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“Although the fig tree shall not blossom, neither shall fruit be in the vines; The 

labour of the olive shall fail, and the fields shall yield no meat; The flock shall be 

cut off from the fold, and there shall be no herd in the stalls: Yet I will rejoice in 

the LORD, I will joy in the God of my salvation”. 

Habakkuk 3: 17-18 KJV 
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ABSTRACT 

 

The tropical forests biomass is a crucial carbon reservoir. However, large-scale 
deforestation leads to a critical increase in tropical forest fragmentation and 
compromises essential ecosystem services. Due to the lack of a comprehensive 
assessment of the edge effects impacts on fragmented tropical forests, the main 
objective of this thesis was to establish a remote sensing-based method to 
assess the synergy between deforestation, forest fragmentation, and their 
negative impacts on the remaining tropical forests. We found that forest fires 
incidence and intensity vary with levels of habitat loss and forest fragmentation in 
the Central Brazilian Amazon. About 95% of active fires and the most intense 
ones occurred in the first kilometre from the forest edges. In Amazonia, we found 
that carbon losses associated with the edge effect (947 Tg C) corresponded to 
about one-third of losses from deforestation (2,592 Tg C). Despite a notable 
reduction of carbon losses from deforestation (7 Tg C year−1), the losses from the 
edge effect remained unchanged, with an average of 63±8 Tg C year−1. Thus, 
carbon losses edge effect is an additional unquantified flux that can counteract 
carbon emissions avoided by reducing deforestation. Furthermore, we found that 
selective logging and fire degradation can increase carbon losses at forest edges 
for the tropical scale. Over time, carbon losses at forest edges vary along different 
environmental gradients, with degradation being the most important for losses in 
America and Africa and maximum temperature in Asia. Between 1990 and 2020, 
carbon losses resulted in CO2 emission of 18 thousand teragrams, or the 
equivalent of 19% of emissions from deforestation (93 thousand teragrams) in 
the same period. The uptake of CO2 from the atmosphere by secondary tropical 
forests was not sufficient to offset these emissions. We concluded that we were 
able to make a comprehensive analysis of fragmented tropical forests and assess 
their impacts at different scales through remote sensing. Furthermore, we argue 
that collateral CO2 emissions from the edge effect should be quantified and 
reported with emissions from deforestation for an inventory of greenhouse gases 
more consistent with the reality of the carbon cycle in tropical forests. 

Keywords: Landsat. LiDAR. GEDI. Deforestation. Forest degradation.  
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QUANTIFICAÇÃO DAS PERDAS DE CARBONO EM FLORESTAS 

TROPICAIS FRAGMENTADAS POR SENSORIAMENTO REMOTO EM 

MÚLTIPLAS ESCALAS GEOGRÁFICAS 

 

RESUMO 

A biomassa das florestas tropicais é um crucial reservatório de carbono. No 
entanto, o desmatamento em larga escala tem levado a um aumento crítico da 
fragmentação das florestas tropicais e compromete os serviços 
ecossistêmicos essenciais. Devido à falta de uma avaliação abrangente dos 
impactos do efeito de borda em florestas tropicais fragmentadas, o objetivo 
geral desta tese foi estabelecer um método baseado em sensoriamento 
remoto para avaliar a sinergia entre desmatamento, fragmentação e seus 
impactos negativos sobre os remanescentes de florestas tropicais. 
Descobrimos que a incidência e a intensidade dos incêndios florestais variam 
com os níveis de perda de habitat e fragmentação florestal na Amazônia 
Central Brasileira. Cerca de 95% dos incêndios ativos e os mais intensos 
ocorreram no primeiro quilômetro das bordas da floresta. Na Amazônia, 
descobrimos que as perdas de carbono associadas ao efeito de borda (947 Tg 
C) corresponderam a cerca de um terço das perdas por desmatamento (2.592 
Tg C). Apesar de uma notável redução das perdas de carbono por 
desmatamento (7 Tg C ano−1), as perdas por efeito de borda permaneceram 
inalteradas, com média de 63±8 Tg C ano−1. Assim, as perdas de carbono por 
efeito de borda são um fluxo adicional não quantificado que pode neutralizar 
as emissões de carbono evitadas pela redução do desmatamento. Além disso, 
descobrimos que a degradação florestal por extração seletiva de madeira e 
fogo podem aumentar as perdas de carbono nas bordas da floresta na escala 
tropical. As perdas de carbono nas bordas florestais à medida que 
envelhecem, variaram ao longo de diferentes gradientes ambientais, sendo a 
degradação a mais importante para perdas na América e África e temperatura 
máxima na Ásia. Entre 1990 e 2020, as perdas de carbono resultaram na 
emissão de 18 mil teragramas de CO2 para a atmosfera ou o equivalente a 
19% das emissões por desmatamento (93 mil teragramas) para o mesmo 
período. A absorção de CO2 da atmosfera pelas florestas secundárias tropicais 
não foi suficiente para compensar essas emissões. Concluímos que fomos 
capazes de realizar uma análise abrangente das florestas tropicais 
fragmentadas e avaliar seus impactos em diferentes escalas por meio do 
sensoriamento remoto. Além disso, defendemos que as emissões de CO2 
decorrentes do efeito borda devem ser quantificadas e relatadas juntas as 
emissões por desmatamento para um inventário de gases de efeito estufa mais 
condizente com a realidade do ciclo do carbono das florestas tropicais. 

Palavras-chave: Landsat. LiDAR. GEDI. Desmatamento. Degradação florestal. 
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1 INTRODUCTION 

The tropical forests store 193-229 Pg of carbon in their biomass (SAATCHI et al., 

2011; BACCINI et al., 2012). However, this region is affected on a large scale by 

deforestation that converts forests into anthropic environments (KISSINGER; 

HEROLD; SY, 2012; MALHI et al., 2014; CARTER et al., 2018). Between 1990 

and 2015, this region loss 10% of its forest cover (KEENAN et al., 2015). This 

forest area reduction compromises essential ecosystem services (FOLEY, 2005; 

BACCINI et al., 2017). In addition, rampant deforestation leads to a critical 

increase in tropical forest fragmentation (FISCHER et al., 2021). 

The Paris Climate Agreement (UNFCCC - FRAMEWORK CONVENTION ON 

CLIMATE CHANGE, 2015a), which deals with measures to reduce greenhouse 

gas emissions by the signatory countries, reinforces the need to strengthen the 

global response to the threat of climate change. However, forest fragmentation 

led to edge effects, which adversely affects forest functioning, reducing carbon 

stocks (LAURANCE et al., 1997, 2018; SILVA JUNIOR et al., 2020a), lading to 

dioxide carbon (CO2) emission into atmosphere. Thus, tropical forest edges, are 

an important source of CO2 (NUMATA et al., 2011; PÜTZ et al., 2014; BRINCK 

et al., 2017; SILVA JUNIOR et al., 2020a), but yet explicitly measured and 

included in policies to reduce greenhouse gas emissions (SILVA JUNIOR et al., 

2021a). 

In the past, the decade-scale of tropical edge effect contribution to CO2 emissions 

was limited by the lack of multi-temporal maps of forest cover with appropriate 

spatial resolution. On the other hand, recent advances in remote sensing 

datasets, especially with the widespread use of optical and non-optical 

multitemporal data, can fill these gaps. Here, we used a vast, remote sensing 

dataset to enable an unprecedented analysis of fragmented tropical forests. We 

start by analysing the relationship between forest fragmentation and fires in the 

Brazilian Central Amazon, going through the first Amazonian estimate of the loss 

of carbon stocks due to the edge effect, and finally at the first comprehensive 

assessment of the impact of the edge effects on carbon stocks of tropical forests.  
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1.1 Motivation and objectives 

Due to the lack of a comprehensive assessment of the edge effects impacts on 

fragmented tropical forests, the main objective of the thesis was to establish a 

remote sensing-based method to assess the synergy between deforestation, 

forest fragmentation, and their negative impacts on the remaining tropical forests. 

Thus, the Thesis has three specific objectives: 

1. To understand the relationship between the configuration of fragmented 

forest landscapes in the Brazilian Central Amazon and the occurrence and 

intensity of forest fires; 

2. Quantify the extent and carbon stocks lost at forest edges of Amazonia; 

3. Quantify the extent and carbon emissions and environmental factors 

associated with carbon loss at the edges of tropical forests over the past 

three decades. 

1.2 Thesis outline 

This document was drawn in a paper-format, which include two papers already 

published and one in the process of being finalized to submission. In the following 

sections it will be described: Chapter 2 is a literature review on tropical forest 

fragmentation; Chapter 3 presents a case study about the relationship between 

forest fragmentation and fires in the Central Brazilian Amazon; Chapter 4 

introduces an LiDAR (Light Detection And Ranging) approach to quantify carbon 

stocks due to edge effects in Amazonia; Finally, Chapter 5 presents the first 

comprehensive 30-year analysis of fragmented tropical forests, including 

estimates of edge-effect carbon emissions and analysis of the role of the 

environmental gradient for the loss of carbon stocks at tropical forest edges. 
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2 LITERATURE REVIEW 

2.1 Deforestation and forest fragmentation in the tropical region 

The tropical region is located between the tropics of Capricorn (latitude 23.5° 

South) and Cancer (23.5° North), covering America, Africa, and Asia. Forests in 

this region play a crucial role, providing important ecosystem services. However, 

deforestation in this region continually converts forests into agricultural, livestock 

and urban areas (MALHI et al., 2014). The loss of forest cover caused an 

increase in the number of fragments and a reduction in the area of forest 

remnants in the region (TAUBERT et al., 2018). 

2.1.1 Deforestation in the tropical region 

In the tropical region, mappings with standardized methodologies and aimed at 

detecting changes in forest cover are rare. However, Hansen et al. (2013)  

examined Landsat data at a spatial resolution of 30 m and performed the first 

global mapping of forest gains and losses between 2000 and 2012. Although it 

contains uncertainties (HANSEN et al., 2014; TROPEK et al., 2014), these data 

are useful for a rapid and uniform assessment of forest cover loss in the tropical 

region. Figure 1 shows the annual forest cover losses from 2001 to 2018 detected 

by Hansen et al. (2013) and filtered for tropical forest areas (threshold of 80% 

tree cover applied) (SILVA JUNIOR, 2018; GASPARINI et al., 2019a). 
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Figure 2.1 - Annual Forest cover losses from 2001 to 2018 (left). Contribution of the 
American, African, and Asian continents to forest cover losses between 

2001 and 2018 (right). 

 

Source: Hansen et al. (2013). 

In 2000, forest cover in the tropical region totalled 14,447,920 km2, with 43% in 

Asia, 42% in America and 16% in Africa. Between 2001 and 2018, the region lost 

about 1,226,201 km2 (approximately 8.49% compared to 2000) of its forest cover. 

This loss occurred at an average of 68,122±19,069 km2 year-1, with a significant 

increase trend (p<0.05; R2 = 0.55) of 2,718 km2 year-1 (Figure 2.1; left) A peak of 

122,498 km2 was observed in 2018, while the smallest annual area of lost forest 

was observed in 2001 (43,660 km2). America was responsible on average for 

58±11% year-1 of forest cover losses, while Asia and Africa accounted for 30±9% 

year-1 and 12±4% year-1, respectively (Figure 2.1; right). 

America alone, between 2001 and 2018, 702,954 km2 (approximately 11.72% of 

forest cover in 2000) of forest cover were lost, at an average of 39,053±11,677 

km2 year-1, with no trend identified for the period (p>0.05; R2 = 0.12) (Figure 2.2a). 

A peak of 71,626 km2 was observed in 2016, while the smallest annual area of 

lost forest was observed in 2015 (27,541 km2). In Africa, between 2001 and 2018, 

144,904 km2 (approximately 6.28% of forest cover in 2000) of forest cover were 

lost, at an average of 8050±3794 km2 year-1, with a significant increase trend 

(p<0.05; R2 = 0.78) of 647 km2 year-1 (Figure 2.2b). A peak of 14,884 km2 was 

observed in 2017, while the smallest annual area of lost forest was observed in 

2003 (3058 km2). However, in Asia between 2001 and 2018, 378,343 km2 

(approximately 6.16% of forest cover in 2000) of forest cover were lost, at an 

average of 21,019±8737 km2 year-1, with a significant increase trend (p<0.05; R2 
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= 0.58) of 1,278 km2 year-1 (Figure 2.2c). A peak of 36,757 km2 was observed in 

2012, while the smallest annual area of lost forest was observed in 2003 (6,711 

km2). 

Figure 2.2– (a) Annual loss of forest cover in tropical America. (b) Annual loss of forest 
cover in tropical Africa. (c) Annual loss of forest cover in tropical Asia. (d) 
Spatial distribution of forest cover losses between 2001 and 2018 grouped 
in pixels with 0.25-degree spatial resolution. 

 

Spatially (Figure 2.2d), the largest losses (between 222 and 723 km2 pixel-1) of 

forest cover between 2001 and 2018 were mainly distributed in southern Mexico, 

Honduras, Nicaragua and in the south and east of the Amazon Basin in the 

American continent. On the other hand, on the African continent, the biggest 

losses were located mainly in the Congo Basin, while in Asia, they were located 

in Malaysia and Indonesia. 

Although agricultural expansion has been identified as the main driver of 

deforestation in the tropics in the 20th century (GIBBS et al., 2010), other causes 

were observed from the beginning of the 21st century, varying regionally and 

temporally (BOUCHER et al., 2012; CURTIS et al., 2018) (Figure 2.3). 
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Figure 2.3 – Contribution of drivers of deforestation to deforestation in the tropical region. 
(a) Contribution of drivers of deforestation reported by 46 countries in the 
tropical region in the period 2000 to 2010 (FAO, 2010), where commercial 
agriculture includes the contribution of livestock. (b) Contribution of the 
drivers of deforestation reported for the tropical region from 2001 to 2015 
(CURTIS et al., 2018). In the figures, commercial agriculture is understood 

to be large-scale, and subsistence to family agriculture, for example. 

 

Source: Kissinger, Herold and Sy (2012) and Curtis et al. (2018). 

According to data from the Food and Agriculture Organization of the United 

Nations - FAO (FAO, 2010) (Figure 2.3a), in America until 2010, approximately 

67% of the deforested areas were destined to commercial agriculture, while the 

areas destined to mining and urban/infrastructure expansion together totalled a 

contribution of 6%. In contrast, Africa and Asia were similar with 40% and 39% of 

deforested areas, respectively, destined for subsistence agriculture. It is also 

important to highlight that of the three continents, Asia had 22% of the deforested 

areas destined for urban/infrastructure expansion, which reflects the large 

population growth in the region (DEFRIES et al., 2010). 

In a global analysis based on remote sensing data (HANSEN et al., 2013), Curtis 

et al. (2018) classified those likely to be responsible for the loss of forest cover. 

According to this classification, focused here on the tropical region (Figure 2.3b), 

63.14%, 98.11% and 43.91% of the deforested areas between 2001 and 2015 

were destined for subsistence agriculture, in America, Africa and Asia, 

respectively. Commercial agriculture was more important in America (35.47%) 

and Africa (39.59%) than Asia (1.74%). On the other hand, forestry was more 
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important in Asia (12.86 %) than in America (1.08 %) and Africa (0.14 %), while 

urbanization was more important in Asia (0.11%) than in America (0%) and Africa 

(0.01%). Forest fires were responsible for 3.54% of the loss of forest cover in 

Asia, while America and Africa had zero values. 

Although the two works mentioned above were carried out with different methods 

and have limitations and uncertainties, they converge in highlighting the 

importance of commercial agriculture as the main driver of deforestation in the 

tropics, mainly in America and Asia. 

On the American continent, extensive areas of forest in the Brazilian portion of 

the Amazon Basin were converted into areas for soybean cultivation and cattle 

ranching (ALMEIDA et al., 2016), to meet external demands for food (NEPSTAD 

et al., 2014; GIBBS et al., 2015). In Ecuador and Colombia, on the other hand, 

forest areas have given way mainly to palm cultivation (KOH; WILCOVE, 2008; 

CASTIBLANCO; ETTER; AIDE, 2013; LÓPEZ ACEVEDO, 2018). 

Still related to the forest areas that gave rise to palm cultivation, Nigeria and 

Ghana stand out in Africa, the third and fifth largest palm growers in 2013, 

respectively, according to FAO data (VIJAY et al., 2016b). On the other hand, in 

Asia, there is a consensus on the region's leadership in the significant 

replacement of forest areas for palm cultivation, to meet the growing international 

demand for vegetable oils and biofuels (FITZHERBERT et al., 2008; KOH; 

WILCOVE, 2008, 2009; WICKE et al., 2011; AFRIYANTI; KROEZE; SAAD, 2016; 

VIJAY et al., 2016a; AUSTIN et al., 2017). 

Another emerging activity in the tropical region is mining in the Amazon region, 

especially gold, which has induced direct and collateral deforestation of forests in 

the region (ASNER; TUPAYACHI, 2016; WEISSE; NAUGHTON-TREVES, 2016; 

DEZÉCACHE et al., 2017; CABALLERO ESPEJO et al., 2018). 

Identifying the causes and patterns of deforestation, as well as quantifying its 

extent in the tropics, is crucial to understanding fragmentation and its impacts in 

the region. The spatial and temporal patterns of deforestation are directly 

responsible for the spatial arrangements and geometries of forest fragments 

(LAURANCE; LAURANCE; DELAMONICA, 1998; SILVA JUNIOR et al., 2018). 
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In the Amazon region, for example, landscapes dominated by deforestation with 

a fishbone pattern, generally associated with subsistence agriculture and 

livestock, produce up to five times more forest edges than areas with a pattern of 

deforestation associated with commercial agricultural and livestock production 

(LAURANCE; LAURANCE; DELAMONICA, 1998). 

2.1.2 Forest fragmentation in the tropical region 

Deforestation in recent decades in the tropical region has resulted in significant 

fragmentation of forest remnants. Initial efforts made it possible to quantify 

fragmentation at different scales (spatial and temporal) using different 

methodologies. Work on a regional scale was limited mainly to the Amazon Basin 

and Atlantic Forest region. Below are the main findings regarding forest 

fragmentation in the tropical region. 

In the Brazilian Amazon, Numata and Cochrane (2012) used forest maps 

(Monitoring the Brazilian Amazon Deforestation by Satellites - PRODES/INPE) 

resampled to 90-m spatial resolution, covering seven states of the Legal Brazilian 

Amazon in the period from 2001 to 2010 and estimated the quantity and size of 

forest fragments, in addition to the total extension of edges (1,000-m width). They 

found that the total number of fragments doubled in the analysed period, with 

76,866 fragments in 2001 to 143,572 fragments in 2010 and forest edges 

increased from 467,237 km2 in 2001 to 543,393 km2 in 2010. For the year 2014, 

on the other hand, Vedovato et al. (2016) used a forest map (PRODES/INPE) 

resampled to 60-m spatial resolution to classify fragmentation across the 

Brazilian Legal Amazon and found that 101,440 km2 (3.2%) of forest remnants 

corresponded to fragments (called islands), while 164,595 km2 (5.2%) 

corresponded to edges (1,020-m width). 

In the Amazonia-wide, Silva Junior et al. (2020a) used data from Hansen et al. 

(2013) to prepare forest maps (areas with tree cover equal to or greater than 

80%) and estimate forest edge areas (120-m width) created between 2001 and 

2015, having found that these areas increased from 16,212 km2 in 2001 to 

176,555 km2 in 2015. Furthermore, Putz et al. (2014) used data from the 

Moderate-Resolution Imaging Spectroradiometer - MODIS sensor aboard the 
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Aqua and Terra satellites (250-m spatial resolution) in 2009 to estimate forest 

fragmentation in the Amazon Basin and found a total of 77,038 fragments with 

average area of 83.76 km2 and 321,135 km2 of total area of edges (1000-m 

width). For the Atlantic Forest, the same authors used Landsat data (spatial 

resolution resampled to 50 m) from 2005 and found a total of 245,173 fragments 

with an average area of 0.63 km2 and 73,476 km2 of total area of edges (1000-m 

width). These results show that in tropical America, fragmentation varied spatially 

and temporally with different magnitudes. 

The authors cited above used different approaches to identify and quantify 

fragmentation. Among these approaches, there is the use of the Euclidean 

Distance technique (NUMATA; COCHRANE, 2012; SILVA JUNIOR, 2018), from 

the package Patch Analyst1 (PÜTZ et al., 2014)and the MSPA - Morphological 

Segmentation of Binary Patterns2 (VEDOVATO et al., 2016). 

In the literature, two estimates of forest fragmentation at the tropical scale stand 

out (BRINCK et al., 2017; TAUBERT et al., 2018). Brinck et al. (2017) used a 

forest map for the year 2000, based on tree cover data from the Global Land 

Cover Facility - GLCF, while Taubert et al. (2018) used a map for the same year 

based on tree cover data prepared by Hansen et al. (2013). Both studies defined 

areas with tree cover equal to or greater than 30% and used an adapted version 

of the Hoshen-Copelman (HOSHEN; KOPELMAN, 1976) algorithm to quantify 

fragmentation. Table 1 summarizes the main results of the two works mentioned 

above. 

 

 

 

 

 
 

1 Rempel et al. (2019) 
2 Soille e Vogt (2009) 
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Table 2.1 - Synthesis of the main results obtained by Brinck et al. (2017) and Taubert et 

al. (2018). The results include quantification of the number of forest 

fragments, average area of forest fragments, area of forest edges and length 

of forest edges. *This value is not included in the reference, it was calculated 

here by the sum of the number of fragments from America, Africa, and Asia. 

Variable Reference America Africa Asia 
Tropical 
region 

Patches number 
Brinck et al. (2017) 23,491,573 22,894,239 7,593,226 53,979,038 

Taubert et al. 
(2018) 

55,558,018 44,851,251 30,556,204 130,965,473* 

Patches size 
(km2) 

Brinck et al. (2017) 0.35 0.16 0,52 0.29 

Taubert et al. 
(2018) 

0.17 0.13 0,13 - 

Forest edges 
area (km2) 

Brinck et al. (2017) 1,310,000 940,000 700,000 2,950,000 

Taubert et al. 
(2018) 

- - - - 

Forest edges 
length (km) 

Brinck et al. (2017) - - - - 

Taubert et al. 
(2018) 

22,000,000 18,000,000 10,000,000 50,000,000 

Source: Brinck et al. (2017) and Taubert et al. (2018). 

Although the magnitude of the estimates made by Taubert et al. (2018) are higher 

than the estimates by Brinck et al. (2017),the two works converge, showing an 

accentuated process of fragmentation in America in relation to Africa and Asia, 

at the beginning of the 21st century. Forest fragmentation in America is observed 

by the high number of fragments, these with a reduced average area, in addition 

to the extensive border areas. However, it is necessary to point out that in both 

works, the authors used a threshold of 30% to define forest areas. This threshold 

causes the overestimation of forest areas (GASPARINI et al., 2019a), thus 

including savannah formation areas in the analyses, causing a bias in the 

fragmentation estimates of the two works. Gasparini et al. (GASPARINI et al., 

2019a), for example, suggest using a threshold between 80% and 85% to define 

forest areas more accurately in tree cover percentage data. 

Although the initial efforts presented above have been undertaken, the 

multitemporal quantification of forest fragmentation for the tropical region is an 

unexplored gap in knowledge. Recent advances in the ability to process large 

volumes of geospatial data in the cloud (GORELICK et al., 2017)  and the 

availability of forest cover datasets on a global scale with multitemporal 
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availability (HANSEN et al., 2013), mean an unprecedented opportunity to 

contribute to advancement in this field of knowledge. 

2.1.3 Dynamics of fire in the tropical region 

The tropical region has a natural forest fire regime characterized by a low 

frequency of fire (COCHRANE, 2003; BUSH et al., 2008; BOWMAN et al., 2011), 

while in savannah areas, this regime naturally has a high frequency (BOWMAN 

et al., 2009). However, in recent decades, this frequency has intensified in forest 

and non-forest areas, mainly due to human activities in the region (LEWIS; 

EDWARDS; GALBRAITH, 2015). 

Figure 4 shows the temporal and spatial pattern of active fires across the tropical 

region between 2003 and 2018. During this period, the region had an impressive 

11,744,186 active fires, an average of 734,012±66,725 active fires year-1, with a 

maximum peak observed in 2007 (845,477 active fires) and a minimum in 2018 

(624,289 active fires). However, the region had a significant downward trend (p 

< 0.05; R2 = 0.65) of 11,634 active fires year-1 between 2003 and 2018, 

corroborating the global reduction in burned areas observed between 2003 and 

2015 (ANDELA et al., 2017). 
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Figure 2.4 – Spatio-temporal pattern of active fires throughout the tropical region. (a) 

Annual total of active fires in America between 2003 and 2018. (b) Annual 

total of active fires in Africa between 2003 and 2018. (c) Annual total of 

active fires in Asia between 2003 and 2018. (d) Spatial distribution of the 

annual average of active fires per pixel of 0.25 degrees between 2003 and 

2018. (e) Spatial distribution of tree cover percentage in 2000 (HANSEN et 

al., 2013)  resampled (averaged) in 0.25-degree spatial resolution pixels. 

