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ABSTRACT

The Brazilian Cerrado, a hotspot for global biodiversity conservation, evolved un-
der the presence of natural wildfires. Fire has become frequent and widespread, and
the Cerrado, where natural fires have occurred for at least four million years, is
threatened by human-induced wildfires. The Chapada dos Veadeiros National Park
(CVNP), located in the state of Goiás, Brazil, was established in 1961 and currently
covers 240,611 ha. In 2017, approximately 66,000 ha were burned in the CVNP,
and the Integrated Fire Management (IFM) was implemented still in that year to
reduce the negative impacts of future criminal/accidental events. Remote Sensing
(RS) data show that there were fire-foci in the CVNP during the dry months of 2020,
2021, and 2022. There are two RS-based products for wildfires detection: products
of released heat and products of biophysical changes in vegetation. As an example
of provider, there is the Queimadas Program of Brazil’s National Institute for Space
Research (INPE), which provides products on daily fire hotspots and a monthly
product of burned areas for the Cerrado. As of the current date, there are no prod-
ucts that employ Brazilian satellite images for the systematic mapping of burned
areas. The objective of this research is to explore methods for supervised classifi-
cation of time series images captured by the Wide Field Imager (WFI) sensor on
board the CBERS-4, CBERS-4A, and AMAZONIA-1 satellites, using the Random
Forest (RF) algorithm. The study area is the CVNP and its buffer zone of 10 km,
and the time window covers the years 2020, 2021 and 2022. A total of 382 images
were acquired from INPE archive and after filtering for cloud cover it was decided
to keep 235 images: 50 from 2020, 72 from 2021 and 113 from 2022. The WFI sensor
has four spectral bands (BGR NIR), which is a limiting factor. Consequently, we
estimated and integrated the BAI (Burned Area Index), EVI (Enhanced Vegetation
Index), GEMI (Global Environmental Monitoring Index), NDVI (Normalized Dif-
ference Vegetation Index), and NDWI (Normalized Difference Water Index) spectral
indices into a regular grid with 500 m x 500 m cells, totalling 38,957 cells. For each
one of the previous spectral indices more the NIR band, datasets containing annual
and semi-annual observations were structured and the models were trained using
samples of “burned areas” and “unburned areas” previously collected through vi-
sual image analysis. The annual models achieved at least 90% accuracy and the best
generalization results were observed using multi-temporal datasets. The results of
this research indicate that, given a representative sample set, it is possible to detect
burned areas in the CVNP using WFI imagery.

Keywords: Fire. WFI. Chapada dos Veadeiros National Park. Supervised classifica-
tion. Random forest.
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MAPEAMENTO DE ÁREAS QUEIMADAS NO CERRADO
UTILIZANDO SÉRIES TEMPORAIS DOS SATÉLITES CBERS E

AMAZONIA

RESUMO

O Cerrado, hotspot de conservação da biodiversidade, evoluiu sob a presença de in-
cêndios naturais. O fogo se tornou frequente e difuso na atualidade, e o Cerrado, onde
o fogo natural ocorre há pelo menos quatro milhões de anos, é ameaçado por incên-
dios de origens antrópicas. O Parque Nacional da Chapada dos Veadeiros (PNCV),
localizado no estado de Goiás, foi instituído em 1961 e a sua área atual é de 240.611
ha. Em 2017 o PNCV teve cerca de 66 mil ha atingidos por fogo e, ainda nesse ano,
foi instituído o Manejo Integrado do Fogo (MIF) a fim de se reduzir os impactos ne-
gativos desses eventos criminosos/acidentais. Dados de Sensoriamento Remoto (SR)
evidenciam que houve focos de calor nos meses secos de 2020, 2021 e 2022 no PNCV.
Existem, principalmente, dois subprodutos de fogo em aplicações de SR: subprodu-
tos de liberação de calor e subprodutos de modificações biofísicas da vegetação.
Como exemplo de provedores, tem-se o Programa Queimadas do Instituto Nacional
de Pesquisas Espaciais (INPE), que disponibiliza produtos sobre focos de calor diá-
rios e um produto mensal de áreas queimadas para o Cerrado. Entretanto não há, até
o momento, produtos que utilizem imagens de satélites brasileiros no mapeamento
sistemático de áreas queimadas. Assim, essa pesquisa tem como objetivo explorar
abordagens de classificação supervisionada de séries temporais de imagens do sensor
Wide Field Imager (WFI), a bordo dos satélites brasileiros CBERS-4, CBERS-4A e
AMAZONIA-1, com o algoritmo Random Forest (RF). A área de estudo é o PNCV
e seu buffer envolvente de 10 km, e a janela temporal engloba os anos de 2020, 2021
e 2022. Ao todo, 382 imagens foram adquiridas do arquivo do INPE e, após a tria-
gem por cobertura de nuvens, optou-se por manter 235 imagens, sendo 50 de 2020,
72 de 2021 e 113 de 2022. O sensor WFI possui quatro bandas (BGR NIR), o que
é um limitante. Procedeu-se, portanto, a estimação e a integração dos índices BAI
(Índice de Área Queimada), EVI (Índice de Vegetação Melhorado), GEMI (Índice
Global de Monitoramento Ambiental), NDVI (Índice de Vegetação por Diferença
Normalizada) e NDWI (Índice de Água por Diferença Normalizada) em uma grade
regular com células de 500 m x 500 m, o que totaliza 38.957 células. Para cada índice
espectral e para a banda do NIR foram estruturados datasets contendo observações
anuais e semestrais e os treinamentos dos modelos foram conduzidos com amostras
de “áreas queimadas” e “áreas não queimadas”, coletadas previamente por análise
visual de imagens. Como resultado, os modelos anuais atingiram, no mínimo, 90%
de acurácia e os melhores resultados de generalização foram observados utilizando
datasets multitemporais. Os resultados desta pesquisa indicam que é possível, dado
um conjunto de amostras representativo, classificar áreas queimadas do Cerrado do
PNCV utilizando imagens do sensor WFI.

Palavras-chave: Fogo. WFI. Parque Nacional da Chapada dos Veadeiros. Classifica-
ção supervisionada. Random Forest.
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1 INTRODUCTION

The Cerrado, or Brazilian savannas, is hotspot for global biodiversity conservation
(MYERS et al., 2000). Its ecosystems are characterized by high species diversity and
endemism, while also providing environmental services such as water cycle regulation
and carbon storage (BUSTAMANTE; OLIVEIRA, 2008; COLLI et al., 2020). The
Brazilian Cerrado is one of the most biodiverse savannas in the world, but histori-
cally, conservation efforts and policies in Brazil have not given the same attention
to savannas as to forest biomes, including the Amazon (OVERBECK et al., 2015).

According to the Brazilian Institute of Geography and Statistics (IBGE), the Cer-
rado is classified as a non-forest biome. The proportion of formally protected non-
forest environments in Brazil is lower than forest vegetation, and land cover conver-
sion in these environments is driven by the global demand for commodities (OVER-
BECK et al., 2015). Over time, however, both forest and non-forest environments
have experienced deforestation and degradation mainly due to agricultural activities
(BUSTAMANTE et al., 2019).

Brazil currently plays a significant role as a major exporter of agricultural prod-
ucts. It is in the Cerrado region where various commodities, mainly soybeans, are
produced (SOTERRONI et al., 2019). The 1970s marked the beginning of extensive
human occupation in the Cerrado, as governmental development programs promoted
land cover conversion to support economic activities, directly resulting in successive
deforestation events and the advance of agricultural frontiers (FARIA; SANTOS,
2016; HOFMANN et al., 2021; DUTRA; SOUZA, 2022).

Pivello et al. (2021) report that the states of Mato Grosso and Goiás have experi-
enced significant losses of Cerrado vegetation over the last two decades, and that the
agricultural frontier has recently reached the region known as MATOPIBA, which
refers to the region comprising the border of the states of Maranhão, Tocantins, Pi-
auí and Bahia. The authors highlight deforestation, the use of pesticides, the spread
of monocultures and human-induced fires as factors linked to the dynamics of land
use changes in the region. Sawyer et al. (2016) also highlight some of these factors
as current direct and indirect causes of threats for the Cerrado conservation.

Changes in land cover are temporally continuous, and fire events in the Cerrado could
be considered ambiguous. While most of the Cerrado has an evolutionary depen-
dency on fire, the current incidence of human-induced wildfires has negative impacts
on its ecosystems (DURIGAN et al., 2020; FIDELIS et al., 2018). Anthropogenic-
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caused wildfires occur in unfavorable seasons, persist for longer periods, are more
intense and threaten the biodiversity, which may not resist facing the high recurrence
and intensity of these events and the high temperatures of the flames (FIDELIS et
al., 2018; KEELEY, 2009).

While land use practices have intensified fire events, Remote Sensing (RS) applica-
tions allow the understanding of the Cerrado historical dynamics and the effects of
fire at different scales. Currently, national initiatives, such as MapBiomas (MAP-
BIOMAS, 2023) and TerraClass (INPE, 2023a) develop operational land use and
land cover (LULC) products, while MapBiomas Fogo (ALENCAR et al., 2022),
Programa Queimadas (INPE, 2023b) and ALARMES (Alarm System of Satellite-
Derived Burned Area Estimations) (UFRJ, 2023) provide active fires detection
and/or burned area products for the Brazilian Cerrado.

In a RS perspective, changes driven by wildfires can be understood as alterations in
vegetal cover or as spectral and spatial movement of the vegetation characteristics
over time. RS enables the detection of the electromagnetic radiation emitted or
reflected by targets on the Earth’s surface and converts them into images, based
on the spectral behavior and properties of the targets. It enables various analyses
related to the Earth’s resources and climate, such as monitoring atmospheric and
oceanic conditions, crop planning and deforestation detection (JENSEN, 2009).

RS analysis are performed across a wide range of the electromagnetic spectrum,
including optical, infrared, and long wavelengths regions (JENSEN, 2009). In this
context, images derived from orbital sensors should be used according to their spec-
ifications to ensure accurate analysis of the monitored terrestrial phenomena. By
applying RS techniques in the analysis of satellite images for monitoring wildfires
and assessing their impacts on ecosystems, studies employ methods that vary based
on the resolutions of the sensors and on the available technology at the moment.

Bands positioned in the infrared spectral region are effective in distinguishing active
fires and burned areas in landscapes (PEREIRA et al., 2016). Additionally, the tem-
poral coverage of orbital platforms is a factor that influences the analysis, and sensors
with high temporal resolution allow for short-term analysis and rapid provision of
RS products. Various RS-based products are currently available for wildfire analysis,
including active fire and burned area data (PENHA, 2018). These RS products may
differ depending on the methodology used and the reference sensor.

As an example of a RS application related to fire, burned area products allow for the
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comprehension of the characteristics and behavior of wildfires, contributing to the
estimation of their impacts (GAVEAU et al., 2021). Despite considering the sensor’s
spectral and temporal resolutions, the applied methodology behind these products is
fundamental to ensure a reliable accuracy (SHIMABUKURO et al., 2020). Artificial
Intelligence (AI) is currently a reality and is being used to improve RS approaches,
including the assessment of burned areas mapping (ALENCAR et al., 2022; ROY
et al., 2019; RAMO et al., 2018; SHIMABUKURO et al., 2009).

Analysis of the spectral characteristics of targets in different regions of the electro-
magnetic spectrum is limited when a given sensor, such as the WFI (Wide Field
Imager) on board the CBERS-4 (China-Brazil Earth Resources Satellite), CBERS-
4A and AMAZONIA-1 satellites, operates in the BGR NIR (blue, green, red and
near-infrared) multispectral bands. Nevertheless, RS and AI techniques, such as de-
tecting land use and land cover changes and analyzing time series data, could be
alternatives to the use of multispectral bands for mapping burned areas, through
the synergy of RS-based data and pattern recognition algorithms, for example.

By combining the temporal coverage of the CBERS-4, CBERS-4A and AMAZONIA-
1 satellites, it is possible to acquire WFI images with a spatial resolution of 55 m or
64 m every 1-3 days. Approaches based on WFI images from these satellites need
to harmonize, to some extent, the data. Despite being the same sensor, there are
differences in spatial resolution and in the grid of the satellites (OLDONI, 2022).
Considering these aspects, we propose an approach for composing inter-satellites
time series with the WFI sensor for mapping burned areas in a region of the Cerrado.

Currently, fires have become more frequent, intense, and widespread, and the Brazil-
ian Cerrado, where natural wildfires have occurred for at least four million years,
now faces threats related to land use and land cover conflicts, agricultural activi-
ties and recreational practices (SIMON et al., 2009; PIVELLO et al., 2021). A RS
method for mapping burned areas based on Brazilian satellites with high temporal
coverage has the potential to be useful for conservation units and priority areas, and
it is in line with national plans for monitoring the Cerrado (MMA, 2018).

1.1 Hypothesis

It is possible to map burned areas in the Cerrado through automated processes
using artificial intelligence applied to harmonized time series derived from bands
and spectral indices acquired by the WFI sensor on board the CBERS-4, CBERS-
4A, and AMAZONIA-1 satellites.
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1.2 Objective

Explore different temporal approaches for classifying burned areas in the Brazilian
Cerrado, using the NIR band, spectral indices, and time series supervised classifica-
tion based on regular 500 m cells as geographic objects.

1.2.1 Specific objectives

a) Build Analysis Ready Data (ARD) datasets with remote sensing data from 2020
to 2022 for the Cerrado present in the Chapada dos Veadeiros National Park using
WFI imagery acquired by brazilian satellites.

b) Assess the performance of time series supervised classification with Random For-
est on annual, semi-annual and multi-temporal datasets.

c) Understand the performance of classifications using the NIR band and the BAI,
EVI, GEMI, NDVI and NDWI spectral indices.

d) Compare the generalization results of the generated multitemporal models with
the MCD64A1 and AQM1km burned area products.
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2 THEORETICAL BACKGROUND

2.1 An overview of the Brazilian Cerrado conceptions

The Cerrado is the second largest Brazilian biome, or phytogeographic domain, and
its climate is characterized by dry winters and rainy summers under the Aw (tropical
wet and dry or savanna climate) Köppen-Geiger classification (MMA, 2017). An im-
portant ecosystem service provided by the Cerrado is the carbon storage. According
to Sawyer et al. (2016), 70% of the Cerrado biomass is underground. Cattle, annual
crops such as soybeans, corn and cotton, biofuels (sugar cane), charcoal, fire and
monocultures are threats to the ecosystems serviced offered by this biome.

