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Abstract. Multifrequency synthetic aperture radar (SAR) data have been applied to discrimi-
nate subtle differences in the vegetation and to better characterize its structural properties, since
each SAR frequency will interact with the different sections of the vegetation canopy. In this
study, our main objective was to evaluate the use of multifrequency Sentinel-1 and ALOS-2/
PALSAR-2 data for stem volume estimations in Eucalyptus sp. and Pinus sp. plantations using
three different machine learning algorithms: random forest (RF), support vector regression
(SVR), and extreme gradient boosting (XGB). Different experiments were carried out using
combinations of predictor variables derived from both SAR sensors: backscattering, polarimetric
decompositions, and interferometry data, and field data considering specific models for
Eucalyptus sp. and Pinus sp. and a generic model comprising all forest plantations data. The
machine learning models using predictor variables derived from SAR data achieved moderately
high accuracy to predict stem volume, mainly when SAR data were used in combination with
stand age (Experiment iv). In the best prediction scenario (Experiment iv), the RF, SVR, and
XGB models were able to explain 81.7%, 68.5%, and 81.8% [coefficient of variation (R2) val-
ues] of stem volume variability considering the generic models, respectively. Our results pointed
out that the RF algorithm showed the best performance in predicting stem volume with signifi-
cant good results and easier implementation in comparison with the other two algorithms (SVR
and XGB). © 2023 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JRS.17
.014513]
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1 Introduction

Using remote sensing data for estimating forest biophysical parameters has increased signifi-
cantly in the last decades.1–3 Particularly, synthetic aperture radar (SAR) data allow obtaining
information about roughness, tree morphology, canopy density, and soil moisture, and as SAR
data present great penetration in the forest canopy,1 they can be successfully applied for stem
volume estimation.4

The forest canopy interaction with electromagnetic radiation of SAR data is dependent on the
number of polarizations and the operation frequency of the sensor.5–7 SAR sensors with shorter
wavelength, as X- and C-bands, show a great attenuation of backscatter through the tree canopy,
interacting with branches and small leaves and thereby being restricted to the upper part of the
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canopy,8,9 which reduces the sensors’ sensitivity in relation to the vertical structure of the
forest.10,11 Longer wavelength sensors, such as L- and P-bands, have high penetration capacity
in the canopy and greater sensitivity to the vertical structure of the forest. Furthermore, L- and
P-bands sensors have been more used to estimate forest volume and biomass.9,12–15 However,
until now, there are no SAR sensors in orbit operating in the P-band.

Thus, there is the possibility of using the frequency information to obtain better accuracy in
estimating forest biophysical parameters by exploring the different operation frequencies of the
available SAR sensors.16 Through the synergism between multifrequency SAR sensors, subtle
differences in the vegetation canopy can be discriminated and its structural properties can be
better characterized, as each frequency will interact with the different sections of the vegetation
canopy.16 For example, Santoro et al.17 analyzed the complementarity of radar backscattering
data from the X (TerraSAR-X), C (Sentinel-1), and L (ALOS-2/PALSAR-2) bands to estimate
stem volume in a boreal forest in Sweden. Nizalapur et al.18 used backscattering coefficient of C,
L, and P bands in VV polarization of experimental synthetic aperture radar (ESAR) airborne for
aboveground biomass estimation in a tropical dry deciduous forest in India. Englhart et al.14 used
SAR backscattering of X and L bands of TerraSAR-X and ALOS-PALSAR, respectively, for
aboveground biomass estimation in tropical forests in Indonesia. These studies demonstrate that
using multifrequency SAR data leads to an improvement in biomass and stem volume estimation
in different forests.

The use of multisensors data demands robust algorithms to deal with non-linear and complex
relationships between spectral and biophysical variables.19–21 Hence, machine learning algo-
rithms have been widely used in remote sensing studies for such tasks. These algorithms can
learn from data and deal with the most complex classification and/or regression problems using
remote sensing data.21–23

Random forest (RF) and support vector machine (SVM) are two machine learning algorithms
commonly applied to retrieve forest biophysical parameters using different remote sensing
data.21,23,24 In addition to these algorithms, gradient boosting decision tree algorithms, and more
specifically the extreme gradient boost (XGB) algorithm, have demonstrated superior perfor-
mance in estimating biophysical parameters of different vegetation types.25,26 RF is a nonlinear
and non-parametric ensemble decision-tree method27 that provides flexible, robust, and accurate
predictive capabilities for high dimensional datasets.22 RF models have been widely and suc-
cessfully used for forest biophysical parameter estimation.23,28

Support vector machine (SVM) is also known as a flexible and robust-to-noise machine
learning method. Ataee et al.29 tested different kernel functions in the SVR models to estimate
ground stock volume (GSV), and all SVM models showed good prediction results. Souza
et al.21 compared the results of SVR, multiple linear regression (MLR), artificial neural network
(ANN), and RF for predicting Eucalyptus stem volume in Minas Gerais using ALOS AVNIR-2
and ALOS PALSAR data. The authors observed that the SVR models showed the best prediction
results.

