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ABSTRACT

This doctoral project in applied computing enhances and evaluates the performance
of the Gradient Pattern Analysis (GPA) technique in characterizing the spatiotem-
poral pattern formation processes generated from the multidimensional Stochastic
Complex Ginzburg-Landau (SCGL) model. It is verified that the inclusion of noise,
forming a stochastic extended system, leads to vortices and spiral defects that are
structures resulting from the breaking of localized gradient symmetries which is
compatible with the main GPA measurement criteria. The influence of the colored
noise model (additive and multiplicative) on the formation of such patterns is inves-
tigated with an improved version of the GPA. For this, we present a refinement of
the GPA considering two new increments: (i) A more precise metric to measure the
phase fluctuation of the gradient lattice corresponding to each snapshot; and (ii) a
new Lyapunov stability analysis of the reactive part is considered to evaluate which
of the colored noises results in the highest rate of asymmetric fluctuations. Consid-
ering the stochastic model studied in this work, the stability analysis indicates that
white and pink noise do not contribute to the formation of asymmetric fluctuations
in the reactive phase space, while red noise is effective. Furthermore, based on the
GPA measurements for modulus (G2) and phase (G3), we show that the SCGL mul-
tiplicative red noise model presents greater structural coherence in the generation of
spiral defects than the additive model. Based on these results, applications of incre-
mental GPA in a future machine learning context are presented, taking as examples
data frames related to pattern formation processes in solar physics, cosmology, and
medicine.

Palavras-chave: Gradient Pattern Analysis. Spatiotemporal Pattern Formation.
Nonlinear fluctuations. Stochastic Complex Ginzburg-Landau. Structures in Space
Physics.
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ANÁLISE DE PADRÕES GRADIENTE: APRIMORAMENTOS E
APLICAÇÕES INCLUINDO A INFLUÊNCIA DO RUÍDO NA

FORMAÇÃO DE PADRÕES

RESUMO

Este projeto de doutorado em computação aplicada aprimora e avalia o desempenho
da técnica Gradient Pattern Analysis (GPA) na caracterização dos processos de for-
mação de padrões espaço-temporais gerados a partir do modelo multidimensional,
complexo e estocástico, de Ginzburg-Landau (SCGL). Verifica-se que a inclusão de
ruído, formando um sistema estendido estocástico, leva a vórtices e defeitos espirais
que são estruturas coerentes resultantes da quebra de simetrias localizadas compatí-
veis com os principais critérios de medidas do GPA. A influência do modelo de ruído
colorido (aditivo e multiplicativo) na formação de tais padrões é investigada com
uma versão melhorada do GPA. Para isso, apresentamos um refinamento do GPA
considerando dois novos incrementos: (i) Uma métrica mais precisa para medir a flu-
tuação de fase da grade gradiente correspondente a cada instantâneo; e (ii) uma nova
análise de estabilidade de Lyapunov da parte reativa é considerada para avaliar qual
dos ruídos coloridos resulta na maior taxa de flutuações assimétricas. Considerando
o modelo estocástico estudado neste trabalho, a análise de estabilidade indica que
os ruídos branco e rosa não contribuem para a formação de flutuações assimétricas
no espaço de fase reativa, enquanto o ruído vermelho é efetivo. Além disso, com base
nas medidas de GPA para módulo (G2) e fase (G3), mostramos que o modelo SCGL
com ruído vermelho multiplicativo apresenta maior coerência estrutural na geração
de defeitos espirais do que o modelo aditivo. Com base nesses resultados, são apre-
sentadas aplicações de GPA incremental em um futuro contexto de aprendizado de
máquina, tomando como exemplos dataframes relacionados a processos de formação
de padrões em física solar, cosmologia e medicina.

Palavras-chave: Análise de Padrões Gradiente. Formação de Padrões espaço-
temporais. Flutuações não-lineares. Equação Complexa Estocástica de Ginzburg-
Landau. Estruturas em física espacial.
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1 INTRODUCTION

This doctoral thesis project in Applied Computing has as main objective to continue
an advanced study on the technique known as Gradient Pattern Analysis (GPA)
(ROSA et al., 2000; RAMOS et al., 2000; BARONI; ROSA, 2011; ROSA et al.,
2018). The advanced study aims to improve the performance of the technique based
on a critical study of its performance, always trying to find characteristics that can be
improved. In my master’s project (SAUTTER, 2018) we performed a critical study
on the performance of GPA applied to so-called Coupled Map Lattices (CMLs) in
their 2D spatiotemporal configuration (see Appendix A).

CMLs are canonical nonlinear systems that allow studying the formation and evo-
lution of spatiotemporal patterns whose characteristics of structural complexity are
sensitive to initial conditions, boundary conditions and level of chaotic behavior im-
posed on the model. In this doctoral project, we generalize the application of GPA
to a system that, in addition to involving chaos, also incorporates noise and can be
simulated and analyzed in multiple dimensions: ordinary time series (without spa-
tial domains), 2D spatiotemporal series (equivalent to a sequence of images based
on pixels) and 3D (equivalent to a sequence of hypercube based on voxels). Figure
1.1 shows a spatiotemporal pattern formation event (2D+1) visualized as a sequence
of some snapshots that represent the temporal evolution of the Ginzburg-Landau
reactive-diffusive process. We are using the notation of the theory of amplitude equa-
tions where nD+1 denotes a sequence of snapshots where n is the spatial dimension
and "1" means the measure of amplitude over time. Thus, the most common are
2D+1 (for matrices or 2D images) and 3D+1 for hypercubes or 3D images.

Figure 1.2 illustrates the scenario that relates the study of GPA as a technique for
analyzing simulated and/or observed spatiotemporal patterns from various mathe-
matical, physical, chemical and biological observed processes (or models). In general
terms, GPA, instead of extracting measurements from numerical values of a matrix,
first operates on it to generate the respective gradient lattice and then extracts ge-
ometric measurements from the gradient pattern (first gradient moment) and also
from the norm’s set (second gradient moment) and corresponding phases (third
gradient moment), and may also compose a fourth measure based on the complex
entropy written from the norms and phases (fourth gradient moment) (RAMOS et
al., 2000; ROSA et al., 2003).
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Figure 1.1 - Example of a typical 2D+1 Spatiotemporal pattern formation.

Three time steps are shown in the simulation of spiral pattern formation, from the per-
spective of Amplitude Equations Theory.

Figure 1.2 - The GPA 2D+1 analytical paradigm.

The GPA paradigm, which explores more information about a complex 2D+1 structure
that may be contained in the norms and phases of the gradient lattice, which is obtained
from the corresponding amplitude matrix.
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The details of the research problem and the structure of the thesis are described in
the sections below.

1.1 Motivations and hypothesis

The study of SpatioTemporal Pattern Formation (STPF) began in 1900s with the
study of convection(RAYLEIGH, 1916). Subsequent studies introduced new terms
to the Partial Differential Equations (PDEs), specifically associated with popula-
tion dynamics, which are now recognized as reaction-diffusion systems (FISHER,
1999; TURING, 1990; DÚZS et al., 2023)1. Within this context, the so-called "co-
herent structures" that emerge in many physical, chemical and biological systems
have been observed and simulated from a multitude of methods and techniques
(CLADIS; PALFFY-MUHORAY, 1995; WALGRAEF, 1997). With the advent of
scientific computing approaches, this area has become very broad, both in terms
of improving models and techniques for numerical simulations, as well as advancing
the quality of observations through digital images with high resolution and multifre-
quency samples. Therefore, from the point of view of data analysis, new challenges
have arisen in relation to the study of techniques capable of quantifying and iden-
tifying the formation of spatial structures over time (mainly in 2D, in the form of
digital images and their respective matrices).

Unlike a large amount of techniques available for the analysis of ordinary time se-
ries (without spatial information), there are few techniques involving measurements
that are effective in characterizing the formation of spatiotemporal patterns (DIM-
ITROPOULOS et al., 2014; HAO et al., 2019; XU et al., 2015), mainly when un-
derlying nonlinear processes are addressed as the cause of coherent structures and
defects as observed in reactive-diffusive systems, chaotic and turbulent patterns in
fluids, structure formation in astrophysics and cosmology, propagation and growth
of structures in biological systems, complex materials, etc) (CLADIS; PALFFY-
MUHORAY, 1995; WALGRAEF, 1997; CROSS; HOHENBERG, 1993; DEKEL;
OSTRIKER, 1999). Added to this context is the need for measures that act as at-
tributes and labels in machine learning, making it possible to incorporate Artificial
Intelligence in the monitoring and recognition of complex spatiotemporal patterns2.

Glimpsing the above scenario, spatiotemporal data analysis is an emerging research

1The seminal paper of Turing (1990) is a reprinted version of a paper presented in the Philo-
sophical Transactions of the Royal Society, 1953

2Complex systems here are those that present at least three properties: non-linearity, collective
transitive behavior and/or self-organization and entropy exchange with the environment(CLADIS;
PALFFY-MUHORAY, 1995).
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area due to the development and application of new computational techniques
that allow the analysis of complex spatiotemporal systems considering even large
datasets. Spatiotemporal models arise when data are collected in time and space
and have at least one spatial and one temporal property. In our context, we consider
that a spatiotemporal dataset describes a spatial and temporal phenomenon that
exists at a given time t and location (x,y) or (x,y,z). It is in this context that the
GPA technique emerged in the 1990s, originally conceived as a new tool to ana-
lyze the asymmetric fragmentation of an active solar region observed in X-rays by
the Yohkoh mission(ROSA et al., 1999). Since there, the technique has been tested
and improved in several applications(DANTAS, 2014; BARONI, 2009; GUERRA,
2008; SANTOS, 2009; COSTA JÚNIOR, 2004; FREITAS, 2012; SAUTTER, 2018).
Taking into account all those masters and doctoral projects, GPA applications in-
clude cases in the domains of physics, astrophysics, cosmology, chemistry, biology,
meteorology, and medicine.

In some of these works GPA was compared with other techniques and proved to be a
unique method to detect patterns via bilateral symmetry breaking measurements on
the gradient lattice. For instance, some techniques that were compared to GPA was:
texture attributes (SOUZA; ASSIREU, 2016), Bidimensional Detrended Fluctuation
Analysis (DFA-2D) (SOUZA; ASSIREU, 2016) and Minkowski functionals (ROSA
et al., 2007; BARONI, 2009).

In this project, motivated by the challenges described below, we elaborated two
hypotheses to be investigated in this applied computing thesis:

(i) The Stochastic Complex Ginzburg-Landau Equation (SCGLE) is a pop-
ular PDE in physics to study phase-transitions(ARANSON; KRAMER,
2002). The inclusion of noise terms in this equation can change the for-
mation patterns. Furthermore, this type of model allows studying the
intriguing pattern formation mechanism in systems as the largest forest
ecosystems(NOBRE; FABRICIO-NETO, 2021; ASSAD et al., 2022). The
presence and characterization of noise, in this context, is still a relevant
research topic that has never been addressed by the GPA technique. In
this sense, the hypothesis that the GPA technique can be effective in the
characterization of patterns generated from the SCGLE will be carefully
investigated, admitting the need of new technical GPA increments and the
implementation of an effective numerical model that allows to apply the
GPA in the ordinary time series, 2D and 3D solutions from SCGLE, which
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lead to the formation of patterns on the influence of noise.

(ii) The GPA technique, when seen within a Machine Learning context, de-
mands testing its usefulness within a new scope of analysis, incorporat-
ing Dashboard solutions and perspectives of using GPA parameters as
attributes that works as training labels for machine learning models pri-
marily for pattern detection and classification. This perspective extends
the applications of GPA to areas such as monitoring solar activity and
also to the use of artificial intelligence in health sciences. Thus, the second
hypothesis of this thesis consists of evaluating GPA as a general-purpose
machine learning technique(ROSA et al., 2018; BARCHI et al., 2020).

