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ABSTRACT

Synchronization is a process in which dynamic units coordinate some intrinsic prop-
erty of the system. It is a universal behavior that takes place in many natural and
artificial systems, such as electric power transmission networks, also called power
grids. In order to study synchronization in systems of interacting dynamical units,
it has been shown to be useful to describe the system as a complex network of
interacting oscillators, where nodes represent the dynamical units and the connec-
tions between them express their interacting channels. Some of the most widely used
models of phase oscillators to study synchronization in complex networks are the
first and second order Kuramoto models. When a synchronized oscillator network
is subjected to a perturbation, like a sudden change of a component’s frequency or
the addition of a new edge in the network’s topology, it can eventually lead the
whole system out of the synchronous state. The impact that the topology and its
changes have on the synchronization of a network is the object of intense studies
as it has been shown that small changes on its structure may desynchronize the
system. This doctoral thesis aims to study synchronization of dynamical systems
whose components are described by the first and second order Kuramoto models,
more specifically, the role that topology plays on the synchronization of these sys-
tems by taking distinct approaches. First, we focus on the synchronization of power
transmission networks, which are, in a first approximation, well represented by the
second order Kuramoto model. In order to be fully functional, the components of
the power transmission network must present synchronization in their frequencies.
Power grids are subject to local instabilities that can eventually lead to failures
throughout the entire network, due to the loss of synchronization of its components,
causing, for example, blackouts. An evolutionary optimization method used to gen-
erate topologies that favor the synchronization of power grids is presented, as well
as the study of the stability of these networks. We also show that a simple change in
the network topology can cause nonlocal failures and even destroy the synchronous
state of the system. A more general approach in the study of synchronization in
oscillator networks is also presented, in a way that nodes are represented by the
first order Kuramoto model and the influence of cycles and heterogeneity between
connections in the synchronization of the system is studied. We find an indication
that a network topology with a reduced number of cycles and with a high number
of connections between high and low degree nodes tends to favor synchronization.

Keywords: Synchronization. Power Grids. Kuramoto models.
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SINCRONIZAÇÃO EM REDES DE OSCILADORES E APLICAÇÕES
EM REDES DE TRANSMISSÃO DE ENERGIA

RESUMO

Sincronização é um processo no qual unidades dinâmicas coordenam alguma propri-
edade intrínseca do sistema. É um comportamento universal que ocorre em muitos
sistemas naturais e artificiais, como nas redes de transmissão de energia elétrica,
também chamadas de power grids. Para estudar a sincronização em sistemas dinâ-
micos, mostrou-se útil descrever o sistema como uma rede complexa de osciladores
que interagem entre si, onde os nós representam as unidades dinâmicas e as conexões
entre elas expressam seus canais de interação. Alguns dos modelos de osciladores de
fase mais utilizados para estudar a sincronização em redes complexas são os mo-
delos de Kuramoto de primeira e segunda ordem. Quando uma rede de osciladores
sincronizados é submetida a uma perturbação, como uma mudança repentina na
frequência de um componente ou a adição de uma nova aresta na topologia da rede,
isso pode eventualmente levar todo o sistema para fora do estado síncrono. O im-
pacto que a topologia e suas mudanças têm na sincronização de uma rede é objeto
de intensos estudos, pois tem sido demonstrado que pequenas mudanças em sua es-
trutura podem dessincronizar o sistema. Esta tese de doutorado tem como objetivo
estudar a sincronização de sistemas dinâmicos cujos componentes são descritos pelos
modelos de Kuramoto de primeira e segunda ordem, mais especificamente, o papel
que a topologia desempenha na sincronização desses sistemas por meio de aborda-
gens distintas. Primeiramente, focamos na sincronização de redes de transmissão de
energia, que são, em uma primeira aproximação, bem representadas pelo modelo de
Kuramoto de segunda ordem. Para serem totalmente funcionais, os componentes da
rede de transmissão de energia devem apresentar sincronização em suas frequências.
As redes de transmissão elétricas estão sujeitas a instabilidades locais que podem
eventualmente levar a falhas em toda a rede, devido à perda de sincronização de
seus componentes, causando, por exemplo, apagões. É apresentado um método de
otimização evolutiva utilizado para gerar topologias que favoreçam a sincronização
de redes elétricas, bem como o estudo da estabilidade dessas redes. Também mostra-
mos que uma simples mudança na topologia da rede pode causar falhas não locais
e até mesmo destruir o estado síncrono do sistema. Uma abordagem mais geral no
estudo da sincronização em redes de osciladores também é apresentada, de forma
que os nós são descritos pelo modelo de Kuramoto de primeira ordem e a influência
dos ciclos e da heterogeneidade entre as conexões na sincronização do sistema é es-
tudada. Encontramos uma indicação de que uma topologia de rede com um número
reduzido de ciclos e com um grande número de conexões entre nós de alto e baixo
grau tende a favorecer a sincronização.

Palavras-chave: Sincronização. Redes de transmissão de energia elétrica. Modelos de
Kuramoto.
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1 INTRODUCTION

1.1 Synchronization

Complex networks have been shown to be appropriate for modeling phenomena
composed by several dynamic units where it is intended to capture the global and
emergent properties of these systems (ARENAS et al., 2008). Thus, a vertex or node
represents a dynamic unit and its interactions are represented by the edges of the
network. Complex networks whose nodes are described by oscillators have been an
extensively studied topic in recent decades (ARENAS et al., 2008; OSIPOV et al., 2007;
BOCCALETTI et al., 2006), being used in various areas of science such as: biology
(ULLNER et al., 2008), climatology (DONGES et al., 2009) , neuroscience (BULLMORE;

SPORNS, 2009), neurocomputation (FOLLMANN et al., 2015), applied mathematics
(LACERDA et al., 2016; FREITAS et al., 2019; LACERDA et al., 2020), social systems
(GIL; ZANETTE, 2006) and chemistry (KURAMOTO, 2012; MAGRINI et al., 2021).

When considering complex networks of oscillators, an interesting phenomenon to be
studied is synchronization, which is a process in which dynamic units coordinate
some property due to interactions between them (PIKOVSKY et al., 2003; LACERDA
et al., 2017; LACERDA et al., 2019). It is a universal behavior in many natural and ar-
tificial systems and appears in areas such as biology (LEEUWEN et al., 2009; VARELA

et al., 2001), neuroscience (VICKHOFF et al., 2013), social systems (PLUCHINO et al.,
2005; NÉDA et al., 2000) and physics (FORTUNA; FRASCA, 2007; PANTALEONE, 2002).

One of the most widely used oscillator models in the literature is the first order Ku-
ramoto model, which describes self-sustained phase oscillators that have arbitrary
intrinsic frequencies and are coupled in its classic version through the sine difference
of their phases. This model is relatively simple, but it manages to describe a wide
variety of synchronization patterns and is general enough to be adapted to different
contexts. The collective behavior, or synchronization of oscillators, is achieved after
a phase transition for a given critical coupling (ACEBRÓN et al., 2005; KURAMOTO,
1975). Applications of the first order Kuramoto model includes opinion formation
(PLUCHINO et al., 2005), lasers (HOPPENSTEADT; IZHIKEVICH, 2000) and neurocom-
putation (FOLLMANN et al., 2015).

One of the wide applications of Kuramoto’s model is in the study of electric en-
ergy transmission networks or power grids, where the system can be described by
a second-order Kuramoto model (LACERDA et al., 2021b; GRZYBOWSKI et al., 2016;
FILATRELLA et al., 2008). In this model, the phase and angular velocity (or instanta-
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neous frequency) evolve over time, the synchronization is damped by an inertia term
and the coupling constant relates to the maximum power transmission capacity of
the transmission lines. This model was first proposed to study the synchronization
of some species of fireflies that manage to synchronize their light emissions (ERMEN-

TROUT, 1991). The second-order Kuramoto model can also be used in the study of
other physical systems, such as the forced pendulum dynamics (STROGATZ, 2014)
and the Josephson junctions (TREES et al., 2005).

Since Kuramoto’s models were used in the study of scale-free networks to analyze
the role of hubs in the dynamics of nodes (MORENO; PACHECO, 2004), many studies
have focused on the influence that the topology of networks has on the emergence
of synchronization, where properties such as the occurrence of triangles, existence of
communities, correlations between degrees and distribution of sub-graphs are used.
The study of temporal networks, whose structures change over time, has led to the
conception of new versions of Kuramoto’s models. New properties have also been
added to the study of this model, such as delay and repulsive coupling. (RODRIGUES

et al., 2016)

1.2 Power grids

Electric energy can be generated in several ways, for example, by hydroelectric
(which is currently the main source of energy generation in Brazil (GRZYBOWSKI et

al., 2016; RIBEIRO et al., 2016)) and nuclear power plants. It can also be generated
from the wind, through solar energy and by coal and gas-based thermoelectric plants,
for example. This generated power is taken through transmission lines to consumers,
covering long distances. Transmission lines are high-voltage lines that run across
the country and are a link between energy generating sources and distributors,
which can be energy concessionaires or, for example, consumers who receive high-
voltage energy such as steel mills. The transmission lines cross the country, passing
through fields, valleys, mountains, where there are chances of occurrence of numerous
disturbances. A simple interruption in a certain segment of transmission can leave
entire cities without electricity. For example, a minor interruption of one minute
in the transmission of energy can cause losses in the order of thousands of dollars
(MARTINHO, 2009; KOÇ et al., 2013).

Power grids are naturally complex as they are one of the biggest constructions
ever made and are a typical example for the study of the collective behavior of
interconnected dynamic units. In order to be fully functional, all of its components
must be in a synchronous state and they must be robust enough to go back to this
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state even when subjected to failures and disturbances (GRZYBOWSKI et al., 2018),
which represents an enormous challenge for stability analysis. Therefore, engineers
and researchers must accurately analyze the stability of power systems, taking into
consideration scenarios that can cause disturbances in the network, implying local
failures and in some cases, blackouts of high proportions (ALHELOU et al., 2019).

Instabilities in power grids can be caused, for instance, by the malfunctioning of
some of its components, due to climatic factors such as fire, rain and lightning (ES-
PINOZA et al., 2016; PANTELI; MANCARELLA, 2015) or if a renewable source of energy
becomes unavailable (INFIELD; FRERIS, 2020). Interruptions in energy transmission
duo to climatic problems have a great impact on the network infrastructure, being
disturbed one of the main causes of problems in power grids world wide (WARD,
2013; BORGHETTI et al., 2006).

Extreme weather events have a great influence on the operation of the electrical
components that make up the energy transmission network, which can affect the
entire network infrastructure. Some issues related to weather events that affect the
functioning of the power grid are: high temperatures and heat waves, that limit the
power transfer capacity of transmission lines; strong winds during storms, that can
lead to failures and damage transmission and power distribution lines; cold waves
can cause transmission line failures; lightning on or near conductors can cause a
short circuit (PANTELI; MANCARELLA, 2015).

Global warming is expected to have a major impact on the climate parameters dis-
cussed above and consequently will also have an impact on the operation of power
grids (PACHAURI et al., 2014). The operation of various components, such as trans-
formers and transmission lines, is governed by operating at the highest possible
temperature, and an increase in ambient temperature affects operation and possibly
limit their capabilities. Changes in precipitation patterns, as well as in the frequency
and intensity of drought periods, can impact hydropower generation (PANTELI; MAN-

CARELLA, 2015).

The growing integration of renewable energy sources in transmission networks is
stimulated by environmental and economic issues. However, the generation of re-
newable energy is intermittent, stochastic and subject to climatic conditions, so it
can cause unforeseen fluctuations in the system and is one of the major causes of
instability in transmission networks today (ZHU; HILL, 2018). The addition of re-
newable sources to existing power grids makes the topology and functionality of
the electrical grid to change dramatically. Energy production becomes increasingly
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decentralized and heterogeneous, which can degrade the synchronous state, that
is, compromise the fully functioning state of the power grid. The impact that the
network topology has on the collective dynamics and stability of the power grid
operation is still the object of intense studies (LACERDA et al., 2021a; ROHDEN et al.,
2014).

By the use of the second order Kuramoto model to study power grids, the authors of
(MENCK et al., 2013) built a model of basin stability in relation to large perturbations
to analyze electric networks stability, which may be applied to other dynamical
systems. It was shown that there are some patterns called dead ends and dead trees
in power grids that reduce the overall dynamic stability of the system (MENCK et

al., 2014). The role of the change in the topology of power grids was also studied,
where it was shown that the addition or removal of a single transmission line can
destabilize the entire network (WITTHAUT; TIMME, 2012; YANG et al., 2016; YANG;

JIANG, 2017).

The main objective of this thesis is to better understand the role that topology
plays in the synchronization of complex systems as it is still the object of intense
studies. Some of the questions we answer are the following: Could there be an optimal
topology that favors the synchronization of a complex network? Can the removal or
addition of an edge disturb the system and lead it out of the synchronous state? How
heterogeneity in connections and the existence of cycles affect the synchronization
of the system?

1.3 Contributions

In this work, by taking distinct approaches, we study the role that topology plays
on the synchronization of dynamical systems whose dynamics are described by the
first and second order Kuramoto models. In summary, we apply an evolutionary op-
timization method to generate topologies that favor synchronization in power grids,
we show that very simple changes in the topology of power grids can lead the system
out of the synchronous state and how this phenomenon relates to the nature of the
nodes being connected by the perturbed edge and level of decentralization of energy
generation. Finally, the impact of the presence of cycles and heterogeneity between
connections of nodes whose dynamics are described by the first order Kuramoto
model on synchronization is studied, as we note that this approach could be applied
to the problem of reaching of an agreement in a discussion on a polemic subject.

The first contribution of this thesis is presented in Chapter 3 and was published
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in the journal The European Physical Journal Special Topics with the title
Vulnerability and stability of power grids modeled by second-order Kuramoto model:
a mini review, (LACERDA et al., 2021b). In this chapter, an extended version of the
paper is presented, where a model to study and simulate power grids is derived,
necessary conditions for synchronization and the study of the stability of networks
are also presented.

The second contribution of our present work is presented in Chapter 4 and was
published in the journal Applied Mathematical Modelling with the title Syn-
chronization of energy transmission networks at low voltage levels, (LACERDA et al.,
2021a). In this work, we show how to build a power grid topology that presents rela-
tively low number of edges and favors synchronization, as a lower value of coupling is
required to reach the synchronous state. As the coupling is related to the maximum
transmission capacity of a transmission line, lower coupling in this context means
lower voltage levels and therefore cheaper transmission lines. The basin stability of
this network is also calculated as it appears to have a higher quantity of stable nodes
when compared to a random network with the same number of nodes and edges. The
methodology used in this work is based on an evolutionary optimization framework
and would be of great interest when building power grids due to the costs involved
in the construction of transmission lines, as there would be less lines and they would
be required to operate in a lower voltage level.

The third contribution is presented in Chapter 5 and was submitted to publication
in the journal Physica A: Statistical Mechanics and its Applications with
the title Elementary Changes in Topology and Power Transmission Capacity Can
Induce Failures in Power Grids. We show that elementary changes in the topology of
power grids, like the addition or removal of a single transmission line or the increase
of its maximum transmission capacity can cause failures in the network. Besides,
we show that the probability of the occurrence of these failures can be related to
the level of centralization of energy generation and to the nature of the nodes being
connected by the transmission line being perturbed, although failures related to
the increase in the transmission capacity does not seem to be much affected by
the level of centralization. When considering a centralized power grid, that is, one
grid whose power is supplied by just a few generators, one must be very careful
when contemplating a change between two consumers, being an addition, removal
or increase in the transmission capacity of the transmission line connecting them,
as there is a considerable probability that this change may cause a network failure.
In the decentralized power grid, the modification that cause most of the failures in
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the grid is between a consumer and a generator when the removal or increase in
the transmission capacity is being considered. Therefore, one must be very cautious
when planning an update in an existing power grid or when building a new one as
a single modification in the grid may lead the system out of the synchronous state.

The forth and last contribution also focus on the impact of the network topology
on the synchronization of the system but here the dynamical units are described by
the first order Kuramoto model. It is presented in Chapter 6 and was published in
the journal Chaos: An Interdisciplinary Journal of Nonlinear Science with
the title How Heterogeneity In Connections And Cycles Matter For Synchronization
Of Complex Networks, (LACERDA et al., 2021b). In this work, the complex network
metrics assortativity and clustering coefficient are used in order to generate network
topologies of Erdös-Rényi, Watts-Strogatz and Barabási-Albert types that present
high, intermediate and low values of these metrics. We also employ the total disso-
nance metric for neighborhood similarity, which generalizes to networks the standard
concept of dissonance between two non-identical coupled oscillators. Based on this
quantifier and using an optimization algorithm, we generate Similar, Dissimilar and
Neutral natural frequency patterns, which correspond to small, large and interme-
diate values of total dissonance, respectively. The emergency of synchronization is
numerically studied by considering these three types of dissonance patterns along
with the network topologies generated by high, intermediate and low values of the
metrics assortativity and clustering coefficient. We find that, in general, low values
of these metrics, that is, a network with reduced number of cycles and with a high
number of connections between nodes with high and low degree appear to favor
synchronization, especially for the Similar dissonance pattern. We note that this
approach can be applied to the problem of reaching of an agreement in a discussion
on a polemic subject.

1.4 Thesis structure

This thesis is divided into two parts. The first one presents the theoretical founda-
tions of this work and is composed by Chapters 2 and 3. Synchronization metrics, the
first and second order Kuramoto models and the evolutionary optimization method
Edge Snapping are discussed in Chapter 2. Power grids are the focus of Chapter
3, where a model to study its dynamics is derived and necessary conditions for
synchronization are presented and the stability of this system is also studied.

The second part is composed of Chapters 4, 5 and 6, where the contributions of
this work are presented. Power grids are the main topic of discussion in Chapters 4
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and 5 while a more general approach to the synchronization paradigm is taken in
Chapter 6 where the topological effects of cycles and connection heterogeneity on
the synchronization of networks whose oscillators’ dynamics are described by the
first order Kuramoto model are studied. Final remarks are presented in Chapter 7.

7





2 SYNCHRONIZATION

In this chapter, we introduce the concept of dynamical systems and system stability
in Section 2.1. The definition of synchronization and some of its metrics can be found
in Section 2.2, along with the first and second order Kuramoto models. Finally, in
Section 2.3 a method to generate network topologies that favor synchronization is
presented.

2.1 Dynamical systems

A system is a set of physical elements that act together, accomplishing a common
goal. A mathematical model is created, based on the structure and physical laws that
coordinate this system, and is used to analyze it. In the case of overly complicated
systems, mathematical models may reflect only a few phenomena of interest. A
system can be static, when its state variables (minimum set of variables that uniquely
define the state of a system) x1, x2, ..., xn are time-invariant, or, dynamic, when the
state variables are functions of time x1(t), x2(t), ..., xn(t) (MACHOWSKI et al., 2020).

In this work, we deal only with nonlinear dynamical systems, which can be modeled
by differential equations of the form:

ẋ(t) = dx(t)
dt

= F(x(t)), (2.1)

where x = [x1(t), ..., xn(t)]T is the vector of the state variables and F(x) =
[F1(x1, ..., xn), ..., Fn(x1, ..., xn)]T is a vector of nonlinear functions, Rn → Rn. The
variables x1(t), ..., xn(t) can represent, for example, populations of different species
in an ecosystem or the position and velocity of planets in the solar system. The func-
tions F1(x1, ..., xn), ..., Fn(x1, ..., xn) are determined by the problem to be considered
(STROGATZ, 2014).

A coordinate space corresponding to state variables is called phase space. Each point
in the phase space represents a single system state. The curve x(t) in phase space
that contains the states of the system in consecutive times is called the trajectory
or orbit of the system. When this trajectory consists of only one point, that is,
x(t) = x̂ is constant, this point is called equilibrium point if, at that point, all
partial derivatives are zero, ẋ = 0. Using Equation 2.1, one can find the coordinates
of this equilibrium point, as they satisfy the equation:

F(x̂) = 0. (2.2)
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The equilibrium point may not be unique as nonlinear equations may have more
than one solution. Excluding equilibrium points, all states of a dynamical system
are dynamic states because the derivatives ẋ are nonzero.

Consider the trajectory of a dynamical system given by x1(t), which started from
a certain initial condition x1(0), and also another trajectory of the same system,
given by x2(t) that started from another initial condition x2(0), both trajectories
are shown in Figure 2.1 (a). A system is considered stable in the Lyapunov sense
if the beginning of the trajectory of x2(t) is close enough to the beginning of the
trajectory of x1(t) and they remain close even over time. That is, for any t0, it is
possible to choose a number η such that for all other initial conditions that satisfy
the condition

∥∥x2(t0)− x1(t0)
∥∥ < η, the expression

∥∥x2(t)− x1(t)
∥∥ < ε is valid for

t0 ≤ t <∞ . If the trajectory x2(t) over time tends to the trajectory x1(t), that is,
limt→∞

∥∥x2(t)− x1(t)
∥∥ = 0, the dynamic system is said to be asymptotically stable

(MACHOWSKI et al., 2020).

Figure 2.1 - Definition of stability (a) when the initial conditions are different but close
and (b) close to the equilibrium point.

(a) (b)

Adapted from : Machowski et al. (2020).

Consider x1(t), whose trajectory starts at t0 at the equilibrium point x̂ and therefore
remains there with the passage of time, in a way that its trajectory consists of just
one point, as we can see in Figure2.1(b). Consider x2(t) whose trajectory starts at
t0 at the initial condition given by x2(t0) which lies within the neighborhood defined
by η. The system is said to be stable at the equilibrium point if, for t0 ≤ t < ∞,
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the trajectory x2(t) does not exceed the area determined by ε. If the trajectory
x2(t) tends to the equilibrium point x̂ over time, that is, limt→∞

∥∥x2(t)− x̂
∥∥ = 0,

the system is said to be asymptotically stable at the equilibrium point. On the other
hand, if the trajectory x2(t) tends to leave the area defined by ε over time, the
dynamic system is said to be unstable at the equilibrium point x̂. The stability of
nonlinear systems usually depends on the size of the perturbation, that is, it can be
stable for small perturbations (low values of η) and unstable for high perturbations
(MACHOWSKI et al., 2020).

2.2 Synchronization and the Kuramoto models

The first use of the verb to synchronize that is reported dates back to 1624 with
the meaning of occurring at the same time (PICKETT, 2018). Synchronization is un-
derstood as a collective state of coupled systems, that is, it is a process in which
coupled oscillatory systems adjust their individual frequencies in an organized man-
ner (BOCCALETTI et al., 2018). It was first studied by Christiaan Huygens in 1665
(HUYGENS, 1986) by observing the collective behavior pendulums hanging on the
same wall. In a few words, synchronization is a process in which dynamical systems
manage to coordinate some dynamical property, either because they are coupled or
because they are driven by a common force (PIKOVSKY et al., 2003).

In order to model synchronization in large groups, Arthur Winfree developed a
method where the system is described by self-sustained oscillators in which the
rate of change of the phase of each oscillator is determined by the action of all the
other system components (WINFREE, 1967; ACEBRÓN et al., 2005). Yoshiki Kuramoto
showed that the dynamics of this system can be described as (KURAMOTO, 1975;
STROGATZ, 2000)

θ̇m = ωm +
N∑
n=1

Γmn(θn − θm), (2.3)

where N is the number of oscillators, m = 1, ..., N , Γmn is the interaction function
and determines the type of coupling between the oscillators m and n. θm and ωm are
the phase and the natural frequency of oscillator m, respectively. Kuramoto then
assumed that each oscillator is affected by the others in an interaction called global
coupling λ and that these interactions related only on the sinusoidal phase difference

Γmn(θn − θm) = λ

N
sin(θn − θm). (2.4)

Taking into account that we are not necessarily dealing with a fully connected net-
work, we make use of the adjacency matrix A that indicates if nodes m and n are
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connected (Amn = 1) or not (Amn = 0). The first order Kuramoto model can then
be written as:

θ̇m = ωm + λ

gm

N∑
n=1

Amn sin(θn − θm), (2.5)

where the coupling λ is constant and gm is the degree of node m, that is, the number
of edges connected to that node. Each oscillator has its own natural frequency ωm
which tries to dictate its independent movement but the oscillator is also affected by
the movement of the others through the coupling constant which tries to synchronize
them. When the coupling is not strong enough, the oscillators move incoherently
but when this coupling goes beyond a certain threshold, collective movement and,
therefore, synchronization emerges. (ACEBRÓN et al., 2005)

In this phase oscillator model, three types of behavior can be highlighted. If all os-
cillators move with angular velocity very close to their own natural frequencies, this
phenomenon is called incoherence. It occurs when the magnitude of the difference
between natural frequencies is large in relation to the coupling applied in the sys-
tem. If the phase difference between all oscillators is constant over time, we have
a phenomenon called phase locking and this happens when the coupling is strong
relative to the magnitude of the differences in natural frequencies. If the phase of all
oscillators is the same and does not change overtime, then we say that the system
presents phase synchronization (MATTHEWS et al., 1991; PIKOVSKY et al., 2003).

The first order Kuramoto model is rich enough to display a large variety of synchro-
nization patterns and very flexible to be adapted to many different contexts, but it
does not take into account the dynamics of the corresponding frequencies (as it is
required in the study of power transmission networks, for example) because it is a
phase oscillator model. One can accomplish this by inserting inertial effects to the
model which in turn is called second order Kuramoto model (ACEBRÓN et al., 2005).

In the second-order Kuramoto model, the phase θm and the angular velocity or
instantaneous frequency θ̇m evolve over time and the synchronization is dampened
by an inertia term. It is defined as:

θ̈m = −αθ̇m + ωm + λ

gm

N∑
n=1

Amn sin(θn − θm), (2.6)

for m = 1, ..., N , where N is the total number of oscillators, α ∈ R is the dissipation
parameter, λ is the coupling constant, ωm and gm are the natural frequency and
degree of the m oscillator, respectively. Amn are the inputs of the adjacency matrix,
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being equal to 1 if the oscillators m and n are connected and equal to 0 otherwise.
Bidirectional networks without self loops are considered in this work. In a mechanical
analog, θ̈, θ̇ and ω, relate to inertia, damping and driving torque of a rotor (TANAKA

et al., 1997a).

In addition to its use in modeling power grids (GRZYBOWSKI et al., 2016; PAGANI;

AIELLO, 2013; FILATRELLA et al., 2008), which is an object of our study, the Ku-
ramoto models can also be used to describe other dynamical systems, as in the
study of some species of fireflies that manage to synchronize their light emissions
(ERMENTROUT, 1991), in the modeling of the forced pendulum (STROGATZ, 2014)
and in the study of electrochemical chaotic oscillators (MAGRINI et al., 2021).

Equation 2.6 can also be written as two first-order differential equations:

θ̇m = νm,

ν̇m = −ανm + ωm + λ

gm

N∑
j=1

Amn sin(θn − θm),
(2.7)

where νm is the angular velocity of oscillator m.

To quantify the synchronous states between phase locking and phase synchroniza-
tion, we define a couple of metrics. The order parameter R̂ is defined as

R̂eiψ = 1
N

N∑
m=1

eiθm , (2.8)

where R = |R̂| is given by

R = R(t) =

∣∣∣∣∣∣ 1
N

N∑
m=1

eiθm

∣∣∣∣∣∣. (2.9)

R ∈ [0, 1] measures the collective behavior of the system and ψ gives the average
phase of all oscillators (DANIELS, 2005). Let us imagine oscillators as points that
move around a unit circle over time, the parameters R̂ and ψ correspond to a vector
fixed at the center of the circle Figure 2.2, where R = |R̂| is the vector’s size and
the phase ψ represents its direction. R tends to the value 1 as the oscillators come
together in the unit circle. In this work, whenever we refer to the order parameter,
we are referring to the R parameter. The parameter R is used to measure the phase
synchronization, that is, when the average of this parameter over a certain period
of time is constant and reaches the value 1, we say that the system is in phase

13



synchronization (DANIELS, 2005). Since the previous measurement alone cannot tell

Figure 2.2 - Order parameters R and ψ represented as a vector that points from the center
of the unit circle. The length of the vector is given by |R| and the direction
by ψ. Oscillators are represented by points in the circle.