Several definitions regarding the Brazilian natural regions classification have been
proposed during the last two-hundred years (RIBEIRO; WALTER, 1998), and there
is no consensus on whether the Brazilian Cerrado should be considered a biome or a
phytogeographic domain. One general definition describes the Cerrado as a mosaic
of distinct environments in which phytophysiognomies from three biomes coexist in
a vegetation density gradient (COUTINHO, 1978; COUTINHO, 2006). A similar
classification was elaborated by Eiten (1983).

The Cerrado, while a phytogeographic domain, represents an extensive natural
area where the tropical grassland, savanna, and seasonal forest biomes are present
(BATALHA, 2011). According to this interpretation, a biome would be under-
stood on a global scale and a phytogeographic domain on a subcontinental scale.
Campo Limpo is the phytophisiognomy comprising grassland formations, Campo
Sujo, Campo Cerrado and Cerrado Sensu-Stricto are savannic environments and
the Cerradão represents the forest formations. Figure 2.1, adapted from Coutinho
(1978), exemplifies this biomass density gradient.

Figure 2.1 - The Cerrado phytophysiognomies according to Coutinho (1978).

Source: Adapted from Gottsberger and Silberbauer-Gottsberger (2018).
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According to the IBGE, the Cerrado is a xeromorphic vegetation biome characterized
by a seasonal climate with the driest months occurring from May to September
(PIVELLO, 2011). The IBGE defines a biome on a regional scale, based on shared
geo-climatic conditions and a common natural history, resulting in environments
with unique biodiversity, but not homogeneous (IBGE, 2012). Under this conception,
grassland, savanna, and forest formations are not considered separate biomes but
rather the primary vegetation formations found within the Brazilian Cerrado.

Another established concept that aggregates local details was proposed by Walter
(1986) and Ribeiro and Walter (1998). According to their definitions, the Cerrado
has eleven general phytophysiognomies containing twenty-three different vegetation
types. Due to the pragmatism of this classification system, despite the no consid-
eration of quantitative data, several researchers have adopted and used this useful
concept as reference to comprehend and describe the Cerrado (PINHEIRO; DURI-
GAN, 2012).

The official definition was given in the Technical Manual on Geosciences, Number
1 (Brazilian Vegetation). In 2017, the “Forest Reference Emission Level” (FREL-
Cerrado) was published (MMA, 2017), adopting the IBGE classification as the refer-
ence for the biome carbon estimation. In an effort to establish compatibility between
the classification systems proposed by Walter (1986), Ribeiro and Walter (2008) and
IBGE (2012), Valeriano (2017), in the context of REDD+ (Reducing Emissions from
Deforestation and Forest Degradation), proposed the framework summarized in Ta-
ble 2.1.

Table 2.1 - Compatibility of phytophysiognomies suggested by Valeriano (2017).

Formation Group
(RIBEIRO; WALTER, 2008)

Vegetation class
(IBGE, 2012)

Grassland
Open grassland Woody-grass savanna
Shrub grassland Savanna parkRupestrian grassland

Savanna

Tipical cerrado Wooded savanna
Rupestrian cerrado Savanna parkCerrado park

Palmland Fluvial and/or lacustre
influenced vegetationVereda

Forest

Tall woodland Forest savanna
Gallery forest

Seasonal forestEyelash forest
Dry forest

Source: Valeriano (2017).
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2.1.1 Fires in the Cerrado

The majority of the Brazilian Cerrado biodiversity depends on fire (Figure 2.2).
Natural wildfires have been occurring, at least, during the last four million years
in the Cerrado, and fire has been a natural selection factor that has led to most
of the flora being fire-resistant due to morphological and physiological adaptations
(NASCIMENTO, 2001). It is also important to emphasize that natural fires occur
between three and six years, and that human-induced wildfires have different char-
acteristics and have negative impacts on the Cerrado (RAMOS-NETO; PIVELLO,
2000; JÚNIOR et al., 2014).

Figure 2.2 - Ecological relationship between Brazilian biomes and fire and detected fire-
foci for 2022 per state present in the Cerrado.

Source: Adapted from Pivello et al. (2021).

When analyzing the fire-foci of 2022 by states containing Cerrado vegetation, we
observe that, except for Mato Grosso (MT), the four states with the highest number
of hotspots identified by the INPE reference satellite (INPE, 2023b) are located in
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the MATOPIBA region. While most of its phytophysiognomies have fire-resistant
adaptations, natural fires are exceptions, and wildfires caused by human factors
negatively affect its natural dynamics, leading to problems related to biodiversity
loss and fragmentation (FIDELIS et al., 2018).

During a wildfire, the combustion process primarily involves the consumption of
organic vegetation, which influences the fire intensity. It has a relationship with the
fuel’s calorific value, and different types of vegetable fuel can lead to variations in
flame temperature, spread rate, and persistence (KEELEY, 2009). Although the
primary environments of the Cerrado are categorized as fire-dependent, they still
face risks. Additionally, the Cerrado’s zero-fire policy has shown ineffectiveness and
may potentially amplify the negative effects of wildfires (BARRADAS et al., 2020;
DURIGAN et al., 2020), requiring new approaches for reducing environmental losses.

A historical debate involving fires in the Cerrado concerns the assumption that the
use of managed fire to control densification and maintain the natural dynamics of
grassland and savanna phytophisiognomies. Prescribed fire has been shown to be
effective in preventing catastrophic fire events, such as those that occurred in the
Cerrado in 2017, by controlling biomass growth (FIDELIS et al., 2018). Moreover,
this practice has the advantage of combating the spread of exotic species, while
providing fire-resistant vegetation with environmental conditions that ensure their
natural dynamics (DURIGAN; RATTER, 2016).

According to Schmidt et al. (2016), the Integrated Fire Management (IFM) was
first implemented in Brazil in 2014. One of its principles is conducting prescribed
early burnings at the beginning of the dry season. The authors mention that IFM
helps reduce the amount of fuel, resulting in a mosaic with varying levels of post-fire
regeneration. Forestry brigade teams conduct the entire process, and these fires tend
to be of low intensity and spread, as they do not completely consume the available
fuel and are generally extinguished at night due to favorable conditions.

Essentially, as explained by Barradas et al. (2020), the debate between the zero-
fire policy and the managed use of fire in savannas is global. In the context of
the Cerrado, the benefits of IFM in preventing intense events potentially caused
by humans are recognized and formally adopted in conservation units managed by
the Chico Mendes Institute for Biodiversity Conservation (ICMBio), which engages
in training local communities, since IFM considers both science and society in its
approaches (BERLINCK; LIMA, 2021). Currently, Project Law 1818/2022, which
establishes a national policy for IFM, is in the process of approval (BRASIL, 2022).
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2.2 Fire monitoring and assessment using remote sensing

Fire is the result of combustion, an exothermic chemical reaction that occurs rapidly
when a given fuel composed of oxidizable material reacts with a given oxidant el-
ement, such as oxygen gas (SCHMIDT-ROHR, 2015). The necessary factors for
initiating and sustaining combustion are the presence of an ignition source, fuel
available at the combustion temperature, and the presence of oxidant in sufficient
concentration (HOFFMAN et al., 2021). Fire releases its own energy and light.

Radiance is the main measurement of RS and corresponds to the reflection or emis-
sion of energy that a sensor is able to detect (NOVO; PONZONI, 2001). Based on
the interaction of electromagnetic radiation coming from targets, and received by
a sensor, RS is able to describe the spectral characteristics of targets in the Earth
system in specific regions of the electromagnetic spectrum according to the spectral
resolution of the sensor and the position of the spectral bands (JENSEN, 2009).

Regarding RS analysis applied to wildfires, Penha (2018) describes two main types of
fire-based products: heat-related products (active fire) and products focused on the
biophysical changes observed in the burned vegetation (burned area). It is important
to highlight the distinction between an active fire, which is the instantaneous product
of combustion characterized as a thermal anomaly, and a burned vegetation area,
which represents post-fire surface conditions. Specific regions contain information
about the characteristics of these different targets in the electromagnetic spectrum.

While the energy emitted during the combustion process can be detected by RS
in the thermal infrared and denotes active fire hotspots (SZPAKOWSKI; JENSEN,
2019), detecting burned areas is possible by analyzing a wider spectral range, includ-
ing the visible region (NEGRI et al., 2022), and the near and shortwave infrared.
Consequently, the optimal techniques for generating products related to active fires
or burned areas for environmental monitoring depend on the specific characteristics
of the sensor, such as imagery acquisition periodicity.

For example, Figure 2.3 provides an overview of the Operational Land Imager (OLI)
and the Wide Field Imager (WFI) sensors. The OLI, onboard Landsat8/9 satellites,
has a spatial resolution of 30 m for bands between the visible (0.4 µm - 0.7 µm)
and the infrared (0.7 µm - 2.4 µm) regions, but its panchromatic band allows the
acquisition of fused images with pixels of 15 m, while the thermal band has a spa-
tial resolution of 100 m. The WFI sensor, onboard Brazilian satellites, has spatial
resolutions of 55 m and 64 m and it provides four multispectral bands (BGR NIR).
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Figure 2.3 - Comparison between OLI and WFI spectral and spatial resolutions.

The OLI sensor operates in regions of the electromagnetic spectrum that are not
covered by the WFI sensor, such as the shortwave infrared (SWIR) and thermal
infrared (TIR) bands. This comparison illustrates how the sensor’s specifications can
affect analysis based on orbital RS. While the SWIR and TIR bands are useful for
mapping burned areas and detecting active fires on the Earth’s surface (CHUVIECO
et al., 2002), other factors need to be considered, especially when a sensor has lower
spectral resolution, as in the case of the WFI on board Brazilian satellites.

2.2.1 The WFI sensor

According to Epiphanio (2009), the CBERS are satellites of continuity, which means
that one objective of this series of satellites is to ensure the continuity of images with
similar characteristics over time. The first CBERS satellite was launched in 1999,
and currently CBERS-4 and CBERS-4A are operational. AMAZONIA-1, the first
satellite to be entirely designed, integrated, tested, and operated by Brazil, was
launched in 2021. Table 2.2 shows the general chronological history of the Brazilian
satellites.

Table 2.2 - Chronology of the Brazilian satellites.

CBERS-
1

CBERS-
2

CBERS-
2B

CBERS-
3

CBERS
-4

CBERS-
4A

AMAZONIA-
1

1999 2003 2007 2013 2014 2019 2021
Source: Adapted from Oldoni (2022).
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The WFI family sensors began with CBERS-1 and, although they have undergone
technological improvements, there has been a continuity in the regular provision of
images from these sensors over time. In fact, it was only with CBERS-3 that the
WFI sensor could not operate due to problems with the launch of the satellite. In
the first generation (CBERS-1, CBERS-2 and CBERS-2B), the WFI sensors had a
spatial resolution of 260 m, temporal resolution between 3-5 days and two spectral
bands (red and near-infrared) (EPIPHANIO, 2009).

This sensor has been improved since CBERS-3 to a spatial resolution of 64 m and
four bands (blue, green, red and near-infrared), while maintaining the temporal
resolution. The spatial resolution of the WFI on board CBERS-4A is 55 m due to the
difference in altitude between the CBERS-4 and CBERS-4A satellites. Some national
initiatives, such as the Brazil Data Cube (BDC), currently provides Analysis Ready
Data (ARD) data cubes based on WFI multi-dimensional with a spatial resolution
of 64 m (FERREIRA et al., 2020).

BDC is an example of a RS application based on the processing of medium resolu-
tion imagery acquired by Brazilian satellites and the provision of ARD. According to
Picoli et al. (2020), these data cubes enhance environmental monitoring capabilities,
such as deforestation mapping, wildfire studies and temporal LULC analysis. BDC
also uses the Sentinel-2/MSI (multispectral Instrument) Landsat-8/OLI (Opera-
tional Land Images), Landsat-8/TIRS (Thermal Infrared Sensor), CBERS-4/MUX
(multispectral Camera) and AQUA-TERRA/MODIS (Moderate Resolution Imag-
ing Spectroradiometer) sensors to generate ARD data cubes.

Besides CBERS-4 and CBERS-4A, which are jointly operated and maintained by
Brazil and China, AMAZONIA-1, the first satellite designed entirely in Brazil, was
launched in 2021. It represents a strategic Brazilian technological asset for planning
related to natural resources and environmental factors, particularly in the Amazon
region (SILVA et al., 2022)). This satellite carries the WFI sensor with a spatial
resolution of 64 m and a temporal coverage of 5 days, and the data combination
from these three satellites allows the country to have a constellation of WFI sensors
capable of providing images every 1-3 days (OLDONI, 2022).

Despite having the same technical specifications, the WFI sensors on board the three
satellites exhibit variations in their response functions attributed to differences in
right and left optics. Even if images of a same location are captured under identical
conditions, there may still be variations in the generated images due to these optics
differences. Otherwise, these satellites use different grids, and the spatial resolution
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is not the same between them, as previously observed (OLDONI, 2022).

Oldoni (2022) proposed inter-satellites methods for co-registration and spectral nor-
malization to produce robust time series based on WFI images from CBERS-4,
CBERS-4A and AMAZONIA-1. The author mentions in the study “Harmonization
of WFI data from CBERS-4, CBERS-4A and AMAZONIA-1 satellites for agricul-
tural applications”, that WFI images observed displacements between CBERS-4 and
AMAZONIA-1 to Sentinel-2 reached 1.45 pixels (93 m), and that between CBERS-
4A to Sentinel-2 reached 2.5 pixels (138 m). It indicates geometric inconsistencies
between the CBERS and AMAZONIA-1 platforms.

In this sense, it is worth noting that, despite the apparent challenge of harmonizing
the WFI data, available RS-based approaches can reduce noise between images from
these satellites. Surface reflectance (SR) transformation functions, as suggested by
Oldoni (2022), are subject to calibrations that vary according to the study area.
Furthermore, it is essential to have in mind the objectives of an application to
determine the appropriate level of data processing and harmonization. Certain levels
of noise may be tolerated in some cases, while they may not in others (RADOUX;
BOGAERT, 2017).

2.2.2 Spectral behavior of burned areas

During wildfires, fire mainly consumes organic material from vegetation fuel, affect-
ing the intensity of fire events in natural ecosystems. Depending on the calorific
value of the burning fuel, flames can reach higher temperatures, spread more easily
or take longer to cool down (MCARTHUR; CHENEY, 2015). Keeley (2009), in the
article “Fire intensity, fire severity and burn severity: a brief review and suggested
usage”, distinguishes the difference between the concepts “fire intensity” and “burn
severity”. Figure 2.4 illustrates these concepts that are related to the active fire and
burned area RS-based products.

Basically, fire intensity describes the combustion process by which flames release
energy, or in the case of fire line intensity, the rate of heat transfer per unit length of
fireline. Both fire severity and burn severity refer to ways of measuring impacts by
analyzing post-fire charred plant material, with burn severity the most used in RS
applications. Active fires and burned area sub-products have different targets on the
terrestrial surface. While thermal infrared bands assess fire hotspots and measure
physical properties of fire, such as fire radiative power (FRP), burned areas can be
mapped with sensors that operate in shorter waves of the electromagnetic spectrum.
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Figure 2.4 - Visual examples of fire intensity and burn severity on vegetation.

