AGB by using remote sensing data of MODIS vegetation 

index, Shuttle Radar Topography Mission data (SRTM), precipitation data from the 

Tropical Rainfall Measuring Mission, Synthetic Aperture Radar data of the Phased Array 

type L-band Synthetic Aperture Radar and geographic coordinates. The coefficient of 

determination and the root mean squared error obtained with the final model of the third 

level of AGB estimation were R² = 0.7485 and RMSE = 54.36 Mg ha-1, respectively. 

The estimated AGB uncertainty map was calculated by propagating the uncertainties 

through the different levels of biomass estimation, field plots (first level), LiDAR transect 

(second level), and satellite (third level). The first and second levels were calculated 

according to Longo et al. (2016), considering calibration uncertainty, representativeness 

uncertainty, and prediction uncertainty. Next, the wall-to-a-wall uncertainty map was 

developed, propagating the total LiDAR AGB uncertainty to all cells covered by the AGB 

map of the Amazon biome. This was calculated using the mean and standard deviation of 

the AGB by the total uncertainty and AGB value of each cell of the LiDAR transect. 

Then, a hundred AGB wall-to-wall maps were generated using the normal distribution 

values for AGB, remote sensing variable, and random forest regression model. The final 

uncertainty map was generated by calculating each cell's standard deviation of AGB. 

The EBA map covers the Amazon biome, providing AGB density information for 2016 

at a 250 m spatial resolution and an associated uncertainty map. Even though our analysis 
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was done for 2015, we used the map for 2016 because just a minimum fraction (2%) of 

the burned area of 2015 overlapped the deforested area of PRODES 2016 (Table 3.4). 

Therefore, the emissions associated with these areas were considered negligible 

compared to the total amount estimated for each burned area product.  

Table 3.4 - Total burned area and its intersection area with PRODES 2016. 

 Burned area   
Non-forest + Forest (km²) 

Burned area over 
PRODES 2016 (km²) 

% 

TREES 35558.6 658.8 1.85 

MCD64A1 34514.1 513.1 1.49 

GABAM 28193.3 750.8 2.66 

Fire_cci 14924.3 243.2 1.63 

The committed carbon gross emission was estimated based on the relationship between 

the biomass before and after the fire, measured within a maximum one-year gap (Equation 

3.1).  

𝐵𝑓 = 0.05 · 𝐵𝑖
1.47 ( 3.1) 

Bf is the above-ground living biomass (Mg ha−1) after the fire, and Bi is the initial above-

ground living biomass given by the AGB map. The difference between Bi and Bf gives 

us the committed biomass density. After we applied this model to obtain the committed 

biomass density per cell, we transformed this density map into an absolute biomass value 

by calculating the correct biomass proportion given the cell area. Then, following the 

Intergovernmental Panel on Climate Change’s (IPCC) approach (IPCC, 2013), we 

obtained the committed carbon map by multiplying the biomass per 0.5, that is, the 

amount of committed carbon per pixel. The committed carbon emission is the sum of all 

cells that fall within the burning polygons, considering the different products. The same 

approach was used for the biomass uncertainty map since it provides a biomass density 

value to be used as an uncertainty interval of the value presented in the AGB map, thus 

resulting in a committed carbon uncertainty map. In the same way, the uncertainty of the 

committed carbon emission is the sum of all cells that fall within the burning polygons, 

considering the different products. 
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Table 3.5 - Summary of the data used for developing. 

Reference Location Vegetation type 
Control 

(Mg.ha-1) 

Mean AGB 
after fire 
(Mg.ha-1) 

(1) Brasília (15o 51'S, 47o63'W) Cerrado 7.128 2 

7.321 0.237 

8.625 2.226 

10.031 1.604 

(2) Tailândia (Central-eastern Pará) Tropical moist 
evergreen forest 

295 270 

(3) Rio Maró, westernmost Pará (02°44′S; 55°41′W) Riverbanks forests 424.3 341.7 

(4) Rio Maró, westernmost Pará (02°44′S; 55°41′W) Terra firme forests 95.4 46.8 

91 54 

(5) Paragominas (NE of Pará) Dense forest with 
vines 

485 339.5 

Santana do Araguaia (South of Pará) Transitional forest  390 273 

Alta Floresta (North of Mato Grosso)  Open forest 370 259 

(6) Alta Floresta (North of Mato Grosso)  Open forest 199 88 

(7) Roraima Dense forest 237 202.3 

(8) Acre (southwest region) Open forest 203 212 

Amazonas (central region) Dense forest 230 286 

Note: (1) (KAUFFMAN; CUMMINGS; WARD, 1994); (2) (COCHRANE; SCHULZE, 1999); (3) 

(HAUGAASEN; BARLOW; PERES, 2003); (4) (BARLOW et al., 2002); (5) (ALENCAR; NEPSTAD; 

DIAZ, 2006); (6) (ALENCAR; NEPSTAD; MOUTINHO, 2005); (7) (BARBOSA; FEARNSIDE, 1999); 

(8) (SILVA et al., 2018a). 

This model shows a strong correlation between the incidence of fire and the initial 

biomass existing before burning. The hypothesis assumes that with increased biomass, 

microclimate conditions are more conducive to maintaining humidity within the canopy, 

reducing the intensity and susceptibility to fire spreading (BRANDO et al., 2012). This 

method is an improvement of Anderson et al. (2015) since it incorporates new data from 

Silva et al. (2018a). We adopted the committed gross carbon emission model adjusting 

the relationship between biomass before and after fire through a power function. All 

values compiled for establishing the equation were derived from measurements of AGB 

within one year after fire occurrence (Table 3.5). This method only accounts for the short-

term (1 year) carbon loss, although it is reported in the literature that long-term biomass 

losses may happen for as much as 30 years after a fire event (SILVA et al., 2018a). The 

update function is shown in Figure 3.2, where we found a highly significant relationship 

between biomass before (control) and after the fire (R² = 0.95). 
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Figure 3.2 - Relationship between initial biomass and remaining biomass after fire events. Plots 

compiled from the literature have burned only once, with measurements taken within 

one year of the fire event. 

 

 

3.4.3 Total and regional analysis 

We adopted two approaches for the analyses: the vector approach, which was applied to 

evaluate the agreement between the total burned area detected by each product and to 

estimate its impact on carbon emission, and the matrix approach, which was applied to 

investigate the spatial variations in these results. 

The total burned area was computed for each of the four products on the vector approach, 

considering the forest and non-forest classes. This processing was carried out using the 

‘rgeos’ package (BIVAND; RUNDEL, 2018) in R statistical software (R CORE TEAM, 

2020). Subsequently, the C emission maps (EBA and EBA uncertainty) were used 

separately to extract the sum of committed gross C emissions within each burned area 

polygon, considering the different land cover classes. This process was carried out on R, 

using the ‘raster’ package (HIJMANS, 2017). Of the total 113,190 km² burned area 

detected, considering all four products, 0.3% was not considered due to polygon size 

incompatibility with the resolution of the carbon data. The most affected product was 

GABAM, whose deleted polygons summed 133.3 km2. This area, however, represents 
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only 0.5% of the total burned area of this product and, therefore, can be considered 

insignificant. The estimates were also made separately for each Brazilian state included 

in the study area to generate information for decision-making since the states have 

autonomy in seeking investments under Reducing Emissions from Deforestation and 

Forest Degradation (REDD+) initiatives. 

We compared the absolute value of the difference in C emission estimate between every 

burned area product pair with the maximum uncertainty value between them to assess 

whether the error embedded in the burned area data is greater than the estimated emission 

uncertainty. Therefore, this strategy can be considered conservative since the maximum 

uncertainty value was used for the comparison. The following conditions were tested 

(Equation 3.2): 

𝐼𝐹 

{
 
 

 
 |𝐶𝑝1 − 𝐶𝑝2| − max  (𝑈𝐶𝑝1, 𝑈𝐶𝑝2) > 0; 𝑡ℎ𝑒 𝑏𝑢𝑟𝑛𝑒𝑑 𝑎𝑟𝑒𝑎 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑐ℎ𝑜𝑖𝑐𝑒          

𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡𝑙𝑦 𝑎𝑙𝑡𝑒𝑟𝑠 𝑡ℎ𝑒 𝑐𝑎𝑟𝑏𝑜𝑛 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛

|𝐶𝑝1 − 𝐶𝑝2| − max  (𝑈𝐶𝑝1, 𝑈𝐶𝑝2) < 0; 𝑡ℎ𝑒 𝑏𝑢𝑟𝑛𝑒𝑑 𝑎𝑟𝑒𝑎 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑐ℎ𝑜𝑖𝑐𝑒 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 

𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡𝑙𝑦 𝑎𝑙𝑡𝑒𝑟 𝑡ℎ𝑒 𝑐𝑎𝑟𝑏𝑜𝑛 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛

 (3.2) 

Cp1 is the committed gross C emission estimation using burned area product 1n, and Cp2 

is the same, using a second burned area product. UCp1 is the committed gross C emission 

uncertainty associated with the estimation using burned area product 1 and UCp2, the same 

as using a second burned area product. Therefore, if the absolute value of the difference 

between the committed gross C emission estimation among the two products is smaller 

than the committed gross C emission estimation uncertainty, we can conclude that the 

difference among the products is within what is expected for the uncertainty of the AGB 

data. Therefore, the choice of one product or another does not cause significant over- or 

underestimation of committed gross C emission in the considered area.  

For the matrix approach, the burned area products, considering the different land covers, 

were incorporated into a regular grid with an approximately 10 km spatial resolution. The 

incorporation accounted for the proportion of the polygon falling inside each grid cell. 

This process was run on R using the ‘raster’ package (HIJMANS, 2017). The statistical 

comparison between the six possible combinations of product pairs was carried out using 

the non-parametric Kolmogorov–Smirnov two-sample test (SMIRNOV, 1939). We used 

a bootstrap approach, implemented in R statistical software v.4.0.2 (R CORE TEAM, 

2020), with 10,000 iterations. For each iteration, the algorithm randomly raffled a sample 
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of 10% of the total cells in each case with replacement. Finally, based on the bootstrap 

results, we calculated the mean and standard deviation of the 10,000 p-values. The 

comparison considered only cells that presented burning detection by at least one product.  

Subsequently, the regular grid was converted into raster files carrying the burned area 

information for each combination of burned area product and land cover for the spatial 

comparison. Like the statistical comparison, we considered only cells that presented 

burning detection by at least one product. The burned area maps were then compared two 

by two, within each land cover class, using the fuzzy numerical method implemented in 

the Map Comparison Kit 3 (MCK) application (VISSER; DE NIJS, 2006). The fuzzy 

numerical method considers grades of similarity between pairs of cells in two numerical 

maps. Although it is a cell-by-cell comparison method, it considers the neighborhood to 

express the similarity of each cell in a value between 0 (fully distinct) and 1 (fully 

identical) (RIKS BV, 2013). The fuzzy technique allows one to distinguish real 

differences from minor mapping artifacts, besides giving a spatial assessment and 

clarifying the location of disagreement and the severity (RIKS BV, 2011). 

Considering that the burned area registered in a cell is partly defined by the cells found 

in its proximity, the fuzziness of location influence level is accounted for via a function. 

In this study, we adopted an exponential decay function with a Halving distance equal to 

2 and considered the neighborhood radius equal to 4. This is the default setting for the 

algorithm implemented in MCK. In the fuzzy numerical model, the similarity of two 

values (a and b) is calculated following Equation 3.3. The resulting statistic for overall 

similarity is then the average similarity over the whole area considered. 

𝑆(𝑎, 𝑏) = 1 − 
|𝑎 − 𝑏|

max(|𝑎|, |𝑏|)
 (3.3) 

3.5 Results 

3.5.1 Vector approach: intercomparison of total burned area 

The four burned area products differ according to the total area mapped and, 

consequently, the total C that is emission-related (Figure 3.3). The most similar products 

in the total mapped area and C emissions are TREES and MCD64A1. MCD64A1 presents 

only 2.9% less total burned area than TREES, 0.9% in non-forest and 10% in forest areas 

(Figure 3.4). The most significant difference occurs between TREES and Fire_cci, with 
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the second mapping 58% less burned areas; 52% and 78% for non-forest and forest, 

respectively. 

Figure 3.3 - (a) Total burned area mapped by TREES, MCD64A1, GABAM, and Fire_cci over 

forested and non-forested areas, considering the whole study area. (b) Committed 

gross carbon emission related to fires according to the four burned area products. 

 

Regionally, TREES, MCD64A1, and GABAM present the same pattern of the burned 

area both over non-forest and forest, whereby eastern Amazonian forests (Pará state) were 

the most affected area (Figure 3.4, Figure 3.5). Despite this, GABAM presents 41% more 

forest area mapped in this region than TREES and 22% more than MCD64A1. GABAM 

also presents more burned area over forest in central Amazonia (Amazonas state), 

mapping 120% more burned area than TREES and 85% more than MCD64A1. On the 

other hand, in the far east Amazonia (Maranhão state), GABAM has a poorer 

performance, mapping up to 53% less burned area than the TREES product.  

In southwestern Amazonia, in Acre state, we also observed great divergence between the 

products. TREES presents more burned areas in non-forest than the other products, and 

the difference can be up to 40 times compared with Fire_cci. Interestingly, GABAM 

presents the highest forest burned area mapped, close to the TREES product and 160 

times larger than the Fire_cci product. Fire_cci, in general, registered less burned area in 

all cases and sites. 
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Figure 3.4 - Burned area and committed gross carbon emission registered by TREES, MCD64A1, 

GABAM, and Fire_cci products.   

 

Figure 3.5 - Total burned area mapped by TREES, MCD64A1, GABAM, and Fire_cci over 

forested and non-forested areas, per Brazilian state within the study area. 
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3.5.2 Vector approach: impact on committed gross carbon emissions estimates 

Such differences in the burned area among the products are reflected in the variance 

observed in the committed gross C emission estimates (Figure 3.4). Using the Fire_cci 

product resulted in 29.54 + 3.36 Tg C less estimated carbon emitted, a difference of 66% 

compared to the regional map developed by TREES. In contrast, the use of MCD64A1 

results in only 5% (2.32 ± 0.17 Tg C) less than the carbon emission estimated by TREES. 

If only the forest areas are analyzed, TREES is also the product that generates the highest 

carbon emission, at 16.96 ± 1.73 Tg C for 2015. The product closest to this estimate is 

GABAM, with a difference of 11% (Figure 3.4). Even though GABAM presented a 

greater area of burned forest than TREES, it had a lower carbon emission estimate. This 

is due to the distinct spatial dispersion of the burned areas detected by each product. Since 

the emission is estimated as a function of initial biomass, it will depend on the spatial 

location of each burned area (Figure 3.6). 

Figure 3.6 - Above ground biomass map from EBA and polygons of burned forest both from 

TREES and GABAM products. 

 

For comparing works that use Baccini as AGB input to estimate carbon emission, we 

compare our results using EBA with results using Baccini. Although its relative course 
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resolution compared to Baccini data (30 m), the EBA biomass data includes an 

uncertainty map, which is essential for our analysis. Baccini map is a global dataset that 

provides AGB for 2000 at approximately 30 m spatial resolution. It was used as a 

reference widely considered in the literature (ANDERSON et al., 2015; BRINCK et al., 

2017; CAMPANHARO et al., 2019; LONGO et al., 2016). The biomass density (in Mg 

ha-1) was generated by the statistical relationship between data collected in situ and 

LiDAR Geoscience Laser Altimeter System (GLAS) data, acquired over 40,000 points. 

In addition to the field data and GLAS, reflectance data derived from Landsat 7 ETM+, 

elevation data, and biophysical variables are used to estimate carbon stock. Random 

Forest modeling was used to build the statistical relationship (BACCINI et al., 2012). 

Since the map is from 2000, all deforestations detected by PRODES between 2001 and 

2016 were incorporated into the map. Assuming the characteristics of changes in land use 

and land cover in the Amazon biome (COUTINHO et al., 2013), AGB was adjusted 

considering the pattern observed for pasture areas. Therefore, according to values 

proposed by (ROSAN, 2017) for the Amazon, AGB in deforested areas was adjusted to 

16.6 Mg ha-1. For the comparison, both AGB and AGB uncertainty maps were resampled 

to match Baccini spatial resolution, using the ‘nearest’ approach. Then, all the 

methodological steps adopted to estimate carbon emission were repeated using the 

Baccini dataset, and the results are presented in Figure 3.7. The same pattern can be 

observed with the Baccini dataset, considering the total emission in the study area. 

Nonetheless, the Baccini dataset seems to overestimate the committed gross C emission 

compared to the EBA dataset, which makes the EBA estimates conservative. 
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Figure 3.7 - Difference between the committed gross carbon emission estimates calculated by 

EBA and Baccini AGB maps. 

 

For the southern and western Amazonian states (Acre, Mato Grosso, and Rondônia), the 

TREES product presented emission estimates superior to all other products for forest and 

non-forest. For example, in the Acre state, the emissions estimated using TREES were 57 

(0.90 ± 0.11 Tg C) and 171 (0.90 ± 0.09 Tg C) times larger than those derived by using 

Fire_cci for non-forest and forest, respectively. On the other hand, in eastern Amazonia, 

Pará state, although the emission estimates using TREES and MCD64A1 were similar 

(16.72 ± 2.02 and 18.27 ± 2.23 Tg C, respectively), the differences between them still 

resulted in up to 9% more carbon emission than was estimated using the MCD64A1 

product, mainly due to the larger forest area mapped by this product.  

So far, we have observed differences between the burned area products that can generate 

under- or overestimates of carbon emissions. Using the reasoning presented in Equation 

3.2, we show that for non-forest land cover, TREES and MCD64A1 are the only products 
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that can be used with no significant difference (Figure 3.8). Therefore, choosing these 

two products may bring over- or underestimates for forest areas. In this case, the 

comparison of GABAM with these two products showed results within the range of 

uncertainty. Analyzing each state separately, we observed the spatial difference in this 

pattern. For non-forest areas in Acre, for example, no product can be used similarly to 

another. Likewise, in the forest areas in Maranhão, all products showed differences in 

their estimates of carbon emissions that were greater than their uncertainty (Figure 3.8). 

In general, the choice of the Fire_cci product always results in underestimating carbon 

emissions compared to the others (Figure 3.4). 
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Figure 3.8 - Carbon emissions difference analysis. The lower diagonal contains the absolute value 

of the difference in carbon emissions (Tg) between the products. The upper diagonal 

indicates if the difference is greater (green upside triangle) or lower (red downside 

triangle) than the maximum uncertainty value between them.   

 

3.5.3 Matrix approach: statistical and spatial intercomparison 

Corroborating the differences in magnitude found in the vector analysis, the TREES and 

MCD64A1 products were the only ones that did not present significant differences at a 

95% confidence level (p > 0.05). The same pattern can be observed when forest and non-
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forest are analyzed separately (Table 3.6). Considering this comparison, the bootstrap 

approach resulted in 81% of the 10,000 iterations (84% for forest and 82% for non-forest) 

of non-significant p-values (p > 0.05). All the other combinations resulted in 100% 

significant p-values at a 95% confidence level. 

Table 3.6 - Mean and standard deviation of p-values resulted from 10,000 iterations of the 

Kolmogorov-Smirnov two-sample test, raffling different samples of 10% of the total 

grid cells of 10x10km. It was considered only cells that presented burned area 

percentage by at least one product. 

  

TREES x 
MCD64A1 

TREES x 
GABAM 

TREES x 
Fire_cci 

MCD64A1 x 
GABAM 

MCD64A1 x 
Fire_cci 

GABAM x 
Fire_cci 

Total (Sample size = 1,434 cells) 

Mean 2.33E-01 0 2.55E-15 0 1.52E-13 0 

SD 2.01E-01 0 6.16E-14 0 5.82E-12 0 

Forest (Sample size = 1,215 cells) 

Mean 3.12E-01 0 9.56E-18 0 1.14E-13 0 

SD 2.74E-01 0 5.35E-16 0 6.74E-12 0 

Non-forest (Sample size = 1,229 cells) 

Mean 2.70E-01 5.55E-19 2.31E-14 2.22E-20 3.31E-13 0 

SD 2.43E-01 5.44E-17 7.85E-13 1.57E-18 1.44E-11 0 

  

The four products also present spatial divergence. Despite the small difference in total 

mapped area, TREES and MCD64A1 also presented spatial divergence, mainly in the 

extreme north of the study area and in the Acre state (Figure 3.9). The GABAM product 

presents a lot of small patches of burned areas, which reflects the higher number of cells 

with a low burn proportion (Figure 3.10). Although this product does not present the 

highest burned area, it includes the most spatially broad mapping among those 

considered. Analyzing the correlation, given by scatter plots of the percentage of burned 

area per cell among the different pairs of products, we observed that all relations are 

statistically significant at a 95% confidence level (p < 0.05). The relation between TREES 

and MCD64A1 is the closest to 1. The determination coefficients are, however, 

intermediate for all comparisons, ranging from 0.47 (TREES vs. Fire_cci) to 0.66 

(MCD64A1 vs. GABAM) (Figure 3.11). 
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Figure 3.9 - Burned area spatialization in a 10 km × 10 km regular grid. Each grid cell contains 

the burned proportion indicated by the color gradient. 

 

Figure 3.10 - Number of cells in different burned proportion classes. 

 

The similarity analysis allows the identification of the pairs of products that are the most 

spatially coherent. The similarity indexes are generally medium to low between all 

products (Table 3.7). Considering the study area, the similarity indexes are always 

between 0.4 and 0.5, regardless of the land cover. When we distinguish between forest 

and non-forest areas, we can see two patterns: relative higher indexes when Fire_cci is 

considered for comparisons in non-forest areas and relative lower indexes when GABAM 

is considered for comparisons in forest areas. The first pattern can be explained by the 

reduced extent mapped by the Fire_cci product; the more conservative the mapping, the 

greater the chance of being more similar to other products, and this is the case for Fire_cci. 
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The second pattern, on the other hand, can be explained by the opposite reasoning. 

GABAM has the largest extent mapped in forest areas and, therefore, has a greater chance 

of mapping areas the other products did not. 

Figure 3.11 - Scatter plots of the percentage of burned area per cell among the different pairs of 

products. It was considered only cells that presented burned area percentage by at 

least one product. All relations are statistically significant at a 95% confidence level. 

 

Regionally, the extreme west and extreme east (Acre and Maranhão, respectively) are the 

regions where most differences in mapping occur, denoted by the broad range of 

similarities among the products. In Acre, the relatively high similarity index found for 

MCD64A1 and Fire_cci (0.784) shows that both products presented less burned area 

detected in this state. These products did not present as much burned area as was captured 

by the TREES product (less 88% and 98%, respectively) in both land covers. When 

analyzing GABAM compared to MCD64A1 and Fire_cci, we observed that the lower 

similarity indexes are mainly due to forest-affected areas for the study area and the Acre 

and Amazonas states. GABAM is the product with the highest detection of forest fires in 

Acre and Amazonas; its mapping areas were approximately 161 and 10 times greater than 

those of Fire_cci in the forest areas of these states, respectively. However, GABAM 

presents relatively poor performance for the eastern forests in Maranhão state. Although 

the overall similarity for the Maranhão state is already relatively low compared to the 

other states, we see that the indexes for the non-forest areas are lower than the ones for 

the forest, indicating a greater divergence between the products for non-forest areas in 

this state (Table 3.7). 
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Table 3.7 - Overall similarity for each burned area product comparison pair, considering the whole 

area and separating it into non-forest and forest areas. The result is provided for the 

entire study area and for each Brazilian state considered separately. The similarity 

index ranged from 0 (fully distinct) to 1 (fully identical) and was calculated using 

the fuzzy numerical algorithm for map comparison. 

 Study 
area 

AC1 AM2 MA3 MT4 PA5 RO6 

Total               

TREES x MCD64A1 0.408 0.194 0.316 0.458 0.459 0.406 0.451 

TREES x Fire_cci 0.483 0.114 0.610 0.437 0.529 0.491 0.395 

TREES x GABAM 0.467 0.470 0.495 0.395 0.529 0.416 0.544 

MCD64A1 x Fire_cci 0.507 0.784 0.389 0.369 0.544 0.493 0.583 

MCD64A1 x GABAM  0.450 0.164 0.376 0.489 0.468 0.474 0.465 

Fire_cci x GABAM 0.414 0.073 0.463 0.254 0.555 0.387 0.408 

Non-forest               

TREES x MCD64A1 0.428 0.242 0.390 0.474 0.464 0.421 0.456 

TREES x Fire_cci 0.505 0.153 0.653 0.459 0.543 0.510 0.413 

TREES x GABAM 0.449 0.276 0.420 0.436 0.484 0.424 0.513 

MCD64A1 x Fire_cci 0.533 0.798 0.454 0.396 0.553 0.520 0.607 

MCD64A1 x GABAM  0.472 0.651 0.406 0.489 0.445 0.484 0.480 

Fire_cci x GABAM 0.480 0.670 0.513 0.312 0.563 0.445 0.443 

Forest               

TREES x MCD64A1 0.515 0.291 0.433 0.674 0.551 0.507 0.507 

TREES x Fire_cci 0.542 0.151 0.580 0.699 0.572 0.543 0.425 

TREES x GABAM 0.513 0.519 0.504 0.608 0.583 0.451 0.514 

MCD64A1 x Fire_cci 0.573 0.790 0.464 0.614 0.600 0.548 0.578 

MCD64A1 x GABAM  0.493 0.202 0.382 0.673 0.527 0.498 0.463 

Fire_cci x GABAM 0.446 0.090 0.408 0.546 0.553 0.418 0.386 

¹AC = Acre; ²AM = Amazonas; ³MA = Maranhão; 4MT = Mato Grosso; 5PA = Pará; 6RO = Rondônia. 

 

  
 

Even though most values of similarity indexes are intermediate, as they are averages for 

each region, similarity scale extremities can be observed spatially in Figure 3.12 (and 

Figure 3.13 and Figure 3.14, for the burned area over forest and non-forest, respectively).  
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Figure 3.12 - Similarity maps for each burned area product comparison pair. The similarity index 

was calculated considering only cells that presented burned area detection by at least 

one product. The similarity index goes from 0 (lowest similarity) highlighted by dark 

red to 1 (highest similarity) highlighted by dark purple. 

 

Figure 3.13 - Similarity maps for each burned area product comparison pair, considering burned 

area over forest. The similarity index was calculated considering only cells over 

forest that presented burned area detection by at least one product. The similarity 

index goes from 0 (lowest similarity) highlighted by dark red to 1 (highest similarity) 

highlighted by dark purple. 
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This visual-spatial analysis allows the identification of regions that are the more cohesive, 

or not, among the burned area products. Between TREES and MCD64A1, most of the 

low similarity registries occur in the northern region, where MCD64A1 presents better 

performance, and in southwestern Amazonia, where TREES registers more burned area 

(Figure 3.15a). Between TREES and GABAM, little similarity occurs in the north, mainly 

in the northeast of the Pará and Amazonas states, where GABAM presented more fire-

affected areas. Even in Acre, where these products present approximately equal estimates 

in forest-affected areas, there is divergence, mainly in the western part of the state (Figure 

3.15b). The same occurs between MCD64A1 and GABAM, with the addition of minor 

similarities in the Rondônia state. The low performance of Fire_cci in mapping as much 

burned area as the other products are highlighted in Figure 3.15, which shows that most 

cells contain information exclusively from TREES or MCD64A1 or a combination of 

them. 

Figure 3.14 - Similarity maps for each burned area product comparison pair, considering burned 

area over non-forest. The similarity index was calculated considering only cells over 

non-forest that presented burned area detection by at least one product. The similarity 

index goes from 0 (lowest similarity) highlighted by dark red to 1 (highest similarity) 

highlighted by dark purple. 
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Figure 3.15 - Confusion maps considering (a) TREES, MCD64A1 and Fire_cci burned area 

products, and (b) TREES, MCD64A1, and GABAM burned area products. The 

10km cells are colored according to the occurrence of information from each product 

or combination, disregarding the burned area proportion in each cell. 

 

3.6 Discussion 

Every sensor considered to generate a burned area product has characteristics and 

specifications that incorporate limitations in the final product, affecting their 

performances regionally. The daily temporal resolution of MODIS data ensures a higher 

frequency of data acquisition and minimizes cloud cover, important factors for 

monitoring tropical areas. Depending on the time elapsed after the fire, the signs of burned 

areas can be removed quickly due to climatic conditions and the speed of vegetation 

regeneration (ALONSO-CANAS; CHUVIECO, 2015). Currently, with daily global 

products available, MODIS data have been widely used in burned area detection with 

500m spatial resolution (GIGLIO; SCHROEDER; JUSTICE, 2016; JUSTICE et al., 

2002). Landsat data have a 16-day temporal resolution but with the advantage of a 30m 

spatial resolution in the optical spectrum. The spatial resolution allows a better definition 

of the boundaries of the burned area, avoiding a greater mixture of pixels from burned 

and unburned patches (LONG et al., 2019). In addition, its long time series allows one to 

trace historical trends in fire dynamics (MEDDENS et al., 2018). Therefore, the final user 

needs to understand such characteristics to consider which product is most appropriate 

for their application. In addition to the limitations of each data set, the spatial evaluations 

of the burned areas revealed that the similarities between the products varied regionally. 

Depending on the scale of the study to be developed, the choice of which product to use 

can significantly impact the final result.  

Regarding the total burned area mapped, we can separate the products into two groups: 

two very similar products (MCD64A1 and TREES) and two others (GABAM and 

Fire_cci). Although the GABAM product presents 21% less total burned area compared 
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to the TREES product, GABAM was the product that registered the most burned forest, 

reaching 11% more than the TREES product. This shows that the spatial resolution of 

GABAM (30 m) gives an advantage to mapping this land cover. In addition, GABAM 

presents the smallest commission error, considering the error related to forest areas for 

the TREES product. Although some studies indicate that the use of MODIS data at a 250 

m spatial resolution can underestimate burned area by approximately 25% in relation to 

manually digitized burn scars based on Landsat images at a 30 m resolution (MORTON 

et al., 2011; ROY; BOSCHETTI, 2009), in a global comparison between the GABAM 

and Fire_cci products using the proportion of burned area in 0.25° × 0.25° grids, GABAM 

generally underestimated burned scars. The inconsistency was attributed to the difference 

in spatial resolution of data sources (LONG et al., 2019). GABAM’s higher resolution 

can allow better delineation of fire pixels, resulting in fewer pixels classified as burned 

globally. However, our study shows that this statement can change in the regional analysis 

since the GABAM product registered almost twice as much (1.9 times) total burned area 

as the product Fire_cci for the study area considered. 

Nevertheless, GABAM’s developers warn that using Landsat images as the data source 

decreases the number of valid observations, considering Landsat’s temporal resolution 

and cloud contamination, which may explain its performance compared to TREES and 

MCD64A1 products. This limitation is especially critical in tropical regions, where 

vegetation recovery is quick and cloud cover is persistent (LONG et al., 2019). Using 

coarse-resolution images to detect fire can be justified since they generally offer higher 

temporal frequency (GIGLIO et al., 2018; PETTINARI; CHUVIECO, 2018). 

Among the products developed using coarse spatial resolution data, Fire_cci was the first 

to provide a global dataset with a 250 m resolution. Its validation process for version 5.0 

indicated an overall accuracy of 0.9972, with 0.7090 global omission errors and 0.5123 

commission errors (Table 3.3) (CHUVIECO et al., 2018). Similarly, version 5.1 

presented a 0.6710 global omission error and 0.5440 commission error (LIZUNDIA-

LOIOLA et al., 2020). The errors reflect the conservative nature of this dataset, which 

may explain the great difference compared to other products. Its developer argues that, 

although globally higher than MCD64A1 c6, its errors for version 5.0 are better 

compensated, with a tendency towards underestimation, than most existing global 

products (CHUVIECO et al., 2018). Fire_cci’s developers highlight its better detection 
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accuracy for small patches (<100 ha) compared to MCD64A1 in a sample over Africa 

(CHUVIECO et al., 2018), although both had high errors for these small fires. Version 

5.1 brings improvements in this direction. Despite the significant contribution of this 

product to fire modeling based on burned area global analysis, we show that regionally, 

the use of this product can be critical in underestimating the overall burned area and, thus, 

the fire-related impacts on carbon emissions.  

In general, coarse-resolution products are unable to adequately detect small fires (<100 

ha) (RODRIGUES et al., 2019). This limitation can lead to a considerable 

underestimation of global burned area (GIGLIO et al., 2018; RANDERSON et al., 2012), 

underestimating fires in croplands by as much as ten times (GIGLIO et al., 2018). The 

newest collection (c6) in the MCD64A1 offers significantly better detection of small 

burns (<100 ha) compared to older versions, but in general, it remains unable to map them 

adequately. It underestimated fire perimeter length in all vegetation classes, and care 

should be taken when using it for cropland regions (ANDELA et al., 2019). Given its 

higher spatial resolution, GABAM detects small burned areas better. Although it was the 

product that presented the greatest range of mapping, it was not the one that detected the 

most extensive total area. Furthermore, when analyzing the regular grid of 10 km spatial 

resolution, most cells that had burned areas in GABAM recorded small burn proportions, 

suggesting small burnt patches. 

The product MCD64A1 was the one presenting the biggest difference in omission and 

commission errors related to TREES, reaching commission errors 75% higher than the 

TREES product for forest areas and 83% higher for non-forest areas. The high omission 

error presented by this product, especially for tropical forests, also indicates the 

conservatism adopted in its methodology. Surprisingly, MCD64A1 was the product that 

came closest to the regional product TREES in the total burned area detected. 

Shimabukuro et al. (2015) estimated a difference of 21% between the MCD64A1 and a 

product built with Landsat TM images using the same methodology as TREES for the 

Mato Grosso state. Here, we found a difference of only 0.15% between MCD64A1 and 

TREES for the Mato Grosso state, considering the total burned area. However, this 

difference can reach 15%, considering burned areas over the forest. When analyzing the 

whole study area, these products registered significant spatial divergences. The product 

MCD64A1 recorded more fires in the north and northwest of the study area, mainly in 
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the state of Amazonas, compared to TREES. The TREES product concentrates on more 

exclusive mapped areas in the southwest, mainly in the Acre state. The burned areas in 

the north of the study area, presented by the MCD64A1 and the product GABAM, seem 

to follow the hydrography (Figure 3.16). One hypothesis would be that these burned areas 

would partially correspond to flooded regions. Many detected areas occur along the 

margins of the Amazonas river, and water presents low reflectance in all wavelengths, 

similar to burned areas. As a brief analysis, we assessed the burned areas of the four 

products in relation to the hydrography to calculate the proportion of intersections (Table 

3.8). Even the percentages of the burned area over the hydrography mask are small for all 

four products (maximum of 1.5%), and MCD64A1 and GABAM are the products with 

the largest overlap (1.5% and 0.9%, respectively). If we compare regionally, Amazonas 

is the state with the largest overlap presented by these two products (10.3% and 4%, 

respectively). 

Figure 3.16 - Study area and the hydrography of the region. 

 

Source: INPE (2022). 
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Table 3.8 - Total burned area and its intersection area with the hydrography. 

Product State 
Burned area  

[Non-forest + Forest (km²)] 
Burned area over 

 hydrography (km²) 
% 

TREES 

AC 925.6 0.3 0.03 
AM 2650.4 11.9 0.45 
MA 5215.3 13.3 0.25 
MT 8981.1 4.6 0.05 
PA 14125.0 11.7 0.08 
RO 3661.1 0.7 0.02 
Study Area 35558.6 42.6 0.12 

MCD64A1 

AC 113.7 0.0 0.00 
AM 2914.1 299.2 10.27 
MA 5648.5 22.1 0.39 
MT 8967.6 14.9 0.17 
PA 14189.2 160.8 1.13 
RO 2680.9 22.1 0.82 
Study Area 34514.1 519.0 1.50 

GABAM 

AC 466.8 2.2 0.46 
AM 2507.6 101.3 4.04 
MA 4179.5 16.1 0.38 
MT 6002.5 13.5 0.22 
PA 12270.6 72.0 0.59 
RO 2766.4 38.0 1.38 
Study Area 28193.3 243.0 0.86 

Fire_cci 

AC 16.9 0.7 4.25 
AM 1294.6 15.5 1.19 
MA 706.1 1.0 0.14 
MT 5959.3 11.1 0.19 
PA 5735.2 4.7 0.08 
RO 1212.2 1.0 0.08 
Study Area 14924.3 34.0 0.23 

The detection of burned forests worldwide is made difficult when the fire does not reach 

the forest canopy since the spectral signal does not change sufficiently to be detectable 

by remote sensors. It has been shown that in areas with high leaf area index (LAI) and 

percent tree cover, there is a misdetection of burned areas (PEREIRA et al., 2004; ROY; 

BOSCHETTI, 2009). Therefore, our initial hypothesis was that the variation between the 

products would increase in forest-affected areas. We expected that the regional product 

TREES, in which there is manual image interpretation, would present greater sensitivity 

for mapping burned forests (ANDERSON et al., 2017). However, this hypothesis was not 

sustained in most cases. Firstly, GABAM, which has a 30 m spatial resolution, was the 

product that most detected burned forests, leading us to consider that spatial resolution 

can be very important for burned forests detection. In an intercomparison analysis 

between FireCCISFD11 (20 m), a Sentinel-2 burned area product derived for 2016 in 

Sub-Saharan Africa, MCD64A1 c6 and Fire_cci v.5.0, the Sentinel product was found to 

be more accurate than any global product for detecting small fires, detecting 4.9 Mkm², 

80% more than MCD64A1 c6 (2.7 Mkm²) and 97% more than Fire_cci v.5.0 (2.5 Mkm²) 

(LIZUNDIA-LOIOLA et al., 2020). Since all these three products used MODIS active 
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fires to train their algorithms, the improved performance of FireCCISFD11 should be 

mostly attributed to the spatial resolution of the input reflectance (LIZUNDIA-LOIOLA 

et al., 2020). However, the study did not distinguish land cover classes in its analyses. 

Additionally, in our analysis, even though the burned area difference was greater in 

burned forests between MCD64A1 and TREES and between Fire_cci and GABAM, the 

difference in the burned area was greater in non-forest areas in most cases. There is no 

rule to support this hypothesis, and it is possible to observe variations between products 

spatially. 

For a study that aims to quantify fire-related C emission, the choice of the burned area 

product must consider the scale of the process to be observed. For the study area, the 

difference between products can reach 29.54 ± 3.36 Tg C yr−1 when comparing the global 

product Fire_cci and the regional TREES. The average value corresponds to 21% of the 

total gross CO2 emissions from forest fires in 2015 in the Brazilian Amazon biome 

(ARAGÃO et al., 2018). In the Acre state, even the most similar products, TREES, and 

GABAM, differed by 0.8 ± 0.33 Tg C, equivalent to 23% of the average biomass loss 

during an extreme drought year in this state (CAMPANHARO et al., 2019). The same 

comparison with Fire_cci can result in a difference of more than 50% of the average 

biomass loss in a drought year in Acre state. The differences in estimates can be 

significant, but it is necessary to consider that biomass data bring uncertainty into these 

estimates, an intrinsic factor in the development of the data. Thus, when calculating the 

carbon emission related to fire, the choice between burned area products can reflect 

significant differences in the estimates, or irrelevant differences, considering the biomass 

data's uncertainty level. For non-forest areas, in most cases, MCD64A1 and TREES 

presented irrelevant differences in fire-related carbon emissions, which means that the 

difference in emission estimates using these products is smaller than the biomass data 

uncertainty. For forest areas, there is more variability among the states. All comparisons 

with Fire_cci resulted in significant differences. Therefore, it is recommended to 

undertake  

The map scale can also influence the differences in the burned area products. It is more 

feasible to adapt the mapping method regionally over the wide range of pre- and post-

burn conditions, considering specific dynamics for different ecosystems. Work on a 

regional scale also allows for a manual post edition of the automatic burn classification, 
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minimizing the omission and commission errors (ANDERSON et al., 2017; 

SHIMABUKURO et al., 2009; SILVA et al., 2018b). The adoption of global burned area 

products in regional analyses, in general, can result in a significant underestimation of the 

fire-affected area, which varies spatially. For example, the underestimation shown here 

between TREES and MCD64A1 for Acre state (88% less burned area registered by 

MCD64A1 compared to TREES) was again found for 2019 by Silva et al. (2020), with 

the same percentage of less burned area registered by MCD64A1 compared to their 

product, which also includes a manual edition in its mapping methodology. Although the 

final manual edition procedure has a high time and human resource cost, it can avoid as 

much as 20% of the underestimation of the burned area compared to methods that do not 

consider this step (SHIMABUKURO et al., 2015). Additionally, studies considering a 

time series can assess whether the spatial variation is systematic. In this case, this 

variation can be used as a guideline for improvements in mapping.  

Finally, we also highlight that the most probable result of comparing different data is 

obtaining different patterns, which was indeed the case. However, it may also be relevant 

to point out that some patterns are similar, which means that the four burned area products 

can cross-validate each other to some extent. The more the sources point to a given 

pattern, the more reliable the pattern is. Moreover, we consider the continuous process of 

improving global burned area products as fundamental to strengthening environmental 

conservation in the Amazon, as they are often used as inputs for technical reports and 

public policy formulation. Furthermore, in the absence of an official national product for 

the long-term monitoring of fire-degraded forests, global products provide the only 

reliable and operational option to expose the magnitude of the fire-related socioeconomic 

and environmental losses we are currently experiencing in the region (BARLOW et al., 

2020). 

3.7 Conclusions 

This work performed an intercomparison of four burned area products, one being a 

regional burned area map developed by TREES–INPE, and the other being global 

products. We analyzed the difference in the total area mapped over forest and non-forest 

areas and their influence on fire-related C emission estimates in the Amazon for the year 

2015.  
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The four burned area products differ according to the total area mapped and, 

consequently, total related C emission. Only accounting for the magnitude of the 

difference, the most similar products are TREES and MCD64A1, both for non-forest and 

forest areas. The products that stand out the most are TREES and Fire_cci, and the 

difference between the two can reach 78% less burned area detected by Fire_cci in forest 

areas considering the Amazon and 99% in Acre. The difference between products was 

not higher in forest areas in all comparisons, and regionally analyzing the initial 

hypothesis of more significant variation in these areas cannot be sustained in most cases.  

Despite the broader coverage of the GABAM product, it does not have the magnitude of 

the total burned area recorded by TREES and MCD64A1, and this is linked to the use of 

Landsat 30 m data. Furthermore, Landsat images' more extended temporal resolution 

makes it difficult to obtain data without cloud interference. Besides, better spatial 

resolution can either decrease the mapped area due to a better scar delineation or increase 

the contribution of small polygons. Therefore, the better spatial resolution of the Fire_cci 

product (250 m) compared to MCD64A1 (500 m) does not appear to have conferred an 

advantage for mapping fire-affected areas in the Amazon.  

Besides, when these products are used to estimate fire-related carbon emissions, the 

choice between them can lead to significant changes in estimates. For example, using 

Fire_cci may result in 29.54 ± 3.36 Tg C less estimated carbon emitted, a difference of 

66% less compared to the regional product TREES. Considering non-forest areas in the 

Amazon, and for the analysis of carbon emission estimates specifically, the difference 

between adopting TREES and MCD64A1 is within the expected error for the biomass 

dataset. For forest areas, the comparisons within the expected error are GABAM, TREES, 

GABAM and MCD64A1. This analysis varied across the Brazilian Amazon states, and 

no single rule existed. 

Overall, for Amazon, the global product MCD64A1 was the closest to the regional 

product TREES, but regionally there are still significant differences between them, 

especially in forest areas. It was shown here that global products used interchangeably on 

a regional scale could significantly underestimate the impacts of fire and, consequently, 

fire-related carbon emissions. As such, the end-user must choose the product based on 

the phenomenon and scale to be studied, considering the parameters of the data used in 
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the mapping and the limitations conferred by such in the final result. The choice process 

can involve merging more than one product to optimize its advantages and produce more 

consistent data for the user’s needs, getting closer to the true total burned area and its 

regional distribution. Additionally, the information herein still serves as evidence for 

improving burned area detection algorithms in the Amazon, subsidizing the development 

of new and more accurate products for the region. 
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4 OUR HOME ON FIRE: A DESCRIPTIVE ANALYSIS OF FIRE 

OCCURRENCE WITHIN PROTECTED AREAS IN THE AMAZON BASIN 

4.1 Introduction 

Natural fire ignitions rarely occur in humid tropical forests like the Amazon (BUSH et 

al., 2008). Fire presence in this environment is intertwined with human activities 

(HANTSON; PUEYO; CHUVIECO, 2015; PAUSAS; KEELEY, 2009). Indeed, global 

fire size distribution is strongly influenced by human activity, which explains great part 

of its global variance (HANTSON; PUEYO; CHUVIECO, 2015). Despite the impact of 

increasing population density being mainly to reduce fire frequency, it increases by 10 to 

20% relative to its value at no population in areas with up to 0.1 people per km² (KNORR 

et al., 2014). In the Amazon, a region that only intensified its occupation from the 60s 

onwards, and, in general, population expansion creates a greater threat of fire in this 

environment. At first, the traditional burning activities in the Amazon were generally 

highly controlled to ensure the continued regeneration of forest resources (PIVELLO, 

2011). Nonetheless, this dynamic changed over the last decades, mainly due to 

agricultural intensification and rural demographic growth (PEDROSO JUNIOR; 

MURRIETA; ADAMS, 2008).  

The greater impact that fire has had on these socio-natural ecosystems reflects climate 

change side effects already in place (GATTI et al., 2021). For example, in the Amazon, 

climate change is making drought periods longer (MARENGO et al., 2018), more intense, 

and extreme drought events more frequent (RIBEIRO NETO et al., 2022; SILVA 

JUNIOR et al., 2019). These three factors, the increase in dry season length, the decrease 

in rainfall during the dry season, and more intense and extreme droughts, turn Amazonian 

landscapes more susceptible to wildfires (MARENGO et al., 2018).  