Source: Daniels (2005).

us whether the system has converged to a phase locking state, where oscillators
do not have the same phase but present the same instantaneous frequency, so the
distance between them remains constant is the unit circle. We introduce a new
quantifier called partial synchronization index (GÓMEZ-GARDENES et al., 2007)

Smn =

∣∣∣∣∣∣ lim
∆t→∞

1
∆t

∫ tr+∆t

tr
ei[θm(t)−θn(t)]dt

∣∣∣∣∣∣, (2.10)

where tr is a long enough transient time. When two oscillators m and n are in phase
locking, Smn = 1. To measure the degree of partial synchronization of the entire
network, we use the arithmetic mean

S = 1
N2

N∑
m,n=1

Smn. (2.11)

Note that, unlike the order parameter R, S is not time dependent. In order to
visualize what it means for the network to present a partial synchronization index
S = 1, one can look at Figure 2.3. Note that the phase difference between all
oscillators remains constant, that is, they all have the same angular velocity.

2.3 Edge Snapping method

In this section, we introduce the evolutionary optimization method called Edge
Snapping (DELELLIS et al., 2010) that allows the generation of complex networks that
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Figure 2.3 - Order parameter R as a function of time. As its value is constant, the system
is in phase locking and S = 1.

Source: Adapted from Daniels (2005).

favor synchronization and present a relatively low number of edges. This method
has already been applied to networks of oscillators whose dynamics is described by
the first-order Kuramoto model (SCAFUTI et al., 2015b) and by the Rossler oscillator
model (SCAFUTI et al., 2015a). As one of the contributions of this thesis, we apply
this method to networks of oscillators whose dynamics are described by the second-
order Kuramoto model. Our objective is to use the networks created by this method
to model power grids and analyze their stability.

Dynamical systems can be modeled as networks of oscillators where each one of them
is described by a nonlinear differential equation. When studying the synchronization
of these systems, in general, one seeks to find a network topology and a coupling
value that make all oscillators share a dynamic property (DELELLIS et al., 2010).

In order to find a network structure that optimizes synchronization, several methods
have been proposed such as the Monte Carlo method (GOROCHOWSKI et al., 2010;
YANAGITA; MIKHAILOV, 2010; RAD et al., 2008; DONETTI et al., 2005) or gradient-
based learning strategies (TANAKA; AOYAGI, 2008; SKARDAL et al., 2014). These
methods use some objective function such as the order parameter R to guarantee
system synchronization where the system is composed of a network with an opti-
mized structure. The Monte Carlo method is usually very time-consuming, which
makes it difficult to apply in large networks. Gradient-based methods assume some
restrictions in the derivation of the coupling evolution rule and generally a global
information of the entire network is used (SCAFUTI et al., 2015b). The Edge Snapping
(DELELLIS et al., 2010) method is an adaptive strategy for the evolution of a weight-
less network topology that is more efficient than Monte Carlo and does not require
global information network, such as gradient-based. It is an adaptive method that
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is based on the use of a second-order model to model the evolution of the network
edges, here called gain, and this gain model has two stable fixed points that lead to
the formation of the network topology. Edges are activated or deactivated (removed
from the network) according to local conditions that ensure a common evolution of
the system.

Consider a network of nonlinear coupled oscillators whose nodes’ dynamics is given
by

ẋm = fm(xm) + λ
N∑
n=1

kmnG(xm, xn) (2.12)

where xm ∈ Rp is the state variable with dimension p of the m oscillator, fm repre-
sents the dynamics of each oscillator, note that they do not need to be identical. G
is a generic coupling function and kmn (which initially have the value zero) are the
time-varying coupling gains associated with the edge (m,n) and λ is the coupling
constant.

To characterize the evolution in the gain kmn, we use a second-order model with
damping subject to a bistable potential V forced by h. This model is defined as:
(DELELLIS et al., 2010; SCAFUTI et al., 2015a)

k̈mn + dk̇mn + ∂V (kmn)
∂kmn

= h(||θm − θn||) (2.13)

where h(||xm−xn||) is a generic increasing function of class k∞ 1, such that h(0) = 0,
||.|| is the Euclidean norm, d is the damping constant, and the bistable potential V
is defined as:

V (kmn) = bk2
mn(kmn − 1)2 (2.14)

where b > 0 is a constant. V is a bistable potential with two local minima that
correspond to the desired equilibria for the system, kmn = 0 (nonexistent edge) and
kmn = 1 (existing edge). At the beginning of the evolution of the gain, all nodes are
disconnected and based on the external forcing h, the edges may move out of their
initial equilibrium point (kmn = 0).

The dynamics of the gains kmn, given by Equation 2.13, depends on the dynamics
of the oscillators xm defined by Equation 2.12. Thus, the resulting topology is the
consequence of the dynamic evolution given by these two equations. The gain mimics

1A function F : R≥0 → R≥0 is of class k if it is continuous, positive definite and strictly
increasing. An unbounded function of class k belongs to class k∞. A function F : I → R is positive
defined if F (x) > 0 ∀x, x 6= 0 and F (0) = 0.
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the damped motion of a particle in one dimension subjected to a double well potential
as we can see in Figure 2.4. In Figure 2.4(a), the force is large enough to move
the particle from the initial equilibrium point kmn = 0 (nonexistent edge) to the
equilibrium point corresponding to kmn = 1 (existing edge). This does not happen
in Figure 2.4(b), as the force is not big enough. Note that the height of the barrier
between the two equilibrium points is proportional to the constant b of Equation
2.14.

Figure 2.4 - Edge evolution according to the Edge Snapping method. The gain kmn is
represented on the x-axis and the potential V (kmn) on the y-axis.

Fonte: Scafuti et al. (2015b)
.

2.3.1 Evolutionary Edge Snapping

The Edge Snapping method is now used in the context of evolutionary optimization,
where variation and selection rules are applied to generate the complex network
topology.

The evolutionary Edge Snapping strategy is composed of two fundamental rules,
called variation and selection (SCAFUTI et al., 2015a), which are described below
and illustrated in Figure 2.5.
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Step 1 - Variation rule: A set of weightless topologies is generated using Equations
2.12 and 2.13 starting from different initial conditions (a set of nT initial conditions
is randomly generated from a uniform distribution between [0.2π)). From this set of
nT topologies, we calculate the fraction between the number of topologies where the
edge between nodes m and n is present (nmn) and the total number of generated
topologies. This fraction is the probability of activation of the edge between nodes
m and n, given by

Fmn = nmn
nT

. (2.15)

As a result of this Step 1, we have a matrix F of size N × N that is symmetric
and stochastic, where N is the total number of oscillators, whose elements are the
activation probability of all possible edges.

Step 2 - Selection rule: Only the edges whose activation probabilities Fmn are greater
than a certain threshold value f ∗, that is, only if Fmn > f ∗, edges are marked as
active in the network. This threshold value is chosen in a way to ensure that the
resulting network topology is connected (no node is allowed to have zero degree),
synchronized and presents the fewest edges possible. This network is referred to as
minimal or ES network.

Figure 2.5 - Schematic representation of the evolutionary Edge Snapping strategy. Step 1
(variation): calculate edge activation probabilities (represented by the color
bar), starting from nT distinct initial conditions. Step 2 (selection): select the
edges whose activation probability is greater than a threshold f∗, thus giving
rise to the final topology of the network.

Source: Adapted from Scafuti et al. (2015b).

Using the second-order Kuramoto model, the equation that describes the dynamics
of the network, generically defined in Section 2.3 as Equation 2.12, is now defined
by Equation 2.6 with the adjacency matrix Amn replaced by the gain kmn. The
dynamics of the network is then be given by
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θ̈m = −αθ̇m + ωm + λ

gm

N∑
n=1

kmn sin(θn − θm). (2.16)

The generic function h(||θm − θn||) in Equation 2.13 is defined as

h(||θm − θn||) = 1− |θ(n)− θ(m)|. (2.17)

Now, we illustrate this technique with a small graph. A seven node network topology
is generated by the use of this method. The nodes’ natural frequency are selected are
set as ω = [−1.00,−0.67,−0.33, 0.00, 0.33, 0.66, 1.00]. The other model parameters
are fixed as nT = 100, b = 1.0, d = 1.0 for the edge snapping method and α = 0.1,
θm = 0.5 and νm = 0 for m = 1, ..., N in relation to the second order Kuramoto
model.

The network topology generated by the Step 1 of the Edge Snapping method is shown
in Figure 2.6. The activation probability of the edges are represented by colors, as
reddish ones indicate high and bluish ones indicate low activation probabilities. Step
2 is now applied as the edges with the lowest values of F are removed (snapped),
one by one. After each edge removal, we check if the network is still connected and if
it is still in the synchronous state. When one of these two conditions is not satisfied,
the method stops the edge removal and the remaining, final topology is referred to
as ES network (Edge Snapping network).

The seven node ES network can be seen in Figure 2.7, where the threshold of the
probability of activation is f ∗ = 0.58, that is, all edges with probability of activation
equal or lower than f ∗ were removed from the network created at Step 1 (Figure 2.6).
The probability of activation of the edges of the ES network are depicted by colors
in Figure 2.8(a) and the natural frequencies of the nodes are depicted in Figure
2.8(b). Note that this method generates networks with a relatively low number of
edges as only 8 out of the 21 possible edges were marked as active. An application
of this method is presented in Chapter 4.
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Figure 2.6 - Network generated by Step 1 of the Edge Snapping method. The probability
of activation F of the edges are represented by colors.
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Figure 2.7 - Seven node ES network created by the Edge Snapping method with (a) prob-
ability of activation of the edges and (b) natural frequencies of the nodes
represented, respectively, by colors. The threshold of the probability of acti-
vation is f∗ = 0.58.
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3 ENERGY TRANSMISSION NETWORKS

In this chapter, we present an extended version of a mini review (except for the
vulnerability part which is not the scope of this work) published in the journal The
European Physical Journal Special Topics with the title Vulnerability and
stability of power grids modeled by second-order Kuramoto model: a mini review,
(LACERDA et al., 2021b). This paper can be found in Appendix A.

An introduction is made in Section 3.1, modelling power grids is presented in Section
3.2, the conditions for synchronization are presented in Section 3.3 and, finally, in
Section 3.4 we study how the system responds to perturbations and how it is affected
by the system’s topology.

3.1 Introduction

Electric power transmission network systems are non-linear dynamic systems, whose
stability, that is, the ability to return to the equilibrium state, depends on the initial
conditions and the intensity of the disturbances suffered by the network, due to
several factors (MACHOWSKI et al., 2020).

The transmission of electrical power between generators and consumers that are
geographically distant from each other is essential these days. These electric trans-
mission networks or power-grids are dynamic systems whose transmission lines can
exceed thousands of kilometers and the growing demand for electric energy has
brought new challenges such as expansion strategies and evaluation of the stability
of the grid. In the current power grid model, the energy generated must be pro-
duced according to the demand, forcing the grid to be sufficiently interconnected
(CARARETO et al., 2013).

Transmission in power grid occurs mainly through alternating current, which has an
oscillatory nature. For the electrical system to work perfectly, it is necessary that
the entire network operates at the same frequency, that is, it is necessary that all
dynamic systems that make up the network are synchronized (POURBEIK et al., 2006).
If there is a high demand for energy and this demand is not adequately supplied or
a network failure occurs, a network component (oscillator) can lose synchronization,
which may eventually lead to a blackout (FILATRELLA et al., 2008).

Taking into account that electrical networks are expanding and becoming more and
more complex with the addition of small energy sources, it is relevant to study the
aspects that can favor and, most importantly, disfavor the synchronization of this
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network (FILATRELLA et al., 2008). Electric transmission networks have been studied
for more than ten years from a topological point of view with the use of complex
networks and important results were found, such as vulnerability to attacks and
cascading failures (CARARETO et al., 2013).

An electrical power plant is characterized by having a constant energy source and
being equipped with generators, composed of a large magnet and rotor formed by a
set of wound coils on a rotating shaft. When this rotor rotates within the magnetic
field, its coils generate electromotive force in the form of alternating current in which
the rotation frequency and the number of coils determine the frequency Ω of the
generated electric current. A diagram of a generator (turbine) (G), with phase θ1

and a consumer (C) with phase θ2 is shown in Figure 3.1. We then have an energy
source that feeds the rotation within the turbine, this energy can be accumulated
as rotational energy or be dissipated due to friction (D). The remaining energy
becomes available to the user as long as there is a phase difference between them.
(FILATRELLA et al., 2008)

Figure 3.1 - Diagram of an electric power plant composed by a generator (G) (with phase
θ1) and a consumer (C) (with phase θ2) connected by a transmission line. The
full definition of this system can be found in Section 3.2.

Source: Author production.

In this chapter, by using a power balance equation, we present a mathematical
derivation of a model that represents the dynamics of power grids, it turns out to
be the second order Kuramoto model. To arrive at this model, we make two approx-
imations as we assume that: (1) the electrical network is operating at a frequency
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close to its standard frequency Ω (50 or 60 Hz), that is, the system is on the verge
of small disturbances; (2) the rate in which kinetic energy is stored is always much
smaller than the rate of the dissipated energy due to friction. We use here the unit
of measure called per units (p.u.) which is usually adopted in studies of power grids
(KUNDUR et al., 1994).

3.2 Modelling power grids

A power plant (Figure 3.1) is characterized by having a mechanical energy input
and is equipped with a generator (G,rotor) that converts this mechanical energy into
electrical energy. A consumer (C), on the other hand, does the reverse process. The
rate at which energy is supplied to the generator, that is, the power of the source, is
indicated by Ps. The generator produces electrical power with a constant frequency
Ω and has a phase given by

θ1 = Ωt+ θ̃1 (3.1)

where t is time and θ̃1 is a small perturbation.

In the process of converting mechanical to electrical power, there is power dissipation
due to friction (FILATRELLA et al., 2008)

Pd = KD(θ̇1)2, (3.2)

where KD is a dissipation constant. There is also the accumulation of kinetic energy
at a rate

Pa = 1
2I

d

dt
(θ̇1)2 = Iθ̇1θ̈1, (3.3)

where I is the moment of inertia. The power remaining in the system, Pt, is trans-
mitted to the consumer. In Figure 3.1 the generator has a phase θ1 and the consumer
θ2 and the power flows between them as long as there is a difference between these
phases since power transmitted is defined as

Pt = −Q sin(θ2 − θ1), (3.4)

where Q is a constant.

Using the Equations 3.2, 3.3 and 3.4, we can describe the dynamics of a generator
(or consumer) by writing the power balance equation (FILATRELLA et al., 2008)

Ps = Pd + Pa + Pt

= KD(θ̇1)2 + Iθ̇1θ̈1 −Q sin(θ2 − θ1)
(3.5)
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Assuming that the power grid is operating at a frequency close to Ω, that is, that
we are in limit of small perturbations:

˙̃θ1 << Ω. (3.6)

Substituting Equation 3.1 into Equation 3.5:

Ps = KD(Ω + ˙̃θ1)2 + I[(Ω + ˙̃θ1)¨̃θ1]−Q sin(θ̃2 − θ̃1),

= KD( ˙̃θ1)2 + IΩ¨̃θ1 + ˙̃θ1(I ¨̃θ1 + 2KDΩ) +KDΩ2 −Q sin(θ2 − θ1).
(3.7)

Note that θ̈1 = d
dt

(Ω) + ¨̃θ1 = ¨̃θ1 and that θ2 − θ1 = (Ωt + θ̃2)− (Ωt + θ̃1) = θ̃2 − θ̃1.
Considering Equation 3.6, the term KD( ˙̃θ1)2 can be neglected:

Ps ∼= IΩ¨̃θ1 + ˙̃θ1(I ¨̃θ1 + 2KDΩ) +KDΩ2 −Q sin(θ2 − θ1). (3.8)

In mechanical systems, it is common for the rate at which kinetic energy is stored
(Pa ∼= IΩ¨̃θ1) to be much lower than the rate at which energy is dissipated by friction
(Pd ∼= KD

˙̃θ2
1). Due to Equation 3.6 we can then write:

IΩ¨̃θ1 << KD( ˙̃θ1)2 << KDΩ. (3.9)

Therefore, the accumulated power is much less than KDΩ2:

IΩ¨̃θ1 << KDΩ. (3.10)

We can then neglect the term I ¨̃θ1 in the coefficient of the first derivative in Equation
3.8 and this equation becomes

Ps ∼= IΩ¨̃θ1 + 2KDΩ ˙̃θ1 +KDΩ2 − P sin(θ2 − θ1). (3.11)

Isolating ¨̃θ1 e neglecting the approximation sign:

¨̃θ1 = Ps
IΩ −

2KD

I
˙̃θ1 −

KDΩ
I

+ Q

IΩ sin(θ2 − θ1). (3.12)

Normalizing time as a function of the common frequency Ω−1 (FILATRELLA et al.,
2008):

¨̃θ1 =
(
PsΩ
I
− KDΩ3

I

)
− 2KDΩ

I
˙̃θ1 + PΩ

I
sin(θ2 − θ1). (3.13)
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For better visualization, we define the following constants:

P1 = PsΩ
I
− KDΩ3

I
, (3.14)

α = 2KDΩ
I

, (3.15)

Pmax = QΩ
I
, (3.16)

where P1 is the generated power, α is the dissipation parameter and Pmax is the
maximum power transmission capacity of the transmission line. Equation 3.13 can
then be written as

¨̃θ1 = P1 − α ˙̃θ1 + Pmax sin(θ2 − θ1). (3.17)

Equation 3.17 describes the dynamics of the generator in Figure 3.1, that is, it is
connected to just one consumer. In turn, the dynamics of this consumer is given by:

¨̃θ2 = P2 − α ˙̃θ2 + Pmax sin(θ1 − θ2). (3.18)

Generalizing these equations for a network with N dynamical systems, where not
all nodes necessarily have the same degree and assuming that all transmission lines
have the same maximum capacity:

¨̃θm = Pm − α ˙̃θm + Pmax
gm

N∑
m=1

Amn sin(θn − θm). (3.19)

This differential equation is the celebrated second-order Kuramoto model (RO-

DRIGUES et al., 2016; GRZYBOWSKI et al., 2016; TANAKA et al., 1997a; TANAKA et

al., 1997b) presented in Chapter 2, in which the dynamics of generators and con-
sumers is described by non-linear oscillators. Note that to arrive at the second-order
Kuramoto model, we made two approximations by assuming that we are at the limit
of small perturbations and that the rate at which kinetic energy is stored is always
less than the rate at which energy is dissipated by friction.

In this work, we consider an electrical network represented by a network of oscillators
whose dynamics is described by the second order Kuramoto model, given by Equa-
tion 3.19 and written here as two first-order differential equations(GRZYBOWSKI et
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al., 2016; FILATRELLA et al., 2008):

θ̇m = νm, (3.20)

ν̇m = Pm − ανm + Pmax
gm

N∑
n=1

Amn sin(θn − θm). (3.21)

where m = 1, ..., N and N is the number of oscillations. θm, νm and gm are the
phase, angular velocity (or instantaneous frequency) and degree of the oscillator m,
respectively, α is the dissipation parameter, Pm denotes a power consumed (Pm < 0)
or generated (Pm > 0), which corresponds to the natural frequency of the oscillator
m, Pmax is the coupling constant, which corresponds to the maximum transmis-
sion capacity of the transmission line (we assume here that all lines have the same
transmission capacity), and A is the adjacency matrix that has input Amn = 1 if
oscillators m and n are connected and input Amn = 0 otherwise. More specifically,
ν̇m is the accumulated rotational power, ανm is the dissipated power due to friction,
Pmax is directly related to the maximum power that can be transmitted by a network
line and

FLmn = PmaxAmn sin(θn − θm) (3.22)

is the flow or power transmitted from node n to node m (CARARETO et al., 2013).

3.3 Necessary conditions for synchronization

Synchronization of power grids is very dependent on the power transferred between
its components, which in turn also depends on the capacity of the transmission
lines, that is, on the coupling. If the coupling is weaker than a certain threshold,
synchronization does not take place. If the coupling is greater than this threshold
but still less than a second threshold, synchronization occurs but eventually breaks
down due to disturbances, we say that this synchronized state is locally stable. If the
coupling is large enough, the system becomes synchronized regardless of disturbances
and initial conditions. In this case, we say that the synchronized state is globally
stable (CARARETO et al., 2013).

In this section, some conditions necessary for the system synchronization are calcu-
lated analytically. For the sake of the calculations, we omit the degree gm term and
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the second order Kuramoto model is given by:

θ̇m = νm, (3.23)

ν̇m = Pm − ανm + Pmax
N∑
n=1

Amn sin(θn − θm). (3.24)

In a network of generators and consumers, the synchronous state needs to be main-
tained for the network to properly function. As the power transmission only occurs
if the phases of the oscillators are different from each other, that is, if θm 6= θn, the
phase synchronization never exists. On the other hand, the oscillators need to have
the same fixed angular velocity, so it is possible for them to synchronize in phase
locking, with νm = νS for m = 1, ..., N , where νS is the synchronous angular velocity
and since it does not vary with time, we have ν̇m = 0.

Substituting the synchronous angular velocity νS in Equation 3.24, the network
dynamics is given by:

θ̇m = νS, (3.25)

0 = −ανS + Pm + Pmax
N∑
n=1

Amn sin(θn − θm). (3.26)

Equation 3.26 corresponds to a system of N equations. Adding all these equations:

N∑
m=1

[−ανS + Pm + Pmax
N∑
n=1

Amn sin(θn − θm)] = 0, (3.27)

that is,
N∑
m=1

[−ανS + Pm] + Pmax
N∑
m=1

[
N∑
n=1

Amn sin(θn − θm))] = 0. (3.28)

As the adjacency matrix of the network is symmetric, the second term of Equation
3.28 is equal to zero:

N∑
m=1

N∑
n=1

Amn sin(θn − θm) = 0. (3.29)

Then, Equation 3.28 becomes

N∑
m=1

(−ανS + Pm) = 0. (3.30)
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As the term ανS does not depend on m

−NανS +
N∑
m=1

Pm = 0. (3.31)

The synchronous angular velocity is then given by

νS =
∑N
m=1 Pm
N

1
α

= P

α
, (3.32)

where P =
∑N

m=1 Pm

N
is the average value of all natural frequencies of the oscillators.

In the power grid, there is a balance between the rate of energy supplied by genera-
tors and consumed by consumers, in a way that all supplied energy is consumed and
no part is stored, so ∑N

m=1 Pm = 0 and νS = 0. However, the rate of energy required
by consumers changes over time and this causes generators to continually change
the rate of energy produced, which implies that the synchronous angular velocity νS
can change over time (GRZYBOWSKI et al., 2016).

The phase of oscillator m in the synchronous state is defined as (MENCK et al., 2014;
ROHDEN et al., 2012)

θSm = arcsin
(
Pm
Pmax

)
. (3.33)

We now deduce two necessary conditions for synchronization, that is, phase locking,
called P ∗max and P ∗∗max and a condition in which only the difference between the
instantaneous frequencies remains constant, given by P ∗∗∗max, in the system given by
Equations 3.23 and 3.24.

The degree of the node m is defined as the number of edges gm connected to it, that
is, gm = ∑N

n=1Amn. It can then be noted that

N∑
n=1

Amn sin(θn − θm) ∈ [−gm, gm], (3.34)

since the sine function is limited. A necessary condition for the existence of a syn-
chronous state is that there is a real solution for the Equations 3.25 and 3.26 and
this can be achieved using Equation 3.34 above. Isolating Pmax in Equation 3.26, we
have:

Pmax = ανS − Pm∑N
n=1Amn sin(θn − θm)

. (3.35)

30



Now using Equation 3.34:

Pmax ≥ max
(
|ανS − Pm|

gm

)
. (3.36)

From Equation 3.32, we know that ανs = P :

Pmax ≥ max
 |P − Pm|

gm

 = P ∗max, (3.37)

for m = 1, ..., N . That is, there is no synchronous state in the model represented
by Equations 3.23 and 3.24 for a coupling value lower than P ∗max. The difference
between the rates of consumed and generated energy, Pm, has to be compensated
by a high coupling or by a high connectivity between the nodes of the network.

We now derive another necessary condition for synchronization. Consider a fully
connected network (where all nodes have degree equal to N − 1), and, by the use
of Equations 3.23 and 3.24 we consider the difference equations given by θ̈m − θ̈n:
(GRZYBOWSKI et al., 2016)

θ̈m − θ̈n = ν̇m − ν̇n = Pm − Pn − α(νm − νn) + PmaxE(θm, θn, θq), (3.38)

where

E(θm, θn, θq) = 2 sin(θn − θm) +
N∑

q=1,q 6=m,n
sin(θq − θm) + sin(θn − θq). (3.39)

The maximum of the function E(θm, θn, θq), given by Equation 3.39, corresponds to
the state of maximum power transfer.

If the oscillators enter the synchronous state, we get νm = νn = νS fixed for m =
1, ..., N and therefore ν̇m = ν̇n = 0. Then, using the Equation 3.38:

0 = Pm − Pn − α(νS − νS) + PmaxE(θm, θn, θq), (3.40)

⇒ Pn − Pm = PmaxE(θm, θn, θq). (3.41)

Assuming, without loss of generality, that Pn > Pm, we calculate the lower bound
for the coupling Pmax that satisfies Equation 3.41. We then need to maximize
E(θm, θn, θq) given by Equation 3.39. The first-order conditions necessary for this to
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happen are given by (CHOPRA; SPONG, 2005):

∂E

∂θm
= −2 cos(θn − θm)−

N∑
q=1,q 6=m,n

cos(θq − θm) = 0, (3.42)

∂E

∂θn
= 2 cos(θn − θm) +

N∑
q=1,q 6=m,n

cos(θn − θq) = 0, (3.43)

∂E

∂θq
= cos(θq − θm)− cos(θn − θq) = 0. (3.44)

By Equation 3.44, one can see that

θq = θm + θn
2 or θm = θn (3.45)

If we substitute θm = θn directly into Equation 3.39, we see that E = 0, which
is expected since there is only power transfer between two oscillators if there is a
non-zero phase difference between them (GRZYBOWSKI et al., 2016). If we replace
the critical point θq = θm+θn

2 in Equation 3.39:

E(θm, θn, θq) = 2 sin(θn − θm) +
N∑

q=1,q 6=m,n
sin

(
θn − θm

2

)
+ sin

(
θn − θm

2

)
(3.46)

= 2 sin(θn − θm) + 2(N − 2) sin
(
θn − θm

2

)
(3.47)

Now we find the value of (θn − θm) that maximizes Equation 3.47. If we replace
θq = θm+θn

2 , in Equation 3.42:

2 cos (θn − θm) +
N∑

q=1,q 6=m,n
cos

(
θn − θm

2

)
= 0 (3.48)

⇒ 2 cos (θn − θm) + (N − 2) cos
(
θn − θm

2

)
= 0 (3.49)

⇒ 2
2 cos2

(
θn − θm

2

)
− 1

+ (N − 2) cos
(
θn − θm

2

)
= 0 (3.50)

⇒ 4 cos2
(
θn − θm

2

)
− 2 + (N − 2) cos

(
θn − θm

2

)
= 0 (3.51)

Substituting θq = θm+θn

2 , in Equation 3.43:

2 cos (θn − θm) +
N∑

q=1,q 6=m,n
cos

(
θn − θm

2

)
= 0, (3.52)
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which is analogous to Equation 3.48.

Solving then Equation 3.51 as a function of cos
(
θn−θm

2

)
:

cos
(
θn − θm

2

)
=
−(N − 2)±

√
(N − 2)2 + 32

8 , (3.53)

and therefore, the value of θn−θm, which is a candidate to maximize Equation 3.39,
is given by

(θn − θm)opt = 2 arc cos

−(N − 2) +
√

(N − 2)2 + 32
8

 . (3.54)

The second order conditions that need to be satisfied to find the maximum of Equa-
tion 3.39 are given by:

∂2E

∂θi∂θj
≤ 0, (3.55)

is checked for (θn − θm)opt (CHOPRA; SPONG, 2005), where i, j = {m,n, q}, and
therefore, the maximum value of Equation 3.39 is obtained when we replace (θn −
θm)opt in Equation 3.47:

Emax = 2 sin(θn − θm)opt + 2(N − 2) sin
(

(θn − θm)opt
2

)
(3.56)

Functions (θn− θm)opt and Emax as a function of the number of oscillators is plotted
in Figure 3.2 for N = 2, ..., 32.

