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Abstract: Cerrado is the second largest biome in Brazil, covering about 2 million km2. This biome
has experienced land use and land cover changes at high rates due to agricultural expansion so that
more than 50% of its natural vegetation has already been removed. Therefore, it is crucial to provide
technology capable of controlling and monitoring the Cerrado vegetation suppression in order to
undertake the environmental conservation policies. Within this context, this work aims to develop a
new methodology to detect deforestation in Cerrado through the combination of two Deep Learning
(DL) architectures, Long Short-Term Memory (LSTM) and U-Net, and using Landsat and Sentinel
image time series. In our proposed method, the LSTM evaluates the time series in relation to the time
axis to create a deforestation probability map, which is spatially analyzed by the U-Net algorithm
alongside the terrain slope to produce final deforestation maps. The method was applied in two
different study areas, which better represent the main deforestation patterns present in Cerrado. The
resultant deforestation maps based on cost-free Sentinel-2 images achieved high accuracy metrics,
peaking at an overall accuracy of 99.81% ± 0.21 and F1-Score of 0.8795 ± 0.1180. In addition, the
proposed method showed strong potential to automate the PRODES project, which provides the
official Cerrado yearly deforestation maps based on visual interpretation.

Keywords: deforestation; Cerrado; Brazilian savanna; time series; LSTM; U-Net; Landsat; Sentinel

1. Introduction

Cerrado has huge importance for species conservation and ecosystem services, such
as water and carbon, but it is highly threatened by deforestation. Thus, highlighting its
importance, we divided the introduction into sections as follows: in Section 1.1, we give
a brief introduction to the Cerrado biome in Brazil. In Section 1.2, we describe some
Cerrado vegetation monitoring projects. In Section 1.3, we present techniques for mapping
vegetation cover changes using artificial intelligence methods. Finally, in Section 1.4 we
present our research scope.

1.1. Cerrado Biome in Brazil

Cerrado is the second largest biome in the Brazilian territory, with an area of approx-
imately 2 million km2. This biome composes 23% of the national territory, and covers
areas of 11 states and the Federal District. With more than 4800 endemic species of plants
and vertebrate animals, Cerrado is considered one of the global hotspots for biodiversity
conservation, as it is under severe human-induced threats [1,2]. Aside from its biodiver-
sity richness, this biome is crucial for the country’s water supply due to the presence of
headwaters and springs that originate rivers of important Brazilian watersheds [3,4]. The
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Cerrado biome contains highly complex gradients of natural vegetation with important
differences in herbaceous, woody, and forest layers, and its phenology is mostly related to
the amount of water available in the soil [5,6]. This structural diversity of vegetation types
encompasses a broad spectrum of biomass quantities, which is a large carbon stock and a
source of CO2 emissions during the conversion process of natural vegetation to agriculture
and pasture areas [7].

Despite its large species diversity and ecological importance, Cerrado has presented
high degradation rates since 1960 [1,8]. The conversion of natural vegetation to anthropic
areas occurs at high rates, and more than 50% of its natural vegetation has already been con-
verted, mainly into agriculture and pasture [9–11]. Studies have shown that it is possible to
increase agriculture production in Cerrado through agricultural intensification and sus-
tainable practices, among other actions to protect the remaining natural vegetation [12,13].
These practices should be encouraged by public environment conservation policies. How-
ever, to correctly direct those policies, it is necessary to accurately monitor the Cerrado
native vegetation conversion to understand its land occupation dynamics [13].

1.2. Monitoring Cerrado Vegetation

Attempts to monitor deforestation and forest degradation in the Cerrado are relatively
recent, unlike those for the Amazon, which began in 1988 [14,15]. Some initiatives started
to monitor vegetation in the 2000s, with the Conservation and Sustainable Use of Brazilian
Biological Diversity Project (PROBIO) mapping Cerrado’s vegetation cover [16], along with
deforestation alerts created by the Integrated System of Deforestation Alerts (SIAD) [17].
Cerrado deforestation maps were produced for the years 2010–2015 by the National Insti-
tute for Space Research (INPE), which were the basis for submitting a request for payments
by avoided emissions. The production of these maps received financial support from the
Ministry of Science, Technology and Innovation (MCTI), Ministry of the Environment
(MMA) and the World Bank in addition to the German institutions Credit Institute for
Reconstruction (KFW) and German Corporation for International Cooperation (GIZ) [18].
In 2016, Brazil submitted the request to the United Nations Framework Convention on
Climate Change (UNFCCC) as a first action for the biome in the implementation of the
REDD+ policies [19]. Based on this submission, MCTI had approved the project “Devel-
opment of Forest Fire Prevention Systems Vegetation Cover Monitoring in the Brazilian
Cerrado” by the World Bank [20,21]. This project, called FIP Monitoring, is part of the
Brazilian Investment Plan (BIP) under the Forest Investment Program (FIP) [22]. With FIP
financial support, the National Institute for Space Research (INPE; Portuguese acronyms)
started to produce yearly deforestation maps for Cerrado through the Satellite Deforesta-
tion Monitoring Project (PRODES) and Near Real-time Deforestation Detection (DETER) in
2016 [15,23].

PRODES Cerrado monitors deforestation in the entire biome and provides yearly de-
forestation maps and deforestation increment rate. PRODES uses Landsat-like imagery and
has an overall accuracy around 94% [24]. However, the PRODES deforestation detection
procedure is performed by visual interpretation, which involves various remote sensing
specialists in a laborious, high financial cost, and time-consuming task. These drawbacks
have instigated researchers to develop semi-automatic methods to map deforestation in
the Amazon and Cerrado, the two biggest biomes in Brazil [25,26]. Deforestation data
provided by PRODES and DETER constitute powerful information to support the develop-
ment of automatic methods to map deforested areas. Some initiatives have been launched
to automate this process.