In turn, the current rate of climate change is a direct consequence of human contribution 

to the increase of greenhouse gas concentration in the atmosphere. During 2010, an 

anomalous drought year, gross carbon emissions due to fire in the Amazon were 1.7 times 

higher (0.51 + 0.12 Pg C) than during the subsequent non-drought year (GATTI et al., 

2014). This value corresponded to 57% of 2010 global emissions from land-use change 

(0.9 + 0.7 Pg C) (FRIEDLINGSTEIN et al., 2010). The impact of fire on the carbon 

budget amplifies the effects of climate change, which will ultimately affect its occurrence, 
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thus setting up a positive feedback loop (JOLLY et al., 2015). Therefore, political 

strategies and mechanisms are needed, aiming at the integrity of ecological functions and 

the provision of ecosystem services.   

In this sense, protected areas can be defined as all public or private areas under land-use 

restrictions that contribute to protecting native ecosystems, even if they were created for 

purposes other than environmental conservation (SOARES-FILHO et al., 2010). Studies 

have shown that protected areas, including those with resident human populations, are 

necessary for an effective global strategy to minimize climate change and preserve tropical 

forests and ecosystem services (MELILLO et al., 2016; NEPSTAD et al., 2006, 2009; 

NOGUEIRA et al., 2018; RICKETTS et al., 2010; SOARES-FILHO et al., 2010). For 

example, it is estimated that protected areas in the Brazilian Amazon biome accounted for 

54% of the forest remnant and contained 56% of its carbon up to 2010 (SOARES-FILHO 

et al., 2010). If properly implemented, protected areas have the potential to avoid 8.0 + 2.8 

Pg of C emissions by 2050 (SOARES-FILHO et al., 2010), albeit the benefits associated 

with their implementation go far beyond avoided carbon emissions. Protected areas are also 

recognized as effective instruments for reducing biodiversity loss (GELDMANN et al., 

2013) and improving socioeconomic conditions (FERRARO; HANAUER, 2014; 

NAIDOO et al., 2019).  

Although protected areas are a flagship for tropical forest conservation, several factors in 

the Amazon region affect their effectiveness in curbing fire occurrence. For instance, 

agricultural and urban expansion push deforestation closer to the edges of these areas, 

often entering their borders (DE OLIVEIRA et al., 2020; MATAVELI et al., 2021; 

MATAVELI; DE OLIVEIRA, 2022). In addition, the weak land titling regulation 

(ARMENTERAS et al., 2019), recurrent among Amazonian countries, and significant 

setbacks in environmental legislation in recent years (VILLÉN-PÉREZ et al., 2020), drive 

deforestation and forest degradation into public lands, including protected areas. In 

Brazil, land grabbing within protected areas (MATAVELI; DE OLIVEIRA, 2022; 

RORATO et al., 2021) has resulted from the wrecking of public monitoring and command 

and control agencies, weakening governance over these areas (DE OLIVEIRA et al., 

2020; MATAVELI; DE OLIVEIRA, 2022). The current president's constant anti-

environmental speech brings a sense of impunity to environmental offenders 
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(FERRANTE; FEARNSIDE, 2022), making the situation even worse. Along with 

deforestation comes forest fragmentation and all the degradation that comes from it 

(SILVA JUNIOR et al., 2018, 2020a). Additionally, selective logging is still a relevant 

factor that aggravates forest degradation (BRANCALION et al., 2018). Degraded forests, 

which occur mainly on the borders of these protected areas, are more vulnerable to fires 

(BERENGUER et al., 2021; SILVA JUNIOR et al., 2018).   

Protected areas' role in mitigating climate change through deforestation avoidance has 

attracted more attention from researchers, being better portrayed scientifically (ANDAM 

et al., 2008; NEPSTAD et al., 2006; PFAFF et al., 2015a; SOARES-FILHO et al., 2010). 

Thus, there are still gaps in the scientific literature on the role of these areas in mitigating 

fire occurrence in the Amazon, considering the current dynamic of anthropogenic activities 

and climate change. Nevertheless, Nepstad et al. (2006) found that protected areas, 

including those that allow human residency, have reduced fire in the Brazilian Amazon. 

However, their analysis only included data from 1998, which does not give us a long-

term and up-to-date idea about the process. Further, Nelson and Chomitz  (2011) found 

that from 2000 to 2008, indigenous lands reduced forest fire incidence by 16 percentage 

points in Latin America. This study provides important evidence of the protected areas' 

role in fire. However, it does not detail the results at the national level, which makes it 

challenging to incorporate relevant information into policy decisions, in addition to not 

including important political and economic dynamics in the post-2008 Amazon region. 

Nolte and Agrawal (2013) also evaluated protected areas' effectiveness in curbing forest 

fires and found a significant negative effect compared to similar unprotected areas, 

independently of the management effectiveness level of particular areas. In this case, the 

authors analyzed fire occurrence from 2000 to 2010.  

Furthermore, studies have already evaluated the impacts of climate change on protected 

areas' biodiversity (HANNAH, 2008) or the role of these areas in mitigating climate 

change, mainly as a potential carbon sink (MELILLO et al., 2016; RICKETTS et al., 

2010; SHI et al., 2020; SOARES-FILHO et al., 2010). However, there is still a gap in 

understanding how the climate changes, specifically within protected areas. Although 

there is already strong evidence of climate change in the Amazon (ALMEIDA et al., 

2017; GATTI et al., 2021; MARENGO et al., 2018), it has not yet been evaluated whether 
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this variability occurs within protected areas, and if so, whether it occurs at the same rate 

as outside.  

Considering the existing literature and the increasing threats to which these Amazonian 

protected areas are exposed, a detailed and updated formal study of fire occurrence within 

protected areas becomes relevant. Such a diagnosis can be used as concrete evidence of 

what is happening within these areas. More specifically, how fire occurrence and drivers 

patterns have changed over the last few decades and how we can ensure that these areas 

continue to be a bulwark in conserving the environment and maintaining the ways of life 

of indigenous and traditional peoples. Therefore, the main objective of this chapter was 

to carry out a recent and in-depth diagnosis of fire occurrence and its main drivers in 

protected areas of the Amazon basin. Broadly, we want to answer if fire occurrence is an 

increasing threat to Amazonian protected areas. Contrasting to what was observed outside 

these areas, we aimed to assess the threat level that protected areas have been exposed to 

between 2003 and 2020. Specifically, the following research questions were formulated:  

Q1. What is the pattern of fire occurrence inside and outside protected areas in the 

Amazon basin? Has this pattern changed in the period from 2003 to 2020? Is the pattern 

occurring within the categories of protected areas different from what happens outside 

them? We want to measure if burned area extent differs inside from outside protected 

areas and if the pattern changes over time. Among the protected areas categories, we want 

to measure if there is a difference in the burned area extent registered within them. This 

will be the initial comparison of what happens inside and outside these areas and the first 

evidence of their performance regarding fire occurrence. 

Q2. What is burning? The pattern of the burned area by land use and land cover class 

might change according to protection status, and we want to answer if, inside protected 

areas, more natural land cover is burned compared to outside. This would highlight a 

greater threat to natural ecosystems when a fire occurs within protected areas. In addition, 

the fire that occurs in natural vegetation can be associated with illegal activities within 

protected areas, which reflects a greater threat. 

Q3. Where is fire ignition occurring? Here, we want to assess where the fire occurring 

inside protected areas comes from, measuring the proportion of fire ignition that occurs 

inside protected areas and the share of burnt scars ignited outside that enter these areas. 
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Answering this question will give us evidence of the imminent fire occurrence threat level 

posed to these areas and where that threat mostly comes from, inside or outside them. 

Q4. Is population density correlated to fire occurrence in the Amazon basin? Given the 

fire occurrence dynamic described in the previous questions, we want to evaluate the 

pattern of the relation between fire occurrence and population in the Amazon basin from 

2003 to 2020. Population dynamics and its relationship with fire in the Amazon will show 

us the drivers behind the observed patterns of fire occurrence within protected areas. In 

addition, we want to test the prediction capacity of fire occurrence probability given the 

population density. The rationale here considers that increasing population density in the 

region would pose a greater threat to fire occurrence if there is a significant relationship 

between population and fire.   

Q5. Does the pattern of climate change observed outside protected areas also occur 

inside? Finally, we want to assess whether the environment within protected areas is 

becoming more fire-prone, as is already observed in the Amazon. For that, climatic 

conditions of temperature and precipitation during the dry season from 2003 to 2020 will 

be evaluated inside and outside protected areas. This last question will give us evidence 

on one more factor of the fire occurrence triangle, reinforcing if protected areas are 

exposed to a more fire-susceptible environment.  

4.2 Materials and methods  

4.2.1 Study area 

The study area comprises the whole extension of the Amazon Basin (EVA; HUBER, 

2005), excluding the subregions of ‘Planalto’ and ‘Andes.’ Even not including the whole 

region classified as Amazonia sensu latissimo by Eva and Huber (2005), we refer to the 

region considered as the Amazon basin for this study. This area spans nine South 

American countries: Bolivia, Brazil, Colombia, Ecuador, French Guiana, Guyana, Peru, 

Suriname, and Venezuela, and it adds up to more than 6 million square kilometers (Table 

4.1 and Figure 4.1). All nine countries host 95% of the remaining Amazonian old-growth 

forests (EVA; HUBER, 2005). 

The largest portion of the study area is located in the Brazilian territory (62%). Although 

Peru presents the largest number of protected areas (1,598), Brazil has the largest 
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extension of it (2,250,716 km²). In terms of proportion to the country area within the 

Amazon basin, only Guyana and Suriname have less than half of their territory protected, 

even though this proportion, in all countries, can be potentially overestimated due to 

overlapping6 between protected area categories. Considering the study area as a whole, 

the overlapping corresponds to approximately 8% of the protected area, which takes the 

total proportion of the protected area from 54% to 49%, thus keeping almost half of the 

study area under some type of protection. Venezuela has the largest average size of 

protected areas, contributing to the 42 thousand km² overlapping between protected areas 

seen in that country. The largest protected area is the Indigenous Land Yanomami, created 

in 1992 in northern Brazil. 

Table 4.1 - Study area descriptive numbers. 

 

We defined protected areas as all public or private areas under land-use restrictions that 

contribute to protecting native ecosystems, even if they were created for purposes other 

than environmental conservation (SOARES-FILHO et al., 2010). In the Amazon basin, 

we considered protected areas the indigenous lands and areas of public or private domain 

intended for some level of protection and provided in the national systems of protected 

areas7. An important mechanism of protected areas is their categorization. In this chapter, 

we homogenize the protected areas present in each Amazonian country into three broader 

categories: Indigenous Lands, Direct Use Protected Areas, and Indirect Use Protected 

Areas (Table 4.2). Table A.1 presents the specific national description of each category 

 
6 Overlaps occur when more than one protected area occupies the same location, often because they are 

areas upon different protection categories. For example, it is not uncommon for indigenous lands to be 

located within other categories of protection, such as national parks, biological reserves, etc. 
7 There are still a range of protected areas on private land that are not necessarily regulated by protected 

area systems. This is the case of Permanent Protection Areas and Legal Reserves, provided for in the 

Brazilian Forest Code. These areas will not be analyzed in this chapter. 

Country

Area within 
Amazon 

basin (km²)

% country 
area

Protected 
areas (N)

Protected 
area (km²)

% protected 
area within 

Amazon basin

Average 
protected 

area (km²)

Maximum 
protected 

area (km²)

Minimum 
protected 

area (km²) 

Bolivia 436,809 40% 103 274,327 63% 2,663 15,985 0.3

Brazil 4,192,787 49% 627 2,250,716 54% 3,590 94,818 0.1

Colombia 480,891 42% 209 371,856 77% 1,779 58,448 0.4

Ecuador 74,484 29% 241 72,700 98% 302 10,231 0.5

French Guiana 83,617 100% 19 53,031 63% 2,791 20,515 1.2

Guyana 210,614 100% 5 9,992 5% 1,998 3,717 617.4

Peru 639,518 50% 1,598 345,987 54% 217 24,918 0.0

Suriname 145,018 100% 14 21,695 15% 1,550 15,971 67.6

Venezuela 446,713 49% 32 221,194 50% 6,912 75,603 5.2

Total 6,710,451 49% 2,848 3,621,497 54%
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found in each country and its correspondence to the category used in this work. In this 

chapter, we considered all protected areas, regardless of jurisdiction. 

Figure 4.1 - Study area. 

 

Source: RAISG (2022). 

Table 4.2 - Description of each protected area category defined in the scope of this chapter. 

Category   Description 

Indirect use 
protected areas 

IU 
Protected areas whose main objective is the conservation of ecosystems, not 
allowing human populations to reside in their interior, and have a high level 
of activity restriction. They allow only the indirect use of natural resources. 

Direct use 
protected areas 

DU 

Protected areas that aim to balance environmental conservation with the 
management of sustainable activities, allowing human populations to reside 
in the interior and the direct use of natural resources. They have moderate to 
low levels of activity restriction.  

Indigenous lands IL 
Territories that were demarcated for indigenous peoples to guarantee their 
traditional way of life and subsistence. 

4.2.2 Spatial dataset and data analysis 

Protected areas data was obtained from the Amazon Network of Georeferenced Socio-

Environmental Information (RAISG, from the Portuguese acronym; Figure 4.1 and Table 



70 

 

4.3). The data was downloaded in July 2021, which included updates till 20208. It used 

data from National and Departmental Natural Protected Areas and Indigenous Territories, 

which are jointly called protected areas here.  

Protected areas without a creation date were excluded from the dataset. We first consulted 

local experts with knowledge of the current situation, then we defined the creation date 

where it was possible to find the information. In the rest of the entries without a creation 

date, we confirmed the impossibility of specifying an exact date. This represented 12% 

of the PA dataset (356 PAs). Also, these cases were spatially concentrated, mainly 

belonging to Ecuador (137), Guyana (108), and Peru (108). Moreover, the overlap 

between protection categories was handled following the order of prioritization, IU 

protected areas, DU protected areas, and IL. In other words, if a pixel fell within more 

than one protection category, it was assigned the category following our prioritization 

criteria.  

The protected area information was incorporated into a regular 5 km grid, considering the 

centroid of each pixel. A binary variable was created to receive one of the pixel centroid 

fell within a protected area and 0 otherwise. The Euclidian distance from the pixel 

centroid to the edge of the nearest protected area was also calculated. This distance took 

negative values if the centroid was inside a protected area. All information regarding the 

respective protected area, such as creation year, size, and category, was then incorporated 

into that specific pixel. Finally, another binary variable was created to designate whether 

the pixel was within an active protected area in the current year or not. If the protected 

area creation date was before the current analyzed year, this binary variable received 1, 

and 0 otherwise. This way, we only considered being within a protected area if the 

protection was active during the current year of analysis.  

In this chapter, we present five independent analyses, each to answer the explicit 

questions in the objectives (Figure 4.2). Each analysis was performed with specific 

datasets and analytical methods and will be described separately in the following sections. 

Table 4.3 brings the specifications of the main datasets included in this chapter's analysis.  

 
8 Downloaded from https://www.amazoniasocioambiental.org/pt-br/mapas in November 2020. 

https://www.amazoniasocioambiental.org/pt-br/mapas
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Figure 4.2 - General flowchart of the data analysis in Chapter 4. 

 
Table 4.3 - Dataset description and specifications. 

Product Description 
Original 
resolution 

Time span Source 

MCD64A1 c6 Annual burned area  500m 2003-2020 (GIGLIO,  LOUIS et al., 2015) 
Fire_cci v5.0 Annual burned area 250m 2003-2020 (CHUVIECO et al., 2018) 
MCD14ML Annual active fire  Point data 2003-2020 (GIGLIO,  LOUIS, 2000) 
Global Fire Atlas Annual fire ignition and 

individual fire scar  
Point and 
polygon data 

2003-2020 (ANDELA et al., 2019) 

CHIRPS Monthly precipitation  0.05° (~ 5 km) 2003-2020 (FUNK et al., 2015) 
MOD11B3 Monthly land surface 

temperature  
1km 2003-2020 (WAN,  ZHENGMING; HOOK,  

SIMON; HULLEY,  GLYNN, 
2015a) 

Silva Junior et al. Annual old-growth forest 
deforestation 

30m 2003-2020 (SILVA JUNIOR et al., 
2020b) 

Silva Junior et al. Annual secondary forest 
deforestation 

30m 2003-2020 (SILVA JUNIOR et al., 
2020b) 

Silva Junior et al.  Annual secondary forest  30m 2003-2020 (SILVA JUNIOR et al., 
2020b) 

MapBiomas Annual land use and land 
cover classes 

30m 2003-2020 MapBiomas PanAmazonia 
collection 3 

WorldPop Annual population count 1km 2003-2020 (LLOYD et al., 2019) 
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4.2.3 Data analysis 

4.2.3.1 Fire occurrence pattern within Amazonian protected areas 

We calculated the total burned area inside and outside protected areas, considering their 

respective categories from 2003 to 2020. We used two different fire data sources (Table 

4.3); the Moderate Resolution Imaging Spectroradiometer (MODIS) burned area product 

MCD64A1 version 6 (GIGLIO,  LOUIS et al., 2015) and the Fire Disturbance (Fire_cci) 

product, which is part of the Climate Change Initiative (CCI) program developed by the 

European Space Agency's (ESA) (CHUVIECO et al., 2018). As suggested in Pessôa et 

al. (2020), the two burned area data were added together to minimize regionally burned 

area underestimations and maximize the intrinsic benefits of each of the products. The 

product choice was based on their availability at Google Earth Engine (GEE) Platform by 

mid-2022, at the Amazon basin level, and for the time series from 2003 to 2020.  First, 

the products were transformed into annual binary products (burned/non-burned) and then 

merged into a single product of 250 m spatial resolution (Fire_cci product resolution). 

Finally, this joint product was resampled into the regular 5 km grid considering each 

pixel's annual proportion of the burned area. This processing was entirely done in Google 

Earth Engine (GEE). Burned area proportions in each pixel were transformed into the 

area by multiplying it by the pixel area (approximately 30.98 km²). The final analyzes 

were performed by tabularly aggregating the grid data by protection status (inside and 

outside protected areas), year, country, and protection category.  

4.2.3.2 Burned area per land use and land cover classes 

The burned area analysis by land use and land cover (LULC) class was performed using 

the merged burned area data (MCD64A1 + Fire_cci). This hybrid data was overlayed 

with data from the Annual Land-Use and Land-Cover Mapping Project (MapBiomas 

PanAmazonia collection 3) or secondary LULC data developed from it by Silva Junior 

(2020b) (Table 4.3).  MapBiomas PanAmazonia dataset provides 36 years of LULC 

classification using images of 30-m spatial resolution) and details about the processing of 

the dataset and class definition can be found in MapBiomas (2021). We extracted annual 

information on forest extension, farming, other natural formations, and others. Other 

natural formations include savannas, mangroves, flooded forests, and non-forest natural 

formations. The ‘other’ class includes mostly non-vegetated classes. In addition to these 
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classes, it was also considered secondary forest and deforestation of old growth and 

secondary forest obtained from Silva Junior (2020b). From the forest formation map from 

1985 (the first year classified by MapBiomas), every pixel that turned into any non-

natural class in the following year was classified as old-growth forest deforestation. 

Deforestation of old-growth forests only occurs once, and it is not possible to reclassify 

a given pixel as an old-growth forest at any time. This pixel, which is no longer an old-

growth forest, can become several classes, and if at some point it reverts to a forest, it is 

classified as a secondary forest. Secondary forests' deforestation occurs when secondary 

forests are converted to any non-natural class in the following year. This type of 

deforestation can happen several times since secondary forests are reversible. 

The overlaying process of burned area and LULC data, and its subsequent resample into 

the regular 5 km grid considering the annual proportion of burned area per LULC in each 

pixel, was entirely done in Google Earth Engine (GEE). Similarly to the burned area per 

LULC, the raw LULC data was also incorporated into the regular grid. All this 

information was transformed into the area by multiplying it by the pixel area 

(approximately 30.98 km²). The final analyzes were performed by tabularly aggregating 

the grid data by protection status (inside and outside protected areas), year, country, and 

protection category. 

4.2.3.3 Fire ignition analysis 

For the fire ignition analysis, we used data from the Global Fire Atlas (ANDELA et al., 

2019) for the period from 2003 to 2018, as this is the available time for this dataset (Table 

4.3). However, the data for 2018 is only available up to November, and estimates for this 

specific year could be slightly underestimated. This dataset provides information on 

individual burn scars for each year and their respective ignition point. Firstly, we 

incorporated the ignition point information into the 5 km grid used in the previous 

analysis, considering the sum of ignition in each pixel per year. With the fire ignition and 

protected areas information in the grid, we analyzed their occurrence by protection 

category. First, the fire ignition within the study area was identified and classified 

according to their location, outside or inside protected areas. 483,213 fire ignition points 

were within the study area during the 15 years analyzed. We then calculated the distance 

from each ignition point to the border of the nearest protected area. Finally, we identified 
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the respective burn scar for each ignition point and calculated the proportion of the area 

inside and outside protected areas for each burn scar.  

4.2.3.4 The relation between fire and population density 

Unlike the other analyzes in this chapter, the relationship between population and fire 

occurrence was evaluated by aggregating data on a grid of approximately 10 km spatial 

resolution. We used data from the MODIS active fire product MCD14ML version 6 

(GIGLIO, LOUIS, 2000), filtered for data acquired from the Aqua platform with a 

confidence level higher than 30%. The active fires were annually grouped and 

incorporated into the grid, considering the count in each pixel. In addition, the population 

count was obtained from the WorldPop data (Table 4.3). The WorldPop project combines 

a range of geospatial datasets into a flexible regression tree framework to reallocate 

contemporary aggregated spatial population count data (LLOYD et al., 2019). Its original 

resolution is 1 km, so summing was used as an aggregation method to incorporate it into 

an approximately 10 km grid annually.  

Once the WorldPop population count data was modeled, we compared it with two other 

datasets to assess whether there was too much discrepancy between datasets. We 

compared it with the Gridded Population of the World (GPW) v4 (CENTER FOR 

INTERNATIONAL EARTH SCIENCE INFORMATION NETWORK-CIESIN-

COLUMBIA UNIVERSITY, 2018) data and the statistical grid of the national census 

developed by the Brazilian Institute of Geography and Statistics - IBGE (IBGE, 2011). 

This comparison analysis aggregated all datasets in the approximately 10 km grid, 

considering only the Brazilian Amazon limits for 2010 since the Brazilian census grid is 

only available for this space-time scale. GPW population input was collected at the most 

detailed spatial resolution available from the 2010 Population and Housing Censuses 

results, which occurred between 2005 and 2014. The input data, in this case, was 

extrapolated to produce population estimates for the years 2000, 2005, 2010, 2015, and 

2020. The Brazilian Census Statistical Grid divides the territory into pixels of 200 x 200 

m in urban areas and 1 x 1 km in rural areas, allowing data to be aggregated regardless of 

political-administrative divisions. We observed that the determination coefficient (R²) 

between the three possible comparison pairs is always greater than 75% (Figure 4.3), 

reaching 97% when WorldPop is compared with GPW. This underpins the choice to use 
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the WorldPop product in this chapter since it is the only one that provides annual data for 

the study period of this work (2003-2020), and it is not significantly different from other 

products. 

Figure 4.3 - Comparisons between population count data for the Brazilian Legal Amazon in 2010. 

Comparisons were made between: WorldPop x Census Grid (a), GPW x Census Grid 

(b) and GPW x WorldPop (c).  

 

Data from WorldPop, GPW, and the Brazilian Census Grid. 

As our objective was to understand the population density pattern of where fire occurs, 

we only considered pixels that registered active fire in at least one year from 2003 to 

2020. Therefore, we used the quantile method to separate the mean population count 

(2003-2020) into ten classes with approximately similar observation numbers. Further, 

we divided the lower and upper classes into three classes using the first quartile and 

median, and the third quartile, respectively. This subdivision was carried out to highlight 

the upward and downward aspects of the relation curve. This way, summing the 

observations of these three smaller classes will approximately result in the observation 

number of the other classes (Table 4.7). 

The distribution of fire occurrence in each population class described above was 

evaluated with boxplot plots. The relationship between population and fire occurrence 

was visually evaluated with scatterplots. We observed that there is a range from low to 

high fire occurrence in each population class, reaching different fire occurrence peaks 

according to the population classes. For the scope of this analysis, the high fire occurrence 

cells were selected, which is what differs on a spectrum of population density. To better 

visualize this pattern, we separated each population class's ten highest fire occurrence 

points. Then, we fitted a local regression model using the LOESS (locally estimated 

scatterplot smoothing) method to these points. The LOESS method fits simple models to 
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localized subsets of the data to build up a function that describes the deterministic part of 

the variation in the data, point by point, generating a smooth curve through a set of data 

points. The inflection point of the LOESS curve, which is the point where the relationship 

between fire occurrence and population ceases to be increasing and becomes decreasing, 

was determined by the point of the lowest slope. We used logarithmic transformation in 

the population variable for the scatterplots to circumvent the concentrated distribution in 

values close to zero. This transformation required us to add 0.001 for all values of 

population count once this variable allows for zeros. Thus, points falling in the smallest 

logarithmic value in the scatterplots represent fire occurrence in pixels with no 

population. 

We performed a sensitivity test of fire occurrence prediction according to population 

density. For this, we used a logistic regression model that uses the independent variable 

population to predict the probability of fire occurrence. The logistic model requires that 

the dependent variable be binary, so we created a variable that received the value one if 

the pixel registered fire in at least one year of the time series and 0 otherwise. The logistic 

regression coefficients estimation is carried out using maximum likelihood, which seeks 

to find the most likely coefficients estimates and maximize the probability that an event 

will occur. The model's performance was assessed by the "pseudo" R² suggested by 

Nagelkerke (1991) and by examining the predictive accuracy (confusion matrix). As the 

logistic regression model brings the estimators results in logarithmic form, we performed 

the exponentiation of the regression variables, thus obtaining the odds ratio for the 

independent variables, in this case, the population log. The odds ratio tells us the variation 

proportion in fire occurrence given one unit variation of the population variable.  

We also built the ROC curve (Receiver Operating Characteristic Curve), which, 

associated with the logistic model, measures the prediction capacity of the proposed 

model through the predictions of sensitivity and specificity. Thus, the lower left point 

(0,0) means that a positive classification is not predicted; the opposite corner of the graph 

(1,1) classifies the unconditionally positive results, and; the point (0.1) represents an 

excellent rating. The further northwest of the graph the point is, the better. The cutoff 

point would then be the point on the ROC curve where the prediction has the highest 

sensitivity with the highest specificity. In our case, the cutoff point is the population value 
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that best predicts the threshold for fire occurrence. In addition, we calculated the Area 

under the ROC Curve (AUC), which aims to measure the performance of the curve in a 

single scalar value. The AUC indicator ranges from 0 to 1, and the closer to 1, the better 

the model performance, and it should never be below 0.5. 

Studies have already used logistic regression models for fire prediction (ZAPATA-RÍOS 

et al., 2021). These models can be used to test the significance of explanatory variables 

of fire occurrence. Indeed, the more significant explanatory variables are considered, the 

more reliable the model's prediction is. The analysis presented here is only a first 

assessment of the relationship between fire and population. However, we recognize that 

the values obtained may not reflect reality since only one explanatory variable was 

considered. Our purpose here was to assess the significance and pattern of the 

relationship, not its magnitude. 

Furthermore, to avoid spatial correlation, we randomly sampled 8000 pixels (half with 

fire occurrence in at least one year and another half without fire). This sample size 

represents approximately 10% of the entire dataset for this analysis. Although we 

recognize that this sample must be subjected to robustness checks, we did not perform 

these tests.  

All the analyses were repeated, separating the period from 2003 to 2020 into dry and 

normal years. For instance, 2005, 2010, 2015, and 2016 were considered dry years, and 

the rest were considered normal years (MARENGO et al., 2008, 2011; SILVA JUNIOR 

et al., 2019). Finally, we aggregated the WorldPop annual data into the 5 km grid used in 

the previous analysis in this chapter to compare population metrics inside and outside 

protected areas. 

4.2.3.5 Climate change within protected areas 

Climatic conditions during the dry season are a critical factor in environmental 

vulnerability to fire (CARVALHO et al., 2021). Knowing this, we evaluated how climatic 

conditions of temperature and precipitation during the dry season have changed on an 18-

year time scale and whether this variability follows the same pattern inside and outside 

protected areas. We used temperature data from MODIS MOD11B3 Monthly Land 

Surface temperature product (WAN,  ZHENGMING; HOOK,  SIMON; HULLEY,  
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GLYNN, 2015a) and monthly precipitation measures obtained from Rainfall Estimates 

from Rain Gauge and Satellite Observations - CHIRPS (FUNK et al., 2015) (Table 4.3). 

Both products were incorporated into the 5 km grid, considering each pixel's dry season 

average yearly. The temperature data originally had a lower spatial resolution. It was 

resampled to the grid resolution using the average metric to assign the value to the coarser 

pixel.   

The average precipitation and temperature during the dry season definition considered 

the onset and duration of spatially explicit dry season periods defined by Carvalho et al. 

(2021). The authors defined dry season length as the number of consecutive months with 

rainfall lower than 100 mm (average from 1981 to 2019). This threshold is used because 

of tropical forests' mean monthly evapotranspiration value (VON RANDOW et al., 2004). 

With the persistence of rainfall below it, evapotranspiration exceeds rainfall, which can 

be used as an indicator of water deficit in these ecosystems (ARAGÃO et al., 2007; 

MALHI et al., 2002). This way, dry season timing is delimited by grouping pixels that 

share the same month for the onset and end of the dry season, resulting in 74 

homogeneous regions across the Amazon basin. The average of the variables was 

calculated differently considering the specific dry season timing in each of these regions.  

We first calculated temperature and precipitation anomalies during the dry season from 

2003 to 2020. For this, we aggregated our dataset to obtain the average temperature and 

precipitation during the dry season per year and protection status (inside or outside 

protected areas). The idea was to compare the average value found in each protection 

category to the general average, which includes all the cases (inside + outside). For this, 

we defined anomaly as (Equation 4.1): 

𝑨𝒏𝒐𝒎𝒂𝒍𝒚 =  
(𝒂 −𝒎𝒆𝒂𝒏)

𝒔𝒅
 (4.1) 

Where a is the average temperature or precipitation per year per protection status, mean 

is the general average, and sd is the general standard deviation. Following, we calculated 

the mean temperature and precipitation during the dry season per year for the entire study 

area, as well as separately for inside and outside protected areas, to evaluate the general 

trend of climate variation. Finally, we evaluated the temporal trend of each climate 

variable per pixel using linear regression. We also evaluated the statistical significance of 



79 

 

the linear regression per pixel and only displayed significant trends on the final maps (p 

< 0.05). 

4.3 Results and discussion 

4.3.1 Fire occurrence pattern within protected areas 

Among the protection categories, indigenous lands are the ones that accumulate the 

largest area, totaling more than 1.7 million km² in 2019 (Figure 4.4a). The expansion of 

protected areas advanced in the late 80s and has continued to rise to the present day. In 

the 1950s, IU protected areas prevailed, which began to change in the late 1980s when 

indigenous lands and DU protected areas gained prominence (Figure 4.4b). The 

categories are distributed differently among the Amazonian countries, with indigenous 

lands in Bolivia and Brazil corresponding to 48% of the total protected area in each 

country in 2019. In Colombia, Ecuador, and Peru, this figure exceeds 60% (Figure 4.4c). 

Most protected areas were created by 2002 in most countries (Figure4.4d), with a few 

exceptions. 
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Figure 4.4 - Protected area extent and creation until 2019 in each Amazon basin country. (a) The 

total accumulated area from 1959 to 2019 per protection category in the Amazon 

basin. (b) The relative percentage of each protection category from 1959 to 2019. (c) 

The relative percentage of each protection category in 2019 in each Amazonian 

country. (d) The proportion of protected area created over the years in relation to the 

total in 2019, per Amazonian country and protection category. 

 

From 2003 to 2020, the maximum area that has already been affected by fire in the 

Amazon basin reaches 1.4 million km², corresponding to 21% of the basin area. This area 

is not the total burned extent since fires can affect the same area multiple times. Of the 

total accumulated burned area, 28% was within protected areas. We estimated that fires 

have affected, an average, 79,196 km² per year. In general, only 0.1% of the area under 

any type of protection is affected by fires, half of the rate registered outside protected 

areas. Thus, most of the burned area, on average, occurred outside protected areas (72%), 

and from the burned area registered inside, 61% (13,572 km² per year) occurred within 
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Indigenous lands (IL). In comparison, 28% (6,125 km² per year) occurred within Direct 

use (DU) protected areas and 11% (2,526 km² per year) within Indirect use (IU) protected 

areas.   

Annually, we observed that the largest areas affected by fire occurred in years that 

registered extreme droughts in the Amazon region, mainly 2005 (130,340 km²), 2007 

(135,999 km²), and 2010 (163,293 km²) (Figure 4.5). As El Niño, the phenomenon 

responsible for the drought in 2015/2016, affects the end of the year, it is likely that fire 

occurrence recorded in these two years was affected by the drought. Together (139,830 

km²), they exceeded the affected area in 2005. In addition, in 2015, the water recharge in 

the forest during the rainy season was also hampered by the lack of rain, which made the 

forest more susceptible to fire 2016 (SILVA JUNIOR et al., 2019). Despite the period 

after 2010 being marked by the adoption of several anti-deforestation policies in the 

Amazon, studies have shown that while deforestation decreased under policy treatment, 

forest fires were less responsive to policies.  Instead, fire events and burned areas were 

strongly influenced by precipitation (TASKER; ARIMA, 2016). Moreover, 2017 

registered a larger burned area than 2015/2016 registries, probably due to the high 

availability of fuel material affected by previous years' drought. 

The highest burned extent within protected areas was registered in 2010 (47,218 km²). 

However, 2011 registered 40% of the total burned area within protected areas, the highest 

proportion between 2003 and 2020 (Figure 4.5). In general, the area burned inside 

protected areas follows the same pattern as the area burned outside; when fire affects a 

greater area outside, a greater area inside protected areas is also affected. This shows that, 

although the extent affected by fire within protected areas is smaller, it is sensitive to 

factors that transcend the legal instrument of protection, such as climate and socio-

economic aspects. In addition, it also attests to the ability to deal with firefighting and fire 

prevention in these areas since fire vulnerability is shared either inside or outside 

protected areas. Burned area proportion per year that occurs within protected areas, 

however, has grown more than twice from 2003 (18%) to 2020 (38%), showing an 

increasing threat to the protection of these areas (Figure 4.5). 
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Figure 4.5 - Burned area within protected areas. Burned area proportion inside and outside 

protected areas from 2003 to 2020 (left panel) and total burned area inside and 

outside protected areas (right panel). The dependent variable is displayed on the x-

axis for visualization purposes.  

 

Brazil is the country that recorded the highest average area affected by fire between 2003 

and 2020 (51,304 km² per year), which is expected given the territorial dimension 

belonging to the Amazon basin of this country, followed by Bolivia (24,275 km² per year) 

and Colombia (2,991 km² per year) (Table 4.4.). Although Brazil also registered the 

highest burned rate per year inside protected areas (11,286 km² per year), Suriname 

presented the highest burned area proportion inside protected areas (74%). The 119 km² 

burned on average per year within Suriname's protected areas represents 0.5% of the 

country's total protected area. Unfortunately, Bolivia wins in this regard, burning an 

average of 3.7% of its protected territory yearly. If we do not consider the recurrence of 

fire in the same area, with the observed rate, Bolivia could have its protected extension 

completely burned in just 28 years. 
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Table 4.4 - Burned area (mean from 2003 to 2020) in each Amazonian country. 

Country   
Inside 

(km².year-1) 

 % total 
(inside + 
outside) 

Outside 
(km².year-1) 

 % total 
(inside + 
outside) 

Total 
(km².year-1) 

Bolivia BO 10,150.10 {42%} 14,125.31 {58%} 24,275.41 

    (5,421.89)   (8,233.87)     

Brazil BR 11,286.48 {22%} 40,017.62 {78%} 51,304.10 

    (4,519.34)   (22,327.21)     

Colombia CO 556.90 {19%} 2,434.56 {81%} 2,991.45 

    (388.28)   (1,773.41)     

Ecuador EC 0.01 {6%} 0.09 {94%} 0.10 

    (0.02)   (0.39)     

French Guiana GF 26.00 {39%} 40.79 {61%} 66.79 

    (18.93)   (23.36)     

Guyana GY 6.04 {9%} 60.09 {91%} 66.13 

    (6.62)   (43.53)     

Peru PE 24.57 {16%} 131.44 {84%} 156.01 

    (24.11)   (128.71)     

Suriname SR 118.92 {74%} 42.37 {26%} 161.29 

    (102.42)   (36.25)     

Venezuela VE 54.18 {31%} 120.38 {69%} 174.57 

    (46.37)   (64.99)     

Absolute values are the mean burned area from 2003 to 2020. Values in parenthesis are standard deviations 

from the mean. Values in braces are percentages from the total burned area in each country. 

Depicting the annual rates of the burned area within protected areas by protection 

categories, we observe that Indigenous lands (IL – 17%) are more affected than protected 

areas of direct (DU – 8%) or indirect use (IU – 3%) (Table 4.5). In 2010, all three 

categories registered the largest affected area. In general, the burned area in the Amazon 

basin grew in the last three years of the time series (2018-2020), both outside and inside 

protected areas. Particularly, direct use protected areas registered the highest proportion 

of burned area in relation to the total in 2020 (14%), reaching values close to the affected 

area in 2010 (12,263 km²). 

Indirect use protected areas recorded an average of 11% of the total area extension 

affected by fire within protected areas per year. Over half of the area burned within 

protected areas occurred in IL in all years (Figure 4.6a). However, this proportion shrunk 

from 74% in 2003 to 51% in 2020, while the proportion registered in DU-protected areas 

increased from 13% in 2003 to 38% in 2020. Although, in absolute values, ILs register a 

greater area affected by fire, the share of DU in the total burned area registered within 

protected areas has increased (Figure 4.6b). This becomes even clearer when we 
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normalize the burned area in each category by the total area of each category each year. 

In general, DU-protected areas have a lower proportion of burned area in relation to IL, 

and eventually higher, but with closer values. In the last two years (2019-2020), however, 

the affected area proportion within DU-protected areas has exceeded that recorded in IL, 

reaching close to the value found outside protected areas in 2020. 

Table 4.5 - Annual burned area inside protected areas in each protection category and outside 

protected areas, as well as their respective percentages in parenthesis. The last row 

brings burned area rate and standard deviation in parenthesis. 

 

The analysis presented here consists of an initial diagnosis of fire occurrence inside and 

outside protected areas in the Amazon basin between 2003 and 2020. Protected areas 

continue to register lower absolute rates of burned area compared to their surroundings, 

which corroborates the results found in the literature, which attest to the fire-inhibitory 

effect of protected areas (NELSON; CHOMITZ, 2011; NEPSTAD et al., 2006). 

However, the burned proportion within these areas has increased over the years. We 

observed that IU-protected areas are the least affected by fire in absolute terms and in 

proportion to their area. On the other hand, IL maintained the highest absolute values of 

the burned area throughout the time series. However, DU-protected areas have the 

Total (km²)

2003 1,704 (2.3%) 1,742 (2.4%) 9,687 (13.1%) 60,840 (82.2%) 73,973

2004 2,769 (2.7%) 3,476 (3.3%) 14,594 (14.0%) 83,616 (80.0%) 104,455

2005 2,736 (2.1%) 5,222 (4.0%) 15,996 (12.3%) 106,386 (81.6%) 130,340

2006 1,396 (1.8%) 5,507 (7.2%) 11,357 (14.9%) 57,713 (76.0%) 75,973

2007 3,101 (2.3%) 5,498 (4.0%) 16,002 (11.8%) 111,398 (81.9%) 135,999

2008 1,949 (2.9%) 7,456 (11.0%) 11,174 (16.4%) 47,375 (69.7%) 67,954

2009 1,072 (3.0%) 2,470 (6.9%) 6,697 (18.6%) 25,784 (71.6%) 36,024

2010 5,326 (3.3%) 15,647 (9.6%) 26,245 (16.1%) 116,075 (71.1%) 163,293

2011 3,158 (5.9%) 5,423 (10.2%) 12,547 (23.6%) 32,105 (60.3%) 53,234

2012 2,907 (4.3%) 5,652 (8.3%) 13,929 (20.5%) 45,520 (66.9%) 68,008

2013 1,190 (3.4%) 2,301 (6.6%) 8,975 (25.6%) 22,530 (64.4%) 34,996

2014 2,336 (4.8%) 3,356 (6.8%) 10,342 (21.1%) 33,006 (67.3%) 49,039

2015 2,389 (3.6%) 6,196 (9.3%) 12,812 (19.2%) 45,371 (68.0%) 66,768

2016 3,383 (4.6%) 5,953 (8.1%) 16,042 (22.0%) 47,684 (65.3%) 73,062

2017 2,505 (2.7%) 8,492 (9.2%) 18,320 (19.8%) 63,015 (68.2%) 92,332

2018 1,547 (4.1%) 3,571 (9.4%) 7,923 (20.9%) 24,783 (65.5%) 37,823

2019 2,243 (2.9%) 10,027 (13.1%) 15,180 (19.8%) 49,365 (64.3%) 76,815

2020 3,757 (4.4%) 12,263 (14.4%) 16,474 (19.3%) 52,942 (62.0%) 85,436

Mean 2,526 6,125 13,572 56,973 79,196

(sd) (1,039) (3,611) (4,546) (29,271) (35,450)

Indirect use (km²) Direct use (km²)
Indigenous lands 

(km²)
Outside (km²)



85 

 

steepest increasing share of their total area affected over the years. Therefore, protected 

areas, in general, are exposed to an increasing threat, which boosts their risk of 

environmental degradation and, consequently, their ecosystem integrity. The next 

question would be what is burning inside and whether the pattern changes when we look 

outside protected areas.  

Figure 4.6 - Burned area within protected areas, considering their categories. Burned area 

proportion inside each protected areas category from 2003 to 2020 (a), and total 

burned area inside each protected areas category (b). The dependent variable is 

displayed on the x-axis for visualization purposes.   

 

4.3.2 What is burning? 

Of the 1.4 million km² burned area accumulated from 2003 to 2020 in the Amazon basin, 

45% were registered in the class of other natural formations, which include savannas, 

grasslands, flooded forests, and mangroves (Figure 4.7). A total of 435,996 (31%) km² 

were registered in farming lands and 259,881 km² in old-growth forests (18%), an area 

larger than entire countries such as the Guianas and Suriname. 
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Figure 4.7 - Burned area rate (mean from 2003 to 2020) per land use and land cover class in the 

Amazon basin (for = forest; sec = secondary forest; nat = other natural formations; 

dfs = deforestation of secondary forest; dfp = deforestation of old growth forest; far 

= farming; oth = other).  

 

Forests burn on average 14,438 km² per year, representing 18% of the total burned per 

year (ranging from 3,940 km² in 2013 to 34,431 km² in 2010). There is no clear trend of 

increase or decrease in the burned area in old-growth forests between 2003 and 2020 

(Figure 4.8), although, in 2020, the area recorded was greater than in years of extreme 

droughts, such as 2015/2016. The same happens with burned areas in secondary forests. 

After 2004, the year that marks the beginning of the PPCDAm, the burned area related to 

old-growth forest deforestation began to fall, reaching 92% from 2004 to 2009 (Figure 

4.8). As of 2014, the burned area in this class remains stable at around 1,400 km² per year. 

In the last two years, though, there has been an increase, reaching a 112% increase in 

2020, compared to the average from 2014 to 2018.  
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Figure 4.8 - Burned area per land use and land cover class. Burned area proportion per land use 

and land cover class from 2003 to 2020 (left panel) and total burned area per land 

use and land cover class (right panel). for = forest; sec = secondary forest; nat = other 

natural formations; dfs = deforestation of secondary forest; dfp = deforestation of 

old growth forest; far = farming; oth = other. The dependent variable is displayed on 

the x-axis for visualization purposes. 

 

Old growth forest deforestation is the class that recorded the highest proportion of burned 

area compared to its total area (16% on average per year), considering the Amazon basin 

(Figure 4.9a, Table C.1 and Table C.2). Old growth forest is the class that burned the 

smallest area compared to its total in all years. Bolivia is the country that burns the largest 

forest proportion per year (0.79%), followed by Brazil (0.38%) and Colombia (0.11%) 

(Figure 4.9b). In 2010, Bolivia burned 3.5% of its old-growth forests, representing more 

than six thousand km² (Figure 4.9c). In the same year, Brazil burned 0.8% of its old-

growth forest.  
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Figure 4.9 - Burned area in each land use and land cover class normalized by the total area of each 

land cover and land use class (a). Burned forest normalized by total forest area in 

each Amazonian country (b) from 2003 to 2020 (c). In panel (b), the dependent 

variable is displayed on the x-axis for visualization purposes. BO = Bolivia; BR = 

Brazil; CO = Colombia; EC = Ecuador; GF = French Guiana; GY = Guyana; PE = 

Peru; SR = Suriname; VE = Venezuela.   

 

Considering that these numbers come from remote sensing data using automatic 

classifiers, errors are expected to be embedded in the estimates. On average, 2,279 km² 

of burned area in water were mapped per year, representing 3% of the total burned per 

year. Burned areas are commonly confused with water in automatic mappings due to the 

confounding spectral behaviors of these two targets. This may also partially explain the 

high value found for the burned areas in the class ‘other natural formations’ since flooded 

forests are included in this class. Even though studies have shown that flooded forests are 

fire-prone and could act as a potential conduit for spreading fires to upland forests 

(ALMEIDA et al., 2016), part of the burned area detected over them could potentially 
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represent a mapping error. However, it is impossible to ascertain the magnitude of this 

error with the available data. 