Recently, the XGB regression30 has been shown to be powerful to solve not only classifi-
cation but also regression problems.28 According to Sun et al.,31 the XGB is a particularly effi-
cient tool to be applied to solve environmental problems. Pham et al.25 compared different
machine learning algorithms, such as XGB, RF, and SVR, for estimating mangrove aboveground
biomass using optical (Sentinel-2) and SAR (Sentinel-1 and ALOS-2/PALSAR-2) data. The
authors observed that XGB showed the best prediction performance.

Although SAR data has been used for estimating forest biophysical parameters, most studies
use SAR data in combination with optical data.4,21,29 Currently, there is a lack of studies using
solely SAR data as well as investigating the combination of multifrequency SAR data with
machine learning algorithms to estimate forest biophysical parameters in forest plantations.
Thus, our study introduces a novel and unique case study that explores the combination of sev-
eral advanced polarimetric and interferometric variables derived from multifrequency SAR data
for estimating stem volume of forest plantations using robust machine learning algorithms.

The main objective of our study was to evaluate the use of multifrequency Sentinel-1 and
ALOS-2/PALSAR-2 for stem volume estimations in Eucalyptus sp. and Pinus sp. plantations
using machine learning algorithms. This study conducted investigations to answer the following
questions: (i) How do the different sensor datasets perform in predicting stem volume of
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Eucalyptus sp. and Pinus sp. plantations?, (ii) Would the use of specific models for Eucalyptus
sp. and Pinus sp. plantations improve the prediction results when compared with using a generic
model for both forest plantations?, (iii) Would the use of forest inventory variables improve the
prediction results?, (iv) How would the machine learning algorithms RF, support vector regres-
sion (SVR), and XGB perform in estimating stem volume, considering the different prediction
datasets?

The remainder of this paper is organized as follows. Section 2 describes the study area, the
field and SAR based data, the preprocessing workflow of Sentinel-1 and ALOS-2/PALSAR-2
data, and the stem volume estimation using the RF, SVR, and XGB algorithms. Section 3
presents the experiment results of stem volume estimation using specific and generic models
and analyzes the performance of the machine learning algorithms. Section 4 provides a discus-
sion about the results and presents comparisons with previous works. Section 5 draws the
conclusions and briefly discusses future work.

2 Methodology

2.1 Study Area

The study area is located in Telêmaco Borba municipality, Midwest of Paraná state, south region
of Brazil (Fig. 1). The area is characterized by having a humid subtropical climate conditions,

Fig. 1 Location of the study area in Paraná State, Brazil. Eucalyptus sp. and Pinus sp. stands
distribution, and the location of the 220 sampling plots of the forest inventory. (a) Study Area 1;
(b) Study Area 2. Image base: Sentinel-2 (432) (April 18, 2019).
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corresponding to the transition between Cfa (humid subtropical) and Cfb (oceanic) climatic
types, according to the Köppen classification.32 The average temperature is 23.2°C and 16.3°C
in the hottest and coldest months of year, respectively.33,34 The area has regular rainfall, ranging
from 1478 to 1700 mm per year, with average annual humidity between 70% and 75%. The soil
is predominantly classified as a dark red latosol with a clayey texture and the relief varies from
flat to gently undulating.32,35

The study area comprises Eucalyptus sp. and Pinus sp. plantations, which correspond to
a total area of 7150.3 ha. The Eucalyptus sp. plantations are composed of stands planted with
the following species: E. saligna, E. grandis × E. urophylla, E. grandis × E. camaldulensis,
E. grandis, and E. dunni. For Pinus sp. plantations, the stands were planted with the species
P. taeda and P. maximinoi.

The total area consisted of 508 stands, with 250 stands (4727.1 ha) of Eucalyptus sp. and
the remaining 258 stands (2423.2 ha) of Pinus sp. (Fig. 1). The average age of Eucalyptus sp.
was 4.6 years old, with the minimum age of 1.4 years and the maximum age of 7.9 years, with
spacing ranging from 2.4 × 3.75 to 4.1 × 2.19 m. The Pinus sp. had the average age of 11.14
years, with the minimum age of 5.2 years and the maximum age of 17.7 years, and the spacing
ranging from 2.5 × 2.4 to 4.0 × 1.15 m.