1.2 Main goals

Based on the motivations and hypotheses described above, the main objectives of
this research are as follows:

a) Implement simulations based on the SCGLE numerical solution to test,
improve and validate the GPA technique in the characterization of STPF
and regimes associated to them under the presence of noise;

b) Start applying the technique within a broader context involving Machine
Learning challenges. This objective does not intend to exhaust the sub-
ject in this thesis, but only to discuss in an incipient way the hypothesis
that a GPA- Dashboard Analytics solution can be useful, for example, in
applications in solar physics, cosmology and medicine. The case study in
medicine was incorporated into the thesis project for the following reasons:
The application of the GPA in a FAPESP PIPE-Phase 2 project that is
in progress 3 and will offer a postdoctoral scholarship recommended by
FAPESP. In addition, the same project foresees developments to provide
solutions within NASA’s Artemis Mission4 regarding the use of computer
vision to assess practical skills in aerospace medicine.

1.3 Document outline

We have organized the content as follows: Chapter 2 provides a comprehensive review
of the GPA formalism and introduces the Stochastic Complex Ginzburg-Landau

3<https://bv.fapesp.br/pt/pesquisa/buscador/?q2=(id_pesquisador_exact%3A2682)
%20AND%20(auxilio:*%20AND%20situacao:%22Em%20andamento%22)>

4<https://www.nasa.gov/specials/artemis/>

5

https://bv.fapesp.br/pt/pesquisa/buscador/?q2=(id_pesquisador_exact%3A2682)%20AND%20(auxilio:*%20AND%20situacao:%22Em%20andamento%22)
https://bv.fapesp.br/pt/pesquisa/buscador/?q2=(id_pesquisador_exact%3A2682)%20AND%20(auxilio:*%20AND%20situacao:%22Em%20andamento%22)
https://www.nasa.gov/specials/artemis/


Equation (SCGLE). Chapter 3 presents, in Section 3.1., the numerical method used
in the SCGLE solution. In Section 3.2., the mathematical increments of GPA are
investigated. The data that will be analyzed by GPA are presented in Chapter
4. Results and Interpretations are in Chapter 5. An overview of GPA in a Visual
Analytics context is presented in Chapter 6. The overall contributions of this thesis
can be found in Appendix B.
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2 THEORETICAL BACKGROUND

The exploration of spatiotemporal pattern formation (WALGRAEF, 1997; SWIN-
NEY; KRINSKY, 1992; COELHO et al., 2021) plays a central role in understanding
nonequilibrium regimes within reactive-diffusive systems (CROSS; HOHENBERG,
1993; ARIS et al., 1991), such as fluid dynamic instabilities in complex media (GAL-
LAIRE; BRUN, 2017), Belouzov-Zhabotinsky reaction (BARZYKINA, 2020), and
electrophysiological propagation in biological systems (WINFREE, 1997). These sys-
tems typically exhibit long-term relaxation, which arises from the coupling of slow
modes in their amplitude dynamics (MANNEVILLE, 2005) and is statistically rep-
resented by universality classes (COLLET; ECKMANN, 2014; JABEEN; GUPTE,
2010). Therefore, comprehending the role of instabilities in pattern formation is vital
for formulating thermodynamics (BUDRONI; WIT, 2017) and developing wave the-
ories (HUPKES et al., 2020) applicable to nonlinear, out-of-equilibrium extended
systems. Among the extensively studied systems, the complex Ginzburg-Landau
equation stands out, revealing fascinating spiral patterns, double spirals, and cellu-
lar patterns (ARANSON; KRAMER, 2002). These intricate patterns offer valuable
insights into the underlying dynamics and complexity of many biological and phys-
ical systems.

2.1 Complex Ginzburg-Landau

The Complex Ginzburg–Landau (CGL) equation is one of the most remarkable
nonlinear equations in physics. It describes superconductors (YANG; HOU, 2008;
ARANSON; KRAMER, 2002), being an important model for the study of phase
transitions (ARANSON; KRAMER, 2002). It is also an important model to study
pattern formation since it is able to capture the emergence of complex spatiotem-
poral patterns from the interaction of a small number of parameters. The system is
governed by the Equation 2.1, where A is a complex amplitude envelope, related to
a spatial variable at time t, b is a spatial parameter related to diffusion term ∇2A,
c is a parameter related to the reactive part of the equation, and i =

√
−1.

∂tA = (1 + ib)∇2A + A− (1 + ic)|A|2A (2.1)

In practical applications, it is commonly observed noise interference in Partial Differ-
ential Equations. Therefore, recent studies include noise terms in the CGL equation,
which is formally known as Stochastic Complex Ginzburg-Landau (SCGL) equation
(SHEN et al., 2018; YANG; HOU, 2008). The main approaches include the additive
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or multiplicative noise terms, according to Equations 2.2 and 2.3 respectively.

∂tA = (1 + ib)∇2A + A− (1 + ic)|A|2A + σ∂t(ηβ) (2.2)

∂tA = (1 + ib)∇2A + A− (1 + ic)|A|2A + σA∂t(ηβ) (2.3)

In those equations, ηβ is a colored noise, which typically is a white noise term (β = 0),
in Chapter 3 we discuss the algorithm to generate this signal.

The main motivation to study this stochastic reactive system is to mimic rainfor-
est dynamics (LANGNER et al., 2018; BOLZAN et al., 2002; RODRIGUES NETO
et al., 2001). In Amazon rainforest, for example, the dynamics of air currents are
directly influenced by the heterogeneous patterns created by the canopy layer (CAM-
PANHARO et al., 2008; CAMPOS VELHO et al., 2001). The formation of short and
long-term biophysical patterns in this ecosystem can also be influenced by stochas-
tic reactive-diffusion processes, where weak turbulence plays a significant role in
promoting self-organization under non-equilibrium conditions, such as wildfires, de-
forestation, and the precipitation of pollutants. These conditions often give rise to
dissipative structures, including chaotic heat ramps and spiral defects, which involve
the presence of diffusive noise (CAMPANHARO et al., 2008; CAMPOS VELHO et
al., 2001; LEJEUNE et al., 1999; LANGNER et al., 2018).

An important feature apparent in these systems is their symmetry, which serves as an
indicator for various physical processes, including turbulence, chaos, and boundary-
induced instabilities. Within this context, GPA emerges as a promising technique
for pattern characterization. This approach stands out by not solely relying on sym-
metry but also incorporanting the asymmetries in the gradient lattices which are a
signature of nonlinear local fluctuations as well as the emergence of coherent struc-
tures as spatiotemporal patterns. Consequently, in the subsequent section we will
discuss the theoretical bases of GPA.

2.2 Gradient Pattern Analysis

In complex systems, the characterization of spatiotemporal patterns is one of the
main challenges, involving the definition and interpretation of techniques that are
capable of measuring the emergence of complex structures over time. Addressing
this challenge, the GPA formalism offers a well-defined set of criteria that enable
the comprehensive characterization of complex spatial patterns by considering the
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bilateral symmetry breaking from the corresponding matrix gradient lattice. The
initial application of this technique was primarily associated with solar bursts coming
from asymmetric magnetic sources in the solar atmosphere(ROSA et al., 1999),
and subsequent research expanded its application to time-series (0D+1) domain
(ASSIREU et al., 2002), introduced new metrics (ROSA et al., 2003; RAMOS et
al., 2000; ROSA et al., 2018), and incorporated preprocessing enhancements related
to pattern symmetry (ROSA et al., 2018; BARCHI et al., 2020). In this section we
revisit the GPA technique.

2.2.1 The GPA operator

As a measurement technique, GPA is a computational operation that takes place on
a lattice as shown in Figure 2.1.

Figure 2.1 - GPA operations.

Scheme representing the GPA operations and respective Gradient Moments (GM). The
set of operations are denoted by I-VIII, where the features V - VIII are the Gradient
Moments measures.

In this formalism, the lattice preprocessing involves four key operations, denoted
as I-IV. Operation I entails measuring the gradient, which involves computing local
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differences in each direction. The literature commonly adopts the Central Finite
Differences (CFD) scheme for its simplicity and effectiveness (ROSA et al., 1999;
BARCHI et al., 2020). In specific cases where boundary points are involved, ei-
ther Forward Finite Differences (FFD) or Backward Finite Differences (BFD) are
employed. A summary of this operation is presented in Table 2.2.1.

Table 2.1 - Finite difference scheme for computing gradient lattice.

Numerical scheme ∂x(Ai,j) ∂y(Ai,j)
CFD (Ai+1,j − Ai−1,y)/2 (Ai,j+1 − Ai,j−1)/2
FFD Ai+1,j − Ai,j Ai,j+1 − Ai,j

BFD Ai,j − Ai−1,j Ai,j − Ai,j−1

Central Finite Difference (CFD) scheme, Forward Finite Difference (FFD), and Backward
Finite Difference (BFD). In a numerical lattice with amplitudes Ai,j , the vectors are com-
puted using CFD, and FFD or BFD for the boundaries. ∂x(Ai,j) is the spatial derivative
in x-direction and ∂y(Ai,j) is the spatial derivative in y-direction.

Operation II involves the removal of symmetric vectors from the lattice, as detailed
in Section 2.2.2. Operations III and IV are focused on analyzing specific properties
of each vector within the lattice.

In Operation III, the modulus and phases of each vector are measured to understand
its characteristics. The modulus, denoted as ||v||, represents the vector’s length
and is computed as the Euclidean distance: ||v|| =

√
[∂x(Ai,j)]2 + [∂y(Ai,j)]2. This

provides valuable information about the intensity of amplitude change in the vector’s
neighborhood, a measure that defines GM2.

On the other hand, the phase ϕi,j indicates the direction in which the amplitude
of the lattice is locally increasing and is expressed as an angle, forming GM3. The
phases are calculated using the function ϕi,j = atan2(∂y (Ai,j), ∂x(Ai,j)), where atan2
is the arc tangent function that solves the ambiguity of measuring an angle.

Finally, Operation IV involves the recombination of moduli and phases in a complex
form: zi,j = |vi,j|exp(

√
−1θi,j), generating the GM4.

The set of Gradient Moments (GM) obtained from these operations allows the cal-
culation of a comprehensive metric, as outlined in Section 2.3.
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2.2.2 Breaking bilateral symmetry

The literature offers numerous definitions of symmetry (LIU et al., 2010). These
definitions revolve around the concept of elements remaining invariant under spe-
cific operations, such as translation, rotation, or reflection. In the literature of GPA
(BARCHI et al., 2020; ROSA et al., 2018), the criterion for spatial bilateral symme-
try has been established. According to this criterion, elements that are equidistant
from a separation axis and perpendicular to it are considered potential candidates
for symmetry. In the gradient field, each element is characterized by a modulus
and phase, which determine whether the candidates exhibit actual symmetry. If
two candidate vectors possess equal modulus but opposite phases, they are deemed
symmetrical.

More specifically, any pair of vectors that are equidistant from a designated center
of symmetry can be considered candidates for symmetry. The axis of symmetry is
determined by the midpoint between two equally distant points and the center of
symmetry. Additionally, vectors with the same modulus but opposite phases result
in a vectorial sum of zero.

Hence, an algorithm specifically crafted to detect symmetrical pairs operates by first
identifying vectors equidistant from the center of symmetry. It proceeds to check
whether each vector has a modulus greater than a defined tolerance parameter.
Vectors with a modulus below the tolerance are labeled as ’unknown symmetry.’ For
vectors surpassing the tolerance, the algorithm further examines if the modulus of
their sum falls below a specified threshold. Figure 2.2 provides a visual representation
of this procedure.

2.3 Gradient moments

To characterize an asymmetrical vector lattice, many measures can be taken to
highlight or diminish certain features of the pattern. It is important to have a variety
of measures available, in order to represent all the aspects that a given pattern may
provide. To this end, Rosa et al. (2003) proposed a measure classification based on
the representation of the gradient lattice, which was named the Gradient Moment
(GM) due to its similarity to statistical moments. This classification is based on the
steps to generate every gradient lattice representation, as shown in Figure 2.1.

With GMs, it is possible to track the trends of the gradient lattice, as well as
determine the presence of anomalies. Ultimately, these measures can be used to
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Figure 2.2 - Algorithm for symmetry detection.

Detection of symmetry based on the concentric criteria. Vectors equidistant from the center
of symmetry are summed to determine their symmetry classification.

SOURCE: Rosa et al. (2018).

gain a deeper understanding of a given vector lattice and help discover patterns
that may otherwise be hidden.

