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Abstract: Accurate information on vegetation and land cover is crucial for numerical forecasting models
in South America. This data aids in generating more realistic forecasts, serving as a tool for decision-
making to reduce environmental impacts. Regular updates are necessary to ensure the data remains
representative of local conditions. In this study, we assessed the suitability of ‘Catchment Land Surface
Models-Fortuna 2.5’ (CLSM), Noah, and Weather Research and Forecasting (WRF) for the region. The
evaluation revealed significant changes in the distribution of land cover classes. Consequently, it is crucial
to adjust this parameter during model initialization. The new land cover classifications demonstrated an
overall accuracy greater than 80%, providing an improved alternative. Concerning vegetation information,
outdated climatic series for Leaf Area Index (LAI) and Greenness Vegetation Fraction (GVF) were observed,
with notable differences between series, especially for LAI. While some land covers exhibited good
performance for GVF, the Forest class showed limitations. In conclusion, updating this information in
models across South America is essential to minimize errors and enhance forecast accuracy.

Keywords: land parameters; land input; climatology

1. Introduction

South America, situated in the equatorial and tropical zones, has a rich and heterogeneous
flora. SA poses challenges in accurately depicting Earth’s surface characteristics, because
large agricultural areas mix with forests and savannas, complicating the region’s land surface
characterization. This complexity is generally poorly represented in land cover (LC) maps
and global vegetation information [1–3]. Additionally, the expansion of agricultural frontiers
in the central region of SA, along with documented cases of deforestation and wildfires [4–6],
makes it even more challenging to accurately represent this information. These events occur
regularly every year, contributing to the land surface degradation in SA over the years [7,8].

The South American Land Data Assimilation System (SALDAS) is a system that was
developed for SA to help understand the conditions of the Earth’s surface and improve
the process of initializing regional atmospheric models. This system uses recent spatial
observation data acquired from a network of ground observations [9–11]. The terres-
trial data system includes surface variables such as soil moisture, vegetation (Leaf Area
Index—LAI, a metric quantifying the green leaf area relative to the ground area and serving
as a crucial indicator in characterizing the canopy structure in forest ecosystems [12]; and
Greenness Vegetation Fraction—GVF, representing the green vegetation fraction covering a
unit ground area as seen from the nadir direction) [13], LC, albedo, and topography.
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This study will analyze the effectiveness of three different surface models used in
the operational models of SA: Noah, Catchment LSM-Fortuna 2.5—CLSM, and Weather
Research and Forecasting—WRF [14–16]. The evaluation will use its surface parameters as
LAI (representing vertical vegetation density characteristics), GVF (illustrating horizontal
vegetation density), and LC (identifying prevalent plant types within a numerical model
grid cell, used to simulate additional specific surface parameters) [17,18].

Surface parameters are crucial in simulating surface fluxes (energy, water, and carbon)
and are employed by various surface, weather, and climate models [17,19–23]. Therefore, it
is expected that the information from LAI, GVF, and LC will exhibit a high correlation with
actual observed data, both temporally and spatially, contributing to an optimal initialization
for the operational models of SA. This update will contribute to the short-term simulations
for operational environments related to changes in the water cycle [24], predictions of
adverse events that cause landslides [25], or midterms in the prediction of seasonal forecasts
of heatwaves [26] and forecasts for climate change [27].

Furthermore, surface information from operational models needs periodic updates
(every 5 to 10 years) to prevent the information from becoming too outdated [28]. In this
perspective, a new LC climatology for SA will be developed based on products from the
European Space Agency Climate Change Initiative (ESACCI), updated annually globally [1].
The new LC will be compared to input information from land and atmospheric models
(Noah, CLSM, and WRF). Furthermore, a new LAI and GVF climatology will be created
based on the Global Land Surface Satellite (GLASS) products. GLASS was chosen for
its ability to mitigate cloud contamination effects in data from the Moderate-Resolution
Imaging Spectroradiometer (MODIS) using the General Regression Neural Networks
(GRNNs) method, making it a more refined product for surface assessments [29–31]. This
new climatology will be compared to the input information of numerical models in SA.

Therefore, the following questions are raised: (1) is the LC used in the LSMs for SA
significantly outdated compared to the distribution of land cover classes presented by new
LC products based on ESACCI data? (2) Is the input information for numerical models
(NM) regarding LAI and GVF consistent with the new GLASS climatology?

Given the above, this study aims to assess the surface input information (LAI, GVF,
and LC) used by operational/research models and develop new climatology based on this
information to improve the initial conditions of SA models.

2. Materials and Methods

The flowchart of the methodology steps in this study is presented in Figure 1, which is
detailed in the following subtopics.
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2.1. Land Cover Products

For land cover (LC), remote sensing products were obtained from ESACCI (ESACCI-
LC), sourced from the Copernicus Climate Data Store (CDS) were accessed on 18 February
2023, available at https://cds.climate.copernicus.eu/cdsapp!/dataset/satellite-land-cover?
%20tab=form. The land use and land cover maps have a spatial resolution of 300 m world-
wide, describing the Earth’s surface in 22 classes and 14 subclasses (36 LC classifications)
based on the United Nations Food and Agriculture Organization’s Land Cover Classifi-
cation System (UN FAO—LCCS). Additionally, the maps are provided in NetCDF (.nc)
format with an annual temporal resolution from 1992 to the present [32].