Taking into consideration Equation 3.56, the lower bound for the Pmax coupling so
that we have phase locking and which satisfies Equation 3.41 is given by

Pmax ≥ max
(
|Pn − Pm|
Emax

)
= P ∗∗max, (3.57)

where Pm and Pn is the rate of energy generated or consumed by the oscillators m
and n, respectively, and (θn − θm)opt ∈ [π2 , π].

We deduce now a necessary condition so that the difference between the instanta-
neous frequencies νm and νn is constant. Let ∆νmn = νm − νn, considering again
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Figure 3.2 - (θn − θm)opt and Emax as a function of the total number N of oscillators.

(a) (b)

Source: Author production.

Equation 3.38 we can rewrite it: (GRZYBOWSKI et al., 2016)

∆ν̇mn + α∆νmn = Pm − Pn + PmaxE, (3.58)

whose solution is given by

∆νmn = Pm − Pn + PmaxE

α
+ ∆ν0e

−αt, (3.59)

where ∆ν0 is a constant. It can be noted that the last term tends to zero, ∆ν0e
−αt →

0, when t → ∞. Discarding then the last term of Equation 3.59, we can rewrite it
as:

Pmax = α∆νmn − Pm + Pn
E

. (3.60)

Considering E = Emax and, as Pm and Pn are constant, the minimum value
of Pmax that enables synchronization must take into account the largest devia-
tion between ∆νmn. Considering that the instantaneous frequencies are distributed
in the range [νmin, νmax], we can define the largest deviation between them as
∆νmax = νmax − νmin. We thus obtain the necessary condition for the difference
between the instantaneous frequency of the network oscillators to be constant:

Pmax > max
(
|α∆νmax − Pm + Pn|

Emax

)
= P ∗∗∗max. (3.61)

In Figure 3.3 one can see the values of the couplings P ∗max, P ∗∗max and P ∗∗∗max as a
function of the number of oscillators in a fully connected network. The parameters
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used are α = 0.2, νm ∈ [−1, 1] and therefore ∆νmax = 2. In Figure 3.3(a) the number
of generators is defined as N

2 that provide an energy rate Pm = +1 with m = 1, ..., N2
and N

2 consumers using an energy rate given by Pm = −1 withm = N
2 +1, ...N . Note

that in this case, where |Pm| = |Pn| for m,n = 1, ...N , between the two conditions
necessary for synchronization, P ∗∗max has a value greater than P ∗max for all values of
N . In Figure 3.3(b), the number of generators is defined as N

3 that provide an energy
rate Pm = +1 with m = 1, ..., N3 and 2N

3 consumers who consume an energy rate
Pm = −0.5 with m = N

3 + 1, ...N . Note that here |Pm| 6= |Pn| for m,n = 1, ...N ,
and, contrary to what happened in the previous case, between the two conditions
necessary for synchronization, P ∗∗max has a value lower than P ∗max for all values of N .
Therefore, the maximum value between P ∗max and P ∗∗max must be used as a necessary
condition for synchronization.

It should be remembered that for the deduction of P ∗max and P ∗∗max, we assumed that
the angular velocities were equal, since the system was synchronized. If, however, the
system is affected by some perturbation, the angular velocities will no longer be the
same and the Equations 3.37 and 3.57 cannot be used anymore. In this case, we can
use the P ∗∗∗max coupling given by Equation 3.61 which gives maximum transmission
capacity of the transmission lines that is needed for the network to resume the
synchronization state after a disturbance. From the numerical approximations in
Figure 3.3 it can be noted that the coupling P ∗∗∗max is always greater than or equal to
the couplings considered previously.

So far, we have assumed that we are dealing with fully connected electrical networks
but, to relate our results to real electrical networks, we need to relate the results to
other network topologies. For this, consider the Laplacian matrix G given by

G = D − A, (3.62)

where A is the adjacency matrix and D is the degree matrix, which is a diagonal
matrix defined as Dmm = ∑N

n=1Amn. Consider an undirected, strongly connected
network with N nodes, such that λ is its second-smallest eigenvalue, also known as
algebraic connectivity. Now consider a fully connected network with the Laplacian
matrix given byGF and its second smallest eigenvalue given by λF . We can generalize
the results obtained previously to a fully connected network by (GRZYBOWSKI et al.,
2016; CARARETO et al., 2013)

λPmax = λFP F
max, (3.63)
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Figure 3.3 - Values of couplings P ∗max, P ∗∗max and P ∗∗∗max as a functions of the number N of
oscillators in a fully connected network with parameters α = 0.2, ∆νmax = 2.

(a) N
2 consumers and N

2 generators.

(b) 2N
3 consumers and N

3 generators.

Source: Author production.
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where Pmax is the coupling of the highly connected network.

3.3.1 Numerical simulations

As a first approach, we consider a network with only two nodes, represented in Fig
3.4 with one generator (blue) and one consumer (red). The constants are supplied
power P1 = 2 and consumed power P2 = −1, initial phase given by (θn− θm)opt and
initial angular velocity given by νm = νn = 0. Regarding the coupling Pmax, using
the Equation 3.37, we have

P ∗max = max(|P − Pm|) = 1.5.

By Equation 3.57 we see that

P ∗∗max = |P1 − P2|
Emax

= 3.0
2.0 = 1.5.

In this case, P ∗max = P ∗∗max = 1.5 is the coupling required for the system to come into
synchronization. We then fix the coupling as Pmax = 1.5.

Figure 3.4 - Network composed of a generator that supplies a power P1 = 2 and a consumer
that uses a power P2 = −1.

Source: Author production.

The behavior of the system composed by a generator and a consumer with Pmax =
1.5 is shown in Figure 3.5. It can be seen in Figure 3.5(a) that, although the phases do
not coincide, their behavior is qualitatively equal and this is confirmed when we see
the plots of the angular velocities ν1,2 = θ̇1,2 in Figure 3.5(b,c), where both converge
to the same value, indicating phase locking. As expected, both angular velocities
reach the synchronous angular velocity value given by Equation 3.32, νS = P

α
=

0.5
0.2 = 2.5. In Figure Figure 3.5(d) we have the magnitude of the order parameter
R, given by Equation2.8, as a function of time, indicating that the phases of the
oscillators are not equal as |R| < 1 but at the same time, giving indications that
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there is a synchronous instantaneous frequency as its value is constant over time.
This fact is confirmed when we calculate the value of the partial synchronization
index, given by Equation 2.11, that is equal to one, S = 1.

Figure 3.5 - (a) Phase of generator (blue) and consumer (red), (b) angular velocity of
oscillator 1 (generator), (c) angular velocity of oscillator 2 (consumer) and
(d) order parameter as a function of time for a fixed coupling Pmax = 1.5.

(a) (b)

(c) (d)

Source: Author production.

We can see that Pmax = 1.5 is really a necessary condition for synchronization when
we integrate the same system, with the same parameters, but now with Pmax = 1.49.
The result is shown in Figure 3.6. It can be noticed that the angular velocities present
very distinct values. The order parameter is not constant and the partial sync index
value is S = 0.54.

We now analyze what happens to the synchronous state of the power grid when there
is fixed power consumption and generation but the network topology changes in a
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Figure 3.6 - (a) Phase of generator (blue) and consumer (red), (b) angular velocity of os-
cillator 1 (generator) and 2 (consumer) and (c) order parameter as a function
of time fox a fixed coupling Pmax = 1.49.

(a) (b)

(c)

Source: Author production.
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way that small energy sources are added but the total power generated remains the
same. We use the networks represented in Figure3.7 where there is a fixed number
of consumers, five, each consuming a power PC = −1, so, ∑PC = −5. The number
of generators varies between five Figure 3.7(a) and one Figure 3.7(d), in a way that
they always provide the same amount of power ∑PG = 5.

Figure 3.7 - Fully connected networks with 5 consumers (C, red square) each consuming a
power PC = −1 and (a) 5 generators (G, blue circle), each providing a power
PG = 1, (b) 3 generators with PG1 = PG2 = 2, PG3 = 1, (c) 2 generators with
PG1 = 3, PG2 = 2 and (d) 1 generator with PG = 5.

(a) N = 10 (b) N = 8

(c) N = 7 (d) N = 6

Source: Author production.

The coupling required for synchronization is given by P ∗max (Equation3.37), P ∗∗max
(Equation 3.57) and P ∗∗∗max (Equation 3.61 with ∆νmax = 20) was then calculated
for each of the configurations presented in Figure 3.7. The results are found in
Table 3.1. We can observe that the values of P ∗max, P ∗∗max and P ∗∗∗max grow as the
energy production becomes more centralized, which means that in order to keep the
proper function of the system with the phase locking state or for the recovery of the
synchronous state after a disturbance, a greater maximum transmission capacity is
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required when comparing to a system where the energy generation is decentralized.

Table 3.1 - Comparison between different coupling values required for synchronization as
a function of the network topologies shown in Figure 3.7.

max (Pm − Pn) N P ∗max P ∗∗max P ∗∗∗max

(a) 2 10 0.11 0.12 0.36
(b) 3 8 0.29 0.24 0.56
(c) 4 7 0.50 0.37 0.75
(d) 6 6 1.00 0.68 1.14

3.4 Network topology and system stability

In this section, we study how power transmission networks modeled by the sec-
ond order Kuramoto model respond to perturbations and how the topology of the
networks affects it. We also introduce the concept of basin stability.

We study how the network topology influences the size of the synchronous state’s
basin of attraction, that is, how the topology influences the network response to
large disturbances (MENCK et al., 2014).

When the electrical transmission network is fully operational, all components of the
network are in a synchronous state where there is a uniform flow of energy that
supplies the demand (MACHOWSKI et al., 1997). When, for some reason, there is a
failure in some component of the network, some of its parts lose synchronization
and, to avoid damage, the affected components are turned off. However, the loss of
these components, even temporarily, can cause other network components to come
out of the synchronous state, which can cause a cascading failure and, eventually, a
blackout (BULDYREV et al., 2010; MOTTER; LAI, 2002).

Power grids are designed not to lose the synchronous state by a cascade fault when
some small disturbance occurs, that is, its synchronous state is locally stable. How-
ever, even with the synchronous state being locally stable with respect to small
disturbances, there are several stable non-synchronous states in the power grid state
space to which the grid can be driven due to large disturbances that can be caused
for example by short circuits or fluctuations in power generation due to renewable
energy sources (MENCK et al., 2014; FILATRELLA et al., 2008; CHIANG, 2011).
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3.4.1 Perturbations

We start by considering a simple transmission network composed by two generators
(whose generated power is PG = 1 for each) connected to a consumer (that absorbs
PC = −2), Fig 3.9(a). Setting the coupling Pmax = 3 we integrate the system and
calculate the partial synchronization index, which is equal to one, S = 1. As this
system is subjected to perturbations, we define Safter as being the partial synchro-
nization index calculated after this perturbation hits the system, more specifically,
after a transient. In Figures 3.8 (b), (c) and (d) the power consumed, order param-
eter and instantaneous frequency are plotted, respectively. These measures are all
constant over time because the system is synchronized, the mean over time of the
order parameter is < R >= 0.97 and Safter = S, of course, as no perturbation has
hit the system yet.

Figure 3.8 - System without perturbation. (a) Three node transmission network composed
of a consumer (C, red) connected to two generators (G, blue). (b) is the power
absorbed by the consumer , (c) the order parameter as a function of time and
(c) is the instantaneous frequency of all nodes as a function of time.
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Source: Author production.
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Now, consider that the system is in this synchronous state when it is suddenly hit
by a perturbation. More specifically, at t = 50 time units, the consumer requires an
extra power ∆PC for a short period of time ∆t = 2. After this period, the consumer
starts to absorb again two power units. In the first scenario, we consider ∆PC = −1,
the result can be seen in Figure 3.9. The yellow rectangle represents the duration
of the perturbation. Note that the system loses synchronization for a few moments,
even after the perturbation has ceased, but manages to go back to the synchronous
state after a transient, as Safter = 1 (calculated in this case for t > 100). Note that
the perturbation hits just one node, but manages to destabilize the entire system as
the instantaneous frequency ν of all nodes are disturbed.

Figure 3.9 - System with perturbation ∆PC = −1 during (marked in yellow) ∆t = 2
time units. (a) Three node transmission network composed of a consumer
(C, red) connected to two generators (G, blue). (b) is the power absorbed by
the consumer , (c) the order parameter as a function of time and (c) is the
instantaneous frequency of all nodes as a function of time.
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Source: Author production.

Considering now a greater perturbation as the consumer absorbs an extra power of
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∆P = −3 for the same amount of time, ∆t = 2. The results are shown in Figure3.10.
Note how the order parameter varies over time after the perturbation and how the
instantaneous frequencies approach distinct values as both generators are on the
upper part of Figure 3.10(c), while the consumer is on the bottom. The partial
synchronization index after the perturbation is Safter = 0.56, indicating that, after
losing the synchronization the system is unable to return to this state.

Figure 3.10 - System with perturbation ∆PC = −3 during (marked in yellow) ∆t = 2
time units. (a) Three node transmission network composed of a consumer
(C, red) connected to two generators (G, blue). (b) is the power absorbed
by the consumer , (c) the order parameter as a function of time and (c) is
the instantaneous frequency of all nodes as a function of time.
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Source: Author production.

So far, the duration of the perturbation ∆t and the coupling Pmax were both fixed.
Now, both are set to vary and as we calculate the minimum value of ∆PC that leads
the system out of the synchronous state we name it threshold ∆PC . The results are
shown in Figure 3.11. One can clearly see that the threshold ∆PC heavily depends on
the duration of the perturbation, especially when the duration is relatively short. The
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lower the duration of the perturbation, the greater is the value of ∆PC required to
destabilize the system, that is, if the consumer perturbs the system by increasing its
absorbed power by a great amount, the system is likely to go back to the synchronous
state if this perturbation ends soon enough. For relatively large values of ∆t, like
2 and 5 units of time, the behavior of threshold ∆PC is very similar, indicating
that perturbations that last longer present similar threshold ∆PC . Note that the
coupling Pmax < 2 is not strong enough to synchronize the system, even without
perturbation.

Figure 3.11 - Minimum value (threshold) of ∆PC that leads the system out of the syn-
chronous state as a function of the coupling Pmax for distinct values of the
duration of the perturbation ∆t that hits the system.
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3.4.2 Basin stability

In the previous section, we showed that when affected by a certain perturbation, the
whole system is disturbed but sometimes manages to go back to the synchronous
state, as it depends on the magnitude of the perturbation and its duration. The
reason for the system occasionally lose the synchronous state has to do with the
system’s basin of attraction, which is the set of initial conditions that tends to
an attracting fixed point as the system evolves in time (STROGATZ, 2014). In this
section, we calculate this basin of attraction for a one-node model and present a
method to calculate the volume of this basin of attraction, called basin stability, to
a multi-node model.
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3.4.2.1 One-node model

Large disturbances that affect a power grid usually involve an imbalance in the grid’s
local energy flow. For example, imagine that a generator is producing a steady stream
of energy flowing through a single transmission line that suddenly shorts out. Control
devices quickly interrupt the transmission line to stop the network failure and, with
this, the rate of mechanical energy injected by the turbine into the generator causes
its rotational energy to increase, thus increasing its rotation frequency. Therefore,
when the transmission line is reconnected to the grid, the generator is no longer
working as it was before the failure, which causes a disturbance in the network.
Starting from this disturbed state, would the network be able to return to the
synchronous state? (MENCK et al., 2014) To try to answer this question, we first
adopt a simple one-node model, analyzing only the dynamics of a network generator.

Considering Equations 3.23 and 3.24 the one-node model can be written as:

θ̇ = ν, (3.64)

ν̇ = P − αν + Pmax sin(θnet − θ), (3.65)

where θ and ν are the phase and angular velocity of the generator in a reference
frame that rotates with the nominal frequency of the network and, therefore, here
the angular velocity in the synchronous state is given by νS = 0 . The phase in the
synchronous state θS is given by Equation 3.33 and α = 0.1. Also, θnet represents
the phase of the rest of the network. This one oscillator model assumes that the
network is not affected by the generator in question, so we set θnet = 0.

Assume that the generator is initially (at time t0) in the synchronous state, described
by (θ(t0), ν(t0)) = (θS, νS). Then, in time t1, the transmission line that connects the
generator to the grid is disconnected, that is, the coupling is set to Pmax = 0. This
causes ν to move away from the synchronous angular velocity νS and increase until
the line is reconnected in time t2 to the network. The generator converges from the
disturbed state (θ(t2), ν(t2)) to the synchronous state (θS, νS) if the disturbed state
is within the basin of attraction B of the synchronous state. For this reason, the
synchronous state’s basin of attraction must be as large as possible (MENCK et al.,
2014).

In order to find the basin of attraction of this one-node model, we integrate Equations
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3.64 and 3.65 for distinct values of the coupling Pmax = {4, 12, 24, 65}, where the
power generated is fixed at P = 1. The initial conditions are draw randomly from
a normal distribution, θ(0) ∈ [−π, π] and ν(0) ∈ [−15, 15]. For each set of initial
conditions (θ(0), ν(0)), we annotate when the system evolves to the synchronous
state and when it does not. The basin of attraction can be seen in Figure 3.12,
the points marked in yellow represent the initial conditions that led the system
to the synchronous state, the black ones represent those that do not. The red dot
represents the attracting fixed point which describes this synchronous state. Note
that the greater the coupling Pmax, the greater is the basin of attraction.

Returning to the previous situation, suppose that a component of the system is hit
by a perturbation in time t1 and, in time t2, this perturbation ceases. This component
is able to return to the synchronous state if the point (θ(t2), ν(t2)) is within its basin
of attraction.

Figure 3.12 - Basin of attraction (yellow) of a single node dynamics for the coupling Pmax
equal to (a) 4, (b) 12, (c) 24 and (d) 65. The attracting fixed point is plotted
as a red dot.
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To quantify how stable the synchronous state is when subjected to large perturba-
tions, we use a measure of the volume of the basin of attraction, defined as the basin
stability E: (MENCK et al., 2013)

E(B) =
∫
χB(θ, ν)ρ(θ, ν)dθdν, (3.66)

where ρ is a probability density, with
∫
ρ(θ, ν)dθdν = 1, which tells us which states

in the state space of the system can be affected by large disturbances, and is be
defined as:

ρ =


1
|Q| , if (θ, ν) ∈ Q,where Q = [−π, π]× [−100, 100],

0, otherwise.
(3.67)

On the other hand, χB is the indicator function of the synchronous basin of attraction
B, given by:

χB =


1, if (θ, ν) ∈ B.

0, otherwise.
(3.68)

The basin stability E(B) ∈ [0, 1] expresses the chance of the system to return to the
synchronous state after being hit by a large randomly occurring perturbation with a
probability density ρ. If E = 0, the synchronous state is unstable and, if E = 1, the
synchronous state is globally stable. To estimate E, we use the Monte-Carlo method
(WILEY et al., 2006), where T initial states are randomly chosen according to ρ, their
trajectories in phase space are simulated and the number of times U at which the
system converges to the synchronous state is annotated. The basin stability is then
given by

E = U

T
, (3.69)

with an standard error of e =
√

E−E2

T
(MENCK et al., 2014).

The basin stability E of the one-node model, with P = 1, as a function of coupling
Pmax can be seen in Figure 3.13. Note that E grows as we increase the coupling,
until the synchronous state becomes the only possible state with E = 1. Note that
E calculates how big the basin of attraction B is, for example, at Pmax = 65, one
can see that Figure 3.12(d) has its entire yellow area filled and in Figure 3.13 we
have E = 1.
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Figure 3.13 - Basin stability E of the one-node model as a function of the maximum
capacity of the transmission line (coupling) Pmax.
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3.4.2.2 Multi-node model

In the one-node model (Equations 3.64 and 3.65), we assume that the rest of the
network was not affected by the oscillator in question. To make the model more
realistic, we now consider that there is an interaction between all nodes that make up
the network and we analyze how the location of the node that suffers a disturbance
influences the response that the network presents to this local loss of synchronization.

We now consider the second order Kuramoto model presented at the beginning
of Section 3.2, given by Equations 3.23 and 3.24. As we assume that we are in a
reference frame that rotates with the nominal frequency of the network, when the
system is synchronized, the oscillators have an angular velocity νm = νS = 0 and
constant phases θm = θS with m = 1, ..., N .

In this section, we use a set of fifty randomly generated networks with N = 100
nodes and 135 edges (transmission lines). These networks have an average degree
〈g〉 = 2.7 which is a typical value found in real power grids (SUN, 2005; WITTHAUT;

TIMME, 2013). The number of generators is given by N
2 where each one produces a

power equal to PG = 1, and the number of consumers is given by N
2 where each one

consumes a power equal to PC = −1. The coupling is fixed at Pmax = 8. In each
network, for each node m, the value of its basin stability is calculated

Em = E(Bm) ∈ [0, 1], (3.70)

where E is given by Equation 3.66 and Em expresses the probability of the network
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to return to its synchronous state after node m is disturbed, and Bm is a two-
dimensional slice of the synchronous state’s 2N-dimensional basin of attraction B

that determines the response of the network to a disturbance that reaches node m,
defined as:

Bm = {(θm, νm) : (θn, νn)n=1,...N ∈ B com θn = θSn e νn = νS = 0 para todo n 6= m}.
(3.71)

To estimate Em, T = 100 initial conditions (θT , νT ) are chosen randomly according
to ρ (given by Equation 3.67) and, for each of these initial conditions, the initial
condition of all nodes in the network is then set to

(θn(0), νn(0)) =


(θT , νT ), if n = m,

(θSn , νS), otherwise,
(3.72)

that is, all nodes start their trajectories in the phase space inside the basin of
attraction B, except for node m, which is the node suffering the perturbation. We
then use the Monte-Carlo method to calculate the basin stability of node m:

Em = Um
T

(3.73)

which has a standard error of e =
√

E−E2

T
≤ 5%.

As there is a set of fifty networks and each network has N = 100 oscillators, we
then obtain five thousand measures of the basin stability Em which is plotted in the
histogram of Figure 3.15(a), where most nodes present a reasonable value of basin
stability and one can see the existence of two peaks with low and high values of Em.

In the one oscillator model, we observed in Figure 3.13 that the basin stability was
increasing as we increased the coupling Pmax. In the multi-node model, the total
coupling felt by a node m grows linearly with its degree gm as it is given by gmPmax.
To calculate how the basin stability varies as a function of this total coupling, we
calculate the average value of the basin stability 〈E〉 of all nodes and plot them as a
function of their degree in Figure 3.15(b). Note that 〈E〉 does not grow much with
the increase of g (except for g = 9), and the observed standard deviation is high.
In a new approach, we investigate the role of the neighbors of a node on its basin
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Figure 3.14 - (a) Histogram of the basin stability E. (b) Mean and standard deviation
(light color) of basin stability 〈E〉 of all networks as a function of the nodes’
degree g. Light colors indicate standard deviation.

(a) (b)

Source: Author production.

stability. The average degree of the neighbors of a node m is defined as

gav,m = 1
gm

N∑
n=1

Amngn. (3.74)

In Figure 3.15, we have the mean value of the basin stability 〈E〉 of nodes with
degree gm = {1, 2, 3, 4, 5, 6, 7, 8}, plotted as a function of the average degree of its
neighbors gav. With the exception of the node with degree one, the basin stability
presents a linear grow, so, although this measure is not much affected by the node’s
own degree, it is greatly affected by its neighbors’ degree.

To better understand how topology influences the behavior of the basin stability, we
use the complex network metric called betweenness centrality b, defined as (NEW-

MAN, 2003b):
bm =

∑
n6=m6=q,q>n

σmnq
σnq

, (3.75)

where σnq is the total number of shortest paths between node n and node q and σmnq
is the number of those paths that pass through node m. We then calculate 〈E〉 as
a function of the betweenness b of the nodes, the result is shown in Figure 3.17(a),
where one can see that there is no clear relationship between betweenness values
and the basin stability, however, it can be noted that for some specific values of b,
the basin stability presents low peaks. Some of these specific low betweenness values
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Figure 3.15 - (a) Average of the basin stability 〈E〉 of nodes with degree 1 and 2, (b) 3
and 4, (c) 5 and 6 and (d) 7 and 8, as a function of the average degree of
the neighbors gav. Light colors indicate standard deviation.

(a) (b)

(c) (d)

Source: Author production.

are plotted as red dots in Figure 3.17(a). One can see what these values represent
in Figure 3.17(b), where the value of the betweenness of node m is represented in
the left column and its location in the network (red) is represented in the right
column (the square connected to the right of the node in red represents the number
of nodes remaining in the network). We then can clearly see that the synchronous
state presents a high instability in relation to perturbations that reach nodes located
in certain places that are called dead ends or dead trees whose betweenness values
are characteristic.

To take a closer look at the impact that dead ends and dead trees have on network
synchronization, in Figure 3.18(a) we have the average of the basin stability 〈E〉
of the set of all the networks generated as a function of the degree g of the nodes
that are adjacent or not to these dead trees. Note that 〈E〉 is on average always

52



Figure 3.16 - (a) Average basin stability 〈E〉 as a function of the betweenness b. Light
colors indicate standard deviation. (b) Typical examples of nodes (red) that
have certain distinct betweenness values b, this values of betweenness are
marked as red points in (a); the boxes on the right of the red nodes represent
the rest of the network whose number of nodes is written inside them.

(a)

(b)

Source: Author production.

larger for nodes that are not adjacent to dead trees. That is, when a large distur-
bance, given by Equation 3.72, reaches a node m of the network, if this node has
only nodes next to it with reasonable stability, this perturbation causes it to lose
synchronization with the rest of the network causing its angular velocity to deviate
from its synchronous velocity, νm 6= νS, while all other nodes remain very close to
the synchronous state with ν ≈ νS. However, if m is adjacent to a dead end or dead
tree, that is, nodes with low stability, the perturbation tends to enter that alley and
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destroy the synchronization of the nodes it contains. Note that 〈E〉 as a function of
node degree has already been shown in Figure 3.15(b) but only when we differenti-
ate nodes adjacent to dead trees or not is that we can see a pattern (MENCK et al.,
2014).

Figure 3.17 - (a) Average of the basin stability 〈E〉 of all generated networks as a function
of the degree g of the nodes that are adjacent (red) or not (blue) of dead trees
and dead ends. Lighter colors indicate standard deviation. (b)-(d) Average
basin stability 〈E〉 as a function of the neighbors degree plotted for nodes
with distinct degrees and that are adjacent (red) and not adjacent (blue) to
dead trees.

(a) (b)

(c) (d)

Source: Author production.

We can now redo Figure 3.15, separating the plots not only by node degree, but
also by being adjacent to a dead tree or not. The result can be seen in Figure
3.17(b)-(d), where nodes adjacent to dead ends and trees are plotted in red and
nodes not adjacent are plottes in blue. Remember that, in Figure 3.15, 〈E〉 had a
linear increase with gav and this does not seem to happen when we take into account
only the value of 〈E〉 of the nodes adjacent to dead trees.
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Finally, in Figure 3.18, we can observe closely the difference between nodes adjacent
to dead trees or dead ends and those nodes that are not. In Figure 3.19(a) and
3.19(b), the histogram and the values of E of each node are plotted, respectively,
and divided now into these two groups where the nodes adjacent to dead trees and
dead ends are marked as Y and plotted in red and those that are not are marked as
N and plotted in blue. One can note that the nodes adjacent to dead trees present,
most of the time, low values of basin stability as most of them is bellow 0.3. The
degree, betweenness and average neighbor degree, Figure 3.18(b)-(e), are expected
to be lower for the nodes adjacent to dead trees as, by definition, they are in or near
an "outskirt"1 of the network. Therefore, they are connected to less nodes, have less
shortest paths passing through them and do not have highly connected nodes as
neighbors, as their neighbors are in or near the same "edge".

3.4.3 Braess’s paradox

As shown in Section 3.4.2, dead trees and dead ends must be avoided in power grids,
so, one might think that a good way to avoid these configurations in the topology
of the network is just to add some new transmission lines to it. Also, the basin
stability of the nodes in power grids tends to grow as one increases the maximum
transmission capacity Pmax of the transmission lines and it was also stated that the
total coupling felt by a node is directly proportional to its degree, so, if one needs
to add a new transmission line to an already existing and functional power grid
there is not concern there since this additional line might actually help to improve
the system stability. But is this always the case? Is there any situation in which
increasing the coupling or adding a new transmission line has an opposite effect to
what one might expect and actually disturbs the system and leads it out of the
synchronous state? The answer to this last question is yes and this counter-intuitive
phenomenon was first observed in traffic networks by Dietrich Braess (BRAESS et al.,
2005; BRAESS, 1968), so it is referred to as Braess’ Paradox.

