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ABSTRACT: The International Verification Methods Workshop was held online in November 
2020 and included sessions on physical error characterization using process diagnostics and error 
tracking techniques; exploitation of data assimilation techniques in verification practices, e.g., to 
address representativeness issues and observation uncertainty; spatial verification methods and 
the Model Evaluation Tools, as unified reference verification software; and meta-verification and 
best practices for scores computation. The workshop reached out to diverse research communities 
working in the areas of high-impact weather, subseasonal to seasonal prediction, polar prediction, 
and sea ice and ocean prediction. This article summarizes the major outcomes of the workshop 
and outlines future strategic directions for verification research.
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2020 International Verification Methods Workshop
What:	� The international forecast verification research community, together with diverse research communities 

working in the areas of high-impact weather, subseasonal to seasonal prediction, polar prediction, and 
sea ice and ocean prediction, met to share recent aspects of research on verification methods for envi-
ronmental prediction and to discuss as well as further develop and promote best verification practices.

When:	 9–13 and 16–20 November 2020
Where:	� Virtual, hosted by Barbara Casati (Environment and Climate Change Canada) jointly with Manfred Dorninger 

(University of Vienna).

KEYWORDS: Forecast verification/skill 
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An International Verification Methods Workshop (IVMW) is held approximately every 
three years to present recent aspects of verification research and discuss best verification 
practices. The workshops are organized by the Joint Working Group on Forecast 

Verification Research (JWGFVR), which is joint between the World Meteorological Organization’s 
(WMO) World Weather Research Programme (WWRP) and the Working Group for Numerical 
Experimentation (WGNE). The focus of these workshops is on the verification methodology, 
rather than on the application of methods to specific datasets. The broad remit of the workshops 
attracts participants from the operational environment, research institutions, and forecast 
user communities to discuss the application of novel verification methods to different types 
of weather forecasts and environmental predictions, spanning all spatial and temporal scales.

In November 2020 the JWGFVR held a virtual event, the “International Verification Methods 
Workshop Online” (2020-IVMW-O), in order to fill the gap between face-to-face workshops 
during the global lockdown caused by the COVID-19 pandemic. The workshop spanned two 
weeks and included 20 two-hour sessions, staggered across different time zones to accom-
modate presenters and attract participants from different countries around the globe. Session 
topics included physical error characterization using process diagnostics and error tracking 
techniques; exploitation of data assimilation (DA) techniques in verification; the Model Evalu-
ation Tools (MET); spatial verification methods; and meta-verification and best practices for 
scores computation. Contributions from the WWRP High Impact Weather (HIWeather) project, 
Subseasonal to Seasonal prediction project (S2S), the Polar Prediction Project (PPP), and the 
sea ice and ocean (OceanPredict) communities were numerous, constituted by targeted ses-
sions, and led to fruitful interdisciplinary exchanges. The program, abstract booklet, and pre-
sentations of the 2020-IVMW-O can be found at the workshop website (https://jwgfvr.univie.ac.at).  
The workshop closed with a discussion session which summarized its major outcomes, which 
are mirrored in this article. Where possible, reference is made to the relevant publications of 
the presenters.

Major scientific outcomes
Error tracking and process diagnostics. Error tracking, ensemble sensitivity analyses, and 
subsequent relaxation and/or observation system (data denial) experiments are dynamical 
approaches to the error characterization (see Magnusson 2017; Jung et al. 2014; Lawrence et al.  
2019; Quinting and Grams 2022; Quinting et al. 2022; and presentations by S. Shields,  
M. Totha, Z. Wang). These techniques analyze the model error propagation in association with 
large-scale circulation, to identify regions and sources of major forecast busts. Results of these 
techniques are similar to those obtained by a verification conditioning on weather types, by 
using composites, applying principal component analysis or considering teleconnections. It 
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was discussed whether it might be possible to exploit artificial intelligence (AI) to automate 
these techniques, for example, for analyzing systematic errors and identifying forecast busts, 
or for clustering weather types for conditional verification on large-scale regimes. However, 
interpretation cannot be automated, and a strong educational component is still needed to 
correctly interpret error tracking and ensemble sensitivity analyses.