(f-h) Monthly pattern of active fires in America, Africa, and Asia, 

respectively. In Figures 2.4f, 2.4g and 2.4h the black line represents the 

average and the shaded area the standard deviation. 

 

Source: Giglio et al. (2016) and NASA (2018). 

On a regional scale (Figure 2.4a, 2.4b and 2.4c), Africa had 65% (7,673,004 

active fires) of active fires detected in the tropical region between 2003 and 2018, 
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with an average of 479,563±22,720 active fires per year-1, followed by America 

with 22% (2,530,484 active fires) and an average of 158,155±51,695 active fires 

year-1 and Asia with 13% (1,540,698 active fires) and an average of 

96,294±25,058 active fires year-1. On the other hand, between 2003 and 2018, 

America and Africa had a significant downward trend (p<0.05) of 8,403 active 

fires year-1 (R2=0.56) and 2,575 active fires year-1 (R2=0.27), respectively, while 

Asia kept its rates constant over time (p>0.05; R2=0,01). 

Spatially (Figure 2.4d), active fires occurred especially in savannah areas and 

less frequently in forested areas. This fact is revealed by the overlap between 

cells with values between 37 and 944 active fires year-1 and cells with tree cover 

between zero and 50 % (Figure 2.4e), which characterize savannah areas and 

the absence of active fires in central areas with tree cover greater than 70%. In 

addition, a high frequency of active fires was observed in the “Arc of 

Deforestation” region in the Amazon Basin and western Asia, regions heavily 

deforested between 2001 and 2018 (Figure 2.4d). 

Monthly (Figure 2.4f, 2.4g and 2.4h), the occurrence of active fires differed 

strongly in terms of magnitude and variability in the three continents of the tropical 

region. In America (Figure 2.4f), the occurrence of active fires maintained an 

average below 10,000 active fires month-1 between the months of January and 

June, increasing progressively from July onwards and reaching a peak of 

44,753±20,389 active fires month-1, then decreasing until December when it had 

an average of 12,797±4,299 active fires per month-1. In Africa (Figure 2.4g), on 

the other hand, the monthly averages showed little variation, revealed by the low 

standard deviations, and two well-defined monthly peaks, one in 

December/January (48,759±4593 active fires month-1 and 56,426±7448 active 

fires month-1, respectively) and another in August (70.090±6815 active fires 

month-1). Asia (Figure 4h) also presented two monthly peaks, one in March 

(70.090±6815 active fires month-1) and another in October (70.090±6815 active 

fires month1). In the American portion of the tropics, the fire regime is mainly 

governed by the Amazon Basin, which has its peaks of fire occurrence 

synchronized with the dry season in the region (rainfall below 100 mm-1) 

(ARAGÃO et al., 2008; MARENGO et al., 2018). On the other hand, the African 
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and Asian portions, which have two monthly peaks, may be the result of the 

climate regimes of the northern and southern hemispheres simultaneously. 

As pointed out in Figure 2.4d, in the tropical region the occurrence of fire is 

strongly linked to natural non-forest vegetation (e.g., savannahs), a result of 

natural occurrence or induced by human activities (ARCHIBALD; STAVER; 

LEVIN, 2012; DANIAU et al., 2013; ANDELA; VAN DER WERF, 2014; 

ARCHIBALD, 2016; MATAVELI et al., 2018). On the other hand, many studies 

carried out for the tropical region also relate fire to deforestation activities (slash 

and burn system), agriculture and livestock (JUÁREZ-OROZCO; SIEBE; 

FERNÁNDEZ Y FERNÁNDEZ, 2017). 

However, forest fires in the tropical region emerge from fire escape from adjacent 

areas (CANO-CRESPO et al., 2015). This escape may originate from areas that 

were recently deforested and burned for cleaning, or from areas where agriculture 

and livestock are managed (ARAGÃO et al., 2008). Fire entry into the forest 

occurs through edges, which are a result of deforestation-induced fragmentation 

(ARMENTERAS; GONZÁLEZ; RETANA, 2013; SILVA JUNIOR et al., 2018). 

In addition, the occurrence of El Niño causes a generalized reduction in rainfall 

and an increase in temperature throughout the tropical region (JIMÉNEZ-MUÑOZ 

et al., 2016; BURTON; RIFAI; MALHI, 2018; JIMENEZ et al., 2018). Thus, the 

fragmentation of forest remnants (NUMATA; COCHRANE, 2012; PÜTZ et al., 

2014; VEDOVATO et al., 2016; BRINCK et al., 2017; SILVA JUNIOR, 2018; 

TAUBERT et al., 2018) associated with a drier and warmer environment, makes 

the vegetation more susceptible to the spread of fire (NEPSTAD et al., 2004, 

2007; BRANDO et al., 2008; ARMENTERAS; GONZÁLEZ; RETANA, 2013; 

BRIENEN et al., 2015; SILVA JUNIOR et al., 2018). During the 2010 and 

2015/2016 El Niño, for example, extensive areas of forest were consumed by fire 

in the Amazon portion of Brazil and Indonesia (ARAGÃO et al., 2018; 

LOHBERGER et al., 2018; SILVA JUNIOR et al., 2019a). 

Thus, more comprehensive studies at the tropical scale are needed to improve 

the understanding of forest fires in the region and their relationship with El Niño 

years. Regional efforts should be concentrated in Africa and Asia, as Amazonia 
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is well studied. Furthermore, it is necessary to advance in the understanding of 

the relationship between fragmentation and forest fires in the tropical region, 

outside the Amazon Basin. 

2.1.4 Edge effects impact on tropical forest carbon stocks 

Forest fragmentation has a direct impact on forest biodiversity, which can reduce 

it between 13% and 75%, affecting important ecological functions (HADDAD et 

al., 2015). Forest remnants with a reduced area, for example, present a smaller 

variety of habitats than those with a larger area, causing a drastic loss of species 

of flora and fauna (LAURANCE; VASCONCELOS, 2009). In addition, the edge 

effect resulting from fragmentation reduces carbon stocks (due to tree mortality) 

and predisposes forest remnants to fire, the latter contributing to the 

intensification of the former (LAURANCE et al., 2018; SILVA JUNIOR et al., 

2020a). 

In the tropical region, the main findings regarding the effect of fragmentation on 

forest carbon stocks come from the Brazilian Amazon. These discoveries were 

made possible through long-term experiments carried out within the scope of the 

PDBFF - Biological Dynamics of Forest Fragments Project, based in the 

municipality of Manaus, state of Amazonas (LAURANCE et al., 2018). 

Figure 2.5 shows the range in the forest of the main edge effects that include 

microclimate changes, tree mortality, forest fires and consequently the reduction 

of aboveground biomass. 
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Figure 2.5 – Reach of the main effects on board. The plus and minus signs represent 

the standard deviation of variables.  

 

The figure was based on the compilation of results from the literature (BROADBENT et 

al., 2008; DE PAULA; COSTA; TABARELLI, 2011; ARMENTERAS; GONZÁLEZ; 

RETANA, 2013; SHAPIRO et al., 2016; LAURANCE et al., 2018; SILVA JUNIOR et al., 

2018, 2020a). 

 

After deforestation, edges (abrupt and artificial) are created between the 

remaining forest and the deforested areas, which cause physical and biotic 

changes in the forest (LAURANCE et al., 2018). The immediate effect observed 

is the increase in temperature and reduction in humidity due to differences in 

evapotranspiration between the forest and adjacent deforested areas 

(CAMARGO; KAPOS, 1995), reaching an average of 77±96-m for the increase 

in temperature and 40±19 m for moisture reduction (Figure 2.5). Furthermore, at 

the forest edges the wind becomes more turbulent (agitated) and with higher 

speed (FERREIRA; LAURANCE, 1997; LAURANCE et al., 1997), reaching an 

average of 270±230-m for the increase in turbulence and 135±105 m for speed 

increase (Figure 2.5). These microclimatic changes mentioned above, in turn, 

promote an increase in tree mortality rates, with an average range of 503±497 m 



17 

for trees in general and 45±15-m for large trees (Figure 2.5) (LAURANCE et al., 

1997, 1998). 

Tree mortality has a direct impact on the reduction of aboveground living biomass 

at forest edges. This reduction is significant at an average distance of 233±94-m 

(Figure 5). In Central Amazonia, a reduction in aboveground living biomass of 

around 11% is documented for up to 100-m in the first four years after 

fragmentation (LAURANCE; LAURANCE; DELAMONICA, 1998). However, 

Laurance, Laurance and Delamonica (1998) disregarding the occurrence of fire 

at forest edges in their field experiments, which can reach an average of 

3,467±1,112 m (Figure 2.X) (COCHRANE; LAURANCE, 2002; ARMENTERAS; 

GONZÁLEZ; RETANA, 2013; SILVA JUNIOR et al., 2018), may increase the 

extent of aboveground biomass losses in the forest, due to increased tree 

mortality due to the direct impact of fire (SILVA et al., 2018b) or the wind-induced 

fall of live but fire-damaged trees (SILVÉRIO et al., 2019a). Silva Junior (2018), 

for example, found a loss of carbon stocks of 36.7% in the first five years after 

fragmentation, while De Paula et al. (2011) found 50% in forest edges with 100-

m wide, although they did not relate this loss to the edge aging process. 

On a large scale, some studies have quantified the loss of aboveground biomass 

and carbon stocks due to forest fragmentation for the tropical region (NUMATA 

et al., 2011; PÜTZ et al., 2014; BRINCK et al., 2017; SILVA JUNIOR, 2018). 

On a regional scale, Numata et al. (2011) estimated a loss of between 126 and 

221 Tg of carbon due to forest fragmentation for the Brazilian Amazon in the 

period from 2001 to 2013, Silva Junior (2020a) estimated 879 Tg of carbon lost 

in the Amazon Basin in the period from 2001 to 2015 and Pütz et al. (2014) 

estimated a loss of 599 Tg of carbon for the Amazon and 69 Tg for the Atlantic 

Forest for a period of 10 years. 

On the tropical scale, Brinck et al. (2017) estimated a loss of 10.3 Gt of carbon 

(42% in America, 25% in Africa and 33% in Asia) due to fragmentation (loss of 

50% of carbon in edges 100 m wide). This last work presents controversial 

results, the authors consider a loss of carbon stocks varying between 11 and 50% 

in forest edges with 100 m wide for the year 2000, however, it was not considered 
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that this loss occurs over time. As the forest edge ages, that is, it was assumed 

that all edges 100 m wide in the year 2000 lost up to 50% of their carbon stocks, 

although they are of different ages. This reinforces the need to improve the 

representativeness of the variability of tropical forests in these models, 

consequently improving the quantification of carbon stock losses due to 

fragmentation. 

Although the impact of fragmentation on carbon stocks observed for the Amazon 

can be extrapolated to other tropical forests, investigations are still needed in 

representative regions of the tropics to improve the understanding of the impact 

of fragmentation on carbon stocks in this region. In addition, there are open 

scientific questions. The first concerns the extent to which carbon stocks are 

reduced at forest edges as a result of aging. The second is whether this range 

varies in different tropical regions. In addition, few of the works cited above have 

estimated the amount of lost carbon that goes into the atmosphere. The few that 

quantified it, only calculated the emission in the year in which the carbon stock 

was lost, disregarding the decomposition over time. Thus, efforts to fill these gaps 

are emerging. 

2.2 The role of remote sensing in the quantification of forest 

fragmentation and its impacts on carbon stocks in the tropical region 

Although field-scale studies have strongly contributed to the advancement of 

understanding of forest fragmentation and its impacts in recent decades, only 

sensing with its synoptic vision allows advances at the tropical scale. Below are 

the main remote sensing products at the tropical scale that can be used to 

quantify fragmentation, as well as methods developed to quantify carbon stocks 

using LiDAR (Light Detection And Ranging) data that can be used in forest 

fragmentation studies 

2.2.1 Remote sensing products for quantification of forest fragmentation 

The global mapping of forest cover is an important way to understand how forest 

changes affect the regional environmental and global climate balance, informing 

mitigation and adaptation strategies. Thus, in recent decades, efforts have been 

focused on the development of global sets of forest cover and change that are 
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reliable and consistent, as they are used, for example, as input in global 

circulation models, regional and global climate models, in dynamic modelling of 

the vegetation and its carbon stocks, among others (HIBBARD et al., 2010; 

HEROLD et al., 2011). 

Forest cover data are the basis for forest fragmentation studies. Thus, a robust 

and consistent quantification of forest fragmentation and the modelling of its 

impact on forest carbon stocks largely depends on the chosen dataset. 

Technological advances in the computational field and the availability of Earth 

observation data in recent decades have allowed the development of various data 

sets on forest cover and dynamics, at different spatial and temporal scales. Table 

2 summarizes some characteristics, advantages, and disadvantages of the main 

forest cover products available for the tropical region. 
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Table 2.2 - Main forest cover maps available for the tropical region. Spatial resolutions, temporal coverage, advantages, and disadvantages 

are presented. 

Dataset 
Spatial 

Resolutio
n (m) 

Temporal 
Coverage 

Advantages Disadvantages 

GFC- Global Forest Change 
(HANSEN et al., 2013) 

30 2000-2020 
High spatial resolution; Multitemporal; High 

temporal coverage. 

May include forest fires; Includes planted 
forests; Includes secondary vegetation prior to 
2000; Need to apply a tree cover percentage 

threshold. 

Roadless Project 
(VANCUTSEM et al., 2021) 

30 1982-2020 

High temporal resolution; Multitemporal; Very high 
temporal coverage; Areas of forests already 

defined; Separates deforestation from degradation 
(selective logging and fire). 

- 

ESA CCI Land Cover 
(ESA - EUROPEAN SPACE 

AGENCY, 2017) 
300 1992-2015 

Multitemporal; Very high temporal coverage; Areas 
of forests already defined; Forest cover sorted by 

type. 

Low spatial resolution; Includes secondary 
growth forest. 

MODIS Land Cover Type Product 
(MCD12Q1) (FRIEDL; SULLA-

MENASHE, 2019) 
500 2001-2021 

Multitemporal; High temporal resolution; Areas of 
forests already defined. 

Low spatial resolution; Includes secondary 
growth forest. 

Landsat Tree Cover Continuous 
Fields (SEXTON et al., 2013) 

30 2000 High spatial resolution. 

Fixed in time; Need for auxiliary data on forest 
cover loss; Includes secondary vegetation prior 

to 2000; Need to apply a tree cover 
percentage threshold; 

Primary Humid Tropical Forests 
(TURUBANOVA et al., 2018) 

30 2001 
High spatial resolution; Areas of forests already 

defined. 
Fixed in time; Need for auxiliary data on forest 

cover loss. 

Global PALSAR-2/PALSAR 
Forest/Non-Forest Map 
(SHIMADA et al., 2014) 

25 2007-2017 
High spatial resolution; Areas of forests already 

defined. 
Low temporal coverage; Includes secondary 

vegetation prior to 2007. 

Global TanDEM-X forest map 
(MARTONE et al., 2018) 

50 
2011-2017 
(Temporal 
Mosaic) 

High spatial resolution; Areas of forests already 
defined 

Fixed in time; Need for auxiliary data on forest 
cover loss; Mapping based on multiple years 
(2011-2017); Includes secondary vegetation 

prior to 2011. 
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Of the eight forest cover mappings in Table 2.2, two are based on RADAR data  

(SHIMADA et al., 2014; MARTONE et al., 2018) and six on optical data. The 

spatial resolution of the mappings ranged from 25 m to 500 m, with 50% with a 

resolution of 30 m (based on Landsat data). Two of the mappings have coarser 

spatial resolution (ESA - EUROPEAN SPACE AGENCY, 2017; FRIEDL; SULLA-

MENASHE, 2019), the ESA CCI Land Cover with 300 m, based on MERIS data 

- Medium Resolution Imaging Spectrometer and the MODIS MCD12Q1 with 500 

m, based on MODIS data - Moderate-Resolution Imaging Spectroradiometer. 

Only two mappings have very high temporal coverage (VANCUTSEM; 

FRÉDÉRIC, 2016; ESA - EUROPEAN SPACE AGENCY, 2017), although the 

ESA CCI Land Cover is limited by its coarse spatial resolution (300m). Three of 

the mappings are fixed in time (SEXTON et al., 2013; MARTONE et al., 2018; 

TURUBANOVA et al., 2018), and auxiliary forest cover loss data is needed to 

build multitemporal maps. Most of the mappings have the forest classes already 

defined, while two of the mappings (HANSEN et al., 2013; SEXTON et al., 2013) 

require the application of a threshold to define forest areas. In addition, the ESA 

CCI Land Cover mapping, for example, maps areas of secondary growth forest, 

which makes temporal studies with forest edges difficult, as these end up 

disappearing with the mapping of secondary growth areas. 

The accuracy of these mappings varies according to the scale evaluated (global 

and regional). In addition, different methods were used to validate these products, 

which makes comparisons difficult. Validations aimed at the tropical region are 

still necessary, with a view to applications in forest fragmentation. On the other 

hand, the GFC mapping (HANSEN et al., 2013) and the Roadless Project 

(VANCUTSEM et al., 2021) certainly present the best characteristics for 

applications in forest fragmentation in the tropical region, considering their spatial 

resolution, temporal coverage and as there is still no consensus on a final forest 

cover and change product for the tropical region. 
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2.3 Use of LiDAR for estimating carbon stocks in tropical forests 

2.3.1 LiDAR as a remote sensing system 

Categorized as an active remote sensing technology, LiDAR (Light Detection And 

Ranging) includes land, air and orbital platforms. The system works by emitting 

laser beams towards the earth's surface, operating in the visible to infrared range 

of the electromagnetic spectrum. The emitted beam interacts with surface 

objects, where part of the radiation is reflected, returning, and being registered 

by the sensor. 

From the strength of the return signal, it is possible to obtain information about 

the targets on the surface. However, the most useful information for forestry 

applications is the return time of each pulse, which allows the calculation of the 

distance between the surface targets and the sensor (LARGE; HERITAGE, 

2009), and consequently the altitude, latitude, and longitude of each return. The 

distance between the target and the sensor is calculated by the relationship: 

(c×t)/2, where c is the speed of light and t is the time between emission and 

registration of the laser pulse in the sensor. 

From the registration of the direction of the laser beam, information from the 

differential GPS (Global Positioning System) and from the INS (Inertial 

Measurement Unit; records the rolling, pitching and yaw) on board the platform, 

allow obtaining three-dimensional coordinates (3-D) of every point on the Earth's 

surface (WEHR; LOHR, 1999; REUTEBUCH; ANDERSEN; MCGAUGHEY, 

2005; LARGE; HERITAGE, 2009; HASSEBO, 2012; CHEN, 2014) (Figure 2.6). 
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Figure 2.6 – Principles and components of an Airborne LiDAR System. The double 
dashed arrows represent the communication between the GPS 
equipment (ground station and on board the plane) and the satellite 
constellation. 

 

The recording of the return signal can occur in two ways: by discrete pulse or 

continuous wave (full waveform) (Figure 2.7). In discrete return (cloud of points, 

commonly used in forestry applications), each point contains information with 3-

D coordinates (latitude, longitude, and altitude), the signal strength and the type 

of return (first, last or intermediate). On the other hand, in continuous feedback, 

the distribution of the entire feedback signal is recorded according to the time or 

distance of the feedback (GIONGO et al., 2010). 
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Figure 2.7 - Return signal recording in airborne LiDAR Systems. 

 

The first pulses that interact with the surface and return to the sensor (first returns) 

contain the signal that reaches the top of the forest canopy. The next set of pulses 

represents the return of leaves and branches from the vegetation. As the laser 

beam travels through the forest canopy, understory data is obtained. The last 

returns correspond to the terrain, the latter used to create the digital terrain 

models (GIONGO et al., 2010). 

2.3.2 Estimation of forest carbon stocks using LiDAR 

The estimation of forest carbon stocks plays an important role in studies of the 

carbon cycle in tropical forests, given the growing concern about the increase in 

anthropogenic carbon emissions into the atmosphere. Methodologies for 

estimating forest biomass are an important tool for mitigation mechanisms such 

as REDD - Reducing Emissions from Deforestation and Forest Degradation 

(SINHA et al., 2015). 

Traditionally, there are two basic methods for estimating forest carbon, the direct 

and the indirect. The direct method is characterized by clearing the vegetation, 

weighing the entire mass, and later estimating forest carbon, while the indirect 

method uses allometric equations to estimate forest carbon. 

Direct methods limit the collection of forest carbon in large areas, such as tropical 

forests, as it is an expensive and slow process. However, indirect measurements 



25 

of forest carbon using remote sensing data have become a viable option in large-

scale applications (LE MAIRE et al., 2011). One result of these applications is the 

currently available forest carbon maps for the tropical region (Table 3). 

Table 2.3 - Main forest carbon maps available for the tropical region and their respective 

characteristics. 

Map 
Extensio

n 
Base year 

Spatial 
resolution 

(m) 
Reference 

Saatchi Map 
Pantropic 

l 
2000 1,000 (SAATCHI et al., 2011) 

Baccini 500 Map 
Pantropic 

l 
2007-2008 500 (SAATCHI et al., 2011) 

Baccini 30 Map Global 2000 30 
(BACCINI et al., 2012; GFW - 
GLOBAL FOREST WATCH, 

2019) 

Avitabile Map 
Pantropic 

l 
~2000 1,000 (AVITABILE et al., 2016) 

Ruesch & Gibbs 
Map 

Global 2000 1,000 (RUESCH; GIBBS, 2008) 

Hu Map Global 2000-2004 1,000 (HU et al., 2016) 

ESA Biomass 
Climate Change 

Initiative 
Global 

2010, 2017 
and 2018 

100 (SANTORO; CARTUS, 2021) 

Although useful, these maps have uncertainties propagated from the acquisition 

of field data (used for calibration) to the method used to extrapolate forest carbon 

estimates. So, in general, each map comes with an uncertainty map so that users 

can assess inherent errors. It is important to highlight that the maps presented in 

Table 3 are centred on the year 2000, which makes it impossible to carry out 

studies with time series prior to that year, thus making efforts to build forest 

carbon maps centred on the 20th century. 

Although the forest carbon maps mentioned above are useful for several studies, 

they are fixed in time and generalist, which limits applications that require 

multitemporal data and with a good ability to detect the local variability of forest 

carbon. An emerging alternative is the estimation of forest carbon using LiDAR - 

Light Detection And Ranging airborne data. 

Estimates of carbon stocks via LiDAR can be performed by the area-based 

method or by the method based on individualization of trees (CHEN, 2014), with 

the use of the former being the most suitable for tropical forests. The use of the 
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method based on individualization of trees is still less accurate compared to the 

method based on area due to the complexity of tropical tree shapes and 

understory vegetation, which makes it difficult to separate a particular tree in the 

LiDAR point cloud (COOMES et al., 2017). However, these limitations can be 

addressed with advances in individualizing trees based on terrestrial LiDAR data 

(BURT; DISNEY; CALDERS, 2018; GONZALEZ DE TANAGO et al., 2018; 

PEREIRA et al., 2019). 

Table 4 shows the main area-based methodologies developed to estimate carbon 

stocks from LiDAR data in the tropical region. 
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Table 2.4  - Methods for estimating carbon stocks from LiDAR data available for the tropical region. 

Reference Type 
Spatial 

resolution 
(m) 

Equation 

Asner et al. 
(2010) 

Regional 
(Peru) 

30 
Equation: 𝐴𝐺𝐶 = 0.3531 ∗ 𝑀𝐶𝐻1,9252. Where AGC is carbon above ground and MCH is the average height of 

the canopy profile. The equation has R2 = 0.85 and RMSE not evaluated. 

Mascaro et al. 
(2011) 

Regional 
(Panama) 

60 
Equation: 𝐴𝐶𝐷 = 1.4110 ∗ 𝑀𝐶𝐻1,4126. Where ACD is the above-ground carbon density and MCH is the 

average height of the canopy profile. The equation has R2 = 0.85 and RMSE = 16.6 Mg C ha-1. 

Asner et al. 
(2012) 

Universal 60 
Equation:  𝐴𝐶𝐷 = 2.04 ∗ 𝑀𝐶𝐻0,436 ∗ 𝐵𝐴0,946 ∗ 𝑊𝐷0,912. Where ACD is the aboveground carbon density, MCH 

is the average height of the canopy profile, BA is the regional basal area, and WD is the regional wood 
density.  The equation has R2 = 0.80 and RMSE = 27.6 Mg C ha-1. 

