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ABSTRACT

Context. The 21 cm hydrogen line is arguably one of the most powerful probes with which to explore the Universe, from recombination to the
present times. To recover it, it is essential to separate the cosmological signal from the much stronger foreground contributions at radio frequencies.
The Baryon Acoustic Oscillations from Integrated Neutral Gas Observations (BINGO) radio telescope is designed to measure the 21 cm line and
detect baryon acoustic oscillations (BAOs) using the intensity mapping (IM) technique.
Aims. This work analyses the performance of the Generalized Needlet Internal Linear Combination (GNILC) method when combined with a power
spectrum debiasing procedure. This method was applied to a simulated BINGO mission, building upon previous work from the collaboration. It
compares two different synchrotron emission models and different instrumental configurations and takes into account ancillary data in order to
optimize both the removal of foreground emission and the recovery of the 21 cm signal across the full BINGO frequency band and to determine
an optimal number of frequency (redshift) bands for the signal recovery.
Methods. We produced foreground emission maps using the Planck Sky Model (PSM) and generated cosmological Hi emission maps using the
Full-Sky Log-normal Astro-Fields simulation Kit (FLASK) package. We also created thermal noise maps according to the instrumental setup. We
apply the GNILC method to the simulated sky maps to separate the Hi plus thermal noise contribution and, through a debiasing procedure, recover
an estimate of the noiseless 21 cm power spectrum.
Results. We find a near-optimal reconstruction of the Hi signal using an 80-bin configuration, which resulted in a power-spectrum reconstruction
average error over all frequencies of 3%. Furthermore, our tests show that GNILC is robust against different synchrotron emission models. Finally,
adding an extra channel with C-Band All-Sky Survey (CBASS) foregrounds information, we reduced the estimation error of the 21 cm signal.
Conclusions. The optimization of our previous work, producing a configuration with an optimal number of channels for binning the data, sig-
nificantly impacts decisions regarding BINGO hardware configuration before commissioning. We were able to recover the Hi signal with good
efficiency in the harmonic space, but have yet to investigate the effect of 1/ f noise in the data, which will possibly impact the recovery of the Hi
signal. This issue will be addressed in forthcoming work.

Key words. methods: data analysis – cosmology: observations

1. Introduction

Recently, it has been possible to study the creation and evolution
of the Universe through various different cosmological experi-
ments, shifting cosmology from mere intellectual speculation to
a position that attracts the prestigious nickname of “precision
cosmology”. Despite the successful endeavour of creating a cos-
mological model that matches most of the current observational
challenges and constrains the cosmological parameter values
with ∼1% precision, some aspects of the so-called “concordance
model” require much more thorough investigation. Among them,
the nature of the dark sector (dark matter and dark energy),
which comprise about 95% of the present composition of the
Universe, is among the most interesting open problems in mod-
ern astrophysics and cosmology.

The Baryon Acoustic Oscillations from Integrated Neu-
tral Gas Observations (BINGO) telescope, a unique instru-
ment designed to be one of the first radiotelescopes to mea-
sure baryon acoustic oscillations (BAOs) in the radio band,
may unveil more details about the late evolution of the Uni-
verse (Abdalla et al. 2022a). BINGO will detect the integrated
signal of the cosmological neutral hydrogen (Hi signal) hyper-

fine transition at 1420 MHz (21 cm) frequency in the redshift
interval 0.127 < z < 0.449, corresponding to a redshifted fre-
quency interval 980 < ν < 1260 MHz. This survey will be
conducted using a novel technique known as intensity map-
ping (IM; Peterson et al. 2006), which allows a flux measure-
ment of the signal produced by all Hi atoms over large areas
of the sky. Combined with the radial dimension offered by the
observational frequency band, IM can produce very large sur-
veys covering a significant fraction of the cosmological volume.
Cosmological Hi datacubes can be used to probe the Universe
at lower redshifts, complementing the cosmological informa-
tion obtained by cosmic microwave background (CMB) tem-
perature and polarization, weak lensing, and supernova (SN) Ia
data.