The first Gradient Moment (GM1) deals with the characteristics of vectors, including
their phases, modules, and positions. In order to aggregate all of these characteristics,
Rosa et al. (1999) proposed an intermediate operation: for each vector in the lattice,
the position is added to the vector, and a triangulation is performed. Of the various
triangulation methods, the Delaunay triangulation was chosen as the standard due
to its maximization of interior angles. Finally, the ratio between the number of
connections in the Delaunay triangulation, NC , and the number of vertices, NV , is
used to compose the measure, as described in Equation 2.4.
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GC
1 = NC −NV

NV

(2.4)

This metric is an important feature in terms of local perturbations. However, there
is a drawback in applications with large matrices, as in the following section. In
order to achieve a more robust measure, it is essential to utilize more refined data.
In this context, additional moments of the gradient field have been developed, which
consider a reduced number of gradient properties.

The GM2 metrics incorporate information related to the vectorial modulus, obtained
by operation (ii) in Figure 2.1. From the moduli set, we can compute the metric from
Equation 2.5.

G2 = VA

V

1−

∣∣∣∣∣VA∑
i=0

vA
i

∣∣∣∣∣
2

VA∑
i=0
|vA

i |

 (2.5)

In this Equation, VA is the number of asymmetrical vectors, V is the total number of
vectors in the lattice, and vA

i is an asymmetrical vector. Equation 2.5 is a normalized
version of the classical measure GC

2 , proposed by Rosa et al. (2018), which is bounded
between [0, 2] to match the same range as GC

1 . Notably, G2 = GC
2 /2, preserving the

constant values in a new scale. For example, previous studies have reported that
GC

2 (LP ) = 1 for a laminar pattern LP , while the metric for the random pattern (U)
for both versions are GC

2 (U) = 2 and G2(U) = 1, respectively.

Unlike the other GMs, no metric for GM-3 has been previously defined in the litera-
ture until a recent study (SAUTTER et al., 2023). Arithmetic operations involving
phases exhibit substantial distinctions from conventional numerical sets. For exam-
ple, the summation operation of an angle encounters a challenge near θ = 0 = 2π

radians. This issue also arises in defining the distance between phases; an angle of
ϕ1 = π/2 radians is considered more distant to θ than a phase angle of ϕ2 = 5π/3
radians. To address this issue, a simpler approach involves operations of unitary
vectors within a polar coordinate system.

This representation neither incorporates new information regarding the original vec-
tor nor excludes any phase-related information. When computing the phases of a
vector using the atan2 function, the reference point is the x-axis. However, as the
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Figure 2.3 - Example of G3 angles.

Illustration of angles used in the calculation of G3.

interpretation of the x-axis may vary in different applications, it becomes crucial
to adjust the reference basis of the phases accordingly. One approach to achieve
this adjustment is by taking into account the vector’s position relative to the lattice
center and transforming it using the dot product, as illustrated in Figure 2.3. This
transformation is formulated in Equation 2.6, where ui = (cos(ϕi), sin(ϕi)) denotes
a unitary vector related to the phase, and vi = (cos(θi), sin(θi)) represents a unitary
vector representing the position relative to the lattice center.

G3 = 1
2

VA

V
+ 1

2VA

i=VA∑
i=0

ui.vi + 1
 (2.6)

In this manner, G3 expresses the collective direction of all vectors with respect to the
center of the lattice. Individually, the phase and modulus provide detailed informa-
tion about the variation in location and intensity. However, in certain applications,
the combined information becomes crucial. In this regard, (RAMOS et al., 2000)
introduces an entropic metric based on the complex notation of each vector. Equa-
tion 2.7 presents the entropy of the vector set zi = |vi|exp(iθi), where |vi| represents
the modulus and θi represents the phase. In order to normalize this metric, Rosa et
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al. (2003) proposes a normalization considering the sum of all vectors, which can be
expressed as z = ∑VA

i zi.

G4 = −
VA∑
i=0

zi

z
ln
(

zi

z

)
(2.7)

Ramos et al. (2000) also proposes a Stirling approximation to the logarithm func-
tion for complex numbers. However, recent implementations of Python provide an
optimized implementation for the complex logarithm operation.

From the definition of GM, we can perform the measurement with the GPA tech-
nique. However, the interpretation of the values produced is extremely important
for data analysis. In this regard, the patterns presented in the following sections
encompass controlled experimental scenarios, including laminar patterns, random
patterns, and colored noise patterns, which serve as informative benchmarks for
understanding the capabilities and outcomes of GPA analysis.

2.3.1 Laminar pattern

One of the most important canonical pattern is the laminar flow (LP ). This pattern
is a matrix with constant increments in the x and y directions and has a fully
asymmetrical gradient field with constant phases and moduli. The minimal example
of this pattern and the corresponding gradient field and triangulation can be seen in
Figure 2.4. In this section, we will present analytical and empirical solutions for all
GMs in the case of a laminar flow of a square grid. We will first provide an in-depth
analysis of both GM1 and GM2 to illustrate their corresponding solutions for the
first time. Then move on to the empirical solution for all GMs.
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Figure 2.4 - Laminar Pattern (LP ).
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A laminar pattern is defined as a matrix with constant increments in every direction, such
as the matrix (a). Thus, the gradient field (b) contain constant size vectors pointing to
the same direction. The corresponding triangulation field (c) is build from the point of the
vectors. In the case of laminar pattern, there are two kinds of connections in triangulation
field: regular grid connections in blue and diagonal connections in red.

Let’s consider the minimal example of LP Delaunay triangulation (see Figure 2.4),
where there are diagonal connections and regular grid connections. The total number
of triangulation connections NC in a square matrix, given the matrix order N , is
expressed by Equation 2.8. The term 2N(N − 1) is relative to the regular grid of
the triangulation and (N − 1)2 is relative to the diagonal connections.

NC = 2N(N − 1) + (N − 1)2 (2.8)

This equation can be expanded to yield Equation 2.9.

NC = 3N2 − 4N + 1 (2.9)

Considering NV = N2 and Equation 2.9, the value of G1C(LP ) is found to be
inversely proportional to the matrix size, which can be described as Equation 2.10.

GC
1 (LP ) = 2− 4

N
+ 1

N2 (2.10)

This indicates that for large enough matrices, the laminar pattern becomes indis-
tinguishable from the random pattern since limN→∞ GC

1 (LP ) = 2.

Referring to Equation 2.5 introduced in the previous section, it is evident that
the metric G2 is directly related to the alignment of vectors and the proportion
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of asymmetrical vectors. The laminar pattern’s vectorial summation, denoted as
|∑ vi| = VA

∑ |vi|, leads to the expression G2 = VA/(2V ). In the case of a laminar
pattern where all vectors are inherently asymmetrical, the ratio VA/V equals 1.
Consequently, the metric of the laminar pattern is the constant G2(LP ) = 1/2.

The metric G3 contain information related to the phases of the system. Consequently,
this metrics is not constant with respect to the matrix size for the laminar pattern.
However, when a constant phase is considered, these metrics assume constant values.
Therefore, an analytical test can be employed in this scenario. An analysis with all
GMs is presented in Table 2.3.1. This example serves to demonstrate the application
and calculation of metrics in the context of laminar patterns generated with the
unitary differences between the elements in the x-axis.

Table 2.2 - Gradient Moments for Laminar Pattern.

Matrix size GC
1 G2 G3

3x3 0.778 0.500 0.759
5x5 1.240 0.500 0.752
9x9 1.568 0.500 0.750

17x17 1.768 0.500 0.750
33x33 1.880 0.500 0.750
65x65 1.939 0.500 0.750

129x129 1.969 0.500 0.750

2.3.2 Random patterns

Random matrices serve as another crucial example of canonical patterns in GPA
context. The literature on GPA includes at least two types of random matrices
(ANDRADE et al., 2006; ROSA et al., 1999). The first type involves random ma-
trices generated from a uniform distribution, while the second type entails matrices
created by shuffling laminar matrix elements. Overall, there is no statistical differ-
ence between the GMs of both random matrices. The corresponding average and
standard deviation for the random matrices can be found in Table 2.3.2. A set of
100 random matrices, of size 2N + 1 elements, has been applied to this test.
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Table 2.3 - Gradient Moments for Shuffled Laminar Pattern.

Matrix size GC
1 G2 G3

3x3 1.081± 0.154295 0.792± 0.132010 0.722± 0.087462
5x5 1.613± 0.053446 0.889± 0.058783 0.744± 0.054518
9x9 1.867± 0.017766 0.950± 0.024025 0.749± 0.021603

17x17 1.960± 0.005387 0.979± 0.011278 0.750± 0.007761
33x33 1.988± 0.001477 0.991± 0.004227 0.750± 0.002983
65x65 1.997± 0.000316 0.997± 0.001397 0.750± 0.001474

129x129 1.999± 0.000119 0.999± 0.000529 0.750± 0.000718

It is worth noting that G3 exhibits the same constant value for both types of random
matrices and the laminar pattern, indicating a limitation of this metric. Conversely,
both G1 converge to a value of 1 as the matrix size increases. Additionally, GC

1 tends
to approach a value of 2, a finding that has been previously observed by Rosa et al.
(1999).

The randomly generated pattern is commonly referred to as white noise, a term
that holds significance in comprehending the underlying physics of the system. This
classification of noise types serves as an additional benchmark for GPA. In the sub-
sequent section, we delve into the theory of colored noise and present an algorithm
for generating colored noise, enabling a deeper exploration of noise patterns within
the GPA framework.

2.3.3 Colored noise

Understanding noise is essential since it is ubiquitous. Furthermore, the noise sig-
nal may indicate important characteristics of the physics involved in the observed
phenomenon and flaws in the data acquisition process. Thus, generating synthetic
noise is important to understand the data and test analysis tools. In this regard,
different techniques are applied depending on system stability requirements, the spa-
tiotemporal domain, observational signal-to-noise ratio (SNR), and computational
resources. There are two main families of noise signals established in the literature;
the colored noise signal and the procedural noise.

Colored noise signals are typically described by a log-log relationship between fre-
quency and energy content at the given frequency, which is known as Power Spec-
trum Density (PSD). The PSD of most noise signals follows a power law of the form
PSD(f) = 1/fβ, where β is the power law exponent. Replicating noises with specific
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PSD decays (β) is a challenging task, particularly for β ≥ 3 (XU, 2019). Various
techniques have been proposed to generate colored noise signals, including filtering
of white noise (LANGBEIN, 2004), generation and application of a function that ap-
proaches 1/fβ (TIMMER; KOENIG, 1995), or a combination of different techniques
(XU, 2019).

The family of Procedural Noise is popular in applications that require spatial noise
modeling, which include: cloud mimic, textures generation, generation of geographi-
cal formation, and visualization of galaxy gas distribution. These techniques generate
noise from a regular grid (simplex grid or a traditional grid), which are then inter-
polated to generate the noise (LAGAE et al., 2010). The produced noise is visually
similar to natural phenomena; however, it has a high computational cost.

In this regard, we introduce a new technique which is a generalization of the squared-
root algorithm (TIMMER; KOENIG, 1995), that is similar to Procedural Noises
but in a multidimensional sense. As the squared-root noise algorithm, we sample a
random Gaussian set with zero average and standard deviation (σ). A new term s

is introduced, which is fitted to ensure that every 0D+1 slice of the noise has the
β parameter as a log-log linear rule. The following procedure is applied to fit the
parameter and generate the noise.

Algorithm 1 Multidimensional Noise Generator
Require: β, ξ, υ
Ensure: f(t)

s← +
√

2D

a← +∞
while a > ξ do

f̂(ω)← η(0, 1)ω −sβ
2

f(t) = ℜ(IFFT f̂(ω))
b← [ ]
for all ρ, ω ∈ slice of FFT(f(t)) do

α← coefficient of log-log linear fit(ρ, ω)
b← [b, α]

end for
a← average(b− β)
s← s− υa

end while
f(t)← f(t)− f(t)/max(|f(t)|) ▷ Normalize the output
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In this procedure, β is the desired PSD rule, ξ is the tolerance of the generated noise
average β, and υ is the step size of the optimization.

Figure 2.5 - Sample of colored noise.

Examples of outputs from the proposed colored noise algorithm. The first row shows a
2D + 1 sample for each type of colored noise; the second row are the middle slice PSD
fitted and third row are the distribution of fitted PSD. This is an example from a set of
200 samples for each colored noise.