1.3. Mapping Vegetation Cover Changes Using Artificial Intelligence Techniques

Due to the heterogeneous and seasonal natural vegetation in Cerrado, it is a challenge
to automate Cerrado Land Use and Land Cover (LULC) mapping and its changes [5,27–30].
Recent advances in remote sensing and artificial intelligence techniques, as well as the
increasing amount of freely-available Earth Observation satellite imagery have allowed
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the development of LULC change detection techniques in complex environments such as
Cerrado [25,30–33].

Remote sensing time series derived from a sequence of images can provide important
information to investigate the dynamics of the environment over time. Specifically for
vegetation, phenology stages can be measured by the spectral response, such as budbreak,
leaf out bloom, and leaf senescence of forest. These phenology stages can be associated
with patterns extracted from time series, which can be used for LULC classification and
change detection [34–36]. Methods such as Breaks For Additive Season and Trend (BFAST)
Lite [37] and Jumps Upon Spectrum and Trend (JUST) [38] have provided interesting results
for detecting changes using remote sensing time series. JUST can simultaneously search
for trends and statistically significant spectral components of each time series segment to
identify the potential jumps by considering appropriate weights associated with the time
series. It is a robust change detection method which does not require any interpolations
and/or gap fillings. According to [38], JUST is more resistant to a poorer signal-to-noise
ratio than the change detection using the BFAST.

Although studies have been using Deep Learning (DL) algorithms for a variety of
remote sensing tasks for the past few years, they are still relatively unexplored for deforesta-
tion mapping [39]. Recently, DL methods have shown promising results for deforestation
mapping, with high accuracy, robustness to various sources of noise, and the ability for
large-scale mapping [25,33,39]. To assess state-of-art pattern recognition methods, Adarme
et al. [40] evaluated three DL techniques for automatic deforestation detection in the
Brazilian Amazon and Cerrado biomes. The authors used two Landsat 8 images acquired
at different dates. The strategies based on DL achieved the best performance in comparison
with other methods and achieved an overall accuracy up to 95% for Cerrado. Similarly,
Maretto et al. [33] developed a method based on DL U-Net architecture, incorporating both
spatial and temporal contexts for detecting deforestation in the Brazilian Amazon regions
using Landsat-8/OLI images. Using a real-world dataset, their method outperformed a tra-
ditional U-Net architecture, achieving approximately 94% overall accuracy when applied
to the entire Pará State in Brazil. Furthermore, the authors adapted the method to apply
it in a region comprising approximately 130,000 km2 in the east of the Cerrado biome, in
which an overall accuracy of approximately 92% was achieved. Another change detection
approach using U-Net was proposed by [39]. In this case, the U-Net input is a stack created
with two Landsat-8/OLI images, with one year of interval between their acquisition dates.
Similar to [33], the changes are detected by comparing images acquired before and after
the change events. Their method outperformed two machine learning algorithms outside
of the DL scope in a direct comparison. However, the presence of clouds in the images can
hinder the change detection process performed by this method.

When using DL together with image time series, classification methods can take
advantage of temporal and spatial information to better discriminate classes with similar
spectral information [35,41–44]. Within this context, Taquary et al. [45] proposed a method
to detect Cerrado deforestation by combining two different DL architectures: the Long
Short-Term Memory (LSTM) [46,47] to analyze temporal patterns, and the U-Net [48] to
analyze spatial patterns. They used a time series composed of monthly composites of
PlanetScope images with spatial resolution of 3 m. Despite the great results obtained in [45],
the use of high resolution images imposes limitations due to the high cost of images as well
as the high processing time due to the huge amount of data to cover the entire Cerrado
biome. In addition, medium spatial resolution satellites such as Landsat and Sentinel
provide cost-free images and present a good temporal resolution of 16 days and 5 days,
respectively, [49,50]. Current LULC mapping projects have used these data [11,51] and
integrated them in data cubes to generate dense image time series [52].

1.4. Research Scope

Considering all aspects related to change detection in complex environments, the main
objective of this study is to develop a method to detect deforestation in the Cerrado biome
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based on the combination of LSTM and U-Net techniques and time series derived from
Landsat-8 and Sentinel-2 imagery. The hybrid classification based on LSTM and U-NET can
produce deforestation maps faster than end-to-end DL architectures, which analyze time
and spatial patterns at the same time, such as the ConvLSTM method [53,54]. Moreover,
the time and spatial analysis performed in two steps allows the analysis based on more
contextual information extracted from larger neighborhood areas, which can provide better
classification results. Although our strategy is similar to the one proposed by [45], we
carried out various improvements to adapt the methodology to medium spatial resolution
imagery, which can be combined with such auxiliary data as slope information to improve
the results. In addition, PRODES data, that is, the official data of the Brazilian government
to implement the REDD+ policies, was used as reference to generate training samples.

This rest of the paper is organized as follows: Section 2 describes the study areas,
methodology, and validation tests for detecting changes in Cerrado’s native vegetation.
Section 3 presents the results obtained for the study areas. Finally, Sections 4 and 5 present
discussions and conclusions, respectively.