The selection of the ESACCI-LC product is due to its high accuracy in several land
cover types, including evergreen broadleaf forests, urban areas, bare soil, permanent water
bodies, and permanent snow/ice, with accuracies exceeding 80%. It is worth noting that
agricultural areas exhibit high precision (above 83%), even in their high heterogeneity,
which is crucial for agricultural planning and food security [33]. These areas are partic-
ularly relevant in SA, where extensive agricultural areas and heterogeneous land cover
are prominent.

ESACCI-LC products were downloaded from 2010 to 2020 for this study, considering
the most recent land use and land cover availability information. A climatology map
was generated using the LC information from this period. The map was reprojected to
the Coordinate Reference System (CRS) 4326—World Geodetic System 1984 (WGS84)—
Geographic. Additionally, it was resized to a resolution of 0.01◦ (~1 km) using the “Mode”
method, which employs the most frequent value of LC information within the new pixel
area. In other words, the most frequently occurring class in a given area will become the
class for the new pixel area, as illustrated in Figure 2. Note in this figure that green pixels
have a higher frequency in the new pixel area and, because of this, the resampled pixel will
only be classified as green.
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Furthermore, the new LC map was reclassified into the Modified International
Geosphere-Biosphere Programme (IGBP—20 classes) [34] and the University of Mary-
land (UMD—13 classes) [35]. For this purpose, the ‘Reclassify by table’ extension tool,
available in QGIS 3.16 software, was used. This tool established correspondences between
the map classified according to the UN FAO and the mentioned classes, as shown in Table 1.

https://cds.climate.copernicus.eu/cdsapp!/dataset/satellite-land-cover?%20tab=form
https://cds.climate.copernicus.eu/cdsapp!/dataset/satellite-land-cover?%20tab=form
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Table 1. Conversion of ESACCI-LC classes to the new classifications.

ID. ESACCI Classification ID. UMD Classification ID. IGBP Classification

10. Cropland, Rainfed 11. Cropland 12. Croplands
11. Cropland, Rainfed, Herbaceous Cover 11. Cropland 12. Croplands
12. Cropland, Rainfed, Tree or Shrub Cover 8. Closed Bushlands or Shrublands 6. Closed Shrublands
20. Cropland, Irrigated or Post-Flooding 11. Cropland 12. Croplands
30. Mosaic Cropland (>50%)/Natural Vegetation
(Tree, Shrub, Herbaceous Cover) (<50%) 7. Wooded Grasslands/Shrublands 14. Cropland/Natural Vegetation

40. Mosaic Natural Vegetation (Tree, Shrub,
Herbaceous Cover) (>50%)/Cropland (<50%) 11. Cropland 14. Cropland/Natural Vegetation

50. Tree Cover, Broadleaved, Evergreen, Closed to
Open (>15%) 2. Evergreen Broadleaf Forest 2. Evergreen Broadleaf Forest

60. Tree Cover, Broadleaved, Deciduous, Closed to
Open (>15%) 4. Deciduous Broadleaf Forest 4. Deciduous Broadleaf Forest

61. Tree Cover, Broadleaved, Deciduous,
Closed (>40%) 6. Woodlands 4. Deciduous Broadleaf Forest

62. Tree Cover, Broadleaved, Deciduous,
Open (15–40%) 7. Wooded Grasslands/Shrublands 8. Woody Savannas

70. Tree Cover, Needleleaved, Evergreen, Closed To
Open (>15%) 1. Evergreen Needleleaf Forest 1. Evergreen Needleleaf Forest

71. Tree Cover, Needleleaved, Evergreen,
Closed (>40%) 2. Evergreen Needleleaf Forest 1. Evergreen Needleleaf Forest

72. Tree Cover, Needleleaved, Evergreen,
Open (15–40%) 2. Evergreen Needleleaf Forest 1. Evergreen Needleleaf Forest

80. Tree Cover, Needleleaved, Deciduous, Closed to
Open (>15%) 3. Deciduous Needleleaf Forest 3. Deciduous Needleleaf Forest

81. Tree Cover, Needleleaved, Deciduous,
Closed (>40%) 3. Deciduous Needleleaf Forest 3. Deciduous Needleleaf Forest

82. Tree Cover, Needleleaved, Deciduous,
Open (15–40%) 3. Deciduous Needleleaf Forest 3. Deciduous Needleleaf Forest

90. Tree Cover, Mixed Leaf Type (Broadleaved and
Needleleaved) 5. Mixed Forest 5. Mixed Forest

100. Mosaic Tree and Shrub (>50%)/Herbaceous
Cover (<50%) 7. Wooded Grasslands/Shrublands 8. Woody Savannas

110. Mosaic Herbaceous Cover (>50%)/Tree and
Shrub (<50%) 7. Wooded Grasslands/Shrublands 9. Savannas

120. Shrubland 7. Wooded Grasslands/Shrublands 9. Savannas
121. Evergreen Shrubland 8. Closed Bushlands or Shrublands 6. Closed Shrublands
122. Deciduous Shrubland 7. Wooded Grasslands/Shrublands 9. Savannas
130. Grassland 10. Grassland 10. Grassland
140. Lichens and Mosses 10. Grassland 10. Grassland
150. Sparse Vegetation (Tree, Shrub, Herbaceous
Cover) (<15%) 9. Open Shrubland 7. Open Shrublands