The analysis of red noise (β = 2) is presented in Table 2.3.3, where one can see the
same tendency in noise terms.
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Table 2.4 - Gradient Moments for Red Noise.

Matrix size GC
1 G2 G3

3x3 0.970± 0.170718 0.684± 0.173975 0.754± 0.112515
5x5 1.590± 0.075505 0.933± 0.054599 0.744± 0.078924
9x9 1.837± 0.029571 0.976± 0.021875 0.752± 0.053197

17x17 1.943± 0.010992 0.992± 0.005938 0.751± 0.035004
33x33 1.982± 0.003310 0.997± 0.002475 0.748± 0.019820
65x65 1.995± 0.000853 0.999± 0.000721 0.750± 0.013090

129x129 1.999± 0.000205 1.000± 0.000286 0.750± 0.010874

The context presented in this chapter encompasses crucial aspects of the GPA tech-
nique, including its interpretation and limitations. Building upon this foundation,
the following chapter delves into the exploration of GPA within methodology of
this work, which includes improvements to GPA technique and the details of the
numerical methods.
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3 METHODOLOGY

This chapter is dedicated to the discussion of the methodology employed in gener-
ating synthetic data and the analysis technique’s generalization for studying ordi-
nary time series and spatiotemporal data. While some numerical methods presented
here have been previously applied to various problems, such as the pseudospectral
method’s application to the Ginzburg-Landau equation(ZENG et al., 2019; FARAG
et al., 2022), the innovation lies in the novel combination of methods and the intro-
duction of noise into this approach. As a result, this chapter highlights the principal
innovations introduced by this thesis.

3.1 Complex Ginzburg-Landau numerical methods

Recently, a pseudospectral method has emerged as a promising solution for solving
the CGL equation. This method offers significant advantages over other numerical
approaches in terms of accuracy (ZENG et al., 2019; FARAG et al., 2022). The
pseudospectral method employs a series of polynomial or non-linear functions to
approximate the signal. In the context of spatial derivatives, the Fourier Transform
is commonly used, where the signal is represented as a series of sines and cosines.
This choice allows for the utilization of the efficient Fast Fourier Transform (FFT)
algorithm, albeit with the requirement of periodic boundary conditions.

Applying Euler’s formula, the sines and cosines can be expressed in complex form,
as depicted in Equation 3.1, enabling the representation of the signal in terms of
frequency. Specifically, if we consider a sampled signal denoted by f(t), we can
approximate it using a set of complex sines and cosines expressed as f̂(ω)e−i2πωt,
where f̂(ω) is the transformed signal, ω represents the frequency, and t denotes the
normalized time.

eix = sin(x) + icos(x) (3.1)

Using the Gauss method, we minimize the quadratic error as follows:

d

df̂(ω)
∑
ω

∑
t

(
f(t)− f̂(ω)e−i2πωt

)2
= 0. (3.2)

Considering the orthogonality property of the series, the minimization results in the
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Fourier transform:
f̂(ω) =

∫
T

f(ω)e−i2πωtdt, (3.3)

where ω is a frequency parameter, t is the time, f(t) is the original signal and f̂(ω)
is the transformed signal. The inverse Fourier transform is given by:

f(t) = 1
2π

∫ ∞

−∞
f̂(ω)ei2πωtdω, (3.4)

that can be derived with respect to the time on both hand sides, producing:

df(t)
dt

= 1
2π

∫ ∞

−∞
(i2πω)f̂(ω)ei2πωtdω. (3.5)

This approach can be applied iteratively to obtain higher-order derivatives. In the
case of CGLE, the second-order derivative is necessary to describe the diffusion
process (∇2A), which can be approached with the pseudospectral method as:

d2f(t)
dt2 = 1

2π

∫ ∞

−∞
(−4π2ω2)f̂(ω)ei2πωtdω. (3.6)

It is important to highlight that the chosen approach can be susceptible to numer-
ical instability in the vicinity of discontinuities, which is known as the Gibbs effect
(LIU, 1999; DJEDDI; EKICI, 2016). Although limiting high-frequency terms in the
derivative calculation can mitigate this issue, it comes at the cost of reduced pre-
cision. Instead, we propose employing the Runge-Kutta-Fehlberg 4(5) integration
method (SHAMPINE, 1986) to address the problem of instability. This method ex-
tends the traditional Runge-Kutta method and dynamically adjusts the integration
time-step based on the discrepancy between an O(h4) approximation and an O(h5)
approximation. The integration steps used in this method are given by Equation
3.7.
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k1 = ∆tf(tk, yk)

k2 = ∆tf
(
tk + 1

4∆t, yk + 1
4k1

)

k3 = ∆tf
(
tk + 3

8∆t, yk + 3
32k1 + 9

32k2
)

k4 = ∆tf
(
tk + 12

13∆t, yk + 1932
2197k1 − 7200

2197k2 + 7296
2197k3

)

k5 = ∆tf
(
tk + ∆t, yk + 439

216k1 − 8k2 + 3680
513 k3 − 845

4104k4
)

k6 = ∆tf
(
tk + ∆t

2 , yk − 8
27k1 + 2k2 − 3544

2565k3 + 1859
4104k4 − 11

40k5
)

(3.7)

With the pre-steps, the O(h4) approach and the O(h5) approach are given by Equa-
tion 3.8.

y4
t+∆t = yt + 25

216k1 + 1408
2565k3 + 2197

4101k4 + 1
5k5

y5
t+∆t = yt + 16

135k1 + 6656
12825k3 + 28561

56430k4 − 9
50k5 + 2

55k6

(3.8)

If the largest difference between both estimations is greater than a tolerance param-
eter τ , then the new step can be updated according to Equation 3.9.

∆t′ = ∆t

(
τ

max{|y4
t+∆t − y5

t+∆t|}

) 1
4

, (3.9)

Once the numerical methods have been established, it becomes necessary to define
the initial conditions for the system. In the subsequent section, we present a stability
analysis that not only enhances the determination of optimal initial conditions but
also complements the GPA technique.

3.1.1 Initial conditions

The analysis of the reactive component of equations plays a pivotal role in compre-
hending the stability of system regimes, identifying optimal initial conditions, and
detecting fixed points. While this analysis has been presented in various forms, it
does not consider any spatial transport mechanism. In the case of the classical Com-
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plex Ginzburg-Landau (CGL) equation, we can express it as Equation 3.10, where
Ar represents a complex number and c denotes the reactive dispersion parameter.

∂Ar = Ar − (1 + ic)|Ar|2Ar (3.10)

To find equilibrium points, one should consider the derivative zero, as shown in
Equation 3.11, that solution is the origin.

Ar − (1 + ic)|Ar|2Ar = 0 (3.11)

To determine whether a equilibrium point is a source or a sink, one should consider
the derivative of the reaction, which is given by Equation 3.12.

∂2Ar = 1− 3(1 + ic)A2
r (3.12)

As the derivative of the reaction at the origin is positive, it serves as a source-fixed
point. However, in the presence of a single source-type fixed point, it is necessary to
verify the existence of limit cycles, as the absence of such cycles would result in a
divergent solution. To determine the limit cycle of the reactive part of the CGL, we
can use the complex notation as shown in Equation 3.13, where |a| is the complex
number’s absolute value, and θ is its phase.

Ar = |a|eiθ (3.13)

Thus, the reactive term given in Equation 3.10 can be expressed as Equation 3.14.

dAr = |a|eiθ − (1 + ic)|a|3eiθ. (3.14)

Using the Euler’s formula (Equation 3.1), the reaction in Equation 3.14 can be
written as Equation 3.15, where the term |a| − |a|3 is zero for |a| = 0 and |a| = 1.

dAr = c cos θ + (|a| − |a|3) sin θ + i(−c sin θ + (|a| − |a|3) cos θ) (3.15)
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dAr = c(sin θ − i cos θ) (3.16)

Hence, the reaction at a unitary distance can be described by Equation 3.16, which
exhibits a clockwise orthogonal rotation with respect to the position. Consequently,
the circumference |Ar| = 1 forms a closed path, and any set of points in proximity
to |Ar| ≈ 1 is conducive to rapid convergence towards the pattern. To illustrate the
speed of pattern formation, we present an example of system iteration in Figure 3.1.
In this example, the simulation starts with matrices with random initial conditions
of A = u(−1, 1) + iu(−1, 1) and A = u(−1, 1) + iu(−1, 1) + 0.05, where u(−1, 1)
represents a uniform white noise ranging between −1 and 1.

Figure 3.1 - Convergence time comparison of Complex Ginzburg-Landau.

Sequences of snapshots of CGL real part without noise terms, starting from random initial
conditions, where u(−1, 1) represents a uniform noise that ranges between -1 and 1. In
this example, we computed 2,000 iterations using the parameters c = 1.5 and b = 0.0. The
system with an initial condition of A = u(−1, 1) + iu(−1, 1) (sequence at the top) forms
the pattern more quickly than the system with an initial condition of A = u(−1, 1) +
iu(−1, 1) + 0.05 (sequence at the bottom).

It is important to note that for longer-period interactions, using the appropriate
initial conditions, at least three pattern formation regimes emerge. These are known
as: (a) accretion, (b) spiral formation and (c) spiral relaxation, as shown in Figure
3.2. Note that the inclusion of noise terms can affect the spatiotemporal stability
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of these regimes by accelerating transitions and/or changing the structure of the
pattern.

Figure 3.2 - Complex Ginzburg-Landau pattern formation regimes.

Complex Ginzburg-Landau pattern formation regimes: (a) Accretion (T = 2.00), (b) Spi-
ral formation (T = 12.00), and (c) Spiral relaxation (T = 57.00). In this example, the
system has been iterated in absence of noise term. Note that the three regimes occur in all
representation domains: real (top), imaginary part of the complex (middle), and modulus
A (bottom).

However, performing the same analysis for the SCGL equation poses a challenge as
the noise terms, σδt(ηβ) and σAδt(ηβ), exhibit location and time dependencies. To
address this issue, The noise term used in this application normalized between -1 and
1, according to the noise algorithm shown in Section 2.3.3. Overall, the parameters
applied to this study are shown in Table 3.1, which describes the formation of
double-spiral patterns (ARANSON; KRAMER, 2002).
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Table 3.1 - Input parameters for the SCGL model.

Parameter Symbol Value
Spatial dispersion parameter b 0.00
Reaction dispersion parameter c 1.50
Stochastic strength σ 100.00
Power-law β 2.00
Noise tolerance ξ 0.01
Noise optimization step ν 0.60
Time-step ∆t 0.05
Spatial-step ∆h 1.00
Integration tolerance τ 10−4

Grid-size L 128x128
Initial condition A0 η + iη

3.1.2 Stability analysis

Understanding the influence of colored noise on system dynamic stability is a sig-
nificant concern. The reactive part of the SCGL model includes a noise term that
poses challenges in terms of stability modeling. To investigate the noise’s impact on
system stability, we propose a Lyapunov analysis focused on the reactive component.

The reactive part of the SCGL equation, incorporating both additive and multiplica-
tive noise terms, is expressed by Equations 3.17 and 3.18, where Ar is a complex
number, ηβ represents 0D+1 noise, c is the reactive dispersion parameter, and σ is
the stochastic strength parameter. The analysis is conducted in the reactive phase
space, as depicted in Figure 3.3. A similar representation with noiseless high-order
reactive terms has been previously presented in the literature (BYRNE et al., 2015).

∂Ar = Ar − (1 + ic)|Ar|2Ar + σd(ηβ) (3.17)

∂Ar = Ar − (1 + ic)|Ar|2Ar + σArd(ηβ) (3.18)

In Figure 3.3, it is presented three examples of iterations with colored noises. The
observations clearly demonstrate that significant instabilities only arise when red
noise is present, while the system remains bounded in all scenarios. Additionally,
an interesting distinction emerges between additive and multiplicative red noise.
Specifically, iterations involving multiplicative noise exhibit fewer crossings near
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the stable point at Ar = 0 + 0i compared to iterations involving additive noise.
This finding suggests that the presence of multiplicative noise does not hinder the
formation of patterns.

Figure 3.3 - Lyapunov paths for Reactive SCGL.