Nevertheless, the very faint radio signal from the 21 cm tran-
sition is easily covered by the much stronger foreground emis-
sion, that is, mainly the Galactic diffuse component, which is
constituted by synchrotron and free-free emissions, but also an
extragalactic contribution from unresolved radio sources and the
CMB. Mitigating the foreground contamination of the detected
signal is essential to recovering the cosmological 21 cm infor-
mation from the incoming data.
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Various methods to separate the astrophysical foreground
components from the targeted cosmological signal are proposed
in the literature, and most of them have already been tested in
the challenging task of CMB data analysis. A good component-
separation method greatly contributes to the accurate reconstruc-
tion of the 21 cm signal. On the one hand, it works toward
decreasing the foreground contamination in the data to a min-
imum and, on the other hand, prevents the loss of portions of
the 21 cm data. An efficient component-separation method (or a
combination of complementary methods) reduces the uncertain-
ties arising during the separation process and their propagation
into the 21 cm signal power spectrum, avoiding the introduction
of bias in the estimation of cosmological parameters.

Some of these methods assume prior knowledge of some
foreground properties. Wiener Filtering (Bunn et al. 1994;
Tegmark & Efstathiou 1996), for instance, assumes prior infor-
mation on the frequency dependence of the foreground emission
and of the power spectra of the components of sky emission
(Delabrouille & Cardoso 2009). Other approaches, such as the
Gibbs sampling approaches, assume a parametric model for
the emission laws of the sky components (Jewell et al. 2004;
Wandelt et al. 2004; Eriksen et al. 2004, 2008; Larson et al.
2007), and fit for the parameters and the amplitude of the various
components in each sky pixel. These methods are considered to
be “nonblind”, because they rely on prior information about the
foregrounds that may not be very well understood.

Alternatively, the so-called “blind” approaches separate
components of diverse physical origin in multi-frequency obser-
vations, relying only on their statistical independence. These
methods include the independent component analysis (ICA;
Baccigalupi et al. 2004), which maximizes some measures of the
non-Gaussianity of independent sources. Examples are FastICA,
first used for foreground removal in CMB datasets (Maino et al.
2002, 2003) and later applied to Hi mapping (Wolz et al.
2017); and the spectral matching independent component anal-
ysis (SMICA; Delabrouille et al. 2003; Patanchon et al. 2005;
Betoule et al. 2009), which uses decorrelation to identify inde-
pendent components.

The internal linear combination (ILC), and its variants
(Tegmark & Efstathiou 1996; Tegmark et al. 2003; Bennett et al.
2003; Eriksen et al. 2004; Saha et al. 2006; Delabrouille et al.
2009; Basak & Delabrouille 2012, 2013; Remazeilles et al.
2011a), are blind component-separation techniques that have
been extensively applied to CMB data analysis –in particular on
WMAP and Planck survey data– to obtain foreground-cleaned
CMB maps. This technique can be adapted to extract maps of
other components, such as the 21 cm signal, using an extension
called the generalized needlet ILC (Remazeilles et al. 2011b),
which is used in this work to separate the 21 cm signal from the
foregrounds without using prior information about the latter.

This work tests the performance of the GNILC method in
recovering the Hi signal in the presence of the different syn-
chrotron models and with different binning in the frequency
channels. We present reconstructed Hi simulated maps and
power spectra in the presence of a combination of various fore-
grounds and white noise.

The paper is organized as follows. In Sect. 2 we give a brief
overview of the instrument. In Sect. 3, we present the cosmo-
logical signal, astrophysical foregrounds, and instrumental noise
models used in our analysis, with a complementary discussion of
the masking process and the description of our simulation plan.
Section 4 contains a brief description of GNILC, the foreground
removal method used in this work. Section 5 describes the debi-
asing method used to correct the reconstructed power spectra. In

Sects. 6 and 7, we then present the results and the conclusions of
this work, respectively.

2. Instrument overview

The BINGO telescope is under construction in Paraiba, Brazil,
and will be located at coordinates 7◦ 2′ 27.6′′ S; 38◦ 16′ 4.8′′W.
The site-selection process is described in Peel et al. (2019).
BINGO is designed to observe in the frequency interval 980 ≤
ν ≤ 1260 MHz, which corresponds to the redshift interval
0.127 < z < 0.449. BINGO will operate as a transit instrument,
covering an instantaneous declination strip of ∼15◦ in width cen-
tered at δ = −15◦. Its field of view will cover a declination strip
of 15.4◦ in width measured from center to center, with an angu-
lar resolution of FWHM ≈ 40 arcmin at the central frequency of
the band (1120 MHz). This accounts for a daily sky coverage of
5320 square degrees. In this work, we consider FWHM = 40′
for the entire BINGO frequency range.