2.2 Fields Measurements

Field data collection was carried out in 220 sampling plots, 156 plots located at the Eucalyptus
sp. stands, and 64 plots located at the Pinus sp. stands (Fig. 1). The field measurements were
carried out between March and April 2019.

In each plot, the diameter at breast height (DBH) of all trees and the height of the 15 dom-
inant trees were measured. The area of the plots varied from 308 to 870 m2, with an average area
of 513 m2, with only one plot with an area >800 m2. The stem volume (m3∕ha) was estimated
based on the information collected in the plots, using standard forest mensuration equation for
this region. For estimating individual tree stem volume, equations based on DBH and total height
for each measurement year and DBH class were used. Table 1 summarized the descriptive
statistics from the forest inventory.

2.3 SAR Dataset

For this study, Sentinel-1B and ALOS-2/PALSAR-2 SAR data were used. Sentinel-1B data were
provided from the European Space Agency (ESA). This sensor is characterized by operating in
the C-band. The data were acquired in slant range geometry, interferometric wide Swath (IW)
mode, with a range of 250 km and a nominal spatial resolution of 5 × 20 m.36 Sentinel-1 data
have two polarizations VV and VH (Table 2) and were obtained on May 14th and 26th, 2019.

The ALOS-2/PALSAR-2 data, that operates in L-band, were acquired in StripMap (high
sensitive) mode, full polarimetric and single look complex (Table 2).

Table 1 Descriptive statistics of the variables obtained from the forest inventory collected in the
220 plots.

Variable

Eucalyptus sp. Pinus sp.

Mean SD Amplitude Mean SD Amplitude

Age (years) 4.58 2.12 1.40–7.90 11.14 4.30 5.20–17.70

Total height (m) 23.03 7.31 6.70–35.10 15.85 3.57 8.40–24.40

DBH (cm) 14.91 3.44 7.10–21.50 19.45 2.50 15.00–25.10

Volume (m3∕ha) 241.04 130.89 15.00–540.00 323.43 131.68 98.00–791.00

Note: DBH: Diameter at breast height (cm); SD: Standard Deviation.
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2.4 Preprocessing

2.4.1 Sentinel-1B data

The Sentinel-1B data, IW mode, were preprocessed using the SNAP software version 7.0 to
obtain the SAR predictor variables (Fig. 2). Sentinel-1B images have three subswaths. In this
study, the subswath IW2 was selected to cover the study extension and to decrease processing
time. The Apply Orbit File operation was performed to update the information presented in
the image metadata. Then, the Deburst processing was applied to join the subswaths. The
Multilooking processing with 4 × 1 looks was applied to produce a regular pixel. Next, the
Lee filter37 using a 3 × 3 window was applied to reduce the speckle. The backscattering coef-
ficients and polarimetric decompositions were calculated using the image of April 28, 2019.

Some studies pointed out that the intensity images of Sentinel-1 are affected by additive
noise.38 So, the thermal noise removal procedure was applied to reduce noise effects in the inter-
subswaths, normalizing the backscattering signal in the scene.39 Afterward, the radiometric
calibration [Eq. (1)] was carried out to obtain the backscattering parameters (σ0VH and σ0VV)

EQ-TARGET;temp:intralink-;e001;116;344σ0i ¼
DN2

i

A2
i
; (1)

where DNi is the digital number values of the pixels, Ai is an absolute calibration constant found
in the look up tables (LUTs), and i represents the pixels.

To obtain the H-α polarimetric decomposition variables, the coherence matrix 2 × 2 [Tdual]
was created using dual-polarized data40

EQ-TARGET;temp:intralink-;e002;116;250H ¼
X2

i¼1

ð−Pi log2PiÞ; (2)

EQ-TARGET;temp:intralink-;e003;116;188α ¼
X2

i¼1

Piαi; (3)

where Pi represents the relative importance of the eigenvalues of the coherence matrix (λi) and
is obtained using

EQ-TARGET;temp:intralink-;e004;116;135Pi ¼
λiP
2
j¼1 λj

: (4)

To obtain the interferometric coherence, the Sentinel-1 images were coregistered and the
interferometric coherence was calculated using a 10 × 3 window

Table 2 Sentinel-1B and ALOS-2/PALSAR-2 characteristics.

Attribute Sentinel-1B ALOS-2/PALSAR-2

Acquisition dates April 26, 2019 and May 8, 2019 April 28, 2019-04-28 and May 12, 2019

Acquisition mode Interferometric Wide Swath - IW StripMap (High sensitive)

Orbit Descending Ascending

Swath 250 km 50 to 70 km

Spatial resolution (nominal) 5 × 20 m 6 m

Wavelength 5.6 cm ∼24 cm

Polarizations VV + VH HH + HV + VV + VH

Format Single look complex (SLC) and slant range
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EQ-TARGET;temp:intralink-;e005;116;252γ ¼ jhS1ðxÞS2ðxÞ�ijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hjS1ðxÞj2jS2ðxÞj2i

p ; (5)

where γ represents interferometric coherence; S1 (April 28, 2019) and S2 (May 08, 2019)
are the two coregistered complex images, and are the average relative to the size of the window.