Indirect use protected areas and IL burn mostly ‘other natural formations’ (72% and 75% 

respectively per year). Direct use protected areas presented a higher rate of burning in 

farming lands compared to the other protection categories; 22% of the burned area 

registered within this category per year is in farming lands (Figure 4.10). Besides, 3.5% 

of the burned area registered within DU-protected areas is related to old-growth forest 

deforestation, the highest proportion of burned area compared to other protected 

categories. Proportionally, the burned area registered outside protected areas mostly 

affects farming lands (38%). In general, fire occurrence within protected areas affects 

mostly natural land covers, i.e., old-growth forests, secondary forests, and other natural 

formations. The share of burning in natural land covers in IL reaches 92% of the total 

burned area within this category per year. Contrastingly, this share outside protected areas 

is, on average, 52% of the total burned area registered per year, and the rest is mostly 

concentrated in farming lands.      

 Figure 4.10 - Burned area rate per land use and land cover class inside each of the protected area 

categories and outside them. for = forest; sec = secondary forest; nat = other natural 

formations; dfs = deforestation of secondary forest; dfp = deforestation of old growth 

forest; far = farming; oth = other. 

 

In absolute values, all land use and land cover classes have a greater area affected by fire 

outside protected areas per year (Table 4.6) and annually (Table C.3). Among the burned 

area within protected areas, IL concentrates the largest forest area affected by fire, 

registering an average of 2,137 km² per year, an area almost six times larger than what 

was registered within IU protected areas. For example, in 2010, the burned forest 
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registered within IL and IU protected areas increased respectively 128% and 127% 

compared to the average between 2003 and 2020. This increase reached 209% within 

DU-protected areas, representing 3,334 km² of burned forest in one year.    

Table 4.6 - Burned area rate (mean from 2003 to 2020) and summary statistics per land use and 

land cover class inside each of the protected area categories and outside them. SD = 

Standard deviation; VC = Variation coefficient.  

  
Mean 

% class total 
area 

SD Max. Min. VC(%) 

Forest 14,438  8,025 34,431 3,940 56 

Indirect use 377 (3%) 203 889 120 54 

Direct use 1,076 (7%) 822 3,334 225 76 

Indigenous land 2,137 (15%) 1,290 4,882 379 60 

Outside 10,848 (75%) 6,620 25,507 2,792 61 

Secondary forest 1,599  770 3,067 609 48 

Indirect use 38 (2%) 22 83 8 58 

Direct use 75 (5%) 49 180 13 66 

Indigenous land 153 (10%) 100 331 35 65 

Outside 1,333 (83%) 653 2,785 492 49 

Other natural formations 35,747  14,143 77,194 18,128 40 

Indirect use 1,823 (5%) 756 3,921 762 41 

Direct use 3,408 (10%) 1,911 9,449 1,244 56 

Indigenous land 10,172 (28%) 3,108 19,613 5,928 31 

Outside 20,344 (57%) 9,492 44,211 10,053 47 

Deforestation of secondary forest 435  160 740 170 37 

Indirect use 6 (1%) 3 14 1 60 

Direct use 20 (5%) 17 68 3 85 

Indigenous land 23 (5%) 19 88 5 84 

Outside 387 (89%) 139 570 151 36 

Deforestation of primary forest 2,585  2,152 7,504 516 83 

Indirect use 23 (1%) 19 69 3 81 

Direct use 216 (8%) 163 686 47 76 

Indigenous land 48 (2%) 27 116 12 56 

Outside 2,298 (89%) 2,131 7,308 451 93 

Farming 24,222  12,314 54,175 8,740 51 

Indirect use 255 (1%) 116 448 51 45 

Direct use 1,320 (5%) 892 2,878 132 68 

Indigenous land 999 (4%) 433 1,587 309 43 

Outside 21,648 (89%) 11,764 51,053 7,567 54 

Other 170  60 281 66 35 

Indirect use 4 (3%) 3 11 0 68 

Direct use 11 (6%) 7 29 4 62 

Indigenous land 41 (24%) 16 71 21 39 

Outside 114 (67%) 42 181 39 36 

Figure 4.11 brings heat graphs for each land cover class and the proportion of burned area 

per protection category from 2003 to 2020. It is clear from the graphs that larger burned 

areas have always been registered outside protected areas, regardless of the protection 

category. However, the most interesting aspect of this visualization form is the temporal 

tendency evidence of fire occurrence in each class and category. We observed, for 
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example, that burned forest is increasing within IL over the years (p < 0.001) and 

decreasing outside protected areas (p < 0.001). This same pattern is observed more subtly 

for the burned secondary forest area (p < 0.001). For burned areas related to old-growth 

forest deforestation, we observed a decreasing trend outside protected areas, at the cost 

of an increase inside DU-protected areas, similar to what happens with burned areas in 

farming lands. 

Figure 4.11 - Burned area per land use and land cover class inside each of the protected area 

categories and outside them, normalized by total burned area in each land use and 

land cover class per year.  
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The decrease in the burned area related to deforestation outside protected areas, 

concomitant with the increase inside them, highlights the greater pressure these areas face 

and tells us about the drivers behind fire occurrence within these areas. With the 

expansion of the agricultural frontier and very outdated and flexible land tenure laws 

(ARMENTERAS et al., 2019), protected areas in the Amazon are at increased risk of 

illegal land grabbing, which inevitably increases pressure on the forest. This narrative 

corroborates with studies that have shown that native vegetation was the land cover most 

affected by fire from 1985 to 2020 in Brazil, representing 65% of the burned area, while 

the remaining 35% burned in areas dominated by anthropogenic land uses, mainly pasture 

(ALENCAR et al., 2022). Therefore, to better elucidate the type and drivers of fire within 

protected areas, we need to understand where this fire is coming from. 

4.3.3 Where is fire ignition occurring?  

From 2003 to 2018, 17% of the total fire ignitions occurred inside protected areas, 

compared to 83% outside protected areas. Despite this difference, from 2003 to 2018, the 

proportion of fires inside more than doubled, indicating an increasing trend over the 

period (Figure 4.12a). The year that recorded the highest number of ignitions within 

protected areas was 2017 (6,685), followed by the extreme drought registered during 

2015/2016 in the Amazon. Therefore, when comparing the ignitions that occurred inside 

in relation to the total, the highest proportion was also recorded in 2017 (22%) (Figure 

4.12a). As might be expected, fires that start outside protected areas can escape and enter 

the area under protection. 

In the same way, the fire that starts within these areas can also reach its surroundings. 

From 2003 to 2018, 1,297,694 km² were burned throughout the basin, of which 25% 

occurred within protected areas9. Of the total area that burned inside protected areas, 85% 

came from fires ignited outside, albeit this only represents 21% of the total burned area 

from 2003 to 2020 (278,189 km²). On the other hand, 17% of the total burned area 

recorded outside protected areas came from fires ignited inside them, corresponding to 

163,916 km² (Figure 4.12b). So, most of the burned area observed in the Amazon basin 

from 2003 to 2020, both inside (85%) and outside (83%) protected areas, comes from 

fires ignited outside these areas. Although these proportions are approximately equal, 

 
9 These numbers are based solely on the Global Fire Atlas dataset. 
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they represent very different absolute values, adding up to a burned area outside protected 

areas (970,601 km²) almost three times greater than inside (327,093 km²).  

Figure 4.12 - Ignition occurrence and protected areas. Fire ignition occurrence inside and outside 

protected areas from 2003 to 2018 (a). Proportion and total burned area registered 

inside and outside protected areas caused by ignition occurred inside or outside 

protected areas (b). The dependent variable is displayed on the x-axis for 

visualization purposes.   

 

We have already shown that ignitions occur in greater numbers outside protected areas. 

However, the share of ignitions that occur outside compared to inside tells us about the 

threat these areas are exposed to. The lower the proportion of ignitions outside in relation 

to what occurs inside protected areas, the greater the occurrence of ignitions inside in 

relation to the total and, thus, the greater the threat to which these areas will be exposed. 

During the period studied, we observed a significant decrease in the proportion of 

ignitions that occur outside in relation to what occurs inside protected areas and, therefore, 

an increase in fire ignition threat to these areas (Figure 4.13a). Moreover, considering the 

fire ignition that occurs outside protected areas, the distance at which they occur from the 
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border influences the risk of fire entering the protection perimeter. This way, the burned 

area inside protected areas, which came from fires ignited outside, divided by the distance 

to the protection border, gives us an indication of imminent threat. We observed that, over 

the years, ignitions are occurring closer to protected areas' borders, which consequently 

influences a greater burned area within them (Figure 4.13b). Indeed, from 2003 to 2018, 

an average of 17,387 km² year-1 of fires ignited outside protected areas entered their 

borders. The proportion of burned area leaking to the inside perimeter, compared to the 

total burned, showed possible stability over the years, with an average of 25%. 

Surprisingly, in the last year, 2018, this proportion reached the same or greater value than 

years of extreme drought, when fire within protected areas is more expected. This 

proportion translates to the threat that fire started outside imposes on protected areas 

(Figure 4.13c). 

Figure 4.13 - Fire threat over protected areas (PA) from 2003 to 2018. The ratio of fire ignition 

outside and inside protected areas (PA) from 2003 to 2020 (a). The ratio of burned 

area inside protected areas and distance from ignition point to the protected area 

border. We only consider ignitions that occurred outside PA (b). The proportion of 

burned area occurred inside protected areas compared to the total burned area per 

year from fires started outside over time (c).  
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When we distinguished the categories of protected areas, we observed that the IL 

registered the highest percentage (Figure 4.14a) and absolute number (Figure 4.14b) of 

fire ignitions in relation to DU and IU-protected areas. Despite this, DU-protected areas 

presented the highest ignition density per square kilometer throughout the period (Figure 

4.14c). From 2003 to 2018, the proportion of fire ignitions within IL decreased by 23%, 

to the detriment of a 39% increase in DU-protected areas and a 29% increase in IU-

protected areas. In absolute numbers, IU and DU protected areas registered 50%  and 

62%, respectively, more fire ignitions in 2018 compared to 2003. In the same period, IL 

registered a reduction of only 10% in fire ignitions. Extreme droughts do not seem to be 

a determining factor in explaining fire ignition occurrence since peaks of ignition 

occurrence were observed in years that are not traditionally classified as dry, such as 2004 

or 2017. However, among the known extreme dry years, 2010 was the extreme event that 

most affected fire ignition within protected areas, increasing its number by 70% in 

relation to the previous year. All categories were affected by an increase in ignitions, 

reaching a 93% increase in IL. However, there is a significant trend (p < 0.05) of decrease 

in fire ignition density per square kilometer, the only category that showed a significant 

trend (p < 0.05) and also decreased was IL. However, in the latter, the decrease was found 

at a lower rate. The IU and DU categories presented relative stability in fire ignitions per 

square kilometer, with no significant trend over time. DU-protected areas presented the 

highest ignition density in all years, averaging 31% and 72% greater than IL and IU-

protected areas, respectively.    

  



96 

 

Figure 4.14 - Fire ignitions per protected area category from 2003 to 2018. Percentage in relation 

to total (a) and absolute number (b) of fire ignitions per protected area category. Fire 

ignitions density per protected area category from 2003 to 2018 (c). It was only 

considered ignitions occurred within protected areas. The dependent variable is 

displayed on the x-axis for visualization purposes. 

 

Finally, we calculated anomaly per year to indicate positive or negative anomalous years 

for fire ignition occurrence (Figure 4.15). To calculate the anomaly, we used each 

category's mean and standard deviation separately to analyze the intra-category 

anomalies. For example, as fire ignitions are lower inside protected areas than outside, if 

we use the general average, inside would always result in negative anomalies, regardless 

of the protection category.  
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Figure 4.15 - Fire ignition count (a, c, e, and g) and density (b, d, f, and h) anomalies from 2003 

to 2020 inside each of the protected area categories and outside them. 

 

Outside protected areas, positive fire ignition occurrence anomalies are concentrated 

mostly at the beginning of the time series, between 2003 and 2007 (Figure 4.15 a and b). 

After that, positive anomalies are only found in 2015 for ignition number and 2015 and 

2017 for ignition density. In addition to 2015 being an extremely dry year in the Amazon, 

there was also an increase in ignitions, both outside and inside protected areas. This did 

not occur in 2010, which despite the extreme drought, was a year that only registered 
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positive anomalies within IL and DU-protected areas. The highest positive anomaly for 

fire ignition count and density outside protected areas was observed in 2004. The lowest 

negative anomaly occurred in 2013 in all categories. In IL and DU protected areas, the 

highest anomaly of fire ignition count occurred in 2010 and 2017, respectively (Figure 

4.15 e and g). For fire ignition density, the highest anomaly value for both categories 

occurred in 2004 (Figure 4.15 f and h). Interestingly, in IU-protected areas, the highest 

fire ignition positive anomaly value occurred in 2018, the year that all other categories 

showed negative anomalies (Figure 4.15c).  

4.3.4 Is population density correlated to fire occurrence? 

Population density can drive fire occurrence in the Amazon (HANTSON; PUEYO; 

CHUVIECO, 2015; KNORR et al., 2014). Fire is inserted into the Amazon system in 

different contexts. For example, land management, clearing of deforested lands, or 

criminal land grabbing (ALENCAR; RODRIGUES; CASTRO, 2020; BARLOW et al., 

2020; SORRENSEN, 2009). With this, fire occurrence is expected to respond to a 

gradient of population density. Specifically, it is expected that the relationship between 

fire and population varies non-linearly in a population gradient (HANTSON; PUEYO; 

CHUVIECO, 2015). The relation would present an increasing curve in the first stage and 

a decrease in the second, in which the population density reaches a value such that it 

characterizes an environment less conducive to fire, configuring an inverted U-shaped 

curve.  

The deflection point at which fire occurrence decreases with increasing population 

density can be explained in two ways. At first, the population density gradient is related 

to a gradient of flammability of the environment, in which higher densities would reflect 

environments more managed and with less flammable biomass and, therefore, less 

conducive to fires. Second, the population density gradient would be related to a greater 

ability to control fire simply because of the amplification of human resources. Thus, fire 

occurrence would increase with increasing population density until reaching a point at 

which the environment becomes less flammable due to soil management and fire become 

better controlled due to more human resources. On the other hand, increased fire 

occurrence might result in increased flammability of emptying rural landscapes and 

reduced capacity to control fire (URIARTE et al., 2012).  
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In our study area, the average population density between 2003 and 2020 is 3.6 habitants 

per km² and approximately 24.8 million people. Indeed, despite still being sparsely 

populated, the Amazon is not an inhospitable environment, and human presence reflects 

forest degradation due to its activities. The general pattern between 2003 and 2020 is an 

increase in population density, with an increase of 1.65 habitants, on average, per km² 

from 2003 to 2020 (Figure 4.16), or 0.1 habitants per year. Most of the Amazonian 

territory experienced an increase of 0 and 100 habitants per km² from 2003 to 2020. 

Taking the protection status comparison, the increase in population density from 2003 to 

2020 inside protected areas was 0.47 habitants per km², contrasting with the 2.95 

registered outside them.  

Figure 4.16 - Difference in population density from 2003 to 2020. Gray voids on the map 

represent pixels with missing values.  
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Table 4.7 - Summary statistics of fire occurrence and population information for each class of 

population count. 

  

Active fires Population   

Population 
count 
classes 

Mean + sd Median Max. Mean + sd Median Max. Min. N 

0 - 0.2 1.52 + 2.84 0.33 23.94 0.03 + 0.06 0.00 0.20 0.00 875 

0.2 - 1 2.14 + 3.53 0.56 25.72 0.57 + 0.24 0.56 1.00 0.20 978 

1 - 4 3.27 + 4.62 1.11 29.56 2.36 + 0.87 2.29 4.00 1.00 2,203 

4 - 12 3.51 + 4.79 1.50 36.56 7.89 + 2.37 7.84 12.00 4.00 3,813 

12 - 22 3.65 + 4.83 1.67 35.06 16.55 + 2.88 16.33 21.99 12.01 3,772 

22 - 37 4.12 + 5.18 2.06 38.17 29.15 + 4.30 29.00 37.00 22.00 3,800 

37 - 61 4.23 + 5.10 2.28 38.06 48.13 + 6.91 47.76 60.98 37.01 3,931 

61 - 100 4.41 + 5.24 2.44 40.00 78.97 + 11.31 78.24 100.00 61.03 3,871 

100 - 162 4.67 + 5.42 2.78 39.17 128.67 + 17.94 127.55 161.99 100.00 3,911 

162 - 290 5.17 + 5.34 3.39 35.11 217.75 + 36.86 212.42 289.93 162.00 3,863 

290 - 675 5.97 + 5.94 4.17 57.50 435.27 + 105.45 414.92 674.84 290.12 3,869 

675 - 1524 6.22 + 5.76 4.39 43.06 995.20 + 231.09 952.89 1,522.98 675.18 1,938 

1524 - 3450 5.94 + 5.40 4.50 39.83 2,243.00 + 532.56 2,125.88 3,449.89 1,524.72 969 

> 3450 4.88 + 4.60 3.61 34.50 17,467.00 + 41,026.44 7,327.28 684,052.28 3,451.99 969 

Note: Values refer to the period between 2003 and 2020.              

The inverted U-shaped relationship is observed subtly in the mean and median values 

along the population gradient (Figure 4.17a and Figure 4.17b). However, it is more 

pronounced in the maximum values of fire occurrence (Figure 4.17c and Figure 4.17d). 

This is possibly due to many pixels with low fire occurrence (Table 4.7). Thus, the 

population gradient is linked to a fire occurrence gradient, reaching higher values until 

the population turning point, where the fire occurrence gradient deflects (Figure 4.17c 

and Figure 4.17d). Fire occurrence increases concurrently with population count, up to a 

fire peak close to 2.210 habitants per km². Pixels with a population density above this 

turning point seem to register a decrease in fire occurrence. In addition, this pattern is not 

homogenous among the Amazonian countries (Figure 4.18). 

  

 
10 This value is resulted from the point with lowest slope in a LOESS model runned between average fire 

count and log of population density, with the ten highest points in each mean population count class.  
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Figure 4.17 - Active fires per population count class. The classes refer to the mean population 

count from 2003 to 2020 per 10 x 10 km pixel. The mean population count in panels 

(c) and (d) is given using a logarithmic transformation. Active fires represent the 

mean (a, c and d) and median (b) value per 10 x 10 km pixel between 2003 and 2020. 

The boxes in panels (a) and (b) are drawn with widths proportional to the square 

roots of the number of observations in the groups. Outliers have been removed from 

the graphics to improve visualization. Panel (d) shows active fires per population 

count of the ten highest points in each mean population count class, so it was used 

the 10 pixels that registered the highest mean of active fires in each population count 

class.  

 

  



102 

 

Figure 4.18 - Mean active fires per population count in each country of the Amazon Basin. The 

mean population count is given using a logarithmic transformation.  Smaller panels 

show active fires per population count of the fifty highest points in each mean 

population count class, so it was used the 50 pixels that registered the highest mean 

of active fires in each population count class. 

 

Extreme drought years preserve the same general pattern between fire and population. 

However, the deflection turning point of the inverted U-shaped curve seems to occur with 

lower population density during dry years; the fire peak happens in less populated pixels 

(Figure 4.19). Splitting the dataset into dry and non-dry years, we found that the fire peak 
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happens close to 0.1411 and 3.1 habitants per km², respectively. Besides, as expected, the 

average of active fires reaches higher values during dry years.  

Figure 4.19 - Active fires per population count class. The classes refer to the mean population 

count in normal years (a and c) and dry years (b and d) per 10 x 10 km pixel. We 

considered 2005, 2010, 2015, and 2016 as dry years and the other years from 2003 

to 2020 as normal years. The mean population count is given using a logarithmic 

transformation. Active fires represent the mean value per 10 x 10 km pixel in normal 

years and dry years. Panels (c and d) show active fires per population count of the 

ten highest points in each mean population count class, so it was used the 10 pixels 

that registered the highest mean of active fires in each population count class.   

 

Globally, fire size distribution is strongly influenced by human activity (HANTSON; 

PUEYO; CHUVIECO, 2015). Knorr et al. (2014) have already shown in a global analysis 

that in areas with up to 0.1 habitants per km², fire frequency increases by 10 to 20% 

compared to areas with no habitants. This corroborates with the turning point we found 

for dry years in the Amazon basin. In tropical forests, population density and cropland 

 
11 These values are resulted from the point with lowest slope in a LOESS model runned between average 

fire count and log of population density, with the ten highest points in each mean population count class.  



104 

 

were positively correlated with the spatial pattern of burned area (ANDELA et al., 2017). 

In this environment, frequent fires for deforestation and agricultural management yielded 

a sharp rise in fire activity with the expansion of settled land uses (ANDELA et al., 2017; 

RUDEL et al., 2009). Although in the Brazilian Legal Amazon, the population ramped 

from 8 million in the ’70s to 28 million in 2020, population density in the region is still 

considered low, 5,6 habitants per km² (SANTOS; SALOMÃO; VERÍSSIMO, 2021). In 

the Amazon basin, the population in 2020 is estimated at 38 million. Considering that the 

whole region has 7.8 million km², the population density is even lower than in the 

Brazilian Amazon, with 4.9 habitants per km² (SANTOS; SALOMÃO; VERÍSSIMO, 

2021).  

We also tested the ability to predict the probability of fire occurrence given the population 

count of each pixel, considering the whole time series. We present the test summary 

statistics in Table 4.8. With a logistic regression model, we could observe that, in all 

cases, the coefficient of the population variable obtained positive values (p < 0.001). 

Thus, when the population increases, the chances of fire occurrence increase. In addition, 

the coefficient found for years of extreme drought is higher; that is, the increase in fire 

occurrence chance, given the increase in population, occurs at a higher rate. The Odds 

Ratio value brings a more direct interpretation of the logit model. We observed that for 

each unitary variation in the log of the population variable, the chances of fire occurrence 

increase by 58% (61% and 59% in dry and non-dry years, respectively).  

All three cases obtained AUC values higher than 0.8 and, thus, higher than the critical 

threshold of 0.5. The cutoff is the value with the highest model performance, the point at 

which the model minimizes false positives and negatives. In our case, the cutoff value 

represents the population density that would best predict fire occurrence. The cutoff value 

found for years of extreme drought was lower than for the other years, once again showing 

that pixels with lower population density better predict fire occurrence during extreme 

droughts. In all cases, the accuracy of the model was 0.73 and with pseudo R² values 

around 0.3, which does not show a good general fit of the proposed model. 
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Table 4.8 - Statistical test results for predicting the probability of fire occurrence given the 

population count. We considered the 2005, 2010, 2015, and 2016 dry years and the 

other years from 2003 to 2020 as non-dry years.  

  2003 - 2020 Dry years Non-dry years 

Coefficient 0.46*** 0.47*** 0.46*** 
Odds Ratio (Confidence 
interval at 95% confidence 
level) 

1.58 (1.54 - 1.62) 1.61 (1.57 - 1.65) 1.59 (1.55 - 1.63) 

AUC 0.82 0.81 0.81 
Cutoff  0.59 0.52 0.56 
Fire predicted with cutoff 
value (SD) 

3.31 (0.06) 2.88 (0.05) 3.15 (0.06) 

Accuracy 0.73 0.73 0.73 

Pseudo R² 0.35 0.36 0.35 

Note: *** p < 0.001. Pseudo R² is calculated based on Nagelkerke (1991). 

Finally, the average population density in our study area from 2003 to 2020 inside 

protected areas (1 habitant per km²) is more than seven times smaller than outside (7.2 

habitants per km²). The population density distribution within protected areas presented 

higher frequencies of small densities, including a higher frequency of pixels without 

habitants (Figure 4.20a). During the studied period, population density tended to increase 

inside and outside protected areas, albeit outside presented a steeper increase rate per year 

(Figure 4.20b). Besides, population density outside protected areas was, in all years, 

higher than the overall average. The opposite is true for density within protected areas. 

Furthermore, the average distance to the nearest protected area border progressively 

increases with the augmentation of population density (Figure 4.20c).  

Figure 4.20 - Population density inside and outside protected areas. Frequency (a), population 

density from 2003 to 2020 (b), and average distance to protected area (PA) border 

per population density (c) are given. Equations and statistics in panels b and c refer 

to linear regressions. The Red dashed line in panel b represents the overall mean 

population density from 2003 to 2020. In panel c, the protected area border, i.e., 

negative distance values, are related to pixels within protected areas.   
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It is important to emphasize that the population data used here is a modeled count with 

limitations and built-in errors, like all spatial data. These models use, among other 

parameters, nightlight data, and in less developed regions, this can lead to an 

underestimation of the population. This is the case mainly in indigenous and traditional 

communities that do not have electricity supply. This partially explains the number of 

pixels that registered fires without inhabitants. As we analyzed mean values and on a 

broader spatial scale, we do not believe the general relationship pattern between fire 

occurrence and population would change with data refinement. In addition, the statistical 

test presented in this section consists of a preliminary analysis, which still needs to be 

subjected to further robustness checks of the model to be better evaluated. 

4.3.5 Climate change within Amazonian protected areas 12   

Positive temperature anomalies, calculated as a departure from  2003 to 2020, were 

observed in all years, except for 2004, outside protected areas, with the highest value 

registered in 2015 (Figure 4.21). On the other hand, only negative temperature anomalies 

were registered inside protected areas, with the lowest value recorded in 2004. This is 

because the pattern of precipitation anomalies varies more than that of temperature. 

Outside protected areas, negative precipitation anomalies were recorded for 11 years, 

with the lowest value recorded in 2005. Inside protected areas, negative precipitation 

anomalies were only recorded for six years, with the lowest value recorded in 2015. The 

highest positive precipitation anomaly value was recorded inside and outside protected 

areas in 2013. 

 
12 Part of this section was presented at the 58th Annual Meeting of the Association for Tropical Biology 

and Conservation – ATBC 2022.  
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Figure 4.21 - Temperature and precipitation anomalies from 2003 to 2020, outside and inside 

protected areas in the Amazon basin.  

 

From 2003 to 2020, a positive trend in average temperature during the dry season in the 

Amazon basin is observed (p < 0.05). This trend gave an absolute increase of 0.8°C in 

2020 compared to 2003, with an increased rate of 0.05°C per year.  An increase of 1.42°C 

in 2030 compared to 2003 would imply that by 2050 the increase would reach more than 

2°C if the temperature continues to increase at the current rate. The average temperature 

during the dry season increase trend is observed inside and outside protected areas (p < 

0.05; Figure 4.22a). However, the increase rate outside protected areas is higher than 

inside.  

Although precipitation during the dry season did not show a trend throughout our time 

series, higher absolute values are found inside protected areas compared to outside, except 

in 2014 (Figure 4.22b). From 2003 to 2020, above-average precipitation values during 

the dry season were registered for eleven years inside protected areas, while outside, they 

were registered only for six years. 
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Figure 4.22 - Temperature (a) and precipitation (b) trend during the dry season between 2002 to 

2020 inside and outside protected areas in the Amazon basin.  

 

Most of the southern Amazon is subjected to increased temperatures during the dry season 

(Figure 4.23). Increased temperatures highly impact most of the region known as the 

Brazilian arc of deforestation. And even the central Brazilian Amazon, which houses the 

most pristine forests, is also impacted. Northwest and southeastern Bolivian Amazon are 

also highly impacted, as well as most of the Peruvian territory within the Amazon basin. 

Most of the pixels that presented significant negative temperature trends are either in 

central Colombia, at the edge of the Amazon basin border, or scattered in the north and 

northeastern Brazil. 

Nonetheless, they represent only 2% of all significant pixels (Table 4.9). Of all pixels, 

32% showed statistically significant trends, and 98% of them presented positive 

temperature trends during the dry season from 2003 to 2020. If we consider all pixels, 

regardless of their significance, 67% presented a positive trend (Table 4.9). 
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Figure 4.23 - Spatial distribution of pixels with positive (red) and negative (blue) trends in 

temperature during the dry season from 2003 to 2020 in the Amazon basin. Only 

pixels with a statistically significant trend are represented on the map. 

 

Table 4.9 - Number of pixels with positive, negative, or no temperature trends during the dry 

season from 2003 to 2020 in the Amazon basin.  
  Positive Negative No trend Total 

p > 0.05 59,225 17,483 41,077 117,785 
Outside PAs 30,295 8,606 14,929 53,830 
Inside PAs 28,930 8,877 26,148 63,955 
p < 0.05 71,764 1,257   73,021 
Outside PAs 35,818 888   36,706 
Inside PAs 35,946 369   36,315 
Total 130,989 18,740 41,077 190,806 

Note:PAs = protected areas 

We observed a significant decrease in precipitation during the dry season, mostly in the 

central Brazilian Amazon, the southeastern Brazilian state of Pará, and the western state 

of Roraima (Figure 4.24). Conversely, a significant positive precipitation trend was found 

mostly in the southwestern part of the Amazon basin and northeastern Pará state. They 

represent 69% of the total significant pixels (Table 4.10). However, only 6% showed 

statistically significant trends. If we consider all pixels, regardless of their significance, 
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35% presented a negative precipitation trend during the dry season from 2003 to 2020 

(Table 4.10). 

Figure 4.24 - Spatial distribution of pixels with a positive (blue) and negative (red) trend in 

precipitation during the dry season from 2003 to 2020 in the Amazon basin. Only 

pixels with a statistically significant trend are represented on the map. 

 

Table 4.10 - Number of pixels with positive, negative, or no precipitation trends during the dry 

season from 2003 to 2020 in the Amazon basin.  
  Positive Negative No trend Total 

p > 0.05 75,474 62,758 41,077 179,309 
Outside PAs 39,921 29,403 14,929 84,253 
Inside PAs 35,553 33,355 26,148 95,056 
p < 0.05 8,220 3,645   11,865 
Outside PAs 4,099 2,171   6,270 
Inside PAs 4,121 1,474   5,595 
Total 83,694 66,403 41,077 191,174 

Note:PAs = protected areas  

As a global effort, a UN report has already shown that the national targets set in the 

context of COP26 may not be enough to limit global warming to the 1.5°C level 

(MATTHEWS; WYNES, 2022). Regionally, it is already possible to observe temperature 

increases exceeding the mid-century global goal (GATTI et al., 2021). Here, we showed 
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a positive temperature trend towards an increase in the average annual temperature during 

the dry season in more than half of the Amazon basin from 2003 to 2020. Although this 

increase happens inside and outside protected areas, the temperature baseline inside these 

areas is lower, and the increasing trend happens at a lower rate per year. Our results 

corroborate those of Almeida et al. (2017), which showed an annual increase rate in the 

average temperature of 0.03°C in the Brazilian Amazon from 1973 – 2013. Gatti et al. 

(2021) showed an average temperature increase reaching 2.5°C in the southeastern 

Brazilian Amazon, analyzing the period from 2010 to 2018. During the dry season, a 

reduction of rainfall accompanied by temperature increase could lead the ecosystems to 

a fire-prone, continually changing environment. If we consider the population dynamics 

in this region along with the changes that recurrent fire and deforestation are causing to 

the local climate, natural ecosystems within protected areas are seriously threatened by 

fires. Therefore, our results highlight the importance of short-term actions and policies to 

adapt and mitigate the impacts that climate change is already imposing on Amazonian 

ecosystems. We emphasize the critical role of protected areas as buffers for these changes 

and perhaps the last strongholds that bear climatic conditions favorable to the 

functionalities of Amazonian natural ecosystems. 

4.4 Conclusions 

In this chapter, we diagnosed fire occurrence in protected areas of the Amazon basin. We 

evaluated the threat level that protected areas have been exposed to between 2003 and 

2020. Specifically, we found empirical evidence that:  

i. The proportion of fire occurring within protected areas has increased. Moreover, 

years of extreme drought show greater burned areas inside and outside protected 

areas. Among the protection categories, IL registered the largest burned areas, 

albeit the share of the burned areas within DU and IU protected areas has 

increased. Therefore, the extent of the burned area within protected areas follows 

the general pattern of what occurs outside these areas, and extreme drought affects 

their interior and surroundings. In addition, more restrictive protection categories 

have a smaller area impacted by fire; 

ii. the fire that occurs inside protected areas primarily affects natural areas. It was 

also shown that deforestation-related fire within protected areas has increased 
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over the years. Among the categories, IL is the one that registers the largest area 

of burned forest, despite more than half of what burns in the old-growth forest on 

average occurring outside protected areas; 

iii. fire ignitions also mostly occur outside protected areas, although the proportion 

of what occurs inside them has increased over the years. Most of the burned area 

recorded within protected areas is from fires that started outside them. Among the 

protection categories, the IL are the ones that registered the highest number of 

ignitions, but DU protected areas registered a higher density of ignitions per 

square kilometer throughout the period studied;  

iv. population density is correlated to fire occurrence in the Amazon basin. This 

relation is shaped by two moments, an increasing one in which population density 

would impose greater peaks of fire occurrence and a second decreasing one in 

which population density reaches a point that makes the environment less 

flammable. As expected, population density inside protected areas is lower than 

outside. However, it is increasing over the years, not only inside but around it, 

which puts greater pressure on its natural resources; finally, 

v. climatic conditions of temperature and precipitation during the dry season varied 

from 2003 to 2020, and their variability changes inside and outside protected 

areas. Inside protected areas, the average temperature during the dry season is 

milder than outside, and the precipitation is, on average higher. These conditions 

give these areas a less fire-prone environment, although these conditions are 

changing.  

Studies have already confirmed the inhibitory role of protected areas on fire (NELSON; 

CHOMITZ, 2011; NEPSTAD et al., 2006). These areas record less area impacted by fire 

and fewer ignitions. However, the environment within these areas and their surroundings 

are changing. Considering the fire occurrence triangle (ALENCAR; RODRIGUES; 

CASTRO, 2020), which conditions fire occurrence upon three factors in the Amazon 

(combustible material, weather conditions, and existence of ignition sources), we observe 

that the changes undergone by these areas in recent years have made them more 

vulnerable to fire. Here, we confirmed our hypothesis that fire occurrence in the Amazon 

basin is related to human presence. The expected inverted U-shaped curve between fire 

occurrence and population density was observed. Population density is increasing within 
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protected areas. In general, the average population density found within these areas shows 

that the population-fire relationship is still in the ascending phase; the greater the 

population density, the greater the fire occurrence. This pattern is progressively 

worsening throughout the years, boosting the threat of forest degradation within protected 

areas. Indeed, the environment becomes more fragmented with more people and 

deforestation. In turn, the climate is also inevitably being altered by large-scale climate 

change in the Amazon (GATTI et al., 2021). 

Notwithstanding, we confirmed the general changing pattern, showing that, even inside 

protected areas, the climatic conditions are becoming more fire-prone. Furthermore, we 

showed that most of the burned area recorded within protected areas results from ignitions 

outside them. Therefore, the increase in population density and the enactment of 

environmental laws to combat and control illegal activities, not only within these areas 

but also in their surroundings, are key factors influencing the increase of fire occurrence 

in these areas. With all that, we conclude that fire is a growing threat to Amazonian 

protected areas. 

The diagnosis presented in this chapter shows not only the potential of these areas as 

strongholds of a healthy environment capable of resisting climate change and forest 

degradation but also the level of threat to these areas are increasingly exposed to. 

Therefore, their inhibitory role, which was once confirmed, may not be sustained in the 

future scenario of increasing threat, climate change, and loss of governance in controlling 

illegal activities. Based on the evidence presented here, we can say that fires that occur 

within protected areas and that affect a large area of a natural land cover mostly result 

from human activities outside their boundaries. Therefore, the creation of new protected 

areas and management improvement of the existing ones should be a priority in national 

environmental agendas, given the relevance of these areas for the conservation of the 

largest tropical forest in the world. Furthermore, Tasker and Arima (2016) argue that fire 

occurrence in the Amazon is more related to climatic conditions than to land use 

regulation policies, such as protected areas. Indeed, we found that climatic conditions 

within protected areas are less fire-prone, but they are also changing. In a future scenario 

of increased forest fragmentation and climate change, the environment within these areas 

may become more flammable, ceasing its ability to contain fire.  
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Lastly, it is important to emphasize that protected areas are home to several traditional 

and indigenous communities, which, by directly depending on the natural resources of 

these areas, are committed to sustainable practices that they have been practicing for 

hundreds of years. Fire is often part of these practices, and making it strictly illegal 

without contextualizing its practice can push all these people into illegality. Hence, in the 

new scenario where we all have to adapt to environmental changes, alternatives must be 

provided, and environmental education must be intensified so that everyone has equal 

opportunities to replace fire with other land management techniques. Despite this, land 

cover change dynamics observed in recent years within protected areas show that forest 

degradation results from illegal activities in response to predatory development defended 

and driven by national governments. Such development model is leading to the downfall 

of the Amazon biome, and as such, traditional and indigenous communities are the most 

affected by this scenario. Further, protected areas have an important social role, 

improving life quality for those who live there and for everyone who enjoys their 

resources, whether they are water to drink or simply a wild environment to be. Indirectly, 

everyone benefits from these areas, and as such, everyone should feel equally responsible 

for them and scandalized by their destruction for the benefit of a few. 

Nevertheless, even though we have presented a detailed diagnosis not present in any 

previous study of the effect of protected areas on fire in the Amazon basin, we have not 

measured, in this chapter, whether this specific land use regulation policy has a 

statistically significant inhibitory effect on fire. For this, robust statistical tests must be 

employed to isolate the policy effect from other diverse effects that may be co-acting in 

the fire inhibitory process. In the following chapter, we then present a formal statistical 

analysis in this sense. 
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5 THE ROLE OF PROTECTED AREAS IN REDUCING FIRE OCCURRENCE 

IN THE AMAZON BASIN FROM 2003 TO 2020 

5.1 Introduction 

Fire is an intrinsic element of many ecosystems in the world (BEHLING et al., 2004; 

OLIVEIRA et al., 2014; OVERBECK et al., 2018). In humid tropical forests, it hardly 

occurs naturally (BUSH et al., 2008) and is strongly associated with human activities 

(ALENCAR et al., 2022). Broadly, three fire types occur in the Amazon. The fire used in 

the deforestation process to clean the land, the fire used to manage already established 

agricultural areas, and finally, the fire that escapes from these first two and reaches 

adjacent forests, the so-called forest fires (BARLOW et al., 2020). In addition to the 

presence of the ignition source, two other factors condition fire occurrence in the 

Amazon: the flammable material availability and favorable weather conditions 

(ALENCAR; RODRIGUES; CASTRO, 2020). Deforestation advance (SILVA JUNIOR 

et al., 2021a) and the worsening of environmental degradation, which is largely 

underestimated (SILVA JUNIOR et al., 2021c), intensifies forest fragmentation. The 

more fragmented the largest forest edges proportion. Forest edges are subject to greater 

climatic variations (SILVA JUNIOR et al., 2018). These conditions favor the entry of fire 

into the forest (SILVA JUNIOR et al., 2018), and tree mortality increases once burned 

(SILVA et al., 2018a). All these together boost the combustible material within the forest, 

making it even more vulnerable to further fires. Worsening this scenario, global climate 

models predict a drier Amazon in the 21st century (LI et al., 2008). The climate is 

changing (GATTI et al., 2021), and the intensity and frequency of extreme droughts may 

push Amazonia toward an amplified fire-prone system (ARAGÃO et al., 2018; MALHI 

et al., 2009; SILVA JUNIOR et al., 2019).   

Among the conservation policies, protected areas, including those with resident human 

populations, are considered an essential global strategy to preserve natural ecosystems 

(NEPSTAD et al., 2006, 2009; PAIVA et al., 2020; SOARES-FILHO et al., 2010). They 

have already been pointed out as efficient shields against deforestation (ANDAM et al., 

2008; ASSUNÇÃO; GANDOUR; ROCHA, 2015; NEPSTAD et al., 2006; NOLTE et al., 

2013). For example, during the first semester of 2020, only 14% of the fire registered in 

the Brazilian Amazon occurred within protected areas (ALENCAR; RODRIGUES; 
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CASTRO, 2020). However, the last few years have been marked by setbacks in the 

environmental governance of these areas (ARMENTERAS et al., 2019; MATAVELI; DE 

OLIVEIRA, 2022; RORATO et al., 2021; VILLÉN-PÉREZ et al., 2020) and the rising 

of illegal activities that result in forest degradation. Therefore, even historically 

registering lower forest degradation rates, the increasing exposure of protected areas to 

anthropic and climatic threats has become evident. Thus, providing evidence for policy 

formulation and informing decision-makers about the role of protected areas in mitigating 

forest degradation caused by fire is essential for prioritizing actions in favor of these areas. 

This chapter uses spatial data on fires and protected areas of the Amazon basin to explore 

the role of protected areas in curbing fire occurrence from 2003 to 2020. Most existing 

studies on protected areas evaluation have focused on deforestation avoidance (e.g., 

ANDAM et al., 2008; HERRERA; PFAFF; ROBALINO, 2019; PFAFF et al., 2014, 

2015a) and/or climate change mitigation (e.g., RICKETTS et al., 2010; SOARES-FILHO 

et al., 2010). To date, little research has robustly analyzed the role of protected areas in 

curbing fire occurrence. In the Amazon context, Nepstad et al. (2006) found that inhabited 

reserves in the Legal Amazon significantly reduced deforestation and fire by using an 

inside versus outside protected area comparison. Fire occurrence was four (indigenous 

lands) to nine (national forests) times higher along the outside versus the inside of the 

reserve perimeters in 1998. Although this study is relevant as a first assessment of the 

Amazon protected areas' performance, it relied on a naïve comparison, which does not 

consider confounders of the causal effect. In other words, it might have other factors 

influencing deforestation and fire occurrence within protected areas other than the 

regulation itself. Not accounting for this may pose a bias on effect estimation.  

Hence, econometric approaches are often used to identify the causal effects of a particular 

policy on an outcome (PEIXOTO et al., 2017), giving their ability to deal with different 

sources of bias. Thus, establishing causal inferences between land regulation and fire 

occurrence is difficult for several reasons. First, there is the possibility of other factors 

that simultaneously affect protected areas' placement and fire occurrence. For instance, 

land profitability factors, such as distance to roads and rivers, have direct effects on the 

suitability of the creation of a protected area and the probability of fire occurrence 

(NEPSTAD et al., 2006; PFAFF et al., 2015b; SILVEIRA et al., 2020). One can control 
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for observable factors in the estimations to alleviate this concern. Duly addressing the 

non-randomization of policy placement and concurrent changes caused by observed and 

non-observed factors provides greater accuracy and precision in causal effect estimation. 

Since fire occurrence within protected areas is not solely influenced by land use 

regulation, Nelson and Chomitz (2011) found that, in Latin America, from 2000 to 2008, 

indigenous lands reduced forest fire incidence by 16 percentage points. Their econometric 

approach considered that fire occurrence within protected areas is influenced by several 

factors, such as economic and climatic. Tasker and Arima (2016), also considering 

confounding variables when analyzing the effect of protection on fire, found that fires in 

the Brazilian Amazon are more responsive to precipitation than policies. While one 

standard deviation decrease in precipitation from its normal could increase the burned 

area by 18 to 27%, they found that the increment in protected areas did not impact fires. 

Although some research has been done on the role of protected areas in mitigating fire 

occurrence (NELSON; CHOMITZ, 2011; NEPSTAD et al., 2006; NOLTE; AGRAWAL, 

2013; TASKER; ARIMA, 2016), they bring into light three main limitations. First, the 

use of fire as a proxy for deforestation (NELSON; CHOMITZ, 2011), disregarding the 

temporal dynamic of coupling-decoupling of both processes (ANDERSON et al., 2019; 

ARAGÃO; SHIMABUKURO, 2010) and the particularities of the fire phenomenon in 

the Amazon.  Second, the lack of fire impacted extension quantification instead of only 

fire frequency (NELSON; CHOMITZ, 2011; NEPSTAD et al., 2006; NOLTE; 

AGRAWAL, 2013). Lastly, the disregard of a robust strategy to identify the protected 

areas' causal effect, causing thus probably bias by land patches being selected to be 

protected not at random and by the influence on fire level of other (policy, social, 

environmental) changes occurring simultaneously with the creation of protected areas 

(NEPSTAD et al., 2006). This chapter seeks to simultaneously fill these three gaps, 

making, thus, an innovative contribution to the extant literature. Another important 

novelty is embracing the whole Amazon basin in the analysis, thus going beyond the 

national-specific assessments of previous studies (NEPSTAD et al., 2006; TASKER; 

ARIMA, 2016). In addition to adopting a longer time series (2003 – 2020), updating the 

discussion on the topic and providing a more comprehensive and precise analysis than in 

previous studies.  
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Therefore, this study aims to evaluate, with an econometric approach and based on 

observational data, the effect of protected areas on curbing fire occurrence in the Amazon 

basin from 2003 to 2020, answering whether the creation of protected areas reduced the 

fire occurrence in the Amazon basin. The following sections were organized to describe 

in detail the econometric methods used as identification strategy and then provide a 

literature review on econometric empirical approaches applied to measure protected area 

effectiveness. Subsequently, we describe the study area and the dataset developed in this 

chapter. Finally, we present the results and discussion, closing the chapter with the 

conclusions. 

