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Abstract: The development of analytical software for big Earth observation data faces several
challenges. Designers need to balance between conflicting factors. Solutions that are efficient for
specific hardware architectures can not be used in other environments. Packages that work on
generic hardware and open standards will not have the same performance as dedicated solutions.
Software that assumes that its users are computer programmers are flexible but may be difficult
to learn for a wide audience. This paper describes sits, an open-source R package for satellite
image time series analysis using machine learning. To allow experts to use satellite imagery to
the fullest extent, sits adopts a time-first, space-later approach. It supports the complete cycle of
data analysis for land classification. Its API provides a simple but powerful set of functions. The
software works in different cloud computing environments. Satellite image time series are input
to machine learning classifiers, and the results are post-processed using spatial smoothing. Since
machine learning methods need accurate training data, sits includes methods for quality assessment
of training samples. The software also provides methods for validation and accuracy measurement.
The package thus comprises a production environment for big EO data analysis. We show that this
approach produces high accuracy for land use and land cover maps through a case study in the
Cerrado biome, one of the world’s fast moving agricultural frontiers for the year 2018.

Keywords: big Earth observation data; data cubes; satellite image time series; machine learning and
deep learning for remote sensing; R package

1. Introduction

The growing demand for natural resources has caused major environmental impacts
and is changing landscapes everywhere. Conversion of land cover due to human use is
one of the key factors behind greenhouse gas emissions and biodiversity loss [1]. Spatial
quantification of land use and land cover change allows societies to understand the extent
of these impacts. Satellites are required to generate land cover products, since they pro-
vide a consistent, periodic, and globally reaching coverage of the planet’s surface. Thus,
satellite-based land cover products are essential to support evidence-based policies that
promote sustainability.

There is currently an extensive amount of Earth observation (EO) data collected by an
increasing number of satellites. Coupled with the adoption of open data policies by most
spatial agencies, an unprecedented amount of satellite data is now publicly available [2].
This has brought a significant challenge for researchers and developers of geospatial
technologies: how to design and build technologies that allow the Earth observation
community to analyse big data sets?
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The emergence of cloud computing services capable of storing and processing big EO
data sets allows researchers to develop innovative methods for extracting information [3,4].
One of the relevant trends is to work with satellite image time series, which are calibrated
and comparable measures of the same location on Earth at different times. These measures
can come from a single sensor (e.g., MODIS) or by combining various sensors (e.g., Landsat
8 and Sentinel-2). When associated with frequent revisits, image time series can capture
significant land use and land cover changes [5]. For this reason, developing methods to
analyse image time series has become a relevant research area in remote sensing [6–8].

Multiyear time series of land cover attributes enable a broader view of land change.
Time series capture both gradual and abrupt changes [9]. Researchers have used time series
in applications such as forest disturbance [10], land change [11], ecological dynamics [12],
agricultural intensification [13], and deforestation monitoring [14].

The traditional approach for change detection in remote sensing is to compare two
classified images of the same place at different times and derive a transition matrix.
Camara et al. [15] call this a space-first, time-later approach. The alternative is to adopt a
time-first, space-later method, where all values of the time series are inputs for analysis.
Each spatial location is associated with a time series. These algorithms first classify each
time series individually and later apply spatial post-processing to capture neighbourhood
information. Many authors argue that time-first, space-later methods are better suited to
track changes continuously better than space-first, time-later approaches [8,12,15–17].

This paper describes sits, an open-source R package for satellite image time series
analysis using machine learning that adopts a time-first, space-later approach. Its main
contribution is to provide a complete workflow for land classification of big EO data sets.
Users build data cubes from images in cloud providers, retrieve time series from these
cubes, and can improve training data quality. Different machine learning and deep learning
methods are supported. Spatial smoothing methods remove outliers from the classification.
Best practice accuracy techniques ensure realistic assessments. The authors designed an
expressive API that allows users to achieve good results with minimal programming effort.

The sits package incorporates new developments in image catalogues for cloud com-
puting services. It also includes deep learning algorithms for image time series analysis
published in recent papers and not available as R packages [8,18]. The authors developed
new methods for quality control of training data [19]. Parallel processing methods spe-
cific for data cubes ensure efficient performance. Given these innovations, sits provides
functionalities beyond existing R packages.

We organise this paper as follows. In Section 2, we review Earth observation data
cubes, pointing out the challenges involved in building them. Section 3 presents the design
decisions for the sits API and the internal components of the package. Section 4 shows a
concrete example of using sits to perform land use and land cover classification in the
Brazilian Cerrado and discusses the lessons learned. We conclude by pointing out further
directions in the development of the package.

2. Earth Observation Data Cubes

The term Earth observation (EO) data cube is being widely used to refer to large
collections of satellite images modelled as multidimensional structures to support time
series analysis in an easy way to scientists [20]. There are different definitions of an EO
data cube. Some authors refer to EO data cubes as organised collections of images [21] or to
the software used to produce the data collection [22]. Others are more restrictive, defining
data cubes as regular collections reprocessed to a common projection and a consistent
timeline [20,23]. We propose a conceptual approach, following the idea of EO data cubes
as geographical fields [24,25]. The essential property of a geographical field is its field
function; for each location within a spatiotemporal extent, this function produces a set of
values. This perspective leads to the following definitions.
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Definition 1. A data cube is defined by a field function f : p→ v, ∀p ∈ ST, ∃ v, where ST is a
set of positions in space-time and v is a vector of attributes without missing values.