The Range Doppler Terrain Correction was applied to all variables for topographic
correction41 using the SRTM-1 digital elevation model (DEM), with 30 m of spatial resolution,
automatically downloaded and used through the SNAP toolbox.

The cross-polarized ratio was obtained through the ratio between σ0VH and σ0VV geometrically
corrected. The radar vegetation index (RVI) was calculated using Eq. (6) with σ0VH and σ0VV
geometrically corrected42,43

EQ-TARGET;temp:intralink-;e006;116;119RVI ¼ 4σ0VH
ðσ0VV þ σ0VHÞ

: (6)

Fig. 2 Sentinel-1B preprocessing flowchart.
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2.4.2 ALOS-2/PALSAR-2 data

The ALOS-2/PALSAR-2 SLC image of April 28, 2019, was processed in SNAP software to
obtain backscattering and polarimetric decomposition variables. The interferometric coherence
was obtained using the SARScape software44 and the pair of images April 28, 2019 (A1) and
May 12, 2019 (A2).

The first processing step was to apply the multilooking with two looks in range and five looks
in azimuth to produce a regular pixel (Fig. 3). The Lee filter with 3 × 3 window was also applied
to reduce the speckle noise. The backscattering coefficients (σ0HH, σ

0
HV, σ

0
VV, and σ0VH) were

obtained based on45

EQ-TARGET;temp:intralink-;e007;116;204σ0 ¼ 10: log10hI2 þQ2i þ CF-A; (7)

where I is the intensity, Q is the quadrature, CF is the calibration factor, and A is the conversion
factor equal to 32.

Considering the backscattering coefficients, the ratios between the backscattering (RP and
RC) and the indices proposed by Pope et al.46 – biomass index (BMI), canopy structure index
(CSI), and volume scattering index (VSI) – were also calculated (Table 3). To obtain the polari-
metric variables, four polarimetric decompositions were carried out: Cloude–Pottier, Freeman–
Durden, Yamaguchi, and Van Zyl as shown in Table 3.

Fig. 3 ALOS-2/PALSAR-2 preprocessing flowchart. The symbols are described in Table 2.
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2.5 Modeling and Accuracy Assessment

To analyze the potential of the predictor variables derived from each SAR sensor for estimating
stem volume, four experiments were defined (Table 4). The first three experiments (i, ii, and iii)
use only variables extracted from remote sensing data. To observe the contribution of field data
in the models, the stand age was added to the previous experiments, resulting in experiment iv.

Table 3 Description of the polarimetric variables used in this study.

Acronym Variable Description References

Backscattering

RP Copolarization ratio Highlights the differences between the VV and
HH polarizations from vegetation structural aspects.

Henderson and
Lewis47

RC Cross-polarization ratio Sensitive to forest volumetric scattering to support
classification and reduce topographic effects
on backscattering

RVI Radar vegetation index Parameter sensitive to the biomass level Kim and Van Zyl48

BMI Biomass index Relative amount of woody component compared
with leaf biomass.

Pope et al.46

CSI Canopy structure index Relative presence of vertical scatterers
(trunks and stems) of vegetation.

VSI Volume scattering index Indicator of canopy thickness or relative density.

Polarimetric decomposition

H Entropy Number of dominant scattering mechanisms.
Ranges from 0 to 1.

Cloude and
Pottier49

A Anisotropy Measures the relative importance of the second
and third types of scattering.

α Alpha angle Indicates the dominant scattering mechanism.
Ranges from 0 deg to 90 deg.

Ps Surface scattering Portion of surface scattering. Freeman and
Durden50

Pd Double-bounce
scattering

Modeled from orthogonal surfaces.

Pv Volumetric scattering Modeled by a cloud of randomly distributed
thin cylindrical spreaders.

Ys Surface scattering Portion of surface scattering. Yamaguchi et al.51

Yd Double-bounce
scattering

Modeled from orthogonal surfaces.

Yv Volumetric scattering Modeled by a cloud of randomly distributed
thin cylindrical spreaders.

YH Helix scattering Helix scattering

VZs Surface scattering Simulated surface type scattering from
eigenvalues/eigenvectors decomposition

Van Zyl52

VZd Double-bounce
scattering

Double-bounce scattering simulated from
eigenvalues/eigenvectors decomposition

VZv Volumetric scattering Scattering of the simulated volumetric type from
the decomposition of eigenvalues/eigenvectors
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For each experiment, both specific models of Eucalyptus sp. and Pinus sp., and a generic model
considering both Eucalyptus sp. and Pinus sp. data were developed.