5.2 Literature review 

5.2.1 Theory of causal inference econometrics: a summary 

5.2.1.1 Self-selection bias and matching 

Causal inference econometrics provides statistical techniques for identifying the effect of 

a particular policy on an outcome variable of prime interest, what is commonly called the 

treatment effect (ANGRIST; PISCHKE, 2008). The basic idea is to use the techniques to 

mitigate the bias with which policy’s effect can be measured with observational data. Two 

crucial characteristics of such data are that it refers to a policy to which observational 

units were not selected to be exposed at random, and the outcome variable may be 

affected by other factors besides the policy (ANGRIST; PISCHKE, 2008; YWATA; 

ALBUQUERQUE, 2011). The policy causal effect estimation begins with the challenge 

of establishing the counterfactual value of the outcome variable for the group under the 

influence of the policy. That is, the value observed in the potential state in which the 

group is not exposed to policy. In other words, for the effect of the policy to be measured 

accurately, it is necessary that the group exposed to the policy be compared with a group 

of individuals that adequately represents the situation of non-treatment (PEIXOTO et al., 

2017). Naive comparisons of treatment and control groups, or even of the same group 

before and after treatment, cannot provide an accurate estimate of the policy's effect. In 

these cases, the situation of non-treatment after the implementation of the policy is 

unlikely to represent the situation of treatment in the potential stated without policy 

treatment. This is because many factors may have affected the treated group in addition 

to the policy itself, and treated and control groups differ in unobservable characteristics 
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that could be correlated with the process that determined whether they would be treated 

or not (PEIXOTO et al., 2017).  

When we want to estimate the causal effect of a policy on an outcome variable of interest 

(Y), the value of such variable to the i-th individual may be referred to as Yi(1) in the 

treatment state and as Yi(0) if the individual is in the untreated (control) state. Each state 

is associated with a potentially different outcome for the same individual (PEIXOTO et 

al., 2017). Thus, if we could observe this individual in both situations, the difference Δi 

= Yi(1)-Yi(0) would give the policy effect for this individual. However, it is naturally 

impossible to know the value of Δi for each individual since only one of the two potential 

results is concretely realized (PEIXOTO et al., 2017). Aggregate statistics, which can be 

identified under certain assumptions, are then used to circumvent this infeasibility of 

estimating the individual effect. Two such aggregations are the average treatment effect 

(ATE), which represents the mean policy effect for all individuals in the population, 

regardless of who was treated or not13, and the average treatment effect on treated (ATT), 

which focuses only on the treated group14.  

Assuming that the policy effect is the same for all individuals, that is, that the treatment 

effect is homogeneous, the result observed for any individual i in the population is given 

by a linear regression model15 (PEIXOTO et al., 2017). In this case, the biggest problem 

in identifying the causal effect of policies on a variable of interest is that the process that 

assigns individuals to specific treatment states is potentially correlated with unobservable 

factors that also determine the effect of treatment, what is called self-selection problem 

(PEIXOTO et al., 2017). This occurs mainly because policies are seldom implemented 

randomly. Several econometric methods address the problem of self-selection bias based 

on strategies that seek to adequately establish the counterfactual situation of each 

individual. For that, these approaches consider a wide range of socioeconomic and 

environmental predictors, besides the policy, to make treatment assignments as random 

as possible conditional on such predictors.  

 
13 The ATE can be defined by ATE = E[Yi(1)-Yi(0)] = E[Δi] (PEIXOTO et al., 2017). 
14 The ATT can be defined by ATT = E[Yi(1)-Yi(0)|Ti = 1] = E[Δi|Ti = 1], where Ti is a binary variable that 

takes value 1 if the individual i is treated (PEIXOTO et al., 2017). 
15 Defined by Yi = α + βTi + εi, where εi is the unobservable component that affects the potential outcomes 

of individual I (PEIXOTO et al., 2017). 
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Matching is a commonly adopted method to address self-selection and isolate the policy 

effect from the effects caused by unobservable factors that affect the outcome variable 

(GALIANI; GERTLER; SCHARGRODSKY, 2005). More precisely, when assessing the 

effectiveness of protected areas on fire occurrence, it is true that land patches were not 

randomly selected to be protected. Instead, that was a function of observable 

characteristics such as agricultural profitability and other factors that the government may 

have considered drivers of the net benefit of protecting the particular patch.  

Matching methods mitigate this bias by pairing treated and control observations with 

similar observable attributes that capture the net benefit of protecting a land patch. Such 

mitigation and the gain in accuracy of treatment effect estimation depend on two crucial 

assumptions. The first one is the ignorability of treatment assignment, in the sense that, 

after all, observable relevant covariates have been included in the analysis, treatment 

becomes random, and treatment effect becomes accurately measurable. This assumption 

requires that all relevant confounding variables have been included as controls 

(NELSON; CHOMITZ, 2011), which is not verifiable, but the omission of covariates 

nevertheless causes bias (ANDAM et al., 2008). The second assumption is that of 

common support between treated and controls; that is, all treated observations are 

assumed to have a comparable control unit, with comparability meaning equivalence in 

all covariates except the treatment status (MORELLO; ANJOLIM, 2021; PEIXOTO et 

al., 2017; WOOLDRIDGE, 2010).  

For each individual in the treatment group, the matching estimator searches for the most 

similar individuals in the control group (regarding their vector of observable variables). 

Then, it summarizes the outcome variable of those individuals to obtain the individual's 

outcome in the treatment group would be, if it were not treated (counterfactual) 

(PEIXOTO et al., 2017). The main differences between the various matching estimators 

concern the metric used to define the difference between treated and control individuals 

in terms of the vector of observable variables (PEIXOTO et al., 2017). Furthermore, the 

methods also differ in how many individuals in the untreated (or treated) group will be 

matched to each individual in the treatment (or control) group to obtain their 

counterfactual (PEIXOTO et al., 2017).  
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Two widely used matching metrics are propensity scores (PS) and covariate matching 

(CV). First, the probability of the control being exposed to treatment is calculated using 

a multiple logistic regression model. This score (or probability) is used to match treated 

and untreated observations. The smaller the difference between the scores, the more 

similar they are (BALTAR; SOUSA; WESTPHAL, 2014). In the second, the similarities 

between pairs are defined using the Mahalanobis distance (MD) metric, in which the 

weights on factors are based on the inverse of the covariate variance-covariance matrix 

(ABADIE; IMBENS, 2011). The MD is a scale-free distance metric. If two observational 

units have identical covariates values, the MD is zero. Thus, the more similar the covariate 

values, the shorter the distance. When using it to match treated and control observations, 

we ensure that each pair will have similar covariate values and that the distribution of the 

covariates in the treatment groups in the matched sample will be similar. The main 

difference between the two metrics is that by using CV, the matching is performed on the 

covariate space and not based on a one-dimension unique score (KING; NIELSEN, 

2019). 

5.2.1.2 Concurrent changes in bias and differences-in-differences 

Matching estimators assume that only time-fixed observable characteristics are sufficient 

to circumvent selection bias, and this hypothesis cannot be tested directly on the data 

(PEIXOTO et al., 2017). Thus, when important confounders of the outcome variable are 

time-varying observables or even time-invariant unobservables, not controlling for them 

can bias the causal effect estimated with matching. This may be called “concurrent 

changes bias” since it is caused by changes affecting the outcome variable that occur 

simultaneously as exposure to policy and could be captured in the variation of the 

outcome variable. To address such bias, the Differences-in-Differences (DiD) estimator 

is a well-suited option, as it is based both on variation across treatment status and time 

and may be coarsely described as based on a mix of before-and-after and treated-and-

control differences of the outcome variable. They also allow further address heterogeneity 

of observational units by including a wide range of predictors. 

Differences-in-Differences (DiD) estimators are based on a double subtraction. For 

simplicity, let it be considered that the outcome is observed for two groups during two 

periods. One of the groups is exposed to a treatment (policy) in the second period but not 
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in the first one. In turn, the second group, composed of the control group, was not exposed 

to the treatment in the two periods. The first DiD subtraction refers to the post- and pre-

treatment time difference of the outcome variable for the treatment group. Then, the 

second subtraction calculates the difference of the first subtraction between treated and 

control groups (BERTRAND; DUFLO; MULLAINATHAN, 2004; PEIXOTO et al., 

2017; WOOLDRIDGE, 2010). If we denote by T={1,0} the presence or not of the 

treatment and by t={1,0} the periods after and before the policy implementation, 

respectively, the DiD estimator is given by (Equation 5.1):  

𝛥𝐷𝑖𝐷 = {𝐸[𝑌𝑖|𝑇𝑖 = 1, 𝑡 = 1] − 𝐸[𝑌𝑖|𝑇𝑖 = 1, 𝑡 = 0} − {𝐸[𝑌𝑖|𝑇𝑖 = 0, 𝑡 = 1]

− 𝐸[𝑌𝑖|𝑇𝑖 = 0, 𝑡 = 0]} 
(5.1) 

In this case, the causal effect estimation relies on the identification assumption that treated 

and control groups have the same time trend for the outcome variable in the untreated 

state (notice that this does not mean the values of the outcome are the same but that they 

exhibit parallel paths across time). That is, the time trajectory of the outcome variable for 

the control group necessarily represents what would happen to the treated group if there 

was no intervention by the policy under analysis – thus, concurrent changes affect treated 

and untreated units with the same intensity. Intuitively, if the trajectories are similar 

during the period before treatment, then it seems reasonable to assume that the evolution 

of the control group after treatment closely represents what would happen to the treated 

group in the non-treatment situation (ANGRIST; PISCHKE, 2008; BERTRAND; 

DUFLO; MULLAINATHAN, 2004; PEIXOTO et al., 2017). The identification 

assumption cannot be directly tested. However, its plausibility can be approximately 

assessed with a graph depicting the outcome trends for treated and untreated groups 

before and after treatment.  

If the DID assumption is true, any deviations in the trajectory of the outcome variable 

between the groups after the policy implementation (treatment) are due to the policy 

intervention. In other words, considering that the control group represents a valid 

counterfactual of the treatment group, the difference between the variation observed for 

the treatment group and the variation observed for the control group captures the causal 

effect of the intervention on the treated ones (FERRARO, 2009; PEIXOTO et al., 2017) 

(Figure 5.1). Although the DiD method requires parallel trends of the outcome variable 
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in the pretreatment period, they do not need to start from the same point. Hence arises a 

first major advantage of the method, the ability to deal with pre-existing differences 

between groups (PEIXOTO et al., 2017). 

Figure 5.1 - Conceptual framework of differences-in-differences model estimation. 

 

Source: Adpated from Angrist and Pischke (2008). 

 

The DiD model can be written in the form of linear regressions to simplify its description. 

The commonest specification, for the case with two periods, before and after policy, is 

found below (Equation 5.2):  

𝑌𝑖𝑡 = 𝛽0 + 𝛽1𝐷𝑒𝑖 + 𝛽2𝐷𝑝𝑖𝑡 + 𝛽3𝐷𝑒𝑖 ∗ 𝐷𝑝𝑖𝑡 + 𝑋′𝑖𝑡𝛼 + 𝜀𝑖𝑡 (5.2) 

Where i indicates the observation unit and t the time. 𝑌𝑖𝑡 is the variable under analysis 

(outcome variable).  De is a binary variable assigned one if the pixel is, or at some point 

will be, under treatment. Dp is another binary variable assigned one if the treatment is 

active in the current year. The isolated De and Dp terms capture the differences in the 

mean of the outcome variable between the treatment and control groups and between the 

period before and after treatment, respectively. The product coefficient between De and 

Dp (β3) captures what specifically happened to the treatment group in the post-treatment 

period. It is the average treatment effect on the treated (ATT). Finally, 𝜀𝑖𝑡 represents the 

time-variant unobservables, being a random disturbance with zero mean.  
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The vector of controls X’it contains observable characteristics that vary or not in time. 

Introducing these characteristics further increases the accuracy and precision of 

estimating the intervention causal effect. If they are not considered, part of the outcome 

variation would be mistakenly attributed to the treatment (PEIXOTO et al., 2017). In the 

case where more than two time periods are considered, Equation 5.2 should be rewritten 

as (Equation 5.3):  

𝑌𝑖𝑡 = 𝛽0 + 𝛽1𝐷𝑖𝑡 + 𝑋′𝑖𝑡 + 𝜀𝑖𝑡 (5.3) 

The term 𝛽1 is the average treatment effect (PEIXOTO et al., 2017) as Dit takes value one 

if the treatment is active for the i-th individual in the t-th time. Another important addition 

to the DiD model is addressing a third source of bias from time-invariant unobservables 

that may be correlated with included covariates, hereafter referred to as “heterogeneity 

bias.” That is, the disturbance term εit may be decomposed as εit = μi + uit so that the 

econometric specification becomes (Equation 5.4): 

𝑌𝑖𝑡 = 𝛽0 + 𝛽1𝐷𝑖𝑡 + 𝑋′𝑖𝑡 + 𝜇𝑖 + 𝑢𝑖𝑡 (5.4) 

In this case, identification of the parameters may be achieved with a fixed-effects (FE) 

estimator, which transforms the model above by replacing variables by their deviations 

to their mean across time, thus eliminating ai.  

An important assumption in this specification is that the term 𝜀𝑖𝑡 cannot be correlated 

with the model variables. In other words, conditional on the adoption of fixed effect, 𝜇𝑖, 

and the variables in 𝑋′𝑖𝑡, it is required that any time-varying unobserved factor that affects 

the outcome variable does not influence the decision to participate in the program 

(ANGRIST; PISCHKE, 2008; PEIXOTO et al., 2017).  

Instead of the fixed-effects time-demeaning transformation, (5.4 could be estimated with 

the first differences of all variables included in the model, that is, with variables replaced 

by the difference between their value in the current period and one period before, which 

also eliminates 𝜇𝑖 (PEIXOTO et al., 2017). This way, the disturbance term of the model 

will be given by: ∆𝜀𝑖𝑡 = 𝜀𝑖𝑡 - 𝜀𝑖𝑡−1. It is important to highlight that if this term presents a 

serial correlation, that is if the correlation of 𝜀𝑖𝑡 e 𝜀𝑖𝑡−1 is different from zero, 

underestimation of the standard error of the coefficient estimator of interest will probably 
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occur, leading to erroneous conclusions about the statistical significance of the treatment 

effect (BERTRAND; DUFLO; MULLAINATHAN, 2004). Some strategies can be 

adopted to minimize this problem, such as the bootstrapping technique applied to standard 

errors, which is used as a non-parametric way to address potential serial correlation and 

heteroskedasticity (BERTRAND; DUFLO; MULLAINATHAN, 2004; GALIANI; 

GERTLER; SCHARGRODSKY, 2005). In all estimations conducted in this chapter, 

clustered-standard errors, robust to serial correlation and heteroskedasticity, were relied 

on, together with bootstrapping. 

5.2.1.3 Post-matching DiD regressions 

Although matching estimators are widely used in the literature to estimate the treatment 

effect of specific policies, these estimators can also be used in combination with other 

econometric techniques such as DiD (IMBENS; WOOLDRIDGE, 2009; PEIXOTO et 

al., 2017). For example, treatment endogeneity (self-selection) is commonly addressed 

using matching. Subsequent application of DiD could address further endogeneity across 

cross-section units by looking at differences in variations (and assuming common trends). 

The main gain in combining these two estimators is to make identification assumptions 

valid in a wider range of possibilities, thus increasing the accuracy of the average 

treatment effect (ATE) estimation (IMBENS; WOOLDRIDGE, 2009; PEIXOTO et al., 

2017).  

Indeed, the selection-on-observables assumption of matching establishes that conditional 

on the vector of observable variables, for a reliable estimate of the causal effect, there 

cannot be any unobservable factor that simultaneously influences the decision to 

participate or not in the treatment and the potential outcomes (PEIXOTO et al., 2017). In 

other words, the assumption requires no selection into treatment based on unobservables 

(GALIANI; GERTLER; SCHARGRODSKY, 2005). However, when matching is paired 

with DiD, we do not need to be strict about this requirement, as unobservable time-

invariant factors will be duly considered in the DiD estimate. Ferraro and Miranda (2017) 

applied matching to panel data in a two-step approach by ensuring comparability with 

sample selection and thus running the panel FE model. They showed that treatment effects 

estimated this way are closer to the ones in a Randomized controlled trial (RCT) sample. 

The latter estimator used in this study (FE), likewise DiD, assumes that trends are the 
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same for treated and untreated in the control state and also other four assumptions; (1) 

treated and untreated units respond the same way to common shocks, (2) treatment effect 

is additive and constant, (3) linear functional form, and (4) no dynamic lagged variables. 

The author claimed, then, that flexibilizing those assumptions is hardly possible. 

However, by applying matching before FE, results less susceptible to violation of at least 

one of the assumptions are obtained. If heterogeneity in treatment effect is due to 

observables, matching attenuates this, since assuming the same treatment effect for 

treated and non-treated is more plausible after conditioning on observables (FERRARO; 

MIRANDA, 2017).    

In addition, the identification strategy here applied is to use matching in the first stage to 

pair treatments and control observations and build a valid counterfactual group. This 

mixed approach allows for conditioning on fixed effects and identifying the parameter of 

interest jointly with addressing self-selection unobservables (HECKMAN; ICHIMURA; 

TODD, 1998). As mentioned before, conventional matching methods assume that 

conditional on the covariates, the counterfactual outcome distribution of the treated units 

is the same as the observed outcome distribution of the units in the control group. The 

matched sample will not only ensure a valid counterfactual, but it will also improve the 

parallel trends of the outcome variable in the pre-treatment period between treatment and 

control groups. This way, matching may increase the parallelism of trends if it is based 

on factors related to concurrent changes (ABADIE; IMBENS, 2006; FERRARO; 

MIRANDA, 2017), ultimately being beneficial for the fulfillment of the assumptions 

required by DiD. Other examples using two-step identification strategies can be found in 

Andam et al. (2008), Arriagada et al. (2016), and Herrera et al. (2019). 

5.2.2 Applications of causal inference econometrics: assessment of protected 

areas’ effect 

After conceptually introducing the methods we will adopt in this chapter, we present a 

brief bibliographic review of works that approach protected areas, using econometric 

techniques for data analysis. Matching and DiD estimators are widely used for policy 

evaluation. Specifically for the protected areas subject, Table 5.1 summarizes the main 

findings of studies measuring their effectiveness on different outcomes, mostly using 

econometrics.  
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The use of matching to balance covariates between treatment and control groups and, 

thus, deal with selection bias is extensively described in the literature (ANDAM et al., 

2008; HERRERA; PFAFF; ROBALINO, 2019; NELSON; CHOMITZ, 2011; PFAFF et 

al., 2014, 2015a, 2015b; SHI et al., 2020; SZE et al., 2022; WENDLAND et al., 2015). 

Table 5.1 - Summary of recent literature on the effect of protected areas on land cover changes. 

PAs = protected areas, PS = propensity score, CV = covariate matching, DiD = 

differences-in-differences, OLS = Ordinary least squares. 

Reference 
Analyzed 

time 
Scale Main methods Main conclusion 

(WEST et al., 

2022) 
2008-2017 

Brazilian 

Amazon 

Matching (PS, CV, 

and PSW) + 

Generalized 

synthetic control 

(GSC) 

The management proxy (approved management 

plan) has a potential effect on reducing forest loss, 

but this effect is not significant for all PAs and 

years. 

(SZE et al., 

2022) 
2010-2019 Pan-tropical 

Nearest Neighbor 

Matching + 

regressions 

Indigenous lands reduce deforestation and forest 

degradation more effectively than other PAs 

throughout the tropics. 

(SHI et al., 

2020) 
1994-2015 Global 

Matching (PS) + 

DiD 

With the implementation of PAs, the global carbon 

sequestration capacity can be improved by 0.39%. 

This effect occurs if there is an upgrading of the PA 

category, the presence of a management plan, and 

an increase in local governments. 

(AMIN et al., 

2019) 
2001-2009 

Brazilian 

Amazon 

Dynamic Spatial 

Durbin Model 

The sustainable use PAs do not help to reduce 

deforestation. The spillover effects generated by 

integral PAs and indigenous lands lead to reduced 

deforestation in their vicinity. 

(HERRERA; 

PFAFF; 

ROBALINO, 

2019) 

2000-2008 
Brazilian 

Amazon 

Matching (PS and 

CV) + regressions 

Outside the deforestation arc, protected areas have 

little effect on deforestation, and the spillover is 

negligible. The effect inside and in the surrounding 

is only registered in federal PAs.   

(ARRIAGADA; 

ECHEVERRIA; 

MOYA, 2016) 

1986-2011 Chile Matching 
PAs are only able to reduce deforestation when 

compared to private areas. 

(To be continued) 
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Table 5.1 – Continuation. 

Reference 
Analyzed 

time 
Scale Main methods Main conclusion 

(PFAFF et al., 

2015b) 
2000-2008 

Brazilian 

Amazon 

Matching (PS) + 

regressions 

The siting of PAs varies across regions. PAs created 

in the deforestation arc are further from the 

pressure (non-forest), and the opposite is 

observed outside. After 2000, PA extent is less 

similar across PA types with little non-indigenous 

area created inside the arc. The effect of PAs on 

deforestation is always greater within the 

deforestation arc. 

(PFAFF et al., 

2015a) 
2000-2008 

Brazilian 

Amazon 

Matching (PS) + 

regressions 

Using matching, the measured effect of PAs on 

decreasing deforestation can be reduced by half. 

PAs closer to highways and cities have a greater 

impact on deforestation. 

(WENDLAND 

et al., 2015) 
1985-2010 Russia 

Matching (PS) + 

regressions 

PAs showed a little significant effect in reducing 

forest disturbance, with little difference between 

PAs near or far from cities and highways. 

(PFAFF et al., 

2014) 
2000-2008 

Brazilian 

state of Acre 

Matching (PS and 

CV) + regressions 

Sustainable use PAs are more commonly found in 

places with greater deforestation pressure and 

prevent more deforestation than integral 

protection PAs. 

(NOLTE; 

AGRAWAL, 

2013) 

2000-2010 
Amazon 

basin 

Nearest Neighbor 

Matching 

PAs with high management effectiveness 

indicators in 2005 did not perform better in 

reducing forest fires from 2000 to 2010. 

(NOLTE et al., 

2013) 
2001-2010 

Brazilian 

Amazon 

Matching + 

regressions 

The effectiveness of PAs in reducing deforestation 

is related to deforestation pressure at the site. 

Strictly PAs avoided more deforestation than 

sustainable use PAs. Indigenous lands were 

particularly effective in reducing deforestation in 

regions with greater pressure. 

(JOPPA; 

PFAFF, 2011) 
2000-2005 Global 

Nearest Neighbor 

Matching 

75% of the countries presented the effect of PAs on 

natural land cover conversion, which is weaker in 

areas farther away from roads, cities, and steeper 

slopes. 

(NELSON; 

CHOMITZ, 

2011) 

2000-2008 Pan-tropical 
Nearest Neighbor 

Matching 

In Latin America, Strict and Multiple Use PAs 

substantially reduced fire occurrence, and 

indigenous areas reduced forest fire incidence by 

16 percentage points. 

(To be continued) 
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Table 5.1 – Conclusion. 

Reference 
Analyzed 

time 
Scale Main methods Main conclusion 

(SIMS, 2010) 2000 Thailand 
OLS + Instrumental 

variables 

PAs increased average consumption and reduced 

poverty rates but imposed low availability of land 

for agriculture. The gains are explained by the 

increase in tourism and are greater in areas with 

intermediate distances from large cities. 

(SOARES-

FILHO et al., 

2010) 

1997-2008 
Brazilian 

Amazon 

Inside vs. outside 

comparison of 

deforestation 

probability 

PAs showed a significant inhibitory effect on 

deforestation and have the potential to avoid 8.0 ± 

2.8 Pg of carbon emissions by 2050. 

(ANDAM et 

al., 2008) 
1960-1997 Costa Rica 

Nearest Neighbor 

Matching 

PAs reduce deforestation, and spillovers are 

negligible.  

(NEPSTAD et 

al., 2006) 
1997-2000 

Brazilian 

Amazon 

Inside vs. outside 

comparison 

PAs with human residents reduce deforestation 

and fire. However, the difference in effectiveness 

against deforestation and fire of PAs without 

human residents and indigenous lands was 

insignificant. 

Protected areas’ relative performance against deforestation and fire in the Brazilian 

Amazon was evaluated by (NEPSTAD et al., 2006). The authors used a naïve comparison 

between buffers outside and inside protected areas and found that protected areas, 

including those that allow human residency, have reduced deforestation and fire. 

However, they point out that indigenous lands are generally created closer to areas under 

greater pressure from deforestation, and therefore their performance would be more 

relevant. Although the authors recognize the importance of protected areas placement and 

other factors that affect their performance, they do not consider these limitations in their 

assessment. They only attest that the approach used overestimates the inhibition of 

deforestation in cases where protected areas were established close to existing roads or 

the boundaries of existing colonization projects. A similar approach was applied by 

(SOARES-FILHO et al., 2010). However, the authors deepen their analysis by adopting 

a Bayesian method, which considers the differential effects of spatial determinants on the 

spatial prediction of deforestation. By doing this, they partially resolve the selection bias 

issues, ensuring that the probability map of deforestation, used to compare inside and 

outside protected areas buffers, is controlled for landscape characteristics. The authors 

found that the expansion of protected areas from 2004 to 2006 in the Brazilian Amazon 
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was responsible for 37% of the region’s total reduction in deforestation without provoking 

leakage. Their results also confirm that not considering cofounders of the causal effect 

could potentially overestimate the role of protected areas.  

Several other studies have delved into applying econometric methods to avoid this naive 

comparison and overestimating the effectiveness of protected areas. Andam et al. (2008) 

applied matching methods to evaluate the impact of deforestation in protected areas in 

Costa Rica from 1960 to 1997. Three facts that hamper the effectiveness measurement of 

protected areas are highlighted; (1) the impossibility of directly measuring the 

deforestation that would have occurred in the absence of legal protection (i.e., the 

counterfactual is not observed), (2) the bias that can be embedded, since protection is not 

randomly assigned, and (3) the displacement (spillovers) that can be induced by 

protection to neighboring forests. Considering these three aspects, the authors used 

matching methods and found that 10% of the protected forests would have been 

deforested in case of protection absence. However, they showed that conventional 

approaches would have substantially overestimated avoided deforestation by over 65%. 

Arriagada et al. (2016) also adopted a matching approach to measuring the effectiveness 

of the protected areas against deforestation in Chile from 1986 to 2011. The authors found 

that protected areas can only reduce deforestation compared to private areas. 

Another study by Nelson and Chomitz (2011) used a matching approach to address this 

key analytic problem. It is highlighted that protected areas placement is likely to occur on 

marginal lands with low pressure for deforestation. Thus, the authors argued that a naïve 

comparison of deforestation rates between these low-pressure areas and unprotected 

lands, in general, would give an inflated estimate of the protection effectiveness. They 

analyzed the effectiveness of different protected area categories in reducing tropical forest 

fires considering the global tropical forest biome. They used forest fires as a high-

resolution proxy for deforestation, disregarding the occurrence of fire uncoupled to 

deforestation. The authors found that strict and multi-use protected areas substantially 

reduced forest fires in Latin America, being the latter more effective. 

Additionally, indigenous areas reduced fire incidence by 16 percentage points, 2.5 times 

as much as unmatched comparison with unprotected areas would suggest. Nolte and 

Agrawal (2013) also evaluated the effectiveness of protected areas on forest fires using 
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matching. However, they split their sample according to the level of protected area 

management effectiveness measured by qualitative indicators. They found that, in 

general, protected areas avoided forest fires compared to similar unprotected areas. 

Surprisingly, their results showed that better-managed areas avoided fewer fires 

compared to unprotected areas than protected areas with low levels of management 

effectiveness. This result shows that fire occurrence may relate less to land use regulation 

policies and more to socio-climatic conditions.   

Several studies have highlighted the advantages of adopting methods combined with 

matching to assess protected area effectiveness, thus facilitating compliance with 

assumptions and improving the accuracy of the causal effect estimate (e.g., HERRERA; 

PFAFF; ROBALINO, 2019; NOLTE et al., 2013; PFAFF et al., 2014, 2015a, 2015b; SZE 

et al., 2022). Wendland et al. (2015) matched protected areas to control observations and 

compared coefficients in a post-matching approach, comparing fixed versus random-

effects models. Their analysis considers the Russian protected area network from 1985 to 

2010. No statistically significant effect of protected areas over deforestation was found, 

considering Strict and Multiple-Use protected areas. The authors highlight that random-

effects estimates differed qualitatively and quantitatively from those of fixed effects. It 

serves as a cautionary note for evaluations where time-invariant unobservables are 

important. As Wendland et al. (2015), Tasker and Arima (2016) also applied matching 

combined with post-matching regressions to measure the relative impact of precipitation 

and anti-deforestation policies on fire frequency and extent in the Brazilian Amazon from 

2001 to 2013. In this case, the authors wanted to evaluate the role of two environmental 

policies, one being protected areas and rainfall variation over fires. They used matching 

estimators to identify the counterfactual scenario of what would have happened with fire 

in the absence of policies. The post-matching regression, then, was used to estimate the 

effect of both policies and the rainfall variation on the outcome variable. Their results 

show that the increment on protected areas did not impact fires once you control for other 

covariates. Nevertheless, the authors highlight that the overall level of protected areas still 

impacts fires, even if additional areas were not as effective. The inhibitory effect may 

increase as the frontier advances into the forests and closer to newly established protected 

areas.  
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DiD is also widespread in the conservation area, mainly in public policy evaluations (e.g., 

ASSUNÇÃO; ROCHA, 2019; CISNEROS; ZHOU; BÖRNER, 2015), although its 

specific use to evaluate protected areas is still rare. For example, in 2008, the Brazilian 

government implemented a policy to prioritize anti-deforestation actions and sanctions 

on the most deforesting municipalities in the Amazon, which are commonly called 

blacklisted municipalities. Assunção and Rocha (2019) used a DiD approach to compare 

deforestation in blacklisted and non-blacklisted municipalities before and after the 

blacklisting policy. They found that blacklisting has significantly reduced deforestation, 

mainly due to monitoring and law enforcement intensification. Cisneros et al. (2015) 

adopted a similar approach to evaluate the same policy, and the authors also found that 

listed municipalities showed a greater reduction in deforestation.  

The joint use of matching with specifically DiD is a promising strategy in evaluating 

environmental programs, and it was first described in Heckman et al. (1998). Ferraro and 

Miranda (2017) demonstrated how this combination of methods mitigates common 

concerns about specifying the correct model identification, the nature of treatment effect 

heterogeneity, and how time enters the model. They suggested a two-step approach by 

first ensuring comparability with sample selection with matching and then running the 

panel Fixed Effects (FE) estimator. They claim that matching the assumption of the same 

treatment effect for treated and untreated is more plausible after conditioning on 

observables. Also, if heterogeneity in treatment effect is due to observables, matching 

attenuates this homogenizing of the observation units. Another study was conducted by 

Shi et al. (2020), using propensity score matching and DiD methods to separate the time 

effect and policy effect of the construction of protected areas on carbon sequestration 

capacity. Their results revealed that the carbon sequestration capacity could be improved 

by 0.39% by constructing global protected areas. Nolte et al. (2017) also adopted a joint 

approach using matching and DiD to evaluate sub-national policies on curbing 

deforestation. They used post-matching DiD to deal with potential influence from 

unobservable time-invariant variables. Other recent studies pursuing similar approaches 

agree that combining designs is more likely to approximate a randomized controlled trial 

(e.g., ALIX-GARCIA; SIMS; YAÑEZ-PAGANS, 2015; JONES; LEWIS, 2015).  
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Indeed, combining matching to select a balanced subsample and then using it in an 

Ordinary Least Squares (OLS) estimator, such as DiD, is a reasonable approach to 

measure an envisaged causal effect (IMBENS; WOOLDRIDGE, 2009). It is already clear 

that, in the case of protected areas, there is no randomization of the policy 

implementation, so a selection bias needs to be addressed. Furthermore, the effect of these 

areas on fire, similarly to what happens with deforestation, is influenced not only by 

observable variables but also by unobservables, such as socioeconomic and institutional 

simultaneous changes. These issues need to be duly considered for an unbiased measure 

of the causal effect of protected areas on fire. Although selection bias has already been 

widely described and addressed in the literature, even if only considering the effect of 

protected areas on deforestation, the combination of econometrics designs to evaluate 

protected areas' effectiveness on fires and deforestation is still rare. The current scientific 

literature does not provide details on how this combination is done using the matching 

and DiD model. Notwithstanding, some studies adopt this identification strategy, 

endorsing its potential to accurately estimate the effect of protected areas on fire. This 

chapter aimed to fill this methodology gap by proposing a two-step approach, considering 

the matching and DiD model, to measure the effect of protected areas on fire occurrence 

in the Amazon Basin.  

5.3 Materials and methods  

5.3.1 Study area 

The study area comprises the whole extension of the Amazon Basin (EVA; HUBER, 

2005), excluding the subregions of ‘Planalto’ and ‘Andes.’ Even not including the whole 

region classified as Amazonia sensu latissimo by Eva and Huber (2005), for this study, 

we refer to the region considered the Amazon basin since only approximately 18% of the 

area was excluded. This area spans nine South American countries: Bolivia, Brazil, 

Colombia, Ecuador, French Guiana, Guyana, Peru, Suriname, and Venezuela, and it adds 

up to more than 6 million square kilometers (Table 4.1 and Figure 5.2). All nine countries 

host 95% of the remaining Amazonian old-growth forests (EVA; HUBER, 2005). 
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Figure 5.2 - Study area. 

 

Data from Eva et al. (2005) (Amazon basin limit) and RAISG (protected areas). 

Across the study area, it was registered 1,346,923 km² of burned area from 2003 to 

202016, being the largest area recorded in 2010 (143,217 km²). Normalizing the area 

outside and inside protected areas to get the burned rate per square kilometre per year, we 

found that outside protected areas burned almost two-thirds more than inside. When we 

consider active fires, which is the fire hotspot occurrence17, outside protected areas 

registered more than double registries per square kilometre per year (Figure 5.3). In this 

way, we already know a priori that fire occurrence inside protected areas is lower than 

outside. However, we do not know whether this difference is due to the presence of land 

use regulation through protection or other pre-existing factors or circumstances that may 

have influenced this scenario.   

 
16 Taking into account only the MCD64A1 burned area product. 
17 For more details, see Section 5.3.3. 
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Figure 5.3 - Burned area (km²) and active fires (count) rate outside and inside protected areas in 

the Amazon Basin.  

 

Breaking down the rate of burned area and active fires each year, we can see a similar 

pattern: the rate of fire occurrence per square kilometer per year is always lower within 

protected areas (Figure 5.4). However, the difference between inside and outside is not 

constant over time, which confirms that factors other than protection influence the 

occurrence of fire both inside and outside. Indeed, climatic variations can influence the 

occurrence of fire in the region once ignitions occur. It is possible to observe the peaks of 

fire occurrence in extremely dry years in the Amazon region, mainly in 2005, 2010, and 

2015/2016 (ANDERSON et al., 2018; ARAGÃO et al., 2018; SILVA JUNIOR et al., 

2019). Nevertheless, we can also observe the constant increase in the occurrence of fires 

from 2018 to 2020, both outside and inside protected areas, which may reflect political 

setbacks in the environmental agenda of the Amazonian countries, and, consequently, 

loss of governance in these areas (DE OLIVEIRA et al., 2020; MATAVELI; DE 

OLIVEIRA, 2022; SILVA JUNIOR et al., 2021a).   



136 

 

Figure 5.4 - Burned area (a) and active fires (b) rate outside and inside protected areas from 2003 

to 2020 in the Amazon Basin. The dependent variable is displayed on the x-axis for 

visualization purposes. 

 

5.3.2 Data analysis 

The objective is to estimate the average treatment effect (ATE) of protected areas on fire 

frequency and extent, that is, how many active fire detections or burned hectares would 

be avoided was a land pixel protected. To avoid a naïve comparison and isolate the 

protection effect from the effects caused by other factors that influence fires in the 

Amazon, we adopted a two-step approach using matching combined with DiD. First, we 

needed to find a counterfactual group that adequately depicted the non-protection 

situation. The fire level in the potential state in which the pixel is protected should be 

subtracted from the state in which the pixel is not protected, i.e., its counterfactual18. 

 
18 For more details, see Section 5.2.1. 
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Nevertheless, in a given time step, only one of these states is factual, that is, observable. 

There is need thus to estimate the counterfactual fire levels. For this, we used matching 

on covariates which select the most similar control pixel in all relevant variables driving 

fire level as the counterfactual for each treated pixel. This step is necessary once it 

mitigates the fact that pixels are intentionally selected for being protected or not, based 

on their agricultural profitability, cost of enforcement, and ecological richness, among 

other factors that are non-observable by the analyst. Besides these drivers being correlated 

with drivers of fire level. By taking this first step, we are then addressing the selection 

bias. 

However, pairing treated and control pixels to eliminate the bias from the intentional 

selection of pixels to be protected is a necessary albeit not sufficient condition for accurate 

estimation of the ATE. A second bias comes from other changes that occur 

simultaneously with the protection of pixels (e.g., other policies, microclimatic change, 

etc.), explaining part of fire level variation. Finally, a third bias arises when time-invariant 

unobserved variables affect fire level. We addressed these two additional biases with the 

post-matching DiD model combined with a fixed effects estimator. In the next sections, 

we describe in detail the methods used in our identification strategy. 

5.3.2.1 First stage: matching  

We used a matching approach to build a control group, given the challenge of selecting 

pixels outside protected areas that would work as a valid counterfactual to pixels within 

protected areas. This challenge is better explained in Section 5.2.1. Briefly, a valid control 

is an outside pixel that, compared to an inside pixel, presents similar values of variables 

that could influence whether a pixel is protected or not. Then, the most similar outside 

pixel is selected to match each inside pixel. 

A critical assumption in matching approaches is that all significant confounding variables 

have been included (NELSON; CHOMITZ, 2011), which is impossible to verify directly. 

Therefore, theoretically, the wider the set of potentially influential variables considered, 

the lower the bias. In this study, we considered three classes of covariates: weather, land 

use, and land profitability (Table 5.2). The data specifications and sources are detailed in 

Section 5.3.3.    
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We used a one-to-one nearest-neighbor covariate matching with replacement, using a 

generalized version of the Mahalanobis distance metric (as suggested by ANDAM et al., 

2008; ARRIAGADA; ECHEVERRIA; MOYA, 2016; FERRARO; HANAUER, 2014; 

FERRARO; MIRANDA, 2017; HERRERA; PFAFF; ROBALINO, 2019). The matching 

algorithm automatically selects comparable controls from the control pool of 

observations. Considering that we used a matching method with replacement, one control 

may be paired with the treated observations multiple times.  

The dynamic nature of our treatment creates a challenge. Choosing a reference year for 

matching is not trivial due to the possibility of the comparable subset of untreated 

observations changing across time. The usual way of applying matching, which a priori 

is a time-static method, is to take the pretreatment period as a reference for the covariates 

(ARRIAGADA; ECHEVERRIA; MOYA, 2016; HERRERA; PFAFF; ROBALINO, 

2019; WENDLAND et al., 2015). However, in the dataset analyzed here, there is no 

obvious pre-treatment period as protected areas have been gradually created. The solution 

followed, which was to rely on a single moment of the period of analysis for the sake of 

matching, was also adopted in previous studies. It assumes that matched control would 

remain good comparison observations for the treated throughout the analysis period. For 

this, the covariates matching is based on cannot change considerably across time, at least 

not enough to alter the set of unprotected comparable pixels. For instance, Herrera et al. 

(2019) assessed the protected area effect on deforestation in two periods, 2000-2004 and 

2004-2008, in the Brazilian Amazon, finding a larger estimated avoided deforestation in 

the former period, revealing a time-decaying protection effect. In this case, matching was 

applied based on data from a single period, and the authors did not assess the effect of 

alternative reference years. This may indicate that relying on a single year for matching 

does not make much difference to results for the case of Amazon. Another example of 

static matching for analysis of dynamic protection was applied by Arriagada et al. (2016), 

who estimated the deforestation impact on Chilean protected areas from 1986 to 2011. 

As far as the paper is informative, all protected areas created in the analysis period were 

taken into a unique matching exercise implicitly deemed as satisfactorily stable across the 

whole period.  
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Recognizing that there is not a single moment when protected areas come into existence, 

the challenge of choosing a reference year becomes relevant. Some studies adopt repeated 

matching for different periods to overcome this issue, giving dynamism to the analysis. 

One example is Paiva et al. (2015), in which the effects of protected areas on deforestation 

in the Brazilian mid-western savanna were studied. Four cohorts were considered among 

the years 1986, 1996, 2002, and 2008 with matching repeated for each. Andam et al. 

(2008) also suggested a dynamic matching approach to assess the protected area effect on 

deforestation in Costa Rica. In order to ensure the validity of the set of comparable 

controls across the whole 1960 to 1997 period, the authors distinguished two cohorts, and 

matching was applied separately to each. The sources of bias addressed with such a 

repeated matching approach were the dynamism of protected statuses of plots. These 

studies showed that the reference year choice could considerably change the comparable 

control set, an important aspect of the causal effect identification strategy. 

Choosing the reference year for applying matching in the case of a time-dynamic 

treatment is indeed a challenge. However, the literature still does not agree on a single 

strategy to fully address this issue. The common practice is adopting one strategy 

followed by robustness tests with other approaches. However, in this chapter, we will not 

delve into this aspect, adopting a single strategy considering the average year as the 

reference for matching. Therefore, the Mahalanobis distances were estimated using an 

average year, defined as the set of averages across time for all considered covariates at 

the cross-sectional level. Thus, we assume that the average year matched treatment-

control observations remain good for all periods (2003-2020). We implemented matching 

using the “psmatch2” in Stata v16 (developed by users; LEUVEN; SIANESI, 2003).  

We tested three matching specifications regarding the constraint on the maximum 

distance between the treated and the matched untreated. These specifications are three 

thresholds for the Mahalanobis distance between treated and potentially comparable 

untreated, namely: no caliper, which means no restrictions, a caliper size of one standard 

deviation, and a caliper size of half standard deviation (SD). The use of calipers consists 

of adding an upper bound to the treated vs. untreated differences on covariates, seeking 

to increase matching quality. The matching performance is directly proportional to how 

likely the comparable controls are to each treated observation; thus, the upper bound is a 
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tolerance threshold for the Malahanobis distance above which further deviation is not 

tolerated. Moreover, as Ferraro and Miranda (2017) clarify, calipers entail a trade-off of 

increasing matching quality (and, thus, potentially, parallelism) and, simultaneously, 

reducing generality by reducing the subsample composed of the comparable units, which 

may also reduce statistical power.  

We used Mahalanobis (nearest neighbor) one-to-one (with replacement) matching, 

following the approach used in several studies (e.g., ARRIAGADA; ECHEVERRIA; 

MOYA, 2016; HERRERA; PFAFF; ROBALINO, 2019; NOLTE; AGRAWAL, 2013). 

All three studies used a caliper based on the SD of the covariates. First, one unit of 

standard deviation was used as the upper bound, that is, in the case that, for a pair of 

treated and untreated observations, if at least one of the covariates presented a difference 

between treated and untreated above one standard deviation of the covariate, the treated 

observation was ignored. The caliper with half standard deviation upper bound was also 

tested. The caliper approach is a refinement of no caliper matching, in which treated 

observations may also not be used whether they are not comparable to any control.  

In detail, we evaluated the matching performance considering the trade-off between the 

cost and benefits of each specification. The cost was measured by the number of 

observations excluded in each specification, which consequently would impact the 

generality, that is, the scope of validity within the Amazon basin. The benefits are 

measured by improving covariate balance and common support, two aspects related to 

the matching quality. Imbens (2015) suggested that the balance was assessed based on 

Rubin’s table (RUBIN, 2001), comparing the level before and after matching. Following 

Rosenbaum and Rubin (1985) and Rubin (2001), the variance ratio was used to measure 

homogeneity. It weights the coefficient vector by the variance-covariance matrix of the 

estimators. A variance ratio belonging to the intervals [0.5, 0.8) or (1.25, 2] is “of 

concern,” according to Rubin (2001). Balance is “bad,” i.e., there is no homogeneity if 

the variance ratio is below 0.5 or above 2.  

Additionally, visual representations of matching quality were evaluated based on 

“balance” and “common support” graphs. The first compares the empirical distribution 

of treatment probabilities for the sample as a whole (situation “before matching”) with 

that of the subsample containing treated (observations inside protected areas) and only 
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untreated-comparable observations (“after matching”). In the second situation, it is 

expected to have full or at least considerably greater homogeneity between curves. The 

common support graph, in its turn, allows checking if there is, for both groups separately, 

a non-zero frequency of observations in all sub-intervals of the treatment probability 

range. We expected that, after matching, the common support graph presents near-zero 

relative frequency at levels 0 and 100% treatment probability19. Also, frequencies for each 

range of treatment probability must be equal or as close as possible, configuring a 

(horizontally) “mirrored” image between treated and untreated frequencies.  

5.3.2.2 Second stage: Differences-in-Differences model 

In the second stage of the empirical strategy, the post-matching approach, we used a 

differences-in-differences (DiD) model to measure the average treatment effect (ATE) of 

protection on fire. We make the second stage more far-fetched by including DiD instead 

of simple regression. We consider that there could be concurrent changes (socioeconomic 

and institutional) in the context of fire occurrence in protected areas. The general model 

equation, adapted from Equation 5.4, is described below (Equation 5.5): 

𝑭𝒊𝒓𝒆𝒊𝒕 = 𝜷𝟎 + 𝜷𝟏𝑫_𝑷𝑨𝒊𝒕 + 𝑿′𝒊𝒕 + 𝝁𝒊 + 𝒖𝒊𝒕 (5.5) 

Where i indicates the pixel and t year, i.e., pixels observed annually are our units of 

observation, and we know whether they are located in an active protected area or not.  

Fire measures burned area in a fraction of the area of the pixel, or active fire count per 

pixel for robustness tests. D_PA is a dummy that takes one if the pixel falls within an 

active protected area. With “active” meaning already created protected areas in the current 

year. β1 is the difference-in-difference estimate for the average treatment effect (ATE). 