Definition 2. An Earth observation data cube is a data cube whose spatiotemporal extent has
a two-dimensional spatial component S : X × Y where ∀p = (xi, yj) ∈ S, the point p can be
referenced to a location on the surface of the Earth, and points in the spatial extent are mapped to a
two-dimensional regular grid.

Definition 3. The temporal component of the spatiotemporal extent ST is a set of time intervals
T = t1, ..., tn such that ∀(i, j, i 6= j), ti ∩ tj = ∅ and ∀(i, i + 1), Meets(ti, ti+1), where Meets(.)
is the temporal relation defined by Allen and Ferguson [26].

Definitions 1–3 capture the essential properties of an EO data cube: (a) there is a unique
field function; (b) the spatial support is georeferenced; (c) temporal continuity is assured;
and (d) all spatiotemporal locations share the same set of attributes; and (e) there are no
gaps or missing values in the spatiotemporal extent (See Figure 1). Since the proposed
definition is an abstract one, it can be satisfied by different concrete implementations.

Figure 1. Conceptual view of data cubes (source: authors).

EO data cubes that follow these definitions enable the use of machine learning al-
gorithms. These methods do not allow gaps or missing values in the input data. Since
image collections available in cloud services do not satisfy these requirements, such col-
lections need additional processing. This can be done either by creating a new set of files
that support the properties of a data cube, or by developing software that creates data
cubes in real-time. To better understand the problem, consider the differences between
analysis-ready data (ARD) image collections and EO data cubes.

Definition 4. An ARD image collection is a set of files from a given sensor (or a combined set of
sensors) that has been corrected to ensure comparable measurements between different dates. All
images are reprojected to a single cartographical projection following well-established standards.
Data producers usually crop ARD image collections into tiling systems.

ARD image collections do not fully support a field function, as required by Definition 1
of data cubes. These collections do not guarantee that every pixel of an image has a valid set
of values since they may contain cloudy and missing pixels. For example, Figure 2 shows
images of tile “20LKP” of the Sentinel-2/2A image collection available on the Amazon
Web Service (AWS) for different dates. Some images have a significant number of clouds.
To support the data cube abstraction, data analysis software has to replace cloudy or
missing pixels with valid values.
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Figure 2. Sentinel-2 image colour composites for tile 20LKP on different dates (source: authors).

A further point concerns the timeline of different tiles. Consider the neighbouring
Sentinel-2 tiles “20LLP” and “20LKP” for the period 13 July 2018 to 28 July 2019. Tile 20LLP
has 144 temporal instances, while tile 20LKP has only 71 instances. Such differences in
temporal extent are common in large image collections. To ensure that big areas can be
processed using a single machine learning model without the need for data reprocessing,
the data analysis software has to enforce a unique timeline for all tiles.

The differences between ARD image collections and data cubes proper have led some
experts to develop tools that reprocess collections, making them regular in space and in
time, and account for missing or noisy values. For example, the Brazil Data Cube provides
organised collections [23]. The R gdalcubes package supports generating consistent data
cubes [20]. When designing sits, the authors decided that the software would support
both kinds of imagery: regular data cubes and irregular image collections. The design
decisions for sits will be further explored in the next section.

3. Software Design and Analysis Methods
3.1. Requirements and Design Choices

The target audience for sits is the new generation of specialists who understand the
principles of remote sensing and can write scripts in R. To allow experts to use the full
extent of available satellite imagery, sits adopts a time-first, space-later approach. Satellite
image time series are used as inputs to machine learning classifiers; the results are then
post-processed using spatial smoothing. Since machine learning methods need accurate
training data, sits includes methods for quality assessment of training samples. There
are no minimum requirements for spatial or temporal extents and temporal sampling
frequencies for land cover classification. The software provides tools for model validation
and accuracy measurements. The package thus comprises a production environment for
big EO data analysis.

We chose to develop sits using the R programming environment. R is well-tested
and widely used for data analysis. It has high-level abstractions for spatial data, time series,
and machine learning. R packages are community managed using a repository (CRAN) that
enforces quality standards and cross-platform compatibility. Since sits is an integrated
environment that supports the full cycle of land use and land cover classification, it uses
a large number of third-party packages. The R CRAN community package management
provides a sound basis for our work. Furthermore, the authors wanted to build robust
software for big EO data analysis. Since the authors of the package include experienced R
developers, the choice of R was a natural one.

Further requirements come from the authors’ affiliation with Brazil’s National Insti-
tute for Space Research (INPE). The institute provides the official Brazilian estimates of
deforestation and land use change in the environmentally sensitive Amazonia and Cerrado
biomes. Given the emissions and biodiversity impacts of land use change in Amazonia
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and Cerrado, INPE has been providing estimates of deforestation since 1998. Since 2007,
INPE also produces daily alerts of forest cuts [27]. Comprehensive assessments have
shown the quality of INPE’s work [28]. Since INPE experts aim to use sits to generate
monitoring products [23], the package has been designed to meet the performance needs
of operational activities.

These requirements led to the following design goals:

1. Encapsulate the land classification workflow in a concise R API.
2. Provide access to data cubes and image collections available in cloud services.
3. Develop methods for quality control of training data sets.
4. Offer a single interface to different machine learning and deep learning algorithms.
5. Support efficient processing of large areas, with internal support for parallel processing.
6. Include innovative methods for spatial post-processing.