The Lyapunov paths are presented in red for Reactive Noisy CGL in the complex plane. (a),
(b), and (c) depict solutions with respective white, pink, and red additive noise terms, while
(d), (e), and (f) represent solutions with respective white, pink, and red multiplicative noise
terms. The red noise increases the path asymmetric fluctuations as well as its ergodicity
area.

To characterize the influence of colored noise on dynamic stability, we employ a Lya-
punov analysis based on the reactive part of the system. The phase space considers
the real and imaginary parts of the system as free variables. By introducing noise as
an additional free variable, we can test the hypothesis of chaos in the reaction terms
using the Lyapunov exponent (λ). Due to the complexity of measuring the Jaco-
bian matrix, particularly for the stochastic term, we adopt an empirical approach
to estimate the Lyapunov exponent. At each time step, the system is integrated
around a randomly selected point within a distance of δt. The Lyapunov exponent
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is then computed as the natural logarithm of the ratio between the distances of the
integrated points δt+∆t and the initial distance, as given by Equation 3.19, where
∆t represents the time step. The Lyapunov exponent indicates the average rate of
exponential growth or decay of infinitesimally small perturbations in various direc-
tions within the phase space. In this study, we consider the Lyapunov exponent to
be omnidirectional, meaning that we compute exponents in all directions. A posi-
tive exponent indicates local instabilities, signifying that small perturbations grow
rapidly and the system is generally sensitive to initial conditions.

λ = ln
(

δt+∆t

δt

)
, (3.19)

Figure 3.4 provides a visualization of the Lyapunov path in the complex plane for
Reactive SCGL. The solutions with white, pink, and red additive noise terms are
depicted in (a), (b), and (c) respectively, while (d), (e), and (f) represent solutions
with white, pink, and red multiplicative noise terms. Red noise amplifies asymmetric
fluctuations in the path and expands its ergodicity area as denoted by the local
transformation value.
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Figure 3.4 - Lyapunov exponent boundaries and averages as a function of noise color β.
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The distribution of Lyapunov exponents with additive white noise and multiplicative white
noise terms is similar to that of the noiseless system. As the noise intensity increases,
smaller exponents become more common in both cases. However, the presence of multi-
plicative noise leads to a higher occurrence of positive Lyapunov exponents, indicating
instability.

By defining initial conditions, employing numerical integration methods, and con-
ducting stability analysis, we can successfully simulate the dynamic behavior of the
Complex Ginzburg-Landau equation in both 2D and 3D settings. Building upon this
foundation, the subsequent section takes a step further in GPA formalism.

3.2 Improved Gradient Pattern Analysis

Several improvements have been implemented in the GPA technique. This section
will highlight the key modifications, including the introduction of a novel measure
for GM1 and the technique’s generalization to time series and hypercubes. To begin,
we present a new metric for GM1, recently presented in a conference (SAUTTER
et al., 2023).
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3.2.1 New G1

We proposed a new measure for GM1 that is proportional to the inequality of the
set of Delaunay connections length L. We sort the L set and measure the coefficient
from Equation 3.20.

G1 = Lsup − Linf

max(L) , (3.20)

In Equation 3.20, Linf is the set of connections smaller than the median, Linf is the
set of connections larger than the median, and max(L) is the largest connection.
In practice, the metric has an important application in the detection of dynamical
patterns that partially breaks the symmetry.

3.2.2 Unidimensional generalization

Numerous applications often contain information in a 0D+1 format. To adapt the
technique for such cases, an approach involves transforming the time series into a
collection of matrices, as described by Assireu et al. (2002). There exist several math-
ematical models that can be utilized to perform this transformation interchangeably,
as shown in Figure 3.5. These models fall under the category of space-filling curves,
some examples of which are presented in Figure 3.8. One prominent algorithm in this
domain is the Hilbert-space filling curve, which has found extensive applications,
including data representation in databases (JENKINS et al., 1998) and encoding
spatial-related data for neural network analysis (YIN et al., 2018; WANG et al.,
2021). One of the main advantages of this technique is its ability to achieve spatial
convergence (BUTZ, 1969); for different scaling measures, a given point in the series
converges into a specific location as the matrix increases.

The differences between space-filling curves play a critical role as they have the po-
tential to significantly impact the resulting patterns generated. Recognizing this, Yin
et al. (2018) proposed a test in which a vector comprising 16 elements is transformed
into a 4x4 matrix. Subsequently, the distances between neighboring elements in the
transformed matrix are computed. In an ideal scenario, a smaller distance indicates
a superior space-filling curve, as it implies that adjacent elements exhibit temporal
similarities. Through this test, it was determined that the Snake curve and Hilbert
curve achieve the minimal distance between space-filling curves. Therefore, we adopt
both curves in our testings.
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Figure 3.5 - Techniques to convert vectors into matrices.
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The image shows different approaches to convert size 16 vectors into 4x4 matrices. The
numbers in red indicate the position of a value in the vector, while the numbers in black
indicate the equivalent position in the matrix. (a) is the Snake curve and (b) is the Hilbert
curve.

This approach produces a set of matrices, which can have various GMs metrics. As-
sireu et al. (2002) proposes the average of GMs metrics as a measure to characterize
the time series. This can be an issue in a extreme event context since the extreme
fluctuations can represent a small portion of the overall set. Another approach is to
define a scaling law, for matrices of various sizes, we look for the power-law from
Equation 3.21, where L is the matrix size, GN(x, L) is the Gradient Moment measure
N , and α(x) is the scaling law.

GN(x, L) ≈ Lα(x) (3.21)

A similar approach has been proposed by Rosa et al. (2007), where a relation between
the frequency and the GMs in log-log scale has been established in the context of
wavelets. In this work, we look for the coefficients in a set of scales and look for the
log-log rule. To find the scaling coefficient α(x), a linear fit between the logarithm of
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GN(x, L) and the logarithm of the matrix size L is measured using the least squares
regression. Two different examples of time series and scaling law fit are presented in
Figure 3.6. Note that the more extreme the fluctuation, the greater the slope.

Figure 3.6 - GPA scaling law fitting example.

3.2.3 Tridimensional generalization

The analysis of tridimensional data introduces distinct challenges that cannot be ef-
fectively addressed using bidimensional tools alone. In this section, we present a novel
extension of the GPA specifically designed for tridimensional data. The proposed
extension of the GPA aims to enhance the interpretability of metrics associated with
tridimensional data, even with a potential increase in computational cost.

The tridimensional lattice, also known as a hypercube, can be formally represented
by a collection of amplitudes Ai,j,k arranged in a regular grid, these amplitude ele-
ments are also known as voxels (volume elements). Here, i, j, and k serve as posi-
tional indices within the lattice. The majority of techniques employed in this context
do not necessitate any conceptual alterations in this representation; only minor mod-
ifications in the code are required. For instance, computing a tridimensional gradient
follows the same principles as the bidimensional case, with an additional consider-
ation for the third dimension. The gradient can be calculated in a similar manner,
incorporating the rules previously defined. Table 3.2.3 outlines the inclusion of the
third case using the established rules.

Similarly, the algorithm for symmetry detection has been formulated based on the
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Table 3.2 - Finite difference scheme for computing gradient lattice 3D.

Numerical scheme ∂x(Ai,j,k) ∂y(Ai,j,k) ∂z(Ai,j,k)
CFD (Ai+1,j,k−Ai−1,j,k)

2
(Ai,j+1,k−Ai,j−1,k)

2
(Ai,j,k+1−Ai,j,k−1)

2
FFD Ai+1,j,k − Ai,j,k Ai,j+1,k − Ai,j,k Ai,j,k+1 − Ai,j,k

BFD Ai,j,k − Ai−1,j,k Ai,j,k − Ai,j−1,k Ai,j,k − Ai,j,k−1

Central Finite Difference (CFD) scheme, Forward Finite Difference (FFD), and Backward
Finite Difference (BFD). In a numerical lattice with amplitudes Ai,jthe vectors are com-
puted using CFD, and FFD or BFD for the boundaries. ∂x(Ai,j,k) is the spatial derivative
in x-direction, ∂y(Ai,j,k) is the spatial derivative in y-direction, and ∂z(Ai,j,k) is the spatial
derivative in z-direction.

Euclidean distance from the center of symmetry. Consequently, the same princi-
ples can be extended to a tridimensional space without significant modifications.
However, the measurements of GM1 and GM3 require some important adaptations.
When extending the application to a 3D domain, an additional phase is needed to
represent the vector. In this context, the unit vector used in the measure G3 can
be denoted in spherical coordinates according to the Equation 3.22, where ϕ is the
phase relative to the z axis and the phase θ is relative to the x-y plane.

x = cos(θ) sin(ϕ)
y = sin(θ) sin(ϕ)

z = cos(ϕ)
(3.22)

A schematic of the spherical coordinate system is shown in Figure 3.7, where in a
context of unitary vectors r = 1.
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Figure 3.7 - Spherical Coordinates.

SOURCE: Weisstein (2005).

In GM1, a set of triangles are applied to incorporate the vectorial information of
position, phases, and moduli. In a tridimensional context, this triangulation can be
generalized to a set of simplices. This geometrical structure is a generalization of a
triangle for a multidimensional scenario. Some examples of simplices are shown in
Figure 3.8.
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Figure 3.8 - Simplices and dimension.
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Simplex is a structure that generalizes triangles (b) for multidimensions. For instance a
zero-dimension simplex is a point (a), and a 3-dimension simplex is a tetrahedron (c).

In the specific case of 3D, the simplex is represented by a tetrahedron, which compo-
sition structure can be measured with the flipping algorithm from the QHull library
(VIRTANEN et al., 2020). We also observed a change in the metric range to values
higher than dimension of the system. In this sense we review in the next section
some properties of GPA in a tridimensional context.

3.2.4 Simplex generalization and GM1 properties changes

In order to understand the measure of GPA, Rosa et al. (1999) proposes a test
set that encompasses canonical matrices, symmetric matrices, quasi-symmetric ma-
trices, laminar matrices, and random matrices. The hypothesis of GC

1 of random
matrices as a natural measure of the system dimension has been proposed, due to
the trend towards a maximum value of 2. However, the assumption is not valid with
a simplex generalization. To exhibit this, consider the Algorithm 3.1.
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Algorithm 3.1 - Function to generate the number of Delaunay connections.
import numpy as np
from scipy. spatial import Delaunay
def getNDelaunayConn (d, n=3, nRandSample =100):

x = np. linspace (0,1,n)
grid = np. meshgrid (*tuple(np. repeat ([x],d,axis=0)))
pts = tuple(map(np.ravel , tuple(grid)))
pts = np. column_stack (pts)
_,conn2 = Delaunay (pts). vertex_neighbor_vertices
randValues = []
for i in range( nRandSample ):

randomSet = np. random .rand(*pts.shape)
_,conn = Delaunay ( randomSet ). vertex_neighbor_vertices
randValues . append (len(conn) // 2)

NCh = (dim+1)*pts.shape[0]
NV = pts.shape[0]
return np.max( randValues ), len(conn2) //2, NCh , NV

The code provides the number of connections of the Delaunay triangulation of the
laminar flux and random patterns in the lattice of ND points, where N is the
number of points in every dimension D. It also computes the maximal hypothetical
number of connections, which can be calculated from GC

1 , shown in the introduction,
according to Equation 3.23. This Equation can be deduced by considering GC

1 = D

and NV = ND.

NC(N, D) = DND + D (3.23)

From the code 3.1, Figure 3.9 has been computed. This Figure also shows an im-
portant property of the metric, which is the boundless asymptotic behavior.
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Figure 3.9 - Dimensional Hypothesis Test.

The graph shows the relation between the number of vectors NV and the number of
connections NC . This test was applied to a lattice with dimensions D, with N = 3 points
in every dimension, resulting in ND points. In order for the dimensional hypothesis to be
valid for simplices, no measure can be found above the red line.

Instead of the previous hypothesis, the minimal structure of the system can deter-
mine its dimension. To illustrate this concept, we will examine the simplest case
using the minimal structure denoted as Smin. In a given dimension D, the minimal
structure consists of NV = D + 1 elements. The Delaunay connections of this mini-
mal structure can be calculated using Equation 3.24, which leverages the relationship
between the simplex cofaces and Pascal’s triangle (CONWAY et al., 2016).

