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“Ford!” he said, “there’s an infinite number of monkeys outside who
want to talk to us about this script for Hamlet they’ve worked out.” .

Douglas Adams
at “The Hitchhiker’s Guide to the Galaxy”, 1979

v





To my parents Andrea and Sandro, my aunts Angela
and Fernanda, and grandmas Isabel and Maria

Elizabete.

vii





ACKNOWLEDGEMENTS

Gostaria de começar agradecendo à minha mãe, que sempre esteve ao meu lado e
me aguentou até nos períodos mais difíceis. Agradecer ao meu pai que sempre me
apoiou em tudo que pode e não pode. Agradecer também à minha tia Fernanda,
que me orientava mesmo sem saber e é o modelo ideal do cientista no Brasil, o qual
tento seguir. Agradecer a minha tia Basa, que sempre que precisei correu pra ajudar
e mesmo de longe se fez muito presente. Agradecer aos meus amigos Charlinho,
Enila, Elis, Félix, Larissa, Papaco, Sabrinna, Tainara e Thamiris. Alguns que estão
comigo há muito tempo, outros que surgiram há pouco, e ainda que voltaram agora.
Muito obrigado pelas incontáveis horas de companhia, de D&D, de carinho, força
e sanidade mental. Agradeço à minha vó Bete, à minha vó Isabel, e à toda minha
família. Agradeço ao meu orientador Leonardo, por me ajudar nessa jornada do
mestrado da melhor maneira possível e imaginável. Agradeço aos professores Elbert,
Quiles e Thadeu por aceitarem participar da minha banca. Por fim agradeço ao
CSILab da UFOP, o qual me disponibilizou um cluster para rodar meus programas
com mais facilidade.

I’d like to start thanking my mother, who has always been by my side and supported
me even in the most challenging times. Thanks to my father, who always supported
me in everything he could and could not. Thanks to my aunt Fernanda, who guides
me even without knowing it and is a role model of a scientist in Brazil, which
I try to follow. Thanks, Aunt Basa, who helped whenever I needed it and even
from far away, was very present. Thanks to my friends Charlinho, Enila, Elis, Félix,
Larissa, Papaco, Sabrinna, Tainara and Thamiris. They’ve been with me for a long
time, others for a little while, and some came back later. Thank you so much for
the countless hours of companionship, of D&D, of affection, strength, and sanity. I
thank my grandmother Bete, my grandmother Isabel, and my family. I would like
to thank my advisor Leonardo for helping me on this master’s journey in the best
possible and imaginable way. I would like to thank professors Elbert, Quiles, and
Thadeu for agreeing to review my dissertation. Finally, I thank UFOP’s CSILab,
which provided a cluster to run my programs quickly and precisely.

This research was partially supported by grant 420338/2018-7 of the Brazilian Na-
tional Council for Scientific and Technological Development (CNPq) and by grants
2018/06205-7 and 420338/2018-7 of São Paulo Research Foundation (FAPESP) and
DFG-IRTG 1740/2

ix





ABSTRACT

Transportation, power grids, communication, water, oil, and gas distribution systems
heavily influence our well-being. Studying the structure of those critical infrastruc-
tures is extremely important for people’s quality of life. We model those systems as
a network using the graph theory. This work explores already defined topological
metrics such as Efficiency, Communicability, and Vulnerability, but following an in-
novative approach: considering not only the shortest paths between pairs of nodes in
the networks. We define vulnerability as a drop in the network’s performance, and
performance is a general term, able to be quantified by different metrics. We propose
a twist in the already defined vulnerability index using communicability as a per-
formance instead of efficiency. Firstly, we compare the traditional efficiency-based
vulnerability with our proposed communicability-based one. This way, we show how
the different metrics highlight different vulnerable points and how testing multiple
paths instead of only the shortest can impact the results. After that, we perform
several linear regressions between the vulnerabilities and well-known metrics (e.g.,
degree, shortest path length, and betweenness). Our findings show different patterns
of relations for different network topologies, such as Random and Scale Free. Finally,
we explore Random Walks on networks by walking on them. We run a Random Walk
on the network and count how many times the Brownian particle goes through each
node: Passaging Index. We compare, for each node, the Passaging Index with other
metrics and find linear correlations between the Passaging Index and Degree, re-
sulting in a strong linear correlation, with a R2 = 1. To the Erdős–Rényi model,
the linear correlation is also present between the Passaging Index and the Vulner-
ability with Efficiency in all cases, while in Barabási-Albert presents more complex
correlations between metrics.

Keywords: Complex Networks. Random Walks. Vulnerability. Communicability. Efi-
ciency.
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ALÉM DO CAMINHO MAIS CURTO: UMA ANÁLISE DAS
VULNERABILIDADES DAS REDES

RESUMO

Transporte, redes de energia, comunicação e sistemas de distribuição de água, óleo e
gás influenciam fortemente nosso bem-estar. Estudar a estrutura dessas infraestru-
turas críticas é extremamente importante para a qualidade de vida das pessoas.
Modelamos esses sistemas como uma rede usando a teoria dos grafos. Este trabalho
explora métricas topológicas já definidas como Eficiência, Comunicabilidade e Vul-
nerabilidade, mas seguindo uma abordagem inovadora: considerando não apenas os
caminhos mais curtos entre pares de nós nas redes. Definimos vulnerabilidade como
uma queda na performance da rede, e performance é um termo geral, passível de ser
quantificado por diferentes métricas. Propomos uma reviravolta no índice de vul-
nerabilidade já definido usando comunicabilidade como um desempenho em vez de
eficiência. Em primeiro lugar, comparamos a vulnerabilidade tradicional baseada
na eficiência com a nossa proposta baseada na comunicabilidade. Desta forma,
mostramos como as diferentes métricas destacam diferentes pontos vulneráveis e
como testar vários caminhos em vez de apenas o mais curto pode impactar os resul-
tados. Depois disso, realizamos várias regressões lineares entre as vulnerabilidades
e métricas conhecidas (por exemplo, grau, comprimento do caminho mais curto e
intermediação). Nossos resultados mostram diferentes padrões de relações para difer-
entes topologias de rede, como Aleatória e Livre de Escala. Finalmente, exploramos
Random Walks em redes caminhando sobre elas. Executamos uma Random Walk
na rede e contamos quantas vezes a partícula browniana passa por cada nó: Índice
de Passagem. Comparamos, para cada nó, tal índice com outras métricas de rede
e encontramos uma forte correlação linear entre o Índice de Passagem e o grau as-
sociado a cada nó, formando uma relação direta, com R2 = 1 para todos os casos
de grafos distintos. Dentre estes cálculos, também foi encontradas outras relações
lineares, entre o Índice de Passagem e a Vulnerabilidade com Eficicência, na relação
com o modelo de Erdős–Rényi. Esta linearidade não se mantém tão forte no modelo
de Barabási-Albert, apresentando outras relações mais complexas.

Palavras-chave: Redes Complexas. Random Walks. Vulnerabilidade. Comunicabili-
dade. Eficiência.
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N – Nodes;
L – Edges or links
RW – Random Walk;
WWW – World Wide Web;
Vul(Efi) – Vulnerability with Efficiency as performance;
Vul(Com) – Vulnerability with Communicability as performance;
ki – Node’s Degree;
d – Graph’s density;
gk – Nodes’s Betweenness;
< l >i – Node’s Mean Shortest Path;
PI – Passaging Index.
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1 INTRODUCTION

The study of Complex Networks is increasingly present in the sphere of researchers
worldwide. The theory of networks arose in a study by Leonahrd Euler in the mid-
1730s (EULER, 1736) (original in Latin), and it took until 1959 to begin to grow and
spread to other sciences (ERDŐS; RÉNYI, 1959; ERDőS; RéNYI, 1960; WATTS; STRO-

GATZ, 1998; ALBERT; BARABÁSI, 2002; BARABÁSI; BONABEAU, 2003). Networks are
a typical structure in our lives; they permeate nature and society. The people you
know are part of a social network. Your computer connected to the internet is part
of a worldwide computer network. A food chain is simply a network of who feeds on
whom food relationships.

The complex networks approach is currently present in several areas, such as Neural-
science (HOPFIELD, 1982), biology (JEONG et al., 2000), climate (TSONIS et al., 2006)
and even in natural disaster’s impacts (SANTOS et al., 2015).