We consider in this section simple topologies, the same used in (WITTHAUT; TIMME,
2012), composed by four generators (generating PG = 1 units of power each) and
four consumers (absorbing PC = −1 units of power each). More specifically, the
coupling value is fixed as Pmax = 3.2 and we consider three models, Model A (Figure
3.20(a)), Model B where the coupling constant of the upper dashed green edge is set
as PB

max = 2Pmax andModel C where all edges have again the same constant coupling
value Pmax = 3.2 but an extra transmission line (dashed) is inserted between two

1structures like the ones presented in Figure 3.17(b).
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Figure 3.18 - (a) Histogram of basin stability E and measure of nodes’ (b) basin stability,
(c) degree, (d) betweenness and (e) average neighbors’ degree values, divided
between nodes adjacent (Y, red) and not (N, blue) to dead trees or dead ends.

(a)

(b) (c)

(d) (e)

Source: Author production.
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generators.

As the transmission capacity of one line is set to have a distinct value from all the
others in Model B, the dynamics of the nodes is given by a modified version of
Equations 3.20 and 3.21:

θ̇m = νm, (3.76)

ν̇m = Pm − ανm + 1
gm

N∑
n=1

Pmn
maxAmn sin(θn − θm). (3.77)

After integrating Equations 3.76 and 3.77 for all the three models, the instantaneous
frequency is plotted in Figure 3.19. The instantaneous frequency of Model A is ploted
in Figure 3.19(b) where one can note that after a transient, the system reaches the
synchronous state as the instantaneous frequency of all the nodes are the same
and remains constant (the partial synchronization index is calculated below). As for
models C and D, one sees in Figures 3.19(d) and (f), respectively, that the consumers
and generators are divided into two groups and have their instantaneous frequencies
far apart from each other.

The partial synchronization index S is then calculated for all the three models and
plotted in Fig 3.20(g) as a function of the coupling. Model A is the first one to reach
the synchronous state, at Pmax = 3.2. Note that for this value of coupling, models
B and C present a low value of S, which is approximately 0.5. As the coupling is
increased, Model B reaches the synchronous state and then, for a greater coupling
value, Model C finally synchronizes.

So, a very simple change in the topology, like the addition of a new line or the
increase in the power transmission capacity of a one existing line, can cause serious
damage to the network as it may lose the synchronous state. In power grids, this
process can cause nonlocal failures and even blackouts (PADE; PEREIRA, 2015). The
reason behind this counter-intuitive phenomenon is that when these changes are
made in the network, the power flows rearrange in a way that an overload may be
induced in some transmission lines and the synchronous state is lost (WITTHAUT;

TIMME, 2012).

Analytically, the loss of the synchronous state can be explained by the geometric
frustration. There are two conditions for the existence of the synchronous phase
locked state, one dynamical and one geometric. In relation to the dynamical one,
consider the power flow defined in Equation 3.22, the dynamics of ν given in Equation
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3.77 and the fact that the system is in the synchronous state, so νm = νS = 0 for all
m, we have

0 = Pm + 1
gm

N∑
n=1

FLmn , (3.78)

where FLmn is the flow of power between nodes n and m, defined in Equation 3.22.
Then, the dynamical condition is given by the conservation of the flow (WITTHAUT;

TIMME, 2013):

|Pm| =
1
gm

∣∣∣∣∣∣
N∑
n=1

FLmn

∣∣∣∣∣∣ . (3.79)

The geometric condition relates to the fact that the sum of all phase differences
around a cycle must be equal to zero, so that all phases are well defined (WITTHAUT;

TIMME, 2012):
◦∑

(θm − θn) =
◦∑
arcsin

(
FLmn

AmnPmax

)
= 0. (3.80)

where ◦ indicates that the sum is taken along the cycle. When the system is not
able to satisfy this condition, no steady state exists. For the models A, B and C,
Equation 3.79 is always satisfied but the condition given by Equation 3.80 is not
when models B and C are considered (WITTHAUT; TIMME, 2012).

3.5 Conclusion

In this chapter, a bibliographical review on power grids in the context of the second
order Kuramoto model was presented. We showed that, from some approximations,
it is possible to describe electrical transmission networks with the use of the second-
order Kuramoto model. From this approach, necessary conditions for network syn-
chronization were deduced and the influence of the network topology on its stability
was also presented.
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Figure 3.19 - (a) Model A, with Pmax = 3.2, (c) Model B with Pmax = 3.2 in the edges
marked in black and PBmax = 2Pmax in the dashed green edge and (e) Model
C with Pmax = 3.2. The instantaneous frequencies of models A, B and C are
plotted in (b), (d) and (f), respectively. (g) Partial synchronization index for
all the three models as a function of the coupling.

G

C C

G

GG

C C

(a)

0 50 100 150
t

−1

0

1

ν

(b)

G

C C

G

GG

C C

(c)

0 50 100 150
t

−10

0

10
ν

(d)

G

GC C

G

G

C C

(e)

0 50 100 150
t

−10

0

10

ν

C

G

(f)

1 2 3 4
Pmax

0.0

0.5

1.0

S

A

B

C

(g)
Source: Author production.

59





4 SYNCHRONIZATION OF ENERGY TRANSMISSION NETWORKS
AT LOW VOLTAGE LEVELS

In this chapter, we present an extended version of the original contribution published
in the journal Applied Mathematical Modelling with the title Synchronization
of energy transmission networks at low voltage levels, (LACERDA et al., 2021a). This
paper can be found on Appendix B.

A brief introduction is made in Section 4.1, in Section 4.2 we refer to the models
and methods already presented in this work, the results and discussions are shown
in Section 4.3 and, finally, the final remarks are made in Section 4.4.

4.1 Introduction

The evolutionary optimization technique called evolutionary edge-snapping (DELEL-

LIS et al., 2010; SCAFUTI et al., 2015b), discussed in Section 2.3, is used in this chapter
to generate a network topology that favors synchronization for rather small values of
coupling, we call it the ES network. This method creates networks with a relatively
small number of edges and these topologies would be of great interest in the design
of power grids, due to the costs involved in the construction of transmission lines.
The dynamics of the nodes are given by the second order Kuramoto model, given
by Equation 2.6.

Also, as the power grid generated by this method reaches the synchronous state at a
low coupling value (when compared to the coupling required by a random network
composed of the same number of nodes and edges), it means that lower voltage levels
are needed in the transmission lines (KUNDUR et al., 1994; MONTICELLI; GARCIA,
2011), which is also a desirable characteristics. After studying and analyzing the
behavior of the power grid topology created by the Edge Snapping method, we
use the basin stability method (MENCK et al., 2014), presented in Section 3.4.2, to
analyze the stability of this topology when subjected to perturbations. We find that
the ES network nodes’ present in average a higher basin stability when compared
to a random one.

4.2 Models and methods

In order for a power grid to be fully functional, all of its components must be
frequency synchronized (GRZYBOWSKI et al., 2018). So we begin this section by
referring to the metrics that quantify the level of synchronization of a dynamical
system. The order parameterR (Equation 2.9) (DANIELS, 2005) shows the level of the
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collective behavior of a system by measuring the amount of phase synchronization.

The parameter partial synchronization index S (Equations 2.10 and 2.11) (GÓMEZ-

GARDENES et al., 2007) presents the level of the frequency synchronization (or phase
locking) (LACERDA et al., 2020; LACERDA et al., 2019) between a pair of a system’
units.

In order for power to flow in a power grid, there must be a phase difference between
the components of the grid (FILATRELLA et al., 2008). So, we want our system to
be phase locked, thus having the same instantaneous frequency, and not phase syn-
chronized, that is, we want S = 1 and R 6= 1, and we are always referring to this
configuration when we say that the system is synchronized.

In order to model the dynamics of generators and consumers, we make use of the
second order Kuramoto model (ÓDOR; HARTMANN, 2018) in a way that the dynamics
of a power grid component is given by Equations 3.20 and 3.21.

The phase and the angular velocity of a node m in the synchronous state are defined
as (θm = θS, νm = νS). The phase in the synchronous state is given by Equation 3.33
and the angular velocity is defined in Equation 3.32 (MENCK et al., 2014; ROHDEN

et al., 2012)

In this work, there are N
2 consumers (Pm < 0) and N

2 generators (Pm > 0) in a way
that all power generated is consumed, so ∑N

m=1 Pm = 0 and, therefore, νS = 0.

The Edge Snapping method (Section 2.3) (DELELLIS et al., 2010; SCAFUTI et al.,
2015a) is used in this work in order to generate topologies that model a power grid.
This method is an adaptive strategy that drives the evolution of an unweighted
network, in which a second order equation is associated with each edge of the graph.
In this model, the equation associated with the edge between nodes m and n is
given by Equation 2.13. By using the Edge Snapping method to generate network
topologies, the second order Kuramoto model is written as

θ̈m = −αθ̇m + Pm + Pmax
gm

N∑
n=1

kmn sin(θn − θm). (4.1)

Note that here that adjacency matrix A is replaced by the coupling gain k. So, in
order to study the dynamics of our power grid, we integrate Equations 2.13 and 4.1
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simultaneously. Although, kmn replaces the adjacency matrix, it can take continuous
values between 0 and 1.

The Edge Snapping method is used in the context of evolutionary optimization where
rules of variation and selection are applied in order to generate network topologies.
The Evolutionary Edge Snapping is composed of two fundamental rules, given in
Section 2.3.1. Where the probability of activation of an edge Fmn is defined in
Equation 2.15 and only edges whose probability of activation higher than a threshold
f ∗ are marked as active (are present) in the network. The value of f ∗ is chosen in a
way that the entire network is connected and present the smallest possible number
of edges, we call this network edge-snappping network (ES network).

The basin stability method, presented in Section 3.4.2, is used in this work to study
the stability of all the nodes of the network generated by the Edge Snapping method.
The results are compared to the ones calculated for a random network with the same
number of edges and nodes.

4.3 Results and discussion

We use the Edge Snapping method to generate a N = 50 node (duo to high com-
putational cost) power grid whose nodes’ delivered or consumed power P are given
by a Gaussian distribution with zero mean and standard deviation σP = 0.2, in a
way that N

2 nodes have their frequencies set randomly by this distribution and N
2

nodes have the exact opposite power, so all the power generated is consumed as∑N
m=1 Pm = 0.

Following the two steps presented in Section 2.3.1, we simultaneously integrate Equa-
tions 2.13 and 2.16 with a fixed coupling Pmax = 1.5 for nT = 100 distinct sets of
initial conditions. We then annotate the fraction of times each of the N(N−1)

2 possible
edges were present at the final topology. This fraction F is a NxN matrix called
probability of activation of the edges. We then have a fully connected network whose
the edges’ probability of activation are given by Fmn.

The edges with the lowest values of F start being removed from the network, in
a way that one edge is removed at a time and two conditions are always checked:
whether no node has been disconnected from the network and whether the partial
synchronization is still equal to one, that is, if the network is still in the synchronous
state. This procedure is repeated until one of those conditions is false. Then, the value
of the probability of activation of the last snapped edge in which both conditions
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were true is marked as f ∗ and is said to be the threshold, as all the edges that
remained in the final topology have a probability of activation greater than that
value.

The topology of the 50 node ES network is plotted in Figure 4.1, where in Figure
4.1(a) the size of the nodes is proportional to their degree and the color relates to
the amount of power P generated (blue) or consumed (red), while in Figure 4.1(b)
the probability of activation F is represented by edge colors, as the threshold for
this configuration is f ∗ = 0.56, leaving the final topology with 108 edges. This is
a relatively low number of edges as only a fraction of around 9% of all possible
edges were marked as active in the final topology. It is a characteristics of the
Edge Snapping method to generate networks with a relatively low number of edges
(SCAFUTI et al., 2015b), which is an advantage when it comes to power grids due to
the costs involved in the construction of transmission lines.

Figure 4.1 - Network topology generated by the Edge Snapping method. (a) Shows the
power generated or consumed by all nodes and (b) shows the probability of
activation of all edges.
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More details of the ES network can be seen in Figure 4.2, where, Figure 4.2(a),
the degree g of all nodes are plotted as a function of their power P generated or
consumed, the probability of activation of all edges are plotted as a function of the
absolute value power difference of the nodes these edges are connecting |Pmn| =
|Pm − Pn|, is plotted in Figure 4.2(b), and, finally, the standard deviation of the
activation probability F is plotted against the number of trials nT , Figure 4.2(c).
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The degree g of the nodes seem to be distributed mostly at random, as for the
probability of activation F , it doesn’t display a well defined behavior, although
there is roughly a band-like structure and as |Pmn| grows, the band structure gets
narrower. The standard deviation of the activation probability presents a constant
like value for nT equal or greater than 100 and this is the reason we chose nT = 100.

Figure 4.2 - (a) Nodes degree g as a function of the power generated or consumed P . (b)
Probability of edge activation of each edge of the network Fmn as a function
of the absolute value of the power difference between nodes m and n, |Pmn|.
(c) Standard deviation of the probability of activation σF of all edges as a
function of the number or trials nT .
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The behavior of the degree and the probability of activation found here is not the
same of what was found in (SCAFUTI et al., 2015b) by using the Edge Snapping
method along with the first order Kuramoto model. In that work, the authors show
that the degree and the probability of activation are related to the power P , in a
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way that the nodes with the value of P far from the mean present higher degree and
the probability of activation of the edges are greater for higher values of |Pmn|. As
shown in Figure 4.3, where the degree is plotted as a function of the power and the
probability of activation of the edges are plotted against Pmn, for a network generated
by the Edge Snapping method along with the second order Kuramoto model where
the power consumed or generated are set by a Gaussian distribution with zero mean
and standard deviation equal to 0.2, without the constraint ∑N

m=1 Pm = 0. One
can see that we also obtained this behavior for both measures in our simulations.
Although, when the condition ∑N

m=1 Pm = 0 is added to the power distribution, this
correlation seems to be lost. This condition is of utmost importance in this work
as we are simulating the behavior of power grids in which all power generated is
consumed.

Figure 4.3 - Characteristics of a network topology generated by the Edge Snapping method
along with the second order Kuramoto model where the power consumed or
generated are set by a Gaussian distribution with zero mean and standard
deviation equal to 0.2, without the constraint

∑N
m=1 Pm = 0. (a) Nodes degree

g as a function of the power generated or consumed P . (b) Probability of edge
activation of each edge of the network Fmn as a function of the absolute value
of the power difference between nodes m and n, |Pmn|.
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Now that the ES network topology is defined, our interest is to study how it affects
the synchronization of the power grid and, in order to make some kind of comparison,
we generate a random network with the same number of edges (108), nodes (50) and
power generated and consumed. This network topology is represented in Figure 4.4.
Both network topologies are then integrated for several distinct values of Pmax. The
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average instantaneous frequency νavg (the mean in time for a fixed value of Pmax)
of each node is plotted in Figure 4.5(a) for the ES network and in Figure 4.5(b) for
the random network, where νavg is marked in red for consumers and in blue for the
generators. For the same initial conditions, one can see that a common instantaneous
frequency is reached at a lower value of Pmax for the ES network. In Figure 4.5(c),
the order parameter and the partial synchronization index are plotted as a function
of the coupling Pmax for both networks, showing that the ES network reaches the
synchronous state at a lower value of coupling when comped to the random one as
we have Pmax = 0.60 for the ES network synchronization and Pmax = 0.75 for the
random one. Note that for higher values of coupling, the value of the order parameter
R is close but never equal to one, which is desired because, as mentioned in Chapter
3, it is a condition in order to have a power flow between two nodes of a power grid.

The advantage of reaching synchronization at lower values of coupling comes from
the fact that the coupling represents the maximum power transfer capacity of a
transmission line and, therefore, lower transfer capacity means lower voltage levels
and cheaper transmission lines when building power grids.

Figure 4.4 - Random network with the same number of nodes, power consumed or gener-
ated and edges as the ES network (Figure 4.1).
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In order to study the stability of the ES network, we use the basin stability method
presented in Section 3.4.2, where, for a fixed value of coupling (Pmax = 1.5 is chosen
as both topologies are synchronized for this value of coupling), a single node m
suffers a perturbation T = 100 times. Let Um be the number of times the system
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Figure 4.5 - Average instantaneous frequency νavg of all nodes as a function of the trans-
mission capacity Pmax for the (a) ES network and (b) random network where
consumers are marked in red and generators in blue. (c) Partial synchroniza-
tion index S of the ES network (red) and random network (green), order
parameter R of the ES network (blue) and random network (black) as a func-
tion of the transmission capacity.
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reaches the synchronous state after the perturbation, then the basin stability of node
m is defined as Em = Um

T
(Equation 3.73). The same is done for all nodes of the

random network. In Figure 4.6(a), the values of the basin stability of each node are
plotted as black dots and we also have the kernel density estimate of those values,
in blue for the random network and in red for the ES one and, in Figure 4.6(b),
a box plot of the same measure is shown. The kernel density estimate is a non-
parametric way to estimate the probability density function of random a variable
(WĘGLARCZYK, 2018). Note that no node of the ES network presents a relatively low
value of basin stability (E < 0.25) while the random network presents a node with
very low stability. In order to see if these features did not happen by chance, three
additional ES networks are generated and also their respective random ones (with
the same number of nodes and edges). The basin stability of all nodes of the four ES
networks and four random networks are then plotted in Figure 4.6(c-d), where the
same pattern can be noted, as the random networks present nodes with relatively
low values of E, which still does not happen with the ES networks. Presenting a high
value of stability is crucial for power grids as they are often subject to disturbances
and component failures. A high basin stability of a node expresses the likelihood of
a generator or a consumer to go back to the synchronous state after being taken
away from it.

Going back to the original ES and random networks, represented in Figures. 4.1
and 4.4, respectively, the values of the nodes’ basin stability E, degree g, average
neighbor degree gav and betweenness centrality b are plotted as a function of each
other in Figure 4.7, the histogram in the form of the kernel density estimate is plotted
in the diagonal. The values of these metrics for the ES network are plotted in red
and the random ones are plotted in blue. Note that the histogram of E presents
a higher peak at E = 1 for the ES network, showing that this network presents a
high number of stable nodes when compared to the random one. Also, the random
network presents a higher number of nodes with E very close to zero, which is was
also presented in Figure 4.6(a-b). Looking at the histogram of the average degree
of the nodes’ neighbors gav, one sees that they tend to have lower values for the ES
network, while the histogram of the betweenness centrality shows that the nodes in
the ES network tend to have a little higher values of b. About the figures outside
of the diagonal, there is no specific pattern differentiating between the nodes of the
ES and the random networks.
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Figure 4.6 - (a) Distribution of the values, their kernel density estimate and (b) box plot of
the basin stability E of all nodes of the ES (red) and random (blue) networks
presented in Figures. 4.1 and 4.4, respectively. (c-d) The same as (a-b), but
now with of four ES and random networks. The median of the boxplots is 1,
the mean is shown as a white square.

(a) (b) Rand: Mean = 0.832. ES: Mean = 0.852

(c) (d) Rand: Mean = 0.810. ES: Mean = 0.823

Source: Author production.
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Figure 4.7 - Degree g, neighbors degree gav and betweenness centrality b of the nodes as
a function of each other and kernel density estimate of the histogram in the
diagonal for the ES (red) and random (blue) networks.

Source: Author production.
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4.4 Conclusion

In this chapter, we used the Edge Snapping method to generate power grid topologies
whose units are modeled by the second order Kuramoto oscillator model. A fifty node
power grid was generated, being that half of the nodes were set to be consumers
and the other half generators, in a way that all power produced is consumed by the
grid. The topologies generated by the Edge Snapping method have a characteristic of
presenting a relatively low number of edges, which is desirable in our case study since
it means building a less amount of transmission lines. Also, the network generated
by this method favors synchronization in a way that it reaches phase locking at a
lower value of coupling when compared to a random network with the same number
of nodes and edges. As the coupling in the second order Kuramoto model is related
to the maximum transmission capacity of a transmission line, lower coupling implies
lower voltage levels in the transmission lines which is also a desirable characteristics
in a power grid, as it is cheaper to build. The nodes of the ES network present in
general higher stability when compared to a random network of the same size and
this fact is also relevant because if a node can not go back to the synchronous state
after being hit by a perturbation, local, nonlocal failures and even blackouts may
occur.
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5 ELEMENTARY CHANGES IN TOPOLOGY AND POWER TRANS-
MISSION CAPACITY CAN INDUCE FAILURES IN POWER GRIDS

In this chapter, we present our original contribution published in the journal Phys-
ica A: Statistical Mechanics and its Applications with the title Elementary
Changes in Topology and Power Transmission Capacity Can Induce Failures in
Power Grids, (LACERDA et al., 2021a). This paper can be found on Appendix C.

An introduction is made in Section 5.1, in Section 5.2 we refer to the models and
methods already presented in this work, the results and discussions are shown in
Section 5.3 and, finally, the final remarks are made in Section 5.4.

5.1 Introduction

In this chapter, we explore the Braess’s paradox phenomenon in power grids by
taking into account not only if a removal, addition or increase in the transmission
capacity of an edge affects the synchronous state of the grid, but also the nature of
the pair of nodes this edge is connecting, taking also into consideration the effect
of the level of centralization of energy generation. Distinct network topologies are
used in order to calculate the most probable outcome when these simple changes
are made to the power grid.

For example, does the addition or removal of an edge between two consumers induces
a desynchronization of the grid more often than the adding or removal of an edge
that connects two generators? How is this affected by the decentralization of the
grid? Can the increase of a transmission line capacity connecting a consumer and a
generator cause a failure in the network? How often?

5.2 Models and methods

The dynamics of a component of a power grid considered in this chapter is similar
to Equations 3.20 and 3.21, but here we allow the coupling to vary if needed, so
they are given by

θ̇m = νm, (5.1)

ν̇m = Pm − ανm + 1
gm

N∑
n=1

Pmn
max sin(θn − θm). (5.2)

where Pmn
max is the maximum power transmission capacity on the line connecting

nodesm and n and has zero value if these nodes are not connected. Initial conditions
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θ(0) and ν(0) are fixed at zero for all nodes and the dissipation parameter fixed at
α = 0.1 (FILATRELLA et al., 2008; MENCK et al., 2014). The flow or power transmitted
between two nodes for a varying coupling constant is defined as

FLmn = Pmn
max sin(θn − θm) (5.3)

In the phase locking state, the synchronous instantaneous frequency is then defined
as νm = νS for all m = 1, ..., N , where νS is the synchronous angular velocity and
is defined by Equation 3.32 as νS = P

α
where P =

∑N

m=1 Pm

N
is the mean between all

consumed and generated power. In this work, no power is stored at any node, that
is, all power generated is consumed, so ∑N

m=1 Pm = 0, and, therefore, νS = 0.

A necessary coupling value for the synchronization of the power grid P ∗max is given by
Equation 3.37 (GRZYBOWSKI et al., 2016; CHOPRA; SPONG, 2005; CARARETO et al.,
2013). That is, there is not a synchronous state where the power grid properly works
in which the coupling has a value lower than P ∗max. We emphasize that Equation
3.37 is a necessary but not sufficient condition for synchronization. The sufficient
condition for synchronization P c

max ≥ P ∗max is calculated numerically in the next
section.

To properly measure the synchronization of the grid, we make use of the partial
synchronization index S, Equation 2.11 (GÓMEZ-GARDENES et al., 2007).

There are two conditions for the existence of the phase locked state, one dynamical
Equation 3.79 and one geometric Equation 3.80. The dynamical relates to the con-
servation of the flow and the geometric condition relates to the fact that the sum
of all phase differences around a cycle must be equal to zero, so that all phases are
well defined (WITTHAUT; TIMME, 2012).

In order to simulate the behavior of power grids, we describe them as complex
networks (MENCK et al., 2014; SUN, 2005) and a random model (ERDÖS; RÉNYI, 1959)
is used to generate their topologies in this chapter. We generate sixteen distinct
topologies where each one has N = 50 nodes and E = 68 edges, which gives an
average degree of 2.72, that is a typical value of the average degree of power grids
(WITTHAUT; TIMME, 2013; MENCK et al., 2014; SUN, 2005).

In each of these sixteen topologies, four combinations of generators and consumers
are used:
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• 25 generators and 25 consumers.

• 12 generators and 38 consumers.

• 5 generators and 45 consumers.

• 3 generators and 47 consumers.

So we go from a decentralized grid (NG = 25 generators) to a centralized one (NG = 3
generators). The consumed power is defined as PC = −1 and the generated power
is given by

PG =
∑NC

1 |PC |
NG

. (5.4)

To analyze how a simple change in the topology can affect synchronization, first,
we calculate P c

max for the original network topology (one of the sixteen mentioned
above), being this the minimum coupling for which the network is synchronized
(S = 1). Then, one edge is added, removed or selected randomly to double its power
transmission capacity, P c

max is computed for this new configuration and compared
to the P c

max of the original network. The value can be either greater (marked here as
Increases), lower (marked here as Decreases) or equal (marked as Unchanged) to the
original value. We then go back to the original topology and the process is repeated.
Note that when the value of P c

max of the modified network is greater than that of the
original network, the current coupling with which the original network was operating
is not sufficient enough to maintain the synchronous state so the proper function
of the grid is lost. In the case of the decrease situation, the change has a beneficial
effect on synchronization, yet this situation is not the aim of this study as we look
for possible causes of failures.

In the case of edge addition, we add randomly 50 new edges, one at a time, in
each of the sixteen network configurations. Note that one edge is added at random,
P c
max is calculated, the original network is then considered again and a new edge is

added and so on. In the case of edge removal, all edges from the original networks
are removed, one at a time (always considering again the original network before
removing a new one) and P c

max is calculated. The selected edge is removed as long
as the final network topology is still connected, that is, no node is isolated from the
others.

We also check how the increase of the maximum capacity of the transmission of a
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single line affects the proper working of the network, so, in this case, for the edge
linking nodesm and n, we consider Pmn

max = 2Pmax and, for the rest of the edges, Pmax
is fixed, as it was before. This new capacity is applied to all edges of the original
network, one at a time (always considering again the original network configuration
before changing the capacity of a new line), for the sixteen distinct topologies.

5.3 Results and discussion

5.3.1 A fixed network topology

We start by analyzing how the decentralization of power generation, that is, how
the distinct number of generators affects the proper function of the grid, while
maintaining the same topology; that is, we just replace a generator by a consumer,
for example, without changing any of the connections of the network. One out of
the sixteen topologies with a fixed number of generators NG = 25 and consumers
NC = 25 is considered in this section and can be seen in Figure 5.1.

Figure 5.1 - Original random network with N = 50 nodes, NG = 25 generators (blue
circle) and NC = 25 consumers (red square).
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Equation 3.37 gives a necessary condition for the synchronization of the system. As
P = 0 by definition, we have P ∗max = max|Pi|1, as m stands for all the consumers (C)

1In the second order Kuramoto model considered in this chapter, we have Pmax = Pmax

gm
in
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and generators (G). As PC = 1 is fixed for all consumers, the value of P ∗max is defined
by the value of the power generated PG, given by Equation 5.4, which is equal to
(when NG = NC) or greater than PC (when NG < NC). So, the necessary condition
for synchronization in our case depends only on the amount of the power generated
by a single generator, the fewer the number of generators, the great is the power
they have to provide and so the great is the value of P ∗max. We expect the critical
coupling P c

max (sufficient condition to achieve synchronization) to behave the same
way, that is, to decrease with the increase of the number of generators (ROHDEN

et al., 2012). This fact can be seen in Figure 5.2, where the topology presented in
Figure 5.1 is considered and some generators are replaced at random by consumers.
P c
max is numerically calculated and plotted against the number of generators of

the grid. One can see that the decentralization of the grid plays an important role
on the synchronization of the network as the critical coupling decreases with the
increase of the number of generators of the grid and we investigate further how this
decentralization also affects the Braess’s Paradox.