NC = D(D + 1)
2 (3.24)

Applying the classical GM1 metric for this minimal structure, yields Equation 3.25.

GC
1 (Smin) = D

2 − 1 (3.25)

In fact, one can rewrite Equation 3.25 as Equation 3.26.

D = 2(GC
1 (Smin) + 1) (3.26)

For instance, in the bidimensional example, when a single triangle is computed,
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NC = NV = 3, and therefore GC
1 = 0. Thus, the dimension D = 2 of the system

can be calculated according to Equation 3.26. With that generalization defined, we
conclude the extension of GPA for a multidimensional scenario. In the following
chapter we discuss the data.
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4 DATA

This chapter serves as an introduction to the data that will be analyzed in this
work. To facilitate understanding, we have organized the Table 4.1 that includes
the dimensionality of the data, as described in the theory of Amplitude Equations,
along with the main reference for each dataset. In addition, this Table includes
information about the nature of the data source, where ’s’ denotes synthetic data,
and ’o’ denotes observational data.

Table 4.1 - Datasets and dimensions.

Nature Dimensionality Main Reference
P-Model S 0D+1 Meneveau and Sreenivasan (1987)
Lorenz S 0D+1 Krawiecki and Matyjaśkiewicz (2001)
Solar burst 3 GHz O 0D+1 Rosa et al. (2008)
NOAA 11131 O 2D+1 Sych et al. (2012)
Milli-Millennium S 3D+1 Guo and White (2008)
Colored Noise S nD+1 Timmer and Koenig (1995)
Ginzburg-Landau S nD+1 Aranson and Kramer (2002)

This chapter is structured in alignment with the dimensionality of the data, allowing
us to start with the presentation of the time series dataset.

4.1 Extreme Events

Three canonical systems have been selected as illustrative examples to explore dif-
ferent patterns of extreme fluctuations: the multifractal extreme dissipation of the
p-model, the coupling between two Lorenz chaotic models, and the noise-like dy-
namics. Additionally, real-world datasets are compared with observations of Solar
wind at 3GHz, which have been previously studied by Rosa et al. (2008). To un-
derstand the impact of the time series structure, we apply the surrogate operation
(Appendix A) on the observational data and compare the result. Figure 4.1 shows
some examples of the model, the Solar wind data, and the corresponding surrogate.
In the following section, we start with one of the most popular theoretical model to
generate Extreme time series, followed by the chaotic desynchronization model.
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Figure 4.1 - Extreme time series.

Sample of canonical models, the observation of a solar burst in radio, and the correponding
surrogate of the solar wind time series.
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The study of extreme events (X-events) has attained increasing interest, particularly
in fields like space and environmental physics, where such occurrences are prevalent.
Three canonical systems have been selected as illustrative examples to explore dif-
ferent patterns of extreme fluctuations: the multifractal extreme dissipation of the
p-model, the coupling between two Lorenz chaotic models, and nonlinear noise-like
dynamics.

4.1.1 P-model

The P-model is model for nonhomogenous turbulent-like cascade proposed by Men-
eveau and Sreenivasan (1991). It is a generalization form of two-scale cantor set
with a balanced distribution of length which shows multifractal properties of one-
dimensional sections of the dissipation field. The generalized form starts from the
classical view of eddy cascade before the inertial range of fully developed turbulence,
where a flux of energy (EK) of size LK cascades down along the inertial range and
eventually dissipates, when it reaches the Kolmogorov length scale β, In the process
of cascading, the energy is recursively divided into two part, as shown in Figure
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Figure 4.2 - P-Model nonhomogenous energy cascading process.

.

L0

L1,0 L1,1 P
  

1-P

L2,4L2,3  P

1-P

L2,2L2,1  P

1-P
.
.

P-Model cascading of inertial scale, generated using binomial distribution. In this example,
an exogenous time-series has been generated with P = 0.75.

Hence, in a cascade step, each eddy of size LK is divided into two equal parts
expressed as LK1 and LK2 each. However, in each cascade step, the flux of energy
is distributed, as a probability, unequally in fractions of p1 and p2 = 1 − p1 where
p1 + p2 = 1. This process is iterated over fixed p1 until eddies reach the Kolmogorov
scale β.

While the P-Model is widely recognized in the field of extreme events, it is important
to note that it represents just one of several potential mechanisms for generating
such events. In the following section, we explore an alternative approach to producing
extreme events from the partial synchronization process.
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4.1.2 Chaotic extreme patterns

The study of coupled chaotic systems has been a significant focus in dynamical
systems, particularly in extending dynamical systems to spatial domains and inves-
tigating synchronization phenomena. In specific scenarios, synchronization processes
occur temporarily, followed by sudden desynchronization and subsequent resynchro-
nization. This intriguing phenomenon is commonly referred to as a blowout bi-
furcation. Noteworthy practical applications that exhibit such phenomena include
laser synchronization (ASHWIN et al., 1998) and neuronal networks (KANAMARU,
2006). The following desynchronization time series were provided by Professor Juan
Alejandro Valdivia in collaboration with the University of Chile.

In this work the synchronization of a dual Lorenz system is investigated, a similar
system presented by Krawiecki and Matyjaśkiewicz (2001). The Lorenz system is a
set of three nonlinear differential equations, shown in Equation 4.2, that describes
a simplified model of atmospheric convection. The variables x, y, and z correspond
to spatial coordinates, while the parameters σ, β, and ρ play important roles in the
system’s behavior.

fx(x, y, z, σ, β, ρ) = σ(y − x)
fy(x, y, z, σ, β, ρ) = x(ρ− z)− y (4.1)
fz(x, y, z, σ, β, ρ) = xy − βz

In order to induce extreme events using this system, we introduce a second Lorenz
system that is driven by the dynamics of the former system. Specifically, the latter
system is influenced by the derivatives f (0)

x , f (0)
y and f (0)

z of the former system. Equa-
tion 4.3 describes the latter system, where the parameter µ regulates the strength
of the driving force.

fx(x, y, z, σ, β, ρ, µ, f1) = σ(y − x)− µ(x− f (0)
x )

fy(x, y, z, σ, β, ρ, µ, f1) = x(ρ− z)− y − µ(y − f (0)
y ) (4.2)

fz(x, y, z, σ, β, ρ, µ, f1) = xy − βz − µ(z − f (0)
z )
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Finally, the time series of desynchronization can be measured by the distance be-
tween both system, using the Euclidean distance shown in Equation 4.3.

e(t) =
√

(x1(t)− x2(t))2 + (y1(t)− y2(t))2 + (z1(t)− z2(t))2 (4.3)

From this error function we conclude the introduction of 1D data. The next section
presents an example of 2D data.

4.2 Sunspot NOAA 11131

Solar corona seismology plays a crucial role in unraveling the formation and evo-
lution of sunspots. Recent studies have focused on investigating the oscillations of
magneto-acoustic waves with periods of 5 minutes and 3 minutes. Various candidate
models have been proposed to explain these dynamics (CHO et al., 2019; FELIPE,
2019), including hypotheses related to small-scale plasma convection or the cut-
off frequency of a p-mode. In this study, we specifically examine the NOAA 11131
region, which serves as a standard observation for 3-minute sunspot oscillatory dy-
namics (DERES; ANFINOGENTOV, 2015; SYCH et al., 2021; SYCH et al., 2012).
The observations of this region were obtained on December 10, 2010, using the Solar
Digital Observatory (SDO). The umbra at 304 Å was tracked over a duration of 6
hours with a time resolution of 12 seconds, employing the methodology proposed by
Sych et al. (2012).
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Figure 4.3 - Snapshots of NOAA 11131.

Contour line and heatmap of NOAA 11131, observed at 304 Å. Blue regions contain
symmetrical vectors, whereas red regions contain asymmetrical vectors. (a) and (c) are
snapshots of the oscillatory regime, while (b) and (d) are snapshots of the critical regime.

SOURCE: Sautter et al. (2023).

To complement the existing studies on NOAA 11131, we introduce the GPA tech-
nique. By analyzing the temporal evolution of GPA metrics and conducting subse-
quent time-series analysis, we aim to characterize the transient stages and oscilla-
tory characteristics induced by the underlying solar physics. Figure 4.3 shows some
regimes of the event, which are the oscillatory regime and the critical regime. In an
oscillatory regime, a diversity of structures is observed, while in a critical regime,
a single region presents higher amplitude values. Our aim is to distinguish these
moments and analyze the oscillatory behavior.

4.3 Complex Ginzburg-Landau 2D+1 and 3D+1

As described in methodology chapter, the parameters, initial conditions and bound-
ary conditions follows the stability presented previously. Also, the technique dis-
cussed in Chapter 2.1 can be extended to multiple dimensions. The pseudospectral
method establishes a relationship between frequencies and the Fourier spectrum. In
a Multidimensional Fast Fourier Transform, the frequencies in each dimension are
linearly independent. Consequently, by applying the same shift to each direction of
the spectrum, we can effectively approximate the diffusion term of the 3D-CGL.
Some snapshots are depicted in Figure 4.4, where the selected snapshots has been
selected from the critical points of the GPA.
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Figure 4.4 - Example of CGL 3D Snapshots.

4.4 Milli-Millennium

The Millennium Simulation, conducted by the Virgo Consortium (JENKINS et al.,
1998), is a pioneering project in cosmology. Its primary aim was to simulate the
evolution of dark matter distribution on a massive scale and observe the formation
of large-scale structures in the universe. The simulation involved more than 10 billion
particles within a cosmological box measuring approximately 500 h−1Mpc. To carry
out the simulation, the state-of-the-art GADGET2 code (SPRINGEL, 2005) was
employed.

In 2008, a second simulation was completed using the same cosmology, output struc-
ture, and particle count as the original Millennium Simulation. This time, the simu-
lation was performed in a box five times smaller, resulting in an 125 times increase
in mass resolution. This enabled a more detailed examination of the underlying
dynamics and processes shaping the formation and evolution of cosmic structures.

The Milli-Millennium dataset is a post-processed compilation derived from the Sub-
halo tree of the original Millennium simulation. The Subhalo tree is a hierarchical
structure that summarizes the mass distribution within a specific region, effectively
reducing the number of data points required to describe the structures by a factor
of 1/512 in the Milli-Millennium. The pioneering work of Lucia et al. (2006) in-
troduced the concept of post-processing the first simulation, while Guo and White
(2008) conducted an in-depth analysis of the simulation’s structure in the context of
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the second simulation. Figure 4.5 illustrates the outcome of the analysis performed
by Guo and White (2008).

To facilitate access to the Milli-Millennium dataset, the code it has been made
publicly available1. The dataset itself can be obtained through SQL queries. In
addition, to simplify the process of data retrieval and loading, we have developed a
code2 that enables automated data downloading and seamless integration with the
Pandas and Mechanize libraries.

Figure 4.5 - Example of Milli-Millenium snapshot.

Sample of Mili-Millenium snapshot. The variable Z indicates the redshift of the snapshot.

To investigate the formation of structures using GPA, the dataset was discretized
into a hypercube, as illustrated in Figure 4.5. This involved computing the logarithm
of subhalo density within each voxel, which corresponded to a spatial scale of 13 Mpc.
As a result, the hypercube consisted of 64x64x64 voxels, which can be analyzed with
3DGPA. From this point, we conclude the presentation of all the data that will be
analyzed in the next chapter.

1http://gavo.mpa-garching.mpg.de/Millennium/
2https://github.com/rsautter/MillenniumQuery
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5 RESULTS AND INTERPRETATION

This chapter encompasses the presentation of all the analyses conducted and their
corresponding results. To enhance clarity, we have organized the order of presenta-
tion according to the dimensionality of the data. We present the results of the 2D
and 3D GPA in two types of outputs. The first type of output presents an individual
analysis of each measure, while the second type of output presents an analysis of
the combination of measures. The objective of this analysis is to detect, whenever
possible, regimes, periodicities and trends. These characteristics are important to
interpret the observed processes and validate the metrics.

In the first type of output, the colors at the background of the time series represent
the regimes. Each segment is detrended to calculate its periodogram. The trend
calculation is carried out by fitting a linear function, whose coefficient is µ. After
detrending, the segment is normalized by the respective standard deviation. Finally
the periodogram is calculated using the Bartlett kernel (BARTLETT, 1950).