151. Sparse Tree (<15%) 9. Open Shrubland 7. Open Shrublands
152. Sparse Shrub (<15%) 9. Open Shrubland 7. Open Shrublands
153. Sparse Herbaceous Cover (<15%) 9. Open Shrubland 7. Open Shrublands
160. Tree Cover, Flooded, Fresh or Brackish Water 8. Closed Bushlands or Shrublands 11. Permanent wetlands
170. Tree Cover, Flooded, Saline Water 8. Closed Bushlands or Shrublands 11. Permanent wetlands
180. Shrub or Herbaceous Cover,
Flooded, Fresh/Saline/Brackish Water 6. Woodlands 11. Permanent wetlands

190. Urban Areas 13. Urban and Built-Up 13. Urban and Built-Up
200. Bare Areas 12. Bare Ground 16. Barren or Sparsely Vegetated
201. Consolidated Bare Areas 12. Bare Ground 16. Barren or Sparsely Vegetated
202. Unconsolidated Bare Areas 12. Bare Ground 16. Barren or Sparsely Vegetated
210. Water Bodies 0. Water bodies 17. Water
220. Permanent Snow and Ice 12. Barren 15. Permanent and Snow and Ice

The QGIS 3.16 used the AcATaMa plugin [36] to evaluate the accuracy of land cover
reclassification. This plugin is a crucial step in determining how well the representation of
land cover matches the actual land cover on the ground [37]. Sampling points were created
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to validate the reclassification process using ‘Stratified Random Sampling’. The plugin
determined the required samples for each class with a standard deviation of 0.005 [38,39].
The plugin also automatically generated a distribution of points.

Each point was assigned a class through a supervised identification process. It is worth
noting that the samples were taken from satellite images with higher spatial resolution, such
as Google Satellite and Bing Virtual Earth, as well as GLASS LAI and GVF products. After
choosing the points, accuracy was calculated using the formulas mentioned in [38,39]. The
results are presented in tables of the Error Matrix, providing (i) the user’s accuracy, which is
an estimation of the fractions of pixels in the mapping for each category correctly classified,
associated with the commission error, which happens when a category is incorrectly
assigned to a pixel. Thus, user accuracy is related to the reliability of each mapped class.
(ii) The producer’s accuracy, the sample reliability of pixels for each class correctly assigned
by the classifiers, and with omission error, which occurs when a pixel is not correctly
mapped to its class.

Hence, producer accuracy is linked to the classifier’s sensitivity to correctly distinguish
mapping classes. (iii) Overall accuracy is the overall proportion of correct classifications for
all mapping classes. A comparative assessment was conducted to investigate differences in
land use and land cover between the input LC of the models and the products from the
new LC climatology by ESACCI, reclassified into UMD and IGBP classes.

2.2. Vegetation Products

The images of remote sensing products come from the Moderate-Resolution Imaging
Spectroradiometer (MODIS) sensor reprocessed by the University of Maryland for the
Global Land Surface Satellite (GLASS) project. This project reduces the effects of cloud
contamination in MODIS products through the General Regression Neural Networks
(GRNNs) method based on satellite images with higher spatial resolution, such as Landsat
and SPOT [29–31,40,41].

The GLASS products are available at the University of Maryland image collection on
the website http://www.glass.umd.edu/Download.html and were accessed on 12 March
2023. The acquisition area of the products covers the entire globe. Furthermore, the data
period spans from January 2010 to December 2020, with an 8-day temporal frequency,
acquired in Hierarchical Data Format (HDF), and a spatial resolution of 0.05◦. The acquired
products include GLASS LAI and GLASS Fractional Vegetation Cover (FVC). In this study,
it will be referred to as GLASS GVF, as the calculation formula for FVC is similar to
GVF [21,41], given by Equation (1):

GVF = FVC =
NDVI − NDVIS

NDVIV − NDVIS
(1)

where NDVI is the Normalized Difference Vegetation Index and NDVIS and NDVIV are the
NDVI for exposed soil and soil with higher vegetation cover, respectively.

Finally, a comparative assessment was conducted for the standard LAI and GVF in
numerical models of SA, based on [42,43], respectively, against GLASS products to examine
differences in vegetation characteristics’ behavior. For this purpose, point values were
extracted for four land classes:

(1) Forest (for IGBP and UMD, representing the Evergreen Needleleaf Forest class);
(2) Savanna (for IGBP, this class represents Savanna, while for UMD, it is Wooded Grass-

land/Shrublands);
(3) Agriculture (for IGBP and UMD, representing the Cropland class);
(4) Grass (for IGBP and UMD, representing the Grassland class).