2. Materials and Methods
2.1. Study Areas

To test and validate the method, we defined two test sites, one in the state of Bahia
and the other in the state of Mato Grosso, with approximately 35, 200 km2 and 27, 500 km2,
respectively, (Figure 1). Each study area has two sub-areas: ‘main’ and ‘auxiliary’. The
first one is the area to be mapped and the second one is the region in which the training
samples will be selected in some tests (Section 2.3.1).
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Figure 1. (a) Study area localization. (b) Bahia and (c) Mato Grosso. Ecoregions source: [13].

These regions were chosen because they contain the main deforestation patterns
present in Cerrado. In the Mato Grosso study area, the agriculture and pasture are more
consolidated, and deforestation has already affected areas that are suitable for mechanized
agriculture. In this scenario, current deforestation tends to occur in smaller and more
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protected areas with accidented topography. In the Bahia study area, the main land use is
agriculture that occupies large fields due to terrain aptitude for mechanization. Agriculture
expansion is responsible for current high deforestation rates in this region, which advances
quickly in large and geometrical fields.

Sano et al. [13] proposed a division of Cerrado into different ecoregions that reflect
the environmental heterogeneity within the biome. The Mato Grosso study area belongs to
3 ecoregions: Paraná Guimarães, Depressão Cuiabana, and Chapada dos Parecis (Figure 1c),
granting it a higher level of pattern complexity due to its high heterogeneity. In addition,
this study area is situated in a transition area between the Cerrado and Amazon biomes.
On the other hand, the Bahia study area belongs mainly to the Chapadão do São Francisco
ecoregion (Figure 1b) and is located far from the biome borders.

The study areas also present different deforestation patterns. In Bahia, deforestation
polygons occur in large geometrical fields, while in Mato Grosso they occur in a great
number of amorphous polygons. For 2019, the number of PRODES polygons in Mato
Grosso is higher, whilst the total deforestation area and the mean area per polygon are
higher for Bahia, as can be observed in Table 1.

Table 1. Deforestation statistics for 2019 in the study areas (main and auxiliary). Source: adapted
from [11].

Deforestation (2019) Mato Grosso Bahia

Total Area (ha) 13,326.516 20,723.315
Mean Polygon Area (standard deviation; ha) 18.93 (±55.38) 61.68 (±235.60)

Polygon Count (unit) 704 336
Percentage of Study Area (%) 0.484 0.589

2.2. Input Data

Cerrado has potential for arable land use, and technological advances in soil and crop
management have made it a suitable region for mechanized agriculture [9]. Consequently,
deforestation has occurred mainly in large areas in Cerrado. Thus, we included in the
processing the terrain slope information derived from the Shuttle Radar Topography
Mission (SRTM) [55], with a spatial resolution of 30 m. In the processing step, it was
upsampled to match the pixel size of the image time series.

We used the PRODES Cerrado data [11] as the training sample reference, which
were acquired in two different datasets: deforestation data that occurred prior to 2000
and after 2000, separated by year. Afterwards, these vectors were merged and used to
generate datasets for the years 2018 and 2019 for each study area. PRODES produces yearly
deforestation maps from images acquired in the dry season to avoid the interference of
clouds. This approach defines the PRODES year, i.e., the deforestation reported in PRODES
2018 corresponds to deforestation detected from August 2017 to July 2018. This type of
time interval defined by PRODES was taken into account in the generation of the image
time series.

Two types of dense image time series were generated, one from Landsat-8/OLI and
the other from Sentinel-2/MSI. To avoid spectral information differences between both
satellites, we considered only similar bands to apply the method, as shown in Table 2, and
also the Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index
(EVI) [38]. The satellite images were obtained from data cubes generated by the Brazil
Data Cube project (BDC) (http://brazildatacube.org/, accessed on 10 June 2021) [56]. Data
cubes of Landsat-8/OLI and Sentinel-2/MSI images have pixel sizes of 30 m and 10 m,
respectively, even for Bands 8a, 11, and 12 of Sentinel, which were upsampled to 10 m.
Together with Landsat and Sentinel data cubes, BDC provides Cloud and cloud shadow
masks derived from FMask 4.2 [57]. All images available from August 2017 to August 2019
were acquired for both study areas. They were used to create temporal stacks comprising
approximately one year, from August 2017 to August 2018 (Year 2018) and from August
2018 to August 2019 (Year 2019, similarly to the PRODES project). The Landsat-8/OLI

http://brazildatacube.org/
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and Sentinel-2/MSI time series were created with a temporal resolution of 16 and 5 days,
respectively. Missing values caused by clouds, cloud shadows, and unavailable images
were estimated using a CubicSpline algorithm [58,59].

Table 2. Landsat-8/OLI and Sentinel-2/MSI time series data used as input t LSTM. Source: [60].

Landsat-8/OLI Sentinel-2/MSI
Description

Name Wavelength (µm) Name Wavelength (µm)

Band 2 0.452–0.512 Band 2 0.458–0.523 Blue, surface reflectance.
Band 3 0.533–0.590 Band 3 0.543–0.578 Green, surface reflectance.
Band 4 0.636–0.673 Band 4 0.650–0.680 Red, surface reflectance.
Band 5 0.851–0.879 Band 8a 0.855–0.875 Near Infrared (NIR), surface reflectance.
Band 6 1.566–1.651 Band 11 1.565–1.655 Short Wave Infrared 1 (SWIR 1), surface reflectance.
Band 7 2.107–2.294 Band 12 2.100–2.280 Short Wave Infrared 2 (SWIR 2), surface reflectance.
NDVI – NDVI – Normalized Difference Vegetation Index.
EVI – EVI – Enhanced Vegetation Index.