Source: Adapted from Pivello et al. (2021).

The range over which the spectral behavior of burned areas can be observed by RS
depends on the number of bands a sensor has and their position along the electro-
magnetic spectrum. Burned areas do not have a unique spectral signature, because
environmental factors, such as vegetation cover and pedology, affect its spectral re-
sponse (BASTARRIKA et al., 2011; LEWIS et al., 2021). Bands positioned in the
infrared region are the most common to identify and map these targets (PEREIRA
et al., 2016) or to proceed spectral indices transformations to highlight burned areas.

Vegetation and pedology influence the spectral behavior of burned areas, as vege-
tation characterizes the available fuel (FRANKE et al., 2018) and pedology causes
background effects on the signal, which varies according to the soil constituents
(PEREIRA et al., 2016). Basically, there are two spectral patterns of this target on
surface: areas with black and/or white ash and charcoal/charred material, detectable
soon after the fire; and areas with changes in vegetation structure and abundance,
detectable for a period ranging from days to months (PEREIRA et al., 1997).

In the visible region (0.4 µm - 0.7 µm), burned areas exhibit an increase in surface
reflectance that gradually decreases over time. This decrease is attributed to the
gradual reduction of ash cover and the increasing influence of bare soil and vegetation
greening on the spectral signal detected by the sensor (PEREIRA et al., 2016).
These observations differ from similar studies conducted in other natural formations,
where, for example, burned areas in forests typically show an immediate decrease in
reflectance in the bands located in this spectral region (LENTILE et al., 2006).

In the near-infrared (NIR) region (0.7 µm - 1.3 µm), the surface reflectance of

13



fire-affected areas is expected to decrease significantly, and it is attributed to the
reduced amount of energy reflected by vegetation structures, which can be impacted
at different levels of severity depending on their characteristics (PEREIRA et al.,
1997; CHUVIECO et al., 2002). In addition to the NIR band, shortwave infrared and
thermal bands are recurrent in equations of spectral indices applied to vegetation
monitoring and burned areas mapping.

However, the sensor used does not always operate in these bands, as is the case with
the WFI sensor. Based on the bands imaged by the reference sensor, it is possible
to perform transformations in which the products highlight the spectral response of
targets of interest. Spectral indices represent a fast way to obtain information from
the use of two or more spectral bands, as it is a conceptually simple technique with
high computational efficiency (PENHA, 2018). One of the main advantages of the
WFI images is the almost daily revisit using the Brazilian satellite constellation,
what justifies studies concern the viability of the WFI for mapping burned areas.

Table 2.3 lists some helpful spectral indices used for mapping burned areas using the
four multispectral bands (BGR NIR) present in the WFI. The Burned Area Index
(BAI) (CHUVIECO et al., 2002), Global Environment Monitoring Index (GEMI)
(PINTY; VERSTRAETE, 1992), and the Normalized Difference Vegetation Index
(NDVI) (ROUSE et al., 1974) use the red and NIR bands, while the EVI (HUETE
et al., 2002) uses the blue, red and NIR bands. The Normalized Difference Water
Index (MCFEETERS, 1996) uses both the green and NIR bands.

Table 2.3 - Spectral indices that enable the detection of burned areas based on the images
derived from the WFI sensor.

Sources: Rouse et al. (1974), Pinty and Verstraete (1992), McFeeters (1996), Huete
et al. (2002), Chuvieco et al. (2002).
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As mentioned, the potential to detect burned areas is reduced if a given sensor oper-
ates only in the visible and NIR regions. Many spectral indices applied to map this
target use bands located along the infrared region. Despite these challenges, Pastor
and Shimabukuro (2009) explored, in the article “Estimación de superficie quemada
mediante la aplicación sinérgica de OBIA y SMA a imágenes WFI CBERS”, the
usage of the red and NIR bands of the WFI sensor for mapping burned areas based
on Spectral Mixture Analysis (SMA) and Object-Based Image Analysis (OBIA).

2.2.3 Land cover change detection applied to map burned areas

Land can be understood as the place where all human activities occur (PARVEEN
et al., 2018). Two other terms complement this concept in RS studies, “land use”
and “land cover”, and there is no global consensus on their definitions. Basically,
on the surface land, humans can develop activities based on use, for example, food
production, recreation and extraction of raw materials or natural resources, and this
type of human-environment relationship is commonly referred to as land use, which
is under human driving forces.

According to Meyer and Turner (1996, 238), land cover “is the biophysical condition
of the land”, such as “the kind and condition of the vegetation and other biota, the
water, the soil, the artificial structures that cover its surface” (MEYER; TURNER,
1996, 238). The authors emphasize that land use alters land cover by converting
or changing land cover to a qualitatively different state, by changing land cover
conditions without full conversion, or by maintaining changed conditions over time.
Parveen et al. (2018) highlight that non-anthropogenic forces also alter land cover.

Although there is not a unique globally used legend for land cover classes, there are
proposals in the literature to standardize these classes according to different spatial
scales. The Land Cover Classification System (LCCS), developed by the Food and
Agriculture Organization (FAO), can be cited as a land cover legend system that can
be modified by users according to their context. Examples of the eight major classes
adopted by the LCCS include: cultivated and managed terrestrial areas; natural
and semi-natural terrestrial vegetation; artificial surfaces and associated areas; bare
area; artificial water bodies, snow and ice (GREGORIO, 2005).

Natural and artificial components on land are in a constant process of change.
Changes on the Earth’s surface can be gradual, such as the growth of biomass, or
abrupt, such as the effects of fire on vegetation. Natural vegetation is a land cover
class in different classification systems, and changes in it can be understood, by RS,
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as qualitative changes in vegetation cover or as spectral and spatial movements over
time (MILNE, 1988). In this sense, burned areas in natural vegetation represent
abrupt and non-permanent changes in vegetation cover (SHIMABUKURO et al.,
2020) and can be highlighted using vegetation or fire indices (LIU et al., 2020).

RS has provided land cover change detection (LCCD) applications since the 1990s
using specific techniques and algorithms (WOODCOCK et al., 2020). However, Jin
et al. (2013) argue that there is no single method universally adopted by the scientific
community for detecting changes, especially when these applications aim to map
changes at regional scales. Li et al. (2022) emphasize that more semantic information
needs to be considered in regional mapping due to the scale and context. Some
changes and burned area detection approaches use time series (ZHU, 2017; XU et
al., 2022; LIU et al., 2023) and data mining (RAMO et al., 2018; WOOD, 2021).

The use of time series to map land cover changes with RS is an approach that re-
quires attention due to seasonal differences, sun angle, phenological conditions of
vegetation, clouds, and shadows, as these factors are some of the main sources of
noise in time series based on satellite imagery (ZHU, 2017). In the article “Stan-
dardized Time Series and Interannual Phenological Deviation: New Techniques for
Burned-Area Detection Using Long-Term MODIS-NBR Dataset”, Carvalho-Júnior
et al. (2015) applied time series to map burned areas in the Chapada dos Veadeiros
National Park (CVNP), Goiás State, Brazil.

The CVNP is a conservation unit with phytophisiognomies of the Cerrado. Carvalho-
Júnior et al. (2015) aimed to assess the effectiveness of the standardized time series
and the interannual phenological deviation methods, utilizing the NDVI and NBR
(Normalized Burn Ratio) spectral indices derived from MODIS imagery to identify
and determine the timing of cover changes caused by fire analyzing the pixels tempo-
ral curves from 2001 to 2012. Carvalho-Júnior et al. (2015) highlight the challenges
of mapping burned areas within the CNVP due to its diverse environments and
non-forest cover.

Fires emit more carbon in savannas, with grasslands exhibiting faster fire spread.
The negative correlation between Cerrado cover and fire, influenced by livestock and
fuel loads, suggests the potential of the WFI, as there is a decrease in the reflectance
surface in RGB bands during May and September for open vegetation (CHAVES et
al., 2021). The high temporal resolution of the WFI allows time series construction
that enables cover change detection, and this RS-based processing and analysis,
aligned with the use of Machine Learning (ML) methods, has demonstrated good
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results for land use and cover classifications (FERREIRA et al., 2020).

2.3 Artificial Intelligence in remote sensing applications

The recent advances, or popularization, of AI has promoted profound changes in
social structures (MAKRIDAKIS, 2017). Although not necessarily a new concept,
AI is currently attracting attention from society because, as it breaks new bound-
aries related to data management and pattern recognition (SEREY et al., 2023),
for example, providing applications to optimize processes in several areas, AI also
becomes a subject of debate related to the ways in which humans, and governments,
incorporate its approaches to daily tasks (ZAJKO, 2022).

The ability to work with a great quantity of data and recognizing patterns are ma-
jor benefits of using AI. This is important in RS because artificial satellites are
constantly generating new data for Earth observation. Based on RS data, many
environmental and social applications are possible, such as the study of natural phe-
nomena and monitoring of agricultural crops, water quality, natural disasters and
urban planning (ALDANA-MARTÍN et al., 2022). In the last few years, the AI tech-
nique of ML has become widely used in the environmental sciences (STROPPIANA
et al., 2021), with applications in mapping burned areas (WOOD, 2021).

According to Tiwari et al. (2018, 1), ML is “a technology that allows computers to
learn directly from examples and experience in the form of data”. ML helps with the
recognition of big data patterns, and uses them in predictions (LIU et al., 2018).
There are two major categories in ML approaches, corresponding to “unsupervised
learning” and “supervised learning”. The first approach is more unpredictable, while
supervised learning allows better expectations regarding the outputs once a model
was trained based on human experiences (LIU et al., 2018). There are also hybrid
approaches (MEHMOOD et al., 2022).

ML is efficient in studies related to LULC analysis and to disaster management, for
example, as it provides models related to regression and classification problems in RS
applications. In this sense, RS image classification based on ML can be performed by
the unsupervised and supervised approaches. Unsupervised image classifiers, such as
K-Means and Self-Organizing Map (SOM) algorithms, learn directly from the data
without human sampling (unlabeled data), while humans participate by providing
samples for training supervised classification models (labeled data). Random Forest
(RF) is an example of a supervised classifier (MEHMOOD et al., 2022; MISHRA;
DASGUPTA, 2022).
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2.3.1 Random Forest

Random Forest (RF) is a nonparametric supervised classification algorithm based
on decision trees. In this algorithm, two main parameters are defined a priori: the
number of trees and the percentage of classification and validation samples. The
process of choosing these samples, from the dataset informed by the user, is ran-
domized and, therefore, the algorithm may employ different subtraining sets at each
round (BREIMAN, 2001; KULKARNI; LOWE, 2016; BELGIU; DRĂGUŢ, 2016),
i.e. for the construction of each tree.

RS-based data rarely satisfy the assumption of normal data distribution. In such
cases, nonparametric classifiers, including RF, are widely used (BELGIU; DRĂGUŢ,
2016). Initially, for constructing an RS image classification based on an RF model,
the first node of a decision tree starts with the entire set of samples, which is then di-
vided into training and validation samples. The nodes split according to the decision
rules and the input samples can be determined by parameters such as “nodesize”
and “maxnode” that control the trees and the forest expansion (TYRALIS et al.,
2019).

“Nodes”, which are decision points in a decision tree, create “branches” that lead
to the final points known as “terminal nodes” or “leaves”. Terminal nodes represent
predictable class labels and do not experience further splitting or division. With each
new tree generated, the samples are randomized to ensure that different subsets are
used in each round, understood as each tree construction. In the end, the ensemble
of randomized decision trees forms a “random forest”. The model is finally based
on the vote of all trees, as exemplified by Figure 2.5 (KULKARNI; LOWE, 2016;
TYRALIS et al., 2019; XI, 2022).

Using a ML approach, the nodes are split based on the available attributes used
as input to classify the image. The algorithm mines the data and determines the
most informative attributes for splitting the nodes. Evaluation of the splits can be
performed using impurity indices, such as the Gini Index. It ranges from 0 to 1 and
measures the impurity, or degree of class mixture, for each node (BREIMAN, 2001).
For time series classifications, a dataset could be understood as a data cube, where
each attribute could be interpreted as an observed day or as temporal metrics ex-
tracted from several days, depending on the data cube generation method (VIEIRA
et al., 2022; KORTING et al., 2013).
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Figure 2.5 - Example of a RF classification flow.

Source: Adapted from Xi (2022).

Ramo and Chuvieco (2017) discuss in the paper “Developing a Random Forest
Algorithm for MODIS Global Burned Area Classification” some important points
related to classifications of time series using RF for mapping burned areas. The
authors highlight concerns about temporal generalization, specifically addressing
the potential problems associated with training models using samples of burned
areas from a single year and then applying them to other years. This paper cites the
flexibility of RF regarding data integration from different sensors and scales and the
low computational cost of this algorithm compared to other ML algorithms, such as
Support Vector Machine (SVM).
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2.3.2 Geographic Object-Based Image Analysis

According to Lang (2008), the objective of OBIA (Object-Based Image Analysis) is
to represent the content of complex scenes in order to describe the reality present in
images. The authors emphasize that human cognition and perception are involved
in OBIA methods, which can use images from different contexts than RS applica-
tions. The term GEOBIA (Geographic Object-Based Image Analysis) emphasizes
the contribution of GIScience (Geographic Information Science) components. Sev-
eral studies, however, consider both terms as synonyms (BLASCHKE, 2010).

According to Hay and Castilla (2008), GEOBIA is a subdiscipline of GIScience that
studies methods for partitioning images into semantic objects based on spectral,
spatial and temporal features. Blaschke (2010) clarifies that GEOBIA became a
widespread topic in scientific research around the 2000s, but that its principles,
such as edge detection, segmentation, attribute extraction and classification, were
already used before in other scientific fields. In this approach, image-objects, such
as regular geographical cells, represent the central methodological element.

Segmentation produces image objects based on properties of the ground components
(BLASCHKE, 2010; LANG, 2008), but there is also the possibility of using regular
cells, or “superpixels”, as image-objects. Pixels within RS images contain specific
radiometric values and spatial objects are formed when there are relatively homoge-
neous aggregates of pixels (BLASCHKE et al., 2014). Segmentation techniques have
historically focused on high spatial resolution images, but there is the possibility of
working with time series (GÓMEZ et al., 2011), and the use of regular grids is a
way of standardizing processes and analysis in the face of a large volume of data.