Considering the network presented Figure 5.1, with 25 generators and consumers,
for the critical coupling P c

max = 5.26, we plot the instantaneous frequency ν of all
nodes as a function of time in Figure 5.3(a), where the consumers are plotted in red
and the generators in blue, note that after a transient time, all nodes tend to the
same value of ν. P c

max = 5.26 is chosen because it is the minimum value for which
the partial synchronization index S is equal to one (Figure 5.3(b)) and, therefore,
it is the minimum power transfer capacity of the transmission lines for which the
synchronous state exists. In Figure 5.3(c) the average instantaneous frequency of all
nodes is plotted as a function of the coupling, note that they are all the same and
equal to zero as the system enters the synchronous state.

Now, one new transmission line is added at a random position in this network
(between nodes 38 (G) and 36 (G), the red edge in Figure 5.4). The system is then
integrated again for the same value of coupling P c

max = 5.26 and one can note that
the synchronous state is lost in Figure 5.5(a), where the instantaneous frequency
is plotted against time. Note that instead of a fixed null value, the instantaneous
frequency of all nodes are divided into two branches and vary in time with two
distinct means. The partial synchronization index for this configuration is S = 0.78
and the partial synchronization matrix, given by Equation 2.10, is represented in
Figure 5.5(b), where the color yellow represents a low value of S and dark purple a
high one. Note that a few nodes totally lose the synchronous state in relation to the

Equations 5.1 and 5.2, so, from Equation 3.37, P ∗max = max|Pi|.
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Figure 5.2 - Critical coupling P cmax as a function of the number of generators for the power
grid topology presented in Figure 5.1 with some generators being replaced at
random by consumers.
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rest of the network (nodes 1,9,13,21,25,43) and none of them are the nodes connected
by the new link nor are they one of their neighbors. In fact, these nodes are all part
of a small group located at the lower left of the network and are depicted in black
in Figure 5.5(c). This edge addition is then causing a nonlocal failure (WITTHAUT;

TIMME, 2013). So, although the dynamical conditions for synchronization given by
Equation 3.79 are satisfied, the synchronous state does not exist anymore due to a
geometric frustration, defined in Equation 3.80. Therefore, in the case of this edge
addition, the critical coupling P c

max required for the existence of the phase locked
state is increased.

We now calculate the partial synchronization index as a function of the coupling
Pmax for the following configurations: Original, the original random network (Figure
5.3). Add, the topology discussed in the previously, connecting nodes 36 (G) and 38
(G) (the red edge in Figure 5.4). Remove, where an edge is randomly removed from
the original topology that disconnects nodes 0 (C) and 20 (C) (green dashed edge in
Fig 5.4). Double, where an edge is selected at random and the power transmission
capacity of this line is doubled (edge that connects nodes 1 (C) and 13 (C) and is
depicted by the purple edge in Figure 5.4).

The results are shown in Figure 5.6(a). Note that the first one to synchronize is the
original network (red), then the Double (green), Remove (black) and Add (blue)
configurations, respectively. Against our intuition, the configuration in which one
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Figure 5.3 - (a) Instantaneous frequency of all nodes as a function of time for the coupling
fixed at Pmax = P cmax = 5.26, (b) partial synchronization index S and (c)
average instantaneous frequency as a function of the coupling Pmax for the
original network topology.
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edge is added to the network requires the greatest critical coupling P c
max to reach the

synchronous state. This odd phenomenon called Braess’s Paradox was first detected
in traffic networks and an explanation for it is the redistribution of flows in the
network which may induce an overload in some transmission lines which then leads
to a loss of the synchronous state (WITTHAUT; TIMME, 2012).

We must make it clear that this increase of the critical coupling does not always
occur, as can be seen in Figure 5.6(b), where the configurations are: Original, the
original random network. Add, connecting nodes 2 (C) and 31 (G). Remove, discon-
nects nodes 1 (C) and 13 (C). Double, doubled the maximum transmission capacity
of the line connecting nodes 0 (C) and 20 (C). Note that now, the Remove config-
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Figure 5.4 - Original network (Figure 5.1) with a few changes: a new transmission line
(red) connecting nodes 36 (G) and 38 (G), a removed transmission line
(dashed green) disconnecting nodes 0 (C) and 20 (C) and a transmission line
(purple) with doubled transmission capacity between nodes 1(C) and 13(C).
Note that none of these changes are considered together.
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uration is the one to first reach synchronization, followed by the Add, Double and
Original configurations, respectively. So all the topological changes made here favor
synchronization when compared to the original network topology. One might wonder
if there is a way to predict when a topological change will favor synchronization or
not. From now on, we try to shed a light on this question.

5.3.2 Several network topologies

All the previous discussions were made only by using a single random network com-
posed of 25 generators and 25 consumers. Now, sixteen different topologies are used,
and each one of them goes from a centralized to a decentralized configuration. More
specifically, we have sixteen distinct topologies with 3 generators, sixteen topologies
with 5 generators, sixteen topologies with 12 generators and, finally, sixteen dis-
tinct topologies with 25 generators, giving a total of 64 network configurations. For
each of these configurations, we randomly add edges, remove them and double the
transmission line capacity, as explained in the Section 5.2.

We now check how these elementary changes affect the synchronous state of the
system by calculating the fraction of edges that increases, decreases and leaves P c

max
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Figure 5.5 - (a) Instantaneous frequency as a function of time for the coupling fixed at
Pmax = 5.26, (b) partial synchronization index Smn of all nodes, for a coupling
also fixed at Pmax = 5.26 for the network topology depicted in Figure 5.4
taking into account only the added edge (red) and (c) the same network
topology but with the nodes that lost the synchronous state marked in black.
The partial synchronization index for this configuration is S = 0.78.
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unchanged in relation to the addition (Add), removal (Remove) and increase of the
maximum transmission capacity (Double). Reminding the reader that the increase
in P c

max leads the system to a desynchronized state. For the case of edge addition,
for a fixed number of generators, 50 new edges are added (remember that one edge
is added, P c

max is calculated, then the original network topology is considered again
so a new edge is added and the process is repeated) to each of the sixteen network
topologies, giving a total of Nedge = 800 new added edges. Then, for each of these

81



Figure 5.6 - Partial synchronization index S as a function of coupling Pmax for network
configurations that present an advantage and disadvantage into reaching the
synchronous state when compared to the original network topology. In (a)
all the topology modifications leads the system out of the synchronous state,
while in (b), all the modifications performed improve the synchronization of
the system as a lower coupling is required to reach this state.

(a) Add: connected nodes 36 (G) and 38 (G). Remove discon-
nected nodes 0 (C) and 20 (C). Double: doubled the transmission
capacity of the line connecting nodes 1 (C) and 13 (C).

(b) Add: connected nodes 2 (C) and 31 (G). Remove disconnected
nodes 1 (C) and 13 (C). Double: doubled the transmission capac-
ity of the line connecting nodes 0 (C) and 20 (C).

Source: Author production.

modified configurations with one additional edge, we compute how many times have
the value of P c

max increased Ninc, decreased Ndec and remained unchanged Nunc. The
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fraction of edges is then given by Ninc , Ndec and Nunc divided by Nedge, which are
plotted in Figure 5.7(a) in green, brown and black, respectively. A similar procedure
is done for the Remove and the Double situations and are plotted in Figures 5.8(a)
and 5.9(a), respectively.

Figure 5.7 - (a) Fraction of edges that increases (green), decreases (brown) and does not
change (black) the value of P cmax as a function of the number of generators
of the network when one new edge is added at a random position in all of
the sixteen topologies. (b) Fraction of edges that connect a generator to an-
other generator (blue), a consumer to a consumer (red) and a consumer to a
generator (black), only in relation to those who increase P cmax.
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In relation to the Add situation, Figure 5.7(a), most of the edge addition results in
an increase of P c

max when centralized networks are being considered (NG = 3 and
5). With the increase of the number of generators, most of the edges added result
in a decrease of P c

max. As expected, the Remove approach, Figure 5.8(a), shows an
inverse situation as most of the edges removed from the networks decreases P c

max for
a centralized configuration and increases P c

max for a decentralized configuration. In
relation to the Double set up, Figure 5.9(a) shows that most of the edges selected
that have their maximum capacity doubled do not change the value of P c

max for the
most centralized configuration (NG = 3) and decreases P c

max as the topology becomes
decentralized, although the difference between the fractions that decreases, increases
and leaves the the critical coupling unchanged is very low in these two scenarios,
in comparison to the two previous analysis. Note that the level of centralization of
energy generation plays a very important role here, as it dictates which is the most
probable scenario that can take place after a simple change in the topology, like
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adding or removing a single transmission line of the network.

Figure 5.8 - (a) Fraction of edges that increases (green), decreases (brown) and does not
change (black) the value of P cmax as a function of the number of generators of
the network when an edge is removed at a random position in all of the sixteen
topologies. (b) Fraction of edges that connect a generator to another generator
(blue), a consumer to a consumer (red) and a consumer to a generator (black),
only in relation to those who increase P cmax.
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Source: Author production.

In all of the three situations presented here (Add, Remove and Double) one can note
that the system leaves the synchronous state between 29% to 53% of the times,
which is something our intuition can not predict, so, one must be very careful when
making topological changes to a functional energy transmission network.

Now that we know that adding, removing or increasing the transmission capacity
of edges can cause failures in a power grid with, in some cases, a relatively high
probability, we ask the following: which nodes are these edges connecting? Does
it make any difference if one adds a new edge connecting two consumers or two
generators when it comes to maintaining the synchronous state? To answer these
questions, we take into consideration now only the fraction of edges that increase
P c
max but analyze which pair of nodes are these edges connecting. Our results are

presented in Figures 5.7(b), 5.8(b) and 5.9(b) for the Add, Remove and Double
situations, respectively.

The results show that for a relatively low number of generators in the network, in
all the three situations, the great part of the fraction of edges that destroys the
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synchronous state are caused by edges connecting two consumers (plotted in red).
When a random centralized network is being considered, it is a fact that most of the
connections are between two consumers, since they are the majority of the nodes,
so it is expected to have a higher fraction of edges that cause failures by connecting
them, but it is still a valuable information since most power grids are still centralized.

On the other hand, when a decentralized network is being considered, the results
differ for the three scenarios. In the Add one, new connections between two gener-
ators (plotted in blue) and between a consumer and a generator (plotted in black)
cause trouble more often. By far, the connection whose removal is the most dan-
gerous is the one linking a consumer to a generator and increasing the transmission
capacity of this same kind of connection may also not be an appropriate engineering
operation.

Figure 5.9 - (a) Fraction of edges that increases (green), decreases (brown) and does not
change (black) the value of P cmax as a function of the number of generators of
the network when the maximum transmission capacity of an edge is doubled
at a random position in all of the sixteen topologies. (b) Fraction of edges that
connect a generator to another generator (blue), a consumer to a consumer
(red) and a consumer to a generator (black), only in relation to those who
increase P cmax.
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Source: Author production.

5.4 Conclusion

In this chapter, we have shown that very simple changes in the network topology can
cause failures and lead the system out of the synchronous state which is crucial for
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the power grid to work properly. When adding, removing or increasing the capacity
of a transmission line, one changes the flux of the power transmitted in the network
and this change may induce nonlocal failures due to overloads on some transmission
lines. The most probable scenario to what happens when these elementary changes
in transmission networks are made depends on the level of centralization of the
power generated in the network and also on the nature of the nodes being connected
by the edge in question.

When considering a centralized power grid, that is, one grid whose power is supplied
by just a few generators, one must be very careful when contemplating a change be-
tween two consumers, being an addition, removal or increase in the transmission
capacity of the transmission line connecting them, as there is a considerable prob-
ability that this change may cause a failure in the network. In the decentralized
power grid, the modification that cause most of the failures in the grid is between a
consumer and a generator when the removal or increase in the transmission capacity
is being considered.

It would be of extreme importance to analyze carefully the effects of elementary
changes in real-world power grids before actually making them as these changes can
reduce the stability and also cause failures which may generate great economic costs.

We wish to emphasize that this is a first approach to this problem and, as for future
work, a more complex model should be used instead of Equations 5.1 and 5.2, for
example, a model that includes admittance (NISHIKAWA; MOTTER, 2015).

86



6 HOWHETEROGENEITY IN CONNECTIONS AND CYCLES MAT-
TER FOR SYNCHRONIZATION OF COMPLEX NETWORKS

In this chapter, we present our original contribution published in the journal Chaos:
An Interdisciplinary Journal of Nonlinear Science with the title How Het-
erogeneity In Connections And Cycles Matter For Synchronization Of Complex Net-
works, (LACERDA et al., 2021b). This paper can be found on Appendix D.

An introduction is presented in Section 6.1, in Section 6.2 we refer to the models
and methods already presented in this work, the results and discussions are shown
in Section 6.3 and, finally, the final remarks are made in Section 6.4.

6.1 Introduction

Biological and social studies have shown that in some situations, like when it comes
to choosing friends, people prefer to gather with similar minded ones (PARKINSON

et al., 2018; URBERG et al., 1998; KUPERSMIDT et al., 1995; HASELAGER et al., 1998).
On the other hand, when it comes to mating preferences some species prefer to
mate with dissimilar ones, which may provide the offspring with good genes (PENN;

POTTS, 1999; JORDAN; BRUFORD, 1998; BERNATCHEZ; LANDRY, 2003; PIERTNEY;

OLIVER, 2006). We can refer to the former behavior as Similar (S), and to the
latter as Dissimilar (D) neighborhood patterns. If an ensemble presents no strong
bias towards any of these extremes, it is called Neutral (N ) (FREITAS et al., 2015).

In this work, we explore the idea of Similarity and Dissimilarity described above
by means of the structure properties and synchronization of complex networks of
Kuramoto non-identical phase oscillators. In order to quantify these patterns, we
use a measure related to classical dissonance (PIKOVSKY et al., 2003; FREITAS et al.,
2015), which measures the difference of the natural frequencies of a pair of oscillators.

In reference to related material on synchronization of complex networks, Pinto
et al. (PINTO; SAA, 2015) employs a dimensional reduction approach proposed
by (GOTTWALD, 2015) and derive a sufficient analytical condition, considering an
ansatz, to optimize a topology of a network in order to favor synchronization us-
ing the Kuramoto model. They also showed that when this method is applied to
a network with random natural frequencies, the final topology presents a negative
correlation between the natural frequencies of adjacent vertices in a way that we can
call a network with a Dissimilar pattern. Even though, the approach in (PINTO; SAA,
2015) does not exhaust the problem, especially for small and intermediate coupling
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values, which are commonly found in nature (PIKOVSKY et al., 2003). A numerical
study made by Freitas et al. (FREITAS et al., 2015) showed that Similar patterns favor
weaker forms of synchronization but Dissimilar ones exhibit explosive synchroniza-
tion, reaching global synchronization faster than the Similar pattern. (SCAFUTI et

al., 2015b) use an evolutionary strategy to find a minimal network structure that
guarantees global synchronization and show that the heterogeneity in the nodes’
natural frequency is the driving force that determines the evolution of the network
structure.

We intend to extend the work done by (FREITAS et al., 2015) and add the com-
plex network measures assortativity and clustering coefficient to investigate how the
structure of complex networks influences the synchronization of Similar, Dissimilar
and Neutral patterns of natural frequencies of oscillators. Assortativity is employed
in order to measure how connections between nodes with the same degree influence
the emergence of synchronization, while the clustering coefficient measures the im-
pact of loops of size three (small cycles). Therefore, the topology of the networks
is dictated by the assortativity and by the clustering coefficient values, while the
natural frequency of their nodes are given by the dissonance patterns.

The authors in (PLUCHINO et al., 2005; PLUCHINO et al., 2006) used a modified ver-
sion of the Kuramoto model in order to study opinion formation and its dynamics
through synchronization of complex networks where the phase of a node in this
model represents the opinion of an individual, its natural frequency represents the
natural opinion changing rate (the tendency of each individual to change its opinion)
and the coupling represents the amount of the interaction among them. To illustrate
the meaning of the metrics used here, the natural frequency patterns and the syn-
chronization of the network, let us take as an example a large group of individuals
having an argument about a polemic subject where each individual has its own opin-
ion changing rate and, due to the number of people involved and the limited time
they have, they can only communicate with a limited number of people inside this
group. Their discussion ends only when all participants come to an agreement and
so reach a common opinion.

We can model this situation by using a complex network approach where each indi-
vidual is represented by a node whose behavior is dictated by a dynamical system
model, the interaction between them is represented by an edge. As so, reaching
a common opinion is associated with a synchronized state. The natural frequency
patterns Similar, Dissimilar and Neutral here relate to the level of homogeneity
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(Similar) or heterogeneity (Dissimilar) of the opinion changing rate of communicat-
ing individuals, as, for example, if the individuals only communicate with similar
minded ones, the Similar pattern is used to model this dynamics. We also refer the
reader to Noorazar et al. (NOORAZAR, 2020) and Deffuant et. al. (DEFFUANT et al.,
2001) for a more detailed discussion on opinion dynamics.

The rules of who can communicate with whom are given by the metrics assortativity
and clustering coefficient. If individuals who interact with a lot of people prefer
to communicate with the ones that are also popular and individuals who interact
with a few people prefer to communicate with ones that are also less popular, the
network is said to be assortative and has a high value of the metric assortativity. The
opposite can also happen, when popular individuals tend to talk with less popular
ones the network is said to be disassortative. Looking at another aspect of the rules
of communication within this group of people, we can also allow two contacts of a
person to talk to each other, forming then a small cycle or a loop of size three in
the network topology. When there is a high number of two contacts of the same
individuals communicating to each other, we say that this network presents a high
clustering coefficient and, on the other hand, it presents a low clustering coefficient
if the opposite happens.

In this scenario, one can ask the following: how strong the interactions (represented
here by the coupling of the Kuramoto model) between individuals must be in order
to reach an agreement? Is it easier to be achieved if individuals only communicate
with similar minded ones or is it the opposite? Is it easier if popular individuals
only talk to each other or when they talk to less popular ones? Or if contacts of
individuals communicate with each other?

Our results show that the Similar pattern of natural frequency distribution favors
weaker forms of synchronization but, as we increase the coupling constant, the Dis-
similar pattern is the first to reach the synchronized state, agreeing with (FREITAS et

al., 2015). The Erdös-Rényi model presented itself as the easiest to reach the phase
locking state when compared to Watts-Strogatz and Barabási-Albert network mod-
els. In relation to the network metrics assortativity and clustering coefficient, one
can see that low values of both metrics favors the reaching of a synchronized state.
As for the questions raised about the best strategy to conduct an argument among
a group of people, we find that the best strategy would be to encourage individu-
als with distinct opinion changing rates to communicate to each other and, at the
same time, encourage popular individuals to talk to less popular ones and discour-
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age the interaction among contacts of individuals in order to avoid small cycles of
interactions.

6.2 Models and methods

In this work, we consider complex networks of Kuramoto phase oscillators whose
dynamics is described by the first order Kuramoto model (Equation 2.5). The
models of complex networks analyzed here are Erdös-Rényi (ER) (ERDÖS; RÉNYI,
1959), Watts-Strogatz (WS) (WATTS; STROGATZ, 1998) and Barabási-Albert (BA)
(BARABÁSI; ALBERT, 1999) as they are widely used in the literature (ARENAS et al.,
2008; COSTA et al., 2007). For the ER model we set the probability of edge creation
is 0.15, and for the WS networks the probability of rewriting each edge is 0.2. The
number of nodes is fixed as N = 50, due to computational costs.

6.2.1 Total dissonance

In order to characterize the Similar, Dissimilar and Neutral natural frequency pat-
terns on complex networks, we make use of the total dissonance measure (FREITAS

et al., 2015)

V = 1
N

√√√√√ N∑
i,j=1

Aij(ωi − ωj)2. (6.1)

For the Similar pattern, the natural frequencies of adjacent nodes are close to each
other such that, the value of V is small and it is zero only if all oscillators have
identical natural frequencies. If the natural frequencies of adjacent nodes are very
different from each other, that is, Dissimilar pattern, the value of V is higher. The
Neutral pattern is characterized as intermediate values of V . To calculate these fre-
quency patterns, the stochastic optimization algorithm called Simulated Annealing
(LAARHOVEN; AARTS, 1987) is used. In order to optimize the objective function V ,
this method makes permutations of the natural frequencies set until it finds an opti-
mal local value of the objective function, in correspondence with the desired Similar
or Dissimilar patterns. Considering the outputs of this algorithm, the minimization
of V corresponds to the Similar pattern, the maximization to the Dissimilar one
and the random initial natural frequency set is called Neutral. In practice, for each
network topology considered in this work, a set of natural frequencies is chosen from
a random uniform distribution in [−π, π] and the total dissonance νini is calculated,
this one is called the Neutral frequency pattern. Then an optimization algorithm
is applied in order to maximize (νmax) and minimize (νmin) the total dissonance of
each network, giving rise to the Dissimilar and Similar patterns, respectively.
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6.2.2 Assortativity and clustering coefficient

Our aim is to analyze how network structure influences the emergency of synchro-
nization on complex networks. For this purpose, the network measures called as-
sortativity and clustering coefficient are used in order to select distinct network
topologies in each of the three models (ER, WS, BA).

Assortativity measures the similarity of connections in a network with respect to a
certain characteristics of a node. In this work, the assortativity is determined by the
degree of the nodes and it is given by the use of the Pearson correlation coefficient
(NEWMAN, 2003a; NOLDUS; MIEGHEM, 2015)

ρ =
∑
ij ij(fij − aibj)

σaσb
, (6.2)

where ai and bj are the fraction of edges that start and end at nodes with degree
values i and j, respectively, fij is the fraction of edges between nodes of degree i and
j, σa and σb are the standard deviations of the distributions a and b, respectively.
ai, bj and fij satisfy the sum rules

∑
ij

fij = 1,
∑
j

fij = ai, (6.3)
∑
i

fij = bj.

The graph assortativity ρ ∈ [−1, 1] represents how nodes in a network associate
with each other, that is, it shows whether nodes prefer to connect to nodes of the
same sort or of opposing sort. When, on average, high degree nodes connect to high
degree ones or low degree nodes connect to low degree ones, ρ is close to 1 and
the network is said to be assortative. On the other hand, if on average high degree
nodes connect to low degree ones, ρ is close to −1 and the network is said to be
disassortative. If ρ is close to 0, the connections are considered to be completely
random (NOLDUS; MIEGHEM, 2015). The reader should notice that there are two
different mechanisms of preferential attachment here: assortatity takes into account
only the node degree, while neighborhood patterns consider both graph structure
and node’s natural frequency.

Another basic network measure that is used in this work is the clustering coefficient,
which measures the presence of loops of size three inside a network, that is, it
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measures the tendency of two neighbours of a certain vertex to also be connected
to each other. In a real world network it can be seen as the likelihood of friends of
a certain person also to be friends of each other (WASSERMAN; FAUST, 1994). The
clustering coefficient of a node i is given by

ci = 2Tri
gi(gi − 1) , (6.4)

where Tri is the number of triangles involving node i and gi is the degree of node i.
So, the clustering of a node ci ∈ [0, 1] is the number of triangles that pass through
that node normalized by the maximum number of such triangles, in a way that if
none of the neighbours of node i are connected to each other ci = 0 and ci = 1 if all
neighbours are connected (SARAMÄKI et al., 2007). The average clustering coefficient
of the network composed of N nodes is given by

C = 1
N

N∑
i=1

ci. (6.5)

A large clustering coefficient indicates that there are many redundant paths in the
network and a low clustering indicates the opposite.

6.2.3 Generating network configurations

The main contribution of this work is to analyze the impact on synchronization con-
sidering the assortativy and clustering coefficients in association with neighborhood
patterns in terms of total the dissonance (S/N /D). To do so, we proceed as follows.

Network configurations considered here are represented by the pair (A, ω), where A
stands for the adjacency matrix of the network and ω is the set of natural frequencies.
For each network model (BA, ER, WS), three corresponding network topologies
are considered that present low Aρmin , intermediate Aρmiddle and high Aρmax values
of assortativity and three that present low ACmin , intermediate ACmiddle and high
ACmax values of clustering and, also, three patterns of the distribution of natural
frequencies are considered: Neutral ωN , Similar ωS and Dissimilar ωD. In all, 27
configurations are studied for assortativity and 27 for the clustering coefficient. As
an example, consider a BA network with low value of assortativity Aρmin . For this
network, a random set of natural frequencies is generated from a uniform distribution
(Neutral dissonance pattern), giving rise to the Configuration (Aρmin , ωN ). Then the
Simulated Annealing algorithm is used to optimize the values of the total dissonance
with a low value giving rise to the set of natural frequencies of the Similar pattern
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and the configuration (Aρmin , ωS) and a high value generating the set of natural
frequencies of the Dissimilar pattern and the Configuration (Aρmin , ωD). Recall that
dissonance patterns do not alter the physical configuration of networks, it only
interchanges the natural frequencies. The distinct assortativity/clustering values are
the only ones that come from a different network configuration. The choosing of
Aρmin , Aρmiddle and Aρmax is discussed in the next session.

In order to measure how the total dissonance combined with assortativity and clus-
tering coefficients affect the global synchronization of the networks, the Kuramoto
model (Equation 2.5) is numerically integrated and the mean value of the order
parameter is calculated R(t) over the integration time and is denoted by 〈R〉. We
call 〈R〉PL and λPL the values of the order parameter and the coupling constant,
respectively, at the emergence of synchronization, that is, phase locking (S = 1).
The initial conditions are the same for all networks used in this work and were
all set as θi(0) = 0.5 for i = 1, ..., N , where N is the total number of nodes. This
choice was intentional because as shown in previous works (LACERDA et al., 2019),
the set of initial conditions can also play an important role in the synchronization
of the system, but this is not the scope of this work. The distribution of the natural
frequencies for the Neutral patterns are drawn randomly by a uniform distribution
over [−π, π].

6.3 Results and discussion

ER, WS, and BA topology models are used in this work. Each of them has a specific
topology and in order to obtain networks with low and high values of assortativity
and clustering coefficient, we chose to create one million networks of each type and
pick three of each model which present lowest, intermediate and highest values of
the measures being considered. In this way, we make sure to keep the topology of
the network models.

The histograms of all networks generated as a function of assortativity and clus-
tering coefficients can be seen in Figure 6.1. By construction, the BA model has a
preferential attachment rule when building the network, so the probability of a new
node to connect with an existing one is proportional to the existing node degree.
Therefore, these networks are characterized by having a few nodes highly connected
(called hubs) and the rest of the nodes with few connections. It is by construction
a network with a negative value of assortativity where nodes with low degree tend
to connect to the ones with high degree. On the other hand, ER and WS do not
have a preferential attachment rule and the nodes have a rather random pattern
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of connections. So the average assortativity is expected to be around zero. When
it comes to clustering coefficient, the WS model is the one expected, in average,
to have the higher number of loops of size three as it is constructed by rewriting
some edges of a regular network, that are known to have high clustering coefficient
(COSTA et al., 2007; SARAMÄKI et al., 2007; NOLDUS; MIEGHEM, 2015).

Figure 6.1 - Histograms of Erdös-Rényi (orange), Watts-Strogatz (green) and Barabási-
Albert (blue) networks in relation to (a) assortativity (ρ) and (b) clustering
coefficient (C). One million networks were generated to compute each his-
togram.

(a)

(b)

Source: Author production.
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We then pick the extreme values of ρ and C from the histogram in Figure 6.1 and a
value approximately in the middle of them to be the ρmiddle and Cmiddle. So we have:
BA model with ρmin = -0.7354, ρmiddle = -0.2898, ρmax = 0.1034; ER model with
ρmin = -0.3560, ρmiddle = -0.0505, ρmax = 0.2584; WS model with ρmin = -0.5079,
ρmiddle = -0.0515 ρmax = 0.4032.

The topologies related to the minimum and maximum values of ρ and C, along
with the three dissonance patterns (N ,S,D) can be seen on Figures 6.2 and 6.3.
One can notice that for the Similar pattern, nodes tend to be connected to ones
that have similar natural frequency (similar node color) and that for the Dissimilar
pattern they tend to be connected with nodes with different natural frequencies.
This is expected, so we can confirm that our optimization algorithm is working (the
algorithm used to generate these patterns converges to a local, not global, value of
the objective function that it is trying to maximize/minimize). The Neutral pattern
stays in the middle as some nodes connect with nodes with similar frequencies and
some connect with nodes with dissimilar frequencies. Recall that that dissonance
patterns do not alter the physical configuration of the networks, it only interchanges
the natural frequencies. The low and high assortativity/clustering values are the only
ones that come from a different network configuration.
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Figure 6.2 - (a)-(b) BA, (c)-(d) ER and (e)-(f) WS networks with low and high values of
clustering coefficient C. The Similar S (νmin), Neutral N (νini) and Dissimilar
D (νmax) patterns of dissonance ν are also showed for each network (from top
to bottom, respectively). ωi is the natural frequency of the nodes and the size
of the nodes is proportional to the degree.