3.2. Workflow and API

The design of the sits API considers the typical workflow for land classification using
satellite image time series (see Figure 3). Users define a data cube by selecting a subset of
an ARD image collection. They obtain the training data from a set of points in the data
cube whose labels are known. After performing quality control on the training samples,
users build a machine learning model and use it to classify the entire data cube. The results
go through a spatial smoothing phase that removes outliers. Thus, sits supports the entire
cycle of land use and land cover classification.

Figure 3. Using time series for land classification (source: authors).

The above-described workflow represents one complete cycle of land use classification.
Machine learning methods require that the training data set and the classification input
have the same number of dimensions. Thus, increasing or reducing the size of a data cube
requires that the classification model be retrained. However, once a model has been trained,
it can be applied to any data cube with the same dimensions. A model trained using
samples taken from a data cube can be used for classifying another data cube, provided
both cubes share the same bands and the same number of temporal intervals.
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When designing the sits API, we tried to capture the essential properties of good
software. As stated by Bloch [29], good APIs “should be easy to use and hard to misuse,
and should be self-documenting”. Bloch [29] also recommends, “good programs are
modular, and inter-modular boundaries define APIs”. Following this advice, in sits, each
function carries out one task of the land classification workflow. For example, instead of
having separate functions for working with machine learning models, there is one function
for model training. The sits_train() function encapsulates all differences between
different methods, ranging from random forests to convolutional neural networks. All
functions have convenient default parameters. Thus, novice users can achieve good results,
while more experienced ones are able to fine-tune their models to get further improvements.

The sitsAPI captures the main steps of the workflow. These functions are: (a) sits_cube()
creates a cube; (b) sits_get_data() extracts training data from the cube; (c) sits_train()
trains a machine learning model; (d) sits_classify() classifies the cube and produces a
probability cube; (e) sits_smooth() performs spatial smoothing using the probabilities; (f)
sits_label_classification() produces the final labelled image. Since these functions encap-
sulate the core of the package, scripts in sits are concise and easy to reuse and reproduce.

3.3. Handling Data Cubes

The sits package works with ARD image collections available in different cloud
services such as AWS, Microsoft, and Digital Earth Africa. It accepts ARD image collections
as input and has user-transparent internal functions that enforce the properties of data
cubes (Definitions 1–3). Currently, sits supports data cubes available in the following
cloud services: (a) Sentinel-2/2A level 2A images in AWS and on Microsoft’s Planetary
Computer; (b) collections of Sentinel, Landsat, and CBERS images in the Brazil Data Cube
(BDC); (c) collections available in Digital Earth Africa; (d) data cubes produced by the
gdalcubes package [20]; (e) local files.

The big EO data sets available in cloud computing services are constantly being
updated. For this reason, sits uses the STAC (SpatioTemporal Asset Catalogue) protocol.
STAC is a specification of geospatial information adopted by providers of big image
collections [30]. Using STAC brings important benefits to sits, since the software is able to
access up-to-date information through STAC end-points.

Using sits, the user defines a data cube by selecting an ARD image collection and
determining a space-time extent. Listing 1 shows the definition of a data cube using AWS
Sentinel-2/2A images. The user selects the “Sentinel-2 Level 2” collection in the AWS cloud
service. The data cube’s geographical area is defined by the tile “20LKP” and the temporal
extent by a start and end date. Access to other cloud services works in similar ways. Data
cubes in sits contain only metadata; access to data is done on an as-need basis.

Listing 1. Defining a data cube in sits.

s2_cube <- sits_cube(
source = "AWS",
name = "T20LKP_2018_2019",
collection = "sentinel -s2-l2a",
tiles = c("20LKP","20LLP"),
start_date = "2018 -07 -18",
end_date = "2018 -07 -23",
s2_resolution = 20
)

3.4. Handling Time Series

Following the approach taken by the sf R package for handling geospatial vector
objects [31], sits stores time series in an object-relational table. As shown in Figure 4,
a sits time series table contains data and metadata. The first six columns contain the
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metadata: spatial and temporal information, the label assigned to the sample, and the
data cube from where the data have been extracted. The spatial location is given in
longitude and latitude coordinates for the WGS84 ellipsoid. For example, the first sample
at location (−55.2, −10.8) has been labelled “Pasture”, being valid during the interval from
14 September 2013 to 29 August 2014. The time series column contains the time series
data for each spatiotemporal location.

Figure 4. Data structure for time series (source: authors).

Time series tables store training data used for land use and land cover classification.
They are built in two steps. Based on field observations or by interpreting high-resolution
images, experts provide samples with valid locations, labels, and dates. These samples can
be provided as comma-separated text files or as shapefiles. Then, sits uses the expert data
to retrieve the values of time series for each location from the data cube, as illustrated in
Listing 2.

Listing 2. Extracting time series from a data cube.

# text file containing sample information
csv_file <- "/home/user/samples.csv"
# obtain time series
samples <- sits_get_data(
cube = s2_cube ,
file = csv_file
)

3.5. Sample Quality Control

Experience with machine learning methods shows that the limiting factor in obtaining
good results is the number and quality of training samples. Large and accurate data sets
are better, no matter the algorithm used [32,33], while noisy and imperfect samples have a
negative effect on classification performance [34]. Software that uses machine learning for
satellite image analysis needs good methods for sample quality control.