Process diagnostics focus on verifying the relationships between multiple variables, which 
mirrors the physical process(es) interrelating such physical variables. As an example, Baker  
et al. (2021) analyzed the land–atmosphere interactions, by selecting some diagnostics 
describing the processes relating soil moisture, soil temperature, evapotranspiration, and 
precipitation (based on previous literature), and then verifying the representation of these 
relationships spatially. Day et al. (2020) verified the snow–atmosphere interactions, by ana-
lyzing the response of surface and 2m air temperatures to radiative forcing (as in Miller et al. 
2018), via scatterplots and regression lines. Similarly, A. Solomon presented an assessment 
of the representation of stable boundary layers by verifying the relationship between surface 
stability and the net long-wave radiation, again via scatterplots, conditioning both for clear sky 
or cloudy conditions. It was highlighted that most processes can be described by a simplified 
process-fitting function (e.g., a regression line or an index inter-relating multiple variables). 
Verification of these process-fitting functions and indices provides an assessment on how 
models represent the processes.

In the discussion it was acknowledged that process diagnostics are both multivariate and 
multidimensional, analyzing signals not only on two-dimensional fields, but also for vertical 
profiles and time series. Given the multivariate nature of process diagnostics, future develop-
ment should investigate multivariate statistical tools. Collocated monitoring instruments for 
several process-relevant variables, beyond traditional meteorological variables (e.g., surface 
fluxes or radiation in the vertical column), provide an ideal observation dataset for process 
diagnostics. Process diagnostics can be improved by conditional verification, which can help 
stratify to account for different surface conditions or large circulation regimes (e.g., cloudy 
versus clear sky, mirroring low versus high pressure systems) affecting the processes.

The error tracking and process diagnostics sessions were the most attended of the confer-
ence. The JWGFVR aims to collaborate more closely with WGNE to further develop diagnostics 
which target physical processes and help identifying the sources of forecast errors.

Data assimilation, representativeness, and observation uncertainty. T. Auligné gave an 
overview of data assimilation (DA) techniques which can be exploited for verification pur-
poses. The DA community has wide knowledge of observations and the associated uncer-
tainties with tools to address representativeness, as well as established quality control (QC) 
procedures. There are also well-established tools for matching model output and observations, 
from simple interpolation to forward operators which simulate, e.g., radiances as measured by 
satellites. Moreover, DA routinely performs an analysis of the observation-model departures 
(for several observing systems) and the propagation in space and time of the increments, 
which can itself be an error source diagnostic (similar to error tracking). On the other hand, 
DA can benefit from spatial (field-morphing) verification techniques (Nehrkorn et al. 2014, 
2015), as well as metrics for assessing model systematic errors and the impact of observation 
system experiments (OSEs). There is a desire from the JWGFVR and Data Assimilation and 
Observing Systems (DAOS) communities to enhance this two-way exchange.

Representativeness can dominate forecast errors, especially for coarse resolution mod-
els (which are limited by their resolution to represent subgrid-scale phenomena), and for 
highly discontinuous (e.g., precipitation, fog) or surface variables driven by local effects. 
North et al. (2022) showed how comparison of point versus collocated gridded obser-
vations provides a simple yet informative approach to analyze representativeness and 
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measure the effects on verification results. Ben Bouallegue (2020) and Ben Bouallegue 
et al. (2020) estimate the representativeness error by fitting parametric models to paired 
point and area-averaged observations; verification is then performed with a perturbed 
ensemble, where the estimated representativeness uncertainty is added to the ensemble 
uncertainty. B. Casati presented a lapse-rate adjustment of model temperatures to station 
elevations to address the altitude representativeness mismatching. In the discussion it was 
noted that some approaches to address representativeness issues can become as complex 
as postprocessing techniques. Nevertheless, data treatment is always necessary prior to 
verification, in order to correctly match model and observations; standardization of these 
preprocessing approaches was deemed not strictly necessary, as long as there is transpar-
ency in the processing that is applied. Finally, it was recognized that representativeness 
is a separate issue from observation uncertainty.

Observation uncertainty, its effects on verification results, and how to account for it in 
verification practices was the most recurrent topic of debate at the workshop. With the past 
decades of increasing improvements of NWP systems, the uncertainties inherent in the 
verifying observations are now comparable to the magnitude of forecast errors. Observation 
uncertainty can no longer be neglected in verification practices. Known measurement errors 
need to be addressed, since the benefits of the correction overcome the added uncertainty 
(Køltzow et al. 2020), while observation uncertainties from unknown sources need to be 
estimated and incorporated in verification statistics computation (Ferro 2017). There is a 
strong desire for a more complete understanding of the quality and error characteristics of 
the observing systems and verification datasets, not only for gridded fields, but also for time 
series and vertical profiles.