The United Nations Office for Disaster Risk Reduction defines disasters as “A serious
disruption of the functioning of a community or a society at any scale due to haz-
ardous events interacting with conditions of exposure, vulnerability and capacity,
leading to one or more of the following: human, material, economic and environ-
mental losses and impacts.”, and vulnerability as “The conditions determined by
physical, social, economic and environmental factors or processes which increase the
susceptibility of an individual, a community, assets or systems to the impacts of
hazards.” (UNDRR, 2022).

An example case of a disaster exposing a vulnerability happened in 2020. A blackout
that generated an energy crisis in the state of Amapá, where almost 90% of the state
was left without power after a fire reached the main power substation in the state
(G1, 2020). Also in 2021 the failure was caused by excess demand on a freezing winter
day in Texas, US. The freezing day froze the natural gas and blocked the pipes that
carried them, froze the wind turbines and coal piles, making it impossible for supply
to catch up with demand. This accident happened because the state of Texas is not
connected to the rest of the country’s power grid (GUARDIAN, 2021). This way, we
need to anticipate these problems and reduce the disruption caused by disasters.

Analyzing the entire structure as a network, locating critical points, and discussing
the causes of greater vulnerability for the network as a whole is where Complex
Networks come in this work. There are already some ways to do that kind of analysis
of finding the most vulnerable structures in a network by looking into its topology
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in a few different ways (HOLME et al., 2002; MISHKOVSKI et al., 2011; CHEN et al.,
2010; ROCCO; RAMIREZ-MARQUEZ, 2011). In this work, we both show one of the
types (GOLDSHTEIN et al., 2004) and define a variation since the original definition
is flexible to (LATORA; MARCHIORI, 2004) changes.

Almost all of those vulnerability metrics have something in common: they use the
shortest path in their calculation. A path is simply a route or track between one
place and another, and the shortest path is the path with shorter length in the set
of possible paths. The shortest path is often seem as the the most efficient one, since
efficiency is closely related to the least amount of time spent when executing a task.

Taking the shortest (or most efficient) path is what we assume to be the most
common practice, but it does not always happen; people do not always follow the
lowest cost path, as shown by the work of (LIMA et al., 2008) using the data from
92419 GPS trajectories. Besides, the shortest path is not always the safest path, as
shown in (GALBRUN et al., 2016), where they develop an algorithm to output a small
set of paths providing tradeoffs between distance and safety.

This brings to light our scientific question: how does considering not only the shortest
paths can affect the vulnerability index in complex networks?

As a tool, we have the communicability (ESTRADA; HATANO, 2008) which, in contrast
to efficiency, presents analyses seeking to evaluate all the paths that lead from one
point to another, rather than just the shortest path.

Communicability is an analytical solution that is very similar to a diffusive process
in the network as if we transformed the network into a set of springs and when
moving one of them, we verified how all the others start to move. On another side of
the same coin, we have Random Walks, stochastic processes resembling Brownian
motion, which arises when discussing diffusion in physics. Both communicability and
Random Walks have this connection with the diffusive process, and when simulating
Random Walks the path is going to repeat some nodes, just as communicability
considers all possible paths, even repeating points.

This work aims to study metrics already defined and common in complex networks,
such as efficiency, communicability, and vulnerability. It is interesting to note that
vulnerability is defined in a very general way (LATORA; MARCHIORI, 2004) and
is implemented in (GOLDSHTEIN et al., 2004) using efficiency as performance. By
inspiration, our prime objective is defining vulnerability using communicability as
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performance. Lastly, by using Random Walks, we incorporate the non-shortest paths
with a stochastic point of view.

1.1 Text organization

We organize our text in Chapters, being the first one this introduction and the
second a brief theoretical background. Chapters 3, 4, and 5 are related works, where
we begin by proposing a metric, testing its characteristics, then trying to relate it
with a new stochastic version. In the last Chapter, we talk about our conclusions
and future prospects.

• Chapter 2: Basic concepts of graph, graph models, and walks & paths. Def-
inition and showcases of each subject, with a short history background of
graphs. We close the chapter going through a literature overview, treating
the main points inside our work.

• Chapter 3: This Chapter is an already published work on Vulnerability
with Communicability. This work brings a twist in an already existing
vulnerability metric but changes the performance from efficiency to com-
municability, defining the Vulnerability with Communicability metric.

• Chapter 4: This Chapter aims further explore our previous work by com-
paring its result to two different models of graphs with already well-
established metrics in literature. The Chapter shows how each metric re-
lates with both vulnerabilities, to both models and 4 different graphs.

• Chapter 5: Here we explore a different type of metric by incorporating the
non-shortest path as a stochastic index, here called as Passaging Index.

• Chapter 6 Lastly, we conclude our work with our final remarks, where we
explain our conclusions and what to expect from future works.
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2 THEORETICAL BACKGROUND

This Chapter explains the essential theoretical background needed to comprehend
our work. We define the mathematical tool of graphs with history and formal def-
initions; then, we start an overview of the two most traditional models of graphs,
finishing with an explanation of walks and paths.

2.1 Graphs

Euler, a Swiss mathematician who spent most of his career in Berlin and St. Pe-
tersburg, had an extraordinary influence in all areas of mathematics, physics, and
engineering, not just in quantity but also in quality. In the town of Königsberg, close
to St. Petersburg, arose a simple question: can anyone walk across all seven bridges
and never cross a bridge again?

Figure 2.1 - Scheme of the Königsberg bridges.

Source: Carlson (2021).

Euler said that there was no possible way to do this, and subtly, he started a new
branch of mathematics known today as graph theory. Graph theory today is the
basis for our study of networks, and this theory only began to expand into something
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more concrete centuries after Euler, when great mathematicians began to study the
phenomenon and helped open doors in the new field of complex networks (BARABáSI,
2002).

Euler had a simple, elegant thought and was easily understood even by those not
trained in mathematics. The study was not a complex development, but the tool he
created to develop this solution made this turnaround. Euler abstracted from the
idea of physical space and made the following representation:

Figure 2.2 - Graphic representation of the Königsberg bridges.

Source: WIKIPEDIA (2021).

This set of dots with connections between them is what we call a graph, the dots
are nodes (or vertices), and the connections are edges. Mathematically speaking, we
have

G = (N, L), (2.1)

where G is the set of the graph, N is the set of nodes, and L is the set of edges (or
links).

This simple idea helped to notice that there is no way to cross the seven bridges just
once. To cross it only once, the nodes with an odd number of edges should be either
the beginning or the end of the walk, with a limit of two or no node with an odd
number of edges. As in Figure 2.2, all four nodes have an odd number of bridges, so
it is not possible to make the path (BARABáSI, 2002).

Later was developed the graph structure to a more mathematical view; with the
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representation of a matrix, we can map the connections of each node, as follows

A =


0 1 1 1
1 0 1 0
1 1 0 1
1 0 1 0

 , (2.2)

this is the adjacency matrix of Figure 2.2 following a clockwise order beginning from
the left, where the element Aij of the matrix A is equal to 1 if there is a connection
(edge) and equal to 0 when there is not.

Using this definition, we can extend to find some graph, nodes, and edges properties:

• Degree (ki): which is the number of edges a node has, connecting it to other
nodes. Can be calculated using the adjacency matrix with the following
equation

ki =
N∑

j=1
Aij, (2.3)

where ki is the node’s degree, Aij is an element of the adjacency matrix.
In short, sum all elements of the ith line.

• Density (d): Density is a measure of how many connections a network has
divided by how many it could have.

d = Numberofedges

Possiblenumberofedges
. (2.4)

Where,

Possiblenumberofedges = N × (N − 1)
2 (2.5)

• Shortest path length (lij): The length of the path with the minimum num-
ber of edges connecting nodes i and j. It can also be called distance between
nodes i and j.

• Node’s mean shortest path (< l >i): The mean of shortest paths leaving
node i to all others. It is defined as

< l >i=
1

N − 1

N∑
i=1,j ̸=i

lij. (2.6)
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• Betwenness (gk): The node betweenness is how many shortest paths go
through the node i. It is defined as

gk =
∑

i ̸=j ̸=k

σij(k)
σij

, (2.7)

where σij is the number of shortest paths going from i to j and σij(k) is
the number of paths that goes through k.

Figure 2.3 - Example graph to common metrics.

Using Figure 2.3 as an example, we build the following adjacency matrix.

B =



0 1 1 0 0
1 0 1 0 0
1 1 0 1 0
0 0 1 0 1
0 0 0 1 0


. (2.8)

With its adjacency matrix in Equation 2.8, we build a table with each metric ex-
plained before.
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Table 2.1 - Table showing the calculated metrics to each node from the graph represented
in Figure 2.3. ki is the node’s degree, < l >i stands for the node’s Mean
Shortest Path and gi is the node’s Betweenness.