Asner e 
Mascaro 
(2014) 

Universal 100 
Equation:  𝐴𝐶𝐷 = 3.8358 ∗ 𝑇𝐶𝐻0,2807 ∗ 𝐵𝐴0,9721 ∗ 𝜌𝐵𝐴

1,3763
. Where ACD is the density of carbon above ground, 

THC is the average height of the top of the canopy, BA is the regional basal area and  ρBA is the wood density 
weighted by the basal area. The equation has R2 = 0.92 and RMSE = 17.1 Mg C ha-1. 

Longo et al. 
(2016) 

Regional 
(Brazil; 

Amazon 
Biome) 

50 

Longo et al. (2016) developed two equations: (1)  𝐴𝐶𝐷 = 0.20 ∗ ℎ ∗ 𝑘ℎ
0,66 ∗ ℎ5

0,11 ∗ ℎ10
−0,32 ∗ ℎ𝐼𝑄

0,50 ∗ ℎ100
−0,82

 (2) 

 𝐴𝐶𝐷 = 0.025 ∗ 𝑇𝐶𝐻1,99. Where ACD is the aboveground carbon density, ℎ is the average height of returns, kh 

is the kurtosis of the distribution of all heights of returns, h5 and h10 are the percentiles 5 and 10 from all 
heights of returns, hIQ is the interquartile range, h100 is the maximum height and TCH is the average height of 
the top of the canopy. The first equation has R2 = 0.70 and RMSE = 41.7 Mg C ha-1, while the second has R2 

= 0.68 and RMSE = 43.3 Mg C ha-1. 

Xu et al. 
(2017) 

Regional 
(Democratic 
Republic of 

Congo) 

100 

Xu et al. (2017) developed two equations: (1)  𝐴𝐺𝐵 = 1.88 ∗ 𝑀𝐶𝐻1,55 and (2)  𝐴𝐺𝐵 = 10.43 ∗ (𝑀𝐶𝐻 ∗ 𝑊𝐷)1,19. 
Where AGB is the above-ground biomass, MCH is the average canopy height and WD is the density of wood. 

The first equation has R2 = 0.76 and RMSE = 60.33 Mg ha-1 (30.17 Mg C ha-1), while the second has R2 = 
0.82 and RMSE = 51.43 Mg ha-1 (25.72 Mg C ha-1). 

Ferraz et al. 
(2018) 

Regional 
(Indonesia) 

50 
Equation:  𝐴𝐺𝐵 = 0.03 ∗ 𝑀𝐶𝐻2,65. Where AGB is the above-ground biomass, MCH  is the average canopy 

height. The equation has R2 = 0.81 and RMSE = 62.21 Mg ha-1 (31.11 Mg C ha-1). 

Jucker et al. 
(2018) 

Regional 
(Borneo) 

100 
Equation:  𝐴𝐶𝐷 = 0.567 ∗ 𝑇𝐶𝐻0,554 ∗ 𝐵𝐴1,081 ∗ 𝑊𝐷0,186. Where ACD is the density of carbon above ground, 

THC is the average height of the top of the canopy, BA is the basal area and WD is the density of wood. The 
equation has RMSE = 19 Mg C ha-1 and R2 not evaluated. 

Becknell et al. 
(2018) 

Regional 
(Brazil; 

Atlantic Forest 
Biome) 

50 
Equation: 𝐴𝐺𝐵 =

590,2

1+𝑒−0,202∗(𝑃95−23,24). Where AGB is the above-ground biomass and P95 is the 95th percentile 

of canopy height. The equation has R2 not evaluated and RMSE = 44.85 Mg ha-1 (22.42 Mg C ha-1). 
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The use and development of methods for estimating forest carbon by LiDAR has 

grown in recent decades in the tropical region (Table 2.4). Asner et al. (2010), for 

example, developed an equation to estimate carbon stocks using LiDAR data for 

the Peruvian Amazon, supporting calculations of carbon emissions from 

deforestation and forest degradation. On the other hand, Becknell et al. (2018) 

developed an equation to estimate aboveground biomass via LiDAR, supporting 

the analysis of the distribution of this variable in secondary growth forests in the 

Brazilian Atlantic Forest. 

Of the equations compiled in Table 2.4, two are universal, that is, they were 

calibrated using data from different continents, and eight are local, covering the 

American, African, and Asian continents. The pixel size in which the equation is 

applied varied between 30 m and 100 m, which is defined by the size of the field 

plots used to calibrate the models. In addition, there is a consensus in the 

literature that as the model pixel size increases, the uncertainties associated with 

carbon estimation progressively reduce (ASNER et al., 2010; ZOLKOS; GOETZ; 

DUBAYAH, 2013; MAUYA et al., 2015), that is, although a finer resolution is 

necessary for some applications, it is also necessary to consider the inherent 

uncertainties in the estimates. 

Of the nine equations in Table 4, eight follow the power law, expressed as y = a 

* xb * ... zc, while only the equation developed by Becknell et al. (2018) follows a 

sigmoid-like function. In general, the equations used simple metrics based on 

canopy height. However, some equations (ASNER et al., 2012; ASNER; 

MASCARO, 2014; XU et al., 2017; JUCKER et al., 2018) used regional variables 

such as basal area and wood density to improve estimates. Although generated 

at low computational cost, LiDAR metrics based on canopy height tend to 

saturate in areas of high biomass, since in these regions, at a certain point of 

forest development, the accumulation of biomass is no longer accompanied by 

an increase in the canopy height of the vegetation. Equation 1, developed by 

Longo et al. (2016), for example, uses LiDAR metrics that consider different strata 

of the forest, which reduce problems with saturation in the estimates, although 

the metrics have a higher computational cost to generate. Thus, it is up to the 

user to consider, based on its application, the best equation to be used. 
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In general, the universal equations had an average R2 of 0.86±0.06 (n=2), while 

the regional equations had an average R2 of 0.78±0.06 (n=7). At the same time, 

the universal equations had a mean RMSE (Root Mean Square Error) of 

22.35±5.25 Tg C ha-1 (n=2) and the regional ones an average of 28.75±9.21 Tg 

C ha-1 (n=8). The better explanatory power of biomass through LiDAR variables 

and the lower uncertainty associated with the universal equations can be 

explained by the larger sampling compared to the regional equations. 

Finally, it is important to highlight the contribution of LiDAR instruments on board 

orbital platforms for forest carbon estimates. The first device of this kind, the 

Geoscience Laser Altimeter System (GLAS) on board the satellite Ice, Cloud, and 

Land Elevation Satellite (ICESat), was operational from 2003 to 2009 and carried 

out an unprecedented data collection. These data were combined with other 

satellite-derived data to produce continuous biomass maps (DUNCANSON; 

NIEMANN; WULDER, 2010; SAATCHI et al., 2011; MITCHARD et al., 2012). In 

2018, the sensor LiDAR GEDI (Global Ecosystem Dynamics Investigation) was 

launched (STYSLEY et al., 2015) which is on board the International Space 

Station (ISS) (STAVROS et al., 2017). GEDI, among other products, will provide 

aboveground biomass data with spatial resolution ranging from 25 m to 1 km 

(SILVA et al., 2018a; HANCOCK et al., 2019). 
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3 DEFORESTATION-INDUCED FRAGMENTATION INCREASES FOREST 

FIRE OCCURRENCE IN CENTRAL BRAZILIAN AMAZONIA3 

3.1 Introduction 

Tropical forests are globally important reservoirs of carbon (C) and biodiversity 

(BONAN, 2008; BACCINI et al., 2012; SULLIVAN et al., 2017). Vegetation in this 

region stores between 350-600 Pg C (HOUGHTON; HALL; GOETZ, 2009; PAN 

et al., 2011; SAATCHI et al., 2011; BACCINI et al., 2012; CIAIS et al., 2013), 

while the atmosphere stores about 750 Pg C (GRACE, 2004). The loss of these 

C stocks due to deforestation and forest degradation is estimated to be 

approximately 1.1 Pg C year-1 (MALHI, 2010; HOUGHTON et al., 2012; GRACE; 

MITCHARD; GLOOR, 2014). Amazonia, specifically, is home to more than half 

of the world's remaining rainforest areas (CAPOBIANCO, 2001). However, in the 

Brazilian Amazonia, intense land-use and land-cover changes and forest 

degradation threaten the forest structure, biodiversity, and ecological functions 

(COE et al., 2013). 

The intense occupation of Brazilian Amazonia from the 70s (FEARNSIDE, 2005) 

aiming to expand agricultural and livestock activities and to increase the wood 

supply, besides a general lack of enforcement of environmental laws, caused the 

dramatic increase of deforestation rates, reaching a peak of 27,772 km2 in 2004 

(NEPSTAD et al., 2014; INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS 

(INPE), 2017). After 2005, a steep decrease in deforestation rates was observed, 

which can be attributed to a combination of factors including governmental 

enforcement of environmental laws, restrictions on access to credit, expansion of 

protected areas, and civil society interventions in the soy and beef supply chains 

(NEPSTAD et al., 2014). Nonetheless, the deforestation rate increased markedly 

in 2015 and 2016 (INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS (INPE), 

 
 

3 This chapter is an adapted version of the published paper: SILVA JUNIOR, C. H. L. et al. Deforestation-

induced fragmentation increases forest fire occurrence in central Brazilian Amazonia. Forests, v. 9, n. 6, 

p. 305, 2018. 
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2017) (24% and 27% in relation to the previous year respectively), raising 

concerns that the recent weakening of environmental-protection policies could be 

already reversing the Brazilian progress in reducing the Amazonian Forest 

destruction. 

Whether at a slower or faster pace, continued deforestation cumulatively causes 

forest habitat loss, altering habitat configuration such as the change in spatial 

arrangement of the remaining habitat through forest fragmentation. Metrics of 

habitat configuration, such as the number and mean size of forest patches and 

edge length covary with habitat amount. Understanding these relationships is 

important to correctly interpret the effects of habitat fragmentation on tropical 

forests (VILLARD; METZGER, 2014). Following Farhig (2003) (2003) the mean 

patch size of remaining forests is expected to decrease linearly with the reduction 

in habitat amount while both the number of patches and the total edge are 

expected to rise up to a certain threshold of habitat loss and then decrease with 

increasing deforestation. 

Forest edges resulting from landscape fragmentation are highly fire-prone due to 

increased dryness, higher fuel load compared to forest interior and proximity to 

ignition sources from adjacent management areas (COCHRANE, 2001; 

LAURANCE; WILLIAMSON, 2001; COCHRANE; LAURANCE, 2002; ALENCAR; 

SOLÓRZANO; NEPSTAD, 2004; ARAGÃO; SHIMABUKURO, 2010; CANO-

CRESPO et al., 2015). Fragmentation and its resulting edge effects may act 

synergistically with the ongoing large-scale changes in climate and fire regimes, 

threatening the Amazonian Forest ecological integrity (ARAGÃO et al., 2007; 

COE et al., 2013). 

Much of the literature on the effects of habitat loss and changes in habitat 

configuration has focused on biodiversity maintenance and population 

persistence. Studies concerning the effect of habitat loss and configuration on 

forest fires incidence and intensity at the landscape scale are rare in the Brazilian 

Amazonia, especially in active deforestation frontiers, where the interactions 

between deforestation, forest fragmentation and fire are evident. In other regions 

of the Amazon Basin, some authors have demonstrated a positive response of 
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fire incidence and intensity to increased fragmentation and forest edges in the 

landscape (COCHRANE, 2001; COCHRANE; LAURANCE, 2002; ALENCAR; 

SOLÓRZANO; NEPSTAD, 2004; ARMENTERAS; GONZÁLEZ; RETANA, 2013; 

ARMENTERAS et al., 2017). 

In Brazil, the Forest Code (Federal Law 12.727/2012) is the main national law 

regulating the conservation of forests within private properties (BRASIL, 2012). 

This law determines that, within the Amazon Biome, at least 80% of each rural 

property should not be deforested to ensure the sustainable use of natural 

resources, assisting in the conservation and rehabilitation of ecological 

processes, promoting the conservation of biodiversity, as well as the shelter and 

protection of wildlife and native flora. The question of whether such a high level 

of habitat maintenance is necessary to reduce fire incidence in the region, 

however, has not been directly addressed yet. 

To fill this gap, we relate, for the first time, habitat configuration metrics with fire 

incidence and intensity in an active Brazilian Amazonia deforestation frontier, 

aiming to identify the relationships between forest fragmentation and fire on the 

landscape scale. To achieve this, we address the following question: What is the 

relationship between habitat loss and measures of habitat configuration, and their 

implications for fire incidence and intensity in a central Amazonian landscape? 

3.2 Study area 

Our study site was located in the northern region of Novo Progresso municipality, 

State of Pará, Central Brazilian Amazonia, with an area of 30,000 km2 (3 x 106 

ha) (Figure 1), which corresponds approximately to the area of Belgium. This 

region is known as a frontier of deforestation because of high rates of 

deforestation in the last 10 years. The vegetation is predominantly composed of 

the Dense Ombrophilous Forest, with trees that can reach heights up to 50 

meters (VIEIRA et al., 2004). 

The initial occupation of this area was associated with governmental settlement 

projects and the construction of road infrastructure, mainly the construction of 

BR-163 highway (PINHEIRO et al., 2016). During the 70's and 80’s, a 
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spontaneous colonization phenomenon occurred in the region, characterized by 

the occupation of land by small subsistence farmers and gold miners (PINHEIRO 

et al., 2016). There are three main deforestation patterns present in the study 

area (i) fishbone, associated with settlements, (ii) rectangular patches, related to 

large rural properties, and (iii) stem of the rose pattern associated with mining 

areas, mainly in BR-163 (ARIMA et al., 2015). 

Figure 3.1 - Location map of the study area. On the main map, in green are the old-
growth and secondary forest areas, in magenta the productive lands and in 
purple the burned areas. Composition of Landsat 8 images (OLI sensor) for 
the dry season of the year 2014 (Red-Shortwave Infrared 1; Green-Near 
Infrared; Blue-Red). 
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3.3 Datasets 

3.3.1 Forest cover map 

Land-use and land-cover data were obtained from the Amazonia Land-use Land-

cover Monitoring Project (TerraClass Project/INPE) (ALMEIDA et al., 2016). We 

used data for the year 2014, which corresponds to the last year of available 

mapping. 

The TerraClass Project data are the result of a combination of deforestation data 

from the Brazilian Amazonia Deforestation Monitoring Project (PRODES/INPE) 

(INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS (INPE), 2017) and the 

land use classification based on orbital images from Landsat, Terra/Aqua and 

SPOT-5 satellites. 

We regrouped the original classes of the TerraClass Project into two new classes: 

Forest Cover and Deforested Areas (Table 1). To eliminate natural edges in the 

analyses, we jointed the areas of Cerrado (Brazilian Savannas) and water bodies 

to the Forest Cover class. 

Table 3.1 - Regroups of the original classes of the Amazonia Land-use Land-cover 

Monitoring Project (TerraClass Project) to obtain the forest cover map. 

Original classes 
New 

classes 

Forest, Secondary Forest, Cerrado (Brazilian Savanna) and 

Hydrography 

Forest 

Cover 

Annual Crops, Urban area, Deforestation in 2014, Mining, 
Mosaic of Uses, Others, Pasture with exposed soil, 

Herbaceous Pastures, Shrubby Pasture and Regeneration 
with Pasture 

Deforested 
Areas 

 

3.3.2 Active fire data 

Active fire data were obtained for the period between January and December 

2014 from the Fire Information for Resource Management System (FIRMS). 

These data are derived from the MODIS Active Fire Product (MCD14ML, 

Collection 6) (GIGLIO; SCHROEDER; JUSTICE, 2016), adjusted to 1 km of 
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spatial resolution. To generate the product, a contextual algorithm compares the 

daily data of the medium and thermal infrared bands with reference data (without 

thermal anomalies). Subsequently, false detections are rejected by examining the 

brightness temperature of neighbouring pixels (GIGLIO et al., 2003). 

Fire Radiative Power (FRP) values are considered an indicator of fire intensity 

(given in Megawatts or MW) and are commonly related to the amount of biomass 

consumed during the fire, where the higher the FRP value, the greater is the 

amount of biomass consumed (WOOSTER et al., 2005). 

During 2014 the number of detected active fires (N = 35,873) in Pará State was 

near the average from 1999 to 2017 (n=32,602) (INSTITUTO NACIONAL DE 

PESQUISAS ESPACIAIS (INPE), 2018) and the year presented a normal 

climatology (Figure A1) (ARAGÃO et al., 2018). 

Figure 3.2 – (a) Seasonal rainfall pattern (the vertical black lines are the standard 
deviations). (b) Normalized rainfall anomalies (1998-2014) calculated 
based on the methodology proposed by Aragão et al. (2007). Data 
extracted from product 3B43-v7 of the Tropical Rainfall Measuring 
Mission Satellite (TRMM). 

 

3.4 Methods 

3.4.1 Landscape, fire incidence and fire intensity metrics 

Firstly, we use the forest cover map to calculate landscape metrics using the 

LecoS plug-in (Landscape Ecology Statistics; version 2.0.7) (JUNG, 2016) 

implemented in the QGIS software (version 2.18 LTR) (QGIS DEVELOPMENT 

TEAM, 2017). These metrics and its modifications are commonly used in the 

literature for analysis related to forest fires (HAYES; ROBESON, 2011; 
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ARMENTERAS; GONZÁLEZ; RETANA, 2013) and are based on the Fragstats 

software (MCGARIGAL, 2015). 

For our analysis, we used 300 grid cells of 10 km by 10 km. This spatial resolution 

captures satisfactorily the different patterns of fragmentation in our study area. 

According to Saito et al. (SAITO et al., 2011) the size of the cells does not 

statistically affect the results of the landscape metrics, and the user then chooses 

the size of the cells based on the phenomenon and scale analysed. The following 

metrics were adopted (Table 2): (1) Habitat Loss (percentage of deforestation), 

(2) Edges Proportion, (3) Number of Forest Patches, and (4) Mean Forest Patch 

Area. 

Then, for each cell, two metrics were calculated for the active fire data. The first 

metric was the Fire Density (FD; as a proxy of fire incidence), which corresponds 

to the cumulative number of active fires in 2014 that occurred within forest areas 

in each cell divided by the total forest in that cell. The second metric was the FRP 

Mean (as a proxy of fire intensity), which was calculated by averaging the FRP 

values of active fires falling within the forest areas in each cell. 
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Table 3.2 – Landscape metrics used and their respective descriptions. 

Landscape 
metric 

Abbreviation Equation Description 

Habitat Loss HL 
∑ 𝑎𝑖𝑗

𝑛
𝑗=1

𝐴
(100) 

The sum of all deforested areas 
within a cell, divided by total cell 
area, and multiplied by 100 (to 
convert to a percentage). The final 
unit is given in percentage (%). 
Where aij is the area (km2) of patch 
ij, and A is total cell area (km2). 

Edges 

Proportion 
EP 

∑ 𝑒𝑖𝑘
𝑛
𝑘=1

∑ 𝑎𝑖𝑗
𝑛
𝑗=1

 

The sum of the lengths of all forest 

edge segments within a cell, 

divided by total area of all forest 

patches. The final unit is given in 

kilometres of edge per square 

kilometres of forest (km km-2). 

Where eik is the total length (km) of 

edge in patch i, and aij is the area 

(km2) of patch ij. 

Number of 

Forest 

Patches 

NFP 𝑛𝑖 
The number of forest patches 

within a cell (ni). 

Mean Forest 
Patch Area 

MFPA 
∑ 𝑎𝑖𝑗

𝑛
𝑗=1

𝑛𝑖
 

The mean area of all forest 
patches in each cell. The final unit 
is given in square kilometres (km2). 
Where aij is the area (km2) of patch 
ij, and ni is the total of patches 
within a cell. 

3.4.2 Statistical analysis 

To evaluate the relationship among the variables (Fire Density, FRP Mean, and 

landscape metrics), we fitted curves using LOESS Regression (Locally Weighted 

Scatterplot Smoothing – LOESS), which is a form of local regression model 

(CLEVELAND; GROSSE; SHYU, 1992; CLEVELAND; LOADER, 1996). This 

method is a non-parametric strategy for fitting a smooth curve to data, where 

noisy data values, sparse data points or weak interrelationships interfere with 

your ability to see a line of best fit (TATE et al., 2005). We used the span 0.75 

(default setting) in LOESS Regression analyses. 

In order to verify the existence of significant differences in the incidence and 

intensity of fire as a function of the landscape metrics, we used the Kruskal-Wallis 

non-parametric test. This test is equivalent to Analysis of Variance (ANOVA), 

which compares three or more groups to test the hypothesis that they have the 
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same distribution (HETTMANSPERGER; MCKEAN, 2010; GIBBONS; 

CHAKRABORTI, 2011; BONNINI et al., 2014). To identify how the analysed 

variables, differ, a paired posthoc test was performed. To perform the posthoc 

test, we use the Fisher’s least significant difference criterion with Bonferroni 

adjustment methods correction (CONOVER, 1999a). For all tests, the 

significance level of 95% (p-value < 0.05) was adopted. 

We use the R software (version 3.4.4) for all analysis (R CORE TEAM, 2018). 

For LOESS Regression, we use the “loess” native function (RIPLEY, 2018). In 

the Kruskal-Wallis test, we use the “agricolae” package (MENDIBURU, 2017). 

We also separated and quantified active fires and the respective FRP values at 

three edge distances (1, 2 and greater than 2-km), both within forest areas 

(hereafter referred as edge of forest cover) and out of forest areas (hereafter 

referred as edge of deforested areas). Additionally, we calculated the percentage 

of active fires per FRP intervals, as suggested by Armenteras et al. (2013): <50 

MW, 50 to < 500 MW, 500 to < 1000 MW and > 1000 MW. 

3.5 Results 

3.5.1 Relationship between habitat loss and measures of habitat 

configuration 

Our results showed that the analysed landscape metrics exhibited different 

relationships with habitat loss (HL; Figure 2). The number of forest patches 

(NFP), as well as its variance, increases with HL until it reaches 70%, the 

maximum level of deforestation within a grid cell found in the study area (Figure 

2a). The mean forest patch area (MFPA) decreases sharply between 0 and 10% 

of HL and continues to decrease smoothly from about 10% to 70% of HL, with a 

lower variance in the larger HL values (Figure 2b). Similarly, to NFP, EP and its 

variance increase with HL, mostly from 20% of HL onwards (Figure 2c). 
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Figure 3.3– Landscape metrics as a function of Habitat Loss (HL): (a) relationship 
between Habitat Loss and Number of Forest Patches (NFP); (b) 
relationship between Habitat Loss and Mean of Forest Patches Areas 
(MFPA); (c) relationship between Habitat Loss and Edges Proportion (EP). 
Shaded areas represent 95% confidence intervals. 

 

The Kruskal-Wallis test showed that the NFP (KW = 196.04; p-value < 0.05; 

Figure S2a) and the EP (KW = 205.07; p-value < 0.05; FigureS2c) were 

significantly lower only in the interval between 0-20% of HL, while the MFPA (KW 

= 201.38; p-value < 0.05; FigureS2b) was significantly higher in the same interval. 
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Figure 3.4 – Boxplot of the habitat loss (HL) intervals for the number of forest patches 
(a; NFP), mean of forest patches areas (b; MFPA) and edges proportion (c; 
EP). The letters represent the groups resulting from the Kruskal-Wallis 
post-hoc test. For all analyses, a significance level of 95% (p-value < 0.05) 
was adopted. 

 

3.5.2 Relationship between habitat configuration and fire incidence and 

intensity 

Fire density (FD) increased with HL, with greater variability in the higher levels of 

deforestation (Figure 3a). Furthermore, the FD increased until NFP reaches ~35 

per grid cell, and then stabilized (Figure 3b). The FD decreased sharply up to 25 

km2 of MFPA, tending to zero after that. On the other hand, the FD increased up 

to 5 km km-2 of EP, after which it plateaus. 
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Figure 3.5 – Fire Density (FD) as a function of (a) Habitat Loss (HL); (b) Number of Forest 
Patches (NFP); (c) Mean Forest Patches areas (MFPA) and (d) Edges 
Proportion (EP). Shaded areas represent 95% confidence intervals. The 
missing confidence intervals in some regions of the graphs are the result of 
the dispersion in the data at the upper end of the distribution. 