The idea behind cells or superpixels is to reduce data dimensionality, especially
for high spatial resolution images or time series, due to spatial correlation between
nearby pixels and the amount of images. Superpixels could be understood between
the pixel level and the object level (CSILLIK, 2016). Gómez et al. (2011) highlight
that the object-oriented approach in change detection minimizes co-registration er-
rors and allows including context relations, which is especially useful when only
BGR NIR bands are available (JOHANSEN et al., 2010).

Each class is comprehended as a semantic entity in object-oriented image classifi-
cation. Until image-objects are labeled into hierarchical classes, in a process that
requires human perception and knowledge, they have no real-world representational
meaning (BLASCHKE; STROBL, 2001). Although GEOBIA is not a new disci-
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pline, it has been dealing with AI techniques and approaches since its conception,
and object-based classifications have the potential to achieve better performance
and higher accuracies than pixel-based classifications (WHITESIDE et al., 2011).

2.4 Burned area products

One of the ways to understand the behavior and impacts of fire in landscapes is using
burned area products provided by RS techniques (GAVEAU et al., 2021). Burned
area products have the potential to be used in estimating carbon emissions and in
identifying drivers of wildfires, allowing interventions to mitigate impacts, prevent
and control wildfires, rehabilitate burned areas, and monitor the international goals
of climate conferences.

According to Mouillot et al. (2014), the 1980s were the moment when scientific
approaches based on RS emerged for mapping burned areas on Earth’s surface with
satellite images. Currently, burned area products with global coverage are available,
such as the case of the MCD64A1, based on MODIS, or burned areas products
targeted to specific geographic regions, such as the AQM1km from INPE that has
coverage to Brazil. Table 2.4 contains some products of burned areas available for
download or online queries.

Table 2.4 - Examples of burned areas products.

Product Sensor Spatial Temporal
range

Developer/
Provider Reference

MCD64A1 MODIS 500 m 2000-
present NASA Giglio et al. (2018)

AQM1km* MODIS 1,000 m 2002-
present

INPE/
LASA-
UFRJ

Libonati et al. (2015)

Copernicus
Burnt Area

v3

Sentinel3-
OLCI/
SLSTR

300 m 2020-
present C3S Roy et al. (2019)

Tansey et al. (2008)

MapBiomas
Fire c2 v1

Landsat
series 30 m 1985-2022 MapBiomas

Project MAPBIOMAS FOGO (2023)

AQM30m Landsat
series 30 m 2001-2021 INPE Melchiori et al. (2015)

FireCCI51 MODIS 250 m 2001-2020 ESA Chuvieco et al. (2018)

GABAM Landsat
series 30 m 1990-2020 GEE Long et al. (2019)

NASA: National Aeronautics and Space Administration; LASA: Laboratory for Environ-
mental Satellite Applications; UFRJ: Federal University of Rio de Janeiro; OLCI: Ocean
and Land Colour Instrument; SLSTR: Sea and Land Surface Temperature Radiometer;
C3S: Copernicus Climate Change; ESA: European Space Agency; GEE: Google Earth
Engine.
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Giglio et al. (2018) contextualize the monthly and global coverage product
MCD64A1, from MODIS sensor collection 6 (C6), as a refinement of the method-
ology applied in MCD45A1 C5 and C5.1 products. MCD64A1 is based on a hybrid
algorithm that uses time series with daily surface reflectance and active fire data.
Rodrigues et al. (2019), when analyzing the MCD64 collections for the whole Cer-
rado, identified uncertainties in the southern portions, due to vegetation properties.
Despite detecting small burned areas better than other collections, they tend to
increase inclusion errors.

It is important to highlight the products provided by Brazilian initiatives. The Algo-
rithm Theoretical Basis Document (ATBD) contains the step-by-step methodology
developed to detect burned areas by the MapBiomas project. Based on images ac-
quired by the satellites of the Landsat series during the period from 1985 to 2022,
and utilizing deep learning, MapBiomas maps monthly and annual burned areas in
the Brazilian biomes (ALENCAR et al., 2022). The ATBD guideline is constantly
adapted due to changes that improve its methodology

The AQM1km product, provided by INPE and available in the Queimadas database
(INPE, 2023b), is based on images from the MODIS sensors and covers the entire
country. The AQM1km products aim to provide an overview of fire events in the
Brazilian biomes, using cells of 1 km x 1 km, accessible through online queries. On
the other hand, the monthly AQM30m product allows data download for priority
areas in the Cerrado but does not encompass other biomes or the entire Cerrado.

Different results are expected when comparing these products due to methodolog-
ical differences, as each product is the result of specific algorithms and techniques
and may be suitable for analysis at different scales, or even have different mapping
periodicities (PESSÔA et al., 2020; SHIMABUKURO et al., 2020). Consequently,
according to Humber et al. (2019), the validation of these products with independent
references with minimal error is necessary to comprehend their quality. Reference
maps, in most cases, are generated through image interpretation by human analysts.

A validation with independent data can be conducted by estimating the true pos-
itives, true negatives, false positives and false negatives between the reference and
the predicted in order to get metrics such as precision, recall, F1-score and F2-score
(CORCORAN et al., 2015; RADOUX; BOGAERT, 2017). Intersection over Union
(IoU) is used to compare two sets of finite data, and it is described by the equation:
J(A,B) = A∩B

A∪B
, varying from 0 to 1, with 1 representing the maximum similarity

between both sets (LABATUT; CHERIFI, 2012; FLETCHER; ISLAM, 2018).
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3 STUDY AREA

3.1 Chapada dos Veadeiros National Park (CVNP)

The Chapada dos Veadeiros National Park (Figure 3.1), established in 1961 by the
Federal Decree No. 48.875, is located in the Brazilian state of Goiás and covers the
municipalities of Alto Paraíso de Goiás, Cavalcante, Nova Roma, Teresina de Goiás,
São João da Aliança and Colinas do Sul. An important characteristic of the CVNP
is its function of supplying several aquifers and tributaries located in the highest
portion of the Central Plateau in the Tocantins Araguaia Hydrographic Region,
that integrates the Upper Tocantins basin (ICMBIO, 2021).

Figure 3.1 - Location of the CVNP and its surroundings within a buffer zone of 10 km.

The CVNP has been target of expansions and reductions, and its current configu-
ration, with 240,611 ha, was defined in 2017 by the Decree of June 5. The organiza-
tion responsible for its management is the Chico Mendes Institute for Biodiversity
Conservation, linked to the Ministry of Environment and Climate Change (MMA).
The main phytophysiognomies of the study area are related to savanna formations
(LOEBMANN, 2008), but the Management Plan (ICMBIO, 2021) clarifies that there
is a diverse mosaic of vegetation present in the area. Figure 3.2 shows the phyto-
physiognomies of the study area according to the IBGE’s mapping (IBGE, 2012).
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Figure 3.2 - Vegetation cover of the study area.

Source: IBGE (2012).

The CVNP is a World Natural Heritage Site recognized by the United Nations
Educational, Scientific and Cultural Organization (UNESCO) (RIBEIRO, 2020),
but around 78% of the CVNP burned in 2017 Fidelis et al. (2018), year in which
the CVNP area was expanded to its current configuration. Table 3.1 illustrates the
percentage of the Conservation Unit’s area affected by fires between 2007 and 2021.

Table 3.1 - Recent historical burning events inside the CVNP.

Year Percentage of areas in
CVNP affected by fire

2007 68%
2010 78%
2015 22%
2017 27.44% (80% of the old area)
2018 6%
2019 15%
2020 15%
2021 15%

Source: ICMBIO (2022).
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Currently, this conservation unit has a IFM planning implemented. Since 2017, pre-
scribed burns have been employed within the UC to reduce the risk of destructive
fires. These burns, in accordance with the Integrated Fire Management Plan, are
strategically conducted during the rainy season to reduce fuel availability. Figure
3.3 shows the deforestation from 2020 to 2022 detected by the INPE’s Project for
Monitoring Deforestation in the Legal Amazon (PRODES) (INPE, 2023c), and the
fire foci provided by the BDQueimadas’ reference satellite (AQUA M-T/MODIS)
(INPE, 2023b).

Figure 3.3 - Accumulated deforestation and fire foci detected in the study area.

Source: INPE (2023b), INPE (2023c).

Table 3.2 shows the annual fire foci detected in and around the CVNP (with a buffer
zone of 10 km) by INPE using the MODIS sensor on board the AQUA satellite. The
years 2020, 2021, and 2022 designate the analysis period of this study. We observe
that 2022 had the highest number of detected fire foci (332), followed by 2020 (319)
and 2021 (283). RS-based data indicate that the region has been annually affected
by fires that eventually reach and spread to the Cerrado within the CVNP, justifying
the choice of this study area, since it also contains a diversity of phytophysiognomies
(LOEBMANN, 2008).

Table 3.2 - Annual fire foci detected by the INPE’s satellite reference.

Year Number of fire foci
2020 319
2021 283
2022 332

Source: INPE (2023b).
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4 METHODOLOGY

4.1 Pre-processing

We used the Python programming language to construct a time series from 2020
to 2022 based on images from the WFI sensor on board the CBERS-4A, CBERS-4
and AMAZONIA-1 satellites, available at the INPE image catalog (INPE, 2023d),
considering the bounding box of our study area. Our general pre-processing steps
are described in Figure 4.1.

Figure 4.1 - Pre-processing steps.

Imagery acquisition

2020 to 2022

Band stacking

B1(Red), B2
(Green), B3 (Blue)
and B4 (NIR)
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correctionResamplingCo-registrationAttribute

processing

Bounding box
of the study area

Conversion from
DN to surface
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reference image

CBERS-4A (55
m to 64 m)
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4.1.1 Imagery acquisition

We downloaded images from INPE’s catalog using the Cbers4asat Python plugin
(RUSSO, 2023), enabling serial image downloads via API query parameters. We
acquired images from January 1st, 2020, to December 31st, 2022, from the WFI
sensor on CBERS-4, CBERS-4A, and AMAZONIA-1 satellites, in Level-4 (L4),
which includes corrected images with digital elevation model and control points. We
set the cloud coverage to 100% because it reflects the global cloud coverage, which
is not necessarily the same as the coverage in our study area.

The CVNP has eight paths directly observed by the CBERS-4A swath at row 132,
and eight paths observed by CBERS-4 at row 117. For AMAZONIA-1, only one
path covers the area at row 17. Based on all these criteria, we downloaded a total
of 382 images. Figure 4.2 shows the satellites paths and rows that cover our study
area. The amount of images per year is different. In 2020, only CBERS-4A images
were included, in 2021 both CBERS-4A and AMAZONIA-1 and in 2022 the INPE
catalog used as reference began to include CBERS-4 images.
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Figure 4.2 - Paths and rows by satellite.

4.1.2 Band stacking

INPE provides the Blue (band 1), Green (band 2), Red (band 3) and NIR (band 4)
bands for download, and the analyst has to merge them, if necessary, into a raster
with the desired bands. We merge the four bands of all images using the Os module
and the Rasterio library in order to standardize the band sequence as Red (1), Green
(2), Blue (3) and NIR (4), according to the RGB NIR composition, directly from
the computer’s local using Jupyter Notebook. We performed a posteriori image-
by-image visual analysis and excluded those with high cloud coverage in our study
area.

4.1.3 Reprojection

Using the same Python libraries as before, we reprojected the bands from WGS84-
22s (EPSG: 32722) and WGS84-23s (EPSG: 32723) to WGS84 (EPSG: 4326) using
the nearest neighbor resampling method, which ensures the preservation of the orig-
inal digital number (DN) values. All images from the WFI sensor were acquired
in metric coordinate systems, and we standardize them to the WGS84 geographic
coordinate system in order to avoid processing inconsistencies.
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4.1.4 Clipping

The coordinates of the bounding box were defined based on a buffer zone of 10 km
from the boundaries of the CVNP. After data reprojection, we clipped the images
to the bounding box (xmin: ‘-46.8888’, ymin: ‘-13.54311’, xmax: ‘-47.9897’, ymax
: ‘-14.2958’) to optimize further processing, since our spatial focus was the CVNP
region. In this step, we used the Os, Rasterio and Shapely libraries.

4.1.5 Atmospheric correction

We used Python to implement an atmospheric correction method based on DOS
(Dark Object Subtraction), as described by Chavez-Jr (1988) and Nunes et al.
(2019). Table 4.1 lists the technical specifications by band of the WFI sensors used
in a first radiometric calibration step, which aims to convert the data from digi-
tal numbers to radiance. We estimated the gain and offset factors for the isolated
spectral bands for each image of our time series applying Equations 4.1 and 4.2

Table 4.1 - Technical specifications of the WFI sensor.

Band Wavelength (µ)
Maximum

radiance (lMax)
(W m-2 sr-1)

Minimum
radiance (lMin)

(W m-2 sr-1)

Maximum
reflectance (pMax)

(ρ)
Blue 0.45 - 0.52 343.4 35.3 0.6

Green 0.52 - 0.59 361.2 25.7 0.7
Red 0.63 - 0.69 306.9 12.9 0.7
NIR 0.77 - 0.89 243.4 8.9 0.8

Source: Epiphanio (2009).

g = lMax − lMin

DNMax − DNMin
(4.1)

o = lMin − g · DNMin (4.2)

g: band gain factor; o: band offset factor; lMax: maximum radiance; lMin: minimum
radiance; DNMax: maximum digital number; DNmin: minimum digital number.

We applied the linear function described by Equation 4.3 to convert the original
band data from DN to Top-of-Atmosphere (TOA) radiance.

lb = g · DN + o (4.3)
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lb: pixel radiance value output; DN: pixel digital number input.

We used the Ephem (RHODES, 2011) library for Python to estimate the Earth-Sun
distance for each image, according to the strings from the image title that correspond
to the date information. At this point, we set the observer’s latitude and longitude
to the centroid of our study area (x: -47.368721, y: -13.959796) and standardized the
image acquisition time to 13:55:00 UTC, based on analysis of the image metadata
available in the INPE catalog. We implemented Equation 4.4 for estimating the solar
irradiance.

ESUN = π · d2 · lMax

pMax
(4.4)

ESUN : extraterrestrial solar irradiance; d2: Earth-Sun distance; lMax: maximum
radiance; pMax: maximum reflectance.

Equation 4.5 was applied to estimate the dark object radiance required by the DOS
method:

L1% = 0.01 · ESUN · cos(θ)
π · d2 (4.5)

L1%: dark object radiance; θ: solar zenith angle.

We performed the subtraction between the generated rasters containing the dark ob-
ject radiance and the images containing the TOA radiance to attenuate atmospheric
noises. We applied Equation 4.6.

lp = lb − L1% (4.6)

lp: subtraction radiance.

Finally, we converted the results of the radiation subtraction to surface reflectance
using Equation 4.7.

ρ = π · (lb − lp) · d2

ESUN · cos(θ) (4.7)

ρ: surface reflectance.