Node ki < l >i gi

0 2 1.75 0
1 2 1.75 0
2 3 1.25 8
3 2 1.5 6
4 1 2.25 0

This data explains that the node 2 has more connections than others and can easily
access them, also has the greatest number of shortest paths going through.

2.2 Graph models

There are two very important topologies of networks: random and scale-free net-
works. To simulate those ones, we randomly generate graphs - in this work, we use
the Erdős–Rényi and Barabási-Albert models representing the Random Network
and Scale-free network, respectively.

The first introduced model to randomly generate a network was the Erdős–Rényi
model in 1959 (ERDŐS; RÉNYI, 1959; ERDőS; RéNYI, 1960). Paul Erdős and Alfréd
Rényi proposed a model where given N links, how many of them were linked together
with a probability of p.

If we have a network with ten nodes, we choose node 0 as a start and toss a weighted
coin to form a connection between it and the other nine nodes, then to node 1 and
all the other eight nodes until there are no more nodes work through. Setting the
probability to 100%, we will end with a complete graph; setting it to 0%, we will
end with a graph with no connections.

Then came Albert-László Barabási and Réka Albert with their study of the World
Wide Web, expecting to find a random network. To their surprise, they found out
that the WWW was held together by a few highly connected pages. More than 80
percent of the pages on the map had fewer than four links, but a small minority,
less than 0.01 percent, had more than a thousand (BARABÁSI; ALBERT, 1999).

So, they came up with a Scale-free network model, inspired by the idea of growth
and preferential attachment. The Erdős–Rényi model starts with N nodes and ends
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with N nodes, rewiring or not the edges between those nodes. In the Barabási-Albert
model, the network starts with a small number of nodes and, with every time-
step, adds a new node with a set amount of edges. Those edges have a preferential
attachment when choosing the nodes to which the new node connects, proportional
to the other nodes’ degree and inverse to the total degree of the network (ALBERT;

BARABÁSI, 2002).

Figure 2.4 - Graphical representation of Erdős–Rényi model used in this work. It’s gener-
ated with 100 nodes, 1475 edges, and a probability of wiring p = 0.3.
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Figure 2.5 - Graphical representation of Barabási-Albert model used in this work. It was
generated with 100 nodes, 1547 edges, and a number of outgoing edges m = 17.

In Figures 2.4 and 2.5, we can see the topographical difference between each model
and it is essential to notice that both graphs have a similar amount of nodes and
edges.

Each model has its signature, and this difference becomes apparent when comparing
their metrics. When investigating the degree of each node in those models, we can see
different distributions taking place. The Erdős–Rényi model, simulating a random
network, has a Poisson (or binomial) degree distribution, while the Barabási-Albert
model simulates a scale-free network presenting a power-law degree distribution.

Since most nodes in a scale-free network have a low degree, random failures do not
impact the network significantly. Contrarily, target attacks may produce huge im-
pacts, reaching few but highly connected nodes. While in random networks, there are
few nodes with few connections. When comparing one to another, we conclude that
random networks are more susceptible to failures while scale-free is more susceptible
to attacks.
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2.3 Walks and paths

A set of vertex v0, v1, v2, ..., vn is called a path if there are no repeated vertexes or
walk if there are. This way, a path is a particular case of a walk (BENDER, 2015).

The power of the adjacency matrix Ak mentioned above is a crucial tool when
considering walks; it calculates the number of walks starting in node i, ending in
node j with k steps.

A1 =


0 1 1 1
1 0 1 0
1 1 0 1
1 0 1 0

 , (2.9)

A2 =


3 1 2 1
1 2 1 2
2 1 3 1
1 2 1 2

 , (2.10)

A3 =


4 5 5 5
5 2 5 2
5 5 4 5
5 2 5 2

 . (2.11)

Then, the element A2
00 from Equation 2.10 means that if you start a walk at node

0, there are 3 distinct ways of returning to the node 0 taking 2 steps, if we use the
Equation 2.11, there are 4 distinct ways of returning taking 3 steps. However, the
number of paths between two nodes is not analytically defined as the number of
walks is.

We develop the idea of walks in the metric Communicability, modeling a diffusion-
like process inside the network; meanwhile, the concept of paths is not simple to
extend in other metrics since it is not easy to represent them mathematically.

2.4 Literature overview

This section gives an overview of the literature used in this work, explaining how
each of the main articles helped build this dissertation. There are two main topics,
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Vulnerability and metrics, in which we explain where the main metrics came from
in chronological order, and Random walks, where we talk about random walks in
networks, exploring networks by walking on them.

2.4.1 Vulnerability and metrics

Starting with the main metrics used in this work, we go through Efficiency. Efficiency,
as we use it, is first defined in (LATORA; MARCHIORI, 2001) as a measure of how
efficiently it exchanges information. In (LATORA; MARCHIORI, 2001), they apply
the idea of Efficiency to neural networks and manufactured communication and
transportation systems. They show how a network with small-world characteristics
is highly efficient since they are globally and locally efficient.

Later, in (LATORA; MARCHIORI, 2004), arises the definition of topological Vulner-
ability of critical infrastructures. This definition is a general method to spot the
critical components of a network. Their method is not only to find vulnerabilities
and can help to improve and better shape an expansion in networks. It is an approach
that damages or improves the network, checking a drop or increase in performance.

Performance can be a plenitude of different metrics, and in that work, they use
Efficiency as performance. The definition of Vulnerability we use in this work was
later given by (GOLDSHTEIN et al., 2004), where they use Efficiency as the inverse
of the shortest path length from i to j as performance and global Efficiency as a
mean of this value. They bring to light the point-wise Vulnerability, which is the
Vulnerability associated with each node inside the network. It measures how the
removal of the said node can make a direct drop in the network’s Efficiency. They
define Vulnerability in a proposal to study the hierarchy of networks.

Later on, (ESTRADA; HATANO, 2008) defines Communicability as a new measure of
complex networks. Communicability is a broad generalization of the concept of the
shortest path. They use this information to distinguish finer structures of networks,
such as the communities dividing the network. Communicability is interesting since
it takes non-shortest walks into account, with appropriate weights, where long walks
have lower contributions to the Communicability function.

In (MISHKOVSKI et al., 2011), they consider the normalized average edge betweenness
of a network as a type of Vulnerability.

Later, in (CHEN et al., 2021), they develop a new method for how to model and
assess Vulnerability in transit networks. This idea is a hybrid approach integrating
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disaster chains and complex networks while using Efficiency as an anchor for further
risk improvement.

2.4.2 Random walks

To our random walks chapter, we used as an inspiration two main works. Both of
them uses the idea of exploring the graph via walking on it, releasing a walker inside
and analyzing its trajectory to certain objectives.

In (YANG, 2005) they compare searches strategies adopted by the walker, using
Random Walks with no memory, No-Back Walk, No-Triangle-Loop Walk, No-
Quadrangle-Loop Walk, and Self-Avoiding Walk. The idea is increasing the walker’s
memory to test the best strategy in leaving a node i to a node j. In the end, they
find that dynamical processes on networks are greatly dependent on the topological
features of the networks.

Further, in (COSTA; TRAVIESO, 2007) they explore the network with different types
of random walks with the intent to infer topological measures from these types of
walks. They find from a sample of the network values as the average node degree
and average cluster coefficient for the entire network.
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3 STUDYING THE PERFORMANCE DROP USING COMMUNICA-
BILITY

In this Chapter, we will propose a new way to calculate the Vulnerability of a network
and then compare it to an already common one. We define Vulnerability by a drop in
the network’s performance, and performance is a broad term meaning other metrics
can fit in. First, we explore Vulnerability with efficiency as performance; then, we
define Vulnerability with communicability as performance. Each one shows different
results when studying the Zachary Karate Club network.

The introduction is in Section 3.1 leading to a brief explanation on the vulnerability,
efficiency, and communicability metrics in 3.2. Then, we explain how to find the
vulnerabilities in 3.3 and show the results in 3.4 to conclude in 3.5.

This work is based on a complete paper published at Encontro Nacional de Mode-
lagem Computacional (ENMC) 2021 (SOARES; SANTOS, 2021).

3.1 Introduction

Complex Networks permeates through science, being applied to a vast range of
subjects due to the presence of Networks in nature. Those subjects can be Neu-
ral Networks (HOPFIELD, 1982), metabolic networks (JEONG et al., 2000), climate
networks (TSONIS et al., 2006), and infrastructure networks (SANTOS et al., 2015).