METplus: Toward a unified reference verification software. The capabilities of the Model 
Evaluation Tools (MET; Brown et al. 2021; www.dtcenter.org/community-code/model-evaluation-
tools-met) and METplus (which connects MET, METviewer, METdatabd, and includes Python 
wrappers and embeddings), were showcased on diverse applications, including convection-
allowing model development guidance and evaluation of air-quality forecasts. MET and 
METplus include many verification methods, from traditional deterministic and probabilistic 
scores against station (point) measurements, to more recent spatial verification methods 
against gridded observations, and tools for statistical inference, including confidence inter-
vals. METplus enables customized input data and graphical display output; moreover, the 
GitHub platform enables new developments directly on the suite. Given its modularity and 
flexibility, open access, and community-based nature, METplus is becoming a repository of 
verification techniques, and can be used not only in research but also by operational weather 
services. In fact, METplus has been adopted as the operational verification software by NOAA/
NCEP/NWS, as well as by the U.K. Met Office Unified Model Partnership.

An animated discussion revealed how much the verification community strives for uni-
versal reliable gridded reference observation datasets. Verification against (SYNOP) station 
networks is becoming cumbersome due to the station representativeness issues, and because 
station networks do not sample the verification domain homogeneously. Verification against 
gridded observations and/or analyses partially addresses these issues, and enables more 
sophisticated spatial diagnostics. However, the major drawback for verification against 
own-model analyses remains the background model dependence (Park et al. 2008). D. Hotta 
presented a twin analysis approach to quantify the effects of the error correlation (forecast-
truth correlates with analysis-truth), when performing own-analysis verification. Verifica-
tion against a multimodel ensemble of analyses was also discussed (Bowler et al. 2017a,b), 
in consideration also of the fact that single analyses still underestimate uncertainty (Bauer  
et al. 2014). Several two-dimensional observational datasets which are not model dependent 
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already exist (e.g., Contractor et al. 2020; Steinacker et al. 2006) which could be more fully 
exploited for verification. Accounting for the weaknesses and strengths of each observation 
dataset in the interpretation of the verification results is still fundamental.

Spatial verification methods. Spatial verification methods (Brown et al. 2012) continue 
to evolve, reflecting the very active community in this branch of verification research. The 
keynote by B. Brown and M. Dorninger gave an historical overview, including the early 
development of MET (first software hosting spatial techniques), and the spatial verifica-
tion method intercomparisons (Gilleland et al. 2010; Dorninger et al. 2018). From a recent 
intercomparison of distance metrics (Gilleland et al. 2020) and better understanding of their 
shortcomings, Gilleland (2021) proposed new spatial alignment performance measures, and 
G. Skok presented the fraction skill score distance and distance neighborhood skill score. 
Neighborhood approaches are being further developed at MeteoFrance (Stein and Stoop 
2019; Stein and Stoop 2021, manuscript submitted to Mon. Wea. Rev.), with the evaluation 
of within-neighborhood continuous ranked probability score (CRPS) and categorical scores 
which relax the location matching for the contingency table counts within neighborhoods. 
Novel object-based methods for verifying predictions of thunderstorm tracks (Skinner et al. 
2018; Flora et al. 2019; Potvin et al. 2020) and extreme convective precipitation features  
(B. Sass, S. Anderson) were also presented. Finally, Brunet et al. (2012) illustrated Structure 
Similarity Indices and Metrics, which are widely used in image quality assessment (Wang 
and Bovik 2002, 2006; Wang et al. 2004). The verification community can benefit from 
adopting these scores, which merge scale-separation and distance metrics, summarize the 
performance in a single index, and allow error decomposition, while being robust and mir-
roring human judgement.

Spatial verification approaches are also exploited for process understanding. Borderies et al. 
(2018) expanded the concept of neighborhood approaches to vertical profiles by matching 
radar profiles to the most resembling modeled vertical profile within a radius of 160 km: this 
model-to-observed vertical profile matching enables separating and disentangling location 
errors from the process analysis. Griffin et al. (2020) applied the Method for Object-based  
Diagnostic Evaluation (MODE; Davis et al. 2006a,b) to verify the NWP representation of clouds 
and water vapor by using all-sky infrared brightness temperatures from satellites. In both 
studies the verification was performed in observation space, by using a forward operator to 
simulate radar reflectivity and satellite brightness temperature, respectively.