The data extraction from the predictor variables was performed by calculating the mean of the
pixel values located within the polygons of the plots measured in the field, for each one of the
predictor variables.

Three nonparametric machine learning algorithms were tested to estimate the stem volume of
forest plantation: RF, SVR, and XGB. RF algorithm was proposed as an ensemble method of
decision trees by Breiman.27 The decision trees are created independently, through a subset
of training samples. The combination of decision trees reduces the error in regression tasks
thanks to the use of bootstrap aggregation or bagging.53 There are two main parameters to be
tuned, Mtry and Ntree. Mtry is the number of prediction variables used in each node and Ntree is
the number of regression trees. The ensemble prediction for regression problems given by a
forest is obtained as an average of the prediction results of the individual trees.54 Further, the
RF can calculate the relative importance of each predictor variable in the model performance.28

The SVM was first developed to solve problems related to classification.55 However, it can
also be applied to regression problems, being referred to as SVR. This method allows solving
nonlinear problems with linear solutions by developing a kernel function to project the feature
space into high-dimensional space. The kernel functions include linear, polynomial, sigmoid,
and radial basis function (RBF). The algorithm controls the model’s complexity from two
parameters: cost (C) and gamma (g). The higher the cost value, the lower the error tolerance,
which may create a model that does not generalize correctly.56 The “g” parameter influences the
separation form of the support vectors.57

The XGB30 develops strong models through an additive training process. This algorithm is
based on the augmentation of decision trees, which uses an efficient second-order expression.
This model is generalizable and avoids overfitting the data as well as underfitting it. The main
parameters to be tuned during the modeling process are learning rate, number of trees, minimum
number of observations in terminal nodes, tree depth, and gamma, which represents the mini-
mum loss of additional partitioning of a node in the tree.58

For each model, the optimized parameters were determined using the cross-validation K-fold
method (k ¼ 5). In the fivefold cross-validation, the training data was separated into 5 subsets,
with each subset treated as the validation and the other four subsets used as training samples.
This process was repeated until all the subsets had been used.28 The total field sampling plots
(220) were divided randomly into 70% for training and 30% for validation of the specific and
generic models (Table 5).

Modeling and accuracy assessments were conducted using R open-source software,59 using
the following packages: rgdal, e1071, randomForest, xgboost, caret, mlr, dplyr, and ggplot2.
The accuracies of predicted stem volume were evaluated using the root-mean-square error
(RMSE) and the coefficient of determination (R²) to compare the prediction performance of the
different experiments (Table 4) and the tree machine learning algorithms.

Table 4 Experiments to predict stem volume using Sentinel-1B, ALOS-2/PALSAR-2, and field
data.

Experiment Data source Variables

Number
of predictor
variables

(i) Sentinel-1B Backscattering, polarimetric decomposition,
and interferometric coherence

8

(ii) ALOS-2/PALSAR-2 Backscattering, polarimetric decomposition,
and interferometric coherence

26

(iii) Sentinel-1B + ALOS-2/PALSAR-2 Sentinel-1B and ALOS-2/PALSAR-2
variables

34

(iv) Sentinel-1B + ALOS-2/PALSAR-2
+ forest inventory

Sentinel-1B variables + ALOS-2/PALSAR-2
variables + age

35
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3 Results

Table 6 shows the RMSE (%) and R2 (%) values obtained with the RF, SVR, and XGB models
for Eucalyptus sp. and Pinus sp. specific models and for the generic model for stem volume
estimation.

For the Eucalyptus sp. specific models, the RF algorithm showed the best result for experi-
ment (iv), with 89.89% of R2. On the other hand, SVR showed best performance compared with
other algorithms with experiment (ii) (R2 ¼ 13.44%). The XGB showed similar performance to
RF in terms of R2; however, RF presented low RMSE (%) results. Comparing the performance of
using Sentinel-1 and ALOS-2/PALSAR-2 data combined or individually, the combination of
Sentinel-1 and ALOS-2/PALSAR-2 in experiment (iii) improved the results compared with
when these data were used individually, with an increase of 1.10% and 5.46% in R2 for experi-
ments (i) and (ii), respectively, considering the RF model. Experiment (iv) also combined stand
age with SAR data, which shows a great improvement in the results [an increase of 74.80% in
terms of R2 in comparison with experiment (iii) for the RF model].

Table 6 Stem volume estimation with SAR variables for Eucalyptus sp. and Pinus sp. using the
specific models and the generic model.