 

 

The Kruskal-Wallis test showed that FD was significantly lower only in the interval 

between 0-10% of the HL (KW = 191.76; p-value < 0.05; Figure S3a), between 

0-10 NFP (KW = 180.68; p-value < 0.05; FigureS3b), between 90-100 km2 of 

MFPA (KW = 224.86; p-value < 0.05; FigureS3c) and finally between 0-1 km km-

2 of EP (KW = 166.82; p-value < 0.05; FigureS3d). 
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Figure 3.6 – Boxplot of the fire density for the habitat loss intervals (a; HL), number of 
forest patches (b; NFP), mean of forest patches areas (c; MFPA) and edges 
proportion (d; EP). The letters represent the groups resulting from the 
Kruskal-Wallis post-hoc test. For all analyses, a significance level of 95% 
(p<0.05) was adopted 

 

The fragmentation effect on the fire intensity, as measured by the Mean FRP, is 

presented in Figure 4. The Mean FRP increased until ~35% of HL and then 

decreased until the higher registered levels of HL (Figure 4a). The Mean FRP 

increased with the increase in the NFP up to 25 but decreased smoothly from 

about 25 to 80 forest patches (Figure 4b). A tendency of decrease in the Mean 

FRP was registered as the MFPA increases up to 50 km2. On the other hand, the 

Mean FRP increased with the increase of the EP up to 3 km km-2, with a 

subsequent decrease up to 7.5 km km-2. 
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Figure 3.7 – Mean FRP as a function of (a) Habitat Loss; (b) Number of Forest Patches 
(NFP); (c) Mean of Forest Patches Areas (MFPA) and (d) Edges Proportion 
(EP). Shaded areas represent 95% confidence intervals. The missing 
confidence intervals in some regions of the graphs are the result of the 
dispersion in the data at the upper end of the distribution. 

 

The Kruskal-Wallis test indicated that forest fire intensity (measured as mean 

FRP) was significantly lower at the lowest levels of fragmentation: 0-10% of HL 

(KW = 162.90; p-value < 0.05; FigureS4a), between 0-10 NFP (KW = 145.49; p-

value < 0.05; FigureS4b), between 90-100 km2 of MFPA (KW = 204.28; p-value 

< 0.05; FigureS4c) and between 0-1 km km-2 of EP (KW = 121.89; p-value < 0.05; 

FigureS4d). 
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Figure 3.8 – Boxplot of the Fire Radiative Power (FRP) for the habitat loss intervals (a), 
number of forest patches (b; NFP), mean of forest patches areas (c; MFPA) 
and edges proportion (d; EP). The letters represent the groups resulting 
from the Kruskal-Wallis post-hoc test. For all analyses, a significance level 
of 95% (p-value < 0.05) was adopted. 

 

 

Most of the active fires detected were located within 1 km from the forest edges 

(Table 3), corresponding to 95% and 98% of fires occurring in forest and 

deforested areas, respectively. 

Table 3.3 – Total of active fires per edge distance. (*) No active fires were observed. 

Class 
Edge 

distance (km) 

Number of 

active fires 
% 

Forest Cover 

> 3 10 0.62 

2 66 4.07 

1 1,546 95.31 

Deforested Areas 

1 2,477 98.92 

2 27 1.08 

> 3 (*) 0 0 
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Most active fires were classified as low intensity (FRP less than 50 MW), 

representing between 70 and 90% of the total of active fires analysed for each 

edge distance (Table4). Between 10 and 28% of the total active fires were in the 

50-500 MW intensity category. The few observed higher intensities of active fires 

(FRP greater than 500 MW) were located in the first kilometre from the forest 

edges only. Corroborating the previous evidence, the Kruskal-Wallis test showed 

a significant difference between the FRP values for 45evelorent edge distances 

in the forest areas (KW = 6.95; p-value < 0.05; FigureS5a), where the highest 

FRP values were observed only in the first kilometre from the forest edges. For 

the deforested areas, no significant difference was observed (KW = 2.99; p-value 

> 0.05; FigureS5b). 

Figure 3.9 – Boxplot of Fire Radiative Power (FRP) for different distances from the edges 
in forest areas (a) and in deforested areas (b). The letters represent the 
groups resulting from the Kruskal-Wallis post-hoc test (p-value = 0.03 for 
Figure S5a and p-value = 0.22 for Figure S5b). (*) No active fires were 
observed. The log transformations were performed only to improve 
visualization of the data in the figure (the Kruskal-Wallis and post-hoc tests 
were performed using the original data). For all analyses, a significance 
level of 95% (p-value < 0.05) was adopted. 

 

 

 

 

 



46 
 

Table 3.4 – Percentage of Fire Radiative Power (FRP) per edges distance interval and 

fire intensity class. (*) no active fires were observed. 

Class 
Edge 

distance 
(km) 

Class of FRP (%) 

< 50MW 50-500 MW 500-1000 MW > 1000 MW 

Forest Cover 

> 3 90.00 10.00 0 0 

2 75.76 24.24 0 0 

1 70.63 28.01 0.97 0.39 

Deforested 

Areas 

1 74.44 24.34 0.93 0.28 

2 74.07 25.93 0 0 

> 3 (*) 0 0 0 0 

 

3.6 Discussion 

3.6.1 Relationship between habitat loss and measures of habitat 

configuration 

Due to the complexity of anthropic actions in the Amazon region, deforestation 

occurs in different patterns, resulting in different spatial configurations of patches 

and forest edges (FAHRIG, 2003; ARIMA et al., 2015; VEDOVATO et al., 2016). 

Here, we show that in Central Amazonia, the NFP increases as deforestation 

progresses to levels up to 70% of HL. The increasing number of forest patches 

and its variability with increasing habitat loss is similar to the one found by Oliveira 

Filho and Metzger (OLIVEIRA FILHO; METZGER, 2006) for the “fishbone” 

fragmentation pattern. This relationship was also found by Villard and Metzger 

(VILLARD; METZGER, 2014) in simulated landscapes. Although the maximum 

HL observed in our study area was 70%, the NFP should necessarily decrease 

at some point as deforestation approaches the 100% level. According to literature 

review carried out by Fahrig (FAHRIG, 2003), the number of forest patches is 

expected to increase up to a certain degree of deforestation (~80% of habitat 

loss) and decrease in the lower levels of habitat amount. 

The non-linear relationship between the MFPA and HL found in our study area 

differed from the one previously presented by Fahrig (FAHRIG, 2003) in a global 

study (meta-analysis) for real landscapes but is similar to that documented by 

Oliveira Filho and Metzger (OLIVEIRA FILHO; METZGER, 2006) in real and 
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simulated landscapes in the Brazilian Amazonia. According to Oliveira Filho and 

Metzger (OLIVEIRA FILHO; METZGER, 2006), this response pattern is usually 

associated with the “fishbone” fragmentation pattern and small settlements, as 

they produce small patches close to each other, similar to our study area. 

The theoretical model proposed by Fahrig (FAHRIG, 2003) describes a 

significant increase in the total edges up to 50% of habitat removal level, tending 

progressively to zero after this threshold. However, in our study area, there was 

no reduction in EP up to at least 70% of HL, indicating a greater inflection point 

than that observed by Fahrig (FAHRIG, 2003). The same pattern was observed 

by Numata et al. (NUMATA et al., 2010) when analysing the forest fragmentation 

in old deforestation frontiers in the state of Rondônia (Brazilian Amazonia) with 

different patterns and levels of deforestation, and by Laurance et al (LAURANCE; 

LAURANCE; DELAMONICA, 1998) when simulating the deforestation scenario 

for the same state. This pattern occurs over time as the habitat loss progresses 

to intermediate levels, increasing the number of forest patches and consequently 

the density of forest edges. On the other hand, when forest removal approaches 

100%, the number of forest patches and total area are reduced dramatically, 

resulting in a lower edge density in the landscape (FAHRIG, 2003; LIU; HE; WU, 

2016). 

3.6.2 Relationship between habitat configuration and fire incidence and 

intensity 

Our results suggest that the landscape structure partly explains the variation of 

fire incidence and intensity in forest areas, similar to the results found by 

Armenteras et al. [25] in the Colombian Amazon. More fragmented landscapes, 

with smaller patches and a greater proportion of edges, tend to be more 

vulnerable to fire than landscapes with continuous and intact forests. The effect 

of fragmentation on the incidence and intensity of fire observed here is likely a 

result of changes in the original structural configuration of the forest, which 

changes mass and energy balance. Fragmented forests tend to be drier than a 

continuous forest cover, due to the lower humidity retention, higher temperature, 

and greater exposure to dry air masses and winds (COCHRANE; LAURANCE, 
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2008). This dry condition causes a higher tree mortality (generally large trees) 

(LAURANCE et al., 2017), resulting in a large amount of fuel load available (dead 

biomass), which increases the susceptibility of forest to fire (BERENGUER et al., 

2014). 

Although fragmentation makes forests more susceptible to fire, the occurrence of 

fire is conditioned to the presence of ignition sources. In Amazonia, these sources 

are mostly associated with the escape of fire from newly deforested areas (Figure 

A1b) or from the management of agricultural and pasture areas (Figure A1c) 

(ARAGÃO et al., 2008; CANO-CRESPO et al., 2015; ROSAN; ANDERSON; 

VEDOVATO, 2017). This explains the observed variation in fire occurrence and 

intensity at different levels of landscape fragmentation in our results. This issue 

becomes even clearer when we observe that over than 95% of the active fires 

occurred in the first kilometre from the edge, in both forested and deforested 

areas, indicating the escape of fires into forests. We verified that fire penetrates 

forest areas up to a distance of 3 km, which corroborates other studies carried 

out in the Amazon region (COCHRANE, 2001; COCHRANE; LAURANCE, 2002; 

BRIANT; GOND; LAURANCE, 2010; ARMENTERAS; GONZÁLEZ; RETANA, 

2013; ARMENTERAS et al., 2017). All active fires of higher intensity (FRP above 

500 MW) occurred in the first kilometre in the forest areas, with a significant 

difference when compared to the other edge distances. This can be explained by 

the greater amount of fuel available, due to the high rate of trees mortality closer 

to the forest edges (LAURANCE et al., 2017). 

The great variability in the incidence and intensity of fire observed at different 

levels of fragmentation in our results are likely related to the combined existence 

of ignition sources and fuel availability in the landscape. Conversely, it is 

important to note that our results are based on a year considered normal from 

the point of view of the amount of rainfall (Figure S1). Thus, the effects of 

fragmentation on fire incidence and intensity can be more significant during 

drought years (ARAGÃO et al., 2007, 2018), increasing carbon emissions into 

the atmosphere (ANDERSON et al., 2015; ARAGÃO et al., 2018). This scenario 

is worrying since the occurrence of extreme droughts events have become 
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increasingly frequent in Amazonia, and fire occurrence is predicted to increase in 

the region due to climate and land use change synergies (MALHI et al., 2008; 

MARENGO; ESPINOZA, 2016; LE PAGE et al., 2017). 

3.6.3 Implications of the effect of fragmentation on fire occurrence in 

Amazonia for the Brazilian forest code 

Land use regulation is a critical component of forest governance and 

conservation strategies (STICKLER et al., 2013). In Brazil, the Brazilian Forest 

Code (BFC) is the main law for regulating land use with the objective of 

conserving native vegetation. Two instruments of this legislation are highlighted, 

the first is the Legal Reserve (LR), which requires the maintenance of at least 

80% of intact forest areas on private properties in the Amazon biome; and the 

other is the Permanent Preservation Area (PPA), that includes both Riparian 

Preservation Areas (RPA) that protect riverside forest buffers, and Hilltop 

Preservation Areas in high elevations and steep slopes (SOARES-FILHO et al., 

2014). 

Our results showed that forest removal values limited by 20% guarantee a smaller 

number of patches (0-20 patches per 100 km-2) with larger average areas (90-

100 km2) and a lower proportion of forest edges (0-2 km km-2) in relation to higher 

levels of habitat loss. This HL threshold coincides with values where the incidence 

and intensity of fire are significantly smaller when compared to the other levels of 

HL. The susceptibility of the landscape to forest fires clearly increases with 

greater HL. Therefore, maintaining native vegetation in at least 80% of the rural 

properties area, as prescribed in the LR definition for the Amazon biome, allow 

for low levels of fire incidence, even if ignition sources are present. Regions with 

a lower proportion of forest cover are clearly more susceptible to forest 

degradation due to fire, unless appropriate prevention and management 

techniques are applied. 

In 2012 the BFC was reviewed and based on our results we argue that some of 

the current BFC rules for LR and PPA areas can contribute to increasing fire 

incidence and intensity in the Amazon region, since they substituted some 
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instruments established in the previous version of the law. The most worrying 

from a conservation point of view is that “small” properties (from 40 ha to 440 ha 

depending on the region) were exempted from recovering areas of LR deforested 

illegally before 2008. Furthermore, the vegetation of PPA within a property is now 

considered part of the LR, while before the law’s modification the PPA and the 

LR areas were computed separately, as they serve to different conservation 

purposes. Additionally, the requirements for restoration of PPA and maintenance 

of LR were reduced. The LR requirement for 80% intact forest was reduced to 

50% when (1) the proportion of conservation areas and indigenous territories 

within Amazonian municipalities is equal to or higher than 50% or (2) 

conservation areas and indigenous territories represent 65% of the state territory. 

These legal modifications together reduced the country’s “forest debt” by 58% 

(SOARES-FILHO et al., 2014), which may allow the maintenance of the 

fragmentation of Amazonian landscapes, keeping them susceptible to the 

occurrence of fire, as we demonstrated in our results. 

Another legal modification allowed the rural owner who has forest liabilities to 

compensate for it in other properties located anywhere in the same biome. Given 

the vast extent of Brazilian biomes, this implies that an owner may compensate 

for an illegally deforested area by restoring another over 3,000 km away. Such 

restoration effort, if undertaken in a region where forest cover is already well 

preserved, would not recover the landscape structure and local environmental 

services where it is needed most. Thus, the displacement of restoration efforts 

from highly fragmented to more preserved areas would make the former regions 

more susceptible to the incidence of fire. 

According to the BFC, economic exploitation is allowed in the LR areas, including 

the collection of non-timber forest products (fruits, vines, leaves and seeds), and 

the commercial and non-commercial selective extraction of wood. The 

sustainable economic exploitation of the forest is important for the rural owner as 

a source of income, avoiding the deforestation of the LR areas. However, good 

forest management practices should be applied. Selective logging can increase 

the forest susceptibility to fire (HOLDSWORTH; UHL, 1997) due the canopy 
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damage (UHL; VIEIRA, 1989; VERISSIMO et al., 1992; PEREIRA et al., 2002; 

ASNER et al., 2006) that allows the penetration of solar radiation, raising the 

temperature and decreasing the humidity within the forest. These microclimate 

changes associated with the greater amount of dead biomass caused mainly by 

the logging operations (UHL et al., 1997), resulting in more severe fires 

(SIEGERT et al., 2001; GERWING, 2002). 

This whole context is worrisome since the main sources of fire ignition in the 

Amazonia are related to the management of adjacent agricultural and livestock 

areas. The flexibilization of the Forest Code in comparison to its predecessor 

allowed the maintenance of extensive fragmented areas, mainly in the region of 

the deforestation arc, where there are intense anthropic activities (VEDOVATO 

et al., 2016), and therefore abundant ignition sources. 

3.7 Conclusions 

We conclude that the susceptibility of the landscape to forest fires increases at 

the beginning of the deforestation process. In general, our results reinforce the 

need to guarantee low levels of fragmentation in the Brazilian Amazonia in order 

to avoid the degradation of its forests by fire and the related carbon emissions 

(ANDERSON et al., 2015; ARAGÃO et al., 2018). Future work could examine 

whether the relations found here are kept or modified during extreme drought 

events. 

The reduction of forest liabilities resulting from the last modification of the forest 

code increases the probability of occurrence of forest degradation by fire since it 

allows the existence of areas with less than 80% of forest cover, contributing to 

the maintenance of high levels of fragmentation. 

We anticipate that forest degradation by fire will continue to increase in the region 

especially in light of the mentioned environmental law relaxation and its 

synergistic effects with climate change. All of this can affect efforts to Reduce 

Emissions from Deforestation and Forest Degradation (REDD). Therefore, 

actions to prevent and manage forest fires are necessary, mostly for the 

properties where forest liabilities exist and are compensated in other regions. 
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3.8 Graphical Abstract 

Figure 3.10 – Graphic summary of the main results found in this chapter. (a) Intact forest, 
with controlled microclimate, less penetration of solar radiation and action 
of the winds. (b) Deforested forest, resulting in a changed microclimate 
(higher temperature and lower humidity due to greater penetrability of 
solar radiation and wind action) and higher mortality rate of trees near the 
edges, resulting in a greater amount of available fuel material. (c) 
Fragmented forest, more susceptible to the occurrence of fire (more 
intense near the forest edge) due to the edge effect and fire escape from 

the agriculture and livestock management areas. 

 



53 
 

4 PERSISTENT COLLAPSE OF BIOMASS IN AMAZONIAN FOREST 

EDGES FOLLOWING DEFORESTATION LEADS TO UNACCOUNTED 

CARBON LOSSES4 

4.1 Introduction 

Tropical forests play a crucial role in the global carbon cycle, with carbon stocks 

varying between 193-229 Pg (SAATCHI et al., 2011; BACCINI et al., 2012), 

representing about 54% of the global above-ground carbon (AGC) stock (LIU et 

al., 2015). The area of these forests, however, declined by 10%, from 19.65 

million square kilometres (km2) in 1990 to 17.70 million km2 in 2015, because of 

land use and land cover changes (KEENAN et al., 2015). The magnitude of these 

forest changes affects essential ecosystem services, including carbon storage, 

biodiversity, climate regulation, nutrient cycling, and water supply (FOLEY, 2005; 

BACCINI et al., 2017). 

In the Amazon, the world’s largest continuous tropical forest, deforestation has 

continuously converted old-growth forests into agricultural and livestock areas, 

fragmenting the landscape extensively. Forest fragmentation is associated with 

the increased number of forest patches and augmentation of the extent of forest 

edges perimeter and area (VEDOVATO et al., 2016; SILVA JUNIOR et al., 2018). 

These changes in forest cover configuration cause direct carbon losses from 

edge effect and agricultural fire incursion into adjacent stand forests (FERREIRA; 

LAURANCE, 1997; LAURANCE et al., 1997; NASCIMENTO; LAURANCE, 2004; 

BROADBENT et al., 2008; ARMENTERAS; GONZÁLEZ; RETANA, 2013; 

CHAPLIN-KRAMER et al., 2015; ARMENTERAS et al., 2017; SILVA JUNIOR et 

al., 2018). The exposure of the Earth’s forests to edge effect is widespread 

(RIITTERS et al., 2000; TAUBERT et al., 2018; HANSEN et al., 2020). Globally, 

about 70% of forests were within one-kilometre of forest edges in 2000 (HADDAD 

 
 

4 This chapter is an adapted version of the published paper: SILVA JUNIOR, C. H. L. et al. Persistent 

collapse of biomass in Amazonian forest edges following deforestation leads to unaccounted carbon 

losses. Science advances, v. 6, n. 40, p. eaaz8360, 2020. It is representing advances and improvements 

that made able the implementation of Silva Junior (2018) method in the Google Earth Engine - GEE 

platform (GORELICK et al., 2017), having supported the next Thesis' chapter. 
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et al., 2015). However, only 5.2% of the forests in the Brazilian Amazon were in 

this same edge zone in 2014 (VEDOVATO et al., 2016). 

Pioneering investigations from the BDFFP (Biological Dynamics of Forest 

Fragments Project), in the Brazilian Central Amazonia, found significant carbon 

losses at forest edges (depth of 100-m) induced by microclimatic changes within 

the canopy, leading to increased tree mortality rates (FERREIRA; LAURANCE, 

1997; LAURANCE et al., 1997; NASCIMENTO; LAURANCE, 2004). However, 

the magnitude of carbon losses at these forest edges is still poorly quantified at 

large-scales due to the scarcity of quantitative datasets for tropical forests. Efforts 

to accurately incorporate this source to regional and global carbon budgets are 

urgently needed for improving the estimations of the contribution of land use and 

cover changes to the atmospheric carbon burden. This quantification is critical for 

the effectiveness of sustainable 54eveloppment policies and must be explicitly 

included either in national greenhouse gas inventories of tropical countries and 

in REDD+ (Reducing Emissions from Deforestation and Degradation) reports 

(UNFCCC – UNITED NATIONS FRAMEWORK CONVENTION ON CLIMATE 

CHANGE, 2019). Initial attempts were already made to quantify the carbon losses 

caused by edge effect in Amazonia (NUMATA et al., 2010, 2011; PÜTZ et al., 

2014; HISSA et al., 2016; BRINCK et al., 2017; ALMEIDA et al., 2019; MAXWELL 

et al., 2019); nonetheless, these studies were constrained by the availability of 

synoptic data, the accuracy of models, the spatial resolution of the remote 

sensing data used or the study area extent. 

Representing the environmental variability of edge effect and associated carbon 

stocks across the Amazon is a challenge, due to its large area. In this context, 

remote sensing technologies play an essential role in quantifying both the extent 

of fragmentation-induced forest edges and the negative impact of edge effect on 

forest carbon stocks. The recent availability of 30-m spatial resolution forest 

change data sets (HANSEN et al., 2013) based on optical images from the 

Landsat series of Earth Observation satellites, provides a unique opportunity to 

quantify forest edge extent and age in detail at pan-Amazon scale. This 

information integrated with airborne LiDAR (Light Detection And Ranging) 



55 
 

technology collected over Amazonian forests offers a powerful combination for 

estimating forest carbon stocks in these areas, based on accurate models of 

forest structure (LEFSKY et al., 2002; LONGO et al., 2016) (Figure 4.1). 

Figure 4.1 – LiDAR point cloud profile. Point cloud data collected in 2014 in the northeast 
of the Pará state, Brazil with 420 meters o-f length. The points represent 
the vegetation height, which was normalised by the terrain altimetry. (a) 
Structure of a non-degraded old-growth forest, where the trees height 
reaches up to 40m. (b) Forest edge (width of 120m), where the height of 
the vegetation reaches up to 25m. (c) Deforested area with vegetation 
regrowth (height up to 5m). 

 

Therefore, in this study we aim to provide a unique spatially and temporally 

explicit quantification of carbon losses from forest edges and estimate the 

additional contribution to gross deforestation-induced carbon losses. Specifically, 

we: (i) analysed 16 years (2000-2015) of readily available 30m spatial resolution 

Landsat-based forest-cover and change datasets (HANSEN et al., 2013) to 

quantify the dynamics and age distribution of forest edges in Amazonia; (ii) 

processed an airborne LiDAR dataset collected across several locations in the 

studied area to build an empirical carbon loss model as a function of forest edge 

age; and finally (iii) modelled the edge-induced carbon loss across the entire 

Amazonia by applying the LiDAR-based carbon loss model across all pixels of 

the forest edge age maps. our model is grounded on the observation (ORDWAY; 

ASNER, 2020) and concept (MELITO; METZGER; DE OLIVEIRA, 2018) that 

tropical forest edges formed by deforestation continuously reduce their carbon 

stocks with age. Thus, we hypothesize that direct carbon losses by deforestation 

are followed by incremental indirect carbon losses induced by the aging of forest 

edges in Amazonia. 
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4.2 Results 

4.2.1 Forest edge dynamics and age distribution 

The dynamics of forest edges creation and erosion (defined here as the complete 

removal of canopy cover of the forest edge) is explained directly by the pattern 

and pace of deforestation. In Figure 2, we present our findings regarding 

Amazonian Forest edges dynamics (Figure 2a and 2b) and their age distribution 

(Figure 2c and 2d). We estimate that 5% of the standing forest cover in 2000 was 

deforested between 2001 and 2015, or a gross forest loss of 273,195 km2, at an 

average of 18,213±4,303 km2 year-1 (Figure 2a). We observed a deforestation 

peak of 26,376 km2 in 2004 and a minimum value in 2013 (12,578 km2). However, 

the Mann-Kendall test (MK) showed that annual deforestation overall decreased 

significantly at a rate of 683 km2 year-1 (MK=-0.49 and p<0.05) along the 15-year 

period. 