(a) BA, Cmin = 0.01 (b) BA, Cmax = 0.59 (c) ER, Cmin = 0.05

(d) ER, Cmax = 0.28 (e) WS, Cmin = 0.07 (f) WS, Cmax = 0.48

Source: Author production.
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Figure 6.3 - (a)-(b) BA, (c)-(d) ER and (e)-(f) WS networks with low and high values
of assortativity ρ. The Similar S (νmin), Neutral N (νini) and Dissimilar D
(νmax) patterns of dissonance ν are also showed for each network (from top
to bottom, respectively). ωi is the natural frequency of the nodes and the size
of the nodes is proportional to the degree.

(a) BA, ρmin = −0.74 (b) BA, ρmax = 0.10 (c) ER, ρmin = −0.36

(d) ER, ρmax = 0.26 (e) WS, ρmin = −0.51 (f) WS, ρmax = 0.40

Source: Author production.
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The mean of the order parameter 〈R〉 and the total partial synchronization index
S as a function of the overall coupling for networks with high and low values of
assortativity and clustering coefficient and all three dissonance patterns for the BA,
ER and WS models are presented in Figures 6.4 and 6.5, respectively.

In relation to the patterns Similar, Neutral and Dissimilar, one can note that, for
small coupling, the Similar pattern favors weaker forms of synchronization both to a
phase locked state (higher value of S) and to phase synchronized state (higher value
of 〈R〉) for the BA, ER and WS models, since the growth of these measures are more
protuberant at first, for small values of coupling. The dissimilar pattern appears to
be the harder to achieve synchronization, while the Neutral one stays in the middle.
As the coupling λ is increased, the Dissimilar pattern presents a higher growth on
both 〈R〉 and S and is the first of the patterns to reach the synchronous state. As
the coupling increases even more, it is time of the Neutral pattern to reach the phase
locking state and then, for greater λ, the Similar pattern also synchronizes. So, the
Dissimilar natural frequency distribution pattern is the one that mostly favors the
achievement of the synchronized state. This behaviour was also observed by Freitas
et al. (FREITAS et al., 2015) and Scafuti et al. (SCAFUTI et al., 2015b).

In relation to the illustrative example given at the beginning of the paper about
the discussion of a polemic subject, we can conclude that if mostly similar minded
people talk to each other, an agreement seems to be close by people making only a
small effort but at some point the discussion somehow does not advance anymore
and more effort is needed in order to reach an agreement. On the other hand, when
people tend to talk with the ones that have distinct opinion changing rate, there is a
huge discussion at first and, despite the increasing effort of all individuals, it seems
like an agreement is not reachable but, after more effort is made by the individuals,
a common opinion can finally be reached and all individuals arrive at the same
conclusion.

Now, we investigate how the measures assortativity and clustering coefficient along
with the dissonance patterns affect synchronization. In order to do this, we annotate
the value of λ for which all configurations in Figures 6.4 and 6.5 reach phase locking
(λPL). This result is presented on the first column in Figures 6.6 (related to assor-
tativity) and 6.7 (related to clustering). On the second column there is the value
of the order parameter (RPL) for this λPL. The order parameter RPL represents
the amount of phase synchronization of the system at this phase locking state. By
definition, the partial synchronization index S at λ = λPL is equal to one, so the
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system is synchronized.

Figure 6.4 - (a-c) Mean of the order parameter 〈R〉 and (d-f) the total partial synchro-
nization index S as a function of the coupling for networks with low (dashed
line) and high (continuous line) values of assortativity ρ and patterns Neutral
(black), Similar (blue) and Dissimilar (red) of natural frequency distribution.
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Figure 6.5 - (a-c) Mean of the order parameter 〈R〉 and (d-f) the total partial synchro-
nization index S as a function of the coupling for networks with low (dashed
line) and high (continuous line) values of clustering coefficient C and patterns
Neutral (black), Similar (blue) and Dissimilar (red) of natural frequency dis-
tribution.
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Figure 6.6 - Contour plot of the assortativity ρ and the neighborhood patterns in relation
to the (a,c,e) coupling λPL and (b,d,f) order parameter RPL at phase locking
for the models BA, ER and WS of networks.
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In relation to the network models considered in this work, in average, the ER model
is the one that reaches phase locking with lower coupling values (light yellow) when
considering the measures assortativity and clustering coefficient in Figures 6.6 and
6.7 (a,c,e). The BA network topology needs in average a high coupling constant to
reach the phase locking state when considering assortativity, being then the hardest
to synchronize in relation to this measure. WS networks are an intermediate between
these two in relation to assortativity but requires the highest values of coupling to
reach phase locking when the clustering coefficient is taken into account.

In regard to the network structure, we can infer that disassortative networks seem
to favor synchronization for, in general, networks with negative values of ρ require
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Figure 6.7 - Contour plot of the clustering coefficient C and the neighborhood patterns
in relation to the (a,c,e) coupling λPL and (b,d,f) order parameter 〈R〉PL at
phase locking for the models BA, ER and WS of networks.
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a lower coupling value in order reach phase locking. In this way, when high degree
nodes connect with low degree ones it favors synchronization (this does not seem
to apply to the BA model). As already mentioned before, the Dissimilar natural
frequency pattern tends to favor synchronization and we can think of the distribu-
tion of the nodes in a disassortative network also as being a dissimilar topological
distribution as nodes with different degree tend to connect to each other. So, when
analyzing our example, instead of having popular individuals communicating among
each other, it is best if popular individuals talk to less popular ones.

In relation to the clustering coefficient, networks with fewer loops of size three seem
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to favor synchronization as, in average, networks with the lowest value of C tend to
be easier to synchronize. This fact could be explained by the Braess’s paradox 3.4.3,
which shows that inserting edges into networks may destroy synchronization, as these
new edges can create new cycles (loops) which can lead to geometric frustration. A
condition for the synchronization of a network is that the sum of the phase differences
along every cycle must be equal to zero (WITTHAUT; TIMME, 2013) and when a new
cycle is created in the network, for the same value of coupling, this condition may
no longer be satisfied. When it comes to our example, this means that it is best to
avoid the contacts of an individual to communicate with each other, avoiding then
the creation of a small cycle of discussion as this may create unnecessary debates
and therefore, increase the effort to achieve an agreement.

In general, the measures assortativity and clustering coefficient seem to have a
stronger effect on the synchronization of the Similar dissonance patterns (especially
when considering the WS model), having a modest effect on the Neutral pattern
and a very low effect on the Dissimilar one.

6.4 Conclusion

The influence of the structure of complex networks of non-identical oscillators on
global synchronization was studied. The total dissonance metric for neighbourhood
similarity was employed and, with the help of an optimization algorithm, three pat-
terns of natural frequency distributions were created, one where adjacent nodes have
similar frequencies (Similar pattern), one where they have different frequencies (Dis-
similar) and one that is a blend of both (Neutral). Network topologies of the models
Erdös-Rényi, Watts-Strogatz and Barabási-Albert with high, intermediate and low
values of the network measures assortativity and clustering coefficient were created
and along with the frequency patterns were used to study the synchronization of
these systems.

In relation to the emergency of phase locking, at low values of the coupling con-
stant, the Similar pattern clearly favors weaker synchronization regimes but, as the
coupling is increased, the Dissimilar pattern presents a rapid growth and is the first
to reach synchronization, which corroborates previous works (FREITAS et al., 2015;
SCAFUTI et al., 2015b). As for the complex network models used in this work, the
Erdös-Rényi showed itself as the easiest to reach the regime of synchronization when
compared to Watts-Strogatz and Barabási-Albert but this has yet to be confirmed
by future experiments by comparing for example these three models where each
one has the same values of assortativity and/or clustering coefficient. In relation to
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the network measures employed here, in general, both low values of assortativity
and clustering coefficient appear to favor synchronization, especially for the Similar
dissonance pattern.

In summary, answering the questions raised at the beginning of this paper, based on
our findings, we can state that the best way to conduct a discussion on a polemic
subject is by encouraging individuals with distinct opinion changing rates to talk to
each other and also encourage popular individuals to talk to less popular ones. It
is also a good idea to avoid contacts of individuals to talk to each other, avoiding
then small cycles of discussions. This hypothesis has yet to be confirmed by futures
experiments.

As for future work, we consider to use the BA model with distinct degree exponents.
We also intend to investigate the role that the average degree of the networks has
on synchronization. The behavior of the WS configuration (ACmin , ωS), which does
not reach the synchronous state even for high values of λ, as shown in Figure 6.2,
has also to be better analyzed.
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7 CONCLUSION

This thesis is focused on the impact topology has on the synchronization of networks
of non-identical oscillators whose dynamics are described by the first and second
order Kuramoto models. Most of this work is focused on the second order Kuramoto
model as which is often used to approximate the dynamics of power grids. The first
order Kuramoto model is used in a more general approach to study the influence
of cycles and the heterogeneity in connections, which relates to the degree of the
nodes, in the synchronization of a network of oscillators.

The first part of this thesis presented the theoretical foundations and is composed of
the first two chapters. The following three chapters compose the second part, where
the contributions of this work is presented.

Our first contribution, presented in Chapter 4 (LACERDA et al., 2021a), was the use
of an evolutionary optimization technique to generate power grid topologies that
favors synchronization and presents a relatively low number of transmission lines. It
favors the synchronous state in a way that for a proper function of the grid, a lower
maximum transmission capacity is required for transmission lines, which implies
lower voltage levels. Having a low number of transmission lines which require lower
voltage levels is desirable for economic reasons, as a lower number of transmission
lines would need to be constructed and lower voltage levels lines are cheaper to build.
The nodes of the network constructed with this method presented in general higher
stability when compared to a random network of the same size, so their synchronous
state is more stable against perturbations.

Our second contribution, presented in Chapter 5, shows that very simple changes in
the topology of power grids can cause failures in the network and lead the system
out of the synchronous state. The flux of the power being transmitted between
nodes changes when adding, removing or increasing the capacity of a transmission
line which can induce nonlocal failures due to overloads in a phenomenon known
as Braess’s paradox. We show that the most probable scenario as to what happens
when these elementary changes in power grids are made depends on the level of
centralization of the power generated in the network and also on the nature of the
nodes being connected by the edge in question. Therefore, it would be of extreme
importance to carefully analyze the effects of elementary changes in real-world power
grids before even considering making them as these changes can reduce the stability
of the grid and also cause failures which may generate great economic costs.
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Finally, the last main contribution of this work was presented in Chapter 6. Where
we study the influence of the structure of complex networks of non-identical os-
cillators, whose dynamics is given by the first order Kuramoto model, along with
distinct patterns of natural frequencies on synchronization. We generate topologies
with high, intermediate e low values of the metrics assortativity and clustering co-
efficient. We report a behavior that was already studied before that states that the
connection between oscillators with distinct natural frequencies favors synchroniza-
tion. Also, we find that heterogeneous connections (which relates to assortativity),
that is, connecting nodes with distinct values of degree, favors the emergency of
the synchronous state and that the presence of loops of size three (which relates
to clustering coefficient) have the opposing effect. In general, the network measures
clustering coefficient and assortativity seem to have a stronger effect on the synchro-
nization of the Similar dissonance patterns, having a modest effect on the Neutral
patter and a very low effect on the Dissimilar one. It is a general result and can be
applied for example in social systems in a way that in order for a group (network) of
people (oscillators) to reach an agreement (synchronous state) on a polemic subject
it is wise to conduct this discussion encouraging individuals with distinct opinion
changing rates (natural frequencies) to talk to each other and also encourage popu-
lar individuals to talk to less popular ones (heterogeneous connections). It is also a
good idea to avoid contacts of individuals to talk to each other, avoiding then small
cycles of discussions (loops of size three).

As for future research, we suggest analyzing real power grids topologies in order to
give some guidance in relation to the addition of new generators. Also, a more com-
plex model should be used instead of the second order Kuramoto one, for example,
a model that includes admittance (NISHIKAWA; MOTTER, 2015). And, in relation to
the last contribution mentioned here, we suggest modeling the interaction between
groups with opposed political views on Twitter.
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Abstract. In this work, we derive a model to study and simulate the
dynamics of power grids that, after a few approximations, turns out
to be the second order Kuramoto model. We then use this model to
perform some numerical simulations that relate to the vulnerability
and stability of energy transmission networks. In relation to the sta-
bility, assuming the grid is fully functional and, therefore, is in the
synchronous state, we analyze how the grid responds to large pertur-
bations and, also, how this response can be influenced by the location
of the node being perturbed. We also show how a simple change in
the topology or in the transmission capacity of a line can affect the
synchronization of the grid. Regarding the vulnerability, some indexes
to identify dynamically vulnerable nodes and edges are presented.

1 Introduction

Power grids or energy transmission networks are dynamical systems where transmis-
sion lines connect generators and consumers [1] that can be far apart from each other.
The growing demand in power supply by consumers and the feature that now a con-
sumer can also input energy to the network or have a demand that may dramatically
change over time brings new challenges that requires innovative strategies for proper
expansion and system stability evaluation. Power transmission occurs mostly by the
means of alternated current, which is by definition oscillatory. For a power system to
be fully functional, it is mandatory for all elements of this network to be operating
with the same frequency, that is, all of its elements must be synchronized [2,3]. If
there is a higher demand in power consumption and it is not properly supplied or
some failure occurs, some component of the network may lose this synchronized state
which may lead to a blackout [4]. Energy transmission networks are not static, they
evolve through time as they expand with the addition of new consumers and genera-
tors. These generators many times are small energy sources like solar boards. These
topology changes can be relevant in the synchronization of the system as they can
change the stability and induce cascade failures [5].

a e-mail: juliana.lacerda@inpe.br
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In order to study and simulate the dynamics of power grids, one can make use
of complex networks [6] where consumers and generators are modeled as nodes and
transmission lines as edges [7,8]. The dynamics of the nodes are often modeled by
the second order Kuramoto model [9] where the coupling constant relates to the
maximum power transmission capacity of the transmission line. In this work, we use
this model to evaluate the power grid vulnerability and stability.

Several research have development studies for assesses electric power grids vul-
nerabilities [10], mainly motivated by significant blackouts. One way to evaluate this
is creating indexes to discover the weak nodes and edges in the network. This index
can be created using only the network topology [11] or using dinamics [12] and power
flow analyses [13]

This review is organized as follows: Section 2 derives a power grid model based
on a two node system, composed of a consumer and a generator. By making a few
assumptions and approximations, we arrive in the second order Kuramoto model. A
measure to quantify the synchronization of a power grid is also presented. Section 3
explores some numerical results related to vulnerability and stability and conclusions
are presented in Section 4.

2 Model and methods

An electric power plant (Fig. 1) is characterized by having a mechanical power input
(Ps) and is equipped with a generator G (rotor) that converts this mechanical power
source into electrical power. A consumer C, on the other hand, does the exact oppo-
site. The generator produces electrical power with a constant frequency Ω and has a
phase given by

θ1 = Ωt+ θ̃1, (1)

where θ̃1 is a small perturbation.

Fig. 1. Diagram of an electric power plant composed by a generator (G) with phase θ1 and
a consumer (C) with phase θ2 connected by a transmission line.

In the process of converting mechanical to electrical power, some of this power is
dissipated due to friction

Pd = KD(θ̇1)2, (2)
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where KD is a constant. Also some power is accumulated as kinetic energy at a rate

Pa =
1

2
I
d

dt
(θ̇1)2 = Iθ̇1θ̈1, (3)

where I is the moment of inertia. The power that remains is transmitted Pt to a
consumer C. In Fig. 1 the generator has a phase θ1 and the consumer θ2 and power
will flow between them as long as there is a difference between these two phases as it
is given by

Pt = −Q sin(θ2 − θ1), (4)

where Q is a constant.
We can then describe the dynamics of a generator (or consumer) by writing the

power balance equation [4]

Ps = Pd + Pa + Pt

= KD(θ̇1)2 + Iθ̇1θ̈1 −Q sin(θ2 − θ1)
(5)

Let us assume that the power grid is operating under the limit of small perturbations

˙̃
θ1 << Ω. (6)

By substituting Eq. 1 into Eq. 5 we have

Ps = KD(Ω +
˙̃
θ1)2 + I[(Ω +

˙̃
θ1)

¨̃
θ1]−Q sin(θ̃2 − θ̃1)

= KD(
˙̃
θ1)2 + IΩ

¨̃
θ1 +

˙̃
θ1(I

¨̃
θ1 + 2KDΩ) +KDΩ

2 −Q sin(θ2 − θ1).
(7)

Note that θ̈1 = d
dt (Ω)+

¨̃
θ1 =

¨̃
θ1 and that θ2−θ1 = (Ωt+ θ̃2)− (Ωt+ θ̃1) = θ̃2− θ̃1.

Considering Eq. 6, the term KD(
˙̃
θ1)2 can be neglected:

Ps ∼= IΩ
¨̃
θ1 +

˙̃
θ1(I

¨̃
θ1 + 2KDΩ) +KDΩ

2 −Q sin(θ2 − θ1). (8)

In mechanical systems, it is a common fact that the rate of kinetic energy accumulated

(Pa ≈ IΩ
¨̃
θ1) is much less than the rate at which the energy is dissipated by friction

(Pd ≈ KD(
˙̃
θ1)2) [4] that, according to Eq 6, is much smaller than KDΩ

2:

IΩ
¨̃
θ1 << KD(

˙̃
θ1)2 << KDΩ. (9)

So, the power accumulated is much smaller than KDΩ
2:

IΩ
¨̃
θ1 << KDΩ. (10)

We can then neglect the term I
¨̃
θ1 in the coefficient of the first derivative in Eq. 8 and

this equation then becomes

Ps ∼= IΩ
¨̃
θ1 + 2KDΩ

˙̃
θ1 +KDΩ

2 −Q sin(θ2 − θ1). (11)

Isolating
¨̃
θ1 and neglecting the approximation sign, we have:

¨̃
θ1 =

Ps
IΩ
− 2KD

I
˙̃
θ1 −

KDΩ

I
+

Q

IΩ
sin(θ2 − θ1). (12)
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Normalizing time with respect to the common frequency Ω−1 in Eq. 12 [4]:

¨̃
θ1 =

(
PsΩ

I
− KDΩ

3

I

)
− 2KDΩ

I
˙̃
θ1 +

QΩ

I
sin(θ2 − θ1). (13)

To better visualize this equation, we define the following constants:

P1 =
PsΩ

I
− KDΩ

3

I
, (14)

α =
2KDΩ

I
, (15)

Pmax =
QΩ

I
, (16)

where P1 is the power generated, α is a dissipation parameter and Pmax is the max-
imum power transfer capacity of the transmission line. Eq. 13 can then be written
as

¨̃
θ1 = P1 − α ˙̃

θ1 + Pmax sin(θ2 − θ1). (17)

Eq. 17 dictates the dynamics of the generator at Fig. 1 that is connected to just one
consumer. The dynamics of the consumer is governed by the equation

¨̃
θ2 = P2 − α ˙̃

θ2 + Pmax sin(θ1 − θ2). (18)

Generalizing this equation to a network of N dynamical systems (assuming that all
transmission lines have the same maximum transmission capacity):

¨̃
θm = Pm − α ˙̃

θm +
Pmax
gm

N∑

m=1

Amn sin(θn − θm), (19)

where m = 1, ..., N and gm is the degree, that is, the number of elements connected
to node m. Amn is the adjacency matrix with bidirectional edges.

Eq. 19 is the celebrated second order Kuramoto model [14–17], in which the dy-
namics of generators and consumers is described as oscillators. Eq. 19 can also be
written as two first order differential equations (for a better visualization, we will
now remove the tilde from the notation)

θ̇m = νm, (20)

ν̇m = Pm − ανm +
Pmax
gm

N∑

n=1

Amn sin(θn − θm). (21)

To summarize, θm and νm are the phase and angular velocity (instantaneous fre-
quency) of oscillator m, respectively, α is the dissipation parameter, Pm denotes the
power consumed (Pm < 0) or generated (Pm > 0) which corresponds to the natural
frequency of oscillator m. Pmax is the coupling constant of the Kuramoto model and
in our case it corresponds to the maximum power capacity of the transmission line
(here we assume that all transmission lines have the same capacity), A is the adja-
cency matrix with entry Amn = 1 if oscillators m and n are connected and Amn = 0
otherwise. More specifically, ν̇m accounts for the accumulated power, ανm represents
the dissipated power due to friction, Pmaxsin(θn − θm) is the power flow between
nodes m and n. [5]

For a power grid to be fully functional, all of its components must be operating
with the same instantaneous frequency, so the synchronous state must be maintained
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even when its components are subjected to perturbations, such as as increase in the
consumption or some failure on some of its components [7].

In order to quantify the synchronous state of the power grid, a measure called
partial synchronization index [18] is often used. It measures a state called phase
locking [19] where all oscillators have the same instantaneous frequency and is given
by

Smn =

∣∣∣∣∣ lim
∆t→∞

1

∆t

∫ tr+∆t

tr

ei[θm(t)−θn(t)]dt

∣∣∣∣∣, (22)

where tr is a long enough transient time and Smn ∈ [0, 1]. It measures the syn-
chronization between two elements of the grid, when m and n are in phase locking,
Smn = 1. In order to measure the partial synchronization index of the entire network,
we calculate the arithmetic mean

S =
1

N2

N∑

m,n=1

Smn. (23)

3 Numerical results and discussions

We now present some results regarding the study of power grids by the use of the
second order Kuramoto model.

3.1 Stability

In this section, we analyze how power grids modeled by the second order Kuramoto
model respond to perturbations. First, consider a simple transmission network com-
posed by two generators connected to a consumer, Fig. 2(a), where the consumer
absorbs two power units 1 PC = −2 and each generator produces one power unit
PG = 1. At first, the system is in the synchronous state as the partial synchroniza-
tion index before the perturbation is S = 1, then suddenly at t = 50 time units, the
consumer requires an extra power ∆P from the generators for a short period of time
∆t = 2. After this period, the consumer goes back into consuming two power units.

We consider two cases, one where the extra power consumed is ∆P = −1, Fig.
2(b), and one where the extra power is ∆P = −3, Fig. 2(d). One can see that when
∆P = −1, the entire system feels the perturbation but manages to return to the
synchronous state as the partial synchronization index, calculated after the transient
(t > 100), is Safter = 1.0. We can also notice that the instantaneous frequency goes
back to the same value as it had before the perturbation, Fig 2(c). However, for
∆P = −3, the system is taken out from the synchronous state and is not able to
come back to it, as Safter = 0.67 as for the instantaneous frequency, Fig 2(e), instead
of all components presenting the same value, the system is divided into two where
both generators tend to an instantaneous frequency close to 10 and the consumers
tends to one close to −20.

In order to understand and be able to predict why and how some perturbations
lead a power system out of the synchronous state and some do not, a concept of basin
stability E in relation to large perturbations was proposed by Menck et al. [20,21].
Assuming the transmission network is in the synchronized state, after a component
of the grid is hit by a large perturbation, it quantifies the probability of this element
to remain in this state after a transient. It is related to the volume of the basin of

1 power units are short for normalized power units
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Fig. 2. (a) Three node transmission network composed of a consumer (C, red) connected
to two generators (G, blue). (b) and (d) are the power absorbed by the consumer and (c)
and (e) are its instantaneous frequency as a function of time.

attraction (B) and can be numerically calculated by means of a Monte-Carlo method
[22,23] where Eq. 19 is integrated for T different initial conditions in relation to node
m and the number Um of times that this node converges to the synchronous state is
annotated, that is:

Em =
Um
T
. (24)

Node m is said to be globally stable if Em = 1 and unstable when Em = 0.
In order to compute the basin stability of node m, it was considered the one-node

model which is given by Eq. 19, where θn = 0 for all n 6= m, in a way that the rest of
the grid is not affected by node m. The basin of attraction of this node can be seen
in yellow in Fig. 3 (a-c) along with the basin stability Fig. 3(d) as a function of the
transmission capacity. One can notice that the higher the transmission capacity, the
greater is the basin of attraction and, of course, the basin stability. So, the higher the
transmission capacity of the transmission lines, the harder it gets to desynchronize
the system.

To study the role the topology plays in the synchronization of the system, Menck
et al. [21] randomly generated 1000 network topologies composed of 100 nodes and
135 transmission lines, having average degree equal to 2.7 (which is a typical value
for power grids [8]) and found that some patterns called dead ends and dead trees
play an important role on the basin stability of the network. In Fig.3(e) a small part
of a network is depicted, where color represents the value of the basin stability E
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Fig. 3. (a)-(c) Basin of attraction B (yellow) of a single node dynamics given by Eq. 19
whith θn = 0 for different values of transmission capacity Pmax and (d) basin stability E of
a single node dynamics as a function of Pmax. The parameters used are α = 0.1, Pm = 1 and
θS = sin−1(Pm/Pmax), which is the value of the phase at the synchronous state [21]. (e) The
dead tree is composed of nodes {4, 5, 6, 7} and includes two dead ends {5} and {6, 7}. (f)
Mean value and standard deviation of basin stability of nodes as a function of their degree
g divided into two groups, nodes that are non-adjacent (red) and adjacent to dead trees
(green). Figures (e) and (f) were adapted from [21].

of each node. The dead tree is composed of nodes {4, 5, 6, 7} and is composed of
two dead ends, {5} and {6, 7}. Node 4 is adjacent to two dead ends and node 6 is
adjacent to one and we can see that their basin stability is lower than the average.
When the mean and standard deviation of the basin stability < E > was calculated
for all network topologies as a function of the nodes’ degree and were divided into
two groups, one group are the nodes that are not adjacent to a dead tree or dead
end (red) and one where the ones that are adjacent (green), Fig.3(f), one can clearly
see that those nodes that are adjacent to dead trees present a lower value of basin
stability and must be avoided in the building of power grids.

3.2 Braess’s Paradox

In Section 3.1 it was mentioned that dead trees and dead ends must be avoided in
order to maintain the synchronous state, so, one might think that a good way to avoid
that from happening would be just to add some new edges at the network. However,
in fact, might not be a good idea because of what is known as Braess’s Paradox
[24], which actually shows that inserting edges into network topologies can destroy
synchronization. This fact was explored by Witthaut et al. [25] in the context of
energy transmission networks, where, in fact, they pointed out that not only adding a
transmission line may destroy the synchronous state but also, increasing the maximum
transmission capacity of a transmission line may also perturb this synchronous state.



8 Will be inserted by the editor

In Fig. 4 tree models of power grids are presented, Model A which is composed
of four generators (G, blue circle) whose power generated by each is PG = 1 and
four consumers (C, red square) whose power consumed by each is PC = −1, all
transmission lines have the same transmission capacity Pmax = 3.2. Model B presents
the same topology as Model A but one line has a higher transmission capacity (dashed
green) P greenmax = 2Pmax, in Model C all lines have the same transmission capacity but,
when comparing to Model A, there is an extra transmission line (dashed black).

When Model A is integrated, one can see that all the phases tend to a constant
value 4(d) and that the instantaneous frequency of all nodes tend to the same con-
stant value (zero) 4(g) which indicates that the system is frequency synchronized for
this value coupling Pmax. When doubling the power transmission capacity of just
one transmission line (Model B) the synchronous state is lost as the instantaneous
frequency of consumers and generators tend to different values. The same behavior of
the instantaneous frequency can be observed for Model C when a new transmission
line is added to the grid.

Considering now all the three models, we calculate the partial synchronization
index given by Eq. 23 for different values of Pmax, Fig. 4. One can note that Model A is
the first to synchronize (S = 1) at Pmax = 3.1. Then Model B reaches synchronization
at Pmax = 3.4 and, finally, Model C synchronizes at Pmax = 3.7.