One of complex network’s applications is finding critical points, and identifying
the vulnerable nodes to the network as a whole. There are already some ways to
find vulnerabilities by studying the topology (HOLME et al., 2002; MISHKOVSKI et

al., 2011; CHEN et al., 2010; ROCCO; RAMIREZ-MARQUEZ, 2011) and there are some
work with real world data (SANTOS et al., 2020). In this work, we show one of them
(GOLDSHTEIN et al., 2004) and succeed in defining a new one, since the original
definition is broad and can work very well with many metrics (LATORA; MARCHIORI,
2004).

The common factor between those vulnerabilities metrics is the use of the shortest
path. Taking the shortest path, or the most efficient one, is the systematic manner
to transit but is not the only way to do so, as shown in (LIMA et al., 2008). Studying
92419 GPS trajectories describing the movement of personal cars over 18 months,
they found that a significant fraction of driver’s routes is not optimal. Those in-
dividual routing choices are not captured by path optimization, but their spatial
bounds are similar, even for trips performed by distinct individuals and at various
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scales (LIMA et al., 2008).

Communicability is a broad generalization of the concept of the shortest path. It
has the characteristic of using all possible ways between two nodes instead of the
shortest one. That different approach can arise desirable features depending on the
network being treated (ESTRADA; HATANO, 2008).

In this work, we explore the differences when calculating a network vulnerability.
We demonstrate how considering multiple paths instead of only the shortest one
can result in very different analyses and shed some light on many other spots of
vulnerability using the well-known Zachary’s Karate Club network.

3.2 Metrics

Here we define the metrics used in this work, giving the analytical definitions and
where they came from with a short explanation.

3.2.1 Efficiency

Here we use efficiency as the inverse of the shortest distance length (distance) be-
tween two nodes, so the efficiency between the nodes i and j is defined as follows

Eij = 1
dij

, (3.1)

where dij is the size of the shortest path between both nodes i and j.

Global efficiency is also defined as

E(G) = 1
N(N − 1)

∑
i ̸=j∈G

1
dij

; (3.2)

where E(G) is the global efficiency of a network G, N is the number of nodes, and
dij is the shortest path between two nodes i and j (LATORA; MARCHIORI, 2001).

3.2.2 Communicability

Communicability is one of the metrics in Complex Networks that aims to model
the propagation through the network. This type of propagation does not always
take the shortest path but walks inside the network between nodes. We calculate
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Communicability using the sum of the number of walks between two nodes

Comij =
∞∑

k=0
ck#walks. (3.3)

The #walks (number of walks) is related to the power of the network’s adjacency
matrix. The adjacency matrix A gives us the connections between nodes, if the
element Aij is 0, there is no edge between the nodes i and j, and if the element Aij

is 1, there is a connection between them.

The element ci needs to make the series convergent and give more weight to shorter
paths, so we turn it into a factorial, and the following Equation for Communicability
between two nodes is defined

Comij =
∞∑

k=0

Ak
ij

k! = eA
ij , (3.4)

where Ak
ij is the element ij of the power of the adjacency matrix, and Comij is the

communicability between both nodes i and j. The power of the adjacency matrix
gives us the total number of ways between two nodes. They define communicability
between them by giving more relevance to shortest walks and less to longest ones.
The shortest path connecting two nodes always gives us the most significant con-
tribution to communicability, but longer walks (which can be more abundant) also
have their contribution (ESTRADA; HATANO, 2008).

3.2.3 Vulnerability

Vulnerability is broadly defined, where we can input other very different metrics as
performance, giving us different results. It is defined as follows

V [S, D] = Φ[S] − W [S, D]
Φ[S] , (3.5)

where the vulnerability V when a structure S is damaged with D changing its
performance Φ and W[S, D] = Φ[damage(S, d)] is the worst performance of S under
the class of damages D (LATORA; MARCHIORI, 2004).

The point-wise vulnerability is defined as
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V (i) = E(G) − E(G, i)
E(G) , (3.6)

where V (i) is the point-wise vulnerability of the node i, E(G) is the global efficiency
of the network, as defined in (LATORA; MARCHIORI, 2001), and E(G, i) is the global
efficiency of a new similar graph, being the only difference is the node i disconnection
from the network (GOLDSHTEIN et al., 2004).

Vulnerability is calculated to the entire network, but is related to the disconnection
of each element of the network.

3.3 Finding vulnerabilities

To calculate the network vulnerability, as defined before, we need to go through
every node disconnecting it from the network one by one, verifying how this node
affects the global performance by recalculating it and comparing the original one
with the new one, as seen in Figure 3.5.

The algorithm is as follows

Figure 3.1 - Flowchart illustrating how to calculate the vulnerability to a given graph. In
this work, we will use global efficiency and communicability as performance.
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To work similarly as (GOLDSHTEIN et al., 2004) we define it similar to the global
efficiency as seen in (LATORA; MARCHIORI, 2001) in Equation 3.2

Com(G) = 1
N(N − 1)

∑
G

Comij. (3.7)

Where Com(G) is the global communicability of the network G, Comij is the com-
municability between the nodes i and j, and N is the number of nodes.

This algorithm will be tested in the Zachary’s Karate Club network.

Figure 3.2 - Zachary’s Karate Club graph, used to test our results.

Source: Zachary (1977).

The Zachary’s Karate Club is a well-known social network used to study fission
or faction formation. It is a university-based karate club, in which factional fission
led to a formal separation of the club into two organizations. The karate club was
observed for three years, from 1970 to 1972, and the study was published in 1977.
At the beginning of the study, there was an incipient conflict between the club
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president, John A., and Mr. Hi over the price of karate Lessons. Mr. Hi, who wished
to raise prices, claimed the authority to set his lesson fees, but John A., who wished
to stabilize prices, claimed the authority since he was the club’s chief administrator
(ZACHARY, 1977). As time went by, everyone got involved, and the fission of the
club happened; Mr. Hi formed a new organization taking some students with him.
In the graph, Mr. Hi is represented by node 0 and John A. by node 33.

3.4 Results

In this Section, it becomes clear the differences between both vulnerabilities. First,
we show the results to the one using efficiency as performance.

Figure 3.3 - Visualizing the point-wise vulnerability of the Zachary Karate Club. This
vulnerability is calculated using efficiency as performance.
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As we can see in Figure 3.3, there is only one highly vulnerable node. The node 0
carries the most significant value of 0.314, followed by the node number 33 with a
value of 0.123, proving that those two nodes are of utmost importance to the effi-
ciency of the system, and removing them will cause the efficiency to drop drastically
in the graph. The drop in efficiency happens because the graph’s shortest paths
mostly go through those two nodes.
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Now, when we use communicability as performance, we are analyzing something
different than shortest paths.

Figure 3.4 - A visualization of the point-wise vulnerability of the Zachary Karate Club.
This vulnerability is calculated using communicability as performance.
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Which becomes clear in Figure 3.4. Not only the nodes 0 and 33 are present as
points of vulnerability, but some others begin to take priority. The node 0 loses its
position as the most important node to node 33, meaning that many other walks go
through it when we compare to the shortest paths going through node 0.
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Table 3.1 - Table relating the values of vulnerability with two different performances, being
them efficiency Vul(Efi), and communicability Vul(Com). In the last row we
can see the standard deviation of each vulnerabilities.

Node Vul(Efi) Vul(Com) Node Vul(Efi) Vul(Com)
0 0.314 0.555 17 0.051 0.077
1 0.072 0.365 18 0.051 0.088
2 0.092 0.484 19 0.063 0.158
3 0.064 0.257 20 0.051 0.088
4 0.053 0.065 21 0.051 0.077
5 0.056 0.073 22 0.051 0.088
6 0.056 0.073 23 0.059 0.168
7 0.059 0.187 24 0.050 0.043
8 0.067 0.303 25 0.050 0.046
9 0.056 0.089 26 0.051 0.059
10 0.053 0.065 27 0.062 0.139
11 0.049 0.035 28 0.059 0.131
12 0.051 0.067 29 0.056 0.140
13 0.068 0.295 30 0.061 0.199
14 0.051 0.088 31 0.081 0.248
15 0.051 0.088 32 0.081 0.463
16 0.040 0.015 33 0.123 0.589
Range(Vul(Efi)): 0.04 0.314 Range(Vul(Com)): 0.015 0.589
std(Vul(Efi)): 0.045 std(Vul(Com)): 0.153

In the table, we highlight the most significant differences in both metrics. As we can
see, both of them highlight different types of vulnerabilities in the graph and can be
used in different cases and scenarios.