Discussion ensued on the operationalization, aggregation, and inference of spatial verifi-
cation methods. Most developments focus on case studies, whereas the techniques need to 
be adapted also for allowing aggregation on multiple cases and provide confidence intervals 
on the statistics. It was commented that, for gridded products, inference ought to account for 
the spatial interdependence between nearby grid points/locations. The advantage of having 
spatial verification approaches encoded in METplus is to provide intuitive automated spatial 
verification that can run systematically in NWP operational centers, with encoded standard-
ized aggregating and inference tools. A lack of representation of novel spatial verification 
methods for ensemble prediction systems was noted. Future developments could address the 
spread–error relationship spatially (as in Dey et al. 2014), and spatial methods which address 
ensemble precipitation forecasts are needed, especially in operational context. Observation 
uncertainty remains to be addressed with spatial verification methods.

Meta-verification: Improved and new scores. The meta-verification sessions focused 
mainly on novel applications and refinement of existing statistics. Acharya and Tippet (2020) 
proposed the point-biserial correlation (Kornbrot 2014; Glass and Hopkins 1995) for verifica-
tion of probabilistic forecasts for a naturally dichotomous phenomenon (e.g., precipitation 
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or clouds). Taggart (2020) introduced the Huber (1964) loss and Huber mean, a scoring rule 
which optimize the balance between quadratic penalties, for small errors, and linear penalties, 
for large errors. Bennett et al. (2021) and M. A. Sharpe proposed new methods for verifying 
the timing of events. North et al. (2022) showed the added information value of the stable 
equitable error in probability space (SEEPS; Rodwell et al. 2010; Haiden et al. 2012), by us-
ing satellite precipitation observations and scoring with an almost-global coverage. In the 
discussion SEEPS was recognized as a well-designed score for model development guidance, 
and it was recommended to explore the use of SEEPS for other variables (e.g., clouds, surface 
winds, high-impact variables such as extreme near-surface temperatures).

For ensembles, a wider use of the logarithmic ignorance score (Roulston and Smith 2002) 
and the generalized discrimination score (Mason and Weigel 2009; Weigel and Mason 2011) 
was recommended, in conjunction with the traditional Brier score, CRPS, reliability diagram 
and relative operating characteristic (ROC) curve. K. Nelson and Y. Ning proposed the use 
of information-theory based scores. In alignment with recent meta-verification literature, 
a few studies focused on a better understanding of the score properties and refining their 
decomposition and computation, e.g., with respect to binning (Leutbecher and Haiden 2020;  
Dimitriadis et al. 2021; Mitchell 2020; and presentation by H. E. Brooks). During the discus-
sion, the practicality of providing R statistical packages to accompany these refinements in 
score computation was highlighted (e.g., scoringRules, Jordan et al. 2019). It was recognized 
that for research purposes R is statistically stronger, whereas Python is better suited for pro-
cessing large data volumes (e.g., for operational verification). Finally, the verification com-
munity can benefit from the strengths of both languages (hence, no need to make an explicit 
choice) as the two languages can be interlaced.

Engaging diverse scientific communities
High-impact weather and the user value chain. The HIWeather project is exploring meth-
ods for evaluating the end-to-end warning value chain, linking observations and modeling 
to impacts, warnings, and community benefit (Zhang et al. 2019). The needs of the forecast 
user, whether it be operational meteorologists, emergency managers, industry, or the public, 
should be considered when designing a verification approach. For example, tailored verifi-
cation of fire spread in coupled fire-atmosphere modeling provides useful information for 
fire forecasters and emergency managers in Colorado (presentation by A. Siems-Anderson). 
Consideration of users’ perspectives in the design and evaluation of new services led to the 
successful development and implementation of new early warning system in Argentina 
(presentation by J. Chasco). B. G. Brown showed how model ranking, scorecards, and outlier 
examination provides more meaningful and useful information to hurricane center managers 
and forecasters concerning the relative performance of different cyclone models. To encour-
age greater use of ensembles by forecasters, Du et al. (2019) presented a composite score that 
combines ensemble mean error, spread, nonlinearity, and existence of outliers into a single 
number, and introduced the predictability horizon diagram index (PHDI), which measures 
an ensemble’s temporal convergence toward the correct (observed) solution.