The second type of output presents an analysis composed by the combination of
all GMs, where the colors represent the time of the series. In this graph we look
for clusters that represent the regimes of the series. Furthermore, the distribution
of each GM on the main diagonal is shown in this graph. It is worth noting that
due to the unique nature of analyzing 1D data, we have adopted a different method
specifically for these datasets. Also, we do not present the analysis with GM4 in
this study, as it is a measure in complex numbers that makes visualization and
interpretation difficult.

5.1 GPA characterization of extreme events in ordinary time series

Applying this technique to the synthetic extreme fluctuation dataset, we obtain the
Coefficients distributions from Figures 5.1 and 5.2.
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Figure 5.1 - GPA scaling coefficient of extreme events using Snake curve.

Scaling coefficient of GPA 1D generalization using for synthetic models, solar wind obser-
vational data, and corresponding surrogate. Notice that surrogate series of solar wind is
near the original series and the red noise region.
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Figure 5.2 - GPA scaling coefficient of extreme events using Hilbert’s curve.

Scaling coefficient of GPA 1D generalization using for synthetic models, solar wind obser-
vational data, and corresponding surrogate. Note that the surrogate series is always in an
empty region. This result is expected, since the surrogate operation breaks the temporal
relation of the series.

Previous works utilizing GPA in the 1D context have primarily focused on the
Reshape curve (ASSIREU et al., 2002) along with a statistical measure. However, in
this study, we have extended the investigation by replacing the reshape curve with
the Snake curve and Hilbert curve, due to the analyzes presented in the literature.
By examining the results depicted in Figures 5.1 and 5.2, we can conclude that the
Hilbert’s curve is particularly effective at characterizing extreme events. It exhibits
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a clear ability to distinguish between the four classes of synthetic extreme events,
and the ability to distinguish the original series from the surrogate series. It is also
expected a blank region for the surrogated series, since this operation breaks the time
structural relation of the series. With this analysis we can conclude that the solar
wind time series studied is similar to an endogenous event in terms of symmetry and
scaling law. In the subsequent section, we further explore a different generalization,
this time focusing on tridimensional datasets.

5.2 GPA of complex Ginzburg-Landau 2D+1

We conducted a GPA analysis on the real part of the system at each snapshot to
investigate the formation of spirals and their dynamic defects.

Figure 5.3 - Analysis of 2D Complex Ginzburg-Landau pattern formation without noise.

The number of observed regimes is different for each gradient moment. GM1 presents the
initial and secondary stages that indicates the accretion and spiral formation. GM2 and
GM3 have different oscillatory characteristics that indicate the presence of more regimes.
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Figure 5.4 - Combined analysis of 2D Complex Ginzburg-Landau pattern formation with-
out noise.

Combination of all metrics, colors indicate the time.
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Figure 5.5 - Analysis of 2D Complex Ginzburg-Landau pattern formation with additive
noise.

The number of observed regimes is different for each gradient moment. GM1 presents the
initial and secondary stages that indicates the accretion and spiral formation. GM2 and
GM3 have different oscillatory characteristics that indicate the presence of more regimes.

58



Figure 5.6 - Combined analysis of 2D Complex Ginzburg-Landau pattern formation with
additive noise.

Combination of all metrics, colors indicate the time.

59



Figure 5.7 - Analysis of 2D Complex Ginzburg-Landau pattern formation with multiplica-
tive noise.

The number of observed regimes is different for each gradient moment. GM1 presents the
initial and secondary stages that indicates the accretion and spiral formation. GM2 and
GM3 have different oscillatory characteristics that indicate the presence of more regimes.
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Figure 5.8 - Combined analysis of 2D Complex Ginzburg-Landau pattern formation with
multiplicative noise.

Combination of all metrics, colors indicate the time.

61



Figure 5.9 - Phase space of Complex Ginzburg-Landau 2D and its Parametric space.

Every color represents a type of stochastic/non-stochastic CGL. Notice that, every type
of stochastic and the non-stochastic systems occupy different regions.
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The introduction of stochastic terms altered the pattern formation pathway, lead-
ing to a non-relaxing system, as shown in Figures 5.3, 5.5, and 5.7. The additive
noise term often inhibited the formation of spiral defects, preventing metric relax-
ation. In the presence of multiplicative noise, large structures were preserved, but
local fluctuations disturbed the system, resulting in non-periodic variations within
a narrow dynamical range. However, the technique still provides evidence of the ac-
cretion regime and spiral formation, even for the case of additive noise, as shown in
the measure G2. Furthermore, the intermittent periodicity of G3 indicates periods
where noise has less influence. It is important to note that, depending on the noise
term, both G2 and G3 occupy unique regions, as illustrated in Figure 5.9. These
findings underscore the intricate interplay between stochastic elements and pattern
formation dynamics.

Figures 5.4, 5.6, and 5.8 present the combined analysis that unveiled essential as-
pects related to pattern formation. In the absence of noise, three clusters are visible
in G1x G2, which indicates distinct stages. In the additive noise scenario, the para-
metric space G2xG3 exhibited a sparse set of points due to the higher diversity of
asymmetric patterns. Conversely, the system with multiplicative noise displayed a
similar region in G2xG3 space to the noise-free system, aligning with the formation
of large structures. The distinction between the system with multiplicative noise and
the noise-free system lay in the amplitude of G3 and G2, indicating local fluctuations
generated by the multiplicative noise term.

5.3 GPA of solar active region (NOAA 11131)

The analysis of sunspots reveals two distinct critical regimes characterized by maxi-
mum pattern asymmetry, as illustrated in Figure 5.10. Those regimes exhibit distinct
durantion and amplitudes of Gradient Moments (GMs). The first stage is relatively
shorter but exhibits higher GMs compared to the second stages at every GM. Among
the measures applied to the problem, G1 is the only one to present a result consistent
with the literature in terms of oscillation. Three peaks are observed in the regime
between 41 minutes and 270 minutes, which correspond to oscillations of 3, 4.5 and
7 minutes.
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Figure 5.10 - Gradient Moments of NOAA 11131.

The same result can be seen in the parametric spaces, as shown in Figure 5.11. In
this Figure, there is a region of greater concentration of points and some outliers.
The region with the highest concentration of points represents the oscillatory regime,
while the outliers represent the critical regime. Note that the outliers are two-colored,
as extreme fluctuations are observed at different times.
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Figure 5.11 - Combined analysis of NOAA 11131.

Time is displayed according to the colors. Note that most points are concentrated in a
given region of parametric space, regardless of the moment of the gradient. The points in
this region belong to the oscillatory regime, while the outliers belong to the critical regime.

5.4 GPA of complex Ginzburg-Landau 3D+1

Upon observing the dynamics of the system, we can identify the presence of 3D
spirals. Consequently, the metrics exhibit periodic behavior starting from time 600,
as depicted in Figure 5.12. The extension of the technique to the three-dimensional
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domain brought advantages to the analysis of the system. Periodic dynamics are
more pronounced in the 3D case than in the 2D case. This periodicity is also reflected
in the parametric space (Figure 5.13), especially in the G2xG3 space.

Figure 5.12 - Analysis of 3D Complex Ginzburg-Landau pattern formation without noise.
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Figure 5.13 - Combined analysis of 3D Complex Ginzburg-Landau pattern formation with-
out noise.

The analysis presented in this section demonstrates the efficacy of 3D GPA in de-
scribing a controlled experiment. In the subsequent section, we delve into a more
challenging dataset that pertains to the cosmological formation of structures. This
dataset has previously been examined using earlier versions of GPA (ANDRADE et
al., 2006), making it an intriguing and engaging test for the proposed technique.

5.5 GPA of Milli-Millennium

The 3D GPA analysis, depicted in Figure 5.14, encompassed the study of 63 hy-
percubes representing the redshift range 12 < z < 0. Notably, the initial snapshots
contained no density values exceeding the minimum subhalo size determined by Guo
and White (2008). Consequently, the associated metrics were all zero within the red-
shift interval 12 < z < 11. The combined analysis is more complicated in the case
of few elements, as it is difficult to determine the region of the clusters. Even so,
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it is possible to verify some outliers in this analysis in Figure 5.15, which represent
the initial stages of the simulation. Periodogram analysis is also impaired in this
scenario. However, trend analysis is more robust in this scenario, as shown in Figure
5.14.

Figure 5.14 - Analysis of the Milli-Millennium.

The redshift scale is reversed, as the simulation started at z ≈ 12, until the present z = 0.

68



Figure 5.15 - Combined analysis o of the Milli-Millennium.

The results obtained from the 3D GPA analysis for GC
1 align closely with the pre-

vious findings reported by Andrade et al. (2006), Caretta et al. (2008). The GC
1

curve provides insights into the accretion history of matter in the universe. Initially,
the matter is uniformly distributed throughout space. However, local high-density
regions asymmetrically distributed start to form gradually, as indicated by the in-
creasing values of GC

1 , until approximately z ≈ 5. Subsequently, the local clumps of
matter merge and aggregate into larger structures, resulting in a decrease in the GC

1

values.
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The metrics G1, G2, and G3 consistently demonstrate that the matter and structures
exhibit isotropy in terms of density variation from approximately z ≈ 9 to z ≈
1. As a consequence, these metrics maintain relatively constant values within this
redshift range. Conversely, the newly introduced metric G1 exhibits an increase in
recent times (z < 2). As this metric is associated with the diversity of Delaunay
connections, this upward trend suggests the formation of structures at different
scales during more recent cosmic epochs.
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6 A VISUAL ANALYTICS TOOL FOR GPA APPLICATIONS

Numerous important works have focused on addressing the visualization of datasets
(FRIENDLY, 2008; SCHWENDIMANN et al., 2016; JANES et al., 2013). By em-
ploying the tools presented in this chapter, analysts can readily understand the
results derived from the GPA technique, enabling them to make more informed de-
cisions. Analysis visualization plays a crucial role in interpreting and understanding
complex data patterns, especially as datasets continue to grow in size and complex-
ity. The primary objective of analysis visualization is to present data in a visual
form that is easily comprehensible, enabling users to perceive patterns, trends, and
relationships that may not be apparent through raw data alone. By leveraging tools
like libraries such as Matplotlib and Plotly, analysts have access to flexible and in-
teractive ways of visualizing data. These visualization libraries offer a wide range
of options to represent data, allowing for dynamic exploration and manipulation of
visualizations.

There is a wide range of definitions for dashboards found in the literature, and
their interpretation may vary depending on the specific context. One commonly
cited definition, provided by Janes et al. (2013), states that within an organization,
a "dashboard" refers to a system that visually represents data in a manner that
aids decision-making. Similar to the dashboard in a car, the primary objective of
organizational dashboards is to inform users without distracting them from their
main tasks. To achieve this, dashboards employ various visualization techniques
such as charts, tables, gauges, and other concise summarizations of data.

Furthermore, in the context of education, Schwendimann et al. (2016) offer another
significant definition that pertains specifically to learning dashboards. According to
Schwendimann et al. (2016), a learning dashboard is a unified display that brings
together diverse indicators related to learners, the learning process, and the learning
context, presenting them through one or multiple visualizations. The purpose of a
learning dashboard is to provide a comprehensive overview of relevant information
to facilitate informed decision-making in educational settings.

In general, when designing dashboards, simplicity and flexibility are sought-after at-
tributes. The visualizations used should be straightforward and easy to understand,
allowing users to grasp the information at a glance. Additionally, flexibility is crucial
to accommodate different types of data and the evolving needs of users. Schwendi-
mann et al. (2016) also highlights some popular graphics commonly employed in
dashboards, including bar plots, line plots, and tables. These visual representations
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effectively present data in a clear and concise manner, enabling users to interpret
the information efficiently. In this chapter we approach GPA in a context of visual
analytic that aims to meet at least three contemporary demands in the context of
data science:

• Introduce a GPA-Dashboard for monitoring and detecting spatiotemporal
nonlinear regimes in real time.

• Evaluating which are the best metrics to work together in a classification
model.

• Using such metrics as labels for training supervised data mining models,
machine and deep learning.