Experiments

RF SVR XGB

RMSE % R2 % RMSE % R2 % RMSE % R2 %

Eucalyptus sp. Models

(i) 52.34 13.99 53.8 13.03 53.70 9.56

(ii) 55.10 9.63 56.2 13.44 57.22 9.55

(iii) 52.90 15.09 57.4 11.68 56.33 15.27

(iv) 17.89 89.89 21.4 85.79 18.94 89.52

Pinus sp. models

(i) 40.25 28.98 43.25 13.01 37.80 62.56

(ii) 39.19 28.92 45.20 7.28 39.92 25.95

(iii) 39.51 29.24 45.56 9.64 41.86 23.38

(iv) 33.89 46.94 27.81 64.22 32.06 51.81

Generic models

(i) 48.06 15.35 54.12 3.32 48.95 11.68

(ii) 42.90 32.35 46.27 19.92 42.96 30.40

(iii) 42.48 33.56 47.25 18.55 41.79 34.68

(iv) 21.99 81.79 28.99 68.53 22.00 81.81

Table 5 Sampling plots for each model used for training and testing.

Models Training Testing

Eucalyptus sp. 110 46

Pinus sp. 45 19

Generic 154 66
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Considering the Pinus sp. specific models, the experiment (i) with Sentinel-1 variables shows
better results with SVR and XGB models in comparison with experiments (ii) and (iii). The use
of ALOS-2/PALSAR-2 data does not show expressive improvement in the stem volume esti-
mation, resulting in a worse performance of SVR and XGB models in the experiments (ii) and
(iii). The addition of stand age (iv) improved the results using the RF and SVR models. The best
specific model for Pinus sp. was obtained in the experiment (iv) using the SVR algorithm,
with R2 ¼ 64.2%.

The generic model, which considers Eucalyptus sp. and Pinus sp. data together, showed an
improvement using ALOS-2/PALSAR-2 variables (ii), which represents an increase of 17% in
terms of R2 in comparison with using just Sentinel-1 variables (i) in the RF model. The experi-
ment (iii), using Sentinel-1 and ALOS-2/PALSAR-2 variables, do not show significant improve-
ment when compared with the use of only ALOS-2/PALSAR-2 variables (ii). The use of stand
age, in experiment (iv), played an important role in the generic models of stem volume estima-
tion, improving the results of all algorithms, with an increase of 48.23% in terms of R2 compared
with experiment (iii) for the RF model.

The scatterplots of observed versus predicted stem volume for the experiment (iv) and the
tree machine learning algorithms for each prediction model are illustrated in Fig. 4. The RF and
XGB algorithms presented similar results of R2 (%) and RMSE (%) for the Eucalyptus sp. and

Fig. 4 Scatterplots of observed versus predicted stem volume produced by experiment (iv) using
the tree machine learning algorithms: RF, SVR, and XGB, considering the specific and generic
models.
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the generic models. However, observing the scatterplots, the RF model shows a better fitting of
the data in comparison with the XGB algorithm. For the Pinus sp. models, the SVR models show
a better fitting of the data, which corroborates the results of R² and RMSE.

The estimation maps obtained using the tree machine learning algorithms for each model are
illustrated in Figs. 5 and 6, for the study area 1 and 2, respectively. Visually the maps generated
by the machine learning algorithms show similar results.

For the Eucalyptus sp. model, we observed that RF and XGB algorithms resulted in similar
predicted stem volume values. Analyzing the statistics values (Table 7 and Fig. 7), the minimum
and maximum values are very close (ranging from 33.86 to 476.58 m3∕ha with RF, and 35.05
to 456.01 m3∕ha with XGB), and agree with the field data, which ranges from 15.00 to
432.00 m3∕ha. However, the SVR algorithm showed a different behavior. The minimum and
maximum values are very distant from the values observed in the field. The predicted minimum
values were too close to zero, and the maximum values reached 1079.43 m3∕ha, which is not
consistent with the real behavior of the stem volume for the study area.

The Pinus sp. model predicted higher stem volume values compared with the Eucalyptus sp.
model. In this case, RF and XGB also generated similar results (ranging from 133.52 to
509.47 m3∕ha with RF, and 103.48 to 549.52 m3∕ha with XGB – Table 7 and Fig. 7) The
SVR algorithm also generated different prediction results, with the minimum value close to zero
and the maximum value of 865.27 m3∕ha, which is more similar to the field data.

Fig. 5 Predicted stem volume (m3∕ha) for study area 1, considering the specific and generic
models for RF, SVR, and XGB algorithms.
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The generic model showed a similar behavior compared with the specific models, with an
improvement of the homogeneity of the predicted stem volume in the forest stands, and a reduc-
tion of salt-and-pepper effect in the predicted stem volume maps. The RF predicted stem volume
values ranging from 41.01 to 600.49 m3∕ha. The SVR generic model also generated minimum
values close to zero, and the maximum value of 744.86 m3∕ha, which was the closest predicted
value to the maximum values observed in the field data. The XGB predictions range from 17.44
to 563.18 m3∕ha.