2.3. Deforestation Detection

The flowchart in Figure 2 summarizes the methodology used to detect deforestation in
Cerrado. Combinations of image time-series types, approaches to select training samples,
and study areas were evaluated.

PRODES Cerrado

LSTM Training
Samples Selection

Time Series

Prediction

U-Net Model

Prediction

LSTM Model

    Deforestation
Detection Map Validation

Training

   LSTM Training
Samples

Training

    U-Net Training
Samples

U-Net Training
Samples Selection

1

2

4

5

6 7

Terrain Slope

Deforestation
Probability Map

3

Figure 2. Flowchart to describe the deforestation detection methodology. Rectangles: the input data,
DL models, and final results are colored in green, gray, and red, respectively. The numbers indicate
their order in the flowchart. Connections: operations regarding the models training, operations
related to using the trained models to predict over data, and operations of validation are colored in
blue, red, and gray, respectively.

The data sources were used to select training samples for the LSTM algorithm. After
the training phase, the LSTM was applied to the satellite image time series to create the
deforestation probability map, which takes into account information in the time axis of
each image pixel. The deforestation probability map was then employed with PRODES and
Slope data to generate training samples for the U-Net algorithm. After training, the U-Net
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produces the deforestation map, taking into account the spatial information provided by
the probability map and terrain slope.

Afterwards, 12 deforestation maps were created considering all possible combinations
of 2 satellite image time series (Landsat-8/OLI or Sentinel-2/MSI), 3 training samples
scenarios (Approaches 1, 2, and 3), and 2 study areas (Mato Grosso and Bahia). These
maps were then validated using a random sampling approach and reference data selected
by visual interpretation. Three LULC classes were considered in our study (Table 3)
Deforestation, Natural Vegetation, and Past Deforestation. Since the Cerrado biome is
composed of Forest, Savanna, and Grassland formations, the term Deforestation will be
associated to the suppression of any type of Cerrado vegetation in this research. The
dynamics of the Cerrado natural vegetation are usually associated with fires and play a
fundamental role in the ecological functioning of this biome. In this case, burned areas
are not considered as Deforestation in this study, but as a type of degradation. However,
the natural fire regime has been altered by anthropic land-use practices. Fires used by
farmers to induce the regrowth of pastures during the dry season tend to get out of control,
spreading over large areas and affecting areas of environmental protection, indigenous
lands, and remnants of natural vegetation [61,62]. Other methods have been used to
identify fire scars [63,64].

Table 3. Mapping classes in deforestation detection.

Class Description

Deforestation Total natural vegetation removal (change) caused by human activity in 2019.
Natural Vegetation Natural vegetation (no change) during 2019.
Past Deforestation Deforestation detected by PRODES before 2019 (masked).

Figure 3 shows a noticeable difference between natural vegetation and deforestation
pixel time series. The natural vegetation NDVI starts to rise in November 2018 during the
wet season, it reaches a plateau in January 2019, and starts to slowly decrease in June 2019
during the dry season. On the other hand, the deforestation NDVI profile follows a similar
pattern as the natural vegetation in the beginning, but thereafter it presents an abrupt fall
in April 2019, which is related to the natural vegetation suppression. This pattern observed
in the time series can be used to describe changes over time.

2018-09 2018-11 2019-01 2019-03 2019-05 2019-07 2019-09
Time (Year-Month)

0.0

0.2

0.4

0.6

0.8

1.0
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Band 2 Band 3 Band 4 Band 8a Band 11 Band 12 NDVI EVI

(a) (b)

Figure 3. Examples of Sentinel LSTM training samples time series for (a) Natural Vegetation and (b)
Deforestation.

2.3.1. Approaches for Training Samples Selection

The training samples selection is as important as the detection algorithm architec-
ture [65,66]. The most difficult and time-consuming task in the classification process is
the reference data generation. For this task, we evaluated 3 different approaches to select
training samples, considering data variations in space and time. These strategies were
implemented to better understand the limitations that may exist in each case, as well as



Remote Sens. 2022, 14, 209 8 of 22

to explore the transferability of the models trained with samples obtained in different
locations and time periods. In Approach 1, training samples were selected in the same
main study area in which the classification is applied. In this case, areas used to select
training samples were excluded during the process of validation. In Approach 2, training
samples were selected in the ‘auxiliary study area’, an adjacent region to the main study
area in which the algorithm is applied. The ‘auxiliary study area’ is highlighted in yellow,
as shown in Figure 1. In Approach 3, training samples were selected in the main study
area for images acquired in 2018, while the classification is carried out in the main study
area for images acquired in 2019. Figure 4 illustrates the three samples’ training strategies
described above.

Figure 4. Strategies to select training samples. White colored areas represent past deforestation.