3.3 Dynamic vulnerability in power grids

Cascade failure is a sequence of failures and disconnections triggered by an initial
event, which can be generated by natural phenomena (strong winds, lightning, etc.),
human actions, such as errors in operation or execution, or the appearance of im-
balances between load and generation. To mitigate the effects of cascading failure,
avoiding the famous blackouts, it is important to identify the points of vulnerability in
the transmission networks. Many studies have been carried out associating transmis-
sion networks to complex networks and, in this case, centrality measures are used to
indicate the most vulnerable nodes and edges. But the topological analysis approach
takes into account only the topology of the network and its connections [26], which
may not be applicable in a real transmission network, which must guarantee sufficient
load flow throughout the system. Thus, other studies analyze points of vulnerability
and take into account, in addition to the network topology, the load flow [10,27,28].

Another way to locate vulnerability points is with the analysis of the stability
of the network as a whole, with the location of nodes or edges that, if disturbed or
removed, cause the network to lose its synchronization so that the entire system goes
to a blackout. The Work of [29] developed the index DVI (Dynamic Vulnerability
Index) to estimates the vulnerability of a node through stochastic signals using the
Fourier spectrum of the conduction signal due to its Power Spectral Density charac-
teristics and the nodal response amplitude for each Fourier component. This index
can be used to identify vulnerable point exposed by fluctuating inputs from renewable
energy sources and fluctuating power output to consumers.

The work of [30] assesses the vulnerability of an electrical network against random
and focused disturbances, and uses vulnerability measures in terms of the topologi-
cal and dynamic properties of nodes and edges of the network. Using a percolation
method, nodes and edges are evaluated based on these topological and dynamic in-
dexes. In this way, the network’s ability to maintain its functioning after successive
removals, randomized or directed by the indexes, is evaluated until it is brought to a
complete blackout.

The topological indexes used to measure the vulnerability of the network are based
on centrality measures for complex networks. The indexes used are:
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Fig. 4. (a)-(c) Topology power grid models composed of four generators G (circle blue) and
four consumers C (square red), where in (b) the power transmitted at the dashed green line is
the double of the power transmitted by the same line at (a) and in (c) there is an extra edge
(dashed black line) when compared to Model A. (d)-(f) Phases and (g)-(i) instantaneous
frequency of all oscillators. (j) Partial synchronization index of Models A (black), B (green)
and C (purple) as a function of the maximum capacity of the transmission line.

– Degree centrality g
(i)
k : measures the number of connections that each node has on

the network. This standardized measure is used here [31];

– Clustering coefficient c
(i)
k : measures the degree to which the nodes of a graph tend

to group together [32];

– Node betweenness centrality b
(i)
k : measures how far a vertex is in the shortest

path among other vertices. This measure indicates the node that most shares the
information flow in the network[31];

– Edge betweenness centrality e
(i)
k : similar to the betweenness for a node, but here

is measured the importance of the edge for the flow of information[33].
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The indices that measure the dynamic vulnerability of nodes and edges use the
second-order kuramoto model [9] to capture the synchronization status of the net-
work, as well as the desynchronized points. From this to the vulnerability measure of
transmission lines (edges) it can be approximated:

∆Θ ≈
1

K
BTL†P, (25)

Where L† is the laplacian pseudo-inverse, B is a incidence matrix, K is the coupling
strength and P is the power injected. To guarantee a single and stable solution with
synchronized frequencies and cohesive phases if the following condition is met:

‖∆Θ‖∞ < sin(γ) (26)

Edge (i, j) is considered weak when |∆Θ(i, j)| is close to 1, and considered more
stable when closer to 0, with 0 ≤ γ < π

2

Fig. 5. Result of the nodal elimination algorithm for topological and dynamic indexes.
Adapted from [30].

For the vertex, the concept of the single node basin stability is presented in Sub-

section 3.1. In this section we call the basin stability of node i E
(i)
B .

For the tests, a real Colombian energy distribution network with 159 edges and 102
nodes was used, that represent are 28 generators and 74 consumers [30]. A randomly
generated network [34] was also used for testes in work of [30], this network simulates
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properties of real distribution networks. The results for the topological and dynamics
indexes were similar for this two networks.

Using a percolation algorithm [30], Fig. 5 represents the result of the simulation
for removing nodes, selected randomly or according to the selection based on the vul-
nerability indices. Two phase transitions are analyzed during the elimination process.
Transition T1: Iteration where the graph has become disconnected, but still func-
tional, with at least 1 generator in each subgraph, and transition 2, which is the final
iteration where the blackout is verified.

Fig. 6. Result of the edge elimination algorithm for topological and dynamic indexes.
Adapted from [30].

Fig. 5(a) shows the fraction of nodes in the largest cluster in the network. Fig. 5(b)
shows the fraction of nodes removed after each iteration in relation to the original
size, with N(0) and N(I) being the original size of G and its size after I iterations of
removal, respectively, which allows detecting the phase transition T2. It is observed
as soon as the grid goes to complete blackout around the 30th removal iteration for
the case of focal attack in EB before than other metrics. In Fig. 5(c) it shows the
size of the second largest component, that shown the iteration for the T1 transition.
And finally, Fig. 5(d) shows the amount of cluster generated, it is verified that the
EB metric generates less cluster compared to the other techniques, since the nodes
located in dead-tree present a lower value of basin stability [21].

In Fig. 6, the same analysis is performed to remove the edges (transmission lines)
in this Colombian transmission network, where the metrics ∆Θ and eK are used, as
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shown, with the focus on the highest ∆Θ the network reaches the complete state of
blackout before the other techniques.

4 Conclusions

In this review, we showed that by making a few assumptions and approximations one
can use the second order Kuramoto model to simulate the dynamics of power grids.
We then used this model to study the stability and vulnerability of transmission
networks. In relation to stability, it was shown that if the system is hit by a large
perturbation in a single node, the whole grid may come out of the synchronous state
if this perturbation is large enough to take the node out of its basin of attraction.
Not only the size of the perturbation matters in this case, as also, the location of
the node inside the network also plays an important role as nodes that are adjacent
to dead ends and dead trees present a lower value of basin stability. It was further
shown that changing the topology of a grid by adding a new transmission line, as
well as increasing the power transmission capacity, may destroy the synchronization
of the system. A new index to identify vulnerabilities was also introduced, where the
index with dynamics properties obtained better results for the indication of edges and
nodes vulnerable in comparison to the indexes based only on the network topology.
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frastructure Engineering, 29, (2014) 590-607
28. Gutierrez, Francisco and Barocio, E and Uribe, F and Zuniga, P. Discrete Dynamics in

Nature and Society, 2013, (2013) 1-12
29. Zhang, Xiaozhu and Ma, Cheng and Timme, Marc. Chaos: An Interdisciplinary Journal

of Nonlinear Science, 30, (2020) 063111
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a b s t r a c t 

Power grids or energy transmission networks are among the biggest and more complex 

man made constructions ever made and are a typical example of a complex system. Its 

components need to be in a synchronous state in order to be fully functional and avoid 

cascade failures and blackouts. Power grids can be modeled as a complex network of os- 

cillators, where each node represents a generator or a consumer and the transmission lines 

are represented by edges. In this work, we show how to build a power grid topology that 

presents relatively low number of edges and favors synchronization as a low value of cou- 

pling is required to reach the synchronous state. As the coupling is related to the maxi- 

mum transmission capacity of a transmission line, lower coupling in this context means 

lower voltage levels. The basin stability of this network is also calculated as it appears to 

have a higher quantity of stable nodes when compared to a random network. The method- 

ology presented in this work is based on an evolutionary optimization framework and 

would be of great interest when building power grids due to the costs involved in the con- 

struction of transmission lines, as there would be less lines and they would be required to 

operate in a lower voltage level. 

© 2020 Elsevier Inc. All rights reserved. 

1. Introduction 

Power transmission systems are crucial to economic prosperity worldwide as interruptions in the transmission and gen- 

eration in electricity networks can cause economic and social problems for the whole society [1] . Power grids are naturally 

complex as they are one of the biggest constructions ever made, and, in order to be fully functional, all of its components 

must be in a synchronous state and they must be robust enough to go back to this state even when subjected to failures and 

disturbances [2] , which represents an enormous challenge for stability analysis. Therefore, engineers and researchers must 

be able to accurately analyze the stability of power systems taking into consideration scenarios that can cause disturbances 

in the network implying local failures and in some cases, blackouts of high proportions [3] . 

Instabilities in power grids can be caused, for example, by the malfunctioning of some of its components, due to climatic 

factors such as fire, rain and lightning [4,5] or if a renewable source of energy becomes unavailable [6] due to its proper 

characteristics. Interruptions in energy transmission duo to climatic problems have a great impact on the network infras- 

tructure, being considered one of the main causes of problems in power grids world wide [5] . The growing integration of 
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renewable energy sources in transmission networks is stimulated by environmental and economic issues. Microgrid is one 

of the technologies that can integrate large amounts of renewable energy such as solar, wind and geothermal systems, and 

fulfills the distributed generation potential of a system [7] . However, the generation of renewable energy is intermittent, 

stochastic and subject to climatic conditions, so it can cause unforeseen fluctuations in the system and is one of the major 

causes of instability in transmission networks today [8] . 

A way to properly study power grids is by using the concepts of complex networks. In this representation, the transmis- 

sion lines are modeled by edges and the generators and consumers are represented by nodes. The second order Kuramoto 

model is often applied in frequency synchronization problems, for example, in networks of electric power transmission 

[9] and forced pendulum dynamics [10] and is used in this work to describe the dynamics of generators and consumers. In 

this model, the coupling constant relates to the maximum power transmission capacity of the transmission lines, while the 

phase and the angular velocity evolve as time passes and the synchronization is damped by a term of inertia [11] . 

By using the second order Kuramoto model to study power grids, a model of basin stability in relation to strong per- 

turbations was proposed in order to study the stability of electric networks that also may be applied to other dynamical 

systems [12] . It was shown that there are some patterns called dead ends and dead trees in power grids that reduce the 

overall dynamic stability of the system [13] . 

The evolutionary optimization technique called evolutionary edge-snapping [14,15] is used in this work to generate a 

network topology that favors synchronization for rather small values of coupling. This method creates networks with a 

relatively small number of edges and these topologies would be of great interest in designing of power grids, due to the 

costs involved in the construction of transmission lines. Further, as the system enters the synchronous state at a low cou- 

pling (compared to the coupling obtained when studying a random network with the same number of nodes and edges), it 

means that lower voltage levels are needed in the transmission lines [16,17] , which is also a desirable characteristics. After 

studying and analyzing the behavior of the power grid topology created by the Edge Snapping method, we use the one-node 

basin stability method [13] to analyze the stability of this topology when subjected to large perturbations. We find that this 

network appears to have a higher number of stable nodes when compared to a random network. 

2. Model and methods 

In this section, we present the model used to describe the dynamics of the components (generator and consumers) of 

a power grid, metrics to quantify the level of synchronization of this system, both in Section 2.1 , and a model to generate 

topologies of power grids in Section 2.2 . In Section 2.3 , a method to study the stability of the components of this power 

grid is presented. 

2.1. Synchronization metrics and second order Kuramoto model 

In order for a power grid to be fully functional, all of its components must be frequency synchronized [2] . So we begin 

this section by presenting metrics that quantify the level of synchronization of a dynamical system. The order parameter R ( t ) 

[18] shows the level of the collective behavior of a system by measuring the amount of phase synchronization. It is defined 

as 

R (t) = 

∣∣∣∣∣
1 

N 

N ∑ 

m =1 

e iθm (t) 

∣∣∣∣∣, (1) 

where i is the imaginary unit, θ ( t ) is the phase of oscillator m and N is the total number of nodes. R ( t ) ∈ [0, 1], in a way 

that when all oscillators have the same phase, that is, when the system presents phase synchronization, R (t) = 1 . The mean 

over time of the order parameter R ( t ) will be called R . 

The parameter partial synchronization index [19] presents the level of the frequency synchronization (or phase locking) 

[20,21] between a pair of a system’ units and is given by 

S mn = 

∣∣∣∣ lim 

�t→∞ 

1 

�t 

∫ t r +�t 

t r 

e i [ θm (t) −θn (t)] dt 

∣∣∣∣, (2) 

where m and n are the label of the nodes and t r is a transient time. In order to measure the level of frequency synchroniza- 

tion of the whole network, we calculate the arithmetic mean 

S = 

1 

N 

2 

N ∑ 

m,n =1 

S mn . (3) 

S ∈ [0, 1] and when S = 1 , the system is phase locked, meaning that the phase difference between all pair of nodes is 

constant through time, thus having the same instantaneous frequency. 

In order for power to flow in a power grid, there must be a phase difference between the components of the grid [11] . So, 

we want our system to be phase locked, thus having the same instantaneous frequency, and not phase synchronized, that 

is, we want S = 1 and R � = 1, and we will be referring to this configuration when we say that the system is synchronized. 
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In order to model the dynamics of generators and consumers, we make use of the second order Kuramoto model [22] in 

a way that the dynamics of a power grid component m is given by: 

θ̈m 

= −α ˙ θm 

+ ω m 

+ 

λ

g m 

N ∑ 

n =1 

A mn sin (θn − θm 

) , (4) 

for m = 1 , . . . , N, α ∈ R is the dissipation parameter ( α = 0 . 1 is used in this work), λ is the coupling constant and it rep- 

resents the maximum power transmission capacity of the transmission line that connects the nodes in a power grid (note 

that λ is the same for our entire network), ω m 

is the natural frequency of oscillator m and here it represents the amount of 

power delivered by ( ω m 

> 0, generator) or consumed by ( ω m 

< 0, consumer) node m, g m 

and θm 

are the degree and phase 

of oscillator m , respectively. The degree g of a node m represents the number of edges that are incident to this node. A mn 

are the entries of the adjacency matrix, being equal to 1 if oscillators m and n are connected (there is a transmission line 

between them) and 0 otherwise. Eq. (4) can be also written as: 

˙ θm 

= νm 

, (5) 

˙ νm 

= −ανm 

+ ω m 

+ 

λ

g m 

N ∑ 

j=1 

A mn sin (θn − θm 

) , (6) 

where νm 

is the angular velocity (instantaneous frequency) of node m . 

The phase and the angular velocity of a node m in the synchronous state are defined as (θ S 
m 

, νS 
m 

) . The phase in the 

synchronous state is [13,23] 

θ S 
m 

= arcsin 

ω m 

λ
, (7) 

and the synchronous angular velocity is given by [9,11] 

νS 
m 

= 

N ∑ 

m =1 

ω m 

Nα
. (8) 

In this work, there are N 
2 consumers ( ω m 

< 0) and 

N 
2 generators ( ω m 

> 0) in a way that all power generated is consumed, 

so 
∑ N 

m =1 ω m 

= 0 and, therefore, νS 
m 

= νS = 0 . 

2.2. Edge snapping method 

The edge snapping method [14,24] is used in this work in order to generate topologies that model a power grid. This 

method is an adaptive strategy that drives the evolution of an unweighted network, in which a second order equation is 

associated with each edge of the graph. It has been chosen because it generates networks with a relatively low number of 

edges (transmission lines) [24] and, as will be presented in Section 3 , it allows the network to be synchronized at lower 

values of coupling, thus requiring transmission lines with lower maximum transmission capacity, which, along with the 

lower number of transmission lines, would be economically desirable. 

The equation associated with the edge between nodes m and n is given by 

k̈ mn + d ̇ k mn + 

∂V (k mn ) 

∂k mn 
= h (|| θm 

− θn || ) , (9) 

where d = 1 is a constant damping factor, h is an external force and k mn is the coupling gain. V ( k mn ) is a double-well 

potential given by 

V (k mn ) = bk 2 mn (k mn − 1) 2 , (10) 

in which b = 1 is a constant. V ( k mn ) has two local minima, k mn = 0 and k mn = 1 , in a way that if k mn = 1 we define that 

there is an edge between nodes m and n and if k mn = 0 there is not. At the beginning of evolution of Eq. (9) , all nodes are 

disconnected and the initial conditions are k mn (0) = 0 and 

˙ k mn (0) = 0 . Due to the external force h, k mn may come out of its 

initial equilibrium point k mn = 0 (edge is not present) and move to the other local minima k mn = 1 (edge is present). The 

external force in this work is defined as h (|| θm 

− θn || ) = 1 − | θ (m ) − θ (n ) | . 
By using the edge snapping method to generate network topologies, the second order Kuramoto model is written as 

θ̈m 

= −α ˙ θm 

+ ω m 

+ 

λ

g m 

N ∑ 

n =1 

k mn sin (θn − θm 

) . (11) 

Note that the only difference between Eqs. (4) and (11) is that in the latter the adjacency matrix A is replaced by the 

coupling gain k given by Eq. (9) . So, in order to study the dynamics of our power grid, we integrate Eqs. (9) and (11) simul- 

taneously. 



630 J.C. Lacerda, J. Dias and C. Freitas et al. / Applied Mathematical Modelling 89 (2021) 627–635 

−3 −2 −1 0 1 2
θ − θs

−15

−10

−5

0

5

10

15

ν

Fig. 1. Basin of attraction (yellow) of a single node dynamics given by Eq. (13) . The synchronous state (θ S 
m , 0) is plotted as a red dot. (For interpretation of 

the references to color in this figure legend, the reader is referred to the web version of this article.) 

2.2.1. Evolutionary edge snapping 

The edge snapping method is used in the context of evolutionary optimization where rules of variation and selection 

are applied in order to generate network topologies. The evolutionary edge snapping is composed of two fundamental rules 

[15,24] : 

Rule 1 – Variation: A set of n T = 100 network topologies is generated by integrating Eqs. (9) and (11) , with Eq. (11) staring 

from n T distinct initial conditions that are randomly generated by a uniform distribution between [0, 2 π ). From this set of 

n T topologies, we calculate the fraction between the number of networks where the edge between the nodes m and n is 

present ( n mn ) and the total number of topologies that were generated. This fraction is the probability of activation of the 

edge between nodes m and n 

F mn = 

n mn 

n T 

, (12) 

where 0 ≤ F mn ≤ 1. 

Rule 2 – Selection: Only edges with activation probability F mn higher than a certain threshold f ∗ are marked as active (are 

present) in the network. The value of f ∗ is chosen in a way that the entire network is connected and present the smallest 

possible number of edges, we call this network minimal edge-snappping network (ES network) . 

2.3. Basin stability 

A basin of attraction B is the set of initial conditions that, as the system evolves in time, tends to an attracting fixed 

point [10] . In order to visualize the basin of attraction of a node m in a power grid, consider a single node dynamics given 

by 

˙ θm 

= νm 

, 

˙ νm 

= −ανm 

+ ω m 

+ λ sin (θgrid − θm 

) , (13) 

where θgrid = 0 , as we consider that the rest of the network is not affected by node m . In order to find the basin of attraction, 

we integrate Eq. (13) fixing λ = 4 . 0 and ω = 1 . 0 for distinct values of initial conditions ( θ (0), ν(0)), where θ ∈ [0, 2 π ] and 

ν ∈ [ −15 , 15] and annotate for which conditions the system evolved to the synchronous state (θ S 
m 

, νS = 0) . This basin of 

attraction can be seen in Fig. 1 , it is colored in yellow and the red dot represents the attracting fixed point describing the 

synchronous state. 

Looking from another perspective, we can assume that at a time t 1 , node m is at the synchronous state (θm 

(t 1 ) , νm 

(t 1 )) = 

(θ S 
m 

, 0) and suffers a perturbation at time t 2 in a way that (θm 

(t 2 ) , νm 

(t 2 )) � = (θ S 
m 

, 0) . So, if ( θm 

( t 2 ), νm 

( t 2 )) is outside of the 

basin of attraction, the node will not go back to the synchronous state, and, on the other hand, if ( θm 

( t 2 ), νm 

( t 2 )) is inside 

the basin of attraction, the dynamics of the node will reach the synchronous state after a certain amount of time. 

The single-node basin stability method [13] is applied in study of the stability of the second order Kuramoto network 

generated by the Edge Snapping method. The basin stability E of a node m is defined as 

E m 

= E(B m 

) = 

∫ 
χB (θ, ν) ρ(θ, ν) d θd ν, (14) 
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Fig. 2. 50 node ES network with threshold f ∗ = 0 . 56 and 108 edges. (a) The size of the nodes is proportional to their degree and their color relates to the 

consumed (blue) or delivered (red) power ω. (b) Probability of activation F of the edges. (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.) 

where ρ is a probability density ( 
∫ 

ρ(θ, ν) d θd ν = 1 ) related to the states that the system can reach due to perturbations 

and in order to perform our calculations, ρ is defined as 

ρ = 

⎧ ⎨ 

⎩ 

1 

| Q| , if (θ, ν) ∈ Q , where Q = [0 , 2 π ] × [ −100 , 100] , 

0 , otherwise . 

(15) 

χB is the indicator function of the basin of attraction B and is given by 

χB = 

{
1 , if (θm 

, νm 

) ∈ B m 

. 

0 , otherwise . 
(16) 

The basin of attraction B m 

in our context is defined as 

B m 

= { (θm 

(0) , νm 

(0)) where lim t→ + ∞ 

θm 

(t) = θ S 
m 

and lim t→ + ∞ 

νm 

(t) = 0 : 

(θn (0) , νn (0)) n =1 , ... ,N ∈ B with θn (0) = θ S 
n and νn (0) = 0 for all n � = m } , (17) 

which is a two-dimensional section of the 2N-dimensional synchronous state basin B . 

The basin stability E m 

express the chance of the system’s component m to return to the synchronous state after a single 

node perturbation that occurs randomly with a probability density ρ . If E m 

= 0 , the synchronous state is unstable and if 

E m 

= 1 , the synchronous state is globally stable. In order to estimate E m 

we use the Monte-Carlo method [25] , where for 

each node, T = 100 initial states ( θm 

(0), νm 

(0)) are chosen randomly according to ρ and their trajectories in phase space 

are calculated and the number U m 

of times in which the system converges to the synchronous state is annotated. The other 

N − 1 nodes have a fixed initial condition (θn (0) , νn (0)) = (θ S 
n , 0) for all n � = m . The basin stability is then E m 

≈ U m 
T which 

has a standard error [12] of e = 

√ 

E −E 2 

T ≤ 5% . 

3. Results and discussion 

We use the Edge Snapping method by simultaneously integrating Eqs. (9) and (11) with a fixed coupling λ = 1 . 5 to 

generate a N = 50 node network whose delivered or consumed power ω are given by a Gaussian distribution with zero 

mean and standard deviation σω = 0 . 2 in a way that N 
2 nodes have their frequencies set randomly by this distribution and 

N 
2 nodes have the exact opposite frequency, so all the power generated is consumed and 

∑ N 
m =1 ω m 

= 0 . The topology of this 

network is plotted in Fig. 2 where in Fig. 2 (a) the size of the nodes is proportional to their degree and the color relates to the 

amount of power ω delivered (red) or consumed (blue), while in Fig. 2 (b) the probability of activation F is represented by 

edge colors, as the threshold for this configuration is f ∗ = 0 . 56 , leaving the final topology with 108 edges. This is a relatively 

low number of edges as only a fraction of 0.08817 of all possible edges were marked as active in the final topology. It is 

a characteristics of the Edge snapping method to generate networks with a relatively low number of edges, which is an 

advantage when it comes to power grids due to the costs involved in the construction of transmission lines. 

The degree of the nodes as a function of their power ω is plotted in Fig. 3 (a). Let | ω mn | = | ω m 

− ω n | be the absolute 

value of power difference between nodes m and n , in Fig. 3 (b) the probability of activation of the edge connecting nodes 

m and n is plotted as a function of | ω mn |. The degree g of the nodes seem to be distributed mostly at random, as for 

the probability of activation F , it does not display a well defined behavior, although there is roughly a band-like structure 

and as | ω mn | grows, the band structure gets narrower. The behavior of the degree and the probability of activation found 
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Fig. 3. (a) Node degree distribution as a function of the power ω. (b) Probability of activation F as a function of the power difference between nodes m and 

n . (c) Standard deviation of the matrix F as a function of the number of topologies n T . (d) Standard deviation of F as a function of the standard deviation 

of the Gaussian distribution used to generate the power distribution ω. 

here is the opposite of what was found in [15] by using the Edge Snapping method along with the first order Kuramoto 

model and, most importantly, the distribution of ω was given randomly by the same distribution used here but without the 

condition 

∑ N 
m =1 ω m 

= 0 . So, in [15] , it is shown that the degree and the probability of activation are related to ω, in a way 

that the nodes with the value of ω far from the mean have higher degree and the probability of activation of the edges are 

greater for higher values of | ω mn |. We also obtained this behavior for both measures in our simulations for the second order 

Kuramoto model but when the condition 

∑ N 
m =1 ω m 

= 0 is added to the distribution of power, this correlation seems to be 

lost. This condition is of utmost importance in this work as we are simulating a power grid in which all power generated is 

consumed. 

Two parameters were fixed in our simulations, the standard deviation of the Gaussian distribution of ω, σω = 0 . 2 , and the 

number of trials n T = 100 used in the Evolutionary Edge Snapping, which gives the number of network topologies generated 

in order to calculate the matrix of the probability of activation F . The standard deviation of this matrix F as a function of 

the number of trials and as a function of the standard deviation of ω are plotted in Fig. 3 (c) and (d), respectively. Note that 

σ F does not vary much in both cases, so we consider the values of n T and σω we chose to be satisfactory. 

Now that the network topology is defined, our interest is to study how it affects the synchronization of the power grid 

and in order to make some kind of comparison to see how efficient the ES network is, a random network with the same 

number nodes (50), edges (108) and with the same power distribution is generated, we name it Random network (since 

there is no consense when it comes to a network model that can fully represent a power grid topology, several researchers 

use the random model [26] to represent power grids as they both present exponential degree distribution [13,27] ). Eq. (5) is 

integrated for both topologies, for several values of coupling λ in order to calculate the order parameter R and the partial 

synchronization index S . The initial conditions are fixed as θm 

(0) = 0 . 5 and νm 

(0) = 0 for m = 1 , . . . , N. The result can be 

seen in Fig. 4 . The ES network reaches phase locking S = 1 at λ = 0 . 60 and the Random network reaches synchronization for 
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Fig. 5. Histogram of the basin stability for the (a) ES network and for the (b) Random network. Basin stability of each node for the (c) ES and (d) Random 

networks. 
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λ = 0 . 75 . Note that for higher values of coupling the value of the order parameter R is close but never equal to one, which 

is expected because, as mentioned in Section 2.1 , it is a condition to have a power flow between two nodes of a power grid. 

The advantage of reaching synchronization at lower values of coupling comes from the fact that the coupling represents the 

maximum power transfer capacity of a transmission line and, therefore, lower transfer capacity means lower voltage levels 

and cheaper transmission lines when building power grids. 

In order to study the stability of the ES network topology we use the basin stability method presented in Section 2.3 , 

where at a fixed value of coupling ( λ = 1 . 5 ) a single node m suffers a perturbation T = 100 times. Let U m 

be the number of 

times the system reaches synchronization, then the basin stability of node m is approximately E m 

= 

U m 
T . The same is done 

for the Random network. The histogram and the value of the basin stability of each node for both networks and can be 

seen in Fig. 5 . Note that for the ES network, 74% of the nodes present a relatively high stability, that is, E ≥ 0.8, as for the 

Random network, this value drops to 68%. 