Table 7 Basic statistics of predicted stem volume considering the specific and generic models
for RF, SVR, and XGB algorithms.

Models

RF SVR XGB Field Data

Min Max Mean Min Max Mean Min Max Mean Min Max Mean

Eucalyptus sp. 33.86 476.58 222.27 0.00 1079.43 231.76 35.05 456.01 215.18 15.00 432.00 194.90

Pinus sp. 133.52 509.47 298.95 0.18 865.27 328.72 103.48 549.52 291.18 98.00 791.00 323.67

Generic 41.01 600.49 263.45 0.00 744.86 266.17 17.44 563.18 243.27 15.00 791.00 265.08

Fig. 6 Predicted stem volume (m3∕ha) for study area 2, considering the specific and generic
models for RF, SVR, and XGB algorithms.
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Figure 8 highlighted a subset of the Study Area 2 where there are significant stem volume
differences in the stands. The generic model generated different stem volume predictions when
each machine learning algorithm was used. The RF was the algorithm that generated more
homogeneity in the predicted values, reducing the salt-and-pepper effect in the predicted stem

Fig. 7 Histogram of observed and predicted stem volume considering the specific and generic
models for RF, SVR, and XGB algorithms.

Fig. 8 Highlighted stands in study area 2 comparing the experiment (iv) with each machine
learning algorithm using the generic model, with an optical Sentinel-2 image of April 18, 2019
(RGB: 843).
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volume map. On the other hand, the SVR and XGB algorithms generated stem volume predic-
tions with a greater salt-and-pepper effect within the stands. The same pattern was also observed
for the stem volume predictions generated by the three machine learning algorithms for the Study
Area 1.

4 Discussion

In the present work, we investigated the integration of multifrequency SAR data with machine
learning approaches for retrieving stem volume of forest plantations in Brazil at the stand-scale.
Although ALOS-2/PALSAR-2 allowed the extraction of a greater number of predictor variables
in comparison with Sentinel-1B due the limitation of polarizations in the Sentinel-1B data, our
results did not show significant improvement in accuracy of stem volume estimation using only
ALOS-2/PALSAR-2 variables [Experiment (ii)] when compared with using just Sentinel-1B
variables [Experiment (i)], mainly for the specific models. However, the generic models showed
an improvement in comparison with using just Sentinel-1B variables [Experiment (i)] when
ALOS-2/PALSAR-2 variables were used [Experiment (ii)] and when combining Sentinel-1B
with ALOS-2/PALSAR-2 variables [Experiment (iii)]. In this case, we can infer that the pre-
dictor variables derived from individual SAR sensors were better able to predict stem volume
in homogeneous forest (specific models) than for a heterogeneous area with stem volume of
Eucalyptus sp. and Pinus sp. (generic model), which shows higher stem variability.

The predictor variables derived from Sentinel-1B data did not result in enhanced results for
the generic model. The C-band backscattering saturates at low biomass levels (30 to 40 T/ha),
while L-band data show biomass saturation levels between 40 and 150 T/ha.60–62 Santoro
et al.17 studied the relationship between SAR frequency and stem volume, with a decrease of
RMSE for stem volume estimation when longer wavelengths were used. Other study carried
out by Stelmaszczuk-Górska et al.63 showed that the use of multifrequency SAR data, using
ALOS-2/PALSAR-2 band-L data and RADARSAT-2 band-C, improved the results for above-
ground biomass estimation, when compared with the results using ALOS-PALSAR and
RADARSAT-2 data separately. Therefore, combining SAR C-band and L-band can improve
the prediction performance of the machine learning models compared with the use of single
sensor data, as observed in experiment (iii) with the generic model. Consequently, the stem vol-
ume estimates using the combination of the two SAR frequencies achieved a superior accuracy
when compared with using just one single SAR frequency.

In general, the R2 (%) and RMSE (%) of the machine learning models showed better results
for the Pinus sp. models than for the Eucalyptus sp. models when just SAR variables were used
[Experiments (i), (ii), and (iii)]. These results can be related to the number of species in the
Eucalyptus sp. plantations (five different species) while Pinus sp. plantations had just two spe-
cies. The different species could have caused differences in spectral responses of the tree can-
opies associated with the variation in the growth rate of each species. This fact was also observed
by Blanco et al.64 estimating biomass in Eucalyptus sp. (E. grandis) and Pinus sp. (P. oocarpa,
P. patula, and P. tecunumanii) plantations. The authors observed that the RMSE values for E.
grandis (42.96 T/ha) was smaller than for Pinus sp. (150.94 T/ha), which they related to the fact
that Pinus sp. have three species with different spectral responses.