The vector X’ contains the time-varying observable covariates, which are considered to 

attenuate estimation bias. 𝜇𝑖 is the individual fixed effects term. When we consider the 

 
19 The common support assumption behind matching requires that all treated observations have a 

comparable control unit. If the probability of a pixel being treated, that is, being within a protected area, is 

100%, it will not have a comparable pair in the control group, since the probability of finding a treated pixel 

with zero probability of treatment is null. The opposite is also true, if the probability of a pixel being within 

a protected area is 0%, then this control unit will not have a comparable in the treatment group. This 

condition includes observational units outside the common support. So, the common support graph before 

matching is expected to have a higher frequency of 0% treatment probability in the untreated group and 

100% in the treated group. After matching, the fraction of the covariates domain with common support is 

expected to increase, reflecting in a higher median frequencies of treatment probability conditioned on the 

vector of covariates X (0 < P(Dp=1|X) < 1) (PEIXOTO et al., 2017). 



142 

 

fixed effects estimator, all time-fixed variables are eliminated, including 𝜇𝑖, while all 

parameters on time-varying variables are preserved. In this case, only parameters on time-

varying independent variables can be estimated. Finally, 𝜀𝑖𝑡 represents the model error.  

In vector X, we considered covariates that potentially impact burned area estimation, our 

dependent variable, and protected area placement, aiming to capture the variability that 

was not measured by matching. Thus, the covariate vector includes variables on the 

proportion of deforestation of primary and secondary forests, forests, farming, non-forest 

natural formations, non-vegetated area, flooded forests, mangroves, and savanna. Besides 

that, it also included total precipitation, mean temperature, maximum cumulative water 

deficit (MCWD), mean precipitation and temperature during the dry season, population, 

and forest edge length. All variables and their respective specifications are described in 

detail in Section 5.3.3.   

With Amazonian protected areas created gradually and not all at once, the treatment 

started at different years across different pixels. This is addressed, following the common 

convention in DiD research (BONILLA-MEJÍA; HIGUERA-MENDIETA, 2019; 

CHAGAS; AZZONI; ALMEIDA, 2016; GALIANI; GERTLER; SCHARGRODSKY, 

2005), with a treatment dummy taking value one if the pixel is treated in the current year, 

zero otherwise (D_PA). The coefficient of such variable, β1 in Equation 5.5, is identified 

to the extent the error term is uncorrelated with the variable 𝐷_𝑃𝐴𝑖𝑡. We control for 

observables as explained above, whereas unobservables are controlled for by the prior 

matching approach and, additionally, by including fixed effects in this post-matching 

stage. By bringing in the timing dimension with DiD, we can control for year-fixed effects 

that pick up anything that affects the average level of fire in a given year, i.e., we identify 

β1 from within year variation. 

As Arriagada et al. (2016) make clear, the identification assumption underlying the DiD 

estimator is that the counterfactual expected fire trend of treated units in the untreated 

state is the same as the factual expected trend of control pixels. As the authors argue, this 

assumption can be made "more plausible" by adopting a pre-matching stage. However, 

such a procedure is the option for a different identification assumption, which is that the 

trend of comparable untreated pixels could be taken as the counterfactual for the untreated 

state trend of treated pixels, with "comparable" meaning a high likelihood of being 
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treated. The validity of this assumption is attested graphically by the treated and control 

time trends being approximately parallel in the matched sample (as judged by the 

synchronicity of peaks and valleys) and more parallel than in the full sample (see Figure 

5.11). 

We estimated the protection effect on fire with three different estimators to test for results' 

robustness and, consequently, sources of estimation bias. Reminding the two sources of 

bias (threats to identification) should be addressed to describe the estimators is useful. 

First, unobserved heterogeneity bias, whose source is the panel structure of the data, and 

the second, concurrent changes bias, due to the influence of changes on the dependent 

variable that are concurrent with the change whose causal effect is measured. The three 

adopted estimators were: the fixed-effects (FE) estimator for panel data, the differences-

in-differences (DiD) estimator for panel data pooled under the assumption of zero 

correlation between the covariates and the unobserved heterogeneity term, and a complete 

DiD-FE estimator, which addressed both unobserved heterogeneity bias, also assuming 

that the trends were parallel in the untreated state for treated and untreated.  

All the estimators were based on clustered standard errors to account for correlation 

between disturbance terms belonging to the same cross-sectional unit. Additionality to 

clustering the standard errors on the pixel level, we also clustered at the department level 

to account for potential correlation among pixels from the same department. At the 

department level, important fire management decisions are made, and provides a 

reasonable spatial distance from that correlation across units could happen 

(WENDLAND et al., 2015). We also repeated all estimations with the bootstrapping of 

standard errors using 200 replications. The bootstrapping is a non-parametric way to 

address potential serial correlation and heteroskedasticity (BERTRAND; DUFLO; 

MULLAINATHAN, 2004; GALIANI; GERTLER; SCHARGRODSKY, 2005).  

We also visually evaluated the parallelism of trends of treated and control groups. One 

key characteristic of the intervention under study is the geographically variable timing of 

its introduction. That is, different pixels started being treated at different years. This 

makes it impossible to draw a classical DiD plot with lines for treated and untreated and 

a single divide for before and after treatment. Two types of plots were formulated to 

circumvent that. The first is a parallel trend graph along all years of the analysis period 
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(as in WENDLAND et al., 2015). This graph attempts to reveal whether: (i) the trends 

are indeed parallel, comparing pixels that are currently treated and that were never treated, 

(ii) matching improved parallelism along the whole period, and (iii) controls are 

systematically above treated in terms of burned area (or active fires). The plot included 

three lines, controls, currently treated, that is, the pixels that are treated in the current year, 

and not currently treated, that is, the pixels that are not treated in the current year but will 

eventually be. By looking at three time series, the temporal aspect was included in the 

analysis of parallelism, comparing the burned area incident in those protected areas that 

have not yet been implemented, both with the unprotected group and with the protected 

areas already in place. The second plot classifies pixel-year observations regarding the 

time since treatment, showing the average burned area (or active fires) for each value of 

such variable. With this, a break in the trend of the average burned area before and after 

treatment should become apparent (with a lower trend being expected after treatment). 

This plot, which contains the dynamical treatment visualization, is thus, a visual 

assessment of the significance of ATE. 

Finally, we applied a sensitivity test (ROSENBAUM, 2002) to the influence of 

unobservables on the estimated effect of protected areas on fire detections (as in 

ARRIAGADA; ECHEVERRIA; MOYA, 2016; PAIVA; BRITES; MACHADO, 2015). 

The test's main assumption is that unobservable factors could drive the selection of pixels 

to belong or not to protected areas and influence their effect. In this case, a potentially 

estimated lower fire level within protected areas is, in fact, due to unobservables. This 

way, the test aims to answer how likely it is to have an unobservable strong enough to 

make the results unreliable as a measure of the protected area effect. To verify if this is 

the case, the test considers multiple degrees of the influence of unobservables (Γ). It 

computes, for each, upper (p+) and lower (p-) bounds for the (type-I error) probability of 

rejecting the hypothesis of a null effect of protected areas on fires when the hypothesis is 

true. The analyst should thus understand the maximum degree for which the probability 

is still not larger than 5% as the maximum degree of influence of unobservables for which 

results remain reliable (i.e., the maximum degree of unobservables’ influence that results 

can resist; PAIVA; BRITES; MACHADO, 2015). If such a degree is referred to as the 

"degree of reference," an alternative explanation of the test's result would be as follows. 

If there is reason to believe that there are unobservables that could increase the likelihood 
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of not having fire inside a protected area in a magnitude at least equal to the degree of 

reference, then results are not reliable.  

Nevertheless, Rosenbaum's test was reported by previous studies as an excessively severe 

judgment of the quality of a causal effect estimate (ARRIAGADA; ECHEVERRIA; 

MOYA, 2016; DIPRETE; GANGL, 2004). It is thus reasonable to understand the test's 

result mainly as an indication that unobservables, if the degree of reference is not seen as 

large, exert a non-negligible influence on results. We converted the two fire-dependent 

variables (burned area and active fires) to binary variables to apply the test. These 

variables took value one in the case the original variable was positive, given the share of 

pixels in which fire was detected in none of the years was 67% or 76%, respectively, for 

the point and areal fire measures. Thus, we considered the Mcnemar version of 

Rosenbaum's test with simplified binomial distribution formulas (ROSENBAUM, 2002). 

5.3.3 Data 

All data were pre-processed, clipped to the study area boundary, and incorporated into a 

regular grid with an approximately 5 by 5 km spatial resolution. The method of 

resampling each data is further explained in the following section. The econometric 

approaches were then applied using the regular grid pixel as the observational unit. In 

detail, the universe for statistical analysis comprises 87,728 pixels after matching (see 

Section 5.4.2), of which 72,288 are within protected areas. The time dimension is from 

2003 to 2020, and the panel was strongly balanced, i.e., no missing values across pixels 

or time. 

Protected areas data was obtained from the Amazon Network of Georeferenced Socio-

Environmental Information (RAISG, from the Portuguese acronym, Table 5.2). It was 

downloaded in July 2021, including the updates till 202020. It used data from National 

and Departmental Natural Protected Areas and Indigenous Territories, jointly called 

protected areas. Protected areas without a creation date were excluded from the dataset 

after consulting local experts with knowledge of the current situation, which confirmed 

the impossibility of specifying an exact date. This represented 12% of our PA dataset. 

Also, these cases were spatially concentrated, mainly belonging to Ecuador (137), 

 
20 Downloaded from https://www.amazoniasocioambiental.org/pt-br/mapas in November 2020. 

https://www.amazoniasocioambiental.org/pt-br/mapas
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Guyana (108), and Peru (108). Pixels that overlap between PA categories were also 

excluded, representing 4% of the total pixels.  

The protected area information was incorporated into the regular 5 km grid, considering 

the centroid of each pixel. A binary variable was created to receive one of the pixel 

centroid falls within a protected area, which we call ever treated, and 0 otherwise. All 

information regarding the respective protected area, such as creation year, size, and 

category, was then incorporated into that specific pixel. Another binary variable was 

created to designate whether the pixel is within an active protected area in the current 

year or not. If the creation date is before the current year, this binary variable receives 1, 

and 0 otherwise. The same reasoning was used to classify all grid pixels in each country, 

department, and municipality in the Amazon basin. Administrative21 limits at all levels 

were homogenized between countries to represent the same management sphere. Table 

D.1 provides the data source and level adopted by each country to represent the country, 

department, and municipality.  

  

 
21 Downloaded from https://data.humdata.org/ in December 2020.  

https://data.humdata.org/
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Table 5.2 - Dataset description and specifications. 

  Definition Source 
Original 

resolution 
Measurement 

unit 
Time 
span 

Dependent variables 

BA 
Annual burned area proportion within the 
pixel. 

MCD64A1 500m % pixel 
2003-
2020 

AF Annual active fire count within the pixel.  MCD14ML - Aqua 
Vectorial 

data 
Count 

2003-
2020 

Weather factors 

precMean; 
precTotal; 
precDry 

Average annual precipitation, total annual 
precipitation, and average annual 
precipitation during the dry season, 
respectively. 

CHIRPS 
0.05° (~ 5 

km) 
mm 

2003-
2020 

MCWD 
Average annual maximum cumulative 
water deficit 

Silva Junior et al. 
(2021)  

0.05° (~ 5 
km) 

mm 
2003-
2020 

tempMean; 
tempDry 

Average annual temperature and average 
annual temperature during the dry 
season, respectively. 

MOD11A2 1km °C 
2003-
2020 

Land use and land cover factors 

DFpri 
Annual primary forest deforestation 
proportion within the pixel. 

Silva-Junior et al. 
(2021)  

30m % pixel 
2003-
2020 

DFsec 
Annual secondary forest deforestation 
proportion within the pixel. 

Silva-Junior et al. 
(2021)  

30m % pixel 
2003-
2020 

secForest 
Annual secondary forest proportion 
within the pixel. 

Silva-Junior et al. 
(2021) 

30m % pixel 
2003-
2020 

frag Annual non-natural forest edge length. 
Silva-Junior et al. 
(2021) 

30m km 
2003-
2020 

forest Annual forest proportion within the pixel. 
MapBiomas 
PanAmazonia c3 

30m % pixel 
2003-
2020 

farming 
Annual farming proportion within the 
pixel. 

MapBiomas 
PanAmazonia c3 

30m % pixel 
2003-
2020 

nonForestNatural 
Annual non-forest natural formations 
proportion within the pixel.  

MapBiomas 
PanAmazonia c3 

30m % pixel 
2003-
2020 

savanna 
Annual savanna proportion within the 
pixel. 

MapBiomas 
PanAmazonia c3 

30m % pixel 
2003-
2020 

nonVegetated 
Annual non-vegetated area proportion 
within the pixel. 

MapBiomas 
PanAmazonia c3 

30m % pixel 
2003-
2020 

mangrove 
Annual mangrove proportion within the 
pixel. 

MapBiomas 
PanAmazonia c3 

30m % pixel 
2003-
2020 

floodedForest 
Annual flooded forests proportion within 
the pixel. 

MapBiomas 
PanAmazonia c3 

30m % pixel 
2003-
2020 

Land profitability factors 

distRoad; 
distPavRoad 

Distance to the nearest road and paved 
road, respectively. 

RAISG 
Vectorial 

data 
km 

Time 
invariant 

distRiver Distance to the nearest navigable river. HydroSheds 
Vectorial 

data 
km 

Time 
invariant 

pop Annual population count. WorldPop 1km Count 
2003-
2020 

distUrban Distance to the nearest urban center. 
University of 
Columbia - Urban 
Extents Grid v1 

Vectorial 
data 

km 
Time 

invariant 

distPopulated 
Distance to the nearest most populated 
pixel within each municipality. 

WorldPop 
Vectorial 

data 
km 

Time 
invariant 

slope Mean slope within the pixel. SRTM 90m % 
Time 

invariant 

elevation Mean elevation within the pixel.  SRTM 90m km 
Time 

invariant 

soil 

Binary variables indicating pixels with no 
or slight limitation to plant growth 
regarding toxicity, rooting conditions, 
oxygen availability to roots, nutrient 
retention capacity, nutrient availability, 
and workability. 

HWSD v1.2 10km 
Binary 

variables  
Time 

invariant 
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We used two sources of fire data for our dependent variables; the Moderate Resolution 

Imaging Spectroradiometer (MODIS) burned area product MCD64A1 version 6 

(GIGLIO,  LOUIS et al., 2015) and the MODIS active fire product MCD14ML version 6 

(GIGLIO,  LOUIS, 2000), filtered for data acquired from Aqua platform with a level of 

confidence higher than 30. The burned area data were incorporated into the regular 5 km 

grid considering the proportion of the annual burned area within the largest pixel. The 

active fires were also grouped annually and incorporated into the grid, considering the 

count in each pixel (Figure D.1). After incorporating the first fire metric into the grid, we 

found that the percentage of pixels without fire at any period was large (Table 5.3). This 

fact can weaken the results of causal estimates, and due to this, a second fire metric was 

adopted to test the robustness of our estimates. Table 5.3 shows that non-zero pixels rate, 

i.e., pixels that recorded fire in at least one year, at pixel level are relatively high, which 

means that the occurrence of fire is a phenomenon with considerable recurrence in the 

study region. 

Table 5.3 - Proportion of pixels with zero or non-zero detection of fire. 

Fire 

measure/statistic 
Zero 

pixel-
years 

Non-zero 
pixel-years 

Non-zero 
rate at pixel-
year level* 

Pixels with 
zero in all 

years* 

Pixels without 
zero in at least 

one year 

Non-zero 
rate at 
pixel 
level 

Burned area 2,982,765 340,359 10% 121,415 63,203 34% 

Active fires 2,670,493 652,631 20% 105,290 79,328 43% 

Note: * Zero pixel-years/total (Nxt)  

We also used a set of covariates to control for observables cofounders of protected areas 

placement and fire occurrence. Finally, considering our temporal and spatial scale, we 

considered the largest number of variables that could potentially cause selection bias and 

would be feasible to measure. This includes three classes of variables; (1) Weather 

factors, (2) Land use and land cover (LULC) factors, and (3) Land profitability factors. 

Table 5.2 details the definition and specification of each dataset considered. Table D.2 

presents the context of the choice of each variable included and literature references that 

use such variables in similar approaches. 

The weather factors are expected to influence the environment's susceptibility to fire, and 

they include three variables. The first consists of precipitation measures obtained from 

Rainfall Estimates from Rain Gauge and Satellite Observations (CHIRPS; FUNK et al., 
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2015). The second one includes the maximum cumulative water deficit (MCWD), which 

was calculated globally by Silva Junior et al. (2021b), using the methodology presented 

in Aragão et al. (2007). The MCWD is a measure of drought severity, corresponding to 

the maximum value of the monthly accumulated water deficit reached for each pixel 

within the year. In addition, the MCWD is a useful indicator of meteorologically induced 

water stress without considering local soil conditions and plant adaptations, which are 

poorly understood in Amazonia (ARAGÃO et al., 2007). And finally, temperature 

measures were obtained from the Land Surface Temperature and Emissivity (LST&E) 

product MOD11A2 version 6 (WAN,  ZHENGMING; HOOK,  SIMON; HULLEY,  

GLYNN, 2015b).  

The average precipitation and temperature during the dry season are the onset and 

duration of spatially explicit dry season periods defined by Carvalho et al. (2021). The 

authors defined dry season length as the number of consecutive months with rainfall lower 

than 100 mm (average from 1981 to 2019). This threshold is used because of tropical 

forests' mean monthly evapotranspiration value (VON RANDOW et al., 2004). With the 

persistence of rainfall below it, evapotranspiration exceeds rainfall, which can be used as 

an indicator of water deficit in these ecosystems (ARAGÃO et al., 2007; MALHI et al., 

2002). This way, dry season timing is delimited by grouping pixels that share the same 

month for the onset and end of the dry season, resulting in 74 homogeneous regions across 

the Amazon basin. The average of the variables was calculated differently considering 

the specific dry season timing in each of these regions.  

The weather factors were annually grouped from 2003 to 2020 and incorporated into the 

regular grid using different metrics, as detailed in Table 5.2. The spatial distribution is 

illustrated in Figure D.2.   

The LULC factors are expected to influence the occurrence of fire and protected area 

placement. Although not a rule, the creation of protected areas is more likely to happen 

in regions with more forest, and fire does not occur if there is no combustible material for 

such. These factors include information obtained from the Annual Land-Use and Land-

Cover Mapping Project (MapBiomas PanAmazonia collection 3) or secondary data 

developed by Silva Junior et al. (2020b). MapBiomas classified 36 years of images from 

the Landsat satellite series (30-m spatial resolution) using a theoretical algorithm 
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implemented in the Google Earth Engine platform (GORELICK et al., 2017). Details 

about the processing of the dataset and class definition, can be found in MapBiomas 

(2021). This dataset provides annual information on forest extension, farming, non-forest 

natural formations, non-vegetated area, savanna, mangrove, and flooded forest. In 

addition to these classes, it was also considered secondary forest and deforestation of 

primary and secondary forest obtained from Silva Junior et al. (2020b).  

From the forest formation class map from 1985 (the first year classified by MapBiomas), 

every pixel that transforms into any non-natural class in the following year is then 

classified as primary forest deforestation. Deforestation of primary forests only happens 

once, and it is impossible to return the pixel to a primary forest in any time. This pixel 

that is no longer a primary forest can become several classes, and if at some point it reverts 

to a forest, it is classified as a secondary forest. Secondary forests' deforestation occurs 

when secondary forests are converted to any non-natural class in the following year. This 

type of deforestation can happen several times since secondary forests are reversible. 

Lastly, we calculated a forest fragmentation measurement using forest edges length as a 

proxy. From binary annual forest and non-forest maps, we calculated the Euclidean 

distance from each forest pixel to the nearest non-non-forest pixel. Considering that the 

spatial data resolution is 30 m, the forest edge is composed of forest pixels that have a 

distance of 30 m to the non-forest class. The edge length is then the sum of the edge pixels 

multiplied by 30 for each larger pixel of the regular 5 km grid. As we are interested in 

non-natural forest edges, the non-forest class excluded natural non-forest classes such as 

water and savanna. 

All LULC classes from 2003 to 2020 were incorporated into the regular 5 km grid, 

considering the annual proportion of each class within the largest pixel (Figure D.3). The 

forest edge length data was incorporated into the regular grid by the annual sum within 

each pixel. MapBiomas and its secondary data were processed entirely in Google Earth 

Engine (GEE). 

Land profitability factors are also associated with both likelihoods of fire occurrence and 

protected area placement. Protected areas are commonly created on marginal lands where 

productive activity would not be advantageous (NEPSTAD et al., 2006). On the other 

hand, productivity and accessibility indicators increase the possibility of fire ignition 
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sources, which in the case of Amazonia is mostly anthropic. These factors include 

distances to roads, paved roads, rivers, urban centers, populated areas, population count, 

slope, elevation, and soil limitation to plant growth. We used road data downloaded from 

RAISG and calculated the euclidean distance from each pixel centroid of our regular 5 

km grid to the nearest road and separately to the nearest paved road. River data was 

obtained from the HydroSHEDS v1 (LEHNER; VERDIN; JARVIS, 2008; LINKE et al., 

2019) project website22 and consisted of the river network across the Amazon basin.  

As we are interested in using distance to rivers as a proxy for accessing consumer markets 

or product flow, we had to filter the overly detailed original data to get only the main 

waterways. To support our filter choice, we considered, for the Brazilian territory, the 

intersection of the hydrographic network of HydroSHEDS with a map of navigable rivers. 

In detail, we got the names of the navigable rivers from the Brazilian Waterway Network, 

downloaded from the Brazilian Open Data Portal23. The names were used to select the 

navigable rivers of the Brazilian hydrographic network24. Next, we considered filters 

using the mean and the 95% to 99% percentiles of the maximum flow accumulation of 

stream in the original data, and we calculated the intersection in each case with the 

navigable river network we created (Figure 5.5). The 98% percentile (397,146 cells) had 

a higher proportion of intersection (40%), with a smaller mapped length difference than 

navigable rivers. We, therefore,  filtered for rivers with a maximum flow accumulation 

(number of cells) of streams higher than 397,147, considering that filtering the 

HydroSHEDS data with this threshold would be the closest we could get to a mapping of 

navigable rivers. After the filtering, we calculated the Euclidean distance from each pixel 

centroid of our regular 5 km grid to the nearest river. 

  

 
22 https://www.hydrosheds.org/ 
23https://dados.gov.br/dataset/malha-hidroviaria/ 
24Obtained from the National Spatial Data Infrastructure Portal (INDE) 

https://metadados.inde.gov.br/geonetwork/ 

 



152 

 

Figure 5.5 - Mean and 95% to 99% percentiles of the maximum flow accumulation of stream 

(number of cells) from the HydroSHEDS hydrographic network data. The total 

mapped area of rivers in each case is compared with the area of Brazilian navigable 

rivers.   

 

The population count was obtained from the WorldPop data. The WorldPop project 

combines a range of geospatial datasets into a flexible regression tree framework to 

reallocate contemporary aggregated spatial population count data (LLOYD et al., 2019). 

The original resolution of the data is 1 km, so summing was used as an aggregation 

method to incorporate it annually into the regular 5 km grid.  

We use two distance metrics for urban centers. The first considered the urban extents data 

developed by the Global Rural-Urban Mapping Project version 1, hosted by the 

University of Columbia (CENTER FOR INTERNATIONAL EARTH SCIENCE 

INFORMATION NETWORK (CIESIN) et al., 2011). Urban extents illustrate the shape 

and area of urbanized places, with 5,000 or more inhabitants and stableboy delineated by 

night-time lights. First, we calculated the Euclidean distance from each pixel centroid of 

our regular 5 km grid to the nearest urban area. The second metric considered the 5 km 

pixel of our grid with the highest population number in each municipality. This was done 

by averaging the 2003 to 2020 population count per pixel. With this average, each 

municipality's pixel with the highest population count was identified. Subsequently, we 

calculated the Euclidean distance from each pixel centroid of our regular 5 km grid to the 

nearest most populated pixel.  

Elevations were obtained from the Shuttle Radar Topography Mission (SRTM) data. In 

the GEE platform, we used the SRTM Digital Elevation Data Version 4 provided by 

NASA/CGIAR. This SRTM digital elevation data version has been processed to fill data 

voids (JARVIS et al., 2008). We calculated the slope from the digital elevation data using 

Max flow 

accumulation 

of stream cut 

(N cells)

Total (km)

Total length of 
navigable rivers 

(km)

Difference (total - 
total navigable) 

(km)

Intersection with 
navigable rivers 

(km)

% Intersection

Mean 60,233 78,992 31,304 47,688 15,859 20%

95% 86,011 65,405 31,304 34,101 15,075 23%

96% 125,359 52,791 31,304 21,487 14,204 27%

97% 200,500 40,192 31,304 8,888 13,074 33%

98% 397,147 26,779 31,304 -4,525 10,684 40%

99% 1,176,884 13,066 31,304 -18,238 4,419 34%
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GEE's “terrain” tool. The spatial distribution of the land profitability variables is 

illustrated in Figure D.4.  

Protected areas' establishment is likely to be influenced by soil characteristics, as they can 

demonstrate how favorable the soil is for cultivation. We used data from the Harmonized 

World Soil Database (HWSD) v1.2 (FISCHER et al., 2008) on the soil qualities for crop 

production. The data provides us with seven soil quality indicators for crop cultivation 

(nutrient availability, nutrient retention capacity, rooting conditions, oxygen availability 

to roots, excess salts, toxicities, and workability), which are classified according to the 

degree of limitation to plant growth25. For our work, we created 14 binary variables, 

indicating for each pixel of our regular 5 km grid if:  

- the pixel is classified as soil or not for each soil quality indicator provided; and  

- the pixel has no or slight limitation for each soil quality indicator provided. 

Since some of these dummy variables are highly correlated (Figure 5.6), which can 

generate collinearity error, we used them to perform a Principal Component Analysis 

(PCA), and we used only the first component as a soil variable. To validate the use of the 

PCA index as a soil quality variable, the eigenvectors of the first component must have 

coefficients with the same sign for all variables considered (Table D.3). This criterion is 

necessary to ensure that the PCA index is interpreted as having an increasing value with 

the degree of suitability of the soil for plant growth (and this is because all the component 

variables assume a higher value, in this case, value 1, when there is greater suitability for 

this). We would not have a coherent soil suitability indicator if there were any negative 

signs, as some suitability measures would be negatively correlated with the index. Indeed, 

the correlation matrix presents all positive and significant (p-value < 0.05) correlation 

coefficients in relation to the PCA index (Figure 5.6). Therefore, the PCA index can be 

used in place of the soil variables. 

 
25 Details of estimation procedures for the individual soil qualities from soil characteristics in HWSD can 

be found at http://webarchive.iiasa.ac.at. 

http://webarchive.iiasa.ac.at/
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Figure 5.6 - Correlation matrix between soil dummy variables. All correlation coefficients were 

statistically significant, with a confidence level of 95%. The highest the correlation 

coefficient, the redish the colour.   

 

Note: pca_soil = first component resulted from the PCA; d_soil_i = dummy variable indicating if the pixel 

is classified as soil or, being i any of the soil quality indicators; d_i = dummy variable indicating if the pixel 

has no or slight limitation for I, being i any of the soil quality indicators. Soil quality indicators are nutrient 

availability, nutrient retention capacity, rooting conditions, oxygen availability to roots, excess salts, 

toxicities, and workability.  

5.4 Results 

5.4.1 Descriptive analysis 

The statistical summary of variables for the average year before matching is found in 

Table 5.4. Treated and control pixels differed in the outcome variables, i.e., pixels within 

protected areas presented a 60% lower burned area proportion and a 78% lower count of 

active fires.  

Treated pixels are generally farther away from urban centers, populated areas, and roads 

when we analyze the average year statistics (Figure 5.7). They are located in steeper and 

higher terrains, presenting a share of forest coverage on average 39% larger than control 

pixels. Control pixels, in turn, generally present 1.143% more farming area, 254% more 

secondary forest area, and 102% more forest edge length characterizing a less forested 

environment and with greater forest fragmentation. Except for the dry season period, 

treated pixels presented, on average, higher average annual and total annual precipitation, 

with a higher MCWD, showing that protected areas are less exposed to water stress than 
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areas outside. In addition, the average temperature inside protected areas was lower than 

outside. Although the average rainfall during the dry season inside these areas was less 

than outside, the average temperature was 16% lower. This general analysis is evidence 

that, even though protected areas are under increasing threat, they still hold most of the 

forests and play a role in curbing deforestation and forest degradation. Besides, they are 

buffers against the effects of climate change, holding essential climatic conditions to the 

survival of the ecosystems. 

Table 5.4 - Summary statistics of variables (average year dataset before matching). 

Variable  Obs. Mean Std. Dev. Min. Max. CV (%) 

Treatment dummy 184,618 0.50 0.50 0 1 100% 

Treated 92,638 1 0 1 1 0% 

Controls 91,980 0 0 0 0 0% 

BA (%)* 184,618 1.31% 4.24% 0% 71.26% 324% 

Treated 92,638 0.75% 3.67% 0% 68.73% 486% 

Controls 91,980 1.87% 4.68% 0% 71.26% 251% 

AF (N) 184,618 0.88 2.92 0 209 333% 

Treated 92,638 0.32 1.67 0 83 520% 

Controls 91,980 1.43 3.69 0 209 258% 

distUrban (km) 184,618 206.98 180.61 0.00 961.34 87% 

Treated 92,638 228.75 172.47 0.00 948.43 75% 

Controls 91,980 185.05 185.89 0.00 961.34 100% 

distPopulated (km) 184,618 68.26 47.02 0.00 295.51 69% 

Treated 92,638 84.85 49.95 0.00 295.51 59% 

Controls 91,980 51.54 36.99 0.00 211.25 72% 

distRiver (km) 184,618 127.06 116.02 0.03 671.95 91% 

Treated 92,638 131.15 109.22 0.03 658.85 83% 

Controls 91,980 122.94 122.35 0.03 671.95 100% 

distRoad (km) 184,618 74.74 74.81 0.00 417.84 100% 

Treated 92,638 88.01 68.29 0.00 414.89 78% 

Controls 91,980 61.37 78.61 0.00 417.84 128% 

distPavRoad (km) 184,618 111.47 91.02 0.00 428.18 82% 

Treated 92,638 133.64 85.20 0.00 428.18 64% 

Controls 91,980 89.14 91.24 0.00 427.74 102% 

elevation (m) 184,618 188.93 133.66 0.00 2,202.47 71% 

Treated 92,638 200.10 138.97 1.16 2,202.47 69% 

Controls 91,980 177.68 127.10 0.00 2,050.53 72% 

slope (%) 184,618 3.14 2.58 0.00 30.36 82% 

Treated 92,638 3.43 2.81 0.00 30.36 82% 

Controls 91,980 2.85 2.29 0.00 29.42 80% 

pca_soil 184,618 -1.58E-08 2.94 -25.38 0.60 -1.8E+10% 

Treated 92,638 0.12 2.26 -25.38 0.60 1811% 

Controls 91,980 -0.13 3.49 -25.38 0.60 -2784% 

DFpri (%)* 184,618 0.27% 0.62% 0% 5.41% 231% 

Treated 92,638 0.09% 0.33% 0% 5.08% 383% 

Controls 91,980 0.45% 0.78% 0% 5.41% 171% 

DFsec (%)* 184,618 0.20% 0.48% 0% 8.10% 243% 

Treated 92,638 0.06% 0.23% 0% 7.04% 398% 

Controls 91,980 0.34% 0.60% 0% 8.10% 180% 

(To be continued) 
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Table 5.4 – Conclusion. 

Variable  Obs. Mean Std. Dev. Min. Max. CV (%) 

forest (%)* 184,618 74.41% 33.95% 0% 100% 46% 

Treated 92,638 86.54% 26.53% 0% 100% 31% 

Controls 91,980 62.18% 36.15% 0% 100% 58% 

secForest (%)* 184,618 2.45% 4.92% 0% 58.81% 201% 

Treated 92,638 1.08% 3.01% 0% 51.67% 279% 

Controls 91,980 3.82% 5.97% 0% 58.81% 156% 

farming (%)* 184,618 10.98% 22.48% 0% 99.96% 205% 

Treated 92,638 1.64% 6.38% 0% 96.14% 389% 

Controls 91,980 20.39% 28.23% 0% 99.96% 138% 

nonForestNatural (%)* 184,618 4.61% 16.01% 0% 100% 347% 

Treated 92,638 4.28% 15.59% 0% 100% 364% 

Controls 91,980 4.94% 16.41% 0% 100% 332% 

nonVegetated (%)* 184,618 0.11% 1.48% 0% 96.18% 1347% 

Treated 92,638 0.05% 0.70% 0% 72.60% 1435% 

Controls 91,980 0.17% 1.97% 0% 96.18% 1152% 

floodedForest (%)* 184,618 3.99% 15.25% 0% 100% 382% 

Treated 92,638 3.91% 15.12% 0% 100% 387% 

Controls 91,980 4.08% 15.37% 0% 100% 377% 

mangrove (%)* 184,618 0.05% 1.35% 0% 90.85% 2871% 

Treated 92,638 0.07% 1.75% 0% 90.85% 2429% 

Controls 91,980 0.02% 0.75% 0% 55.59% 3459% 

savanna (%)* 184,618 0.71% 5.27% 0% 97.40% 745% 

Treated 92,638 0.57% 4.69% 0% 97.40% 830% 

Controls 91,980 0.85% 5.79% 0% 96.46% 681% 

precMean (mm) 184,618 197.69 42.39 58.36 430.61 21% 

Treated 92,638 205.36 45.04 75.74 430.61 22% 

Controls 91,980 189.97 38.00 58.36 411.11 20% 

precTotal (mm) 184,618 2,372.27 508.64 700.33 5,167.38 21% 

Treated 92,638 2,464.27 540.51 908.91 5,167.38 22% 

Controls 91,980 2,279.61 456.00 700.33 4,933.28 20% 

tempMean (°C) 184,618 28.13 1.68 17.80 37.61 6% 

Treated 92,638 27.57 1.21 17.80 37.61 4% 

Controls 91,980 28.69 1.89 19.29 36.86 7% 

MCWD (mm) 184,618 -205 408 -17,156 0 199% 

Treated 92,638 -171 283 -6,759 0 165% 

Controls 91,980 -240 501 -17,156 0 209% 

precDry (mm) 184,618 44.86 30.10 0.00 156.82 67% 

Treated 92,638 43.59 31.41 0.00 150.41 72% 

Controls 91,980 46.15 28.66 0.00 156.82 62% 

tempDry (°C) 184,618 22.54 11.84 0.00 39.45 52% 

Treated 92,638 20.64 12.25 0.00 39.45 59% 

Controls 91,980 24.46 11.07 0.00 38.57 45% 

pop (N x1000) 184,618 0.12 2.36 0.00 372.04 1939% 

Treated 92,638 0.03 0.52 0.00 86.05 1664% 

Controls 91,980 0.21 3.30 0.00 372.04 1551% 

frag (km) 184,618 17.64 23.90 0.00 305.94 135% 

Treated 92,638 11.68 19.74 0.00 305.94 169% 

Controls 91,980 23.65 26.11 0.00 187.84 110% 

Note: CV = Coefficient of variation (sd*100)/mean).  (%)* = proportion within regular grid pixel. 

Statistics obtained by collapsed dataset, which refers to the average year, calculated for time-varying 

variables as the average value from 2003 to 2020.  
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Figure 5.7 - Mean + Standard Deviation for each variable considered in our database, splitting 

into treated and control groups. The treated group consists of pixels within protected 

areas. The statistics refer to the whole dataset before matching. Red points are the 

median for each group. (*) signals for statistically significant (p < 0.05) comparisons 

between treated and control groups based on a Kruskal-Wallis test. If it appears, 

there are significant differences between the control and treatment groups.   
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5.4.2 Matching 

Comparing the matching performed considering no caliper, 1SD caliper, and 0.5SD 

caliper, one sees that the number of treated observations matched (on support) is reduced 

by 22% with 1SD caliper and 55% with 0.5SD caliper (Table 5.5 and Figure 5.8).  

Table 5.5 - Sample size in each group considered for matching analysis. 

  No caliper 1SD caliper 0.5SD caliper 

Controls 91,980 91,980 91,980 

Unmatched controls 75,025 76,540 80,695 

Matched controls 16,955 15,440 11,285 

Treated 92,638 92,638 92,638 

Treated off support 0 20,350 51,139 

Treated on support 92,638 72,288 41,499 

Comparable sample 109,593 87,728 52,784 

So the cost in terms of sample reduction is considerable. Control observations are also 

substantially reduced in factors of 83% and 88% with 1SD caliper and 0.5SD caliper, 

respectively, which reduces the pool of observations outside protected areas taken as a 

basis for comparison. The percentage of excluded controls due to caliper restrictions in 

relation to the total number of available controls in the three specifications that we 

considered is within the range of what has been observed and accepted in the literature 

(ARRIAGADA et al., 2016; ANDAM et al., 2008; NELSON&CHOMITZ, 2011). The 

same is true for reducing the total sample size (ARRIAGADA et al., 2016; ANDAM et 

al., 2008). Sample reduction is only one of the dimensions that should be accounted for 

in choosing caliper length, as it captures only the cost of information loss.  

A complete evaluation requires looking at the benefits of a larger caliper, that is, the 

relative performance of the three methods in balance, common support, and parallel 

trends. Using the Rosenbaum and Rubin (1985) approach to check for covariates balance, 

matching without caliper presented 2% of variables in the “of concern” state and 0% in 

the “bad” state, that is, variables in which balance was not satisfactory (Table 5.6). The 

covariates not balanced were the proportion of farming and mangroves. 
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Figure 5.8 - Spatialization of the sample in each group considered for matching analysis. (a) 

Before matching. (b) After matching without caliper. (c) After matching with 1 SD 

caliper. (d) After matching with a 0.5 SD caliper.  

 

Table 5.6 - Checking the balance of the covariates using the Rosenbaum and Rubin (1985) 

specification for the three matching options considered (no caliper, 1SD caliper, and 

0.5SD caliper).  

Sample Unmatched Matched Covariates not balanced 
after matching   %concern %bad %concern %bad 

No caliper 21 51 2 0 Farming and mangrove 

1SD caliper 21 51 0 0 - 

0.5SD caliper 21 51 0 1 Mangrove 

of concern = variance ratio in [0.5, 0.8) or (1.25, 2]     
bad = variance ratio <0.5 or >2          
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The balance graph, in which ideally, the two empirical distribution curves should overlap 

completely, showed clearly that the control distribution is displaced to the left relatively 

(Figure 5.9a, Figure 5.9b). This means that a low probability of treatment is more frequent 

among the untreated, as expected. Even without matching, the overlap between the two 

distributions is visually non-negligible, even though it increased substantially with 

matching.  

Figure 5.9 - The kernel density of matching in the treatment group and the control group before 

matching (a) and after matching, considering the three matching options; no caliper 

(b), 1SD caliper (c), and 0.5SD caliper (d). 
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Figure 5.10 - Common support graph for treated and untreated groups, considering the three 

matching options; no caliper before (a) and after (b) matching, 1SD caliper before 

(c) and after (d) matching, and 0.5SD caliper before (e) and after (f) matching. 

According to the caliper, the treatment group was divided into on and off support. 

 

The second dimension of performance is the common support graph, which should ideally 

show the same distribution of treatment probabilities for treated and untreated. Before 
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matching, a low probability of treatment is highly recurrent among the untreated, and a 

high probability of treatment is more frequent among the treated than expected (Figure 

5.10a, Figure 5.10b). The most visible effect of matching was to reduce the observations 

with near zero probability of treatment, in accordance with the common support 

assumption of matching that extreme probabilities of treatment should not happen. The 

similarity of the treatment probability distribution increased notoriously under matching 

with the probability mass being re-allocated to the center of the graph (Figure 5.10c-f). 

The third and final dimension of performance is the evaluation of parallel time trends 

across treated and control groups and whether parallelism increased. Even before 

matching, the similarity of burned area trends across protected and control areas is 

striking and strongly suggests that parallel trends are a reasonable assumption for our data 

(Figre 5.11a). All the matching specifications made the two curves (treated and control) 

more similar in their trends. However, this effect was not large, probably because the 

trends were already highly parallel before matching (Figure 5.11b-d).  
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Figure 5.11 - Parallel trends of the average burned area from 2003 to 2020. Burned area trends 

inside protected areas (treated) and outside (control), before matching (a) and after 

matching, considering the three matching options; no caliper (b), 1SD caliper (c), 

and 0.5SD caliper (d). 

 

Regarding variables' balance, the gain from a 1SD caliper was reduced from 2% to zero 

the variables with "of concern" status (Table 5.6). Thus, the highest level of variable 

balance was achieved with a 1SD caliper. The overlapping was larger with the 1SD 

caliper, mainly near the peak probability, around 50% (Figure 5.9c). In the common 

support graph, it is clear that the caliper worked to reduce the frequency of high treatment 

probability, especially the frequency near 100% probability (Figure 5.10c and Figure 

5.10d). The similarity of the distributions increased considerably with the transfer of 

probability mass in the treated distribution from the right to the left of the graph. This is, 

again, a way to ensure that the assumption of common support is verified, that is, that 

extreme treatment probabilities are not observed in the sample. Comparable controls 

(untreated) were also diminished, contributing to the increased similarity that Figure 5.9c 

reveals. 



164 

 

Evaluating the performance of matching with 0.5SD caliper, there was a loss of balance 

with 1% of variables switching to the “bad” state. There was no change in the “of 

concern” status, which remained null. There was a sensible gain in terms of overlapping 

in the balance graph, with the peak probability of the treated being increased. However, 

this gain that half caliper brought is smaller compared with the no caliper baseline (Figure 

5.9d). The common support graph reveals that the exclusion of treated pixels (treated off 

support) embraced those at high probability levels and across medium probabilities. In a 

lower degree, even pixels with a low probability of treatment were excluded, which seems 

to show that the exclusion extended over the entire distribution of treatment probability, 

being excessive in terms of the excluded positions. Of course, this generated a gain in an 

increased similarity of the histograms, which became more concentrated at the center of 

the graph.  

The best performance among the options considered was achieved by the 1SD caliper 

matching, considering the results of the matching approach presented in the previous 

paragraphs. It better-balanced gains and losses. Half caliper was a worse balance because 

of the 1% “bad” balance status of covariates and the excessive range of exclusion of 

treated (treated off support), revealed by the common support graph. All this loss is for a 

small gain in the balance graph and, of course, for a larger gain in the support graph but 

at the cost of a great reduction of the sample to less than half. Indeed, the main cost of 

half caliper is the 52% reduction in the sample, strongly affecting the generality of 

analysis results, which was considerably smaller at 1SD caliper, which imposed a 20% 

reduction. Therefore, all matches not equal to or within 1 SD of each covariate were 

dropped, and the sample obtained by matching with a 1 SD caliper was then used for post-

matching analysis to measure the ATE. 

An examination of the excluded sample strata after matching 1 SD caliper reveals that 

unmatched controls are 20% closer to the Brazilian deforestation arc than matched 

controls. In addition, treated pixels on support are 45% closer to the arc. Which further 

attests to the success of matching-based covariate balancing. We know that anthropic 

pressure is not limited to Brazil (and its deforestation arc). However, as we are dealing 

here with averages and the Brazilian area encompasses most of the study area, it greatly 
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influences the analyses. Table D.4 details the descriptive statistics of the different post-

matching groups for all variables. 

5.4.3 Differences-in-Differences (DiD) 

Before matching, greater parallelism is observed between control and not currently 

treated rather than control and currently treated. The clear peak in ‘not currently treated’ 

is caused by a disastrous fire due to the extreme drought of 2010 in an area that was to be 

protected, particularly in the Área Municipal de Conservación y Manejo Bajo Madidi, in 

Bolivia, that was only designated in 2019. The burned area that occurred in this area in 

2010 corresponded to 44% of the total burned area registered in not currently protected 

pixels in the same year. The increase of parallelism with matching is notorious and applies 

to the comparison of control both with not currently treated and currently treated. Further 

increase in parallelism with caliper matching is not visible (Figure 5.12). In all graphs, 

the current trend is below the never-treated trends and ever-treated but not currently 

treated, as expected. The picture is less clear when comparing the trends of the never 

treated and treated but not currently treated, as initially (from 2003 to 2009) the former is 

above, what is reverted thereby in nearly all remaining years, with treated but not 

currently treated lying above controls. In summary, protection seems to be effective only 

when active. 

Matching increased parallelism, and trends are parallel over time, consistent with the DiD 

premise that the trend is the same comparing controlled and treated before treatment. In 

Figure 5.12b, the orange dashed line of ever-treated but not currently treated has 

decreasing reliability due to the sharp diminishment in the subsample on which it is based, 

as all ever protected become ultimately protected. Over time, the size difference between 

the two subsamples becomes different by orders of magnitude. For instance, in 2008, the 

order of magnitude of the currently protected subsample size before matching was 104 

and close to 105 (84,397), whereas in the latter, it was 103. In 2016, the orders of 

magnitude were 104 vs. 102, which is why the graphs stopped by 2015. 
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Figure 5.12 - Parallel trends of the average burned area from 2003 to 2020, considering dynamic 

protection status. Burned area trends inside active protected areas (currently treated), 

inside inactive protected areas (not currently treated), and outside (control) before 

matching (a) and after 1SD caliper matching (b).   