During the interval studied, Brazil was the country with the highest deforestation 

rate (14,835±4706 km2 year-1), contributing with an average of 62±10% year-1 of 

overall deforestation in Amazonia (Figure S1). Brazil is also the leader in relative 

contribution rate (percentage of annual deforestation in relation to the Amazonia 

area of each country), with an average of 0.355±0.109% year-1 (Table S1). In 

contrast, French Guiana had the lowest deforestation rate (33±18 km2 year-1), 

contributing with an average of 0.20±0.10% year-1 of overall Amazonian 

deforestation, with a relative contribution rate average of 0.040±0.021% year-1 

(Table S1). However, across all Amazonian countries, only Brazil had a 

significant negative temporal trend in deforestation, at a rate of 773 km2 year-1 

(MK=-0.55 and p<0.05), while Peru had the highest significant temporal trend of 

increase, at a rate of 68 km2 year-1 (MK=0.67 and p<0.05). Details about annual 

deforestation rates and temporal trends for all countries in the Amazonia can be 

found in Figure 4.3. 
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Figure 4.2 – Forest edges creation, erosion, and age composition in Amazonia. (a) 
Temporal forest edges variation in Amazonia, where the black bars are 
the annual forest edges increment rate, and the blue line is the total gross 
forest area increment from 2001. (b) Boxplots of forest edges erosion 
rates (as a negative percentage) for the Amazonia, where the bold 
horizontal lines are the medians, the blue dots are the averages, the 
shaded area is the frequency distribution function, and n is the number of 
observations. (c) Spatial distribution of forest edges age in 2015 in 
Amazonia; ages were aggregated by the average in a 10-km by 10-km 
grid-cell to improve visualization. (d) Dot plots of forest edge age (each 
dot corresponds to a single grid-cell in Figure2c) in Amazonian countries 
in 2015, where the vertical bars are the standard deviations, the black dots 
are the averages, the grey dots are the data observations, and n is the 
number of observations. The letters in bold represent the groups defined 

by the posthoc test. 
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Figure 4.3 – Annual deforestation rates in Amazonian countries, and their respective 
contributions (as percentage) to the total Amazonia deforestation. 
Deforestation in the 2016-2019 period was measured from version 1.7 of 
the Global Forest Change dataset (GFC; 
https://earthenginepartners.appspot.com/science-2013-global-
forest/download_v1.7.html). The Brazilian Amazon official deforestation 
rates were obtained from PRODES program (The Brazilian Amazon 
Deforestation Monitoring Program; http://terrabrasilis.dpi.inpe.br/en/home-
page). After 2015, the difference between magnitudes of forest cover 
losses of GFC and PRODES data was due to the increase in drought-
induced forest fires in the late 2015 and early 2016 (ARAGÃO et al., 2018; 
SILVA JUNIOR et al., 2019b) that were detected by the GFC and not 
detected by PRODES (responsible for mapping the clear-cut deforestation 
in the Brazilian Amazon). 
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Table 4.1 – Temporal trends of deforestation rates for each Amazonian country. Where 

S is the Man-Kendall statistics and SD the standard deviation. The S statistic 

with an asterisk (*) means a significant temporal trend at 95% of significance 

level (p < 0.05). 

Country S Sen’s Slope (km2 year-1) Average±SD (km2 year-1) 

Bolivia 0.13 8.66 1,126±400 

Brazil -0.55* -773 14,835±4,706 

Colombia 0.09 2.13 734±198 

Ecuador 0.59* 9.12 120±52 

France Guiana 0.37 0.67 33±18 

Guyana 0.45* 3.71 73±27 

Peru 0.67* 67.97 994±450 

Suriname 0.75* 6.71 67±46 

Venezuela 0.15 2.42 229±57 

In 2015, we estimated that forests edges, considering a depth of 120-m 

(LAURANCE et al., 1997; NUMATA et al., 2017), covered an area of 176,555 km2 

across the whole Amazonia (Figure 2a). This represents about 65% of the total 

deforested area between 2001 and 2015 or 3% of the total forest area in 2015 

over the region. On average 11,770±3,546 km2 year-1 of new forest edges were 

created in Amazonia, with a maximum area of 17,815 km2 in 2012 and a minimum 

of 6,481 km2 in 2011 (Figure 2a). Brazil and Peru had the highest annual edge 

creation average, contributing with 7,600±3,427 km2 year-1 and 1,510±300 km2 

year-1, respectively. In addition, we quantified that on average 7±1%, 24±4% and 

42±3% of the forest edges were eroded by forest clearing process after one, five 

and 10 to 14 years of their creation, respectively (Figure 2b). 

Similar to the patterns found for deforestation rates in the Amazonia, the creation 

of forest edges decreased significantly at a rate of 707 km2 year-1 (MK=0.74 and 

p<0.05) between 2001 and 2015 (Figure 2a). Across all Amazonian countries 

(Table S1), Brazil and Colombia had a significant decreased trend in edge 

formation (p<0.05), with rates of 683 km2 year-1 and 49 km2 year-1, respectively. 

Conversely, Guyana and Suriname had a significant increased trend (p<0.05), 

with rates of 5 km2 year-1 and 11 km2 year-1, respectively. Details about temporal 

trends of forest edge dynamics for the Amazonian countries are shown in Figure 

S2 and Table S3. 
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Figure 4.4 – Annual rates of forest edges increment in Amazonian countries, and their 
respective contributions (as percentage) to the total Amazonia Forest edge 

area. 
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Table 4.2 – Temporal trends of forest edge increments for each Amazonian country. 

Where S is the Man-Kendall statistics and SD the standard deviation. The 

S statistic with an asterisk (*) means a significant temporal trend at 95% of 

significance level (p < 0.05). 

Country S Sen Slope (km2 year-1) Average±SD (km2 year-1) 

Bolivia -0.27 -23 1000±455 

Brazil -0.67* -683 7600±3427 

Colombia -0.65* -49 705±261 

Ecuador 0.17 4 266±72 

France Guiana -0.29 -1 171±59 

Guyana 0.41* 5 48±18 

Peru -0.01 -3 1510±300 

Suriname 0.63* 11 139±76 

Venezuela -0.25 -6 330±83 

In 2015, we observed that the oldest edges (between 10 and 15 years old) were 

distributed mainly over the Brazilian Arc of Deforestation (VELASCO GOMEZ et 

al., 2015), an old Amazonian deforestation frontier located in the southeast flank 

of Amazonia (Figure 2c). We also observed old forest edges in the southern 

portion of Bolivia and in the north of Amazonia, including three countries: 

Colombia, Venezuela, and Guyana. On the other hand, the youngest forest edges 

(between 1 to 3 years old) dominated not only the new active deforestation 

frontiers in southern Bolivia, western Peru, and northern Colombia, but also areas 

in the central Brazilian Amazon. 

On average, forest edges in Amazonia were 7±3 years old in 2015. The edge age 

distribution was close to uniform: 23% of the forest edges ages were between 1 

and 3 years, 21% between 4 and 6 years, 19% between 7 and 9 years, 20% 

between 10 and 12 years and 16% between 13 and 15 years. Considering all the 

Amazonian countries, the age of forest edges spanned from an average of 6±3 

years in Suriname to 8±3 years in Colombia (Figure 2d and Table 1). The Kruskal-

Wallis test (KW) showed a significant difference (KW=1,179 and p<0.05) in the 

age of forest edges among the Amazonian countries (Figure 2d). For instance, 

we found that forest edge age was significantly (p<0.05) lower in Suriname (group 

e) and higher in Colombia (group a). However, the age of forest edges in the pair 

Brazil and Venezuela (group b), and in the group Ecuador, Guyana, and Peru 

(group d) were statistically indistinguishable from each other. Finally, the age of 
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forest edges in French Guiana (cd group) was not distinguishable from countries 

belonging to groups c and d simultaneously. 

Table 4.3 – Average and median of the forest edges ages for the Amazonian countries. 

SD is the standard derivation. 

Country 
Forest edges ages (years) 

Average±SD Median 

Bolivia 7.00±2.35 7.01 

Brazil 7.38±2.84 7.54 

Colombia 7.67±2.88 7.96 

Ecuador 6.58±2.17 6.84 

France Guyana 6.57±3.11 6.41 

Guyana 6.78±2.91 6.57 

Peru 6.48±2.50 6.56 

Suriname 5.94±2.93 5.49 

Venezuela 7.53±2.94 7.59 

 

4.2.2 Spatial-temporal variation in above-ground carbon losses 

By combining the age information from the mapped forest edges with the airborne 

LiDAR data we stablished a relationship depicting the loss of above-ground forest 

carbon as a function of the age of forest edges (see Materials and Methods) to 

investigate the spatial and temporal changes of carbon stocks associated to edge 

effect across Amazonia. As shown in Fig 3a and 3b, between 2001 and 2015, 

carbon losses related to edge effect ranged from 0.001 up to 0.252 Tg C per grid-

cell (100 km2), while losses from deforestation ranged from 0.001 up to 0.799 Tg 

C per grid-cell. More than 60% of the grid-cells had values of carbon loss varying 

between 0.001 and 0.022 Tg C, both for edge effect and deforestation (Figure 3c 

and 3d). Spatially, absolute carbon loss values associated to edge effect and 

deforestation presented similar patterns across Amazonia (Fig 3a and 3b), with 

substantial accumulated losses over the Brazilian Arc of Deforestation 

(VELASCO GOMEZ et al., 2015) and the southwest Amazonian flank. The lower 

accumulated losses were spatially distributed over the central and the northern 

part of the Amazon Forest. 
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Figure 4.5 – Spatial variability of carbon losses in Amazonia. Spatial variability of carbon 
losses between 2001 and 2015 from (a) edge effect and (b) deforestation. 
Histograms of frequency distribution of carbon losses related to (c) the edge 
effect presented in Figure3a and (d) the deforestation presented in 
Figure3b. I Percent contribution of edge effect and deforestation to the total 
carbon loss of each pixel in Amazonia. Carbon losses were aggregated by 
the sum in a 10-km by 10-km grid-cell to improve visualization in Figure 3a 
and Figure 3b. 

 

 

Figure 3e shows the relative contribution of edge effect and deforestation for the 

total carbon loss between 2001 and 2015 as a percentage of each grid-cell. 

Remarkably, we found that relative contribution of edge effect and deforestation 

for the carbon loss of grid-cells were heterogeneous across Amazonia during the 
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studied period. While carbon losses from edge effect dominated mainly the 

central Amazonia region, carbon loss associated to deforestation were more 

evident along the Brazilian Arc of Deforestation (VELASCO GOMEZ et al., 2015), 

and areas in Peru, Bolivia, and southern French Guiana. 

Between 2001 and 2015, we estimated a total gross carbon loss from edge effect 

of 947 Tg C (0.95 Pg C), with an average of 63±8 Tg C year-1 between 2001 and 

2015 in Amazonia. We did not identify any temporal trend in the time-series 

(Sen’s Slope=-0.22 Tg C year-1, MK=-0.01 and p>0.05). We observed a carbon 

loss peak of 78 Tg C in 2005, while we recorded a minimum loss of 41 Tg C 

related to edge effect in 2001 (Figure 4a). In contrast, the total gross carbon loss 

from deforestation was 2,592 Tg C (2.59 Pg C), with an average of 173±46 Tg C 

year-1, and a significant negative temporal trend of 6.90 Tg C year-1 (MK=-0.51 

and p<0.05) between 2001 and 2015. Unlike the observed pattern of carbon loss 

from forest edges, the peak of deforestation-related carbon loss occurred in 2004 

(261 Tg C) and the minimum was recorded in 2013 (114 Tg C) (Figure 4b). Across 

all Amazonian countries, Brazil had the most substantial contribution for the 

Amazonia-wide carbon loss from both forest edges and deforestation, 

representing an average of 67±6% year-1and 79±7% year-1, respectively (Figure 

4a and Figure 4b). At the same time, Suriname’s forest edges and deforestation 

had the lowest contribution, with an average of 1.03±0.57% year-1 and 

0.48±0.35% year-1 respectively (Figure 4a and Figure 4b). 
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Figure 4.6 – Temporal variability of carbon losses in Amazonia. (a) Temporal carbon loss 
variability by fragmentation. (b) Temporal carbon loss variability by 
deforestation. The bottom panels show the contribution as a percentage of 
each country to the annual carbon loss by edge effect (c) and deforestation 
(d). 

 

Overall, our findings show that the deforestation process leads to a collateral 

carbon loss of 37% related to the dynamics of forest edges in the Amazonia. Most 

strikingly, unlike the carbon loss from deforestation, which declined significantly 

during the analysed period, the additional carbon loss associated to the edge 

effect remained unchanged over time. It is interesting to note that the difference 

between carbon losses from deforestation and edge effect decreases over time. 

In 2001 deforestation promoted a loss of 122 Tg C greater than that observed for 

the edges, however, in 2015 this difference decreased to 66 Tg C (Figure S3a). 

During the studied period, hence, the carbon loss from forest edges that 

contributed to 25% of the loss from deforestation in 2001 increased to 48% in 

2015 (Figure S3b). It is also important to note that in 2013 carbon loss induced 

by edge effect was more than half (54%) of the direct deforestation loss (Figure 

S3b). 
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Figure 4.7 – Comparison between the annual carbon losses from fragmentation and 
deforestation. (a) Annual difference between carbon losses from 
deforestation and from fragmentation. (b) Annual proportion of carbon 
losses from edge effect in relation to carbon losses from deforestation 
(losses from edge effect divided by losses from deforestation). Where “Def” 
is Deforestation an “EE” is Edge Effect. 

 

The analysis of temporal trend and average of carbon losses associated to edge 

effect and deforestation across all Amazonian countries (Table 2), showed that 

Ecuador, Guyana, Peru, and Suriname had a significant (p<0.05) positive trend 

in carbon losses both by edge effect and deforestation, varying between 0.01 and 

0.41 Tg C year-1 for edge effect, and between 0.01 and 0.65 Tg C year-1 for 

deforestation. Only Brazil had a significant (p<0.05) negative temporal trend of 

deforestation-associated carbon loss, although loss from edges remained 

unchanged (p>0.05) over time. In contrast, Venezuela had a significant (p<0.05) 

positive trend in carbon loss from deforestation, but losses from edge effect 

remained unchanged (p>0.05) over time. 
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Table 4.4 – Temporal trend and average carbon losses induced by edge effect and 

deforestation for all Amazonian countries. Where S is the Man-Kendell 

statistics and SD the standard derivation. The S statistic with an asterisk (*) 

means a significant temporal trend at 95% of significance level (p<0.05). 

Country 

Edge Effect Deforestation 

S 
Sen’s Slope 
(Tg C year-1) 

Average±SD 
(Tg C year-1) 

S 
Sen’s Slope 
(Tg C year-1) 

Average±SD 
(Tg C year-1) 

Bolivia 0.37 0.14 5±1.41 -0.03 -0.02 10±3.60 

Brazil -0.31 -0.58 42±7.67 -0.61* -8.41 139±47.68 

Colombia -0.11 -0.03 4±0.47 -0.15 -0.02 8±1.97 

Ecuador 0.71* 0.06 1±0.34 0.51* 0.08 1±0.53 

France Guiana 0.35 0.01 0±0.06 0.15 0.01 0±0.20 

Guyana 0.71* 0.04 1±0.23 0.41* 0.04 1±0.28 

Peru 0.73* 0.41 8±1.97 0.63* 0.65 11±4.25 

Suriname 0.83* 0.07 1±0.36 0.75* 0.07 1±0.49 

Venezuela 0.45* 0.02 1±0.17 0.09 0.01 2±0.52 

 

4.3 Discussion 

4.3.1 Trends in deforestation across Amazonian countries 

From our approach, we observed a significant decline in forest clearing processes 

between 2001 and 2015 in Amazonia. This decline followed the reduction in the 

deforestation rates observed in Brazil. The reduction of deforestation rates 

observed here for the Brazilian portion of Amazonia corroborates the progressive 

decline reported by the official deforestation system operating in Brazil (Figure 

S1) (INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS (INPE), 2017). This 

reduction was a result of the strengthening of policies for prevention and control 

of deforestation in the region called Brazilian Legal Amazon, consolidated since 

the creation of the PPCDAm (Plano de Ação para Prevenção e Controle do 

Desmatamento na Amazônia Legal; Action Plan for Prevention and Control of 

Deforestation in the Legal Amazon) in 2004 (MINISTÉRIO DO MEIO AMBIENTE 

(MMA), 2013). During the first three phases of the PPCDAm (2004-2015), policies 

were created and actions implemented, including the creation and consolidation 

of near-real time systems for monitoring deforestation based on remote sensing, 

the intensification of law enforcement, the restriction of credit for illegal loggers, 

the creation and consolidation of conservation units and indigenous lands, as well 

as advances in land policy, such as the Rural Environmental Registry (Cadastro 
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Ambiental Rural – CAR) (MELLO; ARTAXO, 2017). However, from 2013 to 2019, 

an upward trend was observed in the official deforestation rates (INSTITUTO 

NACIONAL DE PESQUISAS ESPACIAIS (INPE), 2017), marked by an 

impressive rate of 10,129 km2 in 2019, an increase of 34% compared to 2018 

(7,536 km2), the highest rate since 2008 (12,911 km2). This upward trend was 

induced by environmental setbacks such as controversial changes in the 

Brazilian Forest Code in 2012 (BRANCALION et al., 2016), the recent weakening 

of deforestation enforcement, the dismantling of climate change policies 

(including the interruption of the PPCDAm from 2019), and the possibility 

regularization of public lands illegally grabbed (Bill nº 2,633/2020, former 

Provisional Measure nº 910/2019) (ASSOCIAÇÃO NACIONAL DOS 

SERVIDORES DE MEIO AMBIENTE (ASCEMA), 2020; BARLOW et al., 2020). 

Although the PPCDAm was a key step for the reduction of the deforestation in 

the Brazilian Amazon, other external factors such as the soy and beef moratoria 

(NEPSTAD et al., 2014) also played a critical role. Companies, associated to the 

agribusiness, agREDD upon an embargo on soy and beef produced in illegal 

deforested areas. All these policies and actions inhibited illegal deforestation 

activities in the Brazilian Amazon, resulting in the significant decline of 

deforestation rates in Brazil after 2004. This pattern drove the overall trend of 

deforestation reduction across Amazonia. 

Countries such as Ecuador, Guyana, Peru, and Suriname had, however, a 

significant increase in deforestation rates between 2001 and 2015. In Ecuador, 

the deforested areas were associated with increased commodity prices between 

2005 and 2014, intensifying mineral and hydrocarbon extraction, agriculture 

production, logging, and palm cultivation (RAISG – AMAZONIAN NETWORK OF 

GEOREFERENCED SOCIO-ENVIRONMENTAL INFORMATION, 2015; LÓPEZ 

ACEVEDO, 2018). In Guyana (RAISG – AMAZONIAN NETWORK OF 

GEOREFERENCED SOCIO-ENVIRONMENTAL INFORMATION, 2015; 

DEZÉCACHE et al., 2017), Suriname (RAISG – AMAZONIAN NETWORK OF 

GEOREFERENCED SOCIO-ENVIRONMENTAL INFORMATION, 2015; 

DELVOYE; PARAHOE; LIBRETTO, 2018), and Peru (RAISG – AMAZONIAN 
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NETWORK OF GEOREFERENCED SOCIO-ENVIRONMENTAL 

INFORMATION, 2015; ASNER; TUPAYACHI, 2016), on the other hand, the 

increase in deforestation rates was mainly induced by activities related to illegal 

gold mining at different scales. Finally, countries such as Bolivia, Colombia, 

French Guiana, and Venezuela, had constant deforestation rates (no significant 

trends) between 2001 and 2015. These deforested areas were the result of 

agricultural, livestock, and mining activities (STEININGER et al., 2001; 

ARMENTERAS et al., 2006; RAISG – AMAZONIAN NETWORK OF 

GEOREFERENCED SOCIO-ENVIRONMENTAL INFORMATION, 2015; 

DEZÉCACHE et al., 2017), which potentiate the collateral impacts of edge effect 

on forest degradation and biodiversity loss (LAURANCE et al., 2018). 

4.3.2 The collapse of above-ground carbon stocks in forest edges 

Consistent with the decline in deforestation, we identified a significant decrease 

in the annual forest edge formation in Amazonia. The dynamics of forest edge 

formation result from the spatial and temporal patterns of deforestation, which 

defines the spatial arrangements and the geometries of the forest fragments 

(LAURANCE; LAURANCE; DELAMONICA, 1998; NUMATA et al., 2009). 

Landscapes arising from the deforestation process associated with the 

establishment of rural settlements (fish-bone pattern), have up to five times more 

forest edge areas per deforested land than landscapes dominated by large 

(regular shape) farms (LAURANCE; LAURANCE; DELAMONICA, 1998). The 

average rate of erosion of 11.47% within three years after forest edges creation 

and its subsequent increase to 42.80% after 12 years, found in our study, are 

lower than those found in previous studies at the local scale in the Amazon 

(NUMATA et al., 2009; HISSA et al., 2016). The lower rates found here are likely 

to be a result of two non-exclusive processes including a significant decrease in 

deforestation rates and the creation of more regular shape deforested polygons. 

The drivers and historical trends of deforestation and forest edge creation are 

country-specific (NUMATA et al., 2009). Bolivia, Colombia, Venezuela, Peru and 

Suriname presented a large proportion of forest edges areas with one to six years 

old, which is explained by the intensification of deforestation in these countries in 
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recent years (KALAMANDEEN et al., 2018). The other Amazonian countries, as 

Brazil, have older forest edges areas, due to an older and more consolidate 

deforestation frontier, which stabilised by the end of the study period 

(KALAMANDEEN et al., 2018). 

Our findings indicated that above-ground forest carbon progressively decreased 

in Amazonian Forest edges as a function of their ages. This pattern is 

corroborated by similar results found in Sabah, Malaysian Borneo (ORDWAY; 

ASNER, 2020). The losses observed in our study are greater in the first five years 

after the edge creation, which are consistent with field observations in controlled 

experiments in the Brazilian Central Amazon (LAURANCE et al., 1997; ALMEIDA 

et al., 2019) (Figure S4a). Following forest edge formation, mortality rates 

increase significantly (Figure S5c), amongst larger trees, which store most of the 

forest’s carbon (LAURANCE et al., 2000; BRANDO et al., 2014). In addition, 

microclimatic changes, tend to increase wind turbulence and fire promoting an 

exacerbation of disturbance rates in the forest edges (LOVEJOY et al., 1986; 

KAPOS, 1989; CAMARGO; KAPOS, 1995; SIZER; TANNER, 1999; 

TRANCOSO, 2008). Together, these effects cause a steep initial reduction in 

carbon stocks following the edge formation. Subsequently, with the aging of the 

edges, turnover rates (LAURANCE et al., 1998), number of woody lianas 

(LAURANCE et al., 1997) and pioneer species increase, as a result of the 

successional process (NUMATA et al., 2017). Following this process, the plant 

community stablished in the forest edge tend to be better adapted to the new 

microclimatic conditions, sealing the edges (Figure S5d) and reducing the 

susceptibility to further microclimatic changes (CAMARGO; KAPOS, 1995; 

DIDHAM; LAWTON, 1999; D’ANGELO et al., 2004; LAURANCE et al., 2006). 

Although growth of new trees increases over time, turnover rates also increase 

(63), as a consequence of increasing mortality, so our age-carbon loss function 

(Figure S13) clearly capture the tendency of forest edges to reach an alternative 

post-fragmentation equilibrium state. This alternative state, which stabilizes 

between 6 and 15 years after the edge creation, is characterized by forests with 

lower above-ground biomass (AGB) than adjacent core areas. Field observations 

in controlled experiments in the Central Brazilian Amazon demonstrated a 
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significant reduction in canopy height as well as basal area and AGB up to 10 

years after edge formation (ALMEIDA et al., 2019). The relationship between 

distance to edge and AGB was, however, no longer significant after 22 years of 

edge formation (ALMEIDA et al., 2019). It is important to note that, differently 

from Almeida et al. (ALMEIDA et al., 2019), in our analyses the AGB values are 

likely to remain below pre-fragmentation levels after 15 years, because most of 

the Amazonian edges are constantly exposed to the incidence of fire, which in 

the Brazilian Amazon can lead to a reduction in forest AGB of 24.8±6.9% after 31 

years (SILVA et al., 2018b) (Figure S6). We expect the recovery of Amazonian 

Forest edges in few areas where secondary forests are growing adjacent to these 

edges, however these areas are likely to be minor as secondary forests in the 

Brazilian Amazon are limited to 34% (in 2018) of the total deforested area (1988-

2018 period) (INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS (INPE), 

2017; SILVA JUNIOR et al., 2020c). 

Figure 4.8 – Comparison between carbon losses calculated in this study and those 
calculated by Laurance et al. (1997) (LAURANCE et al., 1997). (a) Carbon 
loss average subset by classes of years after edge formation. (b) 
Magnitude of the difference between methods. Vertical bars are the 
standard deviations. 
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The estimated above-ground carbon (AGC) losses in our study are considerably 

higher (24.93±4.53% of difference) than that found by Laurance et al. 

(LAURANCE et al., 1997) in the local scale BDFFP long-term experiment (Figure 

S4b). These differences are expected as our Amazonia-wide analysis captures 

variations in factors influencing the stability of AGC in forest edges not 

contemplated by controlled local scales experiments such as: (i) multiple 

configurations of size, shape and types of land-use, and land-cover cover 

surrounding the forest edges (MESQUITA; DELAMÔNICA; LAURANCE, 1999) 

and mainly (ii) the impact of fires on forest edges (BRANDO et al., 2014; SILVA 

et al., 2018b). In Amazonia, fire typically occurs in forest edges (COCHRANE, 

2001; COCHRANE; LAURANCE, 2002, 2008; ARMENTERAS; GONZÁLEZ; 

RETANA, 2013; ARMENTERAS et al., 2017; SILVA JUNIOR et al., 2018) by 

escaping from deforested areas, pastures and agricultural fields and leaking into 

surrounding forests (ARAGÃO et al., 2008; CANO-CRESPO et al., 2015). 