The experiment (iv) showed that the use of stand age as a predictor variable improved the
strength of the models and the accuracy of stem volume estimates. In this case, the Eucalyptus
sp. models showed better performance in comparison with Pinus sp. models. Reis et al.4 also
observed that the use of stand age as a predictor variable in stem volume estimation of
Eucalyptus sp. (E. urophylla × E. grandis) had improved the accuracy of the prediction models
when used together with remote sensing variables with an R2 of 0.71 in comparison with the
prediction model using just Sentinel-1 variables, which have an R2 of 0.34.

When analyzing the machine learning algorithms, it is important to observe how they per-
formed considering the field data (Fig. 7 and Table 7). The RF and XGB algorithms generated
similar predictions, with predicted values close to the values of field data for Eucalyptus sp.
stands. On the other hand, for Pinus sp. stands, these algorithms generated predicted maximum
values below those observed in the field data. In this case, saturation may be occurring in the
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predicted stem volume values for Pinus sp. stands. Long et al.65 summarized and exemplified
some studies that demonstrate the problem with saturation of SAR data for the estimation of stem
volume in Chinese Fir plantation. Saturation happens when the polarimetric properties of the
SAR data are no longer sensitive to forest changes.66–68 In contrast, the SVR algorithm generated
the maximum predicted values closest to the field data for Pinus sp. stands. However, the SVR
algorithm resulted in a larger range of predicted values for all models, leading to an overfitting
and underfitting of the predicted values.

The machine learning algorithms can show different results according to the data used for
training the models and study area. Souza et al.21 compared the results of SVR, MLR, ANN, and
RF for predicting Eucalyptus stem volume using ALOS AVNIR-2 and ALOS PALSAR and
observed that SVR, ANN, and RF models have similar accuracy, with 0.92, 0.91, and 0.90
of R2 values, respectively, where the SVR showed the best prediction performance. Pham et al.58

compared five machine learning algorithms: XGB, gradient boosting regression (GBR), SVR,
RF, and Gaussian process regression (GPR) to estimate mangrove aboveground biomass using
ALOS-2/PALSAR-2 and Sentinel-2 data. The authors observed that XGB generated the best
prediction result, with a R2 ¼ 0.805.

After analyzing all our results, we realized that choosing an algorithm to predict stem volume
is not an easy task, due to the subtle results differences. In turn, the RF algorithm requires the
tuning of just two main hyperparameters and has an easier implementation in comparison with
the other two algorithms. Then, the RF is an algorithm that can be used for predicted stem vol-
ume with significant good results.

The approaches used in this study provide a framework for integrating multifrequency SAR
data and machine learning techniques, highlighting methods that greatly improve the spatial
prediction of stem volume in forest plantations of Eucalyptus sp. and Pinus sp. While this study
uses a relatively small number of field sample plots for training the machine learning models,
collecting a large amount of field data to develop prediction models generated based on the
relationship between field-based measurements and variables derived from multifrequency
SAR data is one of the main limitations of the approaches proposed in this study. Another poten-
tial limitation is related to data accessibility. ALOS-2/PALSAR-2 is commercial satellite data,
and therefore, ALOS-2/PALSAR-2 data are not open access as ESA’s Sentinel-1 data. Besides
that, the number of polarizations available for Sentinel-1 data can be a limitation. Dual pol data
limits the calculations of polarimetric decompositions, which will decrease the number of pre-
dictor variables derived from Sentinel-1 data.

5 Conclusions

We demonstrate how multifrequency SAR variables can be used to estimate the stem volume of
Eucalyptus sp. and Pinus sp. using specific models and a generic model. Using multifrequency
SAR predictor variables resulted in moderately high accuracy of the stem volume prediction
models, mainly when SAR data were used in combination with stand age [Experiment (iv)].

The three machine learning algorithms tested in our study were capable of estimating stem
volume with similar results. However, the RF algorithm generated more homogeneous predictions
for the entire area of the forest plantations as highlighted in the prediction maps. Moreover, the RF
models showed an easier implementation compared with the other two algorithms (SVR andXGB).

The generic models generated similar results compared with the specific models in terms of
predicted stem volume maps. Our results corroborate the potential of using multifrequency SAR
data to improve the stem volume estimation accuracy in forest plantations with different species.

Based on this research, future works can be developed for reducing inventory costs as well as
the frequency of field campaigns. In addition, future works can explore the combination of using
SAR and optical variables to improve the estimation accuracy of the prediction models.
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