The sits package provides an innovative sample quality control technique based
on self-organising maps (SOM) [35,36]. SOM is a dimensionality reduction technique.
High-dimensional data are mapped into two dimensions, keeping the topological relations
between similar patterns [37]. The input data for quality assessment is a set of training
samples, obtained as described in the “Handling Time Series” subsection above. When
projecting a high-dimensional data set of training samples into a 2D self-organising map,
the units of the map (called “neurons”) compete for each sample. It is expected that good
quality samples of each label should be close together in the resulting map. The neighbours
of each neuron of a SOM map provide information on intraclass and interclass variability.

The function sits_som_map() creates a SOM to assess the quality of the samples.
Each sample is assigned to a neuron based on similarity. After the samples are mapped to
neurons, each neuron will be associated with a discrete probability distribution. Usually,
homogeneous neurons (those with a single label) contain good quality samples. Hetero-
geneous neurons (those with two or more labels with significant probability) are likely
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to contain noisy samples. The sits_som_map() function provides quality information
for every sample. It also generates a 2D map that is useful to visualise class noise, since
neurons associated with the same class are expected to form a cluster in the SOM map.

Figure 5 shows a SOM map for a set of training samples in the Brazilian Cerrado, ob-
tained from the MODIS MOD13Q1 product. This set ranges from 2000 to 2017 and includes
50,160 land use and land cover samples divided into 12 labels: Dunes, Fallow–Cotton,
Millet-Cotton, Soy–Corn, Soy–Cotton, Soy–Fallow, Pasture, Rocky Savanna, Savanna,
Dense Woodland, Savanna Parkland, and Planted Forest. Visual inspection shows sev-
eral outlier neurons located far from their label cluster. For example, while the neurons
associated with the “Pasture” label form a cluster, some of those linked to the “Rocky Sa-
vanna” label are mixed among those labelled “Dense Woodland”, an unexpected situation.
The quantitative evaluation confirms this intuitive insight. As shown by Santos et al. [36],
removing these and other outliers improves classification results.

Figure 5. SOM map for Cerrado training samples (source: authors).

3.6. Training Machine Learning Models

One of the key features of machine learning and deep learning models is their de-
pendence on the training data sets [32,38]. Selecting good quality training samples has a
stronger impact on the accuracy of the classification maps than the choice of the machine
learning method. For this reason, the sits package has been designed to support users
to freely choose the training data and its labels. For each specific region of the globe and
each specific aim, users select labels that match their classification schemes. Users provide
samples that include geographical position, start and end dates, and a label. The package
will then extract the associated time series from the data cube and use them as training data.
There are no constraints on the choice of labels for the time series used for training models.

After selecting good quality samples, the next step is to train a machine learning
model. The package provides support for the classification of time series, preserving the
full temporal resolution of the input data. It supports two kinds of machine learning
methods. The first group of methods does not explicitly consider spatial or temporal
dimensions; these models treat time series as a vector in a high-dimensional feature space.
From this class of models, sits includes random forests [39], support vector machines [40],
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extreme gradient boosting [41], and multi-layer perceptrons [42]. The authors have used
these methods with success for classifying large areas [23,43,44]. Our results show that,
given good quality samples, sits can achieve high classification accuracy using feature
space machine learning models.

The second group of models comprises deep learning methods designed to work with
image time series. Temporal relations between observed values in a time series are taken
into account. Time series classification models for satellite data include 1D convolution
neural networks (1D-CNN) [8,18], recurrent neural networks (RNN) [45], and attention-
based deep learning [46,47]. The sits package supports a set of 1D-CNN algorithms:
TempCNN [8], ResNet [48], and InceptionTime [18]. Models based on 1D-CNN treat each
band of an image time separately. The order of the samples in the time series is relevant
for the classifier. Each layer of the network applies a convolution filter to the output of the
previous layer. This cascade of convolutions captures time series features in different time
scales [8]. In the Results section of the paper, we show the use of a TempCNN model to
classify the Cerrado biome in Brazil for the year 2018.

Since sits is aimed at remote sensing users who are not machine learning experts,
the package provides a set of default values for all classification models. These settings
have been chosen based on extensive testing by the authors. Nevertheless, users can control
all parameters for each model. The package documentation describes in detail the tuning
parameters for all models that are available in the respective functions. Thus, novice users
can rely on the default values, while experienced ones can fine-tune model parameters to
meet their needs.

3.7. Data Cube Classification

The sits package runs in any computing environment that supports R. When working
with big EO data, the target environment for sits is a virtual machine located close to
the data repository. To achieve efficiency, sits implements its own parallel processing.
Users are not burdened with the need to learn how to do multiprocessing and, thus, their
learning curve is shortened.

Memory management in R is a hard challenge. Some advanced machine learning
and deep learning methods require dedicated environments outside R . For example, deep
learning methods in sits use the keras R package. In turn, this package calls Python code
that provides a front-end to the C++ TensorFlow library. All of these dependencies cause R
to not have a predictable memory allocation behaviour when doing parallel processing.
Given this situation, we developed a customised parallel processing implementation for
sits to work well with big EO data.