Moreover, fire in forest edges often damages the remaining trees, increasing their 

vulnerability to strong wind events, enhancing tree mortality rates (SILVÉRIO et 

al., 2019b). Finally, during the 21st century, Amazonia has been exposed to an 

increased frequency of extreme droughts (MARENGO; ESPINOZA, 2016; 

MARENGO et al., 2018), which may induce the reduction of forest carbon stocks, 

either by the direct effect of drought on tree mortality (BRIENEN et al., 2015) or 

by the collateral effect of increased fire incidence at the forest edges during these 

extreme events (ARAGÃO et al., 2007, 2018; SILVA JUNIOR et al., 2019a). 

4.3.3 Implications for carbon emissions reduction policies 

Here we showed at the Amazonian scale, that forest carbon loss induced by edge 

effect was one-third of the carbon loss caused by deforestation during the 2001-

2015 period. Furthermore, our trend analysis showed that although deforestation-

related carbon loss decreased significantly between 2001 and 2015, edge effect-

related carbon loss remained unchanged. Knowing that part of the carbon losses 

in the forest edges is emitted to the atmosphere following the decomposition 

process, our findings clearly show that deforestation-induced edge effect can 
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indirectly increase emissions from deforestation alone by 37%, with implications 

for policies aiming to reduce in carbon emissions by avoiding deforestation. 

To show the impact of neglecting carbon losses from edge effect on the 

calculation of gross deforestation emissions (Figure S7), we compared 

(Wilcoxon’s test) carbon losses from each process before (between 2001 and 

2004) and after (between 2005 and 2015) the implementation of the Action Plan 

for Prevention and Control of Deforestation in the Legal Amazon – PPCDAm 

(MINISTÉRIO DO MEIO AMBIENTE (MMA), 2013). The PPCDAm was the 

central policy responsible for the decline in deforestation rates in the Brazilian 

Amazon (MINISTÉRIO DO MEIO AMBIENTE (MMA), 2013; INSTITUTO 

NACIONAL DE PESQUISAS ESPACIAIS (INPE), 2017). We found that annual 

carbon loss associated to deforestation alone decreases significantly (41%, 

W=40 and p=0.02) from 187±21 Tg year-1 in the pre-PPCDAm period to 111±39 

Tg year-1 in the post-PPCDAm period. The annual carbon loss associated to edge 

effect, conversely, in the pre-PPCDAm phase (43±6 Tg year-1) was not 

statistically different (W=25 and p=0.75) from the value calculated for the post-

PPCDAm period (40±7 Tg year-1). 
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Figure 4.9 – Comparison between carbon losses from deforestation and edge effect 
before (between 2001 and 2004) and after (between 2005 and 2015) the 
creation of PPCDAm (MINISTÉRIO DO MEIO AMBIENTE (MMA), 2013) 
(Action Plan for Prevention and Control of Deforestation in Legal Amazon) 
in the Brazilian Amazon. (a) Losses from deforestation. (b) Losses from 
edge effect. The horizontal black line is the average, the red triangle is the 
median, the black vertical line is the standard deviation, and in blue the 
values of the statistic (W) and p-value (p) of the Wilcoxon statistical test. 

 

Our analysis points to two critical issues: First, because the carbon loss induced 

by edge effect is persistent over time, even with deforestation slowing down, extra 

emissions from the newly formed edges reduce de effectiveness of actions for 

reducing carbon emissions by avoiding deforestation, such as the REDD+ policy. 

The inclusion of the edge effect process into systems for Monitoring, Reporting, 

and Verifying emissions (MRV) is, hence crucial. Secondly, we show that 

reducing deforestation carbon loss does not change edge-induced carbon loss, 

indicating the need of new mechanisms to avoid or to compensate the potential 

carbon emissions associated to edge effect. These could be related to landscape 

planning, which is not only necessary to be implemented in Amazonian countries, 

but also in other tropical countries such as Africa and Asia. Besides, the recent 

deforestation upward trend in the Brazilian Amazon, has a negative implication, 

the increase of carbon losses from deforestation, directly, and edge effect 

induced by the creation of new forest edges. 
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Decreasing uncertainties in emissions estimates from land-use and land-cover 

change can support the establishment of more effective national actions, helping 

Amazonian countries to accomplish with emission reductions targets proposed at 

international climate agreements, such as the Paris Agreement. The Paris 

Agreement aims to establish volunteer emission reduction actions and targets by 

the signatory countries to be reached by 2025, to strengthen the global response 

to the threat of climate change (UNFCCC – FRAMEWORK CONVENTION ON 

CLIMATE CHANGE, 2015b). For combating the effects of climate change, it is 

critical to maintain the global average temperature rise below 2°C from pre-

industrial levels and efforts to limit the temperature increase to 1.5°C (IPCC – 

INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE, 2018). To achieve 

this goal, there is a pressing need for a 45% and 100% reduction in greenhouse 

gas emissions by 2030 and 2055, respectively (MASSON-DELMOTTE et al., 

2018). Our results indicate that there is a significant missing source to be 

considered in the Amazonian carbon budget. Including carbon losses related to 

edge effect in regional and global carbon budgets is, hence, crucial for accurately 

estimate the land-use and land-cover change contribution to the atmospheric 

carbon burden. In conclusion, carbon losses associated to the edge effect in 

Amazonia are an additional unquantified carbon flux that can counteract carbon 

emissions avoided by reducing deforestation, compromising the Paris 

Agreement’s bold targets. 

4.4 Materials and methods 

Our materials and methods are included in the following five steps: (i) forest cover 

mapping; (ii) identification of forest edges and quantification of age structure; (iii) 

carbon stock mapping from LiDAR data; (iv) carbon stock loss model by edge 

effect and deforestation; (v) statistical analysis; (vi) sources of uncertainty. 

4.4.1 Forest cover mapping 

We produced 16 annual forest cover maps from 2000 to 2015 with 30-m spatial 

resolution for Amazonia. The maps included old-growth forests, secondary 

forests (before 2000) and planted forests. We adopted the delimitation of the 

Amazonia sensu latissimo proposed by Eva et al. (EVA et al., 2005), excluding 
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the Andes and Planalto regions. This limit encompasses an area of 6,673,908 

km2, including areas from Brazil, Bolivia, Peru, Ecuador, Colombia, Venezuela, 

Guyana, Suriname, and French Guiana. All nine countries together host 95% of 

the remaining Amazonian old-growth forests (EVA et al., 2005). 

To produce the forest cover maps, we used version 1.3 of the Global Forest 

Change dataset (https://earthenginepartners.appspot.com/science-2013-global-

forest/download_v1.3.html) (HANSEN et al., 2013), which includes three 

products: (i) tree canopy cover (2000), (ii) forest cover loss (2001-2015) and (iii) 

forest cover gain (2000-2012) data. We also used the maximum water extent data 

(1984-2015) (https://global-surface-water.appspot.com) (PEKEL et al., 2016). All 

the data mentioned above are made available at 30-m spatial resolution. The 

temporal coverage of the datasets comprehends the pre-PPCDAm (between 

2001 and 2004) and post-PPCDAm (between 2005 and 2015) period, 

implemented in the Brazilian Amazon for curbing illegal deforestation. 

Initially, to produce the year 2000 forest map baseline, we applied the threshold 

of 80% tree canopy cover (Figure S8a) for defining the old-growth forest area, as 

suggested by Gasparini et al. (GASPARINI et al., 2019b) (Figure S8b). This 

threshold avoids the inclusion of non-forest formations (e.g., savannas) in Forest 

class (GASPARINI et al., 2019b). The forest class, hence, included all pixels with 

a percentage of tree canopy cover equal or greater than 80%, and as non-forest 

class all pixels with a tree canopy cover percentage of less than 80%. 

Subsequently, we removed all pixels with forest cover gain between 2000 and 

2012 (Figure S8c). This procedure allowed the removal all secondary forest pixels 

start regrowing between 2000 and 2012. Wetland forests were also removed by 

intersecting the forest cover map with the map of flooded areas between 1984 

and 2015 (Figure S8d). 

Then, to obtain the forest maps (2001-2015), we removed year by year pixels 

with forest cover loss between 2001 and 2015 from the 2000 forest map, by using 

Boolean logic using the two sets of maps (Figure S8e). For instance, to obtain 

the 2001 forest map using this procedure, all pixels with forest cover loss in 2001 
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were removed from the 2000 forest map. This procedure was repeated across all 

years (2001-2015). 

Finally, to avoid the effect of isolated single pixels, for both Forest and non- Forest 

classes, we applied a move window filter for all annual forest maps (16 maps in 

total). We adopted the Sieve algorithm (https://www.gdal.org/gdal_sieve.html) 

from the Geospatial Data Abstraction Library – GDAL (https://www.gdal.org). The 

GDAL Sieve algorithm removes pixels smaller than a provided threshold (give in 

pixels) and replaces them with the pixel of neighbour value. Here we used the 

five-pixel threshold, which includes patches greater than four pixels (0.0036 km2 

or 0.36 ha). 

4.4.2 Identification of forest edges and quantification of age structure 

Using the forest cover maps (Figure S9a), we produced 16 forest edges maps 

(2000 to 2015). For this study, we adopt a 100-m as the edge width, assuming 

the most significant AGC stocks loss typically occur within this distance in 

Amazonia (LAURANCE et al., 1997; NUMATA et al., 2017). However, due to the 

spatial resolution (30-m) of our data, we considered for our analyses a width of 

120 m, equivalent to four pixels, to define the forest edges. Initially, we attributed 

a null value for each pixel corresponding to the Forest class for the 16 forest cover 

maps (Figure S9b). Subsequently, all pixels with the null value were filled with the 

Euclidean distance value (DANIELSSON, 1980) calculated from the non-forest 

class (Figure S9c). Finally, the calculated Euclidean distance was used to classify 

the pixels based on distance intervals, using three classes: non-forest class 

(equal to 0m), Forest class (greater than 120-m) and Forest-edge class (between 

30 and 120m) (Figure S9d). 

Using the forest edges maps, we produced 15 forest edges age maps (2001 to 

2015). Firstly, we removed from the forest edges maps (2001 to 2015) all the 

edges in 2000, which had an area of 416,793 km2 (6.25% of Amazonia territory), 

because of the impossibility of estimating the age of forest edges in the year 

2000. This first step also removed all natural forest edges formed at the 

boundaries between forest-water and forest-savannas, which were not of interest 
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for our study. Then, we transform the forest edges maps into binary maps, where 

we assign the value of “1” to the forest edge class and “0” to the forest and non-

Forest classes. Finally, we use the map algebra method to calculate the forest 

edges age, by summing the binary maps year by year cumulatively. From this 

procedure we obtained binary maps from 2001 to 2015, with the 2001 age map 

having only forest edges with one year old and the 2015 map having edges 

ranging from 1 to 15 years old (Figure S10). 

4.4.3 Carbon stock mapping from LiDAR data 

We produced 20 carbon maps with 50m spatial resolution, using a multitemporal 

LiDAR point clouds dataset, collected in 13 flight lines within the Brazilian 

Amazon (Figure S11 and Table S4). The LiDAR data were obtained from the 

Sustainable Landscapes Project 

(https://www.paisagenslidar.cnptia.embrapa.br), which were collected using a 

LiDAR Airborne System with flights carried out between 2012 and 2015, totalling 

an area of 153.17 km2. All the LiDAR plots have a point density higher than four 

points per squared meters (LEITOLD et al., 2015) (Table S4). 
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Figure 4.10 – Spatial distribution of the LiDAR flight lines in Amazonia. Brazilian States: 
AC, Acre; AM, Amazonas; AP, Amapá; MA, Maranhão; MT, Mato Grosso; 

PA, Pará; RO, Rondônia; RR, Roraima; TO, Tocantins. 
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Table 4.5 – Technical specifications of the instrument, aircraft and data collection 

settings for the LiDAR flight lines. 

LiDAR 
Plots 

Year of 
Acquisition 

Average Return 
Density 

(points m-2) 

Average Density of 
First Return 
(points m-2) 

Average 
Flight 

Altitude (m) 

Field of 
View 

(degree) 

Plot 1 2013 16.80 9.30 853.40m 11.00 

Plot 1 2014 38.20 17.20 853.40m 11.00 

Plot 2 2013 33.39 15.57 900.00m 11.10 

Plot 3 2013 38.34 25.84 853.00m 9.80 

Plot 4 2015 38.59 29.82 850.00m 12.00 

Plot 5 2013 66.61 30.48 900.00m 11.10 

Plot 6 2013 11.78 6.58 853.40m 11.00 

Plot 6 2014 40.00 17.75 853.40m 11.00 

Plot 7 2015 49.53 26.40 850.00m 12.00 

Plot 8 2015 58.67 29.16 850.00m 12.00 

Plot 9 2012 30.10 20.40 850.00m 11.00 

Plot 10 2013 24.25 15.14 853.40m 9.80 

Plot 11 2014 40.70 18.40 900.00m 11.10 

Plot 11 2013 10.80 5.20 900.00m 11.10 

Plot 12 2012 13.70 7.05 850.00m 11.00 

Plot 12 2014 41.05 16.70 853.00m 10.00 

Plot 13 2012 36.90 23.11 850.00m 11.10 

Plot 13 2013 29.95 17.12 853.40m 11.00 

Plot 14 2012 38.90 23.90 850.00m 11.10 

Plot 14 2013 29.95 17.12 853.40m 11.00 

 

We performed all LiDAR point clouds data processing in the FUSION 3.60 

software (http://forsys.cfr.washington.edu/fusion/fusionlatest.html). Initially, we 

filtered the points classified as terrain for each LiDAR plot. Then, from the 

previously filtered points, we created Digital Terrain Models – DTM with 1-m 

spatial resolution (Figure S12a). Subsequently, we normalised (altitude-to-height 

conversion) all points classified as vegetation using the DTM, to create for each 

flight line a Canopy Height Model – CHM with -m spatial resolution (Figure S12b). 

We used the methodology proposed by Longo et al. (LONGO et al., 2016) to 

calculate above-ground forest carbon (for living trees) using the LiDAR data. To 

apply this method, we first created a 50-m spatial resolution CHM, using the 

average of the canopy heights at 1-m spatial resolution (Figure S12c). Then, we 
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applied Equation 4.1 (LONGO et al., 2016) for each 50-m of spatial resolution 

pixel in the CHM map. 

𝐶𝑆tock = 0.025 ⋅ 𝐶𝐻𝑀50𝑚
1.99    (4.1) 

where CStock is the carbon stock of each pixel in kg m-2 (subsequently converted 

to Mg ha-1, multiplying the result by 10), and CHM50m is the pixel value at 50m of 

spatial resolution in the Canopy Height Model (CHM). This equation had an 

adjusted R2 of 0.68 and a Mean Square Error of 4.33 kg C m-2 (LONGO et al., 

2016). 

4.4.4 Carbon stock loss model by edge effect and deforestation 

We use LiDAR carbon stock and forest edges age maps to model the carbon loss 

in forest edges as a function of edges age. Firstly, we overlaid the carbon stock 

map, of each LIDAR flight line, on the forest edge map to extract the carbon 

values for pixels in the forest edge and interior classes. For this approach, we 

considered the LiDAR collected at the same year as their respective forest edges 

age map. Then, we calculated the carbon average for the forest interior, which 

was consider as control areas, not impacted by edge effects (LAURANCE et al., 

1997; NUMATA et al., 2017). We also calculated the carbon average for the forest 

edges stratified by their respective ages. Finally, we calculated the percentage 

difference between the forest interior and forest edges AGC stocks for each age, 

leading to 152 samples of the carbon loss percentage for different edge ages. 

Based on the conceptual model proposed by Melito et al. (MELITO; METZGER; 

DE OLIVEIRA, 2018), we employed a non-linear rectangular hyperbolic 

regression (Michaelis-Menten kinetic equation, R2=0.780) (Equation 2) using the 

average carbon loss stratified by forest edge ages (Figure S13a). From a 

bootstrap approach (KUSHARY; DAVISON; HINKLEY, 2000), we calculate the 

95% confidence intervals for all equation parameters based on 1000 random 

repetitions with replacement using the “boot” package (Package ‘boot’) 

implemented in the R statistical software (R CORE TEAM, 2018) (version 3.4.4; 

https://www.r-project.org). 

https://www.r-project.org/
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𝐶𝐿𝑜𝑠𝑠 =
−42.815(±2.966)⋅𝐸𝐴𝑔𝑒

0.836(±0.411)+𝐸𝐴𝑔𝑒
+ 𝜀   (4.2a) 

Where ε ~ N(0, 5.7672)    (4.2b) 

where CLoss is the carbon stock loss in percentage as a function of forest edge 

age, EAge is the edge age for the specific year, -42.815 is the value of the α 

parameter, and 0.836 is the value of the β parameter, ε is the estimated error for 

the equation, and 5.767 is the residual standard error. The values in parentheses 

were obtained through the 1000 bootstrap interactions process and represent the 

variation of each parameter, considering a 95% confidence interval. From the 

Equation 2a decay curve, we calculated the individual carbon loss percentage for 

each forest edge age (Figure S13b and Tab. S5). 

Figure 4.11 – Above-Ground Carbon Stock Loss Model by Edge Effect. (a) Fitting of the 
Michaelis-Menten kinetic curve on the measured values. (b) Carbon loss 

decay rate based on the model in Fig S13a. 
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Table 4.6 - Carbon loss factor (f) for the calculation of carbon loss from edge effect. 

Forest Edges Ages 
(year) 

Accumulated 
Carbon Loss (%) 

Carbon Loss Rate 
(% year-1) 

Carbon Loss 
Factor (f) 

1 23.324 23.324 0.233 

2 30.198 6.873 0.069 

3 33.487 3.289 0.033 

4 35.416 1.929 0.019 

5 36.684 1.268 0.013 

6 37.581 0.897 0.009 

7 38.249 0.668 0.007 

8 38.765 0.517 0.005 

9 39.177 0.412 0.004 

10 39.513 0.336 0.003 

11 39.792 0.279 0.003 

12 40.027 0.236 0.002 

13 40.229 0.201 0.002 

14 40.403 0.174 0.002 

15 40.555 0.152 0.002 

 

To extrap6late the percent changes in AGC stocks (carbon loss) from the forest 

edges, we first combined the annual age maps with a forest AGB density map a 

pixel-by-pixel approach (30-m spatial resolution), attributing to each edge pixel 

an initial (pre-edge formation) biomass value (AGBPixel). We carried out a similar 

procedure for the deforested pixels. We used the GFW (Global Forest Watch) 

forest biomass density map at 30-m spatial resolution, which was elaborated 

based on the method proposed by Baccini et al. (BACCINI et al., 2012) 

(https://data.globalforestwatch.org/datasets/aboveground-live-woody-biomass-

density). This part of the method was implemented in Google Earth Engine - GEE 

platform (GORELICK et al., 2017). 

For estimating Amazonia-wide edge effect on carbon loss between 2001 and 

2015, we applied Equation 4.3 for each pixel. 

𝐶𝐿𝑃𝑖𝑥𝑒𝑙 = 𝐿𝐹𝑎𝑐𝑡𝑜𝑟 ⋅ 𝐴𝐺𝐵𝑃𝑖𝑥𝑒𝑙 ⋅ 0.5 ⋅ 0.09    (4.3) 

where CLPixel is the pixel carbon loss at the forest edges given in Mg per pixel, 

LFactor is the loss factor for each forest edge age, calculated based on equation 

2a (Table S5), AGBPixel is the pre-edge or pre-deforestation AGB value of the 

pixel, obtained by the previous integration step, 0.5 is the AGB to AGC conversion 

https://data.globalforestwatch.org/datasets/aboveground-live-woody-biomass-density
https://data.globalforestwatch.org/datasets/aboveground-live-woody-biomass-density
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factor (CHAVE et al., 2005), and 0.09 is the conversion factor to transform carbon 

density in Mg ha-1 to total carbon for the entire pixel area (0.09 ha). 

For calculating the Amazonia-wide loss of C associated to the deforestation 

process, between 2001 and 2015, we applied Equation 4.4 for each pixel. 

𝐶𝐿𝑃𝑖𝑥𝑒𝑙 = 𝐿𝐹𝑎𝑐𝑡𝑜𝑟 . 𝐴𝐺𝐵𝑃𝑖𝑥𝑒𝑙 ⋅ 0.5 ⋅ 0.09    (4.4) 

All terms in equation 4 are similar to those in equation 3, however, LFactor in this 

case is set to “1”, indicating that all carbon stored in the pixel (100%) will be lost 

following the deforestation process. 

Finally, to present in the maps the results of carbon losses across Amazonia 

associated to edge effect and deforestation, we aggregated all original pixels 

values at a 30-m spatial resolution into grid-cells with 10-km spatial resolution 

using the sum of the values. 

4.4.5 Statistical analysis 

Here we used nonparametric statistical approaches, for all analyses. For testing 

the temporal trends, we used the Mann-Kendall test and the Sen’s Slope 

Estimator. To compare forest edges ages and carbon losses among Amazonian 

countries we used the Kruskal-Wallis test and the Wilcoxon test. All analyses 

were performed using the R statistical software (R CORE TEAM, 2018) (version 

3.4.4; https://www.r-project.org). For the Kruskal-Wallis and the Wilcoxon test, we 

used the “agricolae” package (MENDIBURU, 2017), whereas for the Mann-

Kendall test and the Sen’s Slope Estimator the “wq” package (JASSBY; 

CLOERN, 2016) was used. For all statistical analysis, we adopted the 

significance level of 95% (p<0.05). 

To analyse the temporal trend in deforestation rates, forest edge increment, and 

forest carbon loss, we used the Mann-Kendall test (MANN, 1945; KENDALL, 

1975). Then we calculated the magnitude of the changes by the application of 

Sen's Slope method (SEN, 1968). The Mann-Kendall test is used to assess 

whether there is a monotonic upward or downward trend over a time period, 

whereas the Sen’s Slope Estimator, a robust nonparametric method with little 

https://www.r-project.org/
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sensitivity to outliers, is used to estimate the magnitude of trends by the 

calculation of the median of the slopes of each pair of points in the data. 

To verify the existence of significant differences in the forest edges ages among 

the Amazonian countries, we used the Kruskal-Wallis test 

(HETTMANSPERGER; MCKEAN, 2010). The Kruskal-Wallis test is equivalent to 

the Analysis of Variance (ANOVA), which compares three or more groups to test 

the hypothesis that they have the same distribution. To determine how the 

analysed variables, differ from each other, we performed a paired posthoc test. 

In the posthoc test, we used the Fisher’s least significant difference criterion with 

Bonferroni adjustment methods correction (CONOVER, 1999b). 

Finally, to verify the existence of significant differences in carbon losses 

associated to edge effect and deforestation between the period before (between 

2001 and 2004) and after (between 2005 and 2015) the PPCDAm (Action Plan 

for Prevention and Control of Deforestation in the Legal Amazon) (MINISTÉRIO 

DO MEIO AMBIENTE (MMA), 2013) implementation, we used the Wilcoxon test 

for independent samples (HETTMANSPERGER; MCKEAN, 2010). The Wilcoxon 

test, which is equivalent to the student’s t-test, compares two independents 

groups to test the hypothesis that they have the same median. We use the 

Fisher’s least significant difference criterion with Bonferroni adjustment methods 

correction (CONOVER, 1999b). 

4.4.6 Sources of uncertainty 

Our estimations of carbon losses associated to edge effect and deforestation 

were performed from 2001 onwards due to the lack of forest-cover, forest-

change, and biomass data for Amazonia before this period. Thus, our estimates 

do not account for historical carbon losses before 2001. In 2000 we estimate an 

area of edge‐affected forests (including natural edges) of 416,793 km2 (82% of 

the total edge area in 2015) within 120m of edge length, while accumulated 

deforestation in 2000 accounted for 591,414 km2 (RAISG - AMAZONIAN 

NETWORK OF GEOREFERENCED SOCIO-ENVIRONMENTAL 

INFORMATION, 2015) across Amazonia. 
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Regarding the accuracy of remote sensing products, the 2000 forest map 

produced from the 80% tree cover percentage threshold has an overall accuracy 

of 82% (GASPARINI et al., 2019b), while forest cover change data has an overall 

accuracy of 99.5% (HANSEN et al., 2013). The biomass map (BACCINI et al., 

2012) used has uncertainties from allometric equations, the LiDAR-based model, 

and the random forest model; however, we used the latest and improved map 

with a low level of uncertainty 

(https://data.globalforestwatch.org/datasets/aboveground-live-woody-biomass-

density). 

The effective edge distance of 120 m used was based on the well-documented 

landscape scale experiment in Central Brazilian Amazon (Manaus state) 

published by Laurence et al. (LAURANCE et al., 1997), although carbon loss may 

occur up to 300 m of edge (LAURANCE et al., 1997), making our carbon loss 

estimates conservative. Moreover, the variation of the penetrability of the carbon 

collapse from the edge to the interior of the forest throughout Amazonia is still 

unknown, making unfeasible at this stage the implementation of a function 

representing this variation in our analyses. The fix edge distance of 120 m, hence, 

is the most appropriated threshold, as it is conservative, comparable with other 

studies (NUMATA et al., 2010, 2011; HISSA et al., 2016) and with effects on 

forest biomass well documented in the literature. In our analysis, we assumed 

that the open and closed edges are equally impacted by edge effects, although 

these impacts may assume different magnitudes depending on the edge type, as 

suggested by Didham and Lawton (DIDHAM; LAWTON, 1999). 