4. Conclusions 

In this paper, we used the Edge Snapping method to generate power grids whose generator and consumers are modeled 

by the second order Kuramoto oscillator model. A fifty node power grid was generated, being that half of the nodes were 

set to be consumers and the other half generators in a way that all power produced is consumed by the grid. The topologies 

generated by the Edge Snapping method have a characteristic of having a relatively low number of nodes, which is desir- 

able in our case study since it means building less transmission lines. Also, the network generated by this method favors 

synchronization in a way that it reaches phase locking at a lower value of coupling when compared to a random network 

with the same number of nodes and edges. As the coupling in the second order Kuramoto model is related to the maximum 

transmission capacity of a transmission line, lower coupling implies lower voltage levels in the transmission lines which is 

also a desirable characteristics in a power grid. The ES network presented a higher number of stable nodes when compared 

to the random network of the same size. 
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ABSTRACT

We analyze how the structure of complex networks of non-identical oscillators influences synchronization in the context of the Kuramoto
model. The complex network metrics assortativity and clustering coefficient are used in order to generate network topologies of Erdös–Rényi,
Watts–Strogatz, and Barabási–Albert types that present high, intermediate, and low values of these metrics. We also employ the total disso-
nance metric for neighborhood similarity, which generalizes to networks the standard concept of dissonance between two non-identical
coupled oscillators. Based on this quantifier and using an optimization algorithm, we generate Similar, Dissimilar, and Neutral natural
frequency patterns, which correspond to small, large, and intermediate values of total dissonance, respectively. The emergency of synchro-
nization is numerically studied by considering these three types of dissonance patterns along with the network topologies generated by high,
intermediate, and low values of the metrics assortativity and clustering coefficient. We find that, in general, low values of these metrics appear
to favor phase locking, especially for the Similar dissonance pattern.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0068136

The topology of networks of phase oscillators plays a very impor-

tant role on the synchronization of the system. The individual

dynamics of each oscillator, characterized by their individual fre-

quencies, also play a very important role, which is not completely

understood. What effect the emergency of cycles, the connection

of nodes with close or very distinct degree have on synchro-

nization? Furthermore, is this affected by the natural frequen-

cies of the oscillators being connected? These questions are also

important if we take into consideration the emergence of syn-

chronization phenomena in nature that leads the involved agents

from the disorder to order in a scenario in which the agent

interconnections are not all-to-all. Here, we investigate these

issues.

I. INTRODUCTION
Synchronization is a process in which dynamical systems

manage to coordinate some dynamical properties by being
connected among themselves or by being driven by a common
force.1 It is a universal behavior that takes place in many natural
and artificial multi-agent systems.2–7 In order to study synchroniza-
tion in systems of interacting dynamical units, it has been shown
to be useful to describe a system as a complex network of inter-
acting oscillators,8,9 where nodes represent the dynamical units and
the connections between them express their interacting mecha-
nisms, where nodes only interact with adjacent units. One of the
most widely used paradigmatic models of phase oscillators to study
synchronization in complex networks is the Kuramoto model.10,11

Chaos 31, 113134 (2021); doi: 10.1063/5.0068136 31, 113134-1
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A great number of natural phenomena where a system is com-
posed of interconnected dynamical units can be modeled by using
complex networks to capture its global and emerging properties.12–14

For example, it can be used in the study of non-linear dynami-
cal systems,15,16 of chemical and biological systems,17–21 of power
grids,22–25 and even in the study of social networks.26–28 The syn-
chronization of networks in a multi-layer network has also been the
subject of intense studies and can be used, for example, in the study
of epidemic models.29,30

Biological and social studies have shown that in some situa-
tions, like when it comes to choosing friends, people prefer to gather
with similar minded ones.31–34 On the other hand, when it comes
to mating preferences, some species prefer to mate with dissimilar
ones, which may provide the offspring with good genes.35–38 Freitas
et al.26 used an approach based on an interconnected network of
Kuramoto oscillators to analyze these scenarios. There, the former
kind of behavior is referred to as Similar (S ), while the latter one as
Dissimilar (D) neighborhood patterns. If an ensemble presents no
strong bias toward any of these extremes, it is called Neutral (N ).

In this work, we explore the idea of Similarity and Dissimilarity
described above by means of structure properties and synchro-
nization of complex networks of Kuramoto non-identical phase
oscillators. In order to quantify these patterns, we shall use a mea-
sure related to classical dissonance,1 which measures the difference
of the natural frequencies of a pair of oscillators.

With reference to related material on synchronization of com-
plex networks, Pinto and Saa39 employs a dimensional reduction
approach proposed by Ref. 40 and derive a sufficient analytical con-
dition, considering an ansatz, to optimize a topology of a network
in order to favor synchronization using the Kuramoto model. They
also showed that when this method is applied to a network with ran-
dom natural frequencies, the final topology presents a negative cor-
relation between the natural frequencies of adjacent vertices in a way
that we can call a network with a Dissimilar pattern, even though
the approach in Ref. 39 does not exhaust the problem, especially
for small and intermediate coupling values, which are commonly
found in nature.1 A numerical study made by Freitas et al.26 showed
that Similar patterns favor weaker forms of synchronization, but
Dissimilar ones exhibit explosive synchronization, reaching global
synchronization faster than the Similar pattern.41 We use an evolu-
tionary strategy to find a minimal network structure that guarantees
global synchronization and show that the heterogeneity in the nodes’
natural frequency is the driving force that determines the evolution
of the network structure.

We intend to extend the work done by Ref. 26 and add the
complex network measures assortativity and clustering coefficient
to investigate how the structure of complex networks influences the
synchronization of Similar, Dissimilar, and Neutral patterns of nat-
ural frequencies of oscillators. Assortativity is employed in order
to measure how connections between nodes with the same degree
influence the emergence of synchronization, while the clustering
coefficient measures the impact of loops of size three (small cycles).
Therefore, the topology of the networks is dictated by the assor-
tativity and by the clustering coefficient values, while the natural
frequency of their nodes is given by the dissonance patterns.

The authors in Refs. 42 and 43 used a modified version of
the Kuramoto model in order to study opinion formation and its

dynamics through synchronization of complex networks where the
phase of a node in this model represents the opinion of an indi-
vidual and the coupling represents the amount of the interaction
among them. To illustrate the meaning of the metrics used here,
the natural frequency patterns, and the synchronization of the net-
work, let us take as an example a large group of individuals having
an argument about a polemic subject where each individual has
its own initial opinion, and due to the number of people and the
limited time they have, they can only communicate with a lim-
ited number of people inside this group. Their discussion ends only
when all participants come to an agreement and, therefore, reach
a common opinion. We can model this situation by using a com-
plex network approach where each individual is represented by a
node whose behavior is dictated by a dynamical system model, the
interaction between them is represented by an edge, and the opin-
ion of each individual in relation to the subject being discussed is
given by the natural frequency of the nodes. Therefore, reaching a
common opinion is associated with a synchronized state. The nat-
ural frequency patterns Similar, Dissimilar, and Neutral here relate
to the level of homogeneity (Similar) or heterogeneity (Dissimilar)
of the opinion of communicating individuals, as, for example, if the
individuals only communicate with similar minded ones, the Simi-
lar pattern is used to model this dynamics. We also refer the reader
to Noorazar44 and Deffuant et al.45 for a more detailed discussion on
opinion dynamics.

The rules of who can communicate with whom are given by
the metrics assortativity and the clustering coefficient. If individuals
who interact with many people prefer to communicate with the ones
that are also popular and individuals who interact with a few peo-
ple prefer to communicate with ones that are also less popular, the
network is said to be assortative and has a high value of the metric
assortativity. The opposite can also happen; when popular individ-
uals tend to talk with less popular ones, the network is said to be
disassortative. Looking at another aspect of the rules of communica-
tion within this group of people, we can also allow two contacts of a
person to talk to each other, forming then a small cycle or a loop of
size three in the network topology. When there is a large number of
a couple of contacts of individuals communicating to each other, we
say that this network presents a high clustering coefficient, and, on
the other hand, it presents a low clustering coefficient if the opposite
happens.

In this scenario, one can ask the following: how strong the
interactions (represented here by the coupling of the Kuramoto
model) between individuals must be in order to reach an agree-
ment? Is it easier to be achieved if individuals only communicate
with similar minded ones or is it the opposite? Is it easier if popular
individuals only talk to each other or when they talk to less popular
ones? Or if contacts of individuals communicate with each other?

Our results show that the Similar pattern of a natural fre-
quency distribution favors weaker forms of synchronization, but, as
we increase the coupling constant, the Dissimilar pattern is the first
to reach the synchronized state. The Erdös–Rényi model presented
itself as the easiest to reach the phase locking state when compared to
Watts–Strogatz and Barabási–Albert network models. In relation to
the network metrics assortativity and clustering coefficient, one can
see that low values of both metrics favors the reaching of the syn-
chronized state. As for the questions raised about the best strategy
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to conduct an argument among a group of people, we find that the
best strategy would be to encourage individuals with different opin-
ions to communicate to each other and, at the same time, encourage
popular individuals to talk to less popular ones and discourage the
interaction among contacts of individuals in order to avoid small
cycles of interactions.

This paper is organized as follows: Sec. II presents the
Kuramoto model, characterize the Similar, Dissimilar, and Neu-
tral frequency patters, defines synchronization quantifiers, and
presents the network metrics used to generate the network topolo-
gies. Section III develops a discussion about the results, and the
conclusions are presented in Sec. IV.

II. MODEL AND METHODS
In this work, we consider complex networks of Kuramoto

phase oscillators whose dynamics is described by a simple but very
powerful model as it has proven to accurately approximate a great
class of coupled oscillators.46,47 The dynamics of the Kuramoto
model is described by

θ̇i = ωi +
λ

di

N
�

j=1

Aij sin(θj − θi), (1)

where N is the number of oscillators, θi ∈ R is the phase variable of
each oscillator for i = 1, . . . , N, and ωi is its natural frequency. Com-
munication channels are defined through a coupling graph, a simple
and connected graph, which is expressed via its adjacency matrix
(Aij); i.e., Aij has value 1 if nodes i and j are connected and 0 oth-
erwise. The symbol di denotes the node degree of the ith oscillator,
while λ ≥ 0 is the overall coupling constant.

In order to characterize the Similar, Dissimilar, and Neutral
natural frequency patterns on complex networks, we make use of
the total dissonance measure26

ν =
1

N

�

�

�

�

N
�

i,j=1

Aij(ωi − ωj)
2. (2)

For the Similar pattern, the natural frequencies of adjacent
nodes are close to each other such that the value of ν is small and
it is zero only if all oscillators have identical natural frequencies. If
the natural frequencies of adjacent nodes are very different from
each other, that is, the Dissimilar pattern, the value of ν is higher.
The Neutral pattern is characterized as intermediate values of ν.
To calculate these frequency patterns, the stochastic optimization
algorithm called simulated annealing48 is used. In order to optimize
the objective function ν, it makes permutations of the natural fre-
quencies set until it finds an optimal local value of the objective
function, in correspondence with the desired Similar or Dissimilar
patterns. Considering the outputs of this algorithm, the minimiza-
tion of ν corresponds to the Similar pattern, the maximization to
the Dissimilar one, and the random initial natural frequency set is
called Neutral. In practice, for each network topology considered
in this work, a set of natural frequencies is chosen from a random
uniform distribution in [−π , π] and the total dissonance νini is cal-
culated, this one is called the Neutral frequency pattern. Then, an
optimization algorithm is applied in order to maximize (νmax) and

minimize (νmin) the total dissonance of each network, giving rise to
the Dissimilar and Similar patterns, respectively.

A useful way to quantify phase synchronization of networks is
by using the order parameter R defined as

R(t) =

�

�

�

�

�

1

N

N
�

i=1

eiθi

�

�

�

�

�

, (3)

where R(t) ∈ [0, 1] measures the amount of collective behavior of
the system. When R(t) = 1, the system is said to be in the state of
phase synchronization and all oscillators present the same phase. On
the other hand, when the system presents an incoherent behavior,
R(t) ≈ 0.

As done by Ref. 49, we introduce now an index to quantify the
appearance of another type of synchronization, called phase lock-
ing (PL) that indicates when a pair of oscillators presents a constant
phase difference and, therefore, moves as a rigid body. This measure
is called partial synchronization index Sij given by

Sij =

�

�

�

�

lim
�t→∞

1

�t

� tr+�t

tr

ei[θi(t)−θj(t)] dt

�

�

�

�

, (4)

where Sij ∈ [0, 1] and tr is a large enough transient time. When two
oscillators have the same instantaneous frequency, they are said to
be in phase lock and, in this case, Sij is equal to 1. In order to mea-
sure the degree of partial synchronization of the whole network, we
calculate the arithmetic mean

S =
1

N2

N
�

i,j=1

Sij. (5)

Therefore, when the whole system is in phase lock, that is, when the
phase difference between all pair of nodes is constant in time, S = 1.
As for the order parameter in this case, R(t) is constant in time but
not necessarily equal to 1 as it is not mandatory that the phases are
the same. If S ≈ 0, the system presents a low coherent behavior.

Our aim is to analyze how network structure influences the
emergency of synchronization on complex networks. For this pur-
pose, the network measures called assortativity and clustering coef-
ficient are used in order to generate different network topologies.

Assortativity measures the similarity of connections in a net-
work with respect to a certain characteristics of a node. In this work,
the assortativity is determined by the degree of the nodes, and it is
given by the use of the Pearson correlation coefficient50,51

ρ =

�

ij ij(fij − aibj)

σaσb

, (6)

where ai and bj are the fraction of edges that start and end at nodes
with degree values i and j, respectively, fij is the fraction of edges
between nodes of degree i and j, and σa and σb are the standard devi-
ations of the distributions a and b, respectively. ai, bj, and fij satisfy
the sum rules:

�

ij fij = 1,
�

j fij = ai, and
�

i fij = bj.
The graph assortativity ρ ∈ [−1, 1] represents how nodes in a

network associate with each other; i.e., it shows whether nodes pre-
fer to connect to nodes of the same sort or of opposing sort. When,
on average, high degree nodes connect to high degree ones or low
degree nodes connect to low degree ones, ρ is close to 1 and the
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network is said to be assortative. On the other hand, if on aver-
age, high degree nodes connect to low degree ones, ρ is close to −1
and the network is said to be disassortative. If ρ is close to 0, the
connections are considered to be completely random.51 The reader
should notice that there are two different mechanisms of preferen-
tial attachment here: assortativity takes into account only the node
degree, while neighborhood patterns consider both graph structure
and node’s natural frequency.

Another basic network measure that is used in this work is the
clustering coefficient, which measures the presence of loops of size
three inside a network; i.e., it measures the tendency of two neigh-
bors of a certain vertex to also be connected to each other. In a real
world network, it can be seen as the likelihood of friends of a certain
person also to be friends with each other.52 The clustering coefficient
of a vertex is given by

ci =
2Ti

di(di − 1)
, (7)

where Ti is the number of triangles involving node i and di is the
degree of node i. Therefore, the clustering of a node ci ∈ [0, 1] is
the number of triangles that pass through that node normalized by
the maximum number of such triangles in a way that if none of the
neighbors of node i are connected to each other, ci = 0, and ci = 1
if all neighbors are connected.53 The average clustering coefficient of
the network is given by

C =
1

N

N
�

i=1

ci. (8)

A large clustering coefficient indicates that there are many redun-
dant paths in the network and a low clustering indicates the
opposite.

The models of complex networks analyzed in this work are
Erdös–Rényi (ER),54 Watts–Strogatz (WS),27 and Barabási–Albert
(BA)55 as they are widely used in the literature.8,56 For the BA model,
the degree exponent is fixed as γ = 3. In the ER model, we set the
probability of edge creation to be 0.15, and for the WS networks,
the probability of rewriting each edge is 0.2. The number of nodes is
fixed as N = 50.

The main contribution of this work is to analyze the impact on
synchronization considering the assortativity and clustering coeffi-
cients in association with neighborhood patterns (S /N /D). To do
so, we proceed as follows.

Network configurations considered here are represented by the
pair (A, ω), where A stands for the adjacency matrix of the graph
and ω is the set of natural frequencies. For each network model (BA,
ER, WS), the three corresponding network topologies are consid-
ered for assortativity and clustering (representing low, intermediate,
and high values of each) Aρmin , Aρmiddle , Aρmax , ACmin , ACmiddleACmax ,
and three patterns of the distribution of natural frequencies are con-
sidered: Neutral ωN , Similar ωS , and Dissimilar ωD . In all, 27
configurations are studied for assortativity and 27 for the cluster-
ing coefficient. As an example, consider a BA network with low
value of assortativity Aρmin . For this network, a random set of nat-
ural frequencies is generated from a uniform distribution (Neutral
dissonance pattern), giving rise to the Configuration (Aρmin , ωN ).
Then, the simulated annealing algorithm is used to optimize the

values of the total dissonance with a low value, giving rise to the set
of natural frequencies of the Similar pattern and the configuration
(Aρmin , ωS ) and a high value generating the set of natural frequen-
cies of the Dissimilar pattern and the Configuration (Aρmin , ωD).
Recall that dissonance patterns do not alter the physical configura-
tion of networks, it only interchanges the natural frequencies. The
low and high assortativity/clustering values are the only ones that
come from a different network configuration. The choosing of Aρmin ,
Aρmiddle , Aρmax , ACmin , ACmiddle , and ACmax is discussed in Sec. III.

In order to measure how the total dissonance combined with
assortativity and clustering coefficients affect the global synchro-
nization of the networks, the Kuramoto model [Eq. (1)] is numer-
ically integrated and the mean value of the order parameter is
calculated R(t) over the integration time and is denoted by �R�. We
call �R�PL and λPL the values of the order parameter and the coupling
constant, respectively, at the emergence of phase locking (S = 1).
The initial conditions are the same for all networks used in this work
and were all set as θi(0) = 0.5 for i = 1, . . . , N, where N is the total
number of nodes. This choice was intentional because as shown in
previous works,3 the set of initial conditions can also play an impor-
tant role in the synchronization of the system, but this is not the
scope of this work. The distribution of the natural frequencies for
the Neutral patterns is drawn randomly by a uniform distribution
over [−π , π].

III. RESULTS AND DISCUSSION
ER, WS, and BA topology models are used in this work. Each

of them has specific topology, and in order to obtain networks with
low and high values of assortativity and clustering coefficient, we
chose to create 1 × 106 networks of each type and pick three of each
model, which present lowest, intermediate, and highest values of the
measures being considered. In this way, we make sure to keep the
topology of the network models. The histograms of all networks gen-
erated as a function of assortativity and clustering coefficients can be
seen in Fig. 1.

By construction, the BA model has a preferential attachment
rule when building the graph; therefore, the probability of a new
node to connect with an existing one is proportional to the existing
node degree. Therefore, these networks are characterized by having
a few nodes highly connected (called hubs) and the rest of the nodes
with few connections. It is by construction a network with a negative
value of assortativity where nodes with low degree tend to connect
to the ones with high degree. On the other hand, ER and WS do not
have a preferential attachment rule, and the vertices have a rather
random pattern of connections. Therefore, the average assortativity
is expected to be around zero. When it comes to the clustering coef-
ficient, the WS model is the one expected, in average, to have the
higher number of loops of size three as it is constructed by rewriting
some edges of a regular network, which are known to have a high
clustering coefficient.51,53,56

We then pick the adjacency matrices A that generate extreme
values of ρ and C from the histogram in Fig. 1 (ρmin and
Cmin are the smallest and ρmax and Cmax are the greatest values)
and ones that generate values approximately in the middle of
them (ρmiddle and Cmiddle). Therefore, we have the BA model with
ρmin = −0.7354, ρmiddle = −0.2898, ρmax = 0.1034; the ER model
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FIG. 1. Histograms of Erdös–Rényi (orange), Watts–Strogatz (green), and Barabási–Albert (blue) networks in relation to (a) assortativity (ρ) and (b) clustering coefficient
(C). 1 × 106 networks were generated to compute each histogram.

with ρmin = −0.3560, ρmiddle = −0.0505, ρmax = 0.2584; and the WS
model with ρmin = −0.5079, ρmiddle = −0.0515, ρmax = 0.4032.

The topologies related to the minimum and maximum val-
ues of ρ and C, along with the three dissonance patterns, can be
seen in Figs. 2 and 3. One can notice that for the Similar pattern,
nodes tend to be connected to ones that have a similar natural fre-
quency (similar node color) and that for the Dissimilar pattern, they
tend to be connected with nodes with different natural frequencies.
This is expected; therefore, we can confirm that our optimization
algorithm is working (the algorithm used to generate these patterns
converges to a local, not global, value of the objective function that
it is trying to maximize/minimize). The Neutral pattern stays in the
middle as some nodes connect with nodes with similar frequencies
and some connect with nodes with dissimilar frequencies. Recall that
dissonance patterns do not alter the physical configuration of the
networks, it only interchanges the natural frequencies. The low and
high assortativity/clustering values are the only ones that come from
a different network configuration.

The mean of the order parameter �R� and the total partial
synchronization index S as a function of the overall coupling for
networks with high and low assortativity and clustering coefficient
and all three dissonance patterns for the BA, ER, and WS models
are presented in Figs. 4 and 5, respectively. In relation to the pat-
terns Similar, Neutral, and Dissimilar, one can note that, for small
coupling, the Similar pattern favors weaker forms of synchroniza-
tion both to a phase locked state (higher value of S) and to a phase
synchronized state (higher value of �R�) for the BA, ER, and WS
models since the growth of these measures is more protuberant at
first for small values of coupling. The dissimilar pattern appears to
be the harder to achieve synchronization, while the Neutral one stays
in the middle. As the coupling λ is increased, the Dissimilar pat-
tern presents a higher growth on both �R� and S and is the first of
the patterns to reach phase locking. As the coupling increases even
more, it is time of the Neutral pattern to reach the phase locking
state, and then for greater λ, the Similar pattern also synchronizes.
Therefore, the Dissimilar natural frequency distribution pattern is
the one that mostly favors the achievement of the synchronized state.
This behavior was also observed by Freitas et al.26 and Scafuti et al.41

In relation to the illustrative example given at the beginning of the
paper about the discussion of a polemic subject, we can conclude
that if mostly similar minded people talk to each other, an agree-
ment seems to be close by people making only a small effort, but
at some point, the discussion somehow does not advance anymore
and more effort is needed in order to reach an agreement. On the
other hand, when people tend to talk with the ones that have dis-
tinct opinions, there is a huge discussion at first, and, despite the
increasing effort of all individuals, it seems like an agreement is not
reachable, but, after more effort is made by the individuals, a com-
mon opinion can finally be reached and all individuals arrive at the
same conclusion.

Now, we investigate how the measures assortativity and clus-
tering coefficient along with the dissonance patterns affect synchro-
nization. In order to do this, we annotate the value of λ for which
all configurations in Figs. 4 and 5 reach phase locking, and we name
it λPL. This result is presented in the first column in Figs. 6 (related
to assortativity) and 7 (related to clustering). In the second column,
there is the value of the order parameter (RPL) for this λPL. The order
parameter RPL shows the amount of phase synchronization of the
system at this stage. By definition, the partial synchronization index
S at λ = λPL is equal to one; therefore, the system is synchronized.

In relation to the network models considered in this work, on
average, the ER model is the one that reaches phase locking with
lower coupling values (light yellow) when considering the mea-
sures assortativity and clustering coefficient in Figs. 6 and 7(a), 7(c),
and 7(e). The BA network topology needs on average a high cou-
pling constant to reach the phase locking state when considering
assortativity, being then the hardest to synchronize in relation to
this measure. WS networks are an intermediate between these two
in relation to assortativity but requires the highest values of coupling
to reach phase locking when the clustering coefficient is taken into
account.

In regard to the network structure, we can infer that disas-
sortative networks seem to favor synchronization for, in general,
networks with negative values of ρ require a lower coupling value
in order to reach phase locking. In this way, when high degree nodes
connect with low degree ones, it favors synchronization (this does

Chaos 31, 113134 (2021); doi: 10.1063/5.0068136 31, 113134-5

Published under an exclusive license by AIP Publishing



Chaos ARTICLE scitation.org/journal/cha

(a) (b) (c)

(c) (e) (f)

FIG. 2. (a) and (b) BA, (c) and (d) ER, and (e) and (f) WS networks with low and high values of clustering coefficient C. The SimilarS (νmin), NeutralN (νini ), and Dissimilar
D (νmax ) patterns of dissonance ν are also showed for each network (from top to bottom, respectively). ωi is the natural frequency of the nodes, and the size of the nodes
is proportional to the degree.
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(a) (b) (c)

(c) (e) (f)

FIG. 3. (a) and (b) BA, (c) and (d) ER, and (e) and (f) WS networks with low and high values of assortativity ρ. The Similar S (νmin), Neutral N (νini ), and Dissimilar D
(νmax) patterns of dissonance ν are also showed for each network (from top to bottom, respectively). ωi is the natural frequency of the nodes, and the size of the nodes is
proportional to the degree.
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(a) (b) (c)

(c) (e) (f)

FIG. 4. (a)–(c) Mean of the order parameter �R� and (d)–(f) the total partial synchronization index S as a function of the coupling for networks with low (dashed line) and
high (continuous line) values of assortativity ρ and patterns Neutral (black), Similar (blue), and Dissimilar (red) of the natural frequency distribution. Note that S converges
to 1 for a finite value of λ and �R� asymptotically tends to 1.

(a) (b) (c)

(c) (e) (f)

FIG. 5. (a)–(c) Mean of the order parameter �R� and (d)–(f) the total partial synchronization index S as a function of the coupling for networks with low (dashed line) and
high (continuous line) values of clustering coefficient C and patterns Neutral (black), Similar (blue), and Dissimilar (red) of the natural frequency distribution. Note that S
converges to 1 for a finite value of λ (except for the WS Similar Cmax) and �R� asymptotically tends to 1.
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(a) (b) (c)

(e) (f) (e)

FIG. 6. Contour plot of the assortativity ρ and the neighborhood patterns in relation to the (a), (c), and (e) coupling λPL and (b), (d), and (f) order parameter RPL at phase
locking for the models BA, ER, and WS of networks.

not seem to apply to the BA model). As already mentioned before,
the Dissimilar natural frequency pattern tends to favor synchro-
nization, and we can think of the distribution of the nodes in a
disassortative network also as being a dissimilar topological distri-
bution as nodes with different degree tend to connect to each other.
Therefore, when analyzing our example, instead of having popular

individuals communicating among each other, it is best if popular
individuals talk to less popular ones.

In relation to the clustering coefficient, networks with fewer
loops of size three seem to favor synchronization as, on average, net-
works with the lowest value of C tend to be easier to synchronize.
When it comes to our example, this means that it is best to avoid the

(a) (b) (c)

(e) (f) (e)

FIG. 7. Contour plot of the clustering coefficient C and the neighborhood patterns in relation to the (a), (c), and (e) coupling λPL and (b), (d), and (f) order parameter �R�PL
at phase locking for the models BA, ER, and WS of networks.
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contacts of an individual to communicate with each other, avoiding
then the creation of a small cycle of discussion as this may create
unnecessary debates and, therefore, increase the effort to achieve an
agreement.

In general, the measures assortativity and clustering coefficient
seem to have a stronger effect on the synchronization of the Similar
dissonance patterns (especially when considering the WS model),
having a modest effect on the Neutral pattern and a very low effect
on the Dissimilar one.

IV. CONCLUSIONS
The influence of the structure of complex networks of non-

identical oscillators on global synchronization was studied. The total
dissonance metric for neighborhood similarity was employed, and,
with the help of an optimization algorithm, three patterns of natural
frequency distributions were created, one where adjacent nodes have
similar frequencies (Similar pattern), one where they have different
frequencies (Dissimilar), and one that is a blend of both (Neutral).
Network topologies of the models Erdös–Rényi, Watts–Strogatz,
and Barabási-Albert with high, intermediate, and low values of the
network measure assortativity and clustering coefficient were cre-
ated and along with the frequency patterns were used to study the
synchronization of these systems.

In relation to the emergency of phase locking, at low val-
ues of the coupling constant, the Similar pattern clearly favors
weaker synchronization regimes, but, as the coupling is increased,
the Dissimilar pattern presents a rapid growth and is the first to
reach synchronization, which corroborates previous works.26,41 As
for the complex network models used in this work, the Erdös–Rényi
showed itself as the easiest to reach the regime of synchronization
when compared to Watts–Strogatz and Barabási–Albert, but this
has yet to be confirmed by future experiments by comparing, for
example, these three models where each one has the same values of
assortativity and/or clustering coefficient. In relation to the network
measures employed here, in general, both low values of assortativity
and clustering coefficient appear to favor synchronization, especially
for the Similar dissonance pattern.

In summary, answering the questions raised at the beginning
of this paper, based on our findings, we can state that the best way to
conduct a discussion on a polemic subject is by encouraging individ-
uals with different opinions to talk to each other and also encourage
popular individuals to talk to less popular ones. It is also a good idea
to avoid contacts of individuals to talk to each other, avoiding then
small cycles of discussions. This hypothesis has yet to be confirmed
by future experiments.

As for future work, we consider to use the BA model with dis-
tinct degree exponents. We also intend to investigate the role that the
average degree of the networks has on synchronization. The behav-
ior of the WS configuration (ACmin , ωS ), which does not reach the
synchronous state even for high values of λ, as shown in Fig. 2, has
also to be better analyzed.
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