The BINGO optics follows an off-axis crossed-Dragone
configuration (Dragone 1978), with a primary 40 m diameter
paraboloid and a secondary 34 m diameter hyperboloid. The sec-
ondary dish illuminates a focal surface with 28 corrugated horns,
each one feeding a polarizer coupled to two magic tees. The
optics and the horn design and fabrication are described, respec-
tively, by Abdalla et al. (2022b) and Wuensche et al. (2020).
BINGO will operate with a full correlation receiver per horn,
connecting two radiometer chains to each magic tee. Radiome-
ters are expected to operate at a nominal system temperature of
Tsys ∼ 70 K.

Referring to the discussion of Sect. 2 of Wuensche et al.
(2022), after 1 year of observations at 60% duty cycle, with 30
frequency (redshift) bins of equal bandwidth and HEALpix reso-
lution Nside = 128 (comparable to the nominal angular resolution
of the telescope), BINGO should achieve an estimated sensitiv-
ity of 102 µK.

3. Simulated data

This work builds upon and optimizes aspects of previous analy-
ses of the potential of BINGO. We use a simulated data set simi-
lar to the one described in Fornazier et al. (2022), and extend that
work using different synchrotron models, assessing the capabil-
ity of clearly recovering the Hi signal as a function of the num-
ber of channels used in the reconstruction. This choice allows us
to assess the level of systematic differences introduced by our
lack of knowledge on the foregrounds. It also introduces dif-
ferent samplings of the data and includes ancillary data from
the C-Band All-Sky Survey (CBASS) experiment (Jones et al.
2018). We particularly find that this will greatly help our deci-
sion regarding the final binning of the data, itself impacting the
hardware configuration required by BINGO.

All maps used in this work are generated with the HEALpix
package (Górski et al. 2005) with Nside = 256. More details
on the components included in the simulated data are found in
Sect. 3.1 and on simulation sets in Sect. 3.3.

3.1. Cosmological, astrophysical, and noise components

The Hi maps are generated using the Full-Sky Log-normal
Astro-Fields Simulation Kit (FLASK) package (Xavier et al.
2016), using the C`s created by the Unified Cosmolog-
ical Library for C`s (UCLCL) code (McLeod et al. 2017;
Loureiro et al. 2019), and with a log-normal distribution with a
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very small deviation from a pure Gaussian. For more details on
generating Hi maps using FLASK, see Liccardo et al. (2022).

The foreground simulations are generated using the Planck
Sky Model (PSM) software (Delabrouille et al. 2013). The
Galactic foregrounds are synchrotron radiation, free-free emis-
sion, the anomalous microwave emission (AME), and thermal
dust (TD). The extragalactic contaminants include unresolved or
faint radio point sources (FRPSs) and the thermal and kinetic
Sunyaev Zel’dovich (SZ) effects. Bright radio point sources are
not considered, because they can be masked out during the anal-
ysis. For more details on foreground models, see Abdalla et al.
(2022a), and for details of how the respective maps are generated
using PSM, see Fornazier et al. (2022).

To produce the synchrotron component, we used the
reprocessed Haslam 408 MHz all-sky map presented in
Remazeilles et al. (2015) as a template. This map is then extrap-
olated to the BINGO frequencies (980–1260 MHz) through a
power law given by

T syn
ν (p) = T syn

ν0 (p)
[
ν

ν0

]βs(p)

, (1)

where T syn
ν0 (p) is the template map defined in the reference fre-

quency ν0 and in the pixel p; βs(p) is the spatially variable
spectral index. In our simulations, we considered synchrotron
maps produced with two models of nonuniform βs over the
sky, namely the Miville-Deschênes et al. (2008) model (here-
after, synchrotron MD), which uses WMAP data at 23 GHz,
and the Giardino et al. (2002) model (hereafter, synchrotron
GD), which is the result of the combination of the full-sky
map of synchrotron emission at 408 from Haslam et al. (1982),
the northern-hemisphere map at 1420 MHz from Reich & Reich
(1986), and the southern-hemisphere map at 2326 MHz from
Jonas et al. (1998).