Although our forest carbon loss estimates associated to edge effect consider a 

global model for the entire Amazon, our approach represents an advance in 

relation to previous studies (NUMATA et al., 2010, 2011; PÜTZ et al., 2014; 

HISSA et al., 2016; BRINCK et al., 2017; MAXWELL et al., 2019), contributing to 

an improved understanding of the collateral impacts of deforestation on 

Amazonian carbon stocks. Finally, unlike previous studies (NUMATA et al., 2010, 

2011; PÜTZ et al., 2014; HISSA et al., 2016; BRINCK et al., 2017; MAXWELL et 

al., 2019), our estimates of carbon loss were based for the first time on samples 
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derived from various regions of the Amazon, describing the gradual decay of 

carbon at forest edges over 15 years. 

4.5 Graphical abstract 

Figure 4.12 – Graphic summary of the main results found in chapter. 
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5 LARGE-SCALE CARBON COLLAPSE AT TROPICAL FOREST EDGES5 

5.1 Introduction 

The increase in the concentration of carbon dioxide (CO2) in the atmosphere is a 

result of anthropogenic emissions, related to disturbances in carbon reservoirs 

due to the use of fossil fuels and land-use and land-cover changes (CIAIS et al., 

2013). Thus, understanding the greenhouse gas emissions sources is an 

important tool for designing efficient policies to reduce emissions. 

The Paris Climate Agreement (UNFCCC - FRAMEWORK CONVENTION ON 

CLIMATE CHANGE, 2015c; CLÉMENÇON, 2016), which deals with measures 

to reduce greenhouse gas emissions from 2020 on by the signatory countries, 

reinforces the need to strengthen the global response to the threat of climate 

change. Thus, it is necessary to keep the increase in the Earth's average global 

temperature below 2°C in relation to pre-industrial levels, and efforts must be 

made to limit the increase in temperature to up to 1.5°C compared to pre-

industrial levels; for this would require a 45% reduction in greenhouse gas 

emissions by 2030 and 100% by 2055 (MASSON-DELMOTTE et al., 2018). 

However, at the 2021 United Nations Climate Change Conference (COP26) few 

advances in nations' ambitions to reduce their emissions were observed 

(ARORA; MISHRA, 2021; FERRANTE; FEARNSIDE, 2021).  

In the tropical region, the process of deforestation has converted forests into 

agriculture, livestock, and urban areas (KISSINGER; HEROLD; SY, 2012; MALHI 

et al., 2014; CARTER et al., 2018). As a result, these forests declined from 1,965 

million hectares in 1990 to 1,777 million hectares in 2015, totalling 10% of loss 

(KEENAN et al., 2015). This reduction compromises essential ecosystem 

services, such as biodiversity, climate regulation, carbon storage/cycling, and 

water supply (FOLEY, 2005; BACCINI et al., 2017). Tropical forests store 

 
 

5 This Chapter has not yet been published and will be submitted to the scientific journal Nature. 
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between 193 and 229 Pg of carbon in their biomass (SAATCHI et al., 2011; 

BACCINI et al., 2012). 

Deforestation led to habitat loss, which alters the structure of the forest through 

the edge effect. Edge effect is a consequence of fragmentation, which can be 

measured or characterized by quantifying edge areas and number of patches, in 

addition to reducing the connectivity of forest remnants (FAHRIG, 2003; 

VILLARD; METZGER, 2014; VEDOVATO et al., 2016; SILVA JUNIOR et al., 

2018, 2020a; TAUBERT et al., 2018). Edge effect adversely affects forest 

functioning, reducing carbon stocks and loss of diversity (LAURANCE et al., 

1997, 2018; SILVA JUNIOR et al., 2020a). According to Haddad et al. (2015), 

about 70% of global forest remnants are subject to edge effects. 

In the current climate crisis, which poses an urgent and potentially irreversible 

threat to human societies and the Earth (UNFCCC - FRAMEWORK 

CONVENTION ON CLIMATE CHANGE, 2015a), the tropical forest edges, which 

are an important source of atmospheric carbon (NUMATA et al., 2011; PÜTZ et 

al., 2014; BRINCK et al., 2017; SILVA JUNIOR et al., 2020a), are not yet explicitly 

measured and included in policies to reduce greenhouse gas emissions (SILVA 

JUNIOR et al., 2021a). 

In the past, the large-scale understanding of the edge effect contribution to CO2 

emissions was limited by the lack of multi-temporal maps of forest cover with 

appropriate spatial resolution. Currently, the bound is a representative method of 

the variability of the tropical region. However, recent advances in remote sensing, 

especially with the widespread use of optical multitemporal data and LIDAR (Light 

Detection And Ranging) data, can fill these gaps. 

Recent computational advances allow geospatial analysis on a planetary scale 

(GORELICK et al., 2017), adding to the availability of a long series of Earth 

observation data from the Landsat Program (WULDER et al., 2016), resulting in 

the first mapping of forest cover and loss on a global scale with improved detail 

(HANSEN et al., 2013; VANCUTSEM et al., 2021). In addition, recent advances 

in estimating forest biomass at large scale (LONGO et al., 2016; XU et al., 2017; 
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FERRAZ et al., 2018; POTAPOV et al., 2021) from remote sensing approach, 

provide quantitative and detailed information on the forest structure (GARCIA et 

al., 2017), create an unprecedented opportunity for exploration of these data in 

the context of the effect of forest fragmentation on the carbon stocks of tropical 

forests. 

Therefore, in this study we aim to provide the first spatially and temporally explicit 

quantification od CO2 emissions from forest edges and estimate the additional 

contribution to deforestation-induced carbon losses. Specifically, we: (i) analysed 

31-years (1990-2020) of readily available 30-m spatial resolution Landsat-based 

forest cover change dataset (VANCUTSEM et al., 2021) to quantify the dynamics 

and age distribution of forest edges Tropical-wide; (ii) created a 100-m spatial 

resolution map of tropical carbon stocks in 2019 to build empirical carbon loss 

models as a function of forest edge age; and finally (iii) modelled the edge-

induced carbon loss by applying the age-loss models across all tropical region. 

Our model is grounded on the observation (ORDWAY; ASNER, 2020; SILVA 

JUNIOR et al., 2020a) and concept (MELITO; METZGER; DE OLIVEIRA, 2018) 

that tropical forest edges formed by deforestation continuously reduce their 

carbon stocks with age. Thus, we hypothesize that direct CO2 emissions by 

tropical deforestation are followed by incremental indirect carbon losses induced 

by the aging of forest edge, and which can be increased by the effect of 

degradation (selective logging and fire disturbances). 

5.2 Impact of edge effects in tropical forests above ground carbon (AGC) 

In the tropical region, previous evidence has showed a significant decline in 

aboveground biomass (AGB) within 100-m forest edges in Amazonia 

(LAURANCE; LAURANCE; DELAMONICA, 1998), 300-m in Congo basin 

(SHAPIRO et al., 2016), 448-m in Asia (QIE et al., 2017), and 500-m across the 

tropics (CHAPLIN-KRAMER et al., 2015). However, our finds revealed that the 

impact of edge effects surpass or match with already distances reported and vary 

between regions. We found that the edge effect in the tropical region can reduce 

aboveground carbon (AGC) within 369±45-m forest edges in America, 351±33-

m in Africa and 415±61-m in Asia (Figure 5.1). 
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Figure 5.1 – Models and breakpoint (dashed vertical lines) for carbon stocks as a function 
of distance from forest edges for the three tropical regions. 

 

The complete decline of AGC within forest edges is not immediate after its 

creation. For example, Laurence et al. (1998) found a loss of up to 14% within 

the first four years after 100-m edges creation in Central Amazonia through field 

measurements. On the other hand, by a remote sensing approach, Silva-Junior 

et al. (2020a) found a loss of 37% within the first five years after 120-m edges 

creation considering a variety of Brazilian Amazon regions; attributed the greater 

AGC loss to fire disturbance (SILVA et al., 2018b; SILVA JUNIOR et al., 2018; 

PONTES-LOPES et al., 2021). 

Based on these new finds, here we present an unprecedented 30-year analysis 

of the edge effect on tropical AGC. Additionally, we provide for the first time, the 

separate contribution of disturbances such as selective logging and fire to AGC 

losses at tropical forest edges. 

Our age-loss models (Figure 5.2) showed that without the contribution of selective 

logging and fire disturbances, AGC losses in the first year after forest edge 

creation were 9%, 14%, and 32% for America, Africa, and Asia, respectively. For 
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America and Africa, the losses reached 16% and 21%, respectively, within four 

years after creating the edges, with a plateau after that period. On the other hand, 

losses reach 38% in Asia within the first three years after creating the edges 

before a plateau.  

Figure 5.2 – Models of carbon stocks loss as a function of forest edge aging for the three 
tropical regions considering and removing the effect of forest edge 
degradation by other disturbances. For more details, please see the 
Method section. 

 

With selective logging and fire contribution, AGC losses in the first year after 

forest edge creation was 13%, 10%, and 34% for America, Africa, and Asia, 

respectively. Before a plateau in the models, America losses reached 23% within 

five years after creating the edges; Africa reached 28% of losses within six years; 

and Asia reached 47% of losses within six years. By the inclusion of selective 

logging and fire in our models, we found a carbon stock loss increase of 25% for 

America, 22% for Africa, and 21% for Asia within 30-years after creating forest 

edges. Thus, selective logging and fire disturbance cause a temporal 

prolongation and magnitude increase of carbon stocks collapse in tropical forest 

edges. 

While our findings for tropical America are consistent with Laurance et al. (1997) 

for edges without selective logging and fire effects disturbance, and Silva-Junior 

et al. (2020a) with fire effect in Amazon region, losses for tropical Africa and Asia 

exceed the average loss founded across the tropics (CHAPLIN-KRAMER et al., 

2015). 
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There are several AGC loss drivers at forest edges. The collapse of carbon stocks 

is explained by the increase in tree mortality after creating edges, especially the 

larger ones (LAURANCE et al., 2000; BRANDO et al., 2014), which store most 

of the forest’s carbon; negative microclimatic changes within edges, as 

temperature and wind turbulence increase, plus moisture and evapotranspiration 

decreasing, led to an exacerbation tree mortality rate (LOVEJOY et al., 1986; 

KAPOS, 1989; CAMARGO; KAPOS, 1995; SIZER; TANNER, 1999; 

TRANCOSO, 2008; SILVÉRIO et al., 2019b; NUMATA et al., 2021). Besides, 

above average edge effect penetration found here can be attributed to an 

increased canopy dissection and insect or pathogen attack from edges to forest 

interior (BRIANT; GOND; LAURANCE, 2010). Fire escape (BAKER; 

BUNYAVEJCHEWIN; ROBINSON, 2008; ARMENTERAS; GONZÁLEZ; 

RETANA, 2013; CANO-CRESPO et al., 2015; SILVA et al., 2018b; SILVA 

JUNIOR et al., 2018; PONTES-LOPES et al., 2021) and selective logging 

(ASNER, 2005; HUANG; ASNER, 2010; MEDJIBE et al., 2011; MARTIN et al., 

2015; LONGO et al., 2016; BUTARBUTAR et al., 2019; RANGEL PINAGÉ et al., 

2019; D’OLIVEIRA et al., 2021) from human activities surrounding forest edges 

provide booster carbon stocks losses, which explain the additional loss found 

here by including these disturbances in our analysed models. 

Following the initial tree mortality prosses, the plant community at forest edges 

tend to be better adapted to the new microclimatic conditions, sealing the edges, 

and reducing the susceptibility to further microclimatic changes (CAMARGO; 

KAPOS, 1995; DIDHAM; LAWTON, 1999; D’ANGELO et al., 2004; LAURANCE 

et al., 2006), as revelled by the plateau in our models for all tropical regions. 

However, although tree turnover rates increase due to increased mortality rates 

(LAURANCE et al., 2006), the original carbon stocks do not fully recover, 

evidenced by a significant reduction in trees' canopy height and the basal area 

within edges (ALMEIDA et al., 2019; MAEDA et al., 2022). This behaviour 

indicates that tropical forests edges reach an alternative post-fragmentation 

equilibrium state, with a lower carbon stock density (SILVA JUNIOR et al., 

2020a). 
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5.3 Tropical forest edges AGB loss within environmental gradients 

Although the mechanisms of AGC loss at tropical forest edges are well 

documented, for example in Brazilian Amazon (LAURANCE et al., 2018), poorly 

known how these losses vary across the tropical environmental gradients. Below 

we present the first tropical analysis of AGC loss within different environmental 

gradients, include: water deficit (MCWD), wind speed (WDSP), degradation 

(selective logging and fire; DGDT), maximum temperature (MXTP), edges age 

(EDAG), and distance from secondary forests (DFSF). 

Our results showed that forest edges AGC losses was higher in regions with high 

MCWD levels (greater than 200 mm year-1 for America, 160 mm year-1 for 

America, and 40 mm year-1 for Asia), while the losses reduced with the reduction 

of water stress (Figure 5.3a). On the other hand, our results regarding wind speed 

showed a greater AGC loss in regions with higher wind speed for America 

(greater than 1.4 m s-1) and Africa (greater than 1.3 m s-1); however, this pattern 

is inverse in Asia (Figure 5.3b). 
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Figure 5.3 – Loess Regression of forest edges carbon loss as function of edges age for 
the gradient of MCWD (Maximum Cumulative Water Deficit) (a) and wind 

speed (b) for three tropical regions. 

 

Our findings also showed that AGC losses at forest edges did not differ for 

America and Africa under different temperature gradients; however, losses in the 

Asian forest edges were markedly greater in areas with monthly maximum 

temperatures above 31.3 °C. The same pattern was observed for the distances 

of the ridges from secondary growth forests (Figure 5.4b). While the losses did 

not differ for different distances from secondary forests in America and Africa, in 

Asia, the minor AGC losses occurred at edges close to secondary forests (up to 

500-m), while the largest occurred further away from them (greater than 1,000-

m). 
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Figure 5.4 – Loess Regression of forest edges carbon loss as function of edges age for 
the gradient of maximum temperature (a) and distance from secondary 

forests (b) for three tropical region. 

 

 

Figure 5.5 shows the importance of environmental factors for the loss of AGC 

within tropical forest edges using a random forest algorithm approach. Our 

analysis revealed lower importance of distance for secondary growth forests in 

the three analysed regions. In contrast, America and Africa presented the 

degradation with the most significant importance, while Asia presented the 

maximum temperature as the most important. However, we highlight the role of 

water deficit, maximum temperature, and wind speed for AGC loss in all tropical 

regions. 
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Figure 5.5 – Ranking the importance of environmental variables for carbon loss at forest 
edges using a random forest algorithm approach. Vertical bars are the 95% 

confidence interval. 

 

Our findings suggest that under current anthropogenic climate change crises 

(INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE (IPCC), 2021), which 

causes more frequent and extreme drought (tropical region) and heat (Asia) 

events (WIGNERON et al., 2020), the edge effect will be potentiated; leading to 

a more AGC loss, and consequently, a more amount of carbon dioxide (CO2) 

emitted into the atmosphere, contributing to Earth’ warming. We also highlight the 

recovery trend of AGC in African forest edges after 30-years under different 

environmental gradients stratification, suggesting greater forest resilience than in 

America and Asia (BENNETT et al., 2021), corroborating previous on-the-ground 

findings (LEWIS et al., 2009; HUBAU et al., 2020; BENNETT et al., 2021). 
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5.4 Relationship between deforestation and forest edges formation in the 

tropics 

Between 1990 and 2020, tropical forests lost 1,925,949 km2 of cover, with a rate 

of 62,127±23,068 km2 year-1. America contributed 49% of all deforestation in the 

tropical region, followed by Asia (31%) and Africa (21%). After 30-years, the net 

area of forest edges in 2020 was equivalent to 56% (1,069,741 km2) of all 

deforestation in the region. 

On average, each squared kilometre of deforestation between 1990 and 2020 

resulted in 0.59±0.23 km2 year-1 of forest edges in the tropical region; however, 

in Asia, this value was 0.40±0.41 km2 year-1, while America and Africa had 

0.67±0.27 km2 year-1 and 2.11±3.50 km2 year-1 respectively. The variation in the 

arrangements and geometries of deforestation patches explains this disparity 

between deforestation-edges formation throughout tropical region (LAURANCE; 

LAURANCE; DELAMONICA, 1998; NUMATA et al., 2009). Studies in the 

Amazonia, for example, showed that rural settlements (fish-bone pattern, for 

example) with a pattern of multiple and smaller-scale deforestation produced five 

times more forest edges than landscapes with large farms with regular shape 

pattern (LAURANCE; LAURANCE; DELAMONICA, 1998). Our findings 

corroborate that the acceleration of deforestation rates leads to a critical increase 

of forest edges in the tropical region (FISCHER et al., 2021) 

The peace and configuration of deforestation define the forest edges' creation 

and erosion (SILVA JUNIOR et al., 2020a), consequently determining its age 

composition (Figure 5.6). Considering all tropical forests, the age composition of 

edges showed that in 2020 about 48% of edges were over 15 years old, while 

another 31% of forest edges were aged up to 10 years. By region, America and 

Asia showed a similar pattern to the general one; however, 45% of all forest 

edges in Africa were over 20 years old. The composition of edge ages is crucial 

because it defines the amount of carbon stocks that have been lost and will be 

lost if these edges remain in the landscape (SILVA JUNIOR et al., 2020a). 
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Figure 5.6 – Age distribution of forest edges for three tropical regions in 2020. 

 

5.5 Tropical forest edges CO2 emissions in the 1990-2020 period 

By combining forest edge age maps and more conservative carbon stock loss 

models (without the effects of selective logging and fire), we estimate that 

between 1990 and 2020, tropical forests had a committed emission of 17,938 Tg 

CO2 (an average of 579 ±190 Tg CO2 year-1) (Figure 5.7). This amount was 

equivalent to 19% of the committed emissions by deforestation (92,660 Tg CO2; 

an average of 2,989±1,098 Tg CO2 year-1) in the same period (Figure 5.7), being 

more conservative to the value (34%) found by Brinck.et al. (2017). 

While the peak of emission from the edge effect occurred in 2019 (980 CO2), the 

peak of emissions from deforestation occurred in 1986 (4,458 CO2). The Mann-

Kendall trend test showed that emissions from the edge effect between 1990 and 

2020 increased significantly (MK=0.33 and p=0.01) at a rate of 12.27 Tg CO2 

year-1, while emissions from deforestation showed no significant trend (MK=-0.07 

and p=0.59). 
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Figure 5.7 – Annual and accumulated CO2 emission by edge effect and deforestation for 
the tropical region between 1990 and 2020 (a). Contribution of each region 

to the total CO2 emissions due to the edge effect and deforestation (b). 

 

America contributed on average with more than half (57±11%) of emitted CO2 in 

the tropical region between 1990 and 2020; on the other hand, Africa and Asia 

accounted for more than half of the emissions due to the edge effect (52±24%). 

Annual edge emissions in America averaged 20±13% of emissions from 

deforestation, 15±19% in Africa, 35±18% in Asia, and 22±14% in the tropical 

region (Figure 5.7b). 

The largest CO2 emissions (greater than 5 Tg; Figure 5.8a) from forest edges 

were located mainly at the frontiers of deforestation in Amazonia, Congo Basin, 

and Asia (Figure 5.8b). However, CO2 emission values of up to one teragram of 

CO2 have been found in areas of intact forests (POTAPOV et al., 2017) in the 

more remote regions of the Amazonia, Congo Basin, and Kalimantan Island 

(Figure 5.8b). By estimating the equivalence of emissions by edge effect and 

deforestation (Figure 5.8c), we found that while at the frontiers of deforestation, 

the edge effect outweighs deforestation by up to 20%, in intact and more remote 
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areas of forest, emissions by edge effect can outweigh deforestation by more 

than 100%. 

Figure 5.8 – Spatial distribution of the sum (within 1990-20 period at 10-km spatial 
resolution) of CO2 emissions by edge effect (a) and deforestation (b). 
Spatialization of equivalence between emissions by edge effect and 
deforestation (c). 

 

To understand the role of secondary forests to offset deforestation and edge 

effect emissions in the tropical region, we estimated its uptake potential in the 

1990-2020 period (Table 5.2). Within the tropical region, we found that secondary 

forests reach a net uptake of 2,345 Tg CO2 in 2020, offsetting 2.53% of 

deforestation emissions or 13.08% of edge effects emissions and 2.12% by the 

two emission sources combined. Regionally, African secondary forests offset 

only 1.54% of deforestation emissions, while Asian secondary forests 3.37%. 

Africa and Asia offset around 11% each of the edge effect emissions, while the 

American secondary forests 15.20%. The secondary forests offset between 1.35 

and 2.58% in Africa and Asia by combining the two emission sources. 
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Table 5.1 - Secondary forest uptake within three tropical region between 1990 e 2020. 

Period (1990-2020) America Africa Asia Tropical 

Secondary forest uptake (Tg CO2) 1,322 307 717 2,345 

Deforestation emissions offset (%) 2.57 1.54 3.37 2.53 

Edges emissions offset (%) 15.20 11.15 11.05 13.08 

Deforestation plus edge emissions offset (%) 2.20 1.35 2.58 2.12 

 

The offset values found here are much smaller than those previously 

(9.58±1.31%)6 for Amazonia (NUNES et al., 2020; SILVA JUNIOR et al., 2020c; 

SMITH et al., 2020; HEINRICH et al., 2021a; SMITH et al., 2021), probably due 

to its shorter permanence time in the landscape, which avoids carbon 

accumulation over time. For example, in the Brazilian Amazon tropical forests, 

deforestation rates of secondary forests exceed rates for old-growth forests; thus, 

due to the gap in national legislation, this vegetation remains unprotects. 

Therefore, Brazil and other tropical nations must create mechanisms to protect 

secondary forests currently standing (HEINRICH et al., 2021a) and encourage 

the restoration of unused deforested areas (BRANCALION et al., 2019). 

Additionally, we simulated a zero-deforestation scenario of tropical old- and 

secondary-growth forests from 2021 onwards. As a result, we found that 

secondary forests would have cumulatively uptake 4,471 Tg CO2 from the 

atmosphere (90.62% higher than in 2020) at the end of 2030 and 11,779 Tg CO2 

(402.20% higher than in 2020) at the end of 2100. On the other hand, forest edges 

would have cumulatively emitted 18,878 Tg CO2 (5.24% higher than in 2020) at 

the end of 2030 and 19,724 Tg CO2 (9.96% higher than in 2020) at the end of 

2100. Thus, secondary forests would have offset about 4.01% of accumulated 

deforestation emissions until 2020 combined with projected emissions by edge 

effect at the and 2030 and 10.48% at the and 2100. 

 
 

6 To estimate Heinrich et al. (2021) and Nunes et al. (2020) secondary forests offset we used deforestation 

emissions from Smith et al. (2020), about 3,522 Tg CO2. 
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5.6 Edge effects with Implications for REDD 

From our findings, here we use the Brazilian Amazon biome region to test the 

hypothesis that edge effects and forest fires can counteract Brazilian reducing 

emissions from deforestation (REDD) results (ARAGAO et al., 2010; SILVA 

JUNIOR et al., 2020a, 2021a).  

Between 2006 and 2019 (Figure 5.8a), Brazil had a REDD result of 7,441 Tg CO2 

for the Amazon biome (UNFCCC, 2022). In the same period, forest edges emitted 

2,640 Tg CO2, forest fires 3,230 Tg CO2, while secondary forests uptake 450 Tg 

CO2, resulting in a net balance of 5,420 Tg CO2. Even offset by the uptake of 

secondary forests, emissions from forest degradation (fire and edge effect) would 

have compromised 73% of Brazil's REDD results for the Amazon region. 

Figure 5.9 – Carbon emissions end removal balance in the Brazilian Amazon between 
2006 e 2019 (a). Brazilian REDD result for Amazon biome (b). *Secondary 
forest removal. **Forest Fires Emissions. *** Edge Effects Emissions. 

 

The analysis of the annual scale showed an even more worrying scenario. Brazil's 

REDD results have significantly (S=-0.41 and p=0.05) at a rate of 23.47 Tg CO2 

yr-1, induced mainly by increasing deforestation rates in the region from 2013 
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onwards (SILVA JUNIOR et al., 2021b). In all years, even with the removal of 

CO2 by secondary forests, emissions from degradation reduced REDD results. 

However, in 2016 and 2019, net emissions from degradation compromised the 

entire REDD result, resulting in a positive emissions balance *Figure 5.8b). 