Table 2 presents the coordinates of the land classes.

http://www.glass.umd.edu/Download.html
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Table 2. Coordinates of land classes.

Land Class Latitude Longitude

Forest −2.60◦ −60.20◦

Savanna −15.93◦ −47.72◦

Cropland −30.27◦ −53.13◦

Grass −31.72◦ −53.53◦

The statistical metrics used to assess the behavioral pattern of vegetation include
Pearson correlation coefficient (r), determination coefficient (R2), statistical bias, Willmott’s
index of concordance (d), and confidence coefficient (c). Please refer to the sources [44–46]
for more details. The following Tables 3 and 4 present the criteria for assessing r and c.

Table 3. Description of values of Pearson correlation (r).

Correlation Coefficient “r” Description

0.00 to 0.19 Very weak correlation
020 to 0.39 Weak correlation
0.40 to 0.69 Moderate correlation
0.70 to 0.89 Strong correlation
0.90 to 1.00 Very strong correlation

Font: [46].

Table 4. Performance of the confidence index (c).

Confidence Index “c” Performance

>0.85 Excellent
0.76 to 0.85 Very good
0.66 to 0.75 Good
0.61 to 0.65 Average
0.51 to 0.60 Poor
0.41 to 0.50 Bad

≤0.40 Terrible
Font: [44].

Moreover, to evaluate the variability of vegetation information, we utilized the
2000–2022 rainfall climatology from the Multi-Source Weighted-Ensemble Precipitation
(MERGE) [47]. Monthly rainfall accumulations served as the basis for this assessment. Ac-
cess to these data is provided on the following website: http://ftp.cptec.inpe.br/modelos/
tempo/MERGE/GPM/CLIMATOLOGY/ and were accessed on 22 March 2023.

3. Results and Discussion
3.1. New Land Cover Climatology

Figure 3 exhibits the new land cover maps based on the 2010–2020 climatology of the
ESACCI product, reclassified for the IGBP classifications (Figure 3A) and UMD classifica-
tions (Figure 3B), respectively. Additionally, validation control points used in constructing
the error matrix for various land cover classes are highlighted, totaling more than 400 points
per thematic map.

Confusion/error matrices and their producer and user accuracies for IGBP and UMD
classes are displayed in Tables 5 and 6. These matrices are derived from the new ESACCI
LC data spanning 2010–2020. This analysis is the primary method for evaluating mapping
quality, offering an overall accuracy rate tied to Global Accuracy. It also provides accuracy
and error rate estimates for each mapped class.

In Table 5, the confusion matrix analysis reveals the most significant misclassifica-
tion error for IGBP in the Cropland/Natural Vegetation class, where confusion occurs
with Croplands and Savannas’ classes. This confusion is easily explained when examin-
ing the Croplands class, as they are similar classes, and the coarser resolution of 0.01◦

http://ftp.cptec.inpe.br/modelos/tempo/MERGE/GPM/CLIMATOLOGY/
http://ftp.cptec.inpe.br/modelos/tempo/MERGE/GPM/CLIMATOLOGY/
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may contribute to lower mapping precision in these circumstances. As for the Savannas
class, representing the Brazilian Cerrado and Caatinga, classification confusion may be
attributed to agricultural boundaries, deforestation, and variations in vegetation vigor due
to rainfall [48,49].
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The changes in land use and land cover between 2009 and 2018 are linked to the defor-
estation of the Cerrado and its replacement by agricultural areas [50]. This modification in
land cover influences climatology because abrupt changes in land cover result in greater
variability in the affected region’s coverage type. In this sense, updating this information is
essential to ensure that the initial conditions of numerical models do not become outdated.

According to Table 5, the Cropland/Natural Vegetation class shows a user accuracy
of 56.0% (±10.1%) with a high commission error, indicating unreliable mapping. Simi-
larly, the Savannas class has a user accuracy of 57.4% (±6.8%). In contrast, the Cropland
class demonstrates a user accuracy of 75.0% (±6.6%), considered reasonable for large,
mapped areas.

Regarding producer accuracy, the values for the Cropland/Natural Vegetation, Sa-
vannas, and Cropland classes are 43.1% (±7.3%), 92.15% (±3.3%), and 72.64% (±6.1%),
respectively (Table 5). Notably, only the Cropland/Natural Vegetation class exhibits a high
omission error associated with incorrectly assigning the class to the pixel. In contrast, the
Savannas and Cropland classes have low omission errors.

Table 5 indicates that more homogeneous land covers, such as Evergreen Broadleaf
Forest, Permanent Snow and Ice, Barren or Sparsely Vegetated, and Water classes, boast
user accuracy exceeding 80%, resulting in low commission errors. For omission errors asso-
ciated with producer accuracy, these classes have the following values: 96.17% (±1.66%),
45.43% (±17.93%), 55.95% (±9.66%), and 100% (0), respectively. From this perspective, the
Permanent Snow and Ice, Barren, or Sparsely Vegetated classes demonstrate low reliability,
while the Evergreen Broadleaf Forest and Water classes exhibit high producer accuracy.