Another notable difference, in this specific case, is the range of both vulnerabilities.
The standard deviation for each vulnerability is 0.045, using Efficiency as perfor-
mance, and 0.152 using Communicability as performance. A broader range indicates
that a node can have a heavier influence than others.

It is curious to note that both nodes 0 and 33, representing Mr. Hi and John A.,
have the most significant value of vulnerability in both cases. However, vulnerability
using Communicability highlights better the importance of those nodes.

3.5 Conclusion

In this work, we reach the definition of a vulnerability variant using Communica-
bility as performance and successfully compare it to its counterpart of efficiency as
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performance.

Here we show the broad difference between them in highlighting different nodes as
vulnerable given efficiency uses only shortest paths and Communicability goes be-
yond and uses all paths that go through a node. The difference of the vulnerabilities
standard deviations is 0.108, telling us that the Vulnerability with Communicability
has a broader range than the Vulnerability with Efficiency. The Vulnerability with
Communicability also shows more highly vulnerable nodes, with a total of 4 nodes
with its vulnerability more greater than 0.4, while the Vulnerability with Efficiency
only highlights 1 node as highly vulnerable.

It is important to note how the Vulnerability with Communicability successfully
identified the core members from the Karate Club, the master, and the administra-
tor. When the fission happened, the club was divided within them.

In conclusion, both metrics present a distinct point of view inside the same network
and are meant to be used in different approaches, the context in which those metrics
are applied matters when we have to choose between them. The communicability
computational cost cannot be disregarded when applied to more extensive networks
- like a road map or an electric grid - the matrix multiplication used in the process
is hard to deal with without the help of high-performance computing. However, we
are already working with this and achieving good results.
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4 VULNERABILITIES AND HOW THEY RELATE WITH OTHER
METRICS

The previous Chapter left us with a task to validate the proposed metric of Vul-
nerability with Communicability. This Chapter is an effort to investigate this by
exploring the relations of Vulnerabilities with other metrics and between themselves.
Those differences depend on the network’s topology, so we select the two models,
Erdős–Rényi, and Barabási-Albert, to study the previously cited relations.

4.1 Introduction

There are plenty of metrics when talking about Complex Networks (COSTA et al.,
2007), and each of them is applied to measure a specific quality of the network
(LATORA; MARCHIORI, 2001; LATORA; MARCHIORI, 2004; GOLDSHTEIN et al., 2004;
ESTRADA; HATANO, 2008). However, those metrics may have a relation between
them, which may vary depending on the model.

In this work, we already defined a new type of metric - in Chapter 3. This metric
is a twist in an already published metric of Vulnerability. Instead of using efficiency
as a performance, we use communicability to understand how the diffusion inside
the network can differ in vulnerability points, considering not only the shortest path
between each pair of nodes.

This Chapter relates different metrics already established in the literature with two
distinct vulnerability indexes. We explain our methodology to relate the metrics
shown in Chapter 2 and show their relations in Section 4.3. Finally, a conclusion is
presented at Section 4.4.

4.2 Methodology

Our methodology begins by generating similar graphs and keeping an approximate
ratio of nodes and edges. To generate, we use two different models, Erdős–Rényi
(Random Network) and Barabasi-Albert (Scale-free Network).

To both models, we generate four graphs while changing parameters to understand
how the relation between metrics can change. The four cases are N = 100 and
L ≈ 1400, N = 100 and L ≈ 600, N = 256 and L ≈ 1400, N = 2000 and
L ≈ 100000.

For each graph, we calculate the following metrics:
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• Degree

• Betweenness

• Mean Shortest Path

• Vulnerability with Efficiency

• Vulnerability with Communicability

Then, we make a scatter plot comparing each metric. We also fit a curve with the
parameters and display the R2 associated. The coefficient of determination (or R2)
is defined as

R2 = 1 − SSres

SStot

. (4.1)

Where SSres is the residual sum of squares, and SStot is the total sum of squares.
They are both defined using the value of the observations against the data resulting
in the fit. Mathematically speaking, they are

SSres =
∑

i

(yi − fi)2, (4.2)

and

SStot =
∑

i

(yi − ȳ)2. (4.3)

Where yi is our observation, in our case, it is the metrics of Degree, Betweenness,
and Mean Shortest Path. ȳ is the mean of yi, fi is the calculated yi obtained in the
fit.

This work give us an insight into how the density of the graph can change the
relations between metrics, so we explore this idea by making other plots increasing
the density of the graph by generating a graph with more edges and the same number
of nodes. Then, we calculate the metrics and make the relation only to calculate the
R2, which is kept and put in a plot versus the graph density.

We executed the program in UFOP’s cluster, an AMD Ryzen Threadripper 3960X

26



with 24 cores (48 threads) and 3.70GHz, 128GB RAM DDR4. GPU RTX 3090, with
24GB RAM GDDR6X and more than 10 thousand Cuda cores.

4.3 Results

We show the results in a series of scatter plots, relating the vulnerabilities with the
other three metrics and with each other. We repeat the comparison to each different
graph model of Erdős–Rényi, and Barabasi-Albert. This way, we can observe how
different kinds of networks change the relations between the metrics.

The following Figures show the results arranged in a table-like form. The first line
compares Vulnerability with Efficiency as performance with the degree, betweenness,
and mean shortest path in a scatter plot. The second line does the same thing to
Vulnerability with Communicability as performance.

After that, we bring up distributions for each graph made in this Chapter.

Lastly, we display the graph density versus the correlation of fits, divided by the
types of vulnerabilities and the graph’s number of nodes.

4.3.1 Erdős–Rényi model

We start our result section by showcasing the Erdős–Rényi model, with a set of plots
and comparisons between metrics.

4.3.1.1 Scatter plots

Firstly, we introduce the scatter plots to each different graph. We start with our
reference case of N = 100 and L = 1475. Forward, we change the number of nodes
and edges to explore the differences that can arise.
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Figure 4.1 - Scatter plots to graph with following characteristics: N = 100, L = 1475 d =
0.30, < c > = 0.30, < k > = 29.50, D = 2, < l > = 1.68.

In our first case in Figure 4.1, we can see a strong linear relation between all metrics.
Each vulnerability increase with the degree and betweenness and decreases with the
length of the mean shortest path associated with the node.

Table 4.1 - Table associated with Figure 4.1.

Image (a) (b) (c) (d) (e) (f)
R2 1 0.971 0.930 0.858 1 0.971

In Table 4.1, we see the coefficient of determination reaching the maximum value of
1 and the lowest of 0.858.

28



Figure 4.2 - Histogram of the degree, betweenness and mean shortest path distributions
to each model presented before. We calculate those distributions to the same
graphs in Figures 2.4, 2.5.

In Figure 4.2 we see all distributions in a bell-like shape, which is expected to the
degree in the Erdős–Rényi model.
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Figure 4.3 - Erdős–Rényi distribution of each vulnerability shows how many times a value
inside the bin’s interval appears. The line represents the sample’s mean value.

The vulnerabilities in Figure 4.3 present the same bell-like shape. This behavior of
Vulnerability is often associated with being more vulnerable to random failures on
the network.

Those distributions are similar to all cases, so we show them only for our reference
case, and all others can be found in Appendix A.

Back to the scatter plots, we decrease the number of edges to L = 584, maintaining
the same number of nodes N = 100; this way, we achieve a less-connected graph.
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Figure 4.4 - Scatter plots to graph with following characteristics: N = 100, L = 584, d =
0.11, < c > = 0.11 , < k > = 11.68, D = 4, < l > = 2.08.

In Figure 4.4 we notice how the drop in density affects the scatter plots appearance.
They are still similar, with strong linearity; however, a sensible change can be noticed
in the distribution of points.

Table 4.2 - Table associated with Figure 4.4.

Image (a) (b) (c) (d) (e) (f)
R2 0.945 0.915 0.883 0.715 0.903 0.760

Table 4.2 represents well that change. While in Table 4.1 the maximum value reached
1, Table 4.2 maximum value is 0.945 and minimum of 0.715. This indicates that
graph density is linked to the linearity of those relations.

Now, we increase the number of nodes and keep a similar edges count, changing to
N = 256 and L = 1329: resulting in a drop of density, going from density d = 0.3
(in our reference case) to d = 0.04 (in this one).
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Figure 4.5 - Scatter plots to graph with following characteristics: N = 256, L = 1329, d =
0.04, < c > = 0.04, < k > = 10.38, D = 4, < l > = 2.61.

The drop in density changes the relation between the metrics, as we show in Figure
4.5. They behave the same way; a higher degree and betweenness increase each
Vulnerability. At the same time, a more significant Mean Shortest Path decreases
both the vulnerabilities.