We also used the Numpy (HARRIS et al., 2020) library and the Math module to
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process matrices and perform the necessary mathematical operations.

4.1.6 Resampling

We chose to resample the CBERS-4A images from 55 m to 64 m to equalize the
spatial resolution of the three satellites because it allows us to retain the CBERS-
4 and AMAZONIA-1 data without resampling. We used the nearest neighbor as
the resampling method. For each resampled image, we set the grid from the WFI
on board AMAZONIA-1 as reference to fit the generated data with 64 m from
the CBERS-4A satellite. We performed the grid alignment between CBERS-4 and
AMAZONIA-1 data keeping the WFI on AMAZONIA-1 as the grid reference.

4.1.7 Co-registration

Our study area is fully covered by seven paths from CBERS-4 and CBERS-4A satel-
lites, and it is partially covered by one additional path for each one of these satellites,
resulting in a total of eight paths per satellite. On the other hand, AMAZONIA-
1 covers the entire area with a single path and row. We perform automatic co-
registrations to compose a time series using images from Brazilian satellites, aiming
to minimize shifts in observation angles within paths of a same satellite and between
different satellites.

We employed the Python library Arosics (Automated and Robust Open-Source Im-
age Co-Registration Software) (SCHEFFLER, 2017) to this processing. We set the
“grid resolution” parameter to 30 and the “window size” parameter to 400 x 400.
The grid resolution refers to the number of pixels used to search for control points
(CP), and the window size defines the size of the kernel. Using these parameters a
total of 2772 CPs were plotted, but not necessarily all of them were used due the
Arosics algorithm disregards possible outliers or points of non-correspondence.

Table 4.2 lists all the target WFI images from the CBERS-4A and CBERS- 4 satel-
lites used to estimate the shifts based on images from AMAZONIA-1. We defined
the reference image from July 30, 2021 to co-register the CBERS 4A images, and we
prioritized close acquisition date and low cloud coverage. Our time series does not
have WFI images from CBERS-4 in 2021, so we defined the AMAZONIA-1 image
of June 30, 2022 as reference. The Arosics library allows using the obtained models
to register other images. Based on the generated models for each image in Table 4.2,
we applied them to the rest of our time series.
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Table 4.2 - Target images used for co-registration.

Satellite Path /Row Target image

CBERS-4A

132 - 203 05 july 21
132 - 204 30 june 21
132 - 205 25 may 21
132 - 206 21 july 21
132 - 207 16 july 21
132 - 208 10 june 21
132 - 209 06 july 21
132 - 210 01 july 21

CBERS-4

117 - 154 01 aug 22
117 - 155 03 june 22
117 - 156 30 june 20
117 - 157 01 june 21
117 - 158 24 june 22
117 - 159 21 june 22
117 - 160 18 june 22
117 - 161 06 aug 22

4.1.8 Attributes processing

In this study, we adopted the BAI, EVI, GEMI, NDVI and NDWI spectral indices
to highlight burned areas and to construct the datasets for training and testing the
Random Forest algorithm. We used the Os, Rasterio and Numpy libraries and all
the implemented equations can be found in Table 2.3.

4.2 Processing

Figure 4.3 shows the flowchart that describes the methodological steps that were
followed in the processing of the data.

Figure 4.3 - Processing steps.
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4.2.1 Gridding

We adopted the MODIS spatial resolution as the minimum mapping unit (MMU)
to generate a vector grid with 500 m x 500 m cells size. The generated regular
grid has 239 columns x 163 rows, which gives a total of 38,957 cells. Although this
process degrades the spatial resolution of the data, it reduces the dimensionality of
the datasets and allows validation with the MCD64A1 product.

4.2.2 Burned cells manual mapping

Figure 4.4 illustrates the general anatomy of burning vegetated areas. Considering
that the MMU in this study refers to the size of the cells in the regular grid, we can
see that, given the anatomy of burned areas, not all cells may be totally affected by
fire, since cells located on the edges of the main affected area, such as on the fingers
and flanks, may be partially affected, as well as unburned islands. Consequently,
considering the spatial regularity of the grid, we chose to include partially affected
cells as this can affect the supervised classification process and analysis, due to the
potential higher heterogeneity of this target.

Figure 4.4 - Anatomy of a forest fire.

 

Source: NFCC (2023).

We manually collected burned areas within the cells identified by image interpreta-
tion for the years 2020, 2021 and 2022 using QGIS 3.22.12. Based on these cells we
labeled them as “unburned” (NB), “totally burned” (TB) and “partially burned”
(PB). The visual image analysis process was conducted using the R(R)NIR(G)B(B)
color composition to enhance burned areas, which are highlighted as dark areas.
Figure 4.5 shows an example of a burned area imaged by CBERS-4A on October 5,
2020, and it also has visual examples of NB, TB and PB cells.
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Figure 4.5 - Examples of totally and partially burned cells, and unburned cells.

For each cell labeled as TB or PB, the corresponding image date was recorded in
the attribute table. Although there are two labels for fire-affected cells, both refer
to a single class called “burned area” (BA), while NB cells designate the other class,
called “unburned” (NB). All subsequent supervised classifications were performed
based on these binary classes (ba and nb): using only TB cells as samples of the BA
class and TB plus PB cells concatenated into a single set of samples of the BA class.

4.2.3 Attributes extraction

We used the Os and the Geopandas (JORDAHL et al., 2020) and Rasterstats li-
braries in Python to extract the mean zonal statistics from the pixels within the
cells, taking into account 235 valid observations from 2020 to 2022. We adopted
the mean of the NIR band, BAI, EVI, GEMI, NDVI and NDWI spectral indices as
reference to extract the pixel values within the cells.

4.2.4 Data replication

All the 235 valid observations were integrated over the period from January 1st,
2020 to December 31, 2022. As mentioned earlier, the number of images available
in the INPE catalog is different for each year, and therefore, after extracting the
attributes, we obtained datasets that can be understood as irregular time series,
because the observations are not equally spaced in time. Burned areas are under-
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stood as abrupt and not permanent changes on the Earth’s surface, and among the
available interpolation techniques, we choose forward fill replication because these
targets do not necessarily occur between two observations. So, every gap between
two valid observations was filled with the value of the first observation.

4.2.5 Datasets construction

At this stage, after replicating the data for each information layer (NIR, BAI, EVI,
GEMI, NDVI, and NDWI), annual ARD datasets comprising 1,096 columns were
generated, with each column representing one day. We then divided them into three
annual and six semi-annual ARD datasets for each of the six information layers,
totaling 18 annual ARD and 36 semi-annual ARD datasets. The purpose of testing
the accuracy of the annual and semi-annual models is to analyze whether there is a
possible difference in the models created with more or fewer attributes available to
the classifier.

To standardize the observations per ARD dataset, we decided to omit December 31
from the annual dataset for 2020 because it is a leap year. In this context, we also
excluded July 1 from the dataset for the first half of 2020. For the second semester
datasets, we removed December 31. Consequently, the annual datasets have 365
observations and the semi-annual datasets have 182 observations. Table 4.3 shows
the time intervals covered by the resulting ARD datasets. Finally, the files were saved
in CSV (Comma-Separated Values) format to optimize subsequent processing.

Table 4.3 - Days by dataset considering the annual and semi-annual ARD time series cre-
ated with WFI images.

2020* 2021 2022
Start date jan. 01 jan. 01 jan. 01
End date dec. 30 dec. 31 dec. 31

Days 365 365 365
2020-1 2021-1 2022-1

Start date jan. 01 jan. 01 jan. 01
End date jun. 30 jul. 01 jul. 01

Days 182 182 182
2020-2 2021-2 2022-2

Start date jul. 02 jul. 02 jul. 02
End date dec. 30 dec. 30 dec. 30

Days 182 182 182
* Leap year.
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4.2.6 Datasets labeling

Given the previously manually mapped mask of burned cells with the categorical
labels TB, PB or NB assigned to the cells of the grid with the respective day when
the burned cell was mapped, we used the Pandas (MCKINNEY, 2010) library to split
all TB and PB cells according to the time range shown in Table 4.3 and merged the
columns with all TB cells and with all TB plus PB cells into the ARD datasets. All
other cells refer to the NB label. We chose to only explore generalizations based on
multitemporal datasets, but the models generated with semi-annual ARD datasets
were analyzed according to classifier accuracy metrics.

We generated two multitemporal datasets for each information plan with samples
from BA and NB classes. These datasets comprise 70% randomly selected TB cells
and 33.33% randomly selected NB cells for each year. Our goal was to include 1/3 of
all NB cells from each year in a new dataset to reflect the quantitative characteristics
of the annual datasets. At the same time, by selecting 70% of all BA cells, we aimed
to obtain substantial samples from all years in order to evaluate the efficiency of
generalizations without exhausting all BA cells. We repeated the same process using
the concatenation of TB and PB cells as samples for BA to construct the second
dataset. Figure 4.6 illustrates these steps.

Figure 4.6 - Construction of annual generic datasets.
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4.2.7 Supervised classification

We adopted the Random Forest algorithm to explore possibilities of binary classifi-
cations with ARD and multitemporal datasets. ARD time series refer to classifica-
tions performed on the datasets after labeling, according to Table 4.3. Multitemporal
datasets refer to datasets created by concatenating random observations from more
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than one annual ARD dataset, as explained earlier. No information from different
plans (NIR, BAI, EVI, GEMI, NDVI and NDWI)nwas combined.

The routine for classification was implemented using the Scikit-learn library (PE-
DREGOSA et al., 2011) for Python. Regardless of the dataset, we chose to run five
classifications instead of a single one, then we estimated the average of the metrics.
In each simulation, the sample set of burned areas remained the same (full sample
universe), but based on the size of this set, we randomly sampled a set with the
same size for NB cells. Additionally, once both sets were defined, we selected 70%
for training and 30% for validation. For each simulation, the best hyperparameters
were adopted according to Table 4.4, structured with empirical values.

Table 4.4 - Hyperparameters grid used as input to search for the best values using Grid-
SearchCV.

Parameter
n_estimator 100 200 300
max_depth 3 5 7

The “n_estimator” parameter determines the number of trees and “max_depth”
defines the maximum depth of the trees. An important point to emphasize is that
all training rounds used a set of equal-sized samples from BA and NB classes, i.e.
the input data was exactly balanced and it was defined based on the size of the
set of samples with burned cells (TB or TB plus PB), according to the datasets.
For each classification, we saved the best hyperparameters chosen from the tuning
grid, the confusion matrix, and the results for accuracy, precision, recall, and F1-
score. Additionally, an example of a generated decision tree was saved for each
classification.

4.2.8 Validation

We performed two types of validation analysis: validation of the generated models
based on the training (70%) and test (30%) samples, and validation of the classifi-
cations by comparing them to the manually created reference maps. These reference
maps designate the mapping with all homogeneous cells totally affected by fire and
the mapping created by the concatenation of all totally cells affected by fire and all
partially burned cells, identified by image interpretation. Figure 4.7 describes the
metrics used for validation and the analysis approaches based on temporal (semi-
annual and annual) datasets and multitemporal models generated with TB and TB
plus PB as samples of the burned area class.
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Figure 4.7 - Validation and analyses approaches.
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Based on the quantification of true positives (TP) and false positives (FP), we
estimated the precision metric (Equation 4.8), and based on TP and false negatives
(FN), we estimated the recall (Equation 4.9). We chose to explore the results of the
F1-score (Equation 4.10), which is a harmonic accuracy metric between classes, and
the F2-score (Equation 4.11), which gives more weight to the recall and can better
describe how well the classifier can correctly detect burned cells. We used the IoU
comparison to comprehend the overall correspondence (Equation 4.12).

Precision = TP

TP + FP
(4.8)

Recall = TP

TP + FN
(4.9)

F1-score = 2 · Precision · Recall
Precision + Recall (4.10)

F2-score = (1 + β2) · Precision · Recall
(β2 · Precision) + Recall (4.11)

β: adjusts the balance between precision and recall, with β set to 2, emphasizing
recall and favoring scenarios where recall is more critical than precision.
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IoU = Intersection

Union
= TP

TP + FP + FN
(4.12)

Finally, we used the Scikit-learn library to perform the McNemar test between pairs
of classifications. The null hypothesis (H0) is that neither classification performs
better than the other when compared to the same reference mapping.
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5 RESULTS AND DISCUSSION

5.1 Time series description

After removing images with high cloud coverage, images acquired by swaths that
do not cover half our study area and images that are repeated on the same day,
the number of images was reduced from 382 to 235 valid observations. Figure 5.1
shows a density chart constructed based on this time series. It can be seen that the
number of valid observations increases over time. The year 2020 consists entirely of
CBERS-4A images, 2021 contains images from CBERS-4A and AMAZONIA-1 and
the most recent CBERS-4 images were included in the INPE catalog in 2022.

Figure 5.1 - Density of the time series from 2020 to 2022 constructed based on WFI images
on board the CBERS-4, CBERS-4A and AMAZONIA-1 satellites available in
the INPE catalog.

Figure 5.2a shows the total of valid observations per satellite and Figure 5.2b de-
scribes the operational temporal range of each satellite. Images from the CBERS-4A
satellite are exclusively available through the INPE catalog adopted as reference in
this study, and 122 images were acquired by this satellite. Our study area has been
covered by AMAZONIA-1 since March 27, 2021, and a total of 75 images compose
our time series. Although the CBERS-4 satellite has been in operation since 2014,
it was not until May 9, 2022, that its most recent images from our study area were
added to the catalog, and our time series includes 38 images acquired by this satellite

Figure 5.2 - Quantitative and temporal description per satellite.

 

b a 

a: quantity of images per satellite; b: temporal availability of images in the catalog.

39



Figure 5.3 shows the imagery distribution per month along the entire time series. A
total of 50 images were considered in 2020, 72 in 2021, and 113 in 2022. The months
with the lowest number of observations are between November and March, and this
is due to the presence of clouds in the rainy season. The peak of valid observations
occurs in July, and the period from April to October concentrates the largest number
of useful images. This is the period when most fires occur in the Brazilian Cerrado
and is therefore the main window for observing burned areas.

Figure 5.3 - Number of valid observations per month.

5.1.1 Misalignment between WFI inter-satellites

Table 5.1 presents basic statistics (minimum, maximum, standard deviation and
mean) after performing co-registration of CBERS-4A and CBERS-4 as target images
and AMAZONIA-1 as reference. Figure 5.4 shows a bar plot that contains, for each
path/row, a comparison between the minimum, maximum, standard deviation and
mean values of the pixels displacements.

Table 5.1 - Basic statistics for pixel displacements after co-registration.