Classes like Wooded Tundra, Mixed Tundra, and Barren Tundra, with smaller coverage
areas over SA, show low reliability in samples since their coverage is less than 900 km2

(Table 5). Consequently, only a few sampling points (7) were generated for these Tundra
classes. In the case of the Urban and Built-up class, there is a producer accuracy of only
35.5% and a user accuracy of 90%, indicating high omission and low commission errors.
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Table 5. Confusion matrix and user (UA) and producer (PA) accuracies of IGBP land cover from ESACCI 2010–2020 climatology over SA.

Land Cover Class Description 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Total UA * (%)

1. Evergreen Needleleaf Forest 7 0 0 0 0 0 0 0 0 0 0 2 0 1 0 0 0 0 0 0 10 70.0
2. Evergreen Broadleaf Forest 0 55 0 0 1 2 0 0 0 1 3 0 0 1 0 0 0 0 0 0 64 85.0
3. Deciduous Needleleaf Forest 0 3 4 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 10 40.0
4. Deciduous Broadleaf Forest 0 0 0 9 0 2 0 0 1 1 0 0 00 0 0 0 0 0 0 0 13 69.2
5. Mixed Forest 0 0 1 0 11 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 14 78.6
6. Closed Shrublands 0 0 0 0 0 10 0 0 0 2 0 0 1 2 0 0 0 0 0 0 15 66.7
7. Open Shrublands 0 1 0 0 0 0 18 0 0 0 0 0 1 0 4 0 0 0 0 24 75.0
8. Woody Savannas 0 0 0 0 0 0 0 5 4 0 0 1 0 1 0 0 0 0 0 0 11 45.5
9. Savannas 0 0 0 0 1 0 8 1 31 2 0 4 0 6 0 1 0 0 0 0 54 57.4
10. Grassland 0 0 0 0 2 0 5 0 0 18 1 3 1 1 1 1 0 0 0 0 33 54.5
11. Permanent Wetlands 0 2 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 11 81.8
12. Croplands 0 0 0 0 0 0 1 0 0 4 0 33 0 6 0 0 0 0 0 0 44 75.0
13. Urban and Built-Up 0 0 0 0 0 0 0 0 0 0 0 1 9 0 0 0 0 0 0 0 10 90.0
14. Cropland/Natural Vegetation 0 3 0 0 1 0 0 0 1 3 0 3 1 14 0 0 0 0 0 0 25 56.0
15. Permanent Snow and Ice 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 1 0 0 0 0 11 81.8
16. Barren or Sparsely Vegetation 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 13 0 0 0 0 15 86.7
17. Water 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 0 0 0 20 100.0
18. Wooded Tundra 0 0 0 0 1 0 1 0 0 2 0 0 0 3 0 0 0 3 0 0 10 30.0
19. Mixed Tundra 0 0 0 0 1 0 0 1 0 0 0 4 0 2 0 0 0 0 2 0 10 20.0
20. Barren Tundra 1 0 0 0 0 0 1 0 0 1 0 6 0 1 0 0 0 0 0 0 10 0.0
Total 8 64 5 9 18 13 37 7 38 34 14 56 11 40 11 20 20 4 2 1 414
PA ** 96.9 96.2 90.4 100.0 49.9 64.1 47.3 52.5 92.2 58.3 26.2 72.6 35.5 43.1 45.4 55.9 100.0 1.8 100.0 100.0

* UA—User’sAccuracy. ** Producer’s Accuracy.
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Table 6. Confusion matrix and user (UA) and producer (PA) accuracies of UMD land cover from
ESACCI 2010–2020 climatology over SA.

Land Cover Class Description 1 2 3 4 5 6 7 8 9 10 11 12 13 Total UA * (%)

1. Evergreen Needleleaf Forest 3 1 0 0 0 0 0 0 0 1 0 0 0 5 60.0
2. Evergreen Broadleaf Forest 0 84 0 0 2 0 0 0 0 0 4 0 0 90 93.3
3. Deciduous Needleleaf Forest 0 2 4 0 0 0 0 0 1 0 0 0 0 10 40.0
4. Deciduous Broadleaf Forest 0 0 0 10 0 0 0 2 1 1 0 1 0 15 66.7
5. Mixed Forest 0 0 1 0 9 0 0 0 1 0 0 0 0 10 90.0
6. Woodlands 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0
7. Wooded Grassland/Shrublands 0 1 0 0 1 0 35 3 6 4 5 2 0 57 61.4
8. Closed Bushlands or Shrublands 0 0 0 0 0 0 0 13 1 1 0 0 0 15 86.7
9. Open Shrublands 0 1 0 0 0 0 1 0 15 0 0 3 0 20 75.0
10. Grassland 0 1 0 0 1 0 0 2 0 22 3 1 0 30 73.3
11. Croplands 0 0 0 0 0 0 0 0 0 2 27 0 0 29 93.1
12. Bare Ground 0 0 0 0 0 0 0 0 5 0 0 9 1 15 60.0
13. Urban and Built-Up 0 0 0 0 0 0 0 0 0 0 1 0 14 15 93.3

Total 3 88 5 10 13 0 36 20 29 31 40 16 15 301
PA ** 100.0 95.5 90.4 100.0 69.2 0.0 97.2 65.0 51.7 71.0 67.5 56.3 93.3

* UA—User’sAccuracy. ** Producer’s Accuracy.