Table 4.3 - Table associated with Figure 4.5.

Image (a) (b) (c) (d) (e) (f)
R2 0.968 0.893 0.957 0.847 0.899 0.810

The associated R2 as shown in Table 4.3 indicates to us that even with the drop in
density, the linearity of some relations can still increase with the increase of total
nodes.

So, to investigate, we generated a graph with N = 2000 and L = 99685 and a similar
density as the previous case of d = 0.05.
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Figure 4.6 - Scatter plots to graph with following characteristics: N = 2000, L = 99685, d
= 0.05, < c > = 0.05, < k > = 99.68, D = 3, < l > = 1.95.

Then, in Figure 4.6 we observe how this linearity is better represented in a graph
with more nodes. They behave the same way as all previous images.

Table 4.4 - Table associated with Figure 4.6.

Image (a) (b) (c) (d) (e) (f)
R2 0.967 0.988 0.968 0.963 0.951 0.919

It is interesting to note how the R2 value reflects the increase of linearity as the
number of nodes and edges increases, maintaining a low density.

4.3.1.2 Density variation

This type of analysis shows how the density is related to the R2 value. So, we explore
two types of graphs, with N = 100 and N = 256, using both models presented in
this work. The following Figures relate the value of R2 in a linear fit and graph
density when comparing the metrics of Degree, Betweenness, and Mean Shortest
Path with Vulnerability with Efficiency and Vulnerability with Communicability.
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Figure 4.7 - Representation of R2 vs Graph Density to randomly generated graphs with
number of nodes N = 100.

We notice in Figure 4.7 how the scatter between Vulnerability with Efficiency and the
Mean Shortest Path has a low linear fit R2 to low-density graphs, while Betweenness
and Degree has a more significant value. Nonetheless, the coefficient of determination
value rapidly increases with the graph density, reaching the limit of 1.
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Figure 4.8 - Representation of R2 vs Graph Density to randomly generated graphs with
number of nodes N = 100.

In Figure 4.8 we notice a similar pattern, with the Mean Shortest Path quickly
taking the lead and approaching the value of 1 when testing linearity via the R2

score.
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Figure 4.9 - Representation of R2 vs Graph Density to randomly generated graphs with
number of nodes N = 256.

With Figure 4.9 we notice a discrepancy in the relations with the Vulnerability with
Efficiency, where the R2 does not steadily increase but instead has a drop in graphs
with d ≈ 0.1 and then increases. However, it is worth to mention that the range in
y-axis goes from 0.9 to 1, meaning a small variation in the result.
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Figure 4.10 - Representation of R2 vs Graph Density to randomly generated graphs with
number of nodes N = 256.

The previous behavior of Figure 4.9 is not identified in Figure 4.10 to all metrics.
Instead, the R2 only decreases at d = 0.1 in the Mean Shortest Path relation with
the Vulnerability with Communicability.

4.3.2 Barabási-Albert model

Now, we go through the Barabási-Albert model; these results are slightly different
from the previous.

4.3.2.1 Scatter plots

In the same way as before, we start with the scatter plots of our reference case, with
N = 100 and L = 1547.
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Figure 4.11 - Scatter plots to graph with following characteristics: N = 100, L = 1547, d
= 0.3, < c > = 0.42, < k > = 30.94, D = 3, < l > = 1.67.

Unlike the Erdős–Rényi model, the Barabási-Albert shows not only linear relations,
but sigmoid as well. In Figure 4.11 we can see in some places how the sigmoid
function fits better than linear. Besides the change in relation, there is always an
increase in Vulnerability when the degree and betweenness increase, while the mean
shortest path length increasing leads to a decrease in Vulnerability.

Image (a) (b) (c) (d) (e) (f)
R2 0.977 0.986 0.926 0.906 0.999 0.877

Type Linear Sigmoid Linear Sigmoid Linear Sigmoid

Table 4.3.2.1 shows the quality of the relation between them. The R2 minimum is
0.877 to the sigmoid function, showing the quality of our fits. The maximum value
reached is 0.999, which almost represents a perfect fit.
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Figure 4.12 - Histogram of the degree, betweenness and mean shortest path distributions
to each model presented before. We calculate those distributions to the same
graphs in Figures 2.5, 2.5.

In Figure 4.12 we can see the difference in distributions from Figure 4.2. Here, all
cases follow a power-law-like distribution, in a decreasing way in (a) and (b) and
increasing in (c). This is a Scale-free model characteristic to the degree, leading to
a graph with more nodes with a lower degree.
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Figure 4.13 - Barabási-Albert distribution of each vulnerability shows how many times a
value inside the bin’s interval appears. The line represents the sample mean
value.

The Vulnerability reflects this difference in distributions, showing a power-law-like
distribution in Figure 4.13. Those networks are more susceptible to target attacks -
when reaching the hubs.

It is interesting to note how each vulnerability has a different maximum value
between efficiency and communicability, and also when comparing the models of
Erdős–Rényi and Barabási-Albert.

We explore other configurations, generating graphs with more nodes and fewer edges,
as we did with the Erdős–Rényi model.

40



Figure 4.14 - Scatter plots to graph with following characteristics: N = 100, L = 672, d =
0.13, < c > = 0.23, < k > = 13.44, D = 3, < l > = 1.99.

With the drop in the number of edges, we can see the difference in each image in
Figure 4.14. We change the image (e) to a sigmoid fit to better reflect the disposition
of points. There is still an increase in Vulnerability with the degree and betweenness,
while it decreases with the size of the mean shortest path.

Image (a) (b) (c) (d) (e) (f)
R2 0.901 0.965 0.950 0.901 0.773 0.891

Type Linear Sigmoid Linear Sigmoid Sigmoid Sigmoid

The coefficient of determination persists with a high value, as we can see in 4.3.2.1,
close to one. Even when changing the fit to sigmoid in the image (e), the R2 value
is smaller, showing the difficulty of the fitting.

We increase the number of nodes in the generated graph to N = 256 and edges to
L = 1515.
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Figure 4.15 - Scatter plots to graph with following characteristics: N = 256, L = 1515, d
= 0.05, < c > = 0.10, < k > = 11.83, D = 4, < l > = 2.45.

In Figure 4.15 we see the same behavior as before; the vulnerabilities increase with
the degree and betweenness while decreasing with the mean shortest path length.

Image (a) (b) (c) (d) (e) (f)
R2 0.879 0.957 0.958 0.931 0.793 0.893

Type Linear Sigmoid Linear Sigmoid Sigmoid Sigmoid

Looking at the coefficient of determination to the Barabási-Albert model in Table
4.3.2.1, we notice how this model behaves differently to the drop of density. Here, the
R2 most significant change is for the relation between the degree with Vulnerability
with Efficiency, while the Erdős–Rényi’s most significant drop is for the relation
between the mean shortest path with Vulnerability with communicability.

Now, we increase the number of nodes and edges and keep the density low, changing
to N = 2000 and L = 98725, with d = 0.05.
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Figure 4.16 - Scatter plots to graph with following characteristics: N = 2000, L = 98725,
d = 0.05, < c > = 0.12, < k > = 98.72, D = 3, < l > = 1.97.

In Figure 4.16, we notice how each image takes a sharper shape, with points being
closer together, even with a low density.

Image (a) (b) (c) (d) (e) (f)
R2 0.990 0.993 0.986 0.981 0.948 0.966

Type Linear Sigmoid Linear Sigmoid Sigmoid Sigmoid

This behavior is reflected at Table 4.3.2.1, with R2 values all closer to 1.

4.3.2.2 Density variation

In the same way as before, we notice the changes in R2 with density. We also explore
this concept in the Barabási-Albert model. Since we do two types of fits in this part,
we explore them in separate Figures for each relation.

We calculate the R2 to each relation between metrics, with densities going from 0.1
to 0.5. This proceeding is repeated to the linear and sigmoid functions, helping us
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decide which one to use.

The entire process is repeated to graphs with 100 and 256 nodes.

Figure 4.17 - Representation of R2 vs Graph Density to randomly generated graphs with
number of nodes N = 100.

First, we see the relation between degree and Vulnerability with efficiency in Figure
4.17. Both R2 increase with graph density, and since the linear function is more
straightforward than sigmoid, we tend to choose it.
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Figure 4.18 - Representation of R2 vs Graph Density to randomly generated graphs with
number of nodes N = 100.