2.3.2. Long Short-Term Memory Training and Prediction

The first step of the hybrid DL classification consists of applying an LSTM to evaluate
the time series in the time axis without considering the spatial context. This architecture was
implemented in the Python programming language using the Tensorflow [67] DL library.
It is built in 3 layers: (1) one LSTM layer with 256 hidden units, tanh activation function,
and sigmoid recurrent activation function; (2) one batch normalization; and (3) one fully-
connected output layer (dense) with so f tmax activation function. This model was trained
with batches of 256 samples, Adam optimizer, and the loss function Categorical Cross-Entropy.
The learning rate and number of epochs were empirically and individually optimized
for each LSTM model, in order to achieve the highest accuracy without overfitting or
underfitting. The learning rate ranged between 5 × 10−5 and 1 × 10−6, and the number of
epochs was between 1000 and 5000. In the training process, we used samples with shape
[e, b], where e is the amount of time entries in the time series and b is the number of input
data (bands and vegetation indices). Each LSTM training sample is composed of the time
series of a pixel, with the bands and vegetation indices described in Table 2. The same
amount of deforestation and natural vegetation samples were selected from PRODES data
to avoid class imbalance problems [66]. Deforestation samples were randomly selected
inside PRODES deforestation polygons, whose amount in each polygon is limited to
avoid overepresenting the pattern of large polygons to the detriment of small ones. A
similar principle was performed to select natural vegetation samples, but in this case
the samples were stratified according to the topography slope since deforestation and
vegetation physiognomies in Cerrado are correlated with topography [9,68].

The LSTM returns values between 0 and 1 that indicate the probability of a pixel time
series belonging to the deforestation class. After training, the model is used in a prediction
procedure for the remaining study area. The LSTM result is a deforestation probability
map, which is used in the next processing phase carried out by U-Net algorithm.
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2.3.3. U-Net Training and Prediction

The LSTM output maps contain noise and some regions of unclear deforestation
occurrence. We used a U-Net to evaluate spatial patterns in the LSTM deforestation
probability map and topography slope. The U-Net algorithm was implemented in the
Python programming language with DeepGeo [69], a library based on TensorFlow [67].
Hyperparameters such as epochs, learning rate, and decay rate were optimized during each
training, but common parameters were: a sample size of 284 × 284 pixels; loss function
Average Soft Dice; learning rate decay activated; L2 regression rate of 0.0005; and 6 data
augmentation operations per sample (rotation in 90◦, 180◦, and 270◦, and flip horizontally,
vertically, and transpose).

To train the U-Net model, samples were composed of LSTM deforestation probability,
slope, and PRODES reference, as illustrated in Figure 5. Each sample is called ‘chip’ and
all of them have the same dimensions. Since Landsat and Sentinel chips have the same
size of 284 × 284 pixels, a Landsat chip covers a larger area than a Sentinel chip due to its
larger pixel size. Consequently, a Landsat-8 chip contains more context information but
less detailed information than the Sentinel-2 chip due to the better spatial resolution of the
Sentinel-2 satellite.

-1-1

1

Deforestation
Natural	Vegetation
Past	Deforestation

Deforestation
Natural	Vegetation
Past	Deforestation

0

(past	defo-
restation)

Deforestation
Probability

15+

0

SRTM
Slope	(%)

U-Net	Sample

LSTM	Deforestation
Probability

SRTM	Slope Reference

Figure 5. U-Net sample (chip): LSTM map, SRTM slope, reference deforestation. Samples have the
same dimensions of 284 × 284 pixels.

2.4. Validation

In the validation process, it is recommended to use reference data of a better spatial
resolution [70]. Since PRODES deforestation maps are based on Landsat-like images, we
used Sentinel-2 time series to validate all maps produced in our study. The validation
procedure was based on a stratified random sampling approach. The number of validation
points (n) was defined by the following equation:

n =
z2

α/2 · σ2 · N

e2(N − 1) + z2
α/2 · σ2

(1)

We considered a variance of 50% (σ2 = 0.5), a standard error of 3% (e = 0.03),
a confidence interval of 95% (zα/2 = 1.96), and the population size (N) [24,71]. This
procedure resulted in 1067 validation points per map. As the deforestation area in our
study regions is significantly smaller than the natural vegetation one, we defined 100 points
stratified in deforestation as recommended in [70] to avoid under-representation of the
deforestation class. On the other hand, 967 points were stratified in natural vegetation. The
probability of each stratified point in relation to its category is shown in Table 4. Reference
data for every validation point was independently created by visual interpretation over
Sentinel-2 time series in the study areas. A total of 12,804 validation points were created to
represent deforestation and natural vegetation classes.
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Table 4. Sample probabilities for the validation process.

Study
Area

Time
Series Samples Class Population

(Pixels)
Samples

Probability
Samples
Weight

Sample Size

Map Strata

Mato
Grosso

Landsat

Approach 1 Deforestation 40,663 0.002459 407 1067 100
Natural Vegetation 6,749,089 0.000143 6979 967

Approach 2 Deforestation 41,997 0.002381 420 1067 100
Natural Vegetation 6,473,917 0.000149 6695 967

Approach 3 Deforestation 53,868 0.001856 539 1067 100
Natural Vegetation 6,462,098 0.000150 6683 967

Sentinel

Approach 1 Deforestation 359,413 0.000278 3594 1067 100
Natural Vegetation 61,159,707 0.000016 63,247 967

Approach 2 Deforestation 147,986 0.000676 1480 1067 100
Natural Vegetation 61,369,681 0.000016 63,464 967

Approach 3 Deforestation 264,001 0.000379 2640 1067 100
Natural Vegetation 61,255,249 0.000016 63,346 967

Bahia

Landsat

Approach 1 Deforestation 64,635 0.001547 646 1067 100
Natural Vegetation 9,125,501 0.000106 9437 967

Approach 2 Deforestation 72,357 0.001382 724 1067 100
Natural Vegetation 9,114,557 0.000106 9426 967

Approach 3 Deforestation 92,527 0.001081 925 1067 100
Natural Vegetation 8,853,307 0.000109 9155 967