The ESACCI 2010–2020 LC climatology achieved an overall accuracy of 89.83%
(±0.94%) over SA, surpassing the global accuracy of ESACCI (above 80%) [1,33]. This
difference is due to the coarser resolution (0.01◦) of the new LC climatology. The results
highlight the new LC climatology’s high applicability and precision in defining LC classes.

Table 6 displays the error matrix for the UMD classification based on the ESACCI
2010–2020 LC climatology. The Open Shrubland class shows the highest omission error
(producer accuracy), signifying misclassification and confusion in land cover. This class
is often mistaken for Wooded Grassland/Shrubland due to similar characteristics, as
observed in Figure 4, with a user accuracy of 75.0% (±9.93%), indicating an acceptable
commission error.
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Figure 4. Classes of Open Shrublands (A); and Wooded Grassland/Shrublands (B).

Table 6 reveals that the Evergreen Needle Forest and Broadleaf Deciduous Forest
classes achieve perfect producer accuracy (100.0%), correctly assigned at all control points.
However, user accuracy reflects the reliability of each mapped class, which shows median
values of 60.0% (±24.5%) and 66.7% (±12.6%). Notably, only the Evergreen Broadleaf
Forest class surpasses 90.0% (±2.4%) accuracy for both producer and user accuracy, making
it the best-mapped class. For other classes, accuracy values, both for the user and the
producer, hover around or fall below 80%.

The overall accuracy for the ESACCI-LC 2010–2020 climatology for UMD was 80.07%
(±2.31%), based on samples over SA (Table 6). This value is very close to the global
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mapping of ESACCI, which reported a global accuracy slightly above 80% [1,33]. From
these results, it is evident that the new LC climatology for 2010–2020 is highly applicable to
the study region, demonstrating high precision in defining land use and land cover classes.

3.2. Land Cover Assessment over SA

Initially, the default LC maps of the numerical models in SA classified by IGBP [34] and
UMD [35] were spatially compared to the new LC maps based on ESACCI. Figures 5 and 6
depict the LC maps for the two LSM classifications.
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A comparison between the default land cover (LC) maps of the numerical models
in SA, classified by the International Geosphere-Biosphere Programme (IGBP) and the
University of Maryland (UMD), and the new LC maps based on the European Space
Agency Climate Change Initiative (ESACCI) was conducted. The LC maps for the two
Land Surface Model (LSM) classifications are illustrated in Figures 5 and 6.

Figure 5 displays LC maps for the IGBP LC classification, revealing notable changes
between the two maps. The agriculture coverage area notably expands by approximately
1,270,661.90 km2 (172.79%) compared to the initial area of 735,373 km2. This expansion
is prominent in Brazil’s central–southern and southeastern regions, the eastern part of
northeastern Argentina, and a small area in the central region of Bolivia.
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It is essential to highlight that the Agriculture/Natural Vegetation class also experi-
ences a 122.02% expansion in its coverage area (Figure 5). Consequently, there is significant
degradation in these highlighted areas, with a considerable expansion of agricultural areas
leading to a reduction in natural areas across SA.

Figure 5 also shows the Bare Soil Vegetation class expansions over southwestern
Bolivia. However, this class decreases in size in western Argentina and a small portion of
the central region of Chile. The variation in the area of this class results in a reduction of
approximately 9.53% (46,833.34 km2) compared to the initial area of 491,681 km2. It is worth
noting that the region of the Salt Desert in Bolivia, initially classified as a water body, has
been corrected to the Bare Soil class in the new LC. Other classes with significant coverage
area variations include flooded areas, experiencing a 516.84% increase (150,110.51 km2)
compared to the initial area of 29,044 km2. Closed Shrubland also sees growth of 218.0%
(260,790.03 km2) compared to the initial area of 119,630 km2 (Figure 5).

The new classification emphasizes flooded areas in the Brazilian Pantanal region, a
known floodable area [51,52], and in the regions of the Amazon River and its tributaries,
covering Brazil and Peru (Figure 5). These changes will directly impact surface flows,
influencing the pattern of variation and affecting numerical simulations over the region.

In Figure 5, the Evergreen Needleleaf Forest and Wooded Tundra classes saw an
over 85% reduction from their initial coverage areas—123,886 km2 and 4595 km2, re-
spectively. Conversely, the Mixed Forest, Wooded Savanna, and Permanent Snow and Ice
classes exhibited approximately 75% variation compared to their initial areas—166,472 km2,
671,904 km2, and 24,833 km2—with only the Wooded Savanna class experiencing a reduc-
tion of about 515,000 km2.

The Open Shrubland class decreased by approximately 58% (1,207,393.43 km2). Simul-
taneously, the Deciduous Broadleaf Forest and Mixed Tundra classes saw reductions of
18.28% (85,342.65 km2) and 20.14% (37.29 km2), respectively. It is important to note that
this LC update mapped the Evergreen Needleleaf Forest and Barren Tundra classes over
SA. However, their coverage areas are less than 800 km2, making it challenging to identify
on the map in Figure 5.