In Figure 4.18 we see a lower variation of R2 when comparing the betweenness with
the Vulnerability with efficiency. With a minimum value of 0.91 and a maximum of
0.98, the sigmoid function presents better results, but it is such a low difference that
we tend to choose the linear function since it is straightforward.
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Figure 4.19 - Representation of R2 vs Graph Density to randomly generated graphs with
number of nodes N = 100.

Meanwhile, in comparison with the mean shortest path length in Figure 4.19, we
see the sigmoid function working better in all cases over 0.3 density. Nonetheless,
the sigmoid fit over the points is visually better than the linear fit, so we choose it.

We increase the generated graph’s size to N = 256 and repeat the same graphs.
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Figure 4.20 - Representation of R2 vs Graph Density to randomly generated graphs with
number of nodes N = 256.

In Figure 4.20 we can see that the relation of the degree with the vulnerability with
efficiency maintains the same increase in R2 as Figure 4.17. Both Figures show a
close result between both fits and converging at 1.
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Figure 4.21 - Representation of R2 vs Graph Density to randomly generated graphs with
number of nodes N = 256.

Now looking at the betweenness in Figure 4.21, we can see how close the points
are, with the minimum value around 0.94 and a maximum value of 0.98. With the
disposition of points, this result leads us to choose a linear fit to the relation since
it is easier.
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Figure 4.22 - Representation of R2 vs Graph Density to randomly generated graphs with
number of nodes N = 256.

To the mean shortest path in Figure 4.22, the analysis persists the same as Figure
4.19, where the sigmoid is usually better than the linear fit by little, converging at
1 as well.

Now, we analyze the relations between Vulnerability with Communicability, starting
with the degree.
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Figure 4.23 - Representation of R2 vs Graph Density to randomly generated graphs with
number of nodes N = 100.

In Figure 4.23 we notice how steadily both types of fit associated R2 grows, with
the sigmoid function always with a more considerable value.

Figure 4.24 - Representation of R2 vs Graph Density to randomly generated graphs with
number of nodes N = 100.
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To the betweenness in Figure 4.24, we notice an oscillation of values in a short-range.
We also notice how the sigmoid fit is always closer to 1 than the linear.

Figure 4.25 - Representation of R2 vs Graph Density to randomly generated graphs with
number of nodes N = 100.

In Figure 4.25 we can see how the sigmoid function R2 is always close to one, while
the linear function increases with graph density from 0.5.

We show the results by repeating the process to generate graphs with N = 256.
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Figure 4.26 - Representation of R2 vs Graph Density to randomly generated graphs with
number of nodes N = 256.

We easily notice the same steady increase in Figure 4.26 as in Figure 4.23, with
sigmoid’s R2 closer to 1 than the linear function R2.

Figure 4.27 - Representation of R2 vs Graph Density to randomly generated graphs with
number of nodes N = 256.
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In Figure 4.27 we can see an oscillation as well, but here we notice an increase of
R2, even with oscillations. The sigmoid function still performs better.

Figure 4.28 - Representation of R2 vs Graph Density to randomly generated graphs with
number of nodes N = 256.

Lastly, to the mean shortest path in Figure 4.28, we notice a predominance in the
sigmoid’s R2, being always more significant than the linear function. Similar to the
case with N = 100.

4.4 Conclusion

This work compares metrics to two graph models, representing random and scale-free
networks. We compare degree, betweenness, and mean shortest path with Vulnera-
bility with Efficiency and Vulnerability with Communicability to four configurations
of generated graphs, exploring their size and densities.

This comparison resulted in distinct relations between metrics, however their behav-
ior has something in common, in all cases the vulnerabilities increase with degree
and betweenness while decreasing with the mean shortest path length. Each differ-
ent graph model changes the relations between metrics, and the sharpness of those
relations is closely related to the graph’s density and size. We achieve better results
of fits in bigger and denser graphs.
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The relations obtained can be fitted to linear and sigmoid functions; the Erdős–Rényi
model has a predominance of linear fits between relations, while the Barabási-Albert
has a predominance of fits with the sigmoid function.

We choose what type of fit to use by looking at the R2 associated and visualizing
each scatter plot to understand the relation between metrics.
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5 RANDOM WALKS: A STOCHASTIC VIEW ON THE HIERARCHY
OF NODES

Since Vulnerability with Communicability takes many resources, we will mimic the
diffusion-like method with a random walk on a network to get insights into the
network structure, considering not only the shortest paths.

We propose an index and evaluate it using the previously presented Zachary Karate
Club, Erdos-Renyi, and Barabási-Albert graphs.

5.1 Introduction

Random walks are a well-known process in network science literature (BURIONI;

CASSI, 2005; YANG, 2005; COSTA; TRAVIESO, 2007). They are mathematical objects
similar to the Brownian motion concept, a stochastic random process applied in in-
terdisciplinary areas. It is interesting as a diffusion process, modeling the movement
of information inside the network with a particle that can walk in any direction,
independently from its previous movement.

Computational cost is a significant bottleneck when talking about advances in sci-
ence. When calculating a metric, taking too many resources can be a deal-breaker
for some studies that do not have access to computer clusters or supercomputers,
and having an extensive network can lead us to long processing times even for the
most straightforward metrics, like the shortest path.

Random Walks are stochastic processes; given a graph and a starting node, we select
a neighbor of it at random and move to this neighbor; then, we select a neighbor of
this node at random and move to it, repeating until we reach a certain amount of
steps (BURIONI; CASSI, 2005).

This work defines an index based on random walks that tells us how many times a
walk goes through each node. It is a normalized measure of frequency, which we call
Passaging Index.

5.2 Methodology

The Passaging Index is a relative frequency of how many times the random walk
goes through each node inside the network. Mathematically, it is defined as
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PIk = number of passages
total number of steps , (5.1)

where PIk is the Passaging Index associated with node k, the number of passages
is how many times the node k shows up in the walk, and the total number of steps
is the walk’s length. It is important to note that the entire sum of the Passaging
Index has to be one so

N∑
k

PIk = 1, (5.2)

where k is each node, PI is the Passaging Index, and N is the set of nodes.

In the following Figure, we can see how our program operates. We initialize our
network and then make a Random Walk with 108 steps. This Random Walk starts
in the node i, where every time we complete our random walk, we start again at the
node i + 1 until we start the Random Walk from each node.

Figure 5.1 - Flowchart representing how the code works.

Doing it this way can confirm that where we begin our walk does not make any
difference; to confirm it, we calculate the standard deviation, comparing the arrays
of Passaging Index.

To conclude our program, we show scatter plots to compare this index with the same
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indexes from Chapter 4.

We repeat the process to randomly generated graphs created with the Erdős–Rényi
and Barabási-Albert models. Those graphs are the same as our reference case in
Chapter 4. We present in Appendix B the other graphs from said Chapter.

5.3 Results

We start our results by showing the color map of the Passaging Index calculated to
Zachary’s Karate Club graph.
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Figure 5.2 - Color map illustrating the Passaging Index to each Zachary Karate Club
network node.

This color map is very similar to the Vulnerability with Communicability color map.
Both maps highlight the nodes 0 and 33; however, the results are very different when
comparing other nodes.

The previous Figure was made with a start point at the node 0, and to make sure
that the starting point is not relevant to the final result, we make a long walk with
108 steps. Nonetheless, we calculate the standard deviation comparing each starting
point to quantify this idea. The Figure 5.3 illustrate this.
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Figure 5.3 - Standard Deviation calculated to compare the arrays made with the Passaging
Index of each node. Where µ represents 10−6. Made with the Zachary’s Karate
Club.

Here we can see how low the values of each standard deviation are, compared to the
Passaging Index of each node. The mean value of the Passaging Index is 0.02, while
the mean value of the standard deviation is 0.0002. So, the standard deviation is
small when compared to the index itself.

Figure 5.4 - Zachary’s Karate Club Passaging Index relations.

59



In Figure 5.4, (a) relates the Passaging Index with the degree, where we achieved
a correlation coefficient equal to 1. (b) relates the Passaging Index with the Be-
tweenness; the image shows a linear regression with a correlation coefficient equal
0.834. (c) relates the Passaging Index with the Mean Shortest Path; there is no fit
since their relationship is unclear. (d) is the Passing Index with the Vulnerability
with Efficiency, with a linear regression resulting in a correlation coefficient of 0.574.
(e) is the Passing Index with the Vulnerability with Communicability, with a linear
regression resulting in a correlation coefficient of 0.889.

Those results indicate that the Passaging Index is closely related to the degree with
strong linearity. So, we further investigate different types of graphs.

Beginning with the Erdős–Rényi model, we borrow the graphs from 4 to compare
with the Passaging Index.