Sentinel

Approach 1 Deforestation 725,517 0.000138 7255 1067 100
Natural Vegetation 84,341,212 0.000011 87,219 967

Approach 2 Deforestation 636,114 0.000157 6361 1067 100
Natural Vegetation 84,428,617 0.000011 87,310 967

Approach 3 Deforestation 543,672 0.000184 5437 1067 100
Natural Vegetation 84,521,308 0.000011 87,406 967

In the validation process, the confusion matrix for each map was used to calculate
the Overall Accuracy and F1-Score. Their confidence interval was obtained through
±Zα/2(SE), where α = 95% (Zα/2 = 1.96). For Overall Accuracy, the SE value was cal-
culated as demonstrated in [70]. For the F1-Score measure, its SE was obtained through
propagation of Precision and Recall standard errors, since F1-Score is a function of them.
The standard errors for the Precision and Recall were obtained according to [70], in which
they are referred as Producer’s and User’s accuracy.

3. Results

Twelve deforestation maps were produced through the combination of two study
areas (Mato Grosso and Bahia), two satellite image time series (using Landsat-8/OLI and
Sentinel-2/MSI sensors), and three training sample selection approaches. Figure 6 shows
the LSTM deforestation probability map and the U-Net final result map for the Mato Grosso
study area using Landsat time series and sample selection based on Approach 3. Various
locations in the probability map have probability values around 0.5 with some spurious
points. The U-Net algorithm filtered this noise and also preserved the polygons in which
deforestation occurred despite the presence of noise.
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Figure 6. Results for Mato Grosso study area, Landsat time series and training samples based on
Approach 3. (a) LSTM deforestation probability map; (b) U-Net deforestation map.

Figure 7 shows the LSTM deforestation probability map and the U-Net deforestation
map for the Bahia study area using Landsat time series and training samples based on
Approach 3. In this case, the deforestation probability maps were more precise and
presented less noise compared to the Mato Grosso study area. However, the presence of
probability values around 0.5 is still noticeable.

Figure 8 shows inset maps for the Mato Grosso study area with focus on the largest
deforestation polygon detected in this area. We can observe that the most accurate defor-
estation corresponds to the Approach 1 with Sentinel-2/MSI data. This may be due to the
higher spatial and temporal resolutions of Sentinel-2/MSI, as well as to the higher correla-
tion degree between training samples and the mapped region. In this case, the training
samples were selected in the ‘main’ study area and in the same year of 2019 as the resultant
deforestation map. Although this result is very similar to the PRODES deforestation, we
can observe some noise not present in the PRODES and Sentinel-2 images. On the other
hand, the deforestation maps obtained through Approach 2 have inferior quality in relation
to the others. This could be caused by the the ‘auxiliary’ study area used to select the
training samples that contains different ecoregions (Figure 1). Consequently, the input
data and the training area are not well correlated, which demonstrate that differences in
vegetation and soil types can influence the deforestation detection process, impacting the
transferability of the classification model.
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Figure 7. Results for Bahia study area using Landsat time series and training samples based on
Approach 3. (a) LSTM deforestation probability map; (b) U-Net deforestation map.

Figure 8. Results obtained for the largest deforestation polygon in the Mato Grosso study
area. (a) PRODES Deforestation in 2019 in the study area in Mato Grosso. (b,c) RGB (Band
11, Band 8, Band 4) Sentinel-2/MSI images in 4 July 2018 and 4 July 2019, respectively,
overlaid on the largest PRODES deforestation polygon for Mato Grosso study area in 2019;
(d,e,f) Deforestation maps using Landsat-8/OLI time series and Approaches 1, 2, and 3, respectively;
(g,h,i) Deforestation maps using Sentinel-2/MSI time series and Approaches 1, 2, and 3, respectively.
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Figure 9 shows inset maps of the results for Bahia, focusing on the largest deforestation
polygon for this area. Visually, the most accurate deforestation mapping was provided with
Sentinel-2/MSI data and Approaches 1 and 2 (Figure 9g,h). In these cases, confusion among
classes was not present inside the deforestation polygons, like in Approach 3 (Figure 9f,i).
Furthermore, the proposed method correctly detected thin natural vegetation corridors in
the deforestation area, which was not successfully mapped in Approaches 1 and 2 using
Landsat-8/OLI data (Figures 9d,e).

Figure 9. Results obtained for the largest deforestation polygon in the Bahia study area.
(a) Deforestation map by PRODES for 2019 for the ‘main’ study area in Bahia. (b,c) RGB
(Band 11, Band 8, Band 4) Sentinel-2/MSI images for 4 July 2018 and 4 July 2019, respec-
tively, overlaid by the largest PRODES deforestation polygon for the Bahia study area in 2019;
(d,e,f) Results using Landsat-8/OLI time series for Approaches 1, 2, and 3, respectively; (g,h,i)
Results using Sentinel-2/MSI time series for Approaches 1, 2, and 3, respectively.

Table 5 shows accuracy metrics for all deforestation maps. The highest values be-
long to group a and the lowest belong to group b. The results suggest that the defor-
estation detection was more successful for the Bahia study area. For the Bahia study
area, the use of Sentinel time series showed some superiority, with Approaches 1 and 3
performing similarly.
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Table 5. Overall Accuracies for the maps and F1-Scores for their deforestation class. The exponent
letters represent the groups in which the Overall Accuracies or F1-Scores are statistically the same.
Group a comprises the highest values and group b the lowest.