After many tests with different R packages that provide support for parallel process-
ing, we found out that no current R package meets our needs. The authors implemented a
new fault tolerant multi-tasking procedure for big EO data classification. Image classifi-
cation in sits is done by a cluster of independent workers linked to one or more virtual
machines. To avoid communication overhead, all large payloads are read and stored
independently; direct interaction between the main process and the workers is kept at a
minimum. The customised approach is depicted in Figure 6.

1. Based on the size of the cube, the number of cores, and the available memory, divide
the cube into chunks.

2. The cube is divided into chunks along its spatial dimensions. Each chunk contains all
temporal intervals.

3. Assign chunks to the worker cores. Each core processes a block and produces an
output image that is a subset of the result.

4. After all the subimages are produced, join them to obtain the result.
5. If a worker fails to process a block, provide failure recovery and ensure the worker

completes the job.
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This approach has many advantages. It works in any virtual machine that supports
R and has no dependencies on proprietary software. Processing is done in a concurrent
and independent way, with no communication between workers. Failure of one worker
does not cause failure of the big data processing. The software is prepared to resume
classification processing from the last processed chunk, preventing against failures such as
memory exhaustion, power supply interruption, or network breakdown. From an end-user
point of view, all work is done smoothly and transparently.

Figure 6. Parallel processing in sits (source: authors).

3.8. Post-Processing

When working with big EO data sets, there is a considerable degree of data variability
in each class. As a result, some pixels will be misclassified. These errors are more likely
to occur in transition areas between classes or when dealing with mixed pixels. To offset
these problems, sits includes a post-processing smoothing method based on Bayesian
probability that uses information from a pixel’s neighbourhood to reduce uncertainty about
its label.

The post-classification smoothing uses the output probabilities of a machine learning
algorithm. Generally, we label a pixel pi as being of class k if the probability of that pixel
belonging to class k is higher than any other probability associated with the pixel. Instead
of using these probabilities directly, Bayesian smoothing first performs a mathematical
transformation by taking the log of the odds ratio for each pixel.

xi = log[pi,k/(1− pi,k)] (1)

To allow mathematical tractability, we assume that xi follows a multivariate normal
distribution Nk(θi, Σi) where k is the number of classes. This distribution has an unknown
mean θi and an estimated a priori covariance matrix Σi that controls the level of smoothness
to be applied. The covariance matrix represents our prior belief in the class variability and
possible confusion between classes.

The local uncertainty is modelled by a multivariate normal distribution Nk(mi, Si)
where k is the number of classes. The distribution has mean mi and covariance matrix
Si. Our strategy to reduce local uncertainty is to estimate these parameters from the
neighbourhood of pixel pi. Taking Xi as the set of all xi vectors in a neighbourhood,
we compute mi = E[Xi] and Si = cov[Xi, Xi]. The point estimator θ̂i for each pixel
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pi that minimises the quadratic loss functions can be obtained by applying Bayes’ rule.
The posterior estimator for the pixel’s probabilities can be expressed as

θ̂i = E[θi|xi] = Σi(Σi + Si)
−1mi + Si(Σi + Si)

−1xi. (2)

This estimator is computed for each pixel, producing a smoothed map. It is a weighted
combination of xi and the neighbourhood mean mi, where the weights are determined by
the covariance matrices Σi and Si. The component (Σi + Si)

−1 plays a normalisation role.
Given that the smoothing factor Σi is provided a priori by the user, the estimate depends
only on the neighbourhood covariance matrix Si. When the X values in a neighbourhood
of a pixel are similar, the matrix Si increases relative to Σi. In this case, we will have more
confidence in the original pixel value and less confidence in the neighbourhood mean m.
Likewise, when the X values in a neighbourhood of a pixel are diverse, the values of the
correlation matrix will be low. Thus, the weight expressed by Si will decrease relative
to Σi. We will have less confidence in the original pixel value xi and more confidence in
the local mean mi. The smoothing procedure is thus most relevant in situations where
the original classification odds ratio is low, indicating a low level of separability between
classes. In these cases, the updated values of the classes will be influenced by the local class
variance. The resulting smoothed map will thus consider the influence of the neighbours
only when the confidence in the most likely label for a pixel is low. Bayesian smoothing is
an established technique for handling outliers in spatial data [49]. Its application in sits is
useful to incorporate spatial effects in the result of time series classification.

3.9. Validation and Accuracy Assessment

The sits package offers support for cross-validation of training models and accuracy
assessment of results. Cross-validation estimates the expected prediction error. It uses
part of the available samples to fit the classification model, and a different part to test
it. The sits software performs k-fold validation. The data are split into k partitions with
approximately the same size. The model is tested k times. At each step, sits takes one
distinct partition for testing and the remaining k− 1 partitions for training the model.
The results are averaged to estimate the prediction error. The estimates provided by
validation are a “best-case” scenario, since they only use the training samples, which are
subject to selection bias. Thus, validation is best used to compare different models for the
same training data. Such results must not be used as accuracy measures.

To measure the accuracy of classified images, sits provides a function that calculates
area-weighted estimates [50,51]. The need for area-weighted estimates arises because land
use and land cover classes are not evenly distributed in space. In some applications (e.g.,
deforestation) where the interest lies in assessing how much has changed, the area mapped
as deforested is likely to be a small fraction of the total area. If users disregard the relative
importance of small areas where change is taking place, the overall accuracy estimate will
be inflated and unrealistic. For this reason, the sits_accuracy_area() function adjusts
the mapped areas to eliminate bias resulting from classification error. This function pro-
vides error-adjusted area estimates with confidence intervals, following the best practices
proposed by Olofsson et al. [50,51].