It is worth mentioning that the coverage classes, such as Evergreen Broadleaf Forest,
Savannas, Pasture, and Urban and Built-up classes, had variations in coverage areas that
were less than 6% of their initial areas. These areas were 7,623,213 km2, 2,828,317 km2,
1,594,027 km2, and 44,349 km2, respectively (Figure 5).

Figure 6 presents LC maps for the land cover UMD classification. Substantial differ-
ences between the maps are noted, with discrepancies in the classification of cover classes.
It is relevant to highlight that the Urban and Built-up land cover class was not classified
in the initial LC map, but was exclusively represented in the new LC product based on
ESACCI. This class covers an area of approximately 52,397.42 km2.

Additionally, there is an apparent suppression of around 2,000,000 km2 in the Wood-
lands coverage area. Replacements for this region includes cover classes such as Deciduous
Broadleaf Forest, Croplands, and Wooded Grassland/Shrublands. The class showing the
greatest expansion in area is Croplands, experiencing a growth of 128.0% (equivalent to
1,309,588.84 km2) compared to its original area of 1,022,691 km2. This expansion is observed
in Brazil’s central–western and Argentina’s northeastern regions (Figure 6).

It is noteworthy to highlight that the expansion of Croplands primarily occurred
over areas previously occupied by Wooded Grassland/Shrublands. In Brazil, this refers
to the Cerrado biome, both the typical and sparse varieties [53,54]. In northeastern Ar-
gentina, this expansion is associated with the cover classes of Woodlands and Wooded
Grassland/Shrublands [54,55].

The land cover classes that experienced the most significant suppression of their initial
areas were Mixed Forest (−77.88%, equivalent to 68,026 km2) and Woodlands (−75.50%,
equal to 2,034,272.4 km2). These classes mainly lost ground to the Croplands, Grassland,
and Wooded Grassland/Shrublands cover classes [53,55,56].
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3.3. New Vegetation Climatology

There is new climatological information for GVF and LAI in SA based on GLASS
products [29,30,41]. Monthly maps of the updated climatology for these vegetation vari-
ables (GVF and LAI) from 2010 to 2020 over SA are presented in Figures 7 and 8. Figure 9
shows the monthly rainfall accumulations from the climatology of the MERGE product
(2000–2022). In these figures, the seasonality of vegetation over SA and its response to
changes in rainfall accumulations become evident. This pattern was expected as vegetation
responds to water availability; when there is sufficient precipitation, vegetation exhibits
greater vigor, resulting in improved plant health and increased leaf area [49,57].
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In Figures 7 and 8, the northeast and central–west regions of Brazil, Paraguay, south-
eastern Bolivia, and Argentina exhibit well-defined seasonality, with variation in the LAI
and GVF values in response to periods of higher and lower rainfall accumulations, as
illustrated in Figure 9. This pattern of vegetation variability was expected for these regions,
as they are composed of biomes that respond rapidly to local rainfall. Among them, the
Brazilian Cerrado and Caatinga stand out [2,49,57,58], and the Dry Chaco is present in
Bolivia, Paraguay, and Argentina [23].

The coastal region of Brazil exhibits distinct GVF and LAI values compared to the
more inland areas of the continent (Figures 7 and 8). This result is attributed to higher
rainfall accumulations in this region (Figure 9), as moist winds from the ocean influence it
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throughout the year. These winds significantly contribute to rainfall in the region [59–61].
The Amazon biome region, which covers Brazil, represents more than 60% of this Forest
that encompasses Peru, Colombia, and Venezuela [62] and shows low variability in the
GVF and LAI indices (Figures 7 and 8). In general, throughout the year, GVF values
consistently exceed 0.80 (Figure 7), while LAI varies between 3.5 m2/m2 and values greater
than 4.5 m2/m2 (Figure 9).
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This region of the Amazon biome is characterized by high rainfall accumulations
throughout the year, leading to the absence of a dry season [62,63] and maintaining rainfall
occurrence throughout all months.

These high rainfall accumulations contribute to the low variability in vegetation indices
in the Amazon rainforest. Additionally, the Forest plays a crucial role in maintaining the
balance between climate and vegetation. The high evapotranspiration in the forest helps
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sustain elevated rainfall accumulations throughout the region [62,64,65], thus supporting
the local hydrological cycle.

Concerning the desert regions of SA, such as the Atacama Desert in Chile and the
nearby arid areas, very low values of GVF and LAI are noticeable, with little variability
throughout the months (Figures 7 and 8). For GVF, values are below 0.5 throughout
the year, and for LAI, index values range between 0 and 1 m2/m2. Due to the arid
nature of the region, rainfall accumulations are low throughout the year, not exceeding
45.5 mm/month (Figure 9).