Path / Row Minimum Maximum Standard deviation Mean
132 - 203 0.45 2.02 0.33 0.97
132 - 204 0.58 2.06 0.28 0.95
132 - 205 0.41 1.84 0.37 0.95
132 - 206 0.51 2.67 0.49 1.19
132 - 207 0.34 2.08 0.44 1.09
132 - 208 0.95 2.6 0.22 1.64
132 - 209 0.62 1.88 0.21 1.01
132 - 210 0.25 2.36 0.39 1.29
117 - 154 0.56 1.43 0.07 0.78
117 - 155 0.71 1.38 0.07 0.85
117 - 156 0.53 0.91 0.06 0.69
117 - 157 0.79 1.35 0.17 1.06
117 - 158 0.69 1.17 0.04 0.81
117 - 159 0.74 1.49 0.08 1.36
117 - 160 0.44 1.46 0.26 0.94
117 - 161 1.42 2.36 0.16 1.77
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Figure 5.4 - Bar plot of the basic statistics of the spatial shifts after co-registration.

Both Table 5.1 and Figure 5.4 illustrate a noticeable spatial disagreement between
images from CBERS-4A and AMAZONIA-1 when compared to the CBERS-4 and
AMAZONIA-1. The higher disparity reached a maximum shift of 2.67 pixels. It’s
worth noting that, with the exception of CBERS-4A rows 203, 204, and 205, all
other rows exhibited an average shift exceeding one pixel. As for the co-registration
of CBERS-4 images, only rows 157, 159, and 161 displayed average shifts greater
than one pixel.

5.2 Fire in the Chapada dos Veadeiros National Park from 2020 to 2022

Figure 5.5 shows the mapping for the three years generated by image interpretation.

Figure 5.5 - Annual burned areas mapped by visual image analysis.

 

a: only TB cells; b: only PB cells; c: TB plus PB cells.
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Despite the existence of TB cells and PB cells to denote areas affected by fire, it
is important to emphasize that these two labels represent the BA class, while the
label NB designates the unburned class, as mentioned before. Figure 5.6a shows the
monthly distribution of burned areas considering the number of cells mapped as TB,
Figure 5.6b contains the same analysis considering only the number of PB cells and
Figure 5.6c shows the sum of TB cells and PB cells.

Figure 5.6 - Monthly distribution of cells with burned areas throughout the time series.
 

a 

b 

c 

a: monthly TB cells; b: monthly PB cells; c: monthly TB and PB cells
.

Figure 5.6c illustrates that the monthly fire peak in 2020 occurred in October, when
more than 2,500 cells (625 km2) were totally or partially affected by fire. In 2021,
the month with the highest number of these cells was September, and it was also
the month with the highest number of burned cells among the three years, with
nearly 3,000 burned cells (750 km2). Similarly to 2020, in 2022 the fire peak was
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recorded in October, with around 2,400 burned (650 km2). Overall, it can be seen
that the other burning events are mainly distributed between the months of April
and August, and that the period between November and March is the period with
the lowest number of burned cells, as shown by Figure 5.7.

Figure 5.7 - Analyzing the burned areas time series with monthly temporal decomposition.
 

The decomposition of this monthly time series allows us to observe the typical
behavior of the fire regime in the Brazilian Cerrado, characterized by high occurrence
and spread during dry months (May to September), mainly during winter season
(June to September) and its transition to spring, which in the Cerrado occurs in
October, according to Mataveli et al. (2018). The trend plot shows disturbances in
the trend of the series between January and April for the years 2021 and 2022, due
to the higher incidence of fires during this period in 2021 compared to 2020, and a
lower incidence in 2022 compared to 2021.

From February to April there is a constant increase in the number of burned cells,

43



followed by a stabilization between April and July. The seasonality plot shows that
the fire regime in the three years starts around July, so the critical period is concen-
trated between July and October. An analysis of the residuals plot suggests that,
even during this critical fire period, the inter-annual behavior does not exhibit com-
plete similarity, as there are annual prediction errors attributed to variations in the
observed number of burned cells in those months. Despite being the period with the
highest number of burned cells, these months do not exhibit identical patterns.

5.3 Classifications

We trained and evaluated the models using both the TB cells and the concatenation
of TB and PB cells for different models generation. The objective was to determine
whether classifications using only TB cells would produce better results than using
TB plus PB cells, despite the fact that concatenating these labels makes it possible
to increase the number of samples. The intention was to verify if partially burned
cells are less predictable, due to the greater spectral mixing of targets within them.
We initially explored annual and semi-annual approaches with annual ARD datasets.

5.3.1 ARD datasets

5.3.1.1 Annual datasets

Figure 5.8 shows the F1-score obtained from the 30% of the validation samples
considering the annual datasets labeled with the binary classes of burned area (TB
cells) and unburned area (not even partially burned cells). We note by analyzing
the three years that 2021 was the year that returned the highest scores, followed by
2020 and 2022. Although the years 2020 and 2022 have almost the same sample size
of burned cells, the datasets showed slightly different responses. For all years the
training returned F1-scores equal or superior to 0.9. These results are the average
of the five classifications carried out per dataset, as explained before.

Figure 5.8 - F1-score for annual classifications using TB cells as the BA class.
 

Samples per class: 2020 (1,291); 2021 (1,481); 2022 (1,250).
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In 2020, the most accurate training datasets, GEMI, EVI, BAI, and NIR, achieved
an F1-score of 0.94. Additionally, NDWI and NDVI produced similar results, both
scoring 0.93, indicating minimal differences between them. This year had the fewest
valid observations (55 images). Although data replication resulted in extended in-
tervals of repeated values, the training successfully distinguished burned areas from
different moments of the year. This result suggests the potential for detecting fire-
affected areas based on annual time series, even in years with fewer available images.

In 2021, with 72 valid observations including AMAZONIA-1 WFI images since
March 2021, we observed the most similar responses compared to 2020. This in-
dicates that the indices perform similarly and proportionally to those in 2020. All
datasets achieved higher F1 values in 2021 in comparison with other years, mainly
in relation to 2022. The GEMI dataset recorded the highest F1-score at 0.96, while
NDVI had the lowest at 0.94. Nevertheless, the analyses do not yet allow us to con-
clude which datasets perform better than others, and this will be explored further.

The most important difference was observed in 2022. Despite having 113 images,
making it the most regular time series, due to the inclusion of CBERS-4 images in
the INPE catalog since May 2022, it was observed that the BAI and NDWI datasets
achieved the highest F1-score at 0.92, while the NIR, GEMI, and NDVI datasets
obtained the lowest scores, which were lower than those in previous years. However,
all the results achieved F1 values equal to 90% or higher, which also does not allow
us to highlight significant differences between years.

Figure 5.9 shows the results obtained using TB and PB cells as samples of BA class.
Comparing the plots with those in Figure 5.8, we note lower F1-scores in all years.
Despite this, the year 2021 still produced the highest scores, followed by 2020 and
2022. Table 5.2 analysis indicates that reduced precision in classifying NB areas is
responsible for the inferior performance when we use TB and PB cells concatenated.

Figure 5.9 - F1-score for annual classifications using TB plus PB cells as the BA class.
 

Samples per class: 2020 (2,790); 2021 (2,943); 2022 (3,137).

45



When PB are used with TB cells we can see that, in general, and regardless of the
year (Table 5.2), the BAI, NDWI, and NIR, tend to yield the highest F1-scores.
Among GEMI, EVI and NDVI, GEMI is the index with the best performance to
classify burned areas and NDVI is the least efficient. These three vegetation indices
seem to be influenced by other spectral components within the cells. Figure 5.10
shows the comparison between the models generated with datasets labeled with TB
and with TB plus PB cells and Table 5.2 summarizes all the results of F1-score,
precision, and recall for both classes.

Figure 5.10 - Comparison of F1-score from annual classifications using only TB cells and
using TB plus PB cells as the BA class.

 

Table 5.2 - Summary of validation results (precision, recall and F1-score) per year consid-
ering TB cells and TB plus PB cells as input samples of the BA class.

Precision Recall F1-
score

Precision Recall F1-
scoreBA NB BA NB BA* NB BA* NB

NIR (2020) 0.95 0.93 0.93 0.94 0.94 0.95 0.85 0.83 0.96 0.89
NIR (2021) 0.94 0.96 0.96 0.94 0.95 0.96 0.9 0.89 0.96 0.92
NIR (2022) 0.89 0.93 0.92 0.89 0.9 0.89 0.88 0.88 0.89 0.88
BAI (2020) 0.95 0.94 0.94 0.95 0.94 0.95 0.86 0.85 0.96 0.9
BAI (2021) 0.94 0.96 0.96 0.93 0.95 0.95 0.9 0.9 0.95 0.93
BAI (2022) 0.9 0.93 0.93 0.9 0.92 0.91 0.89 0.89 0.91 0.91
EVI (2020) 0.96 0.92 0.92 0.96 0.94 0.96 0.83 0.8 0.97 0.89
EVI (2021) 0.96 0.94 0.94 0.96 0.95 0.96 0.85 0.83 0.97 0.9
EVI (2022) 0.9 0.92 0.92 0.9 0.91 0.85 0.85 0.85 0.85 0.85

GEMI (2020) 0.96 0.93 0.92 0.96 0.94 0.96 0.84 0.82 0.97 0.89
GEMI (2021) 0.96 0.96 0.96 0.96 0.96 0.96 0.86 0.84 0.97 0.91
GEMI (2022) 0.89 0.94 0.94 0.88 0.9 0.87 0.85 0.85 0.88 0.86
NDVI (2020) 0.94 0.92 0.92 0.94 0.93 0.94 0.84 0.82 0.94 0.88
NDVI (2021) 0.95 0.93 0.93 0.95 0.94 0.93 0.86 0.85 0.94 0.89
NDVI (2022) 0.87 0.92 0.93 0.86 0.9 0.83 0.87 0.88 0.82 0.85
NDWI (2020) 0.94 0.93 0.93 0.94 0.93 0.94 0.86 0.85 0.95 0.9
NDWI (2021) 0.96 0.95 0.95 0.96 0.95 0.96 0.89 0.87 0.96 0.92
NDWI (2022) 0.9 0.93 0.94 0.89 0.92 0.89 0.87 0.87 0.89 0.88

BA: TB; NB: unburned; BA*: TB + PB.
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5.3.1.2 Semi-annual datasets

Figure 5.11 presents radar plots comparing the models generated using semi-annual
datasets (182 observations in each dataset). The primary aspect to note is the differ-
ence in the number of samples available per semester. During the January to June
period, the southern hemisphere experiences summer and autumn seasons and this
period marks the transition from a climate characterized by warm temperatures
and increased precipitation to a colder climate with reduced precipitation. In the
Brazilian Cerrado, fires are expected to be most widespread and persistent during
the second semester due to the dry peak and favorable vegetation conditions for
burning, as shown in Figure 5.11.

Figure 5.11 - F1-score for semi-annual classifications using TB cells as the BA class.
 

Samples per class: 2020-1 (125); 2020-2 (1,166); 2020-1 (158); 2021-2 (1,323); 2022-1
(217); 2022-2 (1,033).

The seasonal fire behavior needs to be considered in the development of semi-annual
machine learning models. It poses a challenge in predicting scenarios and distinguish-
ing between classes due to the limited number of samples available during the first
semester of a year. Figure 5.11 allows us to visualize that the plots related to the
first semester exhibited lower F1 values, with the exception of 2022-1, that has more
samples available for this period. Upon examining the results, we can observe that
GEMI had the best performance in 2020-1 (0.92) and 2021-1 (0.93). NDWI achieved
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the same F1-score as GEMI in 2021-1 and showed the best result in 2022-1 (0.95).

When focusing on the second semester, we observe higher F1-scores, with all training
datasets achieving scores equal or higher to 0.91. The performance of the indices,
particularly in 2020-2 and 2021-2, demonstrates similarities, indicating that these
indices produce comparable results. Overall, all indices returned higher F1-scores in
2021-2 compared to other semesters, and the maximum F1-score for this period was
achieved by the GEMI and NDWI datasets (0.97). For the period of 2022-2, our
results indicate that the highest F1-scores were achieved by the BAI, NDWI, and
NIR datasets (0.94), and that the NDVI yielded the lowest F1-score (0.91).

Figure 5.12 illustrates the results when we combine TB and PB cells as samples of
the BA class. Comparing it with Figure 5.13, we can see that, similarly to the annual
datasets, combining both labels tends to reduce the performance of the classifier.
We may observe the impact of sample size on the classifier’s performance analyzing
2022-1, which has the highest number of samples among the first semester and the
highest F1-scores for the period. The BAI obtained the highest accuracy (0.94) in
2022-1, considering all datasets from the first semesters.

Figure 5.12 - F1-score for semi-annual classifications using TB plus PB cells as the BA
class.

 

Samples per class: 2020-1 (432); 2020-2 (2,359); 2020-1 (497); 2021-2 (2,447); 2022-1
(756); 2022-2 (2,385).
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Figure 5.13 shows the overlap of the plots with only TB cells and TB with PB cells as
input samples for the BA class. In 2022-1, BAI performed slightly better (0.89) when
using TB plus PB cells as input samples compared to using only TB cells (0.86). This
may occur due to a lower sensitivity of the BAI to be mixed with different terrestrial
targets within the cells, once it is based on the Euclidean distance of the red and
near infrared bands, and not on normalized differences used to highlight specific
targets as vegetation and water bodies, targets commonly confused to burned areas.

Figure 5.13 - Comparison of F1-score from semi-annual classifications using only TB cells
and using TB plus PB cells as the BA class.

 

We observed that, regardless of the set of input samples and the semester, the
shapes of the plots are similar, despite the reduction in F1-scores when the TB and
PB cells are combined. It leads to a decrease in the performance of classifications
without significant changes in the response of different spectral indices or the NIR
band. Table 5.3 summarizes the results of the classification for the datasets from the
first semester, and Table 5.4 contains the results of the training performed on the
datasets from the second semester. We note a decrease in the recall of the NB class
when combining TB and PB.

Due to the heterogeneity and spectral mixing within the regular cells, predicting
partially burned cells would be a challenge because of noises in the burned area
responses. Alternatively, using only TB cells may limit the classifier to detect homo-
geneous targets, potentially leading to underestimation of burned areas, as partially
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burned cells may not be classified. Further testing and analysis will explore this.

Table 5.3 - Summary of validation results (precision, recall and F1-score) according to the
first semester considering TB cells and TB plus PB cells as input samples of
the BA class.