3.10. Extensibility

Since one of the design aims of sits is to keep a simple application programming
interface, it uses the R S3 object model, which is easily extensible. The designers gave
particular attention to the support required for machine learning researchers to include new
models in sits. For machine learning models, sits uses two R constructs. In R, classifiers
should provide a predict function, which carries out the actual assignment of input to
class probabilities. R also provides support for closures, which are functions written by
functions [52]. Using closures is particularly useful for dealing with machine learning
functions that have completely different internal implementations. The sits_train()
function in sits is a closure that encapsulates the details of how the classifier works.
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The closure returns a function to classify time series and data cubes using the overloaded
R predict function. Therefore, training and classification in sits are independent and
extensible. Users can provide new models without any need for changing the other
components of the package. We expect that both the authors and other contributors to the
package will include further advanced models tailored for image time series.

Furthermore, sits can be used together with other R packages or integrated with
different programming languages. It can be used to prepare time series for other algorithms,
since time series in sits use a tabular format easily exportable to open access formats.
Images associated with a data cube can also be exported from cloud providers to local
repositories. Users can save deep learning classification models in TensorFlow format
for later processing. Python programmers can access the full sits API through interface
packages such as rpy2. This broadens the potential community of contributors and users
of sits.

4. Results and Discussion

In this section, we present an application of sits to produce a one-year land use and
cover classification of the Cerrado biome in Brazil using Landsat-8 images. Cerrado is the
second largest biome in Brazil with 1.9 million km2. The Brazilian Cerrado is a tropical
savanna ecoregion with a rich ecosystem ranging from grasslands to woodlands. It is home
to more than 7000 species of plants with high levels of endemism [53]. It includes three
major types of natural vegetation: Open Cerrado, typically composed of grasses and small
shrubs with a sporadic presence of small tree vegetation; Cerrado Sensu Stricto, a typical
savanna formation, characterised by the presence of low, irregularly branched, thin-trunked
trees; and Cerradão, a dry forest of medium-sized trees (up to 10–12 m) [54,55]. Its natural
areas are being converted to agriculture at a fast pace, as it is one of the world’s fast moving
agricultural frontiers [56]. The main agricultural land uses include cattle ranching, crop
farms, and planted forests.

4.1. Input Data

The Brazilian Cerrado is covered by 51 Landsat-8 tiles available in the Brazil Data Cube
(BDC) [57]. Each Landsat tile in the BDC covers a 3◦× 2◦grid in Albers equal area projection
with an area of 73,920 km2, and a size of 11,204 × 7324 pixels. The one-year classification
period ranges from September 2017 to August 2018, following the agricultural calendar.
The temporal interval is 16 days, resulting in 24 images per tile. We use seven spectral
bands plus two vegetation indexes (NDVI and EVI) and the cloud cover information.
The total input data size is about 8 TB.

4.2. Training Samples

Since the Cerrado is Brazil’s main agricultural frontier, our classification aims to iden-
tify both natural vegetation and agricultural lands. Its large latitude gradient includes
different climate regimes, which lead to important differences in the spectral responses
of land cover types. To classify the biome with good accuracy, one needs a large and
good quality sample set. To obtain good training data, we carried out a systematic sam-
pling using a grid of 5 × 5 km throughout the Cerrado biome, collecting 85,026 samples.
The training data labels were extracted from three sources: the pastureland map of 2018
from Pastagem.org [58], MapBiomas Collection 5 for 2018 [59], and Brazil’s National
Mapping Agency IBGE maps for 2016–2018 [60]. Out of the 85,026 samples, we selected
those where there was no disagreement between the labels assigned by the three sources.
The resulting set had 48,850 points from which we extracted the time series using the
Landsat-8 data cube. The distribution of samples for each class is the following: “Annual
Crop” (6887), “Cerradao” (4211), “Cerrado” (16,251), “Natural Non Vegetated” (38), “Open
Cerrado” (5658), “Pasture” (12,894), “Perennial Crop” (68), “Silviculture” (805), “Sugarcane”
(1775), and “Water” (263). The effort to obtain representative samples is justified by the
importance of training data in the classification results.
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4.3. Training and Classification

The data set of 48,850 samples was used to train a convolutional neural network model
using the TempCNN method [8]. All available attributes in the BDC Landsat-8 data cube
(two vegetation indices and seven spectral bands) were used for training and classification.
The sits commands are illustrated in Listing 3. We used the default configuration of the
TempCNN method with three 1D convolutional layers [8]. After the classification, we
applied Bayesian smoothing to the probability maps and then generated a labelled map by
selecting the most likely class for each pixel. The classification was executed on an Ubuntu
server with 24 cores and 128 GB memory. Each Landsat-8 tile was classified in an average
of 30 min, and the total classification took about 24 h. Figure 7 shows the final map.

Figure 7. Cerrado land use and land cover map for 2018 (source: authors).
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4.4. Code

According to the principles of sits API, each function is responsible for one of the
workflow tasks. As a consequence, the classification of the whole Cerrado (200 million ha)
is achieved by six R commands, as shown in Listing 3.

Listing 3. R Code for Cerrado classification.