 

Figure 5.12 suggests that the naive treatment effect is larger; thus, without matching, the 

effect would be overestimated. The expected hierarchy of relative level of the three 

subgroups (three lines) is clearer with matching; that is, control is greater than not 

currently treated, which in turn is greater than currently treated. This hierarchy was 

broken in 2009, which is probably due to the average of the not currently treated 

becoming already unreliable due to the small sample size. As explained above, this could 

happen due to the one order of magnitude difference in subsample size comparing not 

currently treated to currently treated and matched controls since 2008, once the average 

captures very particular cases, being more subjected to outliers. Also, even if the 2003-

2009 period suggests that protection is effective even before becoming active, such effect 

is smaller than active protection. Therefore, the estimation of the ATE by the coupled 

matching-DiD approach, which measures only the active protection effect, indeed 

captures the largest part of the protection area.  

One hypothesis to explain these patterns is that protected areas were initially created at 

places where deforestation pressure was lower, as this was less incompatible with 

economic interests and thus more practically feasible.  However, over the years, the 

expansion of the protected areas network and the advance of the deforestation arc 

occurred, making the subsample not currently treated to represent an area under greater 

pressure. Figure 5.13a clearly shows a steep decrease in distance from protected areas to 

the deforestation arc until 2008, and after that, the distance continues to decrease, but 
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more gradually. The gradual decrease in the distance between protected areas and areas 

under pressure from deforestation can also be seen in Figure 5.13b. 

Figure 5.13 – Mean distance from pixels within protected areas in Brazil to the deforestation arc 

in the eastern Brazilian Amazon (a) and from pixels within protected areas in the 

Amazon basin to the nearest of the 20 most deforested municipalities in each country 

each year. 

 

The same analysis was carried out using active fires instead of burned areas (Figure 5.14). 

The treatment effect is more evident in this case, comparing controls to ever-treated 

pixels. Unlike the burned area graph, the curves using active fires showed that between 

2007 and 2009, the average fire occurrence in currently treated was higher than not 

currently treated, even after matching. This reinforces that protected areas also burn, and 

in this particular period, they registered an average of 0.31 active fires per year and 0.19 

km² before matching (or 0.29 and 0.15 after matching, respectively). Besides that, in this 

period, there was a steep decrease in the distance from protected areas to deforestation 

pressure (Figure 5.13), which could have boosted fire within them. 
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Figure 5.14 - Parallel trends of average active fire count from 2003 to 2020, considering dynamic 

protection status. Active fire trends inside active protected areas (currently treated), 

inside inactive, protected areas (not currently treated), and outside (control) before 

matching (a) and after 1SD caliper matching (b).   

 

The differences-in-differences approach brings timing to the analysis, and its traditional 

trend break graph shows the dependent variable with a clear mark before and after 

treatment. Given the dynamic nature of our treatment variable, i.e., protection status, our 

trend break graph was built by plotting the average burned area per year since treatment, 

only for ever-treated pixels. First, considering the whole dataset, in which time since 

treatment ranges from 16 years before treatment to 60 years after, the trend break is clear 

with a visibly lower level during the active protection period. This is highlighted by the 

fact that the blue horizontal line at the lowest burned area level achieved before protection 

is close to or above most of the trend after protection (Figure 5.15a). That becomes even 

clearer, zooming in to the time of 16 years before and after treatment (Figure 5.15b), thus 

ensuring equal time spans before and after treatment. In this case, it was only omitted 

pixels that were protected before the beginning of the analysis period in 2003, thus 

keeping 56% of the protected pixels. Therefore, considering only ever-treated pixels, 

there is a clear fall in the burned area trend when protection is active, which gives a visual 

indication of a negative ATE.  
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Figure 5.15 - Average burned area per year since treatment for ever-treated pixels, covering 16 

years before and 60 years after treatment (a) and 16 years before and after treatment 

(b). 

 

The same analysis was carried out using active fires instead of burned areas (Figure 5.16), 

which resulted in similar patterns. The small number of observations could explain the 

fire peak in the older currently treated protected areas. Observations in which the 

treatment occurred 48 to 59 years prior to the current analyzed year corresponded to only 

0.19% of the treated group. This small sample makes the average more subjected to 

outliers.  

Figure 5.16 - Average active fire count per year since treatment for ever-treated pixels, covering 

16 years before and 60 years after treatment (a) and 16 years before and after 

treatment (b).  

 

5.4.4 Average Treatment Effect (ATE) estimation  

The second stage estimates reveal a statistically negative effect of the protected area in 

the burned area (Table 5.7) and active fires (Table 5.8), thus showing that protection could 

reduce fires. This was robust to estimator specification (FE, DiD, and DiD-FE) and 
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clustered disturbances since both clustering at the pixel level, department level. 

Bootstrapping were also applied to residuals (Table D.5, Table D.6). Indeed, the ATE 

estimate did not change across estimators, being for all of them -0.000728 (p < 0.001) 

and -0.0439 (p < 0.001) for the burned area and active fires, respectively. If the average 

pixel-year became protected, it would have an average area burned fraction 0.0007 points 

lower, which is 0.5% of the 0.13 burned area average among all pixels. Converting the 

fraction of pixel burned into pixel area would be a decrease of the burned area to about 

0.02 km² (2 ha.pixel-1.year-1) – that is, for each land patch of 2,800 ha protected, 2 hectares 

are prevented from being burned per year. If the average pixel-year became protected, it 

would have a number of active fires 0.0439 lower, 5% of the 0.88 average. It is important 

to highlight that the ATE is bounded above by the fact that protected areas already have 

a low level of fire (so the reduction of a low level must be low). The complete tables with 

all covariate coefficients can be found in Table D.5 and Table D.6. 

Table 5.7 - Differences-in-differences estimation of the protected area effect on the burned area.  

Dependent variable: Burned area FE DiD DiD-FE 

        
Average treatment effect (ATE) -0.000728*** -0.000728*** -0.000728*** 
  (0.0002) (0.0002) (0.0002) 

        

N 1579104 1579104 1579104 
F 164.7 290.06 307.12 
p 0 0 0 
Overall R² 0.0839     
N clusters 87728 87728 87728 

Notes: +p<0.10,*p<0.05,**p<0.01,***p<0.001. The dependent variable is the burned area proportion 

within each pixel-year. Treatment is a dummy variable that equals one if a pixel is within an active 

protected area and zero otherwise.  FE = fixed-effects estimator for panel data, DiD = differences-in-

differences estimator for panel data pooled under the assumption of zero correlation between the 

covariates and the unobserved heterogeneity term, DiD-FE = estimator addressing both unobserved 

heterogeneity bias and assuming that the trends were parallel in the untreated state for treated and 

untreated.  All specifications include year and Amazonian department dummies interacted with a 

deterministic time trend. Covariate controls include within pixel proportion of primary and secondary 

forest deforestation, forest, farming, non-forest natural formations, non-vegetated area, flooded forests, 

mangroves, and savanna. Besides that, controls also included total precipitation, mean temperature, 

maximum cumulative water deficit (MCWD), mean precipitation and temperature during the dry 

season, population, and forest edge length. Robust standard errors clustered at the pixel level in 

parentheses. 

The department-clustered estimates of ATE (Table D.7) were significant only at the 10% 

level and for the count measure of fires (not for the burned area). This was expected due 

to the considerable reduction of the variability of residuals based on standard error 

calculations since the number of observational units was diminished 1790 fold. However, 

the significant reduction was amplified by a feature of the data, the excess of zeros in the 

dependent variable, that is, fire was not detected in most pixel-years. This was confirmed 
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with dependent binary variables (Table D.8), which took value one in the case of fire 

detection. Considering these binary dependent variables, the significance level of the 

estimates was still 1% for SE clustered at pixel level and 5% when clustered at the 

department level. Even with the significance level achieved with department clustering 

being lower than with pixel-clustering, it remained in accordance with the level at which 

the nullity of a parameter is commonly rejected (p > 0.05). Therefore, the negative causal 

effect of protected areas on fire stood out as the test of clustering standard errors at a 

much higher aggregation level than the cross-sectional observations. 

Table 5.8 - Differences-in-differences estimation of the protected area effect on active fires. 
Dependent variable: Active fire 

FE DiD DiD-FE 

        

Average treatment effect (ATE) -0.0439*** -0.0439*** -0.0439*** 

  (0.0066) (0.0067) (0.0066) 

        

N 1579104 1579104 1579104 

F 281.2 449.69 476.15 

p 0 0 0 

Overall R² 0.0782     

N clusters 87728 87728 87728 

Notes: +p<0.10,*p<0.05,**p<0.01,***p<0.001. The dependent variable is the active fire count within 

each pixel-year. Treatment is a dummy variable that equals one if a pixel is within an active protected 

area and zero otherwise.  FE = fixed-effects estimator for panel data, DiD = differences-in-differences 

estimator for panel data pooled under the assumption of zero correlation between the covariates and 

the unobserved heterogeneity term, DiD-FE = estimator addressing both unobserved heterogeneity 

bias and assuming that the trends were parallel in the untreated state for treated and untreated.  All 

specifications include year and Amazonian department dummies interacted with a deterministic time 

trend. Covariate controls include within pixel proportion of primary and secondary forest 

deforestation, forest, farming, non-forest natural formations, non-vegetated area, flooded forests, 

mangroves, and savanna. Besides that, controls also included total precipitation, mean temperature, 

maximum cumulative water deficit (MCWD), mean precipitation and temperature during the dry 

season, population, and forest edge length. Robust standard errors clustered at the pixel level in 

parentheses. 

The sensitivity test for unobservables (Table D.9 and Table D.10) showed that an 

unobservable capable of increasing the likelihood of not having fire inside a protected 

area by at least 1.35 fold, as a ratio of the likelihood outside, would be enough to turn the 

result non-reliable for over 58% of the fire measure vs. year combinations. This is similar 

to Arriagada et al. (2016) results for Chilean protected areas containing deforestation, 

where an influence of 1.35 degrees was already enough to raise the p-value above 5%. It 

is unclear which non-observable could influence the results achieved in this chapter, and 

with the Rosenbaum test being a "worst-case scenario" (ARRIAGADA; ECHEVERRIA; 

MOYA, 2016), its results remain useful. They, first of all, attest that, even after matching 

and DiD estimators were applied, some irreducible uncertainty on the magnitude of the 
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protected area effect on fire remained (in line with the test’s interpretation by 

ARRIAGADA; ECHEVERRIA; MOYA, 2016). The test also suggests that the estimated 

effect is subjected to a non-negligible degree of uncertainty due to unobservables driving 

both selections of pixels to belong to protected areas and the effect of protected areas on 

fires. One example of relevant unobservables on this subject is region-specific 

environmental policies, which could influence both protected areas establishment and fire 

occurrence. In Brazil, one such policy is the PPCDAm. Thus, Rosenbaum’s sensitivity 

test tells us that if PPCDAm increases the ratio between the probabilities of fire not 

occurring and occurring within protected areas by more than 35%, then, in fact, the results 

are invalid. As mentioned before, this uncertainty is irreducible since we do not have 

information about the local execution of the PPCDAm at the pixel scale.  

5.5 Discussion 

In this chapter, we evaluated the role of protected areas on fire occurrence in the Amazon 

basin from 2003 to 2020. Our analysis was motivated by the growing threat that 

Amazonian ecosystems have faced in recent years. The occurrence of fire has achieved 

record levels annually in the region, and carbon emissions from forest degradation already 

exceed those caused by deforestation (SILVA JUNIOR et al., 2021c). Fire is 

anthropically introduced in this tropical environment, mainly because of the agricultural 

frontier expansion and land grabbing. The increased fire occurrence in the Amazon, 

whether due to increased deforestation or climate change, poses a serious threat to the 

forest and its functionality.  

On the other hand, protected areas appear to be the last patches of healthy ecosystems that 

are resilient to recent changes. It is estimated that protected areas in the Brazilian Amazon 

account for 54% of forest remnants and contain 56% of its carbon (SOARES-FILHO et al., 

2010). Thus, protected areas are essential carbon reservoirs for maintaining the planet's 

climate balance. Our results confirmed that the creation of protected areas reduced fire 

occurrence and extent in the Amazon basin from 2003 to 2020. Our findings corroborate 

with prior studies that also attested to an inhibitory effect of protected areas on fires 

(NELSON; CHOMITZ, 2011; NEPSTAD et al., 2006; NOLTE; AGRAWAL, 2013). The 

reduction coefficient we found for active fires (-0.0439) is consistent with the one found 

by Nelson and Chomitz (2011) for Strict Protected Areas in Latin America for the 2000-
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2008 period. In this study, the authors found an inhibitory effect of fire four times greater 

for indigenous lands, showing the importance of analyzing the protection categories 

separately. Tasker and Arima (2016) was the only study to include fire extent when 

evaluating the effectiveness of protected areas on fires. Similar to our results, they found 

reduction coefficients consistently low in magnitude (coefficients < 0.01) for the burned 

area, albeit their results were insignificant. The comparison of our results in absolute 

values with Tasker and Arima (2016) study is made impossible by differences in the 

strategies for identifying the causal effect of protected areas on fire. 

Although Nepstad et al. (2006) also found a negative effect of protected areas on fire, in 

this study, the authors only measured the relative performance of these areas. The study 

disregards unobservable confounders and concurrent changes that could influence fire 

occurrence inside and outside protected areas, and, consequently, inflate the estimated 

effect. The authors emphasize that the study is an initial comparative assessment of 

protected area performance in the Brazilian Amazon by using fire occurrence along the 

protection perimeter as a proxy for the threat of imminent degradation. After the Nepstad 

et al. (2006) study, other studies pointed to econometric strategies as being robust in 

assessing the effect of protected areas, both on deforestation and fire (e.g., ANDAM et 

al., 2008; ARRIAGADA; ECHEVERRIA; MOYA, 2016; HERRERA; PFAFF; 

ROBALINO, 2019; JOPPA; PFAFF, 2011; NELSON; CHOMITZ, 2011; NOLTE et al., 

2013; NOLTE; AGRAWAL, 2013; PFAFF et al., 2014, 2015a, 2015b; SZE et al., 2022; 

TASKER; ARIMA, 2016; WENDLAND et al., 2015). All these studies addressed the 

non-randomization of protected area creation (selection bias), most of the time using 

matching estimators. However, matching alone does not find comparisons that are 

identical to treated pixels (HERRERA; PFAFF; ROBALINO, 2019), which makes the 

adoption of post-matching regressions relevant. Herrera et al. (2019) claimed the 

importance of the post-matching step as a robustness check, in which the matched sample 

could be used to control for remaining differences in covariates.  

Nevertheless, even after 15 years of methodological development on the topic, it is still 

unclear how to deal with both selection endogeneity and, at the same time, control for 

unobservable heterogeneity. Combining matching with DiD confers the advantage of 

controlling for a wide range of socioeconomic and environmental predictors, besides the 
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policy, and at the same time for unobservable time-invariant factors and heterogeneous 

time-varying characteristics. Indeed, this joint approach was already used in policy 

evaluation (ALIX-GARCIA; SIMS; YAÑEZ-PAGANS, 2015; FERRARO; MIRANDA, 

2017; GALIANI; GERTLER; SCHARGRODSKY, 2005; PEIXOTO et al., 2017), but 

never to estimate the effect of protected areas on fires. We attested that matching 

combined with DiD is a suitable approach, resulting in an unbiased estimate of the 

average treatment effect of protected areas on fire occurrence. Unlike deforestation, fire 

is highly influenced by climatic conditions and existing ground cover (fuel for the fire). 

Therefore, controlling for time-varying characteristics is critical to obtain an unbiased 

estimate in this context. Our study advanced in describing the fire phenomenon for the 

Amazon basin, adding a greater number of variables and, thus, providing a more 

comprehensive and accurate analysis than in previous studies.        

The fact that we have attested that protected areas have a significant negative effect on 

fire and that other studies have already shown a similar effect on deforestation becomes 

extremely relevant to the environmental policy agenda. We believe that protected areas 

can help to accomplish international goals, such as the Sustainable Development Goals 

(SDGs) from Agenda 2030. In addition, carbon sequestration capacity can be improved 

by 0.39% by constructing global protected areas (SHI et al., 2020). Besides being critical 

to the accomplishment of the National Determined Contributions (NDCs), this central 

role in reducing carbon emissions makes protected areas promising objects within the 

scope of Reduction of Emissions from Deforestation and Forest Degradation (REDD+) 

projects. Thus, this environmental strategy can make these global environmental goals 

compatible with support for local livelihoods, generating socio-environmental 

sustainability for traditional communities. 

However, even though effective against deforestation and fires and historically serving 

as shields against human threats, protected areas are increasingly at risk.  Taking the 

Amazon basin as a whole, there was a decrease of 11% in deforestation rate per year from 

2017 to 2020, compared to the average rate from 2003 to 2016. In contrast, in the same 

period, there was an increase of 74% in deforestation within protected areas. The same 

pattern can be observed with fires. In the same period, while there was a 10% decrease in 

the burned area across the basin, within protected areas, the burned area per year increased 
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by 18%. These rates reflect the increase in agricultural areas (46%) and forest 

fragmentation (26%) recorded within protected areas (Figure 5.17). 

Figure 5.17 - Percentage difference of deforestation of primary forest, burned area, farming, and 

forest fragmentation taking the mean annual rate from 2017 to 2020 compared to the 

mean annual rate from 2003 to 2016. The percentages were calculated both for the 

Amazon basis and per country. The numbers were also split into outside and inside 

protected areas.  

 

Individualizing the member countries of the Amazon basin, Bolivia and Brazil showed 

the same pattern as the basin as a whole: a decrease in the annual rate of deforestation and 

burned area between 2017 and 2020 compared to the 2003-2016 period, in contrast to an 

increase in both phenomena within protected areas. All countries registered deforestation 

increases within protected areas, and only Ecuador (38%) and French Guiana (74%) 

Total % deforestation % burned area % farming % forest fragmentation

Bolivia -42% -18% 46% 25%

Brazil -16% -5% 12% 7%

Colombia 72% -4% 21% 6%

Ecuador 1% -69% 7% 5%

French Guiana 17% -77% 24% 15%

Guyana -11% 50% -6% 10%

Peru 35% -29% 21% 14%

Suriname 165% -8% 16% 9%

Venezuela 39% -5% 13% 13%

Amazon basin -11% -10% 14% 8%

Outside PAs % deforestation % burned area % farming % forest fragmentation

Bolivia -55% -33% 38% 11%

Brazil -27% -14% 10% -1%

Colombia 53% -8% 19% -4%

Ecuador -11% -100% 4% -2%

French Guiana 21% -81% 16% 11%

Guyana -24% 48% -13% 7%

Peru 21% -34% 18% 9%

Suriname 165% -32% 15% 7%

Venezuela -41% -33% 0% -46%

Amazon basin -22% -19% 12% 0%

Inside PAs % deforestation % burned area % farming % forest fragmentation

Bolivia 6% 7% 90% 48%

Brazil 73% 31% 42% 27%

Colombia 166% 36% 42% 16%

Ecuador 15% -38% 12% 8%

French Guiana 12% -74% 39% 21%

Guyana 29% 132% 8% 19%

Peru 89% 8% 44% 22%

Suriname 178% -5% 22% 35%

Venezuela 201% 70% 200% 24%

Amazon basin 74% 18% 46% 26%
Note: The % refers to the mean annual rate between 2017 to 2020 compared to the mean annual rate between 2003 to 

2017. PAs = Protected areas.
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decreased their burned area rates within these areas. Surprisingly, only Guyana registered 

an increase in burned areas outside protected areas (48%). Ecuador reached a 100% 

decrease in the burned area outside protected areas. Venezuela, which overall decreased 

burned area by 5%, showed a 33% decrease in the burned area outside protected areas, at 

the cost of a 70% increase within them. The same country registered an increase of 

farming land by 200% within protected areas. These numbers demonstrate that decision-

makers from all countries in the Amazon basin must review public policies regarding 

protected areas and create new strategies that guarantee their integrity. 

This time cut from 2017 to 2020 has a strong political connotation for Brazil. In 2016, the 

country's current president, Dilma Roussef, was impeached, marking the end of a 14-year 

period in which the Workers' Party was in power. It was at the beginning of this period, 

in 2004, that the Action Plan for the Prevention and Control of Deforestation in the Legal 

Amazon (PPCDAm) was launched, aiming to gradually and continuously reduce 

deforestation in the Legal Amazon, as well as to provide subsidies to a more sustainable 

regional development. During its first phase, which occurred from 2004 to 2008, the most 

remarkable action was the creation of more than 600 thousand square kilometers of 

protected areas, and 62% of the initial budget for this phase was allocated to land and 

territorial planning. Although there were many challenges on the environmental agenda 

to be overcome at the time, such as the effective management of these areas, from 2017 

onwards, there were setbacks in the environmental legislature and in the political scenario 

that put even the existence of these protected areas at risk (MATAVELI; DE OLIVEIRA, 

2022; RORATO et al., 2021; VILLÉN-PÉREZ et al., 2020). If, on the one hand, Brazil 

has proved the feasibility of maintaining forests over most of the Brazilian Amazon 

through enforcement of environmental legislation, on the other hand, it also proved that 

progress on the environmental agenda is fragile and highly susceptible to the political 

scenario.  

In conclusion, the fire-inhibiting capacity of these areas is only one aspect of the 

effectiveness of protected areas. However, it already demonstrates that their management 

is, in a certain way, effective in preventing forest degradation, in line with conservation 

strategies. Protected areas occupy 59% of the Amazon basin area, and their maintenance 
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and effectiveness enhancement should be among the priorities of debates on 

environmental agendas.  

5.6 Future considerations 

In this study, we made methodological advances in policy evaluation. We showed that 

the coupled use of matching and DiD econometric estimators are robust and suitable for 

measuring the effect of protected areas on fires in the Amazon. However, there is still a 

lot of room for improvement, and future work should focus on:  

(i) Analyzing the categories of protected areas separately in order to consider the 

particularities of each category and then obtain more accurate estimators for 

each context;  

(ii) Test the robustness of the results for alternatives to the average year used in 

the matching. The choice of the reference year is a challenge, and it can 

influence results;  

(iii) apply dynamic matching so that time-varying characteristics are considered 

when choosing the counterfactual group;  

(iv) repeat the DiD estimates without applying the matching to choose the 

counterfactual group in order to measure the influence of this step on the final 

results;  

(v) test the results' robustness for different protected area time cohorts to measure 

the influence of political phases on the results. 
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6 GENERAL DISCUSSION 

This thesis shows the imminent and growing threat protected areas face in the Amazon 

basin. The three factors conditioning fire occurrence in this tropical environment 

(ALENCAR; RODRIGUES; CASTRO, 2020) is changing, turning the Amazon into an 

amplified fire-prone system. We show here that these favorable fire dynamics affect the 

natural ecosystems found within protected areas, even if these areas have an inhibitory 

effect on the fire. The pressure on the forest, whether by deforestation related to land 

grabbing, agriculture expansion (ARMENTERAS et al., 2019; DE OLIVEIRA et al., 

2020; MATAVELI et al., 2021), or mining (MATAVELI; DE OLIVEIRA, 2022; 

RORATO et al., 2021; VILLÉN-PÉREZ et al., 2020) is fragmenting the landscape. Forest 

edges, in turn, accumulate conditions that allow fire to enter the forest. It has already been 

seen that about 95% of active fires and the most intense ones were found in the first km 

from the edges of forest areas (SILVA JUNIOR et al., 2018). We found that 28% of the 

maximum extent of areas that have already been affected by fire in the Amazon basin 

from 2003 to 2020 were within protected areas. 

Studies also found that in areas with up to 0.1 people per km², population density increases 

fire frequency by 10 to 20% relative to its value at no population (KNORR et al., 2014). 

Specifically for Amazon, we found that this value could be up to 22 times higher. From 

2003 to 2020, protected areas in the Amazon have an average of one habitant per km², a 

density more than seven times lower than what is found outside. Despite being higher 

than the global turning point of 0.1 habitants per km², it is still more than twice that of the 

Amazon. In addition, we still show that the population within protected areas has been 

growing over the years. This means that the population configuration within protected 

areas in the Amazon and their temporal dynamics point to an increase in threats to the 

forest.  

Concomitantly with the pressure over the forest and the population densification, climate 

change is also influencing fire dynamics in the Amazon (ARAGÃO et al., 2018; SILVA 

JUNIOR et al., 2019). Low humidity generates ideal conditions for intentional fires to 

leak into forests as dry seasons get longer and drier. Silva Junior et al. (2019) confirmed 

that during the drought that occurred in 2015/2016, positive active fire anomalies resulted 

from increased burned forests. Previous studies have pointed to an annual increase rate in 
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the average temperature of 0.03°C in the Brazilian Amazon for 1973 – 2013 (ALMEIDA 

et al., 2017). Regionally, this increase can reach 2.5°C in the southeastern Brazilian 

Amazon, analyzing the period from 2010 to 2018 (GATTI et al., 2021). Here we also 

found an overall increase of 0.03°C during the dry season per year from 2003 to 2020. 

However, depicting the Amazon on protection status, the average temperature increase 

during the dry season reaches 0.04°C within protected areas and 0.05°C outside. Even at 

a slower rate, the climate is changing within protected areas, and this variation leads to 

greater vulnerability to fire. 

Translating fire impacts into economic costs, Campanharo et al. (2019) estimated for Acre 

state in 2010 a total loss of US$ 243.36 + 85.05 million, and from 2008 to 2012, US$ 

307.46 + 85.41 million. This cost estimation included direct impact on land use and land 

cover, carbon stocks, CO2 emissions, and indirect impact on human illness. However, 

forest fires' socio-economic and environmental impacts can be much broader. Indeed, a 

United Nations report claims that wildfires could impact as many as 8 Sustainable 

Development Goals (Table 6.1) from Agenda 2030 (UNITED NATIONS 

ENVIRONMENT PROGRAMME, 2022). Contextualizing, the 2030 Agenda for 

Sustainable Development, universally adopted in 2015, is a plan to create a better and 

more sustainable future for all in just 15 years through 17 Sustainable Development Goals 

(SDGs).  

Coincidentally, the sixth report of the Intergovernmental Panel on Climate Change 

(IPCC) relates protected areas to eight SDGs. According to the report, protected areas 

bring fundamental social, economic, and environmental benefits for adapting to climate 

change. Of the SDGs impacted by fire, at least six are considered protected areas benefits. 

Once again, this reinforces the importance of these areas for mitigating the impacts caused 

by fire, leading the Amazon region towards truly sustainable development. Furthermore, 

the member nations of the Amazon region have not only committed to the Agenda 2030. 

Under the scope of COP26, countries have updated their Intended National Determined 

Contributions (iNDCs), establishing their own emissions reduction targets as a global 

effort to stop climate change (FCCC, 2021). Even if national targets are shallow and 

unrealistic and often not enough to keep the global climate at a safe level (FCCC, 2021), 

they are the only attempt to make the effort of national governments something concrete 

and official. National targets are an official commitment that authorities and civil society 
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can demand. In this context, protected areas are essential allies for achieving the goals 

established in all countries, and not prioritizing them signals a movement against what is 

expected of a nation committed to sustainable development.  

Table 6.1 - Impacts of wildfire on Sustainable Development Goals (SDG). 

SDG Description Fire impact 

1 No poverty Increased desertification and land degradation 

    
Impacts on agriculture: reduction in soil fertility, stability and water 
infiltration and retention characteristics 

    
Impacts on foraging: loss of food sources and conversion of 
vegetation 

    Displacement and loss of livelihoods 

    
Women and girls tend to experience greater impacts from poverty, 
food insecurity, and displacement 

2 Zero hunger Increased desertification and land degradation 

    
Impacts on agriculture: reduction in soil fertility, stability and water 
infiltration and retention characteristics 

    
Impacts on foraging: loss of food sources and conversion of 
vegetation 

    Displacement and loss of livelihoods 

    
Women and girls tend to experience greater impacts from poverty, 
food insecurity, and displacement 

5 Gender equality Increased desertification and land degradation 

    
Impacts on agriculture: reduction in soil fertility, stability and water 
infiltration and retention characteristics 

    
Impacts on foraging: loss of food sources and conversion of 
vegetation 

    Displacement and loss of livelihoods 

    
Women and girls tend to experience greater impacts from poverty, 
food insecurity, and displacement 

3 Good health and well-being Loss of environmental values 

    Pressure on health and other services 

    
Loss of historically and culturally important nature, artifacts, places, 
and buildings 

    Loss of homes/livelihoods 

    Impacts on mental health 

    Food insecurity 

    Decreased air quality 

6 Clean water and sanitation Post-fire runoff 

    Increased nutrients, sediment, contaminants 

    Loss of water and sanitation infrastructure 

13 Climate action Changes in albedo 

    Release of greenhouse gases and particulate matter 

14 Life below water Post-fire runoff 

    Increased nutrients, sediment, contaminants 

15 Life on land Loss of ecosystems and biodiversity 

Source: United Nations Environment Programme (2022). 

Controversially, several environmental setbacks have been recorded in the Amazon 

(FERRANTE; FEARNSIDE, 2021, 2022; FERREIRA et al., 2014; MATAVELI; DE 

OLIVEIRA, 2022; RORATO et al., 2021; VILLÉN-PÉREZ et al., 2020). Many of these 



181 

 

setbacks and anti-environmental actions primarily impact protected areas. Instead of 

advancing in creating these areas, ensuring governance and better management, recurrent 

attacks on their existence drive illegal activities and invasion (FERRANTE; 

FEARNSIDE, 2022; MATAVELI; DE OLIVEIRA, 2022). Among the several negative 

impacts this scenario is causing, as previously detailed, it has also caused increased 

violence in these areas, a result of tension between traditional and indigenous 

communities and squatters (PHILLIPS, 2022). In this way, it is evident that measures 

need to be adopted urgently so that protected areas recover their governance and gain 

management capacity in order to be able to deliver all the benefits they are intended for. 

Nevertheless, future studies are still needed to assess the full range of impacts fire can 

have on natural ecosystems inside and outside protected areas. Thus, it will be possible 

to inform policy and decision-makers of the risk magnitude to which these ecosystems 

may be exposed. In addition, further studies are also needed to assess the effectiveness of 

different protected areas categories concerning fire-related impacts to support specific 

actions according to the fire use context. Finally, it is imperative that a better 

understanding be prioritized of the social benefits of protected areas and the suitability of 

adopting alternatives to fire use as a tool by communities residing in these areas. 
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7 CONCLUDING REMARKS 

This thesis provided evidence of the protected areas' effect on fire occurrence in the 

Amazon basin from 2003 to 2020, emphasizing their effectiveness in preventing fires and 

their critical role in maintaining essential ecosystem functions for biodiversity 

preservation and human well-being. The results presented here can support public policies 

or private actions aimed at improving the management of these areas to maximize their 

inhibitory effect against fire, as well as promoting studies to create new areas.  

From 2003 to 2020, the Amazon basin registered an annual average of 79,196 km², with 

the burned area peak in 2010. Of the total area that burned throughout this period, only 

28% was registered within protected areas. Among what annually burns inside protected 

areas, 17% are registered within Indigenous lands, and only 3% within Indirect Use 

protected areas. Although Brazil is the country that registered the highest burned area rate 

per year (51,304 km²), Suriname (74%) and Bolivia (42%) are the ones that registered the 

greatest shares of what burns inside protected areas. On average, it burned 14,438 km² of 

old-growth forests annually, representing 18% of the total. Of that, 75% is registered 

outside protected areas annually, and 15% is within Indigenous lands. Bolivia is the 

country that burns the largest share of forest, considering the total forested area in each 

country.  

Even though protected areas have recorded significantly smaller burned areas than their 

surroundings over the years, the proportion of inside burning in relation to the total burned 

per year has been increasing in recent years, signaling an increase in the threat to which 

these areas are exposed. This growing threat is also evidenced by the increase in 

deforestation within these areas, the forest fragmentation, the increase in population, and 

the local climate change, which is already perceived in several parts of the Amazon basin. 

These factors combined to transform a humid tropical environment, even if reasonably 

preserved as protected areas, into a fire-prone system. However, even with all these 

factors present, fire does not occur in this environment if there is no fire ignition. This 

thesis showed that, like the burned area, the proportion of fire ignitions that occur within 

protected areas in relation to the total detected annually is increasing over the years. Even 

so, 85% of all the area that burns inside protected areas started with ignitions outside these 

areas, which shows that they are victims of the forest degradation that occurs around them 
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and depend not only on their inside preservation but on the maintenance of their buffer 

zones. 

The change in the way of quantifying the effect of protected areas on fire occurrence, 

obtained in Chapter 5, improved the estimates and contributed to the extensive literature 

that proposes unbiased methods to assess the causal effects of environmental programs. 

These estimates indicated a negative effect of protection on fire occurrence, translated 

into 2 ha of avoided burned area per year within protected areas. 
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APPENDIX A - SUPPLEMENTARY MATERIAL FROM CHAPTER 2 

Table A.1 - Protected area national categories description according to country-specific regulatory instruments and their related category proposed by this 

study, as well as the IUCN category. IU = Indirect use protected areas. DU = Direct use protected areas. IL = Indigenous lands. 
National 
categories 

Description Description source 
Regulatory 
instrument 

Category 
IUCN 

category 

Bolivia 

National Park 

The purpose of the National or Departmental Park category is the strict and permanent protection of representative samples of 
ecosystems or biogeographic provinces and the resources of flora, fauna, as well as geomorphological, scenic, or landscape that 
contain and have a surface that guarantees continuity of the ecological and evolutionary processes of their ecosystems. In these 
areas, the extractive or consumptive use of its renewable or non-renewable resources and infrastructure works is prohibited, except 
for scientific research, ecotourism, environmental education, and subsistence activities of native peoples, duly qualified and 
authorized. These categories provide the population with opportunities for tourism and recreation in nature, scientific research, 
monitoring of ecological processes, interpretation, environmental education, and ecological awareness according to their zoning, 
management plans, and regulatory standards. 

https://www.lexivox.o
rg/norms/BO-RE-
DS24781.html  

General 
Regulation of 
Protected Areas, 
July 31, 1997 

IU II 

Wildlife Reserve 

The National or Departmental Wildlife Reserve category is intended to protect, manage, and sustainably be used under official 
surveillance. In this category, intensive and extensive uses are foreseen, both of a non-extractive or consumptive nature and an 
extractive nature according to its zoning. The latter, subject to strict control and monitoring, referred exclusively to the management 
and use of wildlife. 

https://www.lexivox.o
rg/norms/BO-RE-
DS24781.html 

General 
Regulation of 
Protected Areas, 
July 31, 1997 

DU IV 

Wildlife Refuge It aims for the protection and special management of areas to ensure the existence of endangered species. 

https://pt.slideshare.n
et/ANCBSCregionalSan
taC/08-juan-renjifo-ll-
areas-protegidas-de-
santa-cruz/30 

Ministry 
resolution No 
340/88 

DU IV 

Wildlife Sanctuary  
The purpose of the National or Departmental Sanctuary category is the strict and permanent protection of sites that host endemic, 
threatened, or endangered species of wild flora and fauna, a natural community, or a unique ecosystem. 

https://www.lexivox.o
rg/norms/BO-RE-
DS24781.html 

General 
Regulation of 
Protected Areas, 
July 31, 1997 

DU IV 

Scientific 
Ecological and 
Archaeological 
Reserve 

Archaeological importance and cultural heritage. 

http://www.museonoe
lkempff.org/cgb/areas-
protegidas/areas-
protegidas-
departamentales/areas
-protegidas-
departamentales-beni/ 

Administrative 
resolution n 139-
96 (12/16/96) of 
the Prefecture 
and General 
Command of Beni 

DU V 

Biosphere Reserve 
It aims to protect the flora, fauna, water resources, and the region's general biodiversity. It generally covers a defined geographic 
area that incorporates a high-profile natural feature in close contact with human society. It largely focuses on improving the 
livelihoods of indigenous and traditional communities.  

  
D.S. Nº 19191, 
1982 

DU VI 

Integrated 
Management 
Natural Area 

The National or Departmental Integrated Management Natural Area category is to make the conservation of biological diversity 
compatible with the sustainable development of the local population. It constitutes a mosaic of units that include representative 
samples of ecoregions, biogeographic provinces, natural communities or species of flora and fauna of singular importance, zones of 
traditional systems of land use, zones for multiple uses of natural resources, and core zones of strict protection. 

https://www.lexivox.o
rg/norms/BO-RE-
DS24781.html 

General 
Regulation of 
Protected Areas, 
July 31, 1997 

DU VI 

Natural 
Monument 

The category of National or Departmental Natural Monument has as its fundamental objective the preservation of outstanding 
natural features of particular singularity, due to their spectacular, scenic, or scenic character, of geological, physiographic formations 
or paleontological deposits. In addition, this category of management includes the conservation of the biological diversity the area 
contains. 

https://www.lexivox.o
rg/norms/BO-RE-
DS24781.html 

General 
Regulation of 
Protected Areas, 
July 31, 1997 

DU VI 

( To be continued) 
      

https://www.lexivox.org/norms/BO-RE-DS24781.html
https://www.lexivox.org/norms/BO-RE-DS24781.html
https://www.lexivox.org/norms/BO-RE-DS24781.html
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Table A.1 - Continuation. 
National 
categories 

Description Description source 
Regulatory 
instrument 

Category 
IUCN 

category 

Strictly 
Management Area 
Model 

It has the bjective of making compatible the sustainable development of the local population and the conservation of biological 
diversity through the implementation of practical actions and processes that contribute to the integral management of the forest, 
through the active participation of the local population that promotes the management and use of natural resources and existing 
biodiversity. 

https://issuu.com/con
servacionamazonica/d
ocs/brochure_ami-
santa_rosa_2018 

Municipal Law Nº 
07/2017 

DU VI 

Municipal Reserve  

The objective of its creation is to conserve and contribute to protecting the environment and natural resources to maintain the 
ecological balance of the forest on a regional and local scale. It allows the connectivity (biological corridors) of the Ecological Reserve 
areas of the forest concessions and the areas of ecological easements on rivers, lagoons, and existing mountains, enhancing the 
capacity to conserve biodiversity. 

https://www.biobol.or
g/index.php/areas-
protegidas/ap-santa-
cruz 

Municipal 
resolutions 

DU VI 

Municipal 
conservation and 
management area 

Sub-national areas that work like National or Departmental Integrated Management Natural Area aim to make the conservation of 
biological diversity compatible with the sustainable development of the local population. It constitutes a mosaic of units that include 
representative samples of ecoregions, biogeographic provinces, natural communities or species of flora and fauna of singular 
importance, zones of traditional systems of land use, zones for multiple uses of natural resources, and core zones of strict protection. 

https://www.conserva
tion.org/bolivia/areas-
protegidas/area-
municipal-de-
conservacion-y-
manejo-del-bajo-
madidi 

Municipal 
resolutions 

DU VI 

Municipal 
Protected Area 

Geographical areas with values of biological diversity and associated cultural resources, located within the municipal and territorial 
jurisdiction and declared in perpetuity as such, in accordance with the municipal development objectives that will be managed in a 
comprehensive manner in order to conserve and restore diversity values biological and associated cultural resources that exist in 
its interior and in its buffer zones to provide environmental goods and services to society. 

https://www.portalces
.org/sites/default/files
/ap_municipales.pdf 

Ley de 
Municipalidades 
– autonomía 

DU VI 

Regional Park  

It works as buffer zones to protect important reserves from forest degradation, serving as complementary areas to protect 
landscapes and biodiversity. It can include private properties with an agricultural and livestock tradition, which imposes the 
progressive advance of low-scale deforestation, causing the area's deterioration in the medium term. And it also is created as a 
response to the request of local communities as a means of defense against pressures on fauna. 

http://www.museonoe
lkempff.org/cgb/areas-
protegidas/areas-
protegidas-
departamentales/areas
-protegidas-
departamentales-beni/ 

Municipal 
resolutions 

DU VI 

Indigenous 
Territory 

Given the pre-colonial existence of the peasant native indigenous nations and peoples and their ancestral dominion over their 
territories, their self-determination is guaranteed within the framework of the unity of the State, which consists of their right to 
autonomy, self-government, their culture, the recognition of its institutions and the consolidation of its territorial entities, in 
accordance with this Constitution and the law. The rights of indigenous and native peoples and communities over their community 
lands of origin are guaranteed, taking into account their economic, social, and cultural implications and the use and sustainable 
exploitation of renewable natural resources, in accordance with the provisions of article 171 ° of the Political Constitution of the 
State. 

https://www.lexivox.o
rg/norms/BO-CPE-
20090207.html / 
https://www.lexivox.o
rg/norms/BO-L-
1715.html  

Political State 
Constitution 2009 

IL VI 

Brasil 

Biological Reserve 
Preservation of the biota and other natural attributes, without direct human interference or environmental modifications, except 
for the measures to recover its altered ecosystems and the management actions necessary to recover and preserve the natural 
balance, biological diversity, and ecological processes. 

http://www.planalto.g
ov.br/ccivil_03/leis/l9
985.htm 

Lei 9.985, de 18 
de julho de 2000 

IU I-A 

Ecological Station Preservation of nature and development of scientific research. 
http://www.planalto.g
ov.br/ccivil_03/leis/l9
985.htm 

Lei 9.985, de 18 
de Julho de 2000 

IU I-A 

National or State 
Park 

Preservation of natural ecosystems of great ecological importance and scenic beauty, making possible the accomplishment of 
scientific research and the development of activities of education and environmental interpretation, recreation in contact with 
nature, and ecological tourism. 

http://www.planalto.g
ov.br/ccivil_03/leis/l9
985.htm 

Lei 9.985, de 18 
de julho de 2000 

IU II 

Natural 
Monument 

Preservation of rare, unique, or great scenic beauty natural sites. 
http://www.planalto.g
ov.br/ccivil_03/leis/l9
985.htm 

Lei 9.985, de 18 
de Julho de 2000 

IU III 

(To be continued) 

https://www.lexivox.org/norms/BO-CPE-20090207.html
https://www.lexivox.org/norms/BO-CPE-20090207.html
https://www.lexivox.org/norms/BO-CPE-20090207.html
https://www.lexivox.org/norms/BO-CPE-20090207.html
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https://www.lexivox.org/norms/BO-CPE-20090207.html


207 

 

Table A.1 - Continuation. 
National 
categories 

Description Description source 
Regulatory 
instrument 

Category 
IUCN 

category 

Wildlife Refuge 
Protect natural environments where conditions for the existence or reproduction of species or communities of the local flora and/or 
resident or migratory fauna are assured. 

http://www.planalto.g
ov.br/ccivil_03/leis/l9
985.htm 

Lei 9.985, de 18 
de julho de 2000 

IU III 

Fauna Reserve 
It aims to protect the biological diversity of animal populations of native, terrestrial, or aquatic species, resident or migratory, 
suitable for technical-scientific studies on the sustainable economic management of faunal resources. The Pau D'Oleo Fauna Reserve 
is in public ownership and domain, and private land titles are not allowed in its interior. 

https://documentacao.
socioambiental.org/ato
_normativo/UC/3121_
20180327_122109.pdf 

Decree nº. 
22.683, of March 
20th, 2018 

DU IV 

Area of Relevant 
Ecological Interest 

Maintain natural ecosystems of regional or local importance and regulate the permissible use of these areas to make them 
compatible with nature conservation objectives. 

http://www.planalto.g
ov.br/ccivil_03/leis/l9
985.htm 

Lei 9.985, de 18 
de Julho de 2000 

DU IV 

Environmental 
Protected Area 

Protect biological diversity, discipline the occupation process and ensure the sustainability of natural resources use. 
http://www.planalto.g
ov.br/ccivil_03/leis/l9
985.htm 

Lei 9.985, de 18 
de julho de 2000 

DU V 

Extractive Reserve 
Protect the livelihoods and culture of traditional extractivist populations and ensure the sustainable use of the unit's natural 
resources. 

http://www.planalto.g
ov.br/ccivil_03/leis/l9
985.htm 

Lei 9.985, de 18 
de julho de 2000 

DU VI 

National or State 
Forest 

Sustainable use of forest resources and scientific research, emphasizing methods for sustainable exploitation of native forests. 
http://www.planalto.g
ov.br/ccivil_03/leis/l9
985.htm 

Lei 9.985, de 18 
de Julho de 2000 

DU VI 

Sustainable 
Development 
Reserve 

Preserve nature, ensuring the conditions and means necessary for the reproduction and improvement of the ways and the quality 
of life, as well as natural resources exploited by traditional populations, enhancing, conserving, and improving knowledge and 
techniques of environmental management developed by these populations. 

http://www.planalto.g
ov.br/ccivil_03/leis/l9
985.htm 

Lei 9.985, de 18 
de julho de 2000 

DU VI 

Indigenous 
Territory 

Indigenous Land (TI) is a portion of the national territory, which after a regular administrative demarcation process, in accordance 
with the established legal precepts, passes, after ratification by Presidential Decree for the property of the Union, inhabited by one 
or more indigenous communities, used by these in their productive, cultural, well-being and physical reproduction activities. 
Therefore, it is a property of the Union, and as such, it is inalienable and unavailable, and the rights over it are imprescriptible. 

http://www.funai.gov.
br/index.php/2014-
02-07-13-24-32  

CF/88, Lei 
6001/73 – 
Estatuto do Índio, 
Decreto n.º 
1775/96 

IL VI 

Colombia 

Nature Reserve 
Area in which primitive conditions of flora, fauna, and geological formations exist and is destined for the conservation, investigation, 
and study of its natural resources. 

https://www.minambi
ente.gov.co/images/Ge
stionIntegraldelRecurs
oHidrico/pdf/normativ
a/Decreto_2811_de_19
74.pdf 

Decreto 2811 del 
18 de Diciembre 
de 1974 

IU I-A 

National Natural 
Park 

Area of extension that allows its ecological self-regulation and whose ecosystems, in general, have not been substantially altered by 
human exploitation or occupation, and where plant and animal species, geomorphological complexes, and historical or cultural 
manifestations have scientific, educational value, aesthetic and recreational national and for its perpetuation is subjected to an 
adequate management regime. 