Precision Recall F1-
score

Precision Recall F1-
scoreBA NB BA NB BA* NB BA* NB

NIR (20-1) 0.84 0.9 0.91 0.83 0.87 0.83 0.89 0.89 0.83 0.86
NIR (21-1) 0.89 0.9 0.91 0.88 0.9 0.89 0.91 0.92 0.88 0.9
NIR (22-1) 0.9 0.95 0.95 0.89 0.92 0.88 0.93 0.94 0.87 0.9
BAI (20-1) 0.88 0.91 0.92 0.87 0.89 0.85 0.93 0.94 0.84 0.89
BAI (21-1) 0.88 0.94 0.95 0.86 0.91 0.86 0.91 0.92 0.85 0.88
BAI (22-1) 0.89 0.97 0.97 0.89 0.93 0.93 0.94 0.94 0.93 0.94
EVI (20-1) 0.86 0.89 0.89 0.85 0.87 0.83 0.89 0.89 0.83 0.86
EVI (21-1) 0.84 0.95 0.95 0.84 0.89 0.83 0.89 0.89 0.83 0.86
EVI (22-1) 0.92 0.95 0.95 0.92 0.94 0.9 0.9 0.9 0.9 0.9

GEMI (20-1) 0.93 0.91 0.91 0.92 0.92 0.84 0.9 0.9 0.84 0.87
GEMI (21-1) 0.92 0.94 0.95 0.91 0.93 0.87 0.89 0.89 0.87 0.88
GEMI (22-1) 0.91 0.96 0.95 0.91 0.93 0.9 0.92 0.92 0.9 0.91
NDVI (20-1) 0.88 0.93 0.94 0.88 0.91 0.83 0.92 0.92 0.82 0.87
NDVI (21-1) 0.87 0.91 0.91 0.85 0.88 0.86 0.87 0.87 0.86 0.87
NDVI (22-1) 0.9 0.94 0.94 0.89 0.92 0.89 0.91 0.91 0.89 0.9
NDWI (20-1) 0.9 0.9 0.89 0.89 0.9 0.85 0.91 0.92 0.84 0.88
NDWI (21-1) 0.93 0.94 0.95 0.93 0.93 0.88 0.9 0.89 0.88 0.89
NDWI (22-1) 0.95 0.95 0.95 0.95 0.95 0.92 0.91 0.91 0.93 0.92

BA: TB; NB: unburned; BA*: TB + PB.

Table 5.4 - Summary of validation results (precision, recall and F1-score) according to the
second semester considering TB cells and TB plus PB cells as input samples
of the BA class.

Precision Recall F1-
score

Precision Recall F1-
scoreBA NB BA NB BA* NB BA* NB

NIR (20-2) 0.96 0.95 0.96 0.96 0.96 0.97 0.9 0.89 0.97 0.93
NIR (21-2) 0.95 0.98 0.98 0.95 0.96 0.97 0.93 0.93 0.97 0.95
NIR (22-2) 0.94 0.95 0.95 0.94 0.94 0.94 0.88 0.88 0.94 0.91
BAI (20-2) 0.95 0.95 0.95 0.95 0.95 0.96 0.9 0.9 0.96 0.93
BAI (21-2) 0.95 0.97 0.97 0.95 0.95 0.98 0.92 0.92 0.98 0.94
BAI (22-2) 0.92 0.95 0.95 0.92 0.94 0.93 0.9 0.9 0.94 0.92
EVI (20-2) 0.95 0.96 0.95 0.95 0.95 0.97 0.88 0.86 0.98 0.92
EVI (21-2) 0.96 0.97 0.97 0.96 0.96 0.97 0.89 0.88 0.97 0.93
EVI (22-2) 0.94 0.92 0.93 0.94 0.93 0.9 0.85 0.84 0.91 0.88

GEMI (20-2) 0.96 0.97 0.97 0.96 0.96 0.96 0.89 0.88 0.97 0.92
GEMI (21-2) 0.97 0.97 0.97 0.97 0.97 0.98 0.91 0.9 0.98 0.94
GEMI (22-2) 0.92 0.94 0.94 0.92 0.93 0.9 0.86 0.85 0.91 0.88
NDVI (20-2) 0.95 0.93 0.93 0.95 0.94 0.96 0.87 0.85 0.97 0.91
NDVI (21-2) 0.95 0.96 0.96 0.96 0.96 0.96 0.89 0.88 0.96 0.92
NDVI (22-2) 0.9 0.92 0.92 0.9 0.91 0.88 0.87 0.86 0.88 0.87
NDWI (20-2) 0.95 0.94 0.95 0.95 0.95 0.95 0.89 0.88 0.96 0.92
NDWI (21-2) 0.96 0.97 0.97 0.96 0.97 0.98 0.91 0.91 0.98 0.94
NDWI (22-2) 0.92 0.95 0.95 0.92 0.94 0.91 0.9 0.9 0.91 0.9

BA: TB; NB: unburned; BA*: TB + PB.
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5.3.2 Multitemporal datasets

5.3.2.1 Labeled with totally burned cells

Figure 5.14 and Table 5.5 shows the F1-score results for the models generated with
the multitemporal datasets that contains samples from all yers and the precision
and recall for both classes. Analyzing the F1-score metric, we can see that NDWI
returned the highest result (0.92), while NIR, BAI, EVI and GEMI returned the
same accuracy of the classifier (0.91). We can see by comparing the precision from
both classes that NB is slightly better distinguishable from BA. While BA is more
proficient at making accurate classifications, the lower recall of NB shows that more
unburned cells are being identified as burned than the opposite. NDVI was the
dataset with the lowest F1-score (0.89).

Figure 5.14 - Validation metrics (F1-score, precision and recall) for multitemporal classi-
fications using TB cells as the BA class.

 

BA: burned area class; NB: unburned area class. Samples per class: 2,814.

Table 5.5 - Summary of validation results (precision, recall and F1-score) per multitem-
poral dataset considering TB cells as input samples of the BA class.

Precision Recall F1-scoreBA NB BA NB
NIR 0.91 0.91 0.91 0.91 0.91
BAI 0.91 0.92 0.92 0.91 0.91
EVI 0.91 0.91 0.91 0.91 0.91

GEMI 0.91 0.92 0.92 0.91 0.91
NDVI 0.88 0.9 0.9 0.87 0.89
NDWI 0.92 0.92 0.92 0.92 0.92

After training the multitemporal datasets, we generalized the obtained models to
the annual ARD datasets. We used the Intersection over Union (IoU) metric to
evaluate these results, considering two mappings as references: the manual mapping
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that contains all the TB cells and the mapping that contains the concatenation of
the TB with PB cells (Figure 5.5a and Figure 5.5c). Figure 5.15 shows the results
for the three years considering all datasets. An important result is that considering
the reference mapping with TB and PB cells leads to better results of IoU.

Even though the models were initially trained only with TB cells, the generalizations
were able to also identify cells that were partially affected by fire. We see that the
lowest IoU results are associated with the NDVI annual datasets. Additionally, when
considering the years, 2021, which achieved the highest F1-scores in the annual time
series analysis, also yielded the best IoU values, reaching 72% (0.72) compared to
the reference mapping with TB and PB cells when we consider the NIR, EVI, GEMI
and NDWI datasets. Similarly, we found that 2022 produced the lowest IoU results.

Figure 5.15 - IoU obtained by the generalized annual datasets labeled with TB cells as the
BA class based on the multitemporal models.

 

TB: reference mapping with TB cells as the BA class; TB+PB: reference mapping with
TB plus PB cells as the BA class.

Previous results indicate that the annual datasets from 2022 returned the lowest IoU
in both training and testing compared to other years. Aiming to understand the un-
derlying factors related to the reduced classification and generalization performances
in 2022 we highlight the necessity of a more robust time series that includes images
from CBERS-4 since 2020. Although this satellite was launched in 2014, INPE has
not yet included its historical images in the catalog used in this study.
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Table 5.6 provides a summary of the IoU results. It is interesting to highlight the
performance of EVI and GEMI in 2020, as they were the only cases where the
comparison with the mapping of TB cells as BA class yielded better results than
the concatenation of TB with PB.

Table 5.6 - Summary of IoU results obtained by the generalized annual datasets created
with TB cells as samples of the BA class based on the multitemporal models.

IoU
TB TB + PB

NIR (2020) 0.7 0.72
NIR (2021) 0.68 0.75
NIR (2022) 0.61 0.67
BAI (2020) 0.67 0.7
BAI (2021) 0.62 0.7
BAI (2022) 0.59 0.67
EVI (2020) 0.7 0.68
EVI (2021) 0.69 0.73
EVI (2022) 0.58 0.62

GEMI (2020) 0.72 0.7
GEMI (2021) 0.68 0.72
GEMI (2022) 0.56 0.63
NDVI (2020) 0.6 0.63
NDVI (2021) 0.65 0.69
NDVI (2022) 0.53 0.58
NDWI (2020) 0.65 0.7
NDWI (2021) 0.72 0.76
NDWI (2022) 0.59 0.65

Adopting regular grids enables the integration of data with different characteristics
and reduces the amount of data, but limits the scale and precision of the mapping to
the dimensions of the spatial cells. In the case of burned areas and binary classifica-
tions, although the training of the annual models returns higher classifier accuracies
when the input is made with TB cells instead TB plus PB cells, the generalization,
on the other hand, returns higher IoU values when we use the reference mapping
that has TB plus PB burned cells. This indicates the detection of cells partially
affected by fire when the input consists only of homogeneous cells.

Figure 5.16 shows the generalization results based on the models created with mul-
titemporal datasets labeled only with TB cells. We can note, comparing the classi-
fications with Figure 5.5, the presence of false positives from the BA class, specially
in the year 2022, potentially indicating confusion between burned areas and patches
of Cerrado’s phytophysiognomies, or false positives detected due to the behavior of
samples from other years. Figure 5.17 elucidates one of the best generalizations by
comparing it with the reference mapping containing TB plus PB cells.
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Figure 5.16 - Annual burned areas classified with models from annual multitemporal
datasets labeled with TB cells as samples of BA.

a: NIR; b: BAI; c: EVI; d: GEMI; e: NDVI; f: NDWI.

Figure 5.17 - Example of a generalization (NIR 2021, IoU = 75%).

TP: true positive; FP: false positive; FN: false negative.
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5.3.2.2 Labeled with totally and partially burned cells

Figure 5.18 and Table 5.7 contain the results for the F1-score, precision, and recall
metrics obtained after classifying these datasets. In terms of number of samples, we
see that the datasets labeled with PB cells have more than twice (6,209 samples per
binary class) as many samples available as the datasets labeled only with cells totally
affected by fire (2,814 samples per binary class). All datasets returned lower F1-
scores when compared to the models created using only TB cells, and the best results
were obtained by the NDWI (0.87), NIR and BAI (0.86) multitemporal datasets.

Figure 5.18 - Summary of validation results (F1-score, precision and recall) per multitem-
poral dataset considering TB plus PB cells as input samples of the BA class.

 

Samples per class: 6,209.

Table 5.7 - Summary of validation results (precision, recall and F1-score) per multitem-
poral dataset considering TB plus PB cells as input samples of the BA class.

Precision Recall F1-scoreBA NB BA NB
NIR 0.88 0.85 0.83 0.89 0.86
BAI 0.88 0.85 0.84 0.88 0.86
EVI 0.87 0.81 0.79 0.89 0.84

GEMI 0.89 0.82 0.81 0.9 0.85
NDVI 0.83 0.83 0.83 0.84 0.83
NDWI 0.89 0.85 0.84 0.9 0.87

Contrary to what was observed in the analysis of the datasets labeled with TB cells,
we had lower precision and recall results for both classes. Also there is an inversion
between the performance of these binary classes. While the classifier exhibits higher
precision in correctly classifying samples from the BA class in all multitemporal
datasets, we observe that the NB class, despite lower precision, can better generalize
the results to unseen data, comprising cells not included in the training of the
multitemporal models. It indicates a propensity for misclassifying cells as BA (false
positive) rather than as NB (false negative).
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Figure 5.19 presents the IoU results after generalizing the datasets labeled with TB
and PB cells. The best results were obtained in the year 2021, with NDWI (0.76),
NIR (0.75), GEMI (0.72), and EVI (0.71) achieving more than 70% correspondence
with the reference mapping that combines both types of burned cells into the BA
class. Once again, the IoU results are higher when this mapping is used as the
reference for validation. The NDVI annual datasets yielded the lowest results. In line
with previous analyses, 2022 stands out as the year with the weakest generalization
performances.

Figure 5.19 - IoU obtained by the generalized annual datasets labeled with TB plus PB
cells as the BA class based on the multitemporal models.

 

Figure 5.19 allows us to note higher amplitudes between the minimum and maximum
values observed in these datasets compared to those labeled with TB cells. If we
consider the interannual patterns of all the spectral indices and the NIR band, we
do not see major differences between them, with the exception of the NDVI that
seems to have the worst performance in all training and testing. An open hypothesis
is that in our study area the red band does not act synergically with the NIR band
to distinguish vegetation and changes in it caused by fire.

Table 5.8 presents the summary of the IoU results. Contrasting Table 5.8 with
Table 5.6 it is possible to note similar results when the reference mapping includes
both types of burned cells, despite there is more difference if we consider the reference
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mapping labeled with only TB cells. This suggests that models created with only
TB cells are well-generalized even when they have a smaller number of available
samples. This result has important implications for ML models generation because
it is an indicator that in approaches with regular cells, the better samples of the BA
class concern homogeneous cells totally affected by fire.

Table 5.8 - Summary of IoU results obtained by the generalized annual datasets created
with TB plus PB cells as samples of the BA class based on the multitemporal
models.

IoU
TB TB + PB

NIR (2020) 0.62 0.72
NIR (2021) 0.62 0.75
NIR (2022) 0.48 0.6
BAI (2020) 0.58 0.67
BAI (2021) 0.57 0.69
BAI (2022) 0.51 0.64
EVI (2020) 0.63 0.73
EVI (2021) 0.61 0.72
EVI (2022) 0.43 0.59

GEMI (2020) 0.64 0.72
GEMI (2021) 0.62 0.72
GEMI (2022) 0.48 0.59
NDVI (2020) 0.54 0.64
NDVI (2021) 0.53 0.63
NDVI (2022) 0.44 0.55
NDWI (2020) 0.58 0.7
NDWI (2021) 0.64 0.76
NDWI (2022) 0.48 0.61

When comparing the results with the reference mapping with TB and PB cells rep-
resenting the BA class, we observed that NDWI and NIR yielded very similar IoU
results. GEMI and EVI showed IoU values close to those datasets, but the perfor-
mance of their datasets was weaker in 2022. Notably, the BAI dataset outperformed
the others in 2022, although its performance is comparable to the NIR results in
2020 and 2021, as their results are inferior to 70% in both years, but we emphasize
that NDVI is less effective for generalization than BAI.