Study Area Time Series Samples Overall Accuracy F1-Score

Mato Grosso

Landsat
Approach 1 99.58% ± 0.35 ab 0.7128 ± 0.1714 ab

Approach 2 98.96% ± 0.57 b 0.4486 ± 0.1395 b

Approach 3 99.60% ± 0.29 ab 0.6864 ± 0.1588 ab

Sentinel
Approach 1 99.15% ± 0.53 ab 0.5428 ± 0.1570 b

Approach 2 98.99% ± 0.60 b 0.5255 ± 0.1503 b

Approach 3 99.09% ± 0.53 ab 0.4963 ± 0.1496 b

Bahia

Landsat
Approach 1 99.40% ± 0.45 ab 0.6954 ± 0.1608 ab

Approach 2 99.81% ± 0.21 a 0.8739 ± 0.1183 a

Approach 3 99.52% ± 0.35 ab 0.7091 ± 0.1531 ab

Sentinel
Approach 1 99.81% ± 0.21 a 0.8795 ± 0.1180 a

Approach 2 99.61% ± 0.35 ab 0.7768 ± 0.1559 ab

Approach 3 99.77% ± 0.21 ab 0.8511 ± 0.1191 a

4. Discussion
4.1. Study Areas, Input Data and Training Samples

Considering the results for both study areas, we found that the deforestation was
more accurately mapped in Bahia according to its higher F1-Scores (Table 1). This indicates
that higher environmental complexity, present in the Mato Grosso study area, is a challenge
in detecting Cerrado deforestation even for DL methods. Related literature also indicates
that the discrimination between natural vegetation and other LULC becomes more difficult
in Cerrado as the vegetation structure and canopy becomes more heterogeneous [29,72].

Another possible reason for better results in the Bahia study area is that the deforesta-
tion polygons, although fewer in number, have large areas. Conversely, the deforestation
polygons in Mato Grosso have smaller areas and amorphous shapes and also occur in large
numbers (Table 1). The smaller and more amorphous polygons caused the inclusion of
mislabeled deforestation samples in the LSTM training phase in Mato Grosso. As PRODES
has small uncertainties in polygons borders, the selection of time-series samples within
small areas increases the chance of selecting samples at polygon borders. Nevertheless,
mislabeled reference data spoil training samples and consequently degenerate the DL
models performance [65,73]. In addition, as the complex deforestation polygons in Mato
Grosso present higher uncertainties, the deforestation reference data were less accurate
than the reference for Bahia [14].

Considering the results for the Bahia study area and Landsat data, the processing time
took around 1 h to train the LSTM model, to create the deforestation probability map, to
train the U-Net, and to generate the final deforestation map using a Tesla V100-SXM2-16GB
GPU. Given that the study area is approximately 18, 000 km2, we estimated the processing
time to map the entire Cerrado biome to be around 111 h. For this estimate, we considered
the Cerrado biome divided into smaller regions with the same size as the Bahia study area,
and also one LSTM and U-Net model for each region, independently of its complexity
degree. In the case of partitioning the biome in larger areas, such as the ecoregions, the
estimated time can be shorter and the deforestation mapping process can probably be
less complex.

Two types of image time series were used in this work: Landsat-8/OLI and Sentinel-
2/MSI. Figures 8 and 9 show the superiority of Sentinel-2/MSI over Landsat-8/MSI data
when comparing the deforestation maps. According to [72], Landsat data present some
limitations for Cerrado LULC mapping in regions that appear as a mosaic of grassland,
savanna, and forest formations. Moreover, Lima et al. [74] stated that Sentinel-2 data
presented better results than Landsat data for mapping selective logging in the Brazilian
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Amazon region through a method based on time series. Bueno et al. [75] also indicate
Sentinel data to achieve better LULC mapping results. The advantages of Sentinel imagery
reported above can be explained by its better temporal and spatial resolution that can
provide dense time series, which describe temporal patterns with more detail and also
reduce the data scarcity due to clouds or cloud shadows [28,76]. These results stated
here agree with our results, which pointed out better deforestation maps obtained using
Sentinel data.

The analysis of three approaches to select training samples showed better results for
Approaches 1 and 3. In the Mato Grosso study area, Approach 2 presented the worst
results, with its F1-Scores belonging only to group b in Table 5. This result contrasts
with Approach 2 for the Bahia study area, in which the F1-Scores belong to group a.
In the case of Approach 2, the region in which training samples were selected and the
region used to generate the deforestation map have different characteristics because they
belong to different ecoregions in Mato Grosso (Figure 1). Therefore, their vegetation and
deforestation patterns are different, which jeopardizes the training sample quality and
consequently negatively impacts the classification model [65,66,73]. On the other hand,
Table 1 shows that there are no significant differences between Approaches 1 and 3. In
this case, training samples are selected from the prior year and in the same area as that in
which the deforestation map was generated. We have to observe that spectral information
differences due to images taken at different times can impact the classification results [77].
A strategy to minimize this influence consists of extracting information from more time
periods to increase the training sample number in order to represent a wider variety of
deforestation patterns. This matter is important because DL model accuracy depends on
the training data quality and the pattern representation [40,78].

4.2. Comparison with PRODES

Parente et al. [24] performed the quality assessment of PRODES Cerrado data. They
reported an Overall Accuracy of 93.17% ± 0.89 for PRODES 2018. Although PRODES
produces deforestation maps by visual interpretation, its methodology is robust and
produces high accuracy maps for the entire Cerrado biome. Compared with PRODES, our
method needs a larger amount of data and the data preparation and deforestation detection
tasks require high performance computing. Nevertheless, it is semi-automatic and has
the potential to be automated to the entire Cerrado biome as long as we can manage to
optimize the training parameters for each ecoregion.