https://www.minambi
ente.gov.co/images/Ge
stionIntegraldelRecurs
oHidrico/pdf/normativ
a/Decreto_2811_de_19
74.pdf 

Decreto 2811 del 
18 de Diciembre 
de 1974 

IU II 

National 
Protective Forest 
Reserves 

Geographical space in which forest ecosystems maintain their function. However, their structure and composition have been 
modified, and the associated natural values are made available to the human population to be used for their preservation, 
sustainable use, restoration, knowledge, and enjoyment. This public or private property area is reserved for the establishment or 
maintenance and sustainable use of forests and other natural vegetation cover. 

https://www.suin-
juriscol.gov.co/viewDo
cument.asp?id=187244
3 

Decreto 2372 de 
2010 

DU V 

(To be continued) 
      
      

http://www.funai.gov.br/index.php/2014-02-07-13-24-32
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National 
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Description Description source 
Regulatory 
instrument 

Category 
IUCN 

category 

Indigenous 
Territory 

The Indigenous Territories were conceived as spaces of local government that should not be forced to reproduce the organizational 
structure of the municipalities (City Hall, City Council, among others), and therefore have the challenge of innovating in the definition 
of efficient and culturally appropriate administrative structures to each people, or to each group of peoples that propose to govern 
together in the same territorial unit. Presidential Decree No. 632 of 2018, when providing for the functioning of Indigenous 
Territories, allows the guarantee of collective ownership of Indigenous Lands and the exercise of political rights of self-government. 

http://www.suin-
juriscol.gov.co/viewDo
cument.asp?ruta=Decr
etos/30034960 

Decreto 632 de 
2018 

IL VI 

Ecuador 

Ecological Reserve 

They are natural areas of variable extensions with little human intervention. These are areas with outstanding natural resources or 
sites of species of great national significance. The main objective is to save genetic matter, ecological diversity, scenic beauties, 
special phenomena, and environmental regulation for scientific investigation of natural elements and phenomena and 
environmental education. When no conflicts exist with research and education, recreation and tourism activities are allowed in 
limited areas. 

http://areasprotegidas.
ambiente.gob.ec/es/inf
o-snap 

Art.405 de la 
Constitución de la 
República del 
Ecuador del 
2008/ Art. 5 y 67 
de la ley Forestal 
y de 
Conservación y 
Vida Silvestre del 
10 de Septiembre 
del 2004 

IU I-A 

Biological Reserve 

Large conservation area (more than 10,000 ha) whose main conservation objectives are complete ecosystems and their species, 
little altered and minimal human presence, at least in the distribution area of the main conservation object. In this type of reserve, 
the priority activities will be biological, ecological, and environmental research, with environmental education also being possible 
as a secondary activity. The restriction on using its natural resources will be very high (very restricted) to guarantee the 
development of ecological processes. 

http://areasprotegidas.
ambiente.gob.ec/es/inf
o-snap  

Art.405 de la 
Constitución de la 
República del 
Ecuador del 
2008/ Art. 5 y 67 
de la ley Forestal 
y de 
Conservación y 
Vida Silvestre del 
10 de Septiembre 
del 2004 

IU I-B 

National Park 

Large conservation area (more than 10,000 ha) whose main conservation objectives are landscapes, complete ecosystems, and 
species. Their environments should be kept little altered, with a minimum human presence. The priority activities will be related to 
research and environmental monitoring, with the development of nature tourism being feasible to support the conservation of 
natural resources. The usage restriction level is high (restricted). 

http://areasprotegidas.
ambiente.gob.ec/es/inf
o-snap 

Art.405 de la 
Constitución de la 
República del 
Ecuador del 
2008/ Art. 5 y 67 
de la ley Forestal 
y de 
Conservación y 
Vida Silvestre del 
10 de Septiembre 
del 2004 

IU II 

(To be continued) 
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Category 
IUCN 
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Fauna Production 
Reserve 

Medium-sized areas (between 5,000 and 10,000 ha) whose priority conservation objectives are ecosystems and species susceptible 
to management, which should be little altered, but have a medium level of human presence (they depend on local biological 
resources). The priority actions are related to sustainable wildlife management, environmental education, ecosystem restoration, 
and nature-oriented tourism. The level of use restriction will be low (slightly restricted). 

http://areasprotegidas.
ambiente.gob.ec/es/inf
o-snap 

Art.405 de la 
Constitución de la 
República del 
Ecuador del 
2008/ Art. 5 y 67 
de la ley Forestal 
y de 
Conservación y 
Vida Silvestre del 
10 de Septiembre 
del 2004 

DU IV 

Indigenous 
Territory 

The indigenous territories are foreseen in the 1998 Political Constitution, Art. 84, whereby it is established that the State will 
recognize and guarantee the following collective rights to the indigenous peoples: to conserve the imprescriptible property of the 
community lands, which will be inalienable, unattachable and indivisible, Except for the power of the State to declare its public 
utility. These lands will be exempt from paying the property tax, maintain ancestral possession of community lands, and obtain their 
free adjudication in accordance with the law. 

http://www.ecuanex.n
et.ec/constitucion/titul
o03c.html 

Art.84 de la 
Constitución 
Política del 
Ecuador del 1998 

IL VI 

French Guiana 

Forest Biological 
Reserve 

Integral biological reserves (RBI) are protected areas mainly in a forest environment, logging is prohibited, and the forest is returned 
to natural evolution. The objectives are knowledge of the natural functioning of ecosystems and the development of biodiversity 
associated with old trees and dead wood (rare insects, fungi, etc.). The RBI are veritable “laboratories of nature. 

https://www.onf.fr/on
f/recherche/+/27a::res
erves-biologiques-des-
espaces-naturels-
remarquables-en-foret-
publique.html 

Forest Code IU I-B 

Land Acquired By 
Conservatoire Du 
Littoral (National 
Seaside And 
Lakeside 
Conservancy) 

The Coastline and Lakeshore Protection Agency have the authority to purchase coastal land to protect it. Acquired assets become 
part of its legal domain. The Agency does not manage the land itself. It entrusts management, through contractual agreements, to 
NGOs or local authorities. These agreements include provisions related to the protection of such areas. CENs may enter into 
agreements with public or private entities to manage statutory or non-statutory natural areas, such as nature reserves or private 
land, respectively. They have been established to protect and manage natural areas, whether such areas belong to them or not. 

https://www.iucn.org/
downloads/france_en.p
df 

Environment 
code - Article 
L321-1 and the 
following 

DU IV 

Nature Reserve 

Nature reserves may be created if conservation of the flora and fauna, soils, water, mineral and fossil deposits, and the overall natural 
environment is of particular importance or if protection is required from human activities likely to degrade them. Nature reserves 
are complementary to other protected area categories. They differ from national parks by the specificity of their objectives and 
because they generally cover a smaller area. Nature reserves may be established on public or private property. 

https://www.iucn.org/
downloads/france_en.p
df  

Environment 
code - Article 
L332-1  to 332.27 

IU I-A 

National Park - 
Buffer Zone/Area 
Of Adhesion 

According to the Environmental Code, a national park may be created in terrestrial or marine areas when the preservation of the 
natural environment, especially flora and fauna, soil and subsoil, air and water, landscape, and, as appropriate, the cultural heritage, 
is of special interest, and when it is important to protect them by preventing degradation and damage likely to have an impact on 
their diversity, composition, appearance, and evolution. Buffer zones are peripheral areas, given their geographical continuity and 
ecological links with core areas. They contribute to protecting the national park core area while pursuing sustainable development 
objectives in an exemplary way. While industrial and mining activities are forbidden in the core area of a park, they are not 
prohibited in buffer zones. 

https://www.iucn.org/
downloads/france_en.p
df 

Environment 
code - Articles 
L331-1 à L331-28 

DU VI 

National Park  

National park core areas aim for the protection and scientific reference of national and international importance, which enables the 
monitoring of ecological succession, particularly as part of biological diversity and climate change monitoring. It also enables visitors 
to discover nature, recharge their batteries and relax. The park core area would benefit from the strictest protection, allowing little 
room for exceptions (except for greater protection in the strictest reserve established within the core area). 

https://www.iucn.org/
downloads/france_en.p
df  

Article 3, Order of 
23 February 2007 
/ Environment 
code Articles 
L331-1 à L331-28 

IU II 

(To be continued) 
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IUCN 

category 

Regional Nature 
Reserve 

It has the objective of protect of the site to maintain its integrity, participating in scientific research to improve knowledge in tropical 
ecology, and realizing public accessibility to raise awareness for the conservation of natural heritage. 

https://www.reserve-
tresor.fr/en/the-
reserve/history/ 

Prefectural 
Decree No 598 ID 
/ 4B of 
20/05/1997 

IU II 

Area of Relevant 
Ecological Interest 

This is not a measure of regulatory protection but an inventory. It corresponds to the census of outstanding natural land areas. The 
designation of this area is based primarily on the presence of species or groups of species with strong heritage interest. The presence 
of at least one population of critical species defines it.  

https://en.wikipedia.or
g/wiki/Zone_naturelle_
d%27int%C3%A9r%C
3%AAt_%C3%A9cologi
que,_faunistique_et_flor
istique 

  DU VI 

Natural 
Monument 

Areas with picturesque and scientific nature, which preservation is of general interest. 

https://side.developpe
ment-
durable.gouv.fr/Default
/doc/SYRACUSE/2276
23/arrete-d-
inscription-des-sites-
du-bassin-versant-et-
des-chutes-de-la-
crique-voltaire-
commune-de-
sain?_lg=fr-FR 

  IU III 

Regional Nature 
Park 

The objective is the valorization of the local patrimonial area through sustainable development. 
https://www.parcs-
naturels-
regionaux.fr/en 

Environment 
code (articles 
L333-1 to L333-
4) 

DU VI 

Indigenous 
Territory 

Areas of Collective Land Use Rights, concessions, and transfers give only a simple right to use the land. 
https://www.iwgia.org
/en/french-
guiana.html 

  IL VI 

Guyana 

Other 
conservation sites 

Conservation International (CI) leased conservation concession to prevent logging and to ensure the preservation of natural 
biodiversity and wildlife within the forest ecosystem. The conservation concession follows the same legal model as a standard 
timber sales agreement, except that the land is held as a reserve rather than harvested for timber. 

https://www.cbd.int/fi
nancial/pes/guyana-
pesconcession.pdf  

Private initiative IU II 

Managed Resource 
Use Area 

Managed Resource Protected Area must be an area that contains predominantly natural systems. It is managed to provide a 
sustainable flow of natural products and services to meet local needs while still protecting natural ecosystems and maintaining 
ecosystem services. The Management authority may permit the following activities in a Managed Resource Protected Area: (a) 
scientific research; (b) environmental monitoring; (c) recreation; (d) low-level eco-logically sustainable activities. 

https://doe.gov.gy/pub
lished/document/5ae8
f345b4d000153ca57a9
8 

Act n° 14 of 2011. 
Protected Areas 
Act 2011. / 
Amerindian Act, 
2006 

DU VI 

Indigenous 
Territory 

The Amerindian Act 2006 provides for the transfer of land rights from the State to a designated Village Council, and the Village 
Council is responsible for allocating land to residents. The Council is not allowed to dispose of any interest, right, or title to Village 
lands but may grant leases of up to 10% of its lands for a period of up to fifty years for agriculture, tourism, or other sustainable use, 
provided a majority of the residents are in agreement. If the land is to be leased to an outsider, 75% of the residents must agree, and 
the Council must obtain the advice of the Minister of Amerindian Affairs. 

https://parliament.gov.
gy/documents/acts/46
80-
act_no_6_of_2006.pdf 

Amerindian Act 
2006  

IL VI 

(To be continued) 
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Peru 

National Park 
Areas that constitute representative samples of the natural diversity of the country and its large ecological units. Within them, the 
ecological integrity of one or more ecosystems, the associations of wild flora and fauna, the successional and evolutionary processes, 
and other associated landscape and cultural characteristics are protected with an intangible nature. 

https://sinia.minam.go
b.pe/normas/ley-
areas-naturales-
protegidas 

Law nº 26834 - 
Ley de Áreas 
Naturales 
Protegidas 

IU II 

National 
Sanctuary 

Areas where a species' habitat or a community of flora and fauna is intangible, as well as natural formations of scientific and 
landscape interest. 

https://sinia.minam.go
b.pe/normas/ley-
areas-naturales-
protegidas 

Law nº 26834 - 
Ley de Áreas 
Naturales 
Protegidas 

IU III 

Protected Forest 
Areas are established to guarantee the protection of the upper or collecting basins, the river banks, and other watercourses and, in 
general, to protect fragile lands against erosion. In addition, they allow the use of resources and the development of those activities 
that do not endanger the vegetation cover. 

https://sinia.minam.go
b.pe/normas/ley-
areas-naturales-
protegidas 

Law nº 26834 - 
Ley de Áreas 
Naturales 
Protegidas 

DU V 

Communal 
Reserve 

Areas destined for conserving wild flora and fauna for the benefit of neighboring rural populations. The use and commercialization 
of resources will be done under management plans, approved and supervised by the authority, and conducted by the beneficiaries 
themselves. They can be established on soils of greater capacity for agriculture, livestock, forestry, or protection use and humidity. 

https://sinia.minam.go
b.pe/normas/ley-
areas-naturales-
protegidas 

Law nº 26834 - 
Ley de Áreas 
Naturales 
Protegidas 

DU VI 

National Reserve 
Areas destined for the conservation of biological diversity and the sustainable use of resources of wild flora and fauna, aquatic or 
terrestrial. They allow the commercial use of natural resources under management plans, approved, supervised, and controlled by 
the competent national authority. 

https://sinia.minam.go
b.pe/normas/ley-
areas-naturales-
protegidas 

Law nº 26834 - 
Ley de Áreas 
Naturales 
Protegidas 

DU VI 

Reserved Zone 

Reserved Zones are those areas that, meeting the conditions to be considered Protected Natural Areas, require the completion of 
complementary studies to determine, among others, the extension and category that correspond to them as such, as well as the 
viability of their management. In this sense, it should be noted that, unlike the definitive Protected Natural Areas, the Reserved Zones 
are not established in perpetuity and could eventually be deactivated if, in the categorization process, it is determined that they do 
not qualify for any category. 

https://sinia.minam.go
b.pe/normas/ley-
areas-naturales-
protegidas 

Law nº 26834 - 
Ley de Áreas 
Naturales 
Protegidas 

DU VI 

Indigenous 
Territory 

Indigenous people hold title to substantial portions of Peru, primarily in the form of communal reserves. The Law of Prior 
Consultation of Indigenous or Original Peoples requires these to be consulted before legislation or other actions could affect their 
rights. In 2013, Peru delegated responsibility for titling indigenous communities to regional governments, but progress is slow 
because the process is complicated, and regional governments lack resources and capacity. 

https://thetenurefacilit
y.org/timeline/peru/ 

  IL VI 

Suriname 

Nature Reserve 

To protect and preserve the natural resources present in Suriname, the President may designate land and waters belonging to the 
Land Domain as a nature reserve by decree. In order to be designated as a nature reserve, an area must meet the following 
requirements: that it deserves government protection by alternating nature and landscape beauty and/or the presence of 
scientifically or culturally important flora, fauna, and geological objects. It is prohibited in a nature reserve: to deliberately or 
through negligence cause damage to the soil conditions, the natural beauty, the fauna, the flora or to carry out actions that would 
detract from the value of the reserve as such; to camp, make a fire, cut wood or burn charcoal, unless with written permission from 
the Head of 's Lands Bosbeheer and with due observance of the conditions set therein; to hunt, to fish and to have with him a dog, a 
firearm or any hunting or trapping device without a permit from the Head of the Lands Bosbeheer. The Head of 's Lands Bosbeheer 
can grant written permission to certain persons to run a business in an unenclosed part of a nature reserve in accordance with a 
plan approved by him or to cooperate in the exercise of a business, with the express reservation that these persons or companies 
do not cause any damage or harm to the reserve as such. The Head of 's Lands Bosbeheer may grant written permission to certain 
persons to collect forest and forest by-products, graze livestock or engage in fishing in certain parts of nature reserves designated 
by him, under conditions set by him. 

Nature Conservation 
Act 1954 
(https://www.ecolex.o
rg/details/legislation/
nature-conservation-
act-1954-lex-
faoc032835/) 

Nature 
Conservation Act 
1954 

IU I-A 

(To be continued) 
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Multiple Use 
Management Area 

Protected area with sustainable use of natural resources. 

https://whsrn.org/mul
tiple-use-management-
areas-create-crucial-
habitat-for-shorebirds-
in-suriname/ 

Nature 
Conservation Act 
1954 

DU VI 

Forest Reserve 
Forest reserves are not protected areas, but in practice, no extractive concessions are given in these areas. It is possible to convert 
the status of a forest reserve or part thereof into a protected area, for example, for educational or research purposes. 

https://www.cbd.int/p
a/doc/ts64-case-
studies/suriname-
en.pdf 

  DU VI 

Venezuela 

National Park 
Regions are established for the protection and conservation of natural scenic beauties and flora and fauna of national importance, 
which the public can better enjoy when placed under official surveillance. Directly related to the conservation of the natural heritage 
and maintenance of the ecological balance. Includes recreational, scientific, and educational use. 

Peña & Vieira 2014 
(https://www.scribd.c
om/document/343106
250/Las-ABRAE-
Versus-Las-Areas-
Protegidas-en-
Venezuela) 

Convention for 
the Protection of 
Flora, Fauna and 
the Natural 
Scenic Beauties of 
the Countries of 
America, 1941, 
Art 1 

IU II 

Natural 
Monument 

Regions, objects, or living species of animals or plants of aesthetic interest, are given absolute protection to conserve a specific object 
or species of flora or fauna by declaring a region, an object, or species isolated. They are inviolable except for proper scientific 
research. They provide absolute and perpetual protection to geographical features and sites of exceptional beauty or rarity. 

Peña & Vieira 2014 
(https://www.scribd.c
om/document/343106
250/Las-ABRAE-
Versus-Las-Areas-
Protegidas-en-
Venezuela) 

Convention for 
the Protection of 
Flora, Fauna and 
the Natural 
Scenic Beauties of 
the Countries of 
America, 1941, 
Art 1 / Decree No. 
276 of 1989 

IU III 

Indigenous 
Territory 

Lands that indigenous people ancestral and traditionally occupy are necessary to develop and guarantee their ways of life. With the 
participation of indigenous peoples, it is the National Executive's responsibility to demarcate and guarantee the right to collective 
property of their lands, which will be inalienable, imprescriptible, unattachable, and non-transferable in accordance with the 
provisions of this Constitution and the law. 

https://venezuela.justi
a.com/federales/consti
tucion-de-la-republica-
bolivariana-de-
venezuela/titulo-
iii/capitulo-viii/ 

Constitution, 
1999, art. 119 

IL VI 
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APPENDIX B - SUPPLEMENTARY MATERIAL FROM CHAPTER 3 

Table B.1 - Overview of fire occurrence available products. 

Name Developer Scale 
Type of 
information 

Time 
span 

Sensors/ 
inputs 

Methods 
Spatial 
resolution 

Format 
Temporal 
composition 

Limitation 
Data 
access 

Reference 

MCD14ML NASA Global Active fire 2000 – 
present 

MODIS The algorithm uses brightness 
temperatures and reflectance 
information to eliminate 
obvious non-fire pixels, and the 
remain is considered in 
subsequent contextual analysis.   

1000 m Vector - points Monthly – 
possible to 
know the 
burn date 
within the 
month 

Severe temporal and 
spatial biases may arise 
in any MODIS fire time 
series analysis 
employing time 
intervals shorter than 
eight days. Cloud 
obscuration, a lack of 
coverage, or 
misclassification in the 
land/sea mask may be 
responsible for known 
fires that do not appear 
in the dataset. However, 
this will be impossible 
to determine with only 
the information 
provided in the fire 
location files. 

Open access (GIGLIO et 
al., 2003) 

VNP14IMGTDL_N
RT 

NASA Global Active fire 2012 - 
present 

VIIRS Multispectral contextual 
algorithm to identify sub-pixel 
fire activity and other thermal 
anomalies. It includes 
information on confidence 
level, FRP, and day or nighttime 
fire.   

375 m Vector - points Sub-daily Although its improved 
spatial resolution 
provides greater 
response over small 
fires and improved 
mapping of large fires 
perimeters, Frequent 
data saturation 
prevents sub-pixel fire 
characterization.  

Open access (SCHROEDE
R et al., 
2014) 

(To be continued) 
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Table B.1- Continuation. 

Name Developer Scale 
Type of 
information 

Time 
span 

Sensors/in
puts 

Methods 
Spatial 
resolution 

Format 
Temporal 
composition 

Limitation Data access Reference 

Fire cci v.5.0 ESA Global Burned area 2001 - 
2016 

MODIS 
(MOD09GQ 

– 
surface 

reflectance 
+ 

MOD09GA 
– 

quality flags 
+ 

MCD14ML 
– 

active fires) 

A hybrid approach was 
adopted, combining 
information on active fires and 
temporal changes in 
reflectance. First, burned pixels 
are detected, and then a 
contextual procedure is run to 
improve the delineation of the 
burned patch.  

250 m Raster (3 layers) 
- detection date  
0: not burned 
1 to 366: day of 
the first detection 
-1: not observed 
in the month 
-2: not burnable 
 
- confidence level 
(1-100) 
- land cover 
(extracted from 
Land Cover CCI 
maps) 

Monthly –  
possible to 
know the 
Julian day of 
the first 
detection 
within the 
month and 
consequently 
to identify 
pixels that 
burn more 
than once 
during a 
calendar year 

The date of the burned 
pixel may correspond 
from one to several 
days after the actual 
burning date, 
depending on image 
availability and cloud 
cover. All validation 
results showed worse 
performance than 
MCD64 products from 
NASA.  

Open access (CHUVIECO 
et al., 2018) 

Fire cci v.5.1 ESA Global Burned area 2001 - 
2019 

MODIS 
(MOD09GQ 

– 
surface 

reflectance 
+ 

MOD09GA 
– 

quality flags 
+ 

MCD14ML 
– 

active fires) 

A hybrid approach was 
adopted, combining 
information on active fires and 
temporal changes in 
reflectance. First, burned pixels 
are detected, and then a 
contextual procedure is run to 
improve the delineation of the 
burned patch. 

250 m Raster (3 layers) 
- detection date  
0: not burned 
1 to 366: day of 
the first detection 
-1: not observed 
in the month 
-2: not burnable 
 
- confidence level 
(1-100) 
- land cover 
(extracted from 
Land Cover CCI 
maps) 

Monthly –  
possible to 
know the 
Julian day of 
the first 
detection 
within the 
month and 
consequently 
to identify 
pixels that 
burn more 
than once 
during a 
calendar year 

The date of the burned 
pixel may correspond 
from one to several 
days after the actual 
burning date, 
depending on image 
availability and cloud 
cover. Fire cci v.5.1 was 
found less sensitive 
(11% lower 
estimations) than 
MCD64A1 c6 in tropical 
and temperate fires in 
Southern Hemisphere 
South America. The 
validation metrics 
showed an important 
underestimation of 
total burned area, with 
higher omission and 
commission errors, 
which could be 
attributed to the coarse 
spatial resolution of the 
input images, which 
implies missing small-
size fires (< 100 ha). 

Open access (LIZUNDIA-
LOIOLA et 
al., 2020) 

(To be continued) 
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Table B.1 - Continuation. 

Name Developer Scale 
Type of 
information 

Time 
span 

Sensors/in
puts 

Methods 
Spatial 
resolution 

Format 
Temporal 
composition 

Limitation Data access Reference 

FireCCILT10 ESA Global Burned area 1982 – 
2017 
(exceptio
n of 
1994) 

AVHRR The algorithm uses LTDR and 
CCI Land Cover products, 
reflectance, and spectral 
indices as input to a 
multiannual monthly model 
generated within Random 
Forest. MCD64A1 dataset is 
used as a training sample. 

0.25° Raster (it is not 
binary; it 
includes how 
much of each 
pixel was burned 
using MCD64A1 
as a comparison) 

Monthly Although it has the 
biggest time available, 
its method-modeled 
variables and their 
uncertainty are not 
accounted for to build 
the final product. The 
validation performed 
does not consider the 
entire time.  

Open access (OTÓN; 
PETTINARI, 
2019) 

MCD64A1 c6 NASA Global Burned area 2000 - 
present 

MODIS It uses MODIS surface 
reflectance data coupled with 1 
km MODIS active fire 
observations. The algorithm 
uses a burn-sensitive 
vegetation index (VI) to create 
dynamic thresholds to produce 
the composite data. 

500 m Raster (5 layers) 
 
- Burn Date 
- Burn Date 
Uncertainty 
- Quality 
Assurance 
- First Day 
- Last Day 

Monthly – 
possible to 
know the date 
of burn 
(ordinal day 
of the 
calendar year 
on which the 
burn 
occurred) 

Burned areas in 
cropland should 
generally be treated as 
low confidence due to 
the inherent difficulty 
in mapping agricultural 
burning reliably. Unable 
to adequately map the 
occurrence of small 
fires, what can cause 
underestimation of 
overall burned area. It 
does not individualize 
the burnt scars. 

Open access  (GIGLIO et 
al., 2018) 

GWIS JRC Global Burned area 2003 - 
2016 

MODIS It corresponds to the post-
processing of the MCD64A1 
product. To identify individual 
fire events on a global scale, the 
methodology consists of 
grouping the burnt pixels in 
individual burnt scars using a 
region growth approach.  

500 m Vector - polygons Multi-
annually – It is 
provided a 
vector dataset 
with the 
entire time, 
but it is 
possible to 
know the 
initial and 
final burn day 
of each burnt 
scar 

Although it has the 
advantage of 
individualizing the 
burned areas, since it 
uses MCD64A1, it also 
incorporates all 
limitations inherent of 
its methodology.  

Data 
available 
upon 
request 

(ARTÉS et 
al., 2019) 

(To be continued) 
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Table B.1 - Continuation. 

Name Developer Scale 
Type of 
information 

Time 
span 

Sensors/in
puts 

Methods 
Spatial 
resolution 

Format 
Temporal 
composition 

Limitation Data access Reference 

GFED4 UM Global Burned area 
Monthly 
emissions  
Fractional 
contributions of 
different fire 
types 

1997 - 
present 

MODIS Its algorithm combine MODIS 
burned area maps with active 
fire data from TRMM VIRS and 
the ATSR family of sensors. It is 
derived exclusively from 
MCD64A1 c5.1 aggregated to 
0.25° spatial resolution. 

0.25° Raster – it is 
provided a mean 
burn-date 
uncertainty 
dataset for the 
daily product 

Monthly 
Daily (from 
Aug-2000) 

It does not include 
small fires (<100ha) - 
product GFED4s 
include them. It 
underestimates the 
extent of cropland 
burning. Cloud cover 
degrades the detection 
of active fires and fire 
scars; thus, the burned 
area in persistently 
cloudy regions may be 
systematically 
underestimated. Since 
it uses MCD64A1, it also 
incorporates all 
limitations inherent in 
its methodology. 

Open access (GIGLIO; 
RANDERSO
N; VAN DER 
WERF, 
2013) 

GABAM IRSDE / CAS Global Burned area 2015 Landsat 8 
OLI 

The automated algorithm 
implemented on GEE. It uses 
reflectance and spectral indices 
information as input for a 
Random Forest model. A final 
step consists of burned area 
shaping through a region-
growing approach. 

30 m Raster (binary) Annually Landsat coarse 
temporal resolution 
might cause omission 
errors in tropical zones 
due to the quick 
recovery of the 
vegetation surface. The 
lowest overall accuracy 
was found on 
Broadleaved Evergreen 
Forests, which can trap 
the use of the such 
methodology in tropical 
regions. It is not 
provided uncertainty 
for each pixel.  

Open access (LONG et 
al., 2019) 

Landsat Burned 
Area 

NASA National - 
US 

Burned area 1984 - 
present 

Landsat TM 
Landsat 
ETM+ 

Landsat OLI 

An algorithm based on the 
Landsat Burned Area Essential 
Climate Variable algorithm. It is 
a supervised approach that 
uses gradient-boosted 
regression models 
implemented in Python. 

30 m Raster 
(binary) 
 

Annually - 
binary annual 
burn 
classification 

Occasionally some 
burned area is 
incorrectly classified as 
being water. 

Open access (HAWBAKE
R et al., 
2017) 

(To be continued) 
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Table B.1 - Continuation. 

Name Developer Scale 
Type of 
information 

Time 
span 

Sensors/in
puts 

Methods 
Spatial 
resolution 

Format 
Temporal 
composition 

Limitation Data access Reference 

TREES TREES - INPE Regional – 
Brazilian 
Amazon 

Burned area 2006 - 
2016 

MODIS It uses a hybrid classification. 
An LSM is performed. Then, the 
shade fraction image is 
segmented and unsupervised, 
and classified. Subsequently, a 
manual edition is performed to 
improve the final map's 
accuracy.  

250 m  Vector Annually – 
each file 
contains 
information 
from June to 
October. It is 
possible to 
know the 
burn month 
but not the 
burn day. 

It is not operational, 
and its time series 
continuity is not secure. 
Besides, it is regional, 
so its use is restricted 
to the Brazilian 
Amazon. 

Data 
available 
upon 
request 

(ANDERSO
N et al., 
2005, 2015; 
SHIMABUK
URO et al., 
2009) 

DETER B INPE Regional – 
Brazilian 
Amazon 

Burned area 2016 - 
present 

WFI 
AWiFS 

The forest cover change 
pattern is identified by visual 
interpretation based on five 
main elements (color, tonality, 
texture, shape, and context). It 
uses the LSM technique and its 
multispectral image in color 
composition to the visual 
interpretation. 

64 m Vector Annually – it 
follows the 
same year 
pattern that 
PRODES 
project (from 
July to 
August). It is 
possible to 
know the date 
of the image 
used to map 
the burnt scar. 

The distinction 
between burnt scar and 
degradation classes is 
not clear. Considering 
only the burnt scar 
class, the total burned 
area is underestimated. 
There is not a long time 
series to be analyzed. 
Besides, it is regional, 
so its use is restricted 
to the Brazilian 
Amazon. 

Open access (DINIZ et 
al., 2015) 

(To be continued) 

             

             

             

             

             

             

             

             

             



218 

 

             

Table B.1 - Continuation. 

Name Developer Scale 
Type of 
information 

Time 
span 

Sensors/in
puts 

Methods 
Spatial 
resolution 

Format 
Temporal 
composition 

Limitation Data access Reference 

Acre Queimadas UFAC Regional – 
Acre 

Burned area 1984 - 
2016 

Landsat TM 
Landsat OLI 

It uses the CLASlite 3.0 
software to perform an SLM 
model. The fraction is 
generated a burn-scar index 
(BSI) image. Subsequently, the 
BSI is sliced, defining 
thresholds by trial and error to 
identify forest-fire scars. There 
is no standard or fixed 
threshold for this identification, 
which changes from scene to 
scene according to fire 
intensity, vegetation contrast, 
and image noise. 

30 m Vector Annually – it 
was 
considered 
images from 
September to 
December 

The algorithm can miss 
some fires because they 
are not strong enough 
to reach the canopy, 
affecting only the 
forest's understory. 
Fires can also be missed 
if they occur after the 
date of the mapping 
image or in small forest 
fragments. Besides, 
targets like shading by 
thin clouds and smoke 
or vegetation under 
extreme water stress 
can be confused with 
the burnt scar in the 
classification process. It 
only considers fires in 
forested areas. For this, 
it uses a deforestation 
mask. Besides, it is 
regional, so its use is 
restricted to the Acre 
state. 

Data 
available 
upon 
request 

(SILVA et 
al., 2018b) 

(To be continued) 
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Table B.1 - Conclusion. 

Name Developer Scale 
Type of 
information 

Time 
span 

Sensors/in
puts 

Methods 
Spatial 
resolution 

Format 
Temporal 
composition 

Limitation Data access Reference 

Global Fire Atlas NASA Global Burned area 
Ignition point 
 

2003 - 
2016 

MODIS It uses MCD64A1 c6 to track 
the dynamics of individual fires 
to determine the timing and 
location of ignitions and fire 
size, duration, daily expansion, 
fire line length, speed, and 
direction of spread. The 
approach uses two filters to 
account for uncertainties on 
the day of 
the burn in order to map the 
location and timing of fire 
ignitions and the extent and 
duration of individual fires. 
Subsequently, each individual 
fire's growth dynamics are 
tracked to estimate the daily 
expansion, fire line length, 
speed, and direction of spread. 

500 m Vector – polygon, 
and point 

Annually – It 
is possible to 
know the start 
and end dates 
for each burnt 
scar or 
ignition point. 
 
It also 
provides a 
daily gridded 
raster of fire 
line, speed, 
the direction 
of spread, and 
the day of the 
burn. 

The algorithm assumes 
that fires progress 
continuously through 
time and space. If cloud 
coverage or smoke is 
persistent, fire 
continuity can break, 
increasing the risk of 
artificially splitting 
single fires into 
multiple parts. Burn 
date uncertainty may 
also lead to multiple 
“extinction points,” 
outliers in the 
estimated burn day 
along the edges of a fire. 
The coarse resolution 
can cause an 
underestimation of the 
overall burned area. 
Since it uses MCD64A1, 
it also incorporates all 
limitations inherent of 
its methodology. 

Open access (ANDELA et 
al., 2019) 
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APPENDIX C - SUPPLEMENTARY MATERIAL FROM CHAPTER 4 

Table C.1 - Annual burned area per land use and land cover class, as well as their respective percentages in parenthesis. The last row brings burned area 

rate and standard deviation in parenthesis. for = forest; sec = secondary forest; nat = other natural formations; dfs = deforestation of secondary 

forest; dfp = deforestation of old growth forest; far = farming; oth = other. 

  for (km²) sec (km²) nat (km²) dfs (km²) dfp (km²) far (km²) oth (km²) total (km²) 

2003 12,168 (16%) 948 (1%) 34,330 (46%) 577 (1%) 7,004 (9%) 18,739 (25%) 206 (0%) 73,973 

2004 18,960 (18%) 1,340 (1%) 48,312 (46%) 604 (1%) 7,504 (7%) 27,475 (26%) 261 (0%) 104,455 

2005 21,417 (16%) 1,689 (1%) 57,845 (44%) 512 (0%) 6,447 (5%) 42,204 (32%) 226 (0%) 130,340 

2006 11,664 (15%) 969 (1%) 36,786 (48%) 298 (0%) 3,387 (4%) 22,751 (30%) 117 (0%) 75,973 

2007 30,479 (22%) 3,067 (2%) 43,944 (32%) 597 (0%) 3,457 (3%) 54,175 (40%) 281 (0%) 135,999 

2008 9,760 (14%) 986 (1%) 32,158 (47%) 289 (0%) 1,727 (3%) 22,880 (34%) 152 (0%) 67,954 

2009 4,654 (13%) 736 (2%) 18,128 (50%) 170 (0%) 585 (2%) 11,637 (32%) 114 (0%) 36,024 

2010 34,431 (21%) 2,837 (2%) 77,194 (47%) 533 (0%) 1,558 (1%) 46,465 (28%) 275 (0%) 163,293 

2011 8,487 (16%) 1,109 (2%) 32,218 (61%) 285 (1%) 592 (1%) 10,446 (20%) 97 (0%) 53,234 

2012 12,088 (18%) 1,502 (2%) 32,873 (48%) 379 (1%) 1,155 (2%) 19,870 (29%) 141 (0%) 68,008 

2013 3,940 (11%) 609 (2%) 20,932 (60%) 192 (1%) 516 (1%) 8,740 (25%) 66 (0%) 34,996 

2014 8,253 (17%) 1,319 (3%) 21,084 (43%) 414 (1%) 1,094 (2%) 16,734 (34%) 142 (0%) 49,039 

2015 12,523 (19%) 2,017 (3%) 26,651 (40%) 542 (1%) 1,664 (2%) 23,232 (35%) 139 (0%) 66,768 

2016 12,753 (17%) 1,631 (2%) 39,326 (54%) 467 (1%) 1,443 (2%) 17,277 (24%) 165 (0%) 73,062 

2017 19,221 (21%) 2,974 (3%) 35,139 (38%) 557 (1%) 1,788 (2%) 32,490 (35%) 163 (0%) 92,332 

2018 5,884 (16%) 749 (2%) 19,036 (50%) 205 (1%) 1,186 (3%) 10,630 (28%) 134 (0%) 37,823 

2019 15,796 (21%) 1,785 (2%) 32,253 (42%) 465 (1%) 2,377 (3%) 23,979 (31%) 161 (0%) 76,815 

2020 17,403 (20%) 2,508 (3%) 35,245 (41%) 740 (1%) 3,045 (4%) 26,271 (31%) 223 (0%) 85,436 

Mean  14,438   1,599   35,747   435   2,585   24,222   170   79,196 

(sd) (8,258)   (792)   (14,553)   (165)   (2,214)   (12,671)   (62)   (35,450) 
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Table C.2 - Annual burned area per land use and land cover class, normalized by total land cover class area. The last row brings burned area rate and 

standard deviation in parenthesis. for = forest; sec = secondary forest; nat = other natural formations; dfs = deforestation of secondary forest; 

dfp = deforestation of old growth forest; far = farming; oth = other. 

  for sec nat dfs dfp far oth 

2003 0.3% 0.8% 5.8% 5.7% 22.2% 3.8% 1.2% 

2004 0.4% 1.2% 8.2% 5.2% 24.6% 5.3% 1.5% 

2005 0.5% 1.4% 9.9% 5.4% 25.2% 7.8% 1.2% 

2006 0.3% 0.8% 6.3% 2.8% 16.5% 4.0% 0.6% 

2007 0.7% 2.4% 7.5% 6.3% 21.5% 9.3% 1.5% 

2008 0.2% 0.8% 5.5% 2.9% 11.2% 3.8% 0.8% 

2009 0.1% 0.5% 3.1% 1.8% 5.4% 1.9% 0.6% 

2010 0.8% 2.1% 13.2% 5.4% 15.7% 7.6% 1.6% 

2011 0.2% 0.8% 5.5% 3.1% 5.4% 1.7% 0.6% 

2012 0.3% 1.0% 5.7% 3.8% 12.0% 3.2% 0.8% 

2013 0.1% 0.4% 3.6% 1.7% 5.0% 1.4% 0.4% 

2014 0.2% 0.8% 3.7% 3.4% 10.5% 2.6% 0.8% 

2015 0.3% 1.3% 4.7% 4.2% 14.6% 3.6% 0.7% 

2016 0.3% 1.0% 6.9% 3.3% 10.0% 2.6% 0.9% 

2017 0.4% 1.8% 6.2% 5.3% 14.7% 4.8% 0.9% 

2018 0.1% 0.4% 3.4% 1.9% 9.1% 1.6% 0.7% 

2019 0.4% 1.0% 5.8% 3.1% 18.7% 3.5% 0.8% 

2020 0.4% 1.4% 6.5% 3.2% 15.2% 3.8% 1.0% 

Mean 0.3% 1.1% 6.2% 3.7% 16.3% 3.9% 0.9% 
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Table C.3 - Annual burned area per land use and land cover class inside and outside each of the protected area categories. 
  2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 

Forest 12,168 18,960 21,417 11,664 30,479 9,760 4,654 34,431 8,487 12,088 3,940 8,253 12,523 12,753 19,221 5,884 15,796 17,403 
Indirect use 257 373 416 268 518 244 136 857 347 341 120 251 303 494 400 224 350 889 

Direct use 278 358 481 1,132 1,108 1,224 357 3,334 772 784 225 623 1,211 815 1,634 526 1,788 2,719 
Indigenous land 625 1,888 1,123 839 3,346 912 379 4,882 2,272 2,656 804 1,370 2,594 3,637 3,506 965 3,130 3,531 

Outside 11,007 16,342 19,396 9,425 25,507 7,381 3,782 25,359 5,096 8,306 2,792 6,009 8,415 7,807 13,681 4,169 10,527 10,263 

Secondary forest 948 1,340 1,689 969 3,067 986 736 2,837 1,109 1,502 609 1,319 2,017 1,631 2,974 749 1,785 2,508 
Indirect use 19 23 25 19 42 16 21 74 41 46 8 40 38 35 83 20 48 82 

Direct use 13 34 34 53 60 60 52 102 34 79 21 61 136 72 180 49 131 179 
Indigenous land 35 87 59 43 181 62 36 198 93 167 88 173 290 307 314 93 201 331 

Outside 882 1,196 1,571 854 2,785 848 626 2,463 942 1,211 492 1,045 1,554 1,217 2,397 588 1,405 1,916 

Other natural formations 34,330 48,312 57,845 36,786 43,944 32,158 18,128 77,194 32,218 32,873 20,932 21,084 26,651 39,326 35,139 19,036 32,253 35,245 
Indirect use 1,252 2,168 1,827 827 2,141 1,477 762 3,921 2,595 2,277 1,003 1,773 1,760 2,656 1,559 1,102 1,453 2,259 

Direct use 1,244 2,741 3,980 2,581 2,401 4,129 1,384 9,449 4,086 3,352 1,757 1,622 2,810 3,873 3,478 1,761 4,984 5,711 
Indigenous land 8,583 11,801 14,078 9,890 11,067 9,386 5,928 19,613 9,537 10,020 7,165 7,510 8,417 10,386 12,788 5,958 10,108 10,865 

Outside 23,251 31,601 37,959 23,488 28,335 17,166 10,053 44,211 16,000 17,224 11,008 10,178 13,665 22,412 17,315 10,215 15,708 16,410 
Deforestation of secondary 
forest 577 604 512 298 597 289 170 533 285 379 192 414 542 467 557 205 465 740 

Indirect use 4 5 5 4 6 3 4 10 3 4 1 4 9 4 12 3 9 14 
Direct use 3 6 8 10 13 16 9 24 7 15 4 13 39 25 44 13 35 68 

Indigenous land 6 23 15 5 18 15 5 22 13 12 6 24 30 26 40 17 44 88 
Outside 564 570 483 278 559 256 151 477 263 348 181 373 463 412 461 172 377 570 

Deforestation of primary 
forest 7,004 7,504 6,447 3,387 3,457 1,727 585 1,558 592 1,155 516 1,094 1,664 1,443 1,788 1,186 2,377 3,045 

Indirect use 53 24 69 33 20 11 5 15 3 8 6 8 21 10 25 17 29 61 

Direct use 65 81 156 335 391 210 67 155 59 135 47 115 248 191 321 167 451 686 

Indigenous land 50 91 44 29 62 41 12 46 42 32 12 19 32 56 52 32 89 116 

Outside 6,836 7,308 6,179 2,990 2,984 1,464 501 1,342 488 980 451 952 1,362 1,186 1,389 969 1,808 2,182 

Farming 18,739 27,475 42,204 22,751 54,175 22,880 11,637 46,465 10,446 19,870 8,740 16,734 23,232 17,277 32,490 10,630 23,979 26,271 

Indirect use 117 172 382 244 365 197 143 444 165 223 51 258 256 180 424 176 345 448 

Direct use 132 246 558 1,386 1,496 1,806 593 2,562 460 1,282 243 914 1,743 967 2,825 1,048 2,624 2,878 

Indigenous land 352 640 633 527 1,260 732 309 1,413 570 998 878 1,193 1,422 1,587 1,578 833 1,562 1,487 

Outside 18,139 26,417 40,632 20,594 51,053 20,145 10,592 42,047 9,251 17,367 7,567 14,369 19,811 14,544 27,663 8,573 19,448 21,459 

Other 206 261 226 117 281 152 114 275 97 141 66 142 139 165 163 134 161 223 

Indirect use 2 6 11 1 10 1 2 5 4 7 0 2 3 4 3 5 8 4 

Direct use 6 10 5 10 29 10 7 21 5 5 4 7 9 10 9 7 15 21 

Indigenous land 35 64 44 23 68 26 27 71 21 44 22 54 27 44 42 25 47 56 

Outside 162 181 167 83 174 115 78 177 67 85 39 79 100 108 109 98 91 142 
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APPENDIX D - SUPPLEMENTARY MATERIAL FROM CHAPTER 5 

Table D.1 - Data source for each country's administrative boundaries. 

Country Source Update year Country Department Municipality 

Bolivia 
GeoBolivia: la Infraestructura de Datos 
Espaciales del Estado Plurinacional de 
Bolivia 

Aug 2020 Level 0 = Country Level 1 = Department Level 3 = Municipality 

Brazil 
Instituto Brasileiro de Geografia e 
Estatística (IBGE) 

Sep 2020 Level 0 = Country Level 1 = State Level 2 = Municipality 

Colombia 
Departamento Administrativo Nacional de 
Estadística (DANE) 

Feb 2020 Level 0 = Country Level 1 = Department Level 2 = Municipality 

Ecuador 
Instituto Nacional de Estadística y Censos 
(INEC) 

Sep 2020 Level 0 = Country Level 1 = Province Level 3 = Parish 

French 
Guiana 

Institut national de l’information 
géographique et forestière (IGN) 

Feb 2020 Level 0 = Department Level 1 = Arrondissement Level 2 = Commune 

Guyana DEVInfo LAC project Jul 2021 Level 0 = Country Level 1 = Region Level 2 = Boundary 

Peru Instituto Geográfico Nacional (IGN) Jul 2020 Level 0 = Country 
Level 1 = Region or 
autonomous province 

Level 3 = District 

Suriname www.gadm.org Oct 2019 Level 0 = Country Level 1 = District Level 2 = Resort 

Venezuela Instituto Nacional de Estadística Feb 2021 Level 0 = Country 
Level 1 = State, capital 
district, federal 
dependency 

Level 3 = Parish 

Source: Humdata (2021). 
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Table D.2 - Variable context to be included as covariate and references using similar variables. Although they are the same variables, in theory, their use 

in the different studies referenced follows specific contexts of each study, and their metrics may not be the same as those we used. 