# define a reference to a data cube stored in the BDC using
# a shapefile with Cerrado boundaries as a region of interest
l8_cerrado_cube <- sits_cube(
source = "BDC",
name = "cerrado",
collection = "LC8_30_16D_STK -1",
roi = "./cerrado.shp",
start_date = "2017 -09 -01",
end_date = "2018 -08 -31"
)
# obtain the time series for the samples
# input data is a CSV file
samples_cerrado_lc8 <- sits_get_data(
data = cube ,
file = "./samples_48K.csv"
)
# train model using TempCNN algorithm
cnn_model <- sits_train(
data = samples_cerrado_lc8 ,
ml_method = sits_TempCNN ()
)
# classify data cube
probs_cerrado <- sits_classify(
data = l8_cerrado_cube ,
ml_model = cnn_model
)
# compute Bayesian smoothing
probs_smooth <- sits_smooth(
data = probs_cerrado
)
# generate thematic map
map <- sits_label_classification(
data = probs_smooth
)

4.5. Classification Accuracy

To obtain an accuracy assessment of the classification, we did a systematic sampling
of the Cerrado biome using a 20 × 20 km grid with a total of 5402 points. These samples
are independent of the training set used in the classification. They were interpreted by five
specialists using high resolution images from the same period of the classification. For the
assessment, we merged the labels “Cerradao”, “Cerrado”, and “Open Cerrado” into one
label called “Cerrado”. We also did additional sampling to reach a minimal number of
samples for the classes “Natural Non Vegetated”, “Perennial Crop”, and “Water”. This re-
sulted in 5286 evaluation samples thus distributed: “Annual Crop” (553), “Cerradao” (704),
“Cerrado” (2451), “Natural Non Vegetated” (44), “Pasture” (1246), “Perennial Crop” (38),
“Silviculture” (94), “Sugarcane” (77), and “Water” (79). We used the sits implementation of
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the area-weighted technique [50] to provide an unbiased estimator for the overall accuracy
and the total area of each class based on the reference samples. The classification accuracies
are shown in Table 1. The overall accuracy of the classification was 0.86.

Table 1. Area-weighted classification accuracy.

Labels Producer’s Accuracy User’s Accuracy

Annual Crop 0.81 0.88
Cerrado 0.89 0.91
Natural Non Vegetated 0.63 0.95
Pasture 0.82 0.76
Perennial Crop 0.51 0.74
Silviculture 0.83 0.91
Sugarcane 0.96 0.81
Water 0.93 0.97

Overall Accuracy: 0.86.

4.6. Discussion of Results

The good results of mapping the entire Cerrado biome using sits show that the
software has met its design goals. It was possible to classify a large area of about 200 million
ha using an advanced deep learning model on time series with good performance. Running
the whole training and classification process requires a script with only six R commands.
No specific knowledge of parallel processing was required. All in all, the concept of having
an integrated solution has been demonstrated.

The classes that have the worst performance are “Perennial Crop” and “Natural
Non Vegetated” with producer’s accuracy of 51% and 63%, respectively. Since these
classes are associated with small areas of the Cerrado biome, they had fewer training
samples. The authors had access to only 68 samples of the “Perennial Crop” class and
38 samples of the “Natural Non Vegetated” class. To improve the accuracy of these classes,
future classifications need to ensure that the number of samples per class is balanced
and representative.

5. Comparative Analysis

Considering the aims and design of sits , it is relevant to discuss how its design and
implementation choices differ from other open-source algorithms for the analysis of image
time series. Such algorithms include BFAST for detecting trends and breaks [5], CCDC for
continuous change detection [61], and Time-Weighted Dynamic Time Warping (TWDTW)
for land use and land cover classification [62]. These methods take a multiyear time series
and break it into segments, which are then classified. In general, time series segments
have different temporal extents. Classified pixels will have one label for each segment of
the associated time series. BFAST detects trends and seasonal components in time series
and has been used successfully to detect deforestation and forest degradation [63]. CCDC
decomposes the time series using spherical harmonics, extracting metrics for each segment;
these metrics are used by random forest models to obtain land cover maps [64]. CCDC
and BFAST are adaptive algorithms, which can be updated as new observations become
available. TWDTW uses a modified version of the dynamic time warping (DTW) distance
to match time series segments to predefined patterns. The TWDTW algorithm has been
used for deforestation and cropland mapping [65,66]. Thus, BFAST, CCDC, and TWDTW
are segmentation-based algorithms that differ in the ways to find breaks in the time series.

In contrast to segmentation-based methods, sits uses time series of predefined sizes
for classification, typically covering one year. Instead of extracting metrics from time series
segments, sits uses all values of the time series. There are two types of classifiers: (a)
feature space methods, where all inputs are treated equally as part of an n-dimensional
space, including SVM, Random Forest, and multilayer perceptrons; and (b) multireso-
lution methods based on 1D convolutional neural networks, including TempCNN and
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ResNet [8,18]. The authors are not aware of benchmarks comparing segmentation-based
methods with those based on feature space or multiresolution. As the field of satellite image
time series analysis matures, users will find enough evidence to choose which method best
fits their needs.

In what follows, we also compare sits to other approaches for big EO data analytics,
such as Google Earth Engine [3], Open Data Cube [21] and openEO [67].