Figure 5.20 structures the results based on the models created with multitemporal
datasets labeled only with TB cells. We observe when comparing the classifications
with Figure 5.5 the presence of false positives in the BA class, specially in the
datasets from 2022. Using both TB and PB cells to generate the models and gener-
alize the results means that a greater number of cells are identified as burned areas
when in fact they are not. As we mentioned before regarding the vegetation of our
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study area, there appears to be confusion between the BA and NB classes within
the CVNP, and using partially burned cells in training increases this confusion.

Figure 5.20 - Annual burned areas classified with models from annual multitemporal
datasets labeled with TB plus PB cells as samples of BA.

a: NIR; b: BAI; c: EVI; d: GEMI; e: NDVI; f: NDWI.
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5.3.2.3 Comparison with MCD64A1 and AQM1km products

Aiming to compare our previous results with the MCD64A1 and AQM1km burned
area products, we organized and plotted their annual mappings (Figure 5.21a and
Figure 5.21b). We notice comparing them to those in Figure 5.5a and Figure 5.5c
that both products demonstrate similar abilities to detect the main annual burn scar
patterns. Table 5.9 further reinforces this finding, indicating that, with the exception
of the mappings from 2022, the reference mapping that includes TB and PB cells
produce higher IoU comparison results.

Figure 5.21 - MCD64A1 and AQM1km annual mappings.

a: MCD64A1; b: AQM1km.

Table 5.9 - Summary of IoU results obtained comparing the manual mappings used as
references with the MCD64A1 and AQM1km burned area products.

IoU
TB TB + PB

MCD64A1 (2020) 0.71 0.75
MCD64A1 (2021) 0.72 0.73
MCD64A1 (2022) 0.65 0.64
AQM1km (2020) 0.66 0.72
AQM1km (2021) 0.66 0.71
AQM1km (2022) 0.56 0.56

When we contrast these mappings with those shown in Figure 5.15 and Figure 5.19,
we notice that the MCD64A1 and AQM1km are more refined in locating compact
burned areas and in avoiding false positives of this class. This indicates that our
classifications, while mapping the most burned cells, also generate commission er-
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rors, especially in 2022 and when the models are trained using TB and PB cells
as input samples. The analysis of Table 5.9 does not show whether one product is
more efficient at specifically detecting burned areas, as these IoU results provide an
overview of the intersection between the two sets covering all classes.

Figure 5.22 compares the annual datasets classified with TB cells to MCD64A1 and
AQM1km products, while Figure 5.21b presents the results obtained using TB and
PB cells. Despite the misclassification of unburned cells as burned, we found that the
overall IoU results from our datasets labeled only with TB cells are similar to those of
MCD64A1 and AQM1km. In the following results, only the validations based on our
reference mapping with totally and partially burned cells will be studied in detail,
since the overall IoU results tend to be higher, indicating a better correspondence
between the reference mapping and the compared mappings.

Figure 5.22 - IoU of the comparisons of the generalized annual datasets and the MCD64A1
and AQM1km products with the reference mappings.

 
(a) 

(b) 

a: classified datasets labeled with TB; b: classified datasets labeled with TB plus PB
cells.

Up to this point, we have presented overall results for both classes in the generated
classifications as well as for the burned area products. Table 5.10 supplies detailed
findings concerning the analysis of the BA class for each comparison mapping, which
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have been validated against the reference annual datasets containing TB plus PB
cells manually mapped.

Table 5.10 - Summary of validations (precision, recall, F1-score, F2-score, commission and
omission errors) for classifications and the MCD64A1 and AQM1km products,
based on the reference mapping containing TB and PB cells.

Precision Recall F1-score F2-score Commission
errors

Omission
errors

2020
NIR 0.74 0.64 0.69 0.66 0.26 0.36
BAI 0.66 0.65 0.66 0.65 0.34 0.35
EVI 0.67 0.58 0.62 0.6 0.33 0.42

GEMI 0.73 0.58 0.65 0.61 0.27 0.41
NDVI 0.50 0.65 0.57 0.61 0.49 0.35
NDWI 0.63 0.68 0.66 0.67 0.36 0.32

MCD64A1 0.77 0.73 0.75 0.73 0.22 0.27
AQM1km 0.73 0.63 0.68 0.65 0.26 0.37

2021
NIR 0.72 0.73 0.73 0.73 0.28 0.27
BAI 0.60 0.78 0.68 0.73 0.4 0.22
EVI 0.69 0.71 0.7 0.7 0.31 0.29

GEMI 0.68 0.72 0.67 0.71 0.32 0.28
NDVI 0.6 0.71 0.65 0.69 0.4 0.29
NDWI 0.78 0.72 0.75 0.73 0.22 0.27

MCD64A1 0.84 0.73 0.78 0.75 0.16 0.29
AQM1km 0.75 0.61 0.67 0.63 0.25 0.39

2022
NIR 0.6 0.65 0.62 0.64 0.39 0.35
BAI 0.58 0.7 0.63 0.67 0.42 0.3
EVI 0.51 0.62 0.56 0.6 0.49 0.38

GEMI 0.5 0.69 0.58 0.64 0.5 0.31
NDVI 0.42 0.66 0.52 0.6 0.58 0.33
NDWI 0.55 0.67 0.61 0.64 0.44 0.33

MCD64A1 0.79 0.52 0.63 0.56 0.22 0.48
AQM1km 0.62 0.28 0.38 0.31 0.38 0.72

The analysis of the classifications from 2020 reveals that, with the exception of
NDVI and NDWI, all other mappings yielded higher precisions than recall, indicating
that they were more accurate at classifying areas that had actually burned than at
detecting them. NDWI, NDVI and BAI were the most efficient datasets at detecting
burned areas (higher recall), but the F1-score and F2-score results show that NDWI
was more efficient due to its lower omission errors. The MCD64A1 product proved
to be the best mapping for classifying and detecting burned areas, returning the
lowest commission and omission errors and the higher F1-score and F2-score.

The datasets from 2021 returned higher recalls than precisions. This trend, with
exceptions seen in the NDWI dataset, MCD64A1, and AQM1km products, resulted
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in 2021 yielding the highest F1-score and F2-score values, alongside the lowest omis-
sion errors (excluding AQM1km). Consequently, the datasets from 2021 proved to
be the most efficient in accurately detecting burned areas (true positives). However,
the commission errors remained similar to those of 2020, indicating the presence of
false positives. The AQM1km showed a tendency to underestimate burned areas,
but this is to be expected due to its larger minimum mapping unit of 1 km.

The year 2022 had the lowest performance in classifying burned areas, and the
MCD64A1 product returned the highest precision, followed by AQM1km and NIR.
However, the MCD64A1 and AQM1km recalls were lower, and this led both products
to return the lowest F2-score values. Analyzing the errors reveals that although these
products exhibit the fewest commission errors, meaning the fewest false positives,
they also produce the highest omission errors. In other words, they underestimate
the burned area class and generate the greatest number of false negatives between
all datasets, meaning that they classify burned areas as being unburned areas. Fig-
ure 5.23 shows the results of all commission and omission errors by year and dataset.

Figure 5.23 - Errors of commission and omission for each annual mapping compared to
the reference mapping with TB and PB cells.

We found that, for all generated classifications based on the multitemporal datasets,
2021 returned the lowest errors of omission. However, the errors of commission were
higher in 2021 than in 2020 for the NIR, BAI and GEMI datasets. Despite the ten-
dency to identify more false positives and yield higher commission errors, the 2022
datasets exhibited lower omission errors than those of 2020, with exceptions includ-
ing the NDWI dataset and the MCD64A1 and AQM1km products. This difference
explains why the F2-score metric for 2022 is higher for some datasets than in 2020,
while the F1-score is lower. Figure 5.24 shows the accumulated errors and Table 5.11
displays the confusion matrices for all classifications.
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Figure 5.24 - Accumulated errors compared to the reference containing TB and PB cells.

Table 5.11 - Confusion matrices obtained by validations with the annual references con-
taining TB and PB cells.

NIR Reference (2020) NDVI Reference (2020)
BA NB BA NB

BA 2,975 1,027 BA 3,010 2,945
NB 1,674 33,281 NB 1,639 31,363

BAI BA NB NDWI BA NB
BA 3,039 1,567 BA 3,157 1,815
NB 1,610 32,741 NB 1,492 32,493

EVI BA NB MCD64A1 BA NB
BA 2,713 1,344 BA 3,377 976
NB 1,936 32,964 NB 1,272 33,332

GEMI BA NB AQM1km BA NB
BA 2,716 1,007 BA 2,942 1,066
NB 1,933 33,301 NB 1,707 33,242

NIR 2021 NDVI 2021
BA NB BA NB

BA 3,591 1,376 BA 3,493 2,307
NB 1,313 32,677 NB 1,411 31,746

BAI BA NB NDWI BA NB
BA 3,830 2,596 BA 3,532 1,010
NB 1,074 31,457 NB 1,372 33,043

EVI BA NB MCD64A1 BA NB
BA 3,474 1,563 BA 3,586 709
NB 1,430 32,490 NB 1,448 33,214

GEMI BA NB AQM1km BA NB
BA 3,532 1,668 BA 3,003 1,008
NB 1,372 32,385 NB 1,901 33,045

NIR 2022 NDVI 2022
BA NB BA NB

BA 3,384 2,218 BA 3,477 4,744
NB 1,844 31,511 NB 1,751 28,985

BAI BA NB NDWI BA NB
BA 3,650 2,622 BA 3,488 2,786
NB 1,578 31,107 NB 1,740 30,943

EVI BA NB MCD64A1 BA NB
BA 3,259 3,145 BA 2,755 777
NB 1,969 30,584 NB 2,516 32,909

GEMI BA NB AQM1km BA NB
BA 3,590 3,597 BA 1,463 903
NB 1,638 30,132 NB 3,765 32,826
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Figure 5.25 shows radar plots for the three years. The year 2021 was the one with
the best prediction among the annual classifications models using multitemporal
datasets, because its F2-values tended to be higher, indicating higher recalls for
the BA class. This year, as explained earlier, contains images from both CBERS-4
and AMAZONIA-1, which makes it more regular than 2020, in which there are only
images from CBERS-4, but less dense than 2022. Incorporating images from CBERS-
4A, AMAZONIA-1, and CBERS-4 in our datasets would enable the detection of
burned areas every 1-3 days under ideal conditions.

Figure 5.25 - Validation metrics (precision, recall, F1-score and F2-score) for all analyzed
annual mappings compared to the reference with TB and PB cells as the BA
class.

We emphasize that all multitemporal datasets were composed with samples from
the three years. One hypothetical reason for the worst performances in 2022 is
the increased data variability over shorter time intervals. Unburned cells could be
incorrectly mapped as burned because their values may fall below or above the
thresholds set by the RF algorithm, influenced by the fire behaviors of 2020 and
2021. It is possible that the variability in 2022 is higher due to radiometric differences
between the three satellites, as studied by Oldoni (2022), but our study is limited
in understanding it due to the absence of CBERS-4 images before May 2022.

With more regular inter-annual time series, we would be able to explore whether
using the three satellites leads to increased variability and whether this variabil-
ity reflects more unpredictable classifications or not. Aiming to understand if the
classifications and the products could be considered similar, we performed paired
McNemar tests using the manual mapping with TB and PB cells as reference (Ta-
ble 5.12). The NIR classification for the year 2021 is not statistically significantly
different from the EVI, GEMI, and AQM1km classifications, and the AQM1km does
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not exhibit statistical differences when compared to BAI and NDWI. In 2020, the
only statistically indistinguishable classifications are BAI and NDWI.

Table 5.12 - Results of paired McNemar binary test performed using as references the
mapping with TB and PB cells, the MCD64A1 and the AQM1km products.

Reference Year Classification 1 Classification 2 p-value
TB+PB 2020 BAI NDWI 0.301
TB+PB 2021 NIR EVI 0.893
TB+PB 2021 NIR GEMI 0.289
TB+PB 2021 NIR AQM1km 0.182
TB+PB 2021 BAI AQM1km 0.576
TB+PB 2021 NDWI AQM1km 0.081

H0: None of the two classifications performs better than the other.
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6 CONCLUSIONS

Our main conclusions are:

1. It is possible to map burned areas using WFI imagery, but there are factors to be
considered. The limited number of bands and the absence of the SWIR mean that
mapping methods need to exploit different RS approaches, based mainly on the red
and NIR bands due to the relationship between burned areas and vegetation cover.
We focused on exploring the potential of using spectral indices and the NIR band
to generate semi-annual and annual mappings for the Cerrado in the CVNP, and
annual models performed better than semi-annual models. Despite the irregularity of
the time series due to presence of clouds and absence of WFI images from CBERS-4
in 2020 and 2021, our tests showed better results of generalization when we used
multitemporal datasets with samples from all years.

2. Using regular cells with an MMU larger than the original WFI pixel size enables
integrating data from various Brazilian satellites. Its implication is the possibility to
generate annual mappings since the year 1999 based on the visible and NIR bands,
which are present in the CBERS family since its inception. Burned areas, although
they follow an annual seasonality due to environmental conditions, do not behave
equally in all years. In classifications with RF, the use of multitemporal time series,
including burned areas from different years and constructed with WFI images from
different satellites, has the potential to improve the detection of this target. The tests
performed on 38,957 cells demonstrated its capacity for processing large datasets.
It is important in big earth data context and it is aligned with AI techniques that
support RS and environmental data processing and analysis.

3. According to the results of the training and generalization tests, conducted indi-
vidually for the NIR band and for the BAI, EVI, GEMI, NDVI and NDWI spectral
indices, no major differences between these datasets were found, although some per-
formed better than others in classifications using semi-annual and annual time series.
Despite the lack of clarity regarding the dominance of certain datasets in accurately
mapping burned areas, the McNemar test, performed on pairs of generalized map-
pings, revealed significant differences in the annual results, specially evident in the
datasets of 2020 and 2022. In 2021, the EVI and GEMI, along with the AQM1km
burned area product, returned significant similarities with the results obtained by
generalizing the multi-temporal dataset based on the NIR band. It may indicates
redundancy between this band and the derived spectral indices for the year 2021.
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4. The frontier of knowledge in the context of this work lies in the potential to detect
burned areas accurately in near real-time (NRT) by utilizing AI and big datasets, and
the greatest advantage of using the WFI sensor is the possibility to obtain images
every 1-3 days when the CBERS-4, CBERS-4A and AMAZONIA-1 satellites are
used. Another significant potential lies in the production of annual burned area maps
since 1999, as Brazil lacks a systematic methodology for producing burned area from
its satellites. Future studies could focus on evaluating the performance of techniques
such as principal component analysis, IHS transformation, and the integration of all
these data into a single time series and the utilization of algorithms based on deep
learning architectures. Brazil’s autonomy in mapping burned areas with its satellites
is considered a critical national asset for environmental monitoring and sovereignty.
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