These findings show that it is urgent to end the deforestation climb in the Brazilian 

Amazon, preventing emissions. In addition, we showed that edge effects and 

forest fires can compromise a national REDD strategy focused exclusively on 

reducing emissions from deforestation. When necessary, legal deforestation 

must be done based on territorial planning to create a minimum amount of forest 

edges. A fire management policy in the region is urgent to avoid uncontrolled fires 

(PIVELLO et al., 2021), especially during years of extreme drought (ARAGÃO et 

al., 2018; SILVA JUNIOR et al., 2019b). Finally, we argue that edge effect 

emissions should be quantified and reported explicitly with emissions from 

deforestation, allowing a better understanding the atmosphere CO2 fluxes. 

5.7 Methods7 

Our methods are included in the following five steps:  

1. Forest cover dynamics maps; 

2. Mapping of forest edges and its age structure; 

3. Carbon stock loss model by edge effect; 

4. Carbon stock loss by edge effect under different environmental gradients; 

5. Carbon dioxide (CO2) emissions by edge effect and deforestation; 

6. Tropical secondary forest CO2 uptake potential between 1990 e 2020; 

7. Analysis of Brazil's REDD result for Amazon biome; 

8. Statistical analysis; 

9. Sources of uncertainty. 

 

 
 

7 This method was adapted from Silva Junior et al. (2020a). 
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5.7.1 Forest cover dynamics maps 

As primary dataset on forest cover dynamics, we used the unprecedented nearly 

40-year mapping at 30-m spatial resolution of Tropical Moist Forests (TMF). From 

a time-series observations of the Landsat satellites, with images collected 

between 1982 and 2020, Vancutsem et al. (2021) mapped deforestation and 

forest degradation (by fire and selecting logging disturbances). In the TMF 

dataset, forest degradation events are changes at a forest pixel visible for less 

than 2.5-years. In contrast, deforestation (the total forest cover removal) are 

disturbances that last longer than 2.5-years. On the other hand, secondary 

forests were defined as pixels with forest regrowth after no forest cover for more 

than 2.5-years. 

5.7.2 Mapping tropical carbon stocks for the year 2019 

Considering that the last biomass map covering the tropical region is only 

available for the year 2018 (SANTORO; CARTUS, 2021), and our intention to 

analyse 30-years of edge effects impact, we prepared a biomass map for the year 

2019 with 100-m spatial resolution. We used the global forest canopy height map 

(Figure 5.9) developed by Patapov et al. (2021) from GEDI (NASA's Global 

Ecosystem Dynamics Investigation pace-based LiDAR) and Landsat dataset. 

Patapov et al. (2021). highlighted that this dataset was able to detect and monitor 

deforestation, degradation, and recovery in tropical environments. The 

validations showed a Root Mean Squared Error (RMSE) of 6.60-m (R2=0.62) 

using an independent set of GEDI samples and an RMSE of 9.07-m (R2=0.61) 

using an airborne LiDAR dataset. 

Figure 5.10 – Tree canopy hight map. 

 

To estimate carbon stocks (Above Ground Carbon – AGC; in Tg ha-1), we applied 

three equations from the literature that consider the tree canopy height (TCH; in 
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meters). For America we used Equation 5.1 (R2 = 0.68 e RMSE = 43.30 Mg C 

ha-1) by Longo et al. (2016), for Africa Equation 5.2 (R2 = 0.76 e RMSE = 30.17 

Mg C ha-1) by Xu et al. (2017), and for Asia Equation 5.3 (R2 = 0.81 e RMSE = 

31,11 Mg C ha-1) by Ferraz et al. (2018). All procedures were and following was 

performed (except were indicated otherwise) within the Google Earth Engine 

(GEE) platform (GORELICK et al., 2017). 

𝐴𝐺𝐶 = 10 ⋅  0.025 ⋅  𝑇𝐶𝐻1.99   (5.1) 

𝐴𝐺𝐶 = 0.5 ⋅  1.88 ⋅ 𝑇𝐶𝐻1.55    (5.2) 

𝐴𝐺𝐶 = 0.5 ⋅  0.03 ⋅ 𝑇𝐶𝐻2.65    (5.3) 

Were, 0.5 is a factor to convert biomass into carbon stock (CHAVE et al., 2005), 

and 10 is a factor to convert carbon stocks from kg m-2 into Tg ha-1. 

Firstly, original TCH map with 30-m spatial resolution was resampled (by the 

average of the original pixels) to 50-m and 100-m (for Africa) spatial resolution. 

Then the equations mentioned above were applied to the resampled TCH maps, 

thus obtaining the carbon stocks. Finally, for America and Asia, the stock map 

was resampled to 100-m spatial resolution for America and Asia, and 100-m 

spatial resolution for Africa (Figure 5.10).  

Figure 5.11 – The 2019 above ground carbon (AGC) map. 

 

5.7.3 Mapping of forest edges and its age structure 

Initially, we analysed the distance of carbon stocks as a function of their distance 

from the forest edge. This analysis served to identify the extent to which the 

reduction of stocks is significant from the edges to the forest's interior. We 

collected more than 977,000 random samples with a minimum distance of one 

kilometre between samples to avoid collecting within the same carbon stock pixel. 
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About 616,211, 107,438, and 254,939 samples were collected for America, 

Africa, and Asia. Only areas within forest in 2019 forest cover map were 

considered for sampling. 

We performed analyses to identify the extent of carbon stock reduction from 

forest edges in the R software (R CORE TEAM, 2018). First, we only consider 

samples with a distance between 30 and 2,000-m from the forest edges because, 

after 2,000-m, stocks saturate as a function of distance. Then, we implemented 

a bootstrap approach (KUSHARY; DAVISON; HINKLEY, 2000) with 1,000 10% 

random resamples with replacement. To fit a model of stock growth as a function 

of edge distance (CHAPLIN-KRAMER et al., 2015), we adopted the Michaelis-

Menten kinetic equation (Equation 5.4) through the "drc" R package (RITZ et al., 

2015). To identify the distance threshold from forest edges where the reduction 

of carbon stocks is no longer significant, we performed a breaking-point analysis 

using the "segmented" R package (MUGGEO, 2016). Finally, the average and 

standard deviation of the parameters obtained from the 1,000 interactions were 

calculated. 

𝐴𝐺𝐶 =
𝛼 ⋅ 𝐸𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝛽 + 𝐸𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
+  ε   (5.4) 

Were AGC is the above ground carbon (Mg ha-1)), α and β are parameters of the 

equation, Edistance is the distance (meters) from the forest edges, and ε is the 

estimated error for the equation. 

Thus, as shown earlier in the results, America had an average distance threshold 

of 379-m, Africa 351-m, and Arsia 415-m. Based on our forest cover data (30-m 

spatial resolution), we adopted the following widths in our forest edges mapping, 

390-m, 360-m, and 420-m. 

From 31-years of forest cover maps we calculated the Euclidean distance 

(DANIELSSON, 1980) from the edges to the forest’s interior. Finally, from 

Euclidean distance we classified pixels based on distance intervals, using three 

classes: non-forest (equal to 0m), forest interior (greater than edge width) and 

forest edge class (between 30 and 360-420-m, depending on the region). 
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Using the 31-years forest edges maps, we produced 30 forest edges age maps 

(1990 to 2020). Firstly, we removed from the forest edges maps (1990 to 2020) 

all the edges in 1989 because we cannot estimate forest edges age in the 1989 

year. This first step also removed all natural forest edges formed at the 

boundaries between forest-water and forest-savannas, which were not of interest 

for our study. Then, we transform the forest edges maps into binary maps, where 

we assign the value of "1" to the forest edges and "0" to the forest interior and 

non-forest cover. Finally, we use the map algebra method to calculate the forest 

edges age, by summing the binary maps year by year cumulatively. While the 

1990 map had edges aged one year, the 2020 map was aged between one and 

thirty-one years. 

5.7.4 Carbon stock loss model by edge effect 

We use 2019 carbon stock map and 2019 forest edges age maps to fit models of 

carbon loss within forest edges as a function of its edges age. For all models, we 

used the median of carbon stocks in the forest interior (forest areas excluding the 

edges and limited to 2,000-m) as reference (control areas). Firstly, we overlaid 

the carbon stock map, on the forest edge map and 2019 cumulative forest 

degradation map (1982 to 2019) (VANCUTSEM et al., 2021) to extract carbon 

values for pixels in the edge and interior of degraded and non-degraded forests. 

Then, we calculated the median carbon values for forest edges stratified by their 

respective ages. Finally, with 30-years of data, we calculated the percentage 

difference between the forest interior and forest edges AGC for each age (carbon 

loss as percentage). 

From carbon loss, edges age and based on the conceptual and remote-sensing-

based model (Table 5.3) (MELITO; METZGER; DE OLIVEIRA, 2018; SILVA 

JUNIOR et al., 2020a), we employed in R software (R CORE TEAM, 2018) the 

non-linear rectangular hyperbolic regression of Michaelis-Menten kinetic model 

(Equation 5.5), and the Asymptotic regression model (Equation 5.6). Thus, we 

used the "drc" (RITZ et al., 2015) and “aomisc” 

(https://github.com/OnofriAndreaPG/aomisc) R packages. 
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Were Closs being the amount of carbon stock loss measured as a proportion, and 

Yafter is the number of years after the edges creation. The α and β are parameters 

of the equations. 

Table 5.2 - Carbon loss factor (f) for the calculation of carbon loss from edge effect. 

Disturbance Region Equation 
Coefficients 

RSE** 
a (*) b (*) 

Non-
degraded 

America 5 22.518(±1.875) 1.615(±0.974) 2.421 

Africa 5 25.500(±2.200) 0.764(±0.715) 3.742 

Asia 6 40.187(±1.387) 1.625(±0.853) 3.598 

Degraded 

America 5 27.785(±1.793) 1.162(±0.642) 2.695 

Africa 6 30.216(±2.893) 0.405(±0.283) 6.331 

Asia 6 48.615(±1.984) 1.219(±0.621) 5.074 

*95% confidence interval; **Residual Standard Error 

 

5.7.5 Carbon stock loss by edge effect under different environmental 

gradients 

Similar to the previous section, we calculated the carbon stocks loss for each 

forest edge age; however, we stratified each analysis for different environmental 

gradients including water deficit, monthly wind speed, maximum temperature, 

and distance from secondary forests. Thus, we fitted curves using Locally 

Weighted Scatterplot Smoothing - LOESS implemented in R software (R CORE 

TEAM, 2018), which is a local regression model (CLEVELAND; GROSSE; SHYU, 

1992; CLEVELAND; LOADER, 1996). This method is a non-parametric strategy 

for fitting a smooth curve to data, where noisy data values, sparse data points or 

weak interrelationships interfere with your ability to see a line of best fit (TATE et 

al., 2005). He we used the span 0.75 (default setting) in LOESS analyses. 

𝐶𝑙𝑜𝑠𝑠 =
𝛼 ⋅ 𝑌𝑎𝑓𝑡𝑒𝑟

𝛽 + 𝑌𝑎𝑓𝑡𝑒𝑟
(5.5) 

𝐶𝑙𝑜𝑠𝑠 = 𝛼 ⋅ (1 − exp(−𝛽 ⋅ 𝑌𝑎𝑓𝑡𝑒𝑟))(5.6) 
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To analyse the water deficit in forest edges, we used the average (1981-2019 

period) of Maximum Cumulative Water Deficit – MCWD (ARAGÃO et al., 2007; 

CAMPANHARO; SILVA JUNIOR, 2019) from the monthly Rainfall Estimates from 

Rain Gauge and Satellite Observation - CHIRPS (at 5-km spatial resolution) 

(FUNK et al., 2015). For monthly wind speed and maximum temperature average 

(1981-2019 period) we use the TerraClimate (Monthly Climate and Climatic 

Water Balance for Global Terrestrial Surfaces) dataset (4-km spatial resolution) 

(ABATZOGLOU et al., 2018). Finally, we calculated the distance from forest 

edges to the closest secondary forests (at 30-m spatial resolution) that grew 

between 1982 and 2019 and remained standing between in 2019 (VANCUTSEM 

et al., 2021). 

We performed an independent approach to assess the importance of 

environmental variables (including degradation and age of forest edges). First, 

we created a reference map (at 100-m spatial resolution) with the median carbon 

stocks of the forest interior (forest region with up to 2,000-m from non-forest 

areas, excluding edge, degraded and secondary forest areas) across the tropical 

ecoregion (DINERSTEIN et al., 2017) using the original 2019 carbon stock map. 

Then, we overlay the two previous maps and calculate the percentage of loss of 

carbon stocks for each pixel of forest edges. Finally, we overlay the map with 

regionalized carbon loss values on the maps of environmental variables 

(including forest edges age and degradation) across more than 53,000 random 

samples (17,877 in America, 18,329 in Africa, and 18,260 in Asia; with one-

kilometre distance among themselves) across all remaining forest edges in 2019. 

From the samples of each tropical region in the we performed a machine learning 

approach. We used a “random-forest” model to assess which of the 

environmental variable were the most important in influencing the carbon loss 

within forest edges. The analysis was performed by the conditional random-forest 

model “cforest” available in the R package “caret” (KUHN, 2008). We 

implemented a bootstrap approach with 30 interactions in the R software, where 

1,000 samples were randomly selected from the original samples dataset, which 

were then submitted to the random-forest model algorithm considering 500 
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decision trees (BEHNAMIAN et al., 2017). As our dataset include both continuous 

and categorical variables, the “cforest” random-forest model provides more 

accurate importance estimates compared to more traditional random-forest 

models (STROBL et al., 2007). For more information see Heinrich et al. (2021b).  

5.7.6 Carbon dioxide (CO2) emissions by edge effect and deforestation 

We constructed a map of potential carbon stocks with a 30-m spatial resolution 

(Figure 5.11) for this step. For that, from the 2019 carbon stock map (100-m 

spatial resolution), we excluded all non-forest areas, forests within 500-m from 

the edges, degraded forests, and secondary growth forests. We then calculate 

the median carbon stocks for each ecoregion (DINERSTEIN et al., 2017) within 

the tropical region at 30-m spatial resolution. The ecoregions represent distinct 

biodiversity assemblages, including all taxa, not just vegetation, whose 

boundaries include the space required to sustain ecological processes 

(DINERSTEIN et al., 2017). 

Figure 5.12 – Potential AGC map. 

 

To extrapolate the carbon loss at forest edges in GEE platform, we first combined 

all the annual age maps with our potential AGB density map (30-m spatial 

resolution) in a pixel-by-pixel approach, attributing to each edge age pixel an 

initial (pre-edge formation) carbon value. We carried out a similar procedure for 

the deforested pixels. For estimating tropical-wide edge effect CO2 emissions 

between 1990 and 2020, we applied Equation 7 for each pixel. 

𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑃𝑖𝑥𝑒𝑙 = 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝐹𝑎𝑐𝑡𝑜𝑟 ⋅ 𝐴𝐺𝐶𝑃𝑖𝑥𝑒𝑙 ⋅ 0.09 ⋅ 3.667        (7) 

where EmissionPixel is the pixel CO2 emission at the forest edges given in Mg per 

pixel, EmissionFactor is the emission factor for each forest edge age, calculated 
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based on non-degradation equation (Table 5.4), AGCPixel is the pre-edge or pre-

deforestation AGB value of the pixel, and 3.667 is the carbon to dioxide carbon 

factor conversion. To avoid double-counting, if a given pixel has lost carbon 

stocks due to the edge effect, that amount is discounted if there is a subsequent 

loss from deforestation in the same pixel. For calculating the tropical-wide CO2 

emissions from deforestation, between 1990 and 2020, we applied Equation 8 for 

each pixel. 

𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑃𝑖𝑥𝑒𝑙 = 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝐹𝑎𝑐𝑡𝑜𝑟 . 𝐴𝐺𝐶𝑃𝑖𝑥𝑒𝑙 ⋅ 0.09 ⋅ 3.667        (8) 

All terms in Equation 8 are similar to those in Equation 7, however, EmissionFactor 

in this case is set to “1”, indicating that all carbon stored in the pixel will be lost 

following the deforestation process. 
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Table 5.3 – Emission factor (f) for CO2 amount calculation from edge effect. 

Forest 
edges age 

(year) 

Emission Factor (f) 

America Africa Asia 

1 0.086 0.145 0.323 

2 0.038 0.040 0.064 

3 0.022 0.019 0.013 

4 0.014 0.011 0.002 

5 0.010 0.007 0.000 

6 0.007 0.005 0.000 

7 0.006 0.004 0.000 

8 0.004 0.003 0.000 

9 0.004 0.002 0.000 

10 0.003 0.002 0.000 

11 0.002 0.002 0.000 

12 0.002 0.001 0.000 

13 0.002 0.001 0.000 

14 0.002 0.001 0.000 

15 0.001 0.001 0.000 

16 0.001 0.001 0.000 

17 0.001 0.001 0.000 

18 0.001 0.001 0.000 

19 0.001 0.001 0.000 

20 0.001 0.000 0.000 

21 0.001 0.000 0.000 

22 0.001 0.000 0.000 

23 0.001 0.000 0.000 

24 0.001 0.000 0.000 

25 0.001 0.000 0.000 

26 0.000 0.000 0.000 

27 0.000 0.000 0.000 

28 0.000 0.000 0.000 

29 0.000 0.000 0.000 

30 0.000 0.000 0.000 

31 0.000 0.000 0.000 
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5.7.7 Tropical secondary forest CO2 uptake potential between 1990 e 2020 

We adopted the relative recovery curve (%) of above-ground biomass in tropical 

secondary forests (Table 5.4) proposed by Poorter et al. (2021) to estimate the 

uptake potential in the tropical region between 1990 e 2020. 

Table 5.4 – Tropical secondary forest uptake factors. 

Secondary forest Age Relative recovery (%) Uptake factor (f) 

1 2.932 0.029 

2 4.815 0.048 

3 6.696 0.067 

4 8.638 0.086 

5 10.434 0.104 

6 12.184 0.122 

7 13.974 0.140 

8 15.613 0.156 

9 17.221 0.172 

10 18.876 0.189 

11 20.507 0.205 

12 21.980 0.220 

13 23.434 0.234 

14 24.933 0.249 

15 26.403 0.264 

16 27.843 0.278 

17 29.256 0.293 

18 30.641 0.306 

19 31.999 0.320 

20 33.089 0.331 

21 34.361 0.344 

22 35.624 0.356 

23 36.862 0.369 

24 38.077 0.381 

25 39.269 0.393 

26 40.451 0.405 

27 41.380 0.414 

28 42.746 0.427 

29 43.860 0.439 

30 44.953 0.450 

31 46.024 0.460 

 

Through the secondary growth forests cover from Vancutsem et al. (2021) 

dataset, we calculate year by year the age of these forests when remaining in the 

year under analysis. Then, through the potential AGC map, we apply Equation 9 

in a pixel approach. 
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𝑈𝑝𝑡𝑎𝑘𝑒𝑃𝑖𝑥𝑒𝑙 = 𝐴𝐺𝐶𝑃𝑖𝑥𝑒𝑙 ⋅ 𝑓 ⋅ 3.667                (9) 

Were, UptakePixel is the amount of uptake CO2 (in Tg) for a given year, AGCPixel 

is a pixel in the potential AGC map, f is an uptake factor (Table 5.5) for a given 

secondary forest age, and 3.667 is a factor to convert carbon in CO2. 

5.7.8 Analysis of Brazil's REDD result for Amazon biome 

To analyse Brazil's REDD results (UNFCCC - CONVENÇÃO-QUADRO DAS 

NAÇÕES UNIDAS SOBRE A MUDANÇA DO CLIMA, 2022) in a scenario of 

emissions from forest degradation, we used the same approach described above 

but with a specific spatial cut for the Brazilian Amazon biome. For the 2006-2019 

period, we calculated the emissions by edge effect uptake from secondary 

forests. 

Additionally, we calculated CO2 emissions from forest fires for areas that burned 

only once between 2001 and 2019. We first combined three remote sensing 

products to produce annual maps of burned areas (CHUVIECO et al., 2018; 

GIGLIO et al., 2018; ALENCAR, 2022); then, we mapped the forests that burned 

only once outside the forest edges. Finally, we extract the total AGC from the 

potential map for each burned forest pixel and consider a carbon loss of 29.16% 

within one year after burn (ANDERSON et al., 2015), later converted into CO2 

(multiplied by the factor 3.667). 

5.7.9 Statistical analysis 

To test the significance of temporal trends, we used the non-parametric Mann-

Kendall test (MANN, 1945; KENDALL, 1975) and the Sen’s Slope estimator 

(SEN, 1968) to calc the magnitude of changes at time. All analyses were 

performed in R software (R CORE TEAM, 2018). For the we used the Mann-

Kendall test and the Sen’s Slope Estimator the “wq” package (JASSBY; 

CLOERN, 2016) was used. For all statistical analysis, we adopted the 

significance level of 95% (p<0.05). The Mann-Kendall test is used to assess 

whether there is a monotonic upward or downward trend over a time period, 

whereas the Sen’s Slope Estimator, a robust nonparametric method with little 
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sensitivity to outliers, is used to estimate the magnitude of trends by the 

calculation of the median of the slopes of each pair of points in the data. 

5.7.10 Sources of uncertainty 

Although the forest cover dataset is available for years prior 1990 (1982-1989 

period), our edge effect and deforestation analyses were performed from 1990 

onwards due to a lower density of Landsat data prior to 1990 (WULDER et al., 

2019), which would lead to an underestimation of the forest cover changes 

mapping. Thus, our estimates do not account for historical forest changes before 

1990. 

While the equations and the base remote sensing product used to estimate 

carbon stocks in 2019 have been validated and uncertainties quantified, which 

gives security in the AGC values used, validations are still needed. As future 

steps, we defined a validation of our AGC estimates using airborne Lidar data 

already available for the tropical region. 

In our analysis, we assumed that the open- and closed-edges are equally 

impacted by edge effects, although these impacts may assume different 

magnitudes depending on the edge type, as suggested by Didham and Lawton 

(1999) and Shapiro et al. (2016). 

All uncertainties in our models and analyses were quantified and expressed as 

confidence intervals throughout the chapter. Besides, our approach and finds 

represents an advance in relation to previous studies (NUMATA et al., 2010, 

2011; PÜTZ et al., 2014; HISSA et al., 2016; BRINCK et al., 2017; MAXWELL et 

al., 2019; SILVA JUNIOR et al., 2020a; QIN et al., 2021), contributing to an 

improved understanding of the carbon balance of tropical region. Finally, unlike 

previous studies (NUMATA et al., 2010, 2011; PÜTZ et al., 2014; HISSA et al., 

2016; BRINCK et al., 2017; MAXWELL et al., 2019; SILVA JUNIOR et al., 2020a; 

QIN et al., 2021), our estimates of carbon loss were based for the first time on 

samples derived from all tropical region, describing the gradual decay of carbon 

at forest edges over unprecedent 30-years. 
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6 CONCLUDING REMARKS 

We concluded that we were able to perform a comprehensive analysis of 

fragmented tropical forests and assess their impacts at different scales through 

remote sensing. The Chapter 2 presented the state of art of remote sensing of 

tropical fragmented forests. 

From Chapter 3, we concluded that forest fires incidence and intensity vary with 

levels of habitat loss and forest fragmentation in the Central Brazilian Amazon. 

About 95% of active fires and the most intense ones occurred in the first kilometre 

from the forest edges. Furthermore, recent changes in the Brazilian forest code 

may lead to Amazonian landscapes with more fragmented forests. 

From Chapter 4 we concluded that carbon losses associated with the edge effect 

in Amazonia (947 Tg C) corresponded to about one-third of losses from 

deforestation (2,592 Tg C). Despite a notable reduction of carbon losses from 

deforestation, the losses from the edge effect remained unchanged over time. 

Thus, carbon losses from edge effect are an additional unquantified flux that can 

counteract carbon emissions avoided by reducing deforestation. 

From Chapter 5, we concluded that selective logging and fire degradation can 

increase carbon losses at forest edges for the tropical scale. Over time, carbon 

losses at forest edges vary along different environmental gradients, with 

degradation being the most important for losses in America and Africa and 

maximum temperature in Asia. Carbon losses resulted in CO2 emission of 18 

thousand teragrams, or the equivalent of 19% of emissions from deforestation 

(93 thousand teragrams). The uptake of CO2 from the atmosphere by secondary 

tropical forests was not sufficient to offset these emissions.  

Furthermore, we argue that the collateral CO2 emissions from edge effect should 

be quantified and reported with emissions from deforestation for an inventory of 

greenhouse gases more consistent. Urgent actions are needed to restrain 

deforestation in Amazonia (SILVA JUNIOR et al., 2021b) and the tropical region. 

The protection of secondary tropical forests (SILVA JUNIOR et al., 2020b; 

HEINRICH et al., 2021b) and the incentive and investment in restoration 
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(BRANCALION et al., 2019) are indispensable tools to offset emissions from 

deforestation and the edge effect to guarantee the limitation of Earth warming. 
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