Google Earth Engine (GEE) [3] uses the Google distributed file system [68] and its map-
reduce paradigm [69]. By combining a flexible API with an efficient back-end processing,
GEE has become a widely used platform [70]. To use deep learning models in GEE, users
have to develop, train and run these models outside of the Earth Engine in Google’s AI
platform. Since Google’s AI platform does not have ready-to-use models for satellite image
time series, users have to develop models for EO data analysis using the TensorFlow API.
Doing so requires specialised knowledge outside of the scope of most remote sensing
experts. Images also need to be exported from GEE to the AI platform, a task that can
be cumbersome for large data sets. By contrast, sits provides support for deep learning
models that have been tested and validated in the scientific literature [8,18]. These models
are available directly in the sits API; users do not need to understand TensorFlow to apply
them. Thus, currently it is easier to use sits than GEE for running deep learning models
in image time series.

The Open Data Cube (ODC) is an important contribution to the EO community and
has proven its usefulness in many domains [21,22]. It reads subsets of image collections
and makes them available to users as a Python xarray structure. ODC does not provide
an API to work with xarrays, relying on the tools available in Python. This choice allows
much flexibility at the cost of increasing the learning curve. It also means that temporal
continuity is restricted to the xarray memory data structure; cases where tiles from an
image collection have different timelines are not handled by ODC. The design of sits takes
a different approach, favouring a simple API with few commands to reduce the learning
curve. Processing and handling large image collections in sits does not require knowledge
of parallel programming tools. Thus, sits and ODC have different aims and will appeal to
different classes of users.

Designers of the openEO API [67] aim to support applications that are both language-
independent and server-independent. To achieve their goals, openEO designers use mi-
croservices based on REST protocols. The main abstraction of openEO is a process, defined
as an operation that performs a specific task. Processes are described in JSON and can be
chained in process graphs. The software relies on server-specific implementations that
translate an openEO process graph into an executable script. Arguably, openEO is the
most ambitious solution for reproducibility across different EO data cubes. To achieve
its goals, openEO needs to overcome some challenges. Most data analysis functions are
not self-contained. For example, machine learning algorithms depend on libraries such
as TensorFlow and Torch. If these libraries are not available in the target environment,
the user-requested process may not be executable. Thus, while the authors expect openEO
to evolve into a widely used API, it is not yet feasible to base a user-driven operational
software such as sits in openEO.

Producing software for big Earth observation data analysis requires making compro-
mises between flexibility, interoperability, efficiency, and ease of use. GEE is constrained
by the Google environment and excels at certain tasks (e.g., pixel-based processing) while
being limited in others such as deep learning. ODC allows users to complete flexibility
in the Python ecosystem, at the cost of limitations when working with large areas and
requiring programming skills. The openEO API achieves platform independence but needs
additional effort in designing drivers for specific languages and cloud services. While
the sits API provides a simple and powerful environment for land classification, it has
currently no support for other kinds of EO applications. Therefore, each of these solutions
has benefits and drawbacks. Potential users need to understand the design choices and
constraints to decide which software best meets their needs.
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6. Conclusions

The development of analytical software for big EO data faces several challenges.
Designers need to balance between conflicting factors. Solutions that are efficient for
specific hardware architectures can not be used in other environments. Packages that
work on generic hardware and open standards will not have the same performance as
dedicated solutions. Software that assumes that its users are computer programmers are
flexible, but may be difficult for a wide audience to learn. The challenges lead a diversity
of solutions in academia and industry to work with big Earth observation data. Arguably,
it is unlikely that a single approach will emerge as the complete best solution for big
EO analytics.

Despite the challenges, there are points of convergence and common ground between
most of the solutions for big EO data. The STAC protocol has emerged as a de facto
standard for describing EO image collections. Users need interoperable and reusable
solutions, where the same software can be used in different cloud services with similar
results. Experience with existing solutions shows the benefits of simple APIs for the
remote sensing community at large. These commonalities should be considered by big EO
software designers.

In the design of sits, we had to make choices. We made an early choice to focus
on time series analysis, based on the hypothesis that time series provide an adequate
description of changes in land use and land cover. Instead of relying on time series metrics,
we opted to allow machine learning methods to find patterns in multidimensional spaces
by providing them all with available data. The design of the sits data structures and API
follows from our choice of performing land classification based on time series analysis.

The limitations of sits should also be considered. As discussed previously, classifica-
tion in sits uses fixed time intervals. This is a convenient choice for working with machine
learning, but reduces its power to monitor continuous change. In cases where users want
to monitor subtle changes such as forest degradation, segmentation-based methods can
in principle provide more detailed information. Moreover, sits is pixel-based; each time
series is associated with a pixel. Recent works show that object-based time series analysis
can perform better than pixel-based approaches [66]. A further issue is the need to convert
ARD image collections into data cubes to work with sits, as discussed in Section 2. De-
spite these limitations, sits provides a simple API for all steps of land classification using
satellite image time series.

Plans for evolution of the sits package include improvements to the classification
workflow. We plan to include manipulation of data cubes, allowing mathematical opera-
tions to be performed. Another priority is improving the training phase, using techniques
such as active learning and semi-supervised learning. Moreover, we are investigating an
extension of sits to work with spatial objects as well as including support for new classi-
fiers. We also intend to include rule-based post-processing to allow multiyear classification
comparison. Given the global applicability of sits, we intend to support the user and
developer community by providing guidance and documentation.
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