Figure 5.5 - Scatter plots to graph with following characteristics: N = 100, L = 1475
Density = 0.3, N = 100, L = 1547, < c > = 0.3, < k > = 29.50, D = 2, < l >
= 1.68.

Erdős–Rényi

In Figure 5.5 we can see how the linear relationship of the Passaging Index is not
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only valid to the degree, extending itself to all other metrics in the Erdős–Rényi
model. We also calculate those metrics and relationships to the other graphs in
Chapter 4. However, the results are similar, so we present them in Appendix B.

As expected, the Passaging Index increases with degree, betweenness, and both
vulnerabilities, while decreasing with the mean shortest path.

Figure 5.6 - Scatter plots to graph with following characteristics: N = 100, L = 1547
Density = 0.3, N = 100, L = 1547, < c > = 0.42, < k > = 30.94, D = 3,
< l > = 1.67.

Barabási-Albert

We can see in Figure 5.6 that the Passaging Index increases with degree, between-
ness, and both vulnerabilities, while decreasing with the mean shortest path.

Just like in Chapter 4, the relationship between metrics changes to the Barabási-
Albert model. Not all of them have a solid linear representation and change even
more to other densities, as shown in Appendix B.
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5.4 Conclusion

We defined a stochastic metric called Passaging Index, that considers the frequency
in which a long random walk goes through each node.

Analyzing the Zachary’s karate club graph, we found that the relation between
degree and Passaging Index is perfectly linear. Since it is a small network, we in-
vestigate it further by generating random graphs with two models: random and
scale-free.

Each model had the same linear relation between degree and Passaging Index. How-
ever, when analyzing the other relations, the scale-free network had more complex
interactions, with scattered points over the plot.

Since the Passaging Index incorporates random walks without any memory, we are
instigated to investigate other types of random walks, like Self-Avoiding Walks and
other similar walks.
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6 FINAL REMARKS

Vulnerability is a key word in Disaster Science (UNDRR, 2022). Vulnerability is also
a concept, and a tool in Network Science (LATORA; MARCHIORI, 2004; GOLDSHTEIN

et al., 2004). In this work, we analyzed the vulnerabilities of networks based on a
multidisciplinary approach, considering not only the shortest paths between the
pairs of network nodes.

First, we defined a new metric of network vulnerability - applying Communicability
as performance instead of Efficiency. Then, we show the broad difference between
them by highlighting different nodes as vulnerable: Efficiency uses only the shortest
paths, and Communicability uses all paths that go through a node.

We can see that Vulnerability with Communicability has a broader range than Vul-
nerability with Efficiency. It is also important to note that the Vulnerability with
Communicability has more nodes with a vulnerability closer to the maximum value.

However, our first analysis of network vulnerabilities only uses a small network.
To take better conclusions, we explore bigger graphs, randomly generated using
two graph models, the Random Network (Erdős–Rényi model) and the Scale-free
Network (Barabási-Albert model).

For each model, we generate four configurations of random graphs, exploring how
the increase of nodes and decrease of edges can impact our results. We keep the
number of nodes equal when comparing models and an approximate number of
edges between each iteration.

Then, we compare each Vulnerability with well-known metrics in the literature as
the degree, betweenness, and mean shortest path.

The comparison is made in a scatter plot, putting each Vulnerability against the
degree, betweenness, and mean shortest path. This resulted in distinct relations
between metrics; however, their behavior has something in common: In all cases,
the vulnerabilities increase with degree and betweenness while decreasing with the
mean shortest path length.

Each different graph model changes the relations between metrics, and the sharpness
of those relations is closely related to the graph’s density and size. We achieve better
results of fits in bigger and denser graphs.
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The relations obtained can be fitted to linear and sigmoid functions; the Erdős–Rényi
model has a predominance of linear relations, while the Barabási-Albert has a pre-
dominance of fits with the sigmoid function.

In a few words, our recommendation is: When longer paths are relevant to the
analysis, use the Vulnerability with Communicability, and when only the shortest
path is relevant, use the Vulnerability with Efficiency.

In the last chapter, we define the Passaging Index. The Passaging Index is a stochas-
tic index that considers the frequency of a long random walk that goes through each
node.

We analyze Zachary’s karate club graph and the same graphs presented in Chapter
4. We conclude that our Passaging Index has a perfect linear correlation with the
degree, reaching a R2 = 1 to all graphs tested.

Besides that, we can see the differences arising in each graphs model. Each model
had its characteristics when comparing the Passaging Index with other metrics such
as Betweenness, Mean Shortest Path, and Vulnerabilities.

The definition of the Passaging Index opens the way to investigate walks with mem-
ory, like Self-Avoiding Walks, since our study only used a random walk without any
memory.

We intend to explore these other types of random walks in future works. Also, we
aim to study innovative ways of exploring those network metrics using graphs and
High-performance computing.
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APPENDIX A - ADDITIONAL FIGURES FROM CHAPTER 4

We use this appendix to show different cases from Chapter 4.

A.1 Erdős–Rényi

A.1.1 N = 100, L = 584

Figure A.1 - Histogram of the degree, betweenness and mean shortest path distributions
to each model presented before. We calculate those distributions to the same
graphs in Chapter 4.
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Figure A.2 - Erdős–Rényi distribution of each vulnerabilities shows how many times a
value inside the bin’s interval appears. The line represents the sample’s mean
value.
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A.1.2 N = 256, L = 1329

Figure A.3 - Histogram of the degree, betweenness and mean shortest path distributions
to each model presented before. We calculate those distributions to the same
graphs in Chapter 4.

71



Figure A.4 - Erdős–Rényi distribution of each vulnerabilities shows how many times a
value inside the bin’s interval appears. The line represents the sample’s mean
value.
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A.1.3 N = 2000, L = 99685

Figure A.5 - Histogram of the degree, betweenness and mean shortest path distributions
to each model presented before. We calculate those distributions to the same
graphs in Chapter 4.
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Figure A.6 - Erdős–Rényi distribution of each vulnerabilities shows how many times a
value inside the bin’s interval appears. The line represents the sample’s mean
value.
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A.2 Barabási-Albert

A.2.1 N = 100, L = 584

Figure A.7 - Histogram of the degree, betweenness and mean shortest path distributions
to each model presented before. We calculate those distributions to the same
graphs in Chapter 4.
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Figure A.8 - Barabási-Albert distribution of each vulnerabilities shows how many times a
value inside the bin’s interval appears. The line represents the sample’s mean
value.
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A.2.2 N = 256, L = 1329

Figure A.9 - Histogram of the degree, betweenness and mean shortest path distributions
to each model presented before. We calculate those distributions to the same
graphs in Chapter 4.
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Figure A.10 - Barabási-Albert distribution of each vulnerabilities shows how many times
a value inside the bin’s interval appears. The line represents the sample’s
mean value.
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A.2.3 N = 2000, L = 99685

Figure A.11 - Histogram of the degree, betweenness and mean shortest path distributions
to each model presented before. We calculate those distributions to the same
graphs in Chapter 4.
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Figure A.12 - Barabási-Albert distribution of each vulnerabilities shows how many times
a value inside the bin’s interval appears. The line represents the sample’s
mean value.
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APPENDIX B - ADDITIONAL FIGURES FROM CHAPTER 5

We use this appendix to show different cases from Chapter 5.

B.1 Erdős–Rényi

Figure B.1 - Scatter plots to graph with following characteristics: N = 100, L = 584,
Density = 0.11, < c > = 0.11 , < k > = 11.68, D = 4, < l > = 2.08.
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Figure B.2 - Scatter plots to graph with following characteristics: N = 256, L = 1329,
Density = 0.04, < c > = 0.04, < k > = 10.38, D = 4, < l > = 2.61.

Figure B.3 - Scatter plots to graph with following characteristics: N = 2000, L = 99685,
Density = 0.05, < c > = 0.05, < k > = 99.68, D = 3, < l > = 1.95.
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B.2 Barabási-Albert

Figure B.4 - Scatter plots to graph with following characteristics: N = 100, L = 672,
Density = 0.13, < c > = 0.23, < k > = 13.44, D = 3, < l > = 1.99.
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Figure B.5 - Scatter plots to graph with following characteristics: N = 256, L = 1515,
Density = 0.05, < c > = 0.10, < k > = 11.83, D = 4, < l > = 2.45.

Figure B.6 - Scatter plots to graph with following characteristics: N = 2000, L = 98725,
Density = 0.05, < c > = 0.12, < k > = 98.72, D = 3, < l > = 1.97.
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