Sharpe et al. (2018) verify extremes where the thresholds identifying the distribution tails 
and skill are computed with respect to the local climatology. In the discussion it was noted 
that the method could be revisited by fitting theoretical distributions from extreme value 
theory (Coles 2001).

In an innovative twist, Rodwell et al. (2020) adapted the cost–loss model to represent user 
satisfaction, pain, regret, or thrill from acting (or not) on a forecast, where different users 
have their own probability thresholds at which they would make a decision. The expected 
value for a set of forecasts and integrated across users’ decision thresholds can be formulated 
into a “user Brier score” that, unlike the traditional Brier score, does not assume a uniform 
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distribution of cost/loss ratios. A highlight of the workshop was an interactive experiment 
involving all the participants who, for a given probabilistic forecast (of strong winds), shared 
their decision thresholds for different scenarios ranging from sporting events on the beach, 
windmill operations, cycling, and exercising in a smoggy city.

Nontraditional observations are increasingly being used to evaluate forecasts of high-
impact weather phenomena. For example, F. San Martino exploited crowdsourcing such as 
Twitter to verify gusts and hail events; D. Wilke made use of building damage reports to verify 
strong wind forecasts. Marsigli et al. (2021) described how the verified phenomena might be 
defined by different thresholds and/or related variables (e.g., forecast convective available 
potential energy and observed lightning flash density). Using multiple types of observations 
can characterize and reduce observational uncertainty, and fuzzy/spatial approaches can 
accommodate the non-exact spatial/temporal matching between forecasts and observations. 
Greater collaboration with the nowcasting community would be beneficial. The community 
seeks more automated approaches to filter and quality control reports from media, Twitter, 
insurance claims, impact assessments, emergency callouts, and crowdsourcing so they can 
be used to assess high-impact weather forecasts.

Subseasonal to seasonal and longer climate simulations and predictions. Subseasonal 
verification research has been promoted by the S2S prediction project (Coelho et al. 2018, 
2019; de Andrade et al. 2019). F. Doblas-Reyes highlighted the importance of forecast qual-
ity for climate services, emphasizing the need for standard procedures and accounting for 
observations uncertainty. Manrique-Suñén et al. (2020) discussed verification challenges 
under subseasonal prediction systems heterogeneity. Sources of S2S precipitation forecast 
predictability were analyzed by using empirical orthogonal functions (presentation by  
C. A. S. Coelho), a regression approach (de Andrade et al. 2021), and teleconnection patterns 
(Lenssen et al. 2020). D. Büeler et al. (2021) discussed the role of flow-dependent verification 
and calibration for subseasonal weather regimes. N. Georgas presented climate products 
validation, highlighting the need for using emerging observing technologies. J. P. French 
proposed a permutation test for investigating distribution differences in climate simulations 
and reanalysis.

Discussions emphasized the need to use multiple observations or reanalyzes and account 
for associated uncertainties, for adequate verification interpretation. Analyses ensemble 
spread can have similar magnitude as forecast ensemble spread (Dorninger et al. 2018), high-
lighting the need for quantifying observational uncertainty. Scores comparing two ensemble 
distributions (from reanalyzes and models) are suitable for estimating and incorporating 
uncertainty in verification (e.g., Goessling and Jung 2018). Investigating spatial methods in 
climate verification is another avenue for exploitation.

Sea ice verification. Sea ice verification research has flourished in the context of the Polar 
Prediction Project, and several new spatial verification methods have been developed in 
recent years (Dukhovskoy et al. 2015; Melsom et al. 2019; Goessling et al. 2016; Goessling 
and Jung 2018; Mohammadi-Aragh et al. 2020; Linow and Dierking 2017). At the workshop 
A. Cheng presented a novel symmetric distance metric for the verification of ice-edge. Niraula 
and Goessling (2021) introduced a reference forecast which uses anomaly damped persistence 
as a benchmark for dynamical sea ice models. Model intercomparisons (Zampieri et al. 2018; 
Palerme et al. 2019) provided realistic testbeds for comparing the new sea ice verification 
approaches. Peterson et al. (2021, manuscript submitted to Quart. J. Roy. Meteor. Soc.) showed 
how these new sea ice metrics are already being transferred to operational practices. Discus-
sion extended to importing sea ice metrics into METplus. Future challenges in sea ice verifica-
tion are the evaluation of sea ice thickness and pressure, with application to navigation safety. 
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Large discrepancies exist between satellite-based gridded observational datasets used for sea 
ice verification. Assessing the uncertainty of such remote-sensed datasets was recognized as 
an urgent task yet to be addressed.