Therefore, considering GPA as a tool for monitoring the 2D+1 pattern formation
case, a dashboard was built to work as a visual analytic interface in general ap-
plications. The system, developed in matplotlib, is exemplified in Figure 6.1. The
Dash output includes the movie of the pattern formation (left above) and the same
(above center) with the triangulation pattern among the vectors of the gradient
lattice. The respective evolution of the distribution of geometric connection values
along the time evolution is at the top right. The update of the respective statistical
moments is also included as a complementary measure of the geometric complexity
in each snapshot. The bottom part shows the values of the gradient moments (G1,
G2 and G3) along the spatiotemporal pattern evolution. Alternatively, norms (G2)
and phase (G3) statistics can also be pre-selected to replace triangulation monitoring
(G1). This output corresponds to the application in SCGLE pattern formation.
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Figure 6.1 - The GPA-Dash output scheme with its multiple features.

Norms (G2) and phase (G3) statistics can also be pre-selected to replace triangulation
monitoring (G1).

To demonstrate the capabilities of this tool, we have chosen three application ex-
amples: Coupled Map Lattice (CML), Solar Activity(LARA et al., 2008; SAWANT
et al., 2011), and medical ultrasound(SAUTTER et al., 2023). One of these exam-
ples is the monitoring output of chaotic pattern formation from a CML, a system
that extends classical chaotic maps and exhibits diverse dynamical behaviors. These
behaviors include spatial synchronization, frozen chaos, and spatially driven chaos,
depending on the chosen parameter set and initial conditions.

Figure 6.2 illustrates the analytical output of the CML monitoring process.
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Figure 6.2 - Coupled Map Lattice Dashboard.

The line indicates the snapshot being analyzed.

Figure 6.3 shows the monitoring output of a solar active region NOAA 11131 ob-
served by the SDO, as previously presented in Chapter 4.2, which has been presented
in (SAUTTER et al., 2023).
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Figure 6.3 - Sunspot Dashboard.

The line indicates the snapshot being analyzed.

Figure 6.4 illustrates the results of an ultrasound scan used to detect and monitor
the health and growth status of an unborn baby during pregnancy. The primary
focus of this analysis is to examine the feasibility and effectiveness of using GPA
in diagnostic medical imaging for identifying the baby through 2D ultrasound. This
case study serves as a valuable exploration to evaluate the potential of GPA in
enhancing diagnostic capabilities. The findings of this analysis have been presented
in a paper (SAUTTER et al., 2023). Moreover, this particular application example
has been recently integrated into the PIPE FAPESP Project 2021/15114-8 as an
essential topic in applied research.
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Figure 6.4 - Ultrasonography Dashboard.

The line indicates the snapshot being analyzed.

With this latest improvement over the GPA technique, we achieved the main ob-
jectives outlined in the original proposal. Conclusions and future work from this
doctoral project in applied computing are discussed in the last chapter.
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7 CONCLUDING REMARKS

In this doctoral work, we performed an unprecedented and improved application
study of the Gradient Pattern Analysis (GPA) technique in the presence of noise
and explored its applicability in different scenarios of dimensional data. Initially,
we discuss the interpretation of GPA from a reference perspective, as described in
the existing literature, and introduce new techniques for data visualization that had
not been explored in the context of GPA until this work. The introduction of our
proposed Dashboard structure allowed an efficient and flexible visualization of the
analysis results.

Focusing on the pattern formation from the SCGL model, the hypothesis that the
GPA is effective in the characterization of coherent structures obtained from Ampli-
tude Equations was confirmed. For this, a new numerical methodology to calculate
the SCGLE was developed and, in this context, new metrics for G1 and G3 were
improved and implemented. In particular, G1 proved to be effective in the dynamic
analysis of an active solar region, strengthening its application in the context of
space weather monitoring. It’s also important to address the comparison between
SCGL spatiotemporal patterns with emerging methodologies, such as the point vor-
tex dynamics(KRIEGER et al., 2020).

For the first time, the GPA technique was applied in an integrated way to ana-
lyze the same reactive-diffusive phenomenon purely in time and in the 2D and 3D
spatiotemporal domains. Still in the 3D+1 context, in addition to the SCGLE, the
GPA was applied to large-scale structure formation data produced by the Millen-
nium Consortium for Cosmological Simulation. The obtained results confirm and
improve a previous analysis on the 2D data obtained from the Virgo (ANDRADE
et al., 2006) consortium, suggesting new applications of this approach as a future
work in computational cosmology.

Furthermore, we investigated the application of GPA in the analysis of Extreme
Events (EE) in ordinary time series. Notably, the technique successfully distin-
guished different fluctuation patterns in time series associated with EE. In summary,
this work added new contributions to the GPA technique, improving the interpreta-
tion methods in new areas of application. Based on these achievements, we propose
an adaptation of the GPA technique to the context of Deep Learning (see Appendix
D).

Regarding performance benchmarking with other measures in the context of this
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thesis, we must clarify why they were not performed. Considering previous works
that addressed the performance of GPA compared to other measures (e.g. DFA-
2D(SOUZA; ASSIREU, 2016) and Minkowski functionals (ROSA et al., 2007; BA-
RONI, 2009)) we ruled out the need for an equivalent benchmark in this project,
since in previous works it became evident that the characterization of asymmetries
in gradient lattices are not detected by any other technique or measurement pub-
lished in the literature. Therefore, it is worth mentioning that the main objective
of this project its just exploiting the thesis that GPA, with some increments, is
effective to characterize the formation of 2D+1 patterns in the presence of noise.
Detecting, for example, in the SCGLE dynamics, local oscillatory regimes caused
by the presence of coherent structures like spiral defects (which are structures with
bilateral asymmetry that affect the norms and mainly the phases of the gradient
lattice vectors). However, we can also consider improvements to other techniques
for future benchmark applications, following the same criteria presented for mor-
phological classification of Galaxies by using GPA (ROSA et al., 2018; BARCHI et
al., 2020).
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APPENDIX A - COUPLED MAP LATTICES

Here we present the Coupled Map Lattice (CML)1, a dynamical system that has
been proposed as an extension to classical chaotic maps.

The CML is composed of oscillators f(ut
x,y) in a regular grid, in which spatial inter-

action is controlled by a coupling parameter ϵ. The system state ut
x,y is updated at

every time step according to Equation A.1.

ut+1
x,y = (1− ϵ)f(ut

x,y) + ϵ

4
(
f(ut

x+1,y) + f(ut
x−1,y) + f(ut

x,y+1 + f(ut
x,y−1)

)
. (A.1)

In CML studies, the logistic map has become a standard case (RAMOS et al., 2000;
XU et al., 2010), which has the form: f(u) = λu(1− u). The term λ is a parameter
that controls the local regime of the series. Some snapshots of this system’s iteration
are presented in Figure A.1

Figure A.1 - Example of Coupled Map Lattice snapshots.

The simulation was performed in a 128x128 lattice. The parameter λ = 3.9 and ϵ = 0.5.
Snapshots (a) - (e) are respectively the iterations: 1, 50, 100, 150, and 200.

In a range λ = [3, 4], the map presents all 2N periodic orbits and chaotic regimes.
We have presented a more in-depth study of this dynamical system in a previous
work (SAUTTER, 2018).

1The source code is public-available at: https://github.com/rsautter/CML-CoupledMapLattice
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APPENDIX B - CONTRIBUTIONS AND PUBLICATIONS

This work has made significant contributions both in terms of scientific publications
and software development. In terms of scientific publications, two papers have been
submitted. The first paper explores the analysis of GPA within the context of the
Stochastic Complex Ginzburg-Landau and has been submitted to Physical Review
E. The second paper, submitted to EuroPhysics Letters, includes the GPA analysis
of Coupled Map Lattices, a previous result from our work, with adaptations in terms
of data visualization.

Additionally, this work has actively contributed to the scientific community through
participation in RASAB (SAUTTER et al., 2023), where a case study of NOAA
11131 has been presented. In addition, a paper analyzing the milli-millennium set
was accepted at the Complex Systems Conference 2023.

In terms of software development, several repositories have been created to support
the implementation of various methodologies and algorithms developed in this work.
These include:

• GPA (2D and 3D): https://github.com/rsautter/GPA

• GPA 1D: https://github.com/rsautter/GPA1D

• χ-Space: https://github.com/rsautter/Chi-Space

• Milli-Millennium query: https://github.com/rsautter/MillenniumQuery

• SCGLE: https://github.com/rsautter/Noisy-Complex-Ginzburg-Landau

These contributions collectively enhance the scientific understanding of GPA and
provide accessible tools.
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APPENDIX C - SURROGATE

Surrogate techniques are valuable methods used to transform a given time series
into a new series while altering specific properties while preserving others. Various
techniques have been developed and studied extensively in the literature. For a
comprehensive overview of popular surrogate techniques, Schreiber and Schmitz
(2000) provide a review that highlights their characteristics and applications.

One commonly used surrogate technique is shuffling, which involves randomizing
the order of the original time series while preserving its statistical distribution. This
operation breaks the temporal structure of the data, making it useful for validating
certain analyses. The shuffling approach has been applied to validate the GPA1D.

A more refined surrogate technique is the Amplitude Adjusted Fourier Transform
(AAFT), originally proposed by Theiler et al. (1992). The AAFT technique aims
to preserve the Power Spectrum Density (PSD) of the original time series while
randomizing the phases. To achieve this, the technique involves performing a Fourier
transform on the time series, randomizing the phases of the Fourier coefficients, and
then applying an inverse Fourier transform to obtain the surrogate time series. By
maintaining the PSD, the AAFT method ensures that the surrogate data exhibit
similar frequency content as the original series.

The advantage of the AAFT technique over simple shuffling lies in its ability to
preserve the power spectrum characteristics of the original data. This refinement
enables a more accurate assessment of the significance of observed patterns, as it
accounts for the frequency distribution present in the original time series. Conse-
quently, the AAFT method is often preferred when analyzing time-dependent data
where both temporal structure and frequency content play crucial roles.
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APPENDIX D - DEEP LEARNING PERSPECTIVES

Deep Neural Networks (DNN) have emerged as the new paradigm for machine
learning analysis. These techniques have shown significant improvements, partic-
ularly when incorporating handcrafted features (LI et al., 2019; NANNI et al., 2020;
MECHETER et al., 2022). Therefore, it is crucial to extend the GPA technique to
the Deep Learning into the context of data science (ROSA, 2020).

Typically, the incorporation of handcrafted features in DNN models involves fusion
algorithms (LI et al., 2019; NANNI et al., 2020) or data augmentation techniques
(MECHETER et al., 2022). However, the GPA technique can also be integrated
directly into the architecture of a DNN. Similar to a convolution operation, the
GPA technique can be generalized as a neuronal operation that leverages spatial
properties. In a convolution operation, a moving kernel with weights is applied to
different segments of the matrices, as illustrated in Figure D.1.

Figure D.1 - Illustration of the convolution operation

SOURCE: Wu (2017).

A possible G2 neuron approximation would be given by Equation D.1. In this equa-
tion, vi,j represents the spatial gradient, wi,j are the weights, and mi,j is the asym-
metry binary matrix.

yi,j =
∑

mi,jwi,j|vi,j|
|∑mi,jwi,jvi,j|

(D.1)
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The asymmetry binary matrix captures the information about the concentric asym-
metry, where asymmetrical vectors are represented as ones, and the remaining vec-
tors are represented as zeros. It is important to note that the term |∑mi,jwi,jvi,j|
should not be zero to prevent issues such as overflow, underflow, or divergence. To
handle such cases, we can define the values yi,j = ±1 in the event of overflow or
underflow, respectively, and yi,j = 0 when ∑ |vi,j| = 0.

To optimize the weights of the neurons, the Gradient Descent Method can be ap-
plied. This numerical method requires the derivatives of the operation with respect
to the weights. By differentiating Equation D.1 in relation to the weights, we ob-
tain Equation D.2. This Equation also comes with a limitation in the denominator
term. However, in this scenario we can set the derivative as zero to avoid numerical
problems, without changing the weights of the neurons.

∂yi,j

∂wi,j

=
∑

mi,j|vi,j|
(
|∑mi,jwi,jvi,j| − wi,j|

∑
mi,jvi,j|

|∑mi,jwi,jvi,j|2

)
(D.2)

As the convolutional neural networks, the proposed method can be stacked in layers,
which may contain an activation functions and other types of neurons.
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