In Figure 10, GVF scatter plots for land cover classes Cropland, Forest, Grass, and
Savanna are presented, along with statistical indicators assessing input information from
the MODIS numerical models for SA when compared to the new climatology based on
GLASS (2010–2020).
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Figure 10. Statistical indicators for the standard GVF from numerical models in SA and the new
monthly GVF climatology for 2010–2020 for different land cover classes.

It is observed that the Grass and Savanna classes exhibit a robust correlation (r > 0.9),
while the Cropland and Forest classes have correlations of 0.796 and 0.601, respectively.
The coefficient of determination (R2) is low for the Forest class, moderate for Cropland, and
high for both the Grass and Savanna classes, with R2 exceeding 0.85. The bias and MAE
values for all land cover classes are also low. The highest (lowest) bias is for the Cropland
class (Forest) with 0.083 (−0.009), while for MAE, the highest (lowest) is for the Cropland
class (Forest) with 0.090 (0.045).

It is observed in Figure 10 that the agreement ‘d’ of the data is low for the Forest class,
with a value below 0.5. For the Cropland and Grass classes, the ‘d’ index is moderate,
ranging between 0.666 and 0.718, respectively. The ‘d’ index value for the Savanna class is
high, exceeding 0.927, closer to unity, and better than the other highlighted classes.

Regarding the confidence index (c), a combination of ‘r’ and ‘d’ indices, it is noted
that the Forest class shows a ‘Poor’ performance, with a ‘c’ value below 0 (Figure 10).
The Cropland and Grass classes have a ‘Good’ performance, while the Savanna class has
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an ‘Excellent’ performance. In this perspective, the Forest class requires updating of its
representation in the numerical models for SA. In contrast, the Savanna class continues
to be a good representation of the biome conditions. The Grass and Cropland classes still
perform well, albeit lower than the Savanna class.

In Figure 11, LAI scatter plots for land cover classes Cropland, Forest, Grass, and
Savanna are presented, along with statistical indicators to assess input information from
the MODIS numerical models for SA when compared to the new climatology based on
GLASS (2010–2020). It can be observed in Figure 11 that all land cover classes show a
moderate correlation, ranging between 0.431 and 0.661. The R2 is low for all classes, with a
value below 0.45. Additionally, bias and MAE values for all land cover classes are relatively
high, representing an average of approximately 18.3% compared to the data medium. The
highest error percentile is observed for the Cropland class (36.4%), followed by Savanna
(21.0%), Grass (10.7%), and Forest (5.6%).
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Figure 11 shows that the agreement index (d) for Cropland and Forest classes is low,
with values below 0.5. The d index is moderate for the Grass and Savanna classes, ranging
between 0.641 and 0.688, respectively. Regarding the c index, all classes show ‘Poor’ or
‘Very Poor’ performance, with c values below 0.45. In this perspective, the need to update
all LAI classes becomes evident, since the pattern of data variability is different. Thus,
the default representation of MODIS in the numerical models of SA does not represent
the region.

4. Conclusions

In light of the investigations presented in this study, it becomes evident that significant
changes have occurred in land cover and vegetation information over SA. These findings
contribute to understanding regional landscape modifications and have important impli-
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cations for numerical modeling. Therefore, generating new climatological information as
input for these parameters is necessary.

The new climatological land cover maps indicated significant changes over SA, from
expanding cropland areas exceeding 1 million km2 to reducing native areas by around
500 thousand km2. Furthermore, the new land cover climatology demonstrates remarkable
performance in representing cover classes, with an overall accuracy exceeding 80% for
both the IGBP (89.83%) and UMD (80.03%) classifications. Thus, these new land cover
climatologies are excellent options for initializing numerical models in the region, being
more recent and accurately representing the current surface conditions of SA.

Despite achieving an accuracy above 80%, the new mapping still holds uncertainties,
particularly in complex landscapes. Future research should concentrate on refining land
cover mapping accuracy. This goal can be accomplished by utilizing advanced techniques
in remote sensing and integrating high-resolution satellite data for more detailed analysis.

Regarding vegetation information, it is concluded that updating climatic GVF and LAI
maps is necessary due to changes in land cover, which directly impact these indices. New
GVF and LAI climatology maps were developed in this context, revealing distinct temporal
patterns compared to the standard information from South America’s numerical models.

Statistical indicators highlighted this information, indicating a low correlation, a low
agreement between series, and a c index performance classified as “Poor” or “Very Poor”,
especially for the LAI index. On the other hand, the GVF index shows better performance,
where the c index performance is “Good” and “Excellent” for Cropland, Grass, and Savanna
classes. In contrast, the Forest class exhibited a “Very Poor” performance.

Considering the challenges identified in the statistical indicators of LAI and GVF
indices with changes in land cover, future studies can deepen the understanding of
factors influencing these discrepancies. To achieve our goal, we need to conduct thor-
ough field validations, incorporate more environmental variables, and improve our
modeling techniques.

In conclusion, while this study provides a comprehensive assessment of changes
in land cover and vegetation in South America, ongoing research is needed to address
identified limitations and advance our understanding of regional dynamics. Future studies
could benefit from a multidisciplinary approach, incorporating advanced technologies and
refining methodologies to enhance the accuracy and reliability of climatological information
and its application in numerical models.
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