Ocean verification. F. Hernandez and G. Smith showcased the activities of the intercompari-
son and validation Task Team of Ocean Predict (https://oceanpredict.org). The OceanPredict 
community has well-established reference verification datasets and basic verification sta-
tistics, which are exchanged routinely between operational centers for monitoring and com-
paring ocean analyses and forecasting systems. Y. Le Clainche showed an example of the 
assessment of the vertical profiles of water temperature and salinity for the Canadian ocean 
models. Similarly, E. Clementi showed operational verification of sea surface temperature 
and sea level anomalies for the Copernicus Marine Environment and Monitoring Services 
(CMEMS) ocean models over the Mediterranean and Black Sea basins.

The OceanPredict community is reaching out to the verification research community 
to advance the development of more sophisticated research-oriented approaches. Two 
pioneering spatial approaches were presented: Smith and Fortin (2022) introduced an 
object-based verification technique for ocean eddies in the Gulf Stream; Mittermaier et al. 
(2021) applied MODE to verify simulated chlorophyll-a blooms against a satellite ocean 
color product. Discussion also highlighted the strong interest in diagnostics for the ocean-
atmosphere coupling processes (with and without sea ice), which would require synergies 
between ocean, atmosphere, cryosphere, and verification research communities.

Visualization tools. Web-based platforms and software-tools with visualization capability are 
essential for better understanding and communicating verification results. At the workshop 
examples were shown by A. Bentley for METplus; J. R. M. Garcia introduced the Model Evalu-
ation Comparator; A. Paxian illustrated the DWD user-oriented climate prediction verification 
website (www.dwd.de/climatepredictions). Muñoz et al. (2019) presented an interface for IRI’s 
Climate Predictability Tool (Mason et al. 2021).

Conclusions
The November 2020 International Verification Methods Workshop Online highlighted recent 
advancements in verification research and the way forward. There is strong momentum to 
exploit error tracking techniques and further develop, in concert with the modeling commu-
nity, diagnostics which target physical processes and help to identify the sources of weather 
and climate prediction errors. Similarly, there is the desire to enhance synergies with the 
data assimilation community, e.g., to address representativeness issues and quantify the 
observation uncertainties, and incorporate those in the computation of verification scores. 
MET/METplus has the capability of becoming the unified reference verification software, 
including state-of-the-art verification and inference statistics, suitable both for research and 
operational environments.

The Spatial Verification session outlined the uptake of these methods in operational envi-
ronments as well as for research diagnostic tools, and the link with structure similarity indices 
and metrics was highlighted. Future avenues of research could expand spatial verification 
methods to ensembles and account for observation uncertainty in spatial approaches. The 
operational use of SEEPS against gridded observations and beyond precipitation was also 
promoted. In the meta-verification sessions, the point-biserial correlation, Huber loss and 
logarithmic score were reproposed, for verification practices.

User-oriented verification and the evaluation of the end-to-end value chain, from observa-
tions and modeling to impacts and warnings, was illustrated for several science-to-services 
applications. The use of nontraditional observations, including crowdsourcing, is also being 
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exploited for high-impact weather verification. Seasonal to decadal climate prediction verifica-
tion practice has been consolidating in the past decade through standard procedures (World 
Meteorological Organization 2010), which will soon include subseasonal standards. In the 
context of PPP, the sea ice community has been developing several spatial methods assessing 
different sea ice attributes. The ocean community is striving for new verification approaches, 
beyond the already well-established baseline score exchange, such as diagnostics to assess 
the atmosphere-ocean coupling.

The attendance of this virtual event was more than double that of past face-to-face IVMW, 
and the quality of the abstracts and presentations was outstanding. Moreover, because of the 
practical ease of online participation (without travel time commitments and expenses), the 
outreach to diverse research communities was very large. Given this remarkable outcome, 
the JWGFVR has decided to alternate face-to-face and online IVMW on a biannual basis, even 
post-pandemic.
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