Variable Context Reference using the similar variable  

Weather factors 

Precipitation 

Changes in precipitation during the critical dry-season months can sharply increase the 
likelihood of ground fires and larger, more destructive wildfires (LAURANCE; WILLIAMSON, 
2001). Drier fuel, due to decreased precipitation, is more prone to burn. On the other hand, 
areas of extremely high rainfall are unlikely to be converted to agriculture, raising the chance 
to home a PA (NELSON; CHOMITZ, 2011). 

(AMIN et al., 2019; ARRIAGADA; ECHEVERRIA; MOYA, 
2016; HERRERA; PFAFF; ROBALINO, 2019; NELSON; 
CHOMITZ, 2011; NOLTE et al., 2017; NOLTE; AGRAWAL, 
2013; PFAFF et al., 2014, 2015a, 2015b; SHI et al., 2020; 
SIMS, 2010; TASKER; ARIMA, 2016) 

Maximum Cumulative 
Water Deficit 
(MCWD) 

The frequency and intensity of droughts can positively influence the susceptibility to fires, 
once it could affect tree mortality, changing the canopy openness, the relative humidity, and 
the temperature (COCHRANE, 2003). Furthermore, more severe dry seasons affect the amount 
of vegetation transpiring water. Reduced transpiration lowers local atmospheric humidity 
levels and increases the probability of fires (LAURANCE; WILLIAMSON, 2001).  

  

Temperature 

Temperature plays a strong role in fire occurrence in the Amazon. High temperatures during 
the dry season contribute to the rapid drying of decomposing material, making it more 
flammable. The influence of increased temperatures on the likelihood of fire occurrence can be 
larger than the effects of reduced rainfall (LIMA; AGHAKOUCHAK; RANDERSON, 2018). 

(SHI et al., 2020; SIMS, 2010) 

Land use factors 

Deforestation of 
primary forest 

Fire is commonly used in the deforestation process in the Amazon, being a cheap tool to burn 
the deforested material and, consequently, clear the area for agricultural use (MORTON et al., 
2008). Furthermore, deforestation still creates forest edges, which are more vulnerable to fire, 
creating a positive feedback between deforestation and fire (SILVA JUNIOR et al., 2018). 

(NOLTE et al., 2017) 

Deforestation of 
secondary forest 

Deforestation of secondary forests is also linked to the slash-and-burn process (COCHRANE, 
2003; PAUSAS; KEELEY, 2009). Fire is often used as a tool to clear the land and maintain 
existing farmland and pasture. The slash-and-burn agriculture practice consists of cutting, 
drying, and burning the natural vegetation in a patch cultivated for years and then left to 
regrow (PIVELLO, 2011). 

(TASKER; ARIMA, 2016) 

(To be continued) 
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Table D.2 – Continuation. 

Variable Context Reference using the similar variable  

Secondary forest 

Depending on the stage they are in, secondary forests may be more prone to fire, as they may 
have more open canopies, causing low relative humidity and high temperature inside. The fire 
recurrence in these forests alters their ability to accumulate carbon, making them highly 
susceptible to recurrent burning (ZARIN et al., 2005). 

  

Forest fragmentation 

More fragmented landscapes with a greater proportion of edges tend to be more vulnerable to 
fire than landscapes with continuous and intact forests. This occurs due to changes in the 
original structural configuration of the forest, which changes the mass and energy balance 
(SILVA JUNIOR et al., 2018). In addition, fragmented forests tend to be drier due to lower 
humidity retention, higher temperature, and greater exposure to dry air masses and winds 
(Cochrane, 2008 synergisms). This condition, in addition to increased vulnerability to fire by 
itself, also causes higher tree mortality (LAURANCE et al., 2018), resulting in a large amount of 
fuel load available and, consequently, increasing the susceptibility to forest fires (BERENGUER 
et al., 2014).  

(AMIN et al., 2019; ANDAM et al., 2008; HERRERA; 
PFAFF; ROBALINO, 2019; NOLTE et al., 2013; NOLTE; 
AGRAWAL, 2013; PFAFF et al., 2014, 2015a, 2015b; 
WENDLAND et al., 2015) 

Forest 

Primary tropical forests have dense canopies that allow the formation of humid microclimates 
with mild temperatures. The dense canopy retains much of the solar radiation that falls on the 
forests and is a barrier to winds. These characteristics confer contrary conditions to fire 
occurrence inside the forest. 

(NOLTE et al., 2013, 2017; SZE et al., 2022)  

Farming 

Fires are often used as a tool to clear the land and maintain existing farmland and pasture, 
which makes their occurrence strongly associated with human activity (COCHRANE, 2003; 
PAUSAS; KEELEY, 2009). This way, fires in the Amazon are partially correlated with farming 
activities. 

(ARRIAGADA; ECHEVERRIA; MOYA, 2016) 

Non-forest natural 
formations 

Natural non-forest formations include rocky outcrops, grasslands, and other formations. In 
general, these formations have lower biomass available for burning. However, like savannas, 
they are environments exposed to the occurrence of natural fire. 

  

Savanna 

Savannas are environments adapted to sporadic fire, and their species composition and 
ecosystem functions are intertwined with natural fire occurrence. Unlike humid forests, 
natural fire ignitions by lightning is more frequent. The presence of a larger area of savanna 
may, therefore, impose a greater vulnerability to fire, even if it does not cause as many 
environmental impacts as when it occurs in humid forests. 

(PFAFF et al., 2015a, 2015b; TASKER; ARIMA, 2016) 

(To be continued) 
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Table D.2 – Continuation. 

Variable Context Reference using the similar variable  

   

Non-vegetated area 

Areas without vegetation are generally urban or consolidated and, therefore, do not have as 
much flammable fuel to burn. Therefore, using fire as a soil management tool does not apply to 
this environment. An exception is the use of fire to burn garbage, common in urban areas in 
the Amazon (SILVA et al., 2019). 

  

Mangrove 
Mangroves, like floodplain forests, are subject to climate change and, consequently, to longer 
and more intense periods of drought. As a result, they become more flammable and vulnerable 
to fire. 

  

Flooded forests 
Seasonally flooded forests can suffer greater fire damage than upland forests, and canopy 
structure contributes to their greater susceptibility to fires (ALMEIDA et al., 2016). 

  

Land profitability factors 

Distance to roads 

Roads represent a channel for natural resources to flow from forests to markets; therefore, 
their proximityem is directly related to forest vulnerability to degradation processes, 
including fires. The closer to highways, the forests are more likely to be exploited. Then, this 
distance can be used as a proxy for market access. 

(ANDAM et al., 2008; ARRIAGADA; ECHEVERRIA; MOYA, 
2016; HERRERA; PFAFF; ROBALINO, 2019; JOPPA; 
PFAFF, 2011; NELSON; CHOMITZ, 2011; PFAFF et al., 
2014, 2015a, 2015b; SIMS, 2010; SOARES-FILHO et al., 
2010; SZE et al., 2022; WENDLAND et al., 2015) 

Distance to rivers 

Following the same road reasoning, rivers also represent a channel for natural resources to 
flow from forests to markets in the Amazon. Therefore, their proximity is directly related to 
forest vulnerability to degradation processes, including fires. The closer to rivers, the forests 
are more likely to be exploited. Then, this distance can be used as a proxy for market access. 

ANDAM et al., 2008; ARRIAGADA; ECHEVERRIA; MOYA, 
2016; NOLTE et al., 2017; PFAFF et al., 2015a; SIMS, 
2010; SOARES-FILHO et al., 2010) 

Population  

In the Amazon, a humid tropical forest, fire ignition source is predominantly anthropogenic, 
and, consequently, there is a relationship between population density and fire occurrence. 
Population distribution is highly associated with fire persistence (Chuvieco, 2008). 
Furthermore, it is positively correlated with the spatial pattern of burned area (Andela, 2017), 
as humans have introduced fires for deforestation and agricultural management (Page, 2002; 
van der Werf, 2017; Kauano 2017).  

AMIN et al., 2019; ANDAM et al., 2008; SZE et al., 2022) 

(To be continued) 
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Table D.2 – Conclusion. 

Variable Context Reference using the similar variable  

Distance to urban 
centers and populated 
hotspots 

Urban centers are trade markets for forests' natural resources. The closer to these centers, the 
greater the forest's vulnerability to degradation, including fires, due to the access ease to 
markets. 

(ANDAM et al., 2008; ARRIAGADA; ECHEVERRIA; MOYA, 
2016; JOPPA; PFAFF, 2011; NELSON; CHOMITZ, 2011; 
PFAFF et al., 2014, 2015a, 2015b; SIMS, 2010; 
WENDLAND et al., 2015) 

Slope 

Low slope terrains are preferable for performing agricultural activities as it facilitates 
production mechanization. Thus, lower slopes indicate an increase in land profitability and, 
consequently, a lower likelihood of establishing a protected area. As well as having a direct 
relation to suitability, slope and elevation are proxies for physical soil properties (NELSON; 
CHOMITZ, 2011). 

(ARRIAGADA; ECHEVERRIA; MOYA, 2016; HERRERA; 
PFAFF; ROBALINO, 2019; JOPPA; PFAFF, 2011; NELSON; 
CHOMITZ, 2011; NOLTE et al., 2013; NOLTE; AGRAWAL, 
2013; PFAFF et al., 2014, 2015a, 2015b; SIMS, 2010; 
SOARES-FILHO et al., 2010; SZE et al., 2022; WENDLAND 
et al., 2015) 

Elevation 

Following the same logic as slope, higher elevation decreases land profitability, as it hinders 
the production mechanization process. Consequently, the lower the elevation, the lower the 
likelihood of establishing a protected area. As well as having a direct relation to suitability, 
slope and elevation are proxies for physical soil properties, and elevation is a proxy for 
temperature (NELSON; CHOMITZ, 2011). 

(ARRIAGADA; ECHEVERRIA; MOYA, 2016; JOPPA; PFAFF, 
2011; NELSON; CHOMITZ, 2011; NOLTE et al., 2013; 
NOLTE; AGRAWAL, 2013; SIMS, 2010; SOARES-FILHO et 
al., 2010; SZE et al., 2022; WENDLAND et al., 2015) 

Soil quality 
The Amazon soil is not nutrient-rich; therefore, soil quality is an important factor for 
agricultural activity. Consequently, protected areas tend to be placed on land less suitable for 
agriculture and on soil with lower soil quality characteristics. 

(ARRIAGADA; ECHEVERRIA; MOYA, 2016; NOLTE et al., 
2017; PFAFF et al., 2014, 2015a, 2015b) 
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Figure D.1 - Fire occurrence spatial distribution, represented by the pixel proportion (a) or active fire number (b) in each 5 x 5 km pixel. Values are based 

on the mean from 2003 to 2020.  
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Figure D.2 - Weather variables spatial distribution, represented by the mean value in each 5 x 5 

km pixel from 2003 to 2020.  
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Figure D.3 - Land use and land cover classes spatial distribution, represented by the pixel 

proportion (except forest edge length) in each 5 x 5 km pixel. Values are based on 

the mean from 2003 to 2020. 
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Figure D.4 - Land profitability variables spatial distribution. The mean value represents 

population count in each 5 x 5 km pixel from 2003 to 2020. 
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Table D.3 - Eigenvectors of Principal Component Analysis considering soil quality to plant growth variables. 
Variable Comp1 Comp2 Comp3 Comp4 Comp5 Comp6 Comp7 Comp8 Comp9 Comp10 Comp11 Comp12 Comp13 Unexplained 

d_soil_nut 0.34 -0.03 0.02 -0.04 -0.01 0.02 -0.12 -0.09 -0.25 0.05 0.02 -0.62 0.65 0.00 

d_soil_nutRet 0.34 -0.03 0.02 -0.04 -0.01 0.01 -0.12 -0.09 -0.24 0.05 0.13 -0.46 -0.75 0.00 

d_soil_root 0.32 -0.01 0.00 -0.04 -0.01 -0.08 0.53 0.07 0.05 -0.78 -0.03 -0.02 0.00 0.00 

d_soil_oxy 0.32 -0.04 0.03 -0.03 0.01 0.02 -0.22 -0.52 0.76 -0.01 -0.01 0.00 0.00 0.00 

d_soil_salts 0.34 -0.03 0.02 -0.04 -0.01 0.01 -0.12 -0.10 -0.24 0.01 0.35 0.41 0.07 0.00 

d_soil_toxi 0.34 -0.03 0.02 -0.04 -0.01 0.01 -0.12 -0.10 -0.24 0.01 0.35 0.41 0.07 0.00 

d_soil_work 0.32 0.00 0.00 -0.03 -0.01 -0.11 0.68 0.12 0.15 0.62 0.01 0.02 0.00 0.00 

d_nut 0.01 0.23 0.68 0.37 -0.60 0.00 0.01 -0.02 0.00 0.00 0.00 0.00 0.00 0.00 

d_nutRet 0.01 0.38 0.58 -0.18 0.69 -0.01 -0.01 0.04 0.00 0.00 0.00 0.00 0.00 0.00 

d_root 0.11 0.51 -0.32 0.39 0.07 -0.66 -0.15 0.04 0.01 -0.01 0.00 0.00 0.00 0.00 

d_oxy 0.06 -0.44 0.06 0.79 0.39 0.15 0.04 0.01 -0.02 0.00 0.00 0.00 0.00 0.00 

d_salts 0.32 -0.03 0.00 -0.03 -0.04 0.13 -0.33 0.81 0.33 -0.01 0.03 0.00 0.00 0.00 

d_toxi 0.34 -0.03 0.02 -0.04 -0.01 0.02 -0.13 -0.06 -0.24 0.06 -0.86 0.26 -0.04 0.00 

d_work 0.08 0.59 -0.31 0.20 0.00 0.71 0.11 -0.06 -0.02 0.00 0.00 0.00 0.00 0.00 

Note: d_soil_i = dummy variable indicating if the pixel is classified as soil or, being i, any of the soil quality indicators; d_i = dummy variable indicating if the 

pixel has no or slight limitation for I, being i any of the soil quality indicators. Soil quality indicators are nutrient availability, nutrient retention capacity, 

rooting conditions, oxygen availability to roots, excess salts, toxicities, and workability. 
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Table D.4 - Summary statistics of the sample after matching 1SD caliper. 
  Treated on support Treated off support Matched controls Unmatched controls 

Variable  Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 

Treatment dummy 1 0 1 0 0 0 0 0 

Burned area (% within a pixel) 0.63% 3.22% 1.21% 4.92% 1.10% 3.81% 2.02% 4.82% 

Active fires (N) 0.30 1.64 0.38 1.78 0.65 2.25 1.59 3.90 

distUrban (km) 214.26 165.45 280.21 186.48 212.56 184.38 179.51 185.70 

distPopulated (km) 80.53 42.21 100.20 68.75 63.16 37.32 49.20 36.48 

distRiver (km) 112.58 98.21 197.12 120.26 103.94 106.04 126.78 125.03 

distRoad (km) 90.65 71.38 78.64 54.94 77.79 78.64 58.05 78.19 

distPavRoad (km) 127.34 79.16 156.02 100.73 108.38 83.78 85.25 92.19 

elevation (m) 177.54 107.91 280.24 195.75 165.01 117.86 180.23 128.73 

slope (%) 2.99 2.24 4.97 3.89 2.77 2.31 2.87 2.29 

pca_soil 0.19 2.08 -0.11 2.77 -0.04 3.18 -0.14 3.56 

DFpri (% within a pixel) 0.08% 0.33% 0.10% 0.35% 0.19% 0.49% 0.51% 0.81% 

DFsec (% within a pixel) 0.05% 0.18% 0.10% 0.35% 0.11% 0.31% 0.38% 0.64% 

forest (% within a pixel) 87.82% 25.59% 82.02% 29.18% 76.61% 32.48% 59.27% 36.16% 

secForest (% within a pixel) 0.85% 2.37% 1.88% 4.50% 1.71% 3.70% 4.25% 6.24% 

farming (% within a pixel) 1.47% 6.11% 2.24% 7.21% 4.41% 11.19% 23.61% 29.50% 

nonForestNatural (% within pixel) 3.25% 13.56% 7.96% 20.89% 5.72% 17.63% 4.79% 16.15% 

nonVegetated (% within a pixel) 0.02% 0.17% 0.16% 1.46% 0.03% 0.26% 0.20% 2.16% 

floodedForest (% within a pixel) 4.30% 16.15% 2.54% 10.57% 7.21% 20.21% 3.45% 14.12% 

mangrove (% within a pixel) 0.00% 0.07% 0.33% 3.72% 0.00% 0.15% 0.03% 0.82% 

savanna (% within a pixel) 0.47% 4.67% 0.90% 4.77% 0.72% 5.89% 0.88% 5.77% 

precMean (mm) 205.41 42.26 205.17 53.77 198.36 39.47 188.27 37.47 

precTotal (mm) 2,464.91 507.13 2,461.99 645.28 2,380.34 473.63 2,259.29 449.64 

tempMean (°C) 27.64 1.02 27.31 1.68 27.86 1.28 28.86 1.95 

MCWD  -154.88 223.61 -228.27 426.40 -169.26 256.51 -253.86 535.67 

precDry (mm) 43.33 31.77 44.51 30.08 45.55 31.44 46.27 28.07 

tempDry (°C) 20.42 12.33 21.40 11.95 21.40 12.14 25.08 10.74 

pop (N) 18.00 101.09 79.03 1,097.19 37.51 184.61 247.92 3,613.37 

frag (km) 9.96 16.72 17.76 27.09 15.91 22.13 25.21 26.57 

Note: Statistics obtained by collapsed dataset refers to the average year, calculated for time-varying variables as the average value from 2003 

to 2020.  
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Table D.5 - Differences-in-differences estimation of the protected area effect on the burned area - complete table. 

Dependent variable:  Burned area proportion within the pixel 

Treatment: Pixel within an active protected area 

              

  FE DiD DiD-FE FE DiD DiD-FE 

        bootstrapped SEs bootstrapped SEs bootstrapped SEs 

              

Average treatment 
effect (ATE) -0.000728*** -0.000728*** -0.000728*** -0.000728*** -0.000728*** -0.000728*** 

  (0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002) 

DFpri 0.742*** 0.742*** 0.742*** 0.742*** 0.742*** 0.742*** 

  (0.0247) (0.0254) (0.0247) (0.0257) (0.0251) (0.0216) 

DFsec -0.0436 -0.0436 -0.0436 -0.0436 -0.0436 -0.0436 

  (0.0504) (0.0519) (0.0504) (0.0538) (0.0461) (0.0476) 

forest -0.0355*** -0.0355*** -0.0355*** -0.0355*** -0.0355*** -0.0355*** 

  (0.0102) (0.0105) (0.0102) (0.0102) (0.0099) (0.0105) 

farming -0.0765*** -0.0765*** -0.0765*** -0.0765*** -0.0765*** -0.0765*** 

  (0.0114) (0.0118) (0.0114) (0.0117) (0.0104) (0.0112) 

NonForestNaturalArea 0.0601*** 0.0601*** 0.0601*** 0.0601*** 0.0601*** 0.0601*** 

  (0.0139) (0.0143) (0.0139) (0.0142) (0.0132) (0.0140) 

nonVegetatedARea -0.298*** -0.298*** -0.298*** -0.298*** -0.298*** -0.298*** 

  (0.0428) (0.0440) (0.0428) (0.0412) (0.0439) (0.0433) 

floodedForest 0.0300** 0.0300** 0.0300** 0.0300** 0.0300** 0.0300** 

  (0.0111) (0.0115) (0.0111) (0.0116) (0.0106) (0.0110) 

mangrove 0.0963 0.0963 0.0963 0.0963 0.0963 0.0963 

  (0.0661) (0.0680) (0.0661) (0.0940) (0.0930) (0.0887) 

savanna 0.210+ 0.210+ 0.210+ 0.210+ 0.210+ 0.210+ 

  (0.1100) (0.1130) (0.1100) (0.1090) (0.1100) (0.1080) 

precTotal -0.000000768*** -0.000000768*** -0.000000768*** -0.000000768*** -0.000000768*** -0.000000768*** 

  (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 

tempMedia 0.0230*** 0.0230*** 0.0230*** 0.0230*** 0.0230*** 0.0230*** 

  (0.0005) (0.0005) (0.0005) (0.0004) (0.0004) (0.0004) 

(To be continued) 
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Table D.5 – Conclusion. 
  FE DiD DiD-FE FE DiD DiD-FE 

        bootstrapped SEs bootstrapped SEs bootstrapped SEs 

       

MCWD -0.00000557*** -0.00000557*** -0.00000557*** -0.00000557*** -0.00000557*** -0.00000557*** 

  (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 

precSeca 0.0000338*** 0.0000338*** 0.0000338*** 0.0000338*** 0.0000338*** 0.0000338*** 

  (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 

tempSeca 0.00446*** 0.00446*** 0.00446*** 0.00446*** 0.00446*** 0.00446*** 

  (0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002) 

ppp 0.000000774 0.000000774 0.000000774 0.000000774 0.000000774 0.000000774 

  (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 

edges 0.000000132*** 0.000000132*** 0.000000132*** 0.000000132*** 0.000000132*** 0.000000132*** 

  (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 

_cons -0.692*** -0.692*** -0.692*** -0.692*** -0.692*** -0.692*** 

  (0.0164) (0.0169) (0.0164) (0.0160) (0.0161) (0.0163) 

              

N 1579104 1579104 1579104 1579104 1579104 1579104 

chi²       6517.3 14.77 13.85 

F 164.7 290.06 307.12       

p 0 0 0 0 0.000122 0.000197 

Overall R² 0.0839     0.0839     

N clusters 87728 87728 87728 87728 87728 87728 

Notes: +p<0.10,*p<0.05,**p<0.01,***p<0.001. The dependent variable is the burned area proportion within each pixel-year. Treatment is a dummy 

variable that equals one if a pixel is within an active protected area and zero otherwise.  FE = fixed-effects estimator for panel data, DiD = differences-

in-differences estimator for panel data pooled under the assumption of zero correlation between the covariates and the unobserved heterogeneity term, 

DiD-FE = estimator addressing both unobserved heterogeneity bias and assuming that the trends were parallel in the untreated state for treated and 

untreated.  All specifications include year and Amazonian department dummies interacted with a deterministic time trend. Covariate controls include 

within pixel proportion of primary and secondary forest deforestation, forest, farming, non-forest natural formations, non-vegetated area, flooded 

forests, mangroves, and savanna. Besides that, controls also included total precipitation, mean temperature, maximum cumulative water deficit 

(MCWD), mean precipitation and temperature during the dry season, population, and forest edge length. Robust standard errors clustered at pixel level 

or bootstrapped using 200 replications in parentheses. 
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Table D.6 - Differences-in-differences estimation of the protected area effect on active fires - complete table. 

Dependent variable:  Active fire count within the pixel 

Treatment: Pixel within an active protected area 

              

  FE DiD DiD-FE FE DiD DiD-FE 

        bootstrapped SEs bootstrapped SEs bootstrapped SEs 

              

Average treatment 
effect (ATE) -0.0439*** -0.0439*** -0.0439*** -0.0439*** -0.0439*** -0.0439*** 

  (0.0066) (0.0067) (0.0066) (0.0067) (0.0067) (0.0065) 

DFpri 83.94*** 83.94*** 83.94*** 83.94*** 83.94*** 83.94*** 

  (1.9070) (1.9630) (1.9070) (1.9130) (1.8710) (1.8720) 

DFsec -15.95*** -15.95*** -15.95*** -15.95*** -15.95*** -15.95*** 

  (2.2440) (2.3100) (2.2440) (2.0340) (2.2210) (2.2540) 

forest 7.607*** 7.607*** 7.607*** 7.607*** 7.607*** 7.607*** 

  (0.5120) (0.5260) (0.5120) (0.5110) (0.4960) (0.5000) 

farming 4.204*** 4.204*** 4.204*** 4.204*** 4.204*** 4.204*** 

  (0.5450) (0.5610) (0.5450) (0.5310) (0.4570) (0.5690) 

NonForestNaturalArea 8.555*** 8.555*** 8.555*** 8.555*** 8.555*** 8.555*** 

  (0.5920) (0.6090) (0.5920) (0.5630) (0.5360) (0.6010) 

nonVegetatedARea -4.664+ -4.664 -4.664+ -4.664 -4.664+ -4.664+ 

  (2.8050) (2.8870) (2.8050) (2.9420) (2.7140) (2.7990) 

floodedForest 10.02*** 10.02*** 10.02*** 10.02*** 10.02*** 10.02*** 

  (0.5620) (0.5780) (0.5620) (0.5630) (0.5260) (0.5510) 

mangrove 2.697 2.697 2.697 2.697 2.697 2.697 

  (9.1590) (9.4250) (9.1590) (14.1600) (13.9000) (15.0500) 

savanna 17.53*** 17.53*** 17.53*** 17.53*** 17.53*** 17.53*** 

  (1.9580) (2.0150) (1.9580) (2.1150) (1.9990) (1.9750) 

precTotal -0.0000218*** -0.0000218*** -0.0000218*** -0.0000218*** -0.0000218*** -0.0000218*** 

  (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 

tempMedia 0.427*** 0.427*** 0.427*** 0.427*** 0.427*** 0.427*** 

  (0.0084) (0.0086) (0.0084) (0.0081) (0.0082) (0.0081) 

(To be continued) 
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Table D.6 – Conclusion. 
  FE DiD DiD-FE FE DiD DiD-FE 

        bootstrapped SEs bootstrapped SEs bootstrapped SEs 

MCWD -0.000228*** -0.000228*** -0.000228*** -0.000228*** -0.000228*** -0.000228*** 

  (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 

precSeca -0.0000468 -0.0000468 -0.0000468 -0.0000468 -0.0000468 -0.0000468 

  (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) 

tempSeca 0.111*** 0.111*** 0.111*** 0.111*** 0.111*** 0.111*** 

  (0.0049) (0.0051) (0.0049) (0.0049) (0.0047) (0.0052) 

ppp -0.0000123 -0.0000123 -0.0000123 -0.0000123 -0.0000123 -0.0000123 

  (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 

edges 0.0000147*** 0.0000147*** 0.0000147*** 0.0000147*** 0.0000147*** 0.0000147*** 

  (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 

_cons -21.38*** -21.38*** -21.38*** -21.38*** -21.38*** -21.38*** 

  (0.5620) (0.5780) (0.5620) (0.5470) (0.5610) (0.5270) 

              

N 1579104 1579104 1579104 1579104 1579104 1579104 

chi²       12086.7 42.82 45.11 

F 281.2 449.69 476.15       

p 0 0 0 0 6.01E-11 1.87E-11 

Overall R² 0.0782     0.0782     

N clusters 87728 87728 87728 87728 87728 87728 

Notes: +p<0.10,*p<0.05,**p<0.01,***p<0.001. The dependent variable is the active fire count within each pixel-year. Treatment is a dummy variable 

that equals one if a pixel is within an active protected area and zero otherwise.  FE = fixed-effects estimator for panel data, DiD = differences-in-

differences estimator for panel data pooled under the assumption of zero correlation between the covariates and the unobserved heterogeneity term, 

DiD-FE = estimator addressing both unobserved heterogeneity bias and assuming that the trends were parallel in the untreated state for treated and 

untreated.  All specifications include year and Amazonian department dummies interacted with a deterministic time trend. Covariate controls include 

within pixel proportion of primary and secondary forest deforestation, forest, farming, non-forest natural formations, non-vegetated area, flooded 

forests, mangroves, and savanna. Besides that, controls also included total precipitation, mean temperature, maximum cumulative water deficit 

(MCWD), mean precipitation and temperature during the dry season, population, and forest edge length. Robust standard errors clustered at pixel level 

or bootstrapped using 200 replications in parentheses. 
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Table D.7 - Differences-in-differences estimation of the protected area effect on the burned area 

and active fires considering the standard errors clustered at the department level. 
  Dependent variable: Burned area Dependent variable: Active fires 

  FE DiD-FE FE DiD-FE 

          

Average treatment effect (ATE) -0.000728 -0.000728 -0.0439+ -0.0439+ 

  (0.0006) (0.0006) (0.0253) (0.0253) 

DFpri 0.742*** 0.742*** 83.94*** 83.94*** 

  (0.0968) (0.0968) (9.5540) (9.5540) 

DFsec -0.0436 -0.0436 -15.95+ -15.95+ 

  (0.1730) (0.1730) (8.3300) (8.3300) 

forest -0.0355 -0.0355 7.607** 7.607** 

  (0.0327) (0.0327) (2.5040) (2.5040) 

farming -0.0765 -0.0765 4.204 4.204 

  (0.0837) (0.0837) (2.6240) (2.6240) 

NonForestNaturalArea 0.0601 0.0601 8.555** 8.555** 

  (0.0510) (0.0510) (2.7010) (2.7010) 

nonVegetatedARea -0.298** -0.298** -4.664 -4.664 

  (0.0995) (0.0995) (3.8990) (3.8990) 

floodedForest 0.03 0.03 10.02*** 10.02*** 

  (0.0249) (0.0249) (2.7870) (2.7870) 

mangrove 0.0963 0.0963 2.697 2.697 

  (0.1210) (0.1210) (4.7470) (4.7470) 

savanna 0.210+ 0.210+ 17.53*** 17.53*** 

  (0.1150) (0.1150) (3.0050) (3.0050) 

precTotal -0.000000768 -0.000000768 -0.0000218 -0.0000218 

  (0.0000) (0.0000) (0.0000) (0.0000) 

tempMedia 0.0230* 0.0230* 0.427** 0.427** 

  (0.0103) (0.0103) (0.1580) (0.1580) 

MCWD -0.00000557 -0.00000557 -0.000228 -0.000228 

  (0.0000) (0.0000) (0.0002) (0.0002) 

precSeca 0.0000338 0.0000338 -0.0000468 -0.0000468 

  (0.0000) (0.0000) (0.0005) (0.0005) 

tempSeca 0.00446+ 0.00446+ 0.111+ 0.111+ 

  (0.0026) (0.0026) (0.0589) (0.0589) 

ppp 0.000000774 0.000000774 -0.0000123 -0.0000123 

  (0.0000) (0.0000) (0.0001) (0.0001) 

edges 0.000000132+ 0.000000132+ 0.0000147** 0.0000147** 

  (0.0000) (0.0000) (0.0000) (0.0000) 

_cons -0.692* -0.692* -21.38*** -21.38*** 

  (0.3070) (0.3070) (5.4980) (5.4980) 

N 1579104 1579104 1579104 1579104 

F 149.32 16707.2 630.17 8797 

p 0 1.43E-87 0 6.92E-81 

Overall R²   0.0839   0.0782 

N clusters 49 49 49 49 

Notes: +p<0.10,*p<0.05,**p<0.01,***p<0.001. The dependent variable is the burned area proportion or the active fire 
count within each pixel per year. Treatment is a dummy variable that equals one if a pixel is within an active protected area 

and zero otherwise.  FE = fixed-effects estimator for panel data, DiD-FE = estimator addressing both unobserved 

heterogeneity bias and assuming that the trends were parallel in the untreated state for treated and untreated.  All 
specifications include year and Amazonian departments dummies interacted with a deterministic time trend. Covariate 

controls include within pixel proportion of primary and secondary forest deforestation, forest, farming, non-forest natural 

formations, non-vegetated area, flooded forests, mangroves, and savanna. Besides that, controls also included total 
precipitation, mean temperature, maximum cumulative water deficit (MCWD), mean precipitation and temperature during 

the dry season, population, and forest edge length. Robust standard errors clustered at the Amazonian department level are 

in parentheses. 



239 

 

Table D.8 - Differences-in-differences estimation of the protected area effect on burned area active fires, considering them as binary variables and standard 

errors clustered at the department level. 
  Dependent variable: Burned area Dependent variable: Active fires Dependent variable: Burned area Dependent variable: Active fires 

  FE DiD-FE FE DiD-FE FE DiD-FE FE DiD-FE 

Level of SE clusterization Pixel Pixel Pixel Pixel Department Department Department Department 

                  

Average treatment effect 
(ATE) 

-0.00371*** -0.00371*** -0.00562*** -0.00562*** -0.00371* -0.00371* -0.00562* -0.00562* 

  (0.0007) (0.0007) (0.0009) (0.0009) (0.0016) (0.0016) (0.0023) (0.0023) 

DFpri 4.241*** 4.241*** 4.260*** 4.260*** 4.241*** 4.241*** 4.260*** 4.260*** 

  (0.1020) (0.1020) (0.1130) (0.1130) (0.4750) (0.4750) (0.5440) (0.5440) 

DFsec -0.192 -0.192 0.463* 0.463* -0.192 -0.192 0.463 0.463 

  (0.1780) (0.1780) (0.2040) (0.2040) (0.3720) (0.3720) (0.4330) (0.4330) 

forest 0.493*** 0.493*** 1.308*** 1.308*** 0.493* 0.493* 1.308*** 1.308*** 

  (0.0449) (0.0449) (0.0600) (0.0600) (0.1990) (0.1990) (0.3370) (0.3370) 

farming 0.376*** 0.376*** 1.135*** 1.135*** 0.376 0.376 1.135** 1.135** 

  (0.0466) (0.0466) (0.0622) (0.0622) (0.2370) (0.2370) (0.3340) (0.3340) 

NonForestNaturalArea 0.858*** 0.858*** 1.537*** 1.537*** 0.858** 0.858** 1.537*** 1.537*** 

  (0.0564) (0.0564) (0.0751) (0.0751) (0.2700) (0.2700) (0.4070) (0.4070) 

nonVegetatedARea -0.216 -0.216 2.301*** 2.301*** -0.216 -0.216 2.301*** 2.301*** 

  (0.2000) (0.2000) (0.3210) (0.3210) (0.4530) (0.4530) (0.3790) (0.3790) 

floodedForest 0.752*** 0.752*** 1.573*** 1.573*** 0.752** 0.752** 1.573*** 1.573*** 

  (0.0503) (0.0503) (0.0670) (0.0670) (0.2200) (0.2200) (0.3730) (0.3730) 

mangrove 0.395 0.395 -0.288 -0.288 0.395 0.395 -0.288 -0.288 

  (1.1050) (1.1050) (1.7460) (1.7460) (0.7080) (0.7080) (1.6670) (1.6670) 

savanna 0.966*** 0.966*** 2.217*** 2.217*** 0.966** 0.966** 2.217*** 2.217*** 

  (0.1650) (0.1650) (0.1890) (0.1890) (0.2780) (0.2780) (0.4500) (0.4500) 

precTotal -0.00000323*** -0.00000323*** -0.00000478*** -0.00000478*** -0.00000323 -0.00000323 -0.00000478 -0.00000478 

  (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 

tempMedia 0.0478*** 0.0478*** 0.0430*** 0.0430*** 0.0478** 0.0478** 0.0430** 0.0430** 

  (0.0008) (0.0008) (0.0008) (0.0008) (0.0167) (0.0167) (0.0134) (0.0134) 

MCWD -0.0000308*** -0.0000308*** -0.0000329*** -0.0000329*** -0.0000308 -0.0000308 -0.0000329 -0.0000329 

  (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 

(To be continued) 
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Table D.8 – Conclusion. 
  Dependent variable: Burned area Dependent variable: Active fires Dependent variable: Burned area Dependent variable: Active fires 

  FE DiD-FE FE DiD-FE FE DiD-FE FE DiD-FE 

Level of SE clusterization Pixel Pixel Pixel Pixel Department Department Department Department 

precSeca -0.0000666*** -0.0000666*** -0.000113*** -0.000113*** -0.0000666 -0.0000666 -0.000113 -0.000113 

  (0.0000) (0.0000) (0.0000) (0.0000) (0.0001) (0.0001) (0.0001) (0.0001) 

tempSeca 0.0114*** 0.0114*** 0.00864*** 0.00864*** 0.0114* 0.0114* 0.00864* 0.00864* 

  (0.0005) (0.0005) (0.0006) (0.0006) (0.0050) (0.0050) (0.0038) (0.0038) 

ppp -0.000000628 -0.000000628 -0.00000618 -0.00000618 -0.000000628 -0.000000628 -0.00000618 -0.00000618 

  (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 

edges 0.00000116*** 0.00000116*** 0.00000177*** 0.00000177*** 0.00000116*** 0.00000116*** 0.00000177*** 0.00000177*** 

  (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 

_cons -2.008*** -2.008*** -2.561*** -2.561*** -2.008*** -2.008*** -2.561*** -2.561*** 

  (0.0493) (0.0493) (0.0629) (0.0629) (0.5380) (0.5380) (0.4840) (0.4840) 

N 1579104 1579104 1579104 1579104 1579104 1579104 1579104 1579104 

F 326.1 540.62 325.6 484.61 4825.2 183.31 18316.1 128.47 

p 0 0 0 0 1.25E-74 0 1.58E-88 0 

Overall R² 0.142   0.0627   0.142   0.0627   

N clusters 87728 87728 87728 87728 49 49 49 49 

Notes: +p<0.10,*p<0.05,**p<0.01,***p<0.001. The dependent variable is binary built from the burned area data or the active fire data for each pixel per year. Treatment is a 

dummy variable that equals one if a pixel is within an active protected area and zero otherwise.  FE = fixed-effects estimator for panel data, DiD-FE = estimator addressing 

both unobserved heterogeneity bias and assuming that the trends were parallel in the untreated state for treated and untreated.  All specifications include year and Amazonian 

departments dummies interacted with a deterministic time trend. Covariate controls include within pixel proportion of primary and secondary forest deforestation, forest, 

farming, non-forest natural formations, non-vegetated area, flooded forests, mangroves, and savanna. Besides that, controls also included total precipitation, mean temperature, 

maximum cumulative water déficit (MCWD), mean precipitation and temperature during the dry season, population, and forest edge length. Robust standard errors clustered 

at pixel or Amazonian department level in parentheses. 
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Table D.9 - Upper bound for the significance level (p+) of Rosenbaum's test of sensitivity to 

unobservables (binomial distribution test) for alternative degrees of influence of 

unobservables (1 to 1.45). 

Variable Year Г (Degree of influence of unobservables) 

    1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 

d_activeFire 2003 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.00074 0.04876 0.42299 0.88769 

d_burnedArea 2003 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.00143 0.03243 0.2249 0.61528 0.90374 

d_activeFire 2004 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.00025 

d_burnedArea 2004 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

d_activeFire 2005 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

d_burnedArea 2005 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

d_activeFire 2006 <0.0001 <0.0001 <0.0001 <0.0001 0.00107 0.0755 0.5528 0.94947 0.999 1 

d_burnedArea 2006 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.00291 0.05302 0.30195 0.7047 

d_activeFire 2007 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.00071 0.04235 

d_burnedArea 2007 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.00012 0.00761 0.11042 0.47317 0.85242 

d_activeFire 2008 <0.0001 <0.0001 <0.0001 <0.0001 0.00013 0.01948 0.29422 0.82185 0.9901 0.99989 

d_burnedArea 2008 <0.0001 0.00065 0.02873 0.25972 0.71112 0.9561 0.99753 0.99995 1 1 

d_activeFire 2009 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.00169 0.06189 0.42088 

d_burnedArea 2009 <0.0001 <0.0001 <0.0001 <0.0001 0.0036 0.05036 0.26184 0.62798 0.89507 0.98411 

d_activeFire 2010 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.00603 0.19159 0.75853 0.98663 0.99988 

d_burnedArea 2010 0.0003 0.02659 0.30692 0.80502 0.98479 0.99968 1 1 1 1 

d_activeFire 2011 <0.0001 <0.0001 <0.0001 0.00248 0.11624 0.63828 0.96703 0.99945 1 1 

d_burnedArea 2011 <0.0001 <0.0001 0.00637 0.0968 0.4361 0.82391 0.976 0.99857 0.99996 1 

d_activeFire 2012 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.00152 0.07078 0.48681 0.9116 

d_burnedArea 2012 <0.0001 <0.0001 <0.0001 0.00604 0.09191 0.42153 0.81249 0.97317 0.99832 0.99995 

d_activeFire 2013 <0.0001 <0.0001 <0.0001 <0.0001 0.00016 0.02 0.28469 0.80439 0.98711 0.99981 

d_burnedArea 2013 0.97925 0.99919 0.99999 1 1 1 1 1 1 1 

d_activeFire 2014 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.00852 0.18283 0.69854 0.97078 

d_burnedArea 2014 <0.0001 <0.0001 0.00085 0.02677 0.21904 0.62966 0.9181 0.99207 0.99965 0.99999 

d_activeFire 2015 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.00188 0.07174 

d_burnedArea 2015 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.00202 0.04261 0.27042 0.67614 

d_activeFire 2016 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.00033 0.03097 0.34884 

d_burnedArea 2016 0.84355 0.99256 0.99993 1 1 1 1 1 1 1 

d_activeFire 2017 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.00106 0.05575 

d_burnedArea 2017 <0.0001 <0.0001 <0.0001 0.0001 0.00799 0.12285 0.51478 0.88254 0.98913 0.99961 

d_activeFire 2018 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.00065 

d_burnedArea 2018 0.00098 0.04307 0.34389 0.80318 0.97998 0.99932 0.99999 1 1 1 

d_activeFire 2019 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

d_burnedArea 2019 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.00012 0.00579 0.07744 

d_activeFire 2020 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

d_burnedArea 2020 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.00486 0.11582 0.55522 0.92263 0.99609 

Count < 0.05 94% 94% 89% 83% 75% 67% 56% 42% 33% 22% 

Note: Γ is the degree to which unobservables increase the odds ratio of not having fire comparing treated 

(insides protected areas) and untreated (outside) pixels. So for Γ = 1, unobservables have no influence. 
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Table D.10 - Upper bound for the significance level (p+) of Rosenbaum's test of sensitivity to 

unobservables (binomial distribution test) for alternative degrees of influence of unobservables 

(1.5 to 2). 

VariableA4A45:M79 Year Г (Degree of influence of unobservables) 

    1.5 1.55 1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95 2 

d_activeFire 2003 0.99495 0.99995 1 1 1 1 1 1 1 1 1 

d_burnedArea 2003 0.98861 0.99935 0.99998 1 1 1 1 1 1 1 1 

d_activeFire 2004 0.01837 0.22895 0.7117 0.96531 0.99879 0.99999 1 1 1 1 1 

d_burnedArea 2004 <0.0001 0.00011 0.00342 0.04062 0.20805 0.535 0.83179 0.96474 0.99574 0.9997 0.99999 

d_activeFire 2005 <0.0001 0.00524 0.11214 0.53363 0.91022 0.99477 0.99991 1 1 1 1 

d_burnedArea 2005 <0.0001 <0.0001 0.0005 0.01047 0.08708 0.33043 0.67483 0.90634 0.98456 0.99853 0.99992 

d_activeFire 2006 1 1 1 1 1 1 1 1 1 1 1 

d_burnedArea 2006 0.94024 0.99446 0.99976 0.99999 1 1 1 1 1 1 1 

d_activeFire 2007 0.37885 0.85487 0.99128 0.99987 1 1 1 1 1 1 1 

d_burnedArea 2007 0.98304 0.99921 0.99998 1 1 1 1 1 1 1 1 

d_activeFire 2008 1 1 1 1 1 1 1 1 1 1 1 

d_burnedArea 2008 1 1 1 1 1 1 1 1 1 1 1 

d_activeFire 2009 0.8625 0.9903 0.9998 1 1 1 1 1 1 1 1 

d_burnedArea 2009 0.99869 0.99994 1 1 1 1 1 1 1 1 1 

d_activeFire 2010 1 1 1 1 1 1 1 1 1 1 1 

d_burnedArea 2010 1 1 1 1 1 1 1 1 1 1 1 

d_activeFire 2011 1 1 1 1 1 1 1 1 1 1 1 

d_burnedArea 2011 1 1 1 1 1 1 1 1 1 1 1 

d_activeFire 2012 0.99637 0.99996 1 1 1 1 1 1 1 1 1 

d_burnedArea 2012 1 1 1 1 1 1 1 1 1 1 1 

d_activeFire 2013 1 1 1 1 1 1 1 1 1 1 1 

d_burnedArea 2013 1 1 1 1 1 1 1 1 1 1 1 

d_activeFire 2014 0.99935 1 1 1 1 1 1 1 1 1 1 

d_burnedArea 2014 1 1 1 1 1 1 1 1 1 1 1 

d_activeFire 2015 0.46805 0.89513 0.99451 0.99992 1 1 1 1 1 1 1 

d_burnedArea 2015 0.9315 0.99345 0.99971 0.99999 1 1 1 1 1 1 1 

d_activeFire 2016 0.85007 0.99207 0.99991 1 1 1 1 1 1 1 1 

d_burnedArea 2016 1 1 1 1 1 1 1 1 1 1 1 

d_activeFire 2017 0.43519 0.88786 0.99456 0.99994 1 1 1 1 1 1 1 

d_burnedArea 2017 0.99999 1 1 1 1 1 1 1 1 1 1 

d_activeFire 2018 0.03373 0.31162 0.78832 0.97981 0.99944 1 1 1 1 1 1 

d_burnedArea 2018 1 1 1 1 1 1 1 1 1 1 1 

d_activeFire 2019 <0.0001 <0.0001 0.00146 0.04974 0.3591 0.81197 0.98183 0.99945 0.99999 1 1 

d_burnedArea 2019 0.35947 0.74716 0.95116 0.99553 0.9998 1 1 1 1 1 1 

d_activeFire 2020 <0.0001 <0.0001 0.00901 0.16513 0.64542 0.95325 0.99837 0.99998 1 1 1 

d_burnedArea 2020 0.99994 1 1 1 1 1 1 1 1 1 1 

Count < 0.05 19% 14% 11% 8% 0% 0% 0% 0% 0% 0% 0% 

Note: Γ is the degree to which unobservables increase the odds ratio of not having fire comparing treated (insides 

protected areas) and untreated (outside) pixels. So for Γ = 1, unobservables have no influence. 
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