Considering the deforestation maps produced by the proposed methodology using
Approach 1 and Sentinel-2/MSI image time series, Figure 10 shows its agreement with
the PRODES Cerrado deforestation map. The agreement percentage for the deforestation
and natural vegetation classes is about 99.81% and 99.67% for the Bahia and Mato Grosso
study areas, respectively. The percentage values were obtained through dividing the
agreement area by the total area in each study region. In both cases, the agreement is
high, although PRODES data is produced using Landsat images (30 m). For the Mato
Grosso region, the agreement is lower due to the region complexity since it is composed of
different ecoregions.

We observe that PRODES and the deforestation maps produced by our method present
a high agreement for both the Deforestation and Natural Vegetation classes. There was
only one visible classification error in the Mato Grosso study area due to the subtle change
pattern in its deforestation polygon. Figure 11 shows the LSTM deforestation probability
for this polygon, which explains the classification error.
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Sentinel-2/MSI and training samples based on Approach 1.

Figure 11a,b show the deforestation detected by PRODES. Figure 11c shows only parts
of this polygon that obtained accurate high deforestation probability values. Comparing
the deforestation probability values with natural vegetation in Figure 11a, we note that in
locations where the natural vegetation was greener, the deforestation probability values
were high, while the probability values were low in areas depicted in magenta. Through
visual comparison between the Landsat images for the deforestation polygon and Google
Earth high-resolution imagery for the year prior to the deforestation, we verified that ma-
genta regions in the Landsat imagery in the deforestation polygon belong to the Grassland
Formation while green regions belong to the Savanna Formation, as shown in Figure 11d,e.
Therefore, the LSTM model produced less accurate deforestation polygons detected in
Grassland Formation in the Mato Grosso region, hence disagreeing with PRODES. Other
studies also reported difficulties for LULC mapping regarding Grassland Formation [27,28].

Natural wildfires are caused by lightning in Cerrado; however, human-started fires
are common in the biome and are more intense, severe, large in size, difficult to control
and costly for fighting [61]. PRODES defines deforestation as the clear cutting of natural
vegetation, and it does not consider fire followed by natural vegetation regrowth as defor-
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estation. Since we used PRODES data as the reference for our training samples, our results
do not detect change associated with fire followed by natural vegetation regrowth.
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Figure 11. (a,b) RGB (Band 11, Band 8, Band 4) Sentinel-2/MSI images acquired on 3
July 2018 and 3 July 2019 (during the dry season), respectively, overlaid on PRODES de-
forestation polygon for the Mato Grosso study area (2019). (c) is the LSTM deforestation
probability map overlaid on PRODES deforestation polygon and PRODES past deforestation.
(d,e) are Google Earth images of natural vegetation during dry season prior to the deforestation in
2019, in which the first one is a Grassland Formation and the other is a Savanna Formation. LSTM
deforestation probability maps are more accurate for Savanna Formations.

5. Conclusions

In this work, we proposed a methodology to detect deforestation in the Cerrado biome
using Landsat and Sentinel time series through a combination of two DL architectures:
LSTM and U-Net. The method uses PRODES deforestation polygons as a reference and
image time series generated from Landsat and Sentinel-2 images to train the LSTM model.
The probability map resulting from the LSTM is combined with PRODES and SRTM slope
data to train the U-Net model, which is used to produce the final deforestation map.

The proposed method showed great potential to be applied to medium spatial reso-
lution images such as Landsat-8 and Sentinel-2 to detect deforestation in Cerrado with a
high overall accuracy of 99.81% ± 0.21. The combination of LSTM and U-Net was able to
rapidly process image time series for large areas in Cerrado. In addition, the comparison of
our deforestation map with PRODES 2019 showed high agreement between them. Hence,
these facts reveal the potential of our method to be applied to the entire Cerrado biome and
then to automate the PRODES deforestation detection process that is currently performed
by visual interpretation.

We also observed that past deforestation maps were used with success to train the
algorithm. As PRODES Cerrado provides deforestation data from 2000 onward, more
training samples can be selected, taking advantage of the long-term earth observation
programs. For future work, we propose to divide the Cerrado biome into ecoregions [13]
and apply our method for each one of these ecoregions separately in order to successfully
detect the deforestation of the entire Cerrado biome using Sentinel-2 imagery.
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BFAST Breaks for Additive Season and Trend
BIP Brazilian Investment Plan
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DL Deep Learning
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EVI Enhanced Vegetation Index
FIP Forest Investment Program
FMask Function of Mask
GIZ German Corporation for International Cooperation
G Green
INPE National Institute for Space Research
JUST Jumps Upon Spectrum and Trend
KFW Credit Institute for Reconstruction
LSTM Long Short-Term Memory
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NDVI Normalized Difference Vegetation Index
NIR Near Infrared
OLI Operational Land Imager
PROBIO Conservation and Sustainable Use of Brazilian Biological Diversity Project
PRODES Satellite Deforestation Monitoring Project
R Red
REDD+ Reducing Emissions from Deforestation and Forest Degradation
SE Standard Error
SIAD Integrated System of Deforestation Alerts
SRTM Shuttle Radar Topography Mission
SWIR Short Wave Infrared
tanh Hyperbolic Tangent
UNFCCC United Nations Framework Convention on Climate Change
z Deviation from the mean value for the desired confidence level
α Significance level
µ Micro
σ2 Variance
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