The spectral index map of the synchrotron MD model has
a mean value of −3.00 and a standard deviation of 0.06. These
values for the synchrotron GD model are −2.9 and 0.1. Figure 1
shows the synchrotron emission maps generated with the two
pixel-dependent spectral-index models described above, and
Fig. 2 presents their respective power spectra. Polarized syn-
chrotron emission is not included in this work, despite our under-
standing that polarization leakage is a critical issue in the data
analysis. We are investigating this matter and intend to address
the subject in a forthcoming paper.

Although the thermal emission from dust grains is sub-
dominant in the BINGO frequency band, we chose to include
this component in the data in order to obtain a simulated
sky that more closely reflects reality. We use the Galactic
dust emission maps and a corresponding model obtained
from the Planck 2015 data release using the GNILC method
(Planck Collaboration Int. XLVIII 2016).

Due to the 28-horn arrangement in the BINGO focal plane
(double rectangular scheme, see Wuensche et al. 2022), the
observation time is not uniformly distributed over the sky area
covered by the instrument. In this case, each horn covers the
pixels of a fixed-latitude ring. Therefore, the total observation
time of a pixel, and consequently the root mean square (RMS)
value of thermal noise per pixel, depend on the latitude. Strong
inhomogeneities in the innermost part of the covered region are
avoided by repositioning the horns every year of the mission,
within a total of tobs = 5 years, which achieves a better distri-
bution of observation time over the pixel in the covered area
(Liccardo et al. 2022). Furthermore, we assume that the noise
level map is the same for all frequency channels. The RMS prop-

Fig. 1. Synchrotron emission maps for the MD model (top) and the GD
model (bottom), defined in the frequency channel centered at 1115 MHz
and with a bandwidth of δν ∼ 9.33 MHz (30 channels configuration).
The maps are presented in celestial coordinates and were convolved
with a FWHM = 40 arcmin beam. The observed region corresponds to
the BINGO covered area with the apodized Galactic mask defined in
Sect. 3.2.

Fig. 2. Power spectra referring to the MD (green) and GD (red) syn-
chrotron maps shown in Fig. 1, as well as the power spectrum cal-
culated from the difference between them (blue), defined in the fre-
quency channel centered at 1115 MHz and with a bandwidth of δν ∼
9.33 MHz (30 channels configuration). The maps were convolved with
a FWHM = 40 arcmin beam. The observed region corresponds to the
area covered by BINGO with the apodized Galactic mask defined in
Sect. 3.2.

erties of the noise simulations used in this work follow the pre-
scriptions published in Fornazier et al. (2022).

In terms of instrumental systematic uncertainties, we cur-
rently only consider the thermal (white) noise contribution over
the sky, with an expected system temperature of 70 K. More
realistic instrumental uncertainties should also be addressed in
a forthcoming paper, such as real RFI emission (as measured
on site) and a beam profile derived from the horn beam mea-
surements (Wuensche et al. 2020), the optical design analysis
(Abdalla et al. 2022b), and 1/ f data measured directly from the
receiver.

3.2. The masking process

In order to remove the region of the Galactic plane where the
foregrounds are more intense, and consequently facilitate the
component-separation process, we applied a Galactic mask to
the simulated maps. Figure 3 shows the combined emission at
984.7 MHz of all foregrounds considered in our simulations, as
well as the region of the sky covered by BINGO. The observed
region is a declination strip of ≈15◦ centered on δ = −15◦. We
note that the region where the Galactic foregrounds are more
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intense crosses the area covered by the instrument. The bright-
ness temperature in this intersection region reaches 56 K.

We used a Galactic mask that covers 20% of the sky, cutting
off the most intense emission region of the Galactic plane. The
result of applying this mask to the foregrounds map can be seen
in Fig. 3. The maximum temperature within the area covered by
BINGO after masking is about 6.5 K.

The BINGO observed region is defined by the feed horn
arrangement in the focal plane and by the observation strat-
egy (see Wuensche et al. 2022). The effective masked region is
then the intersection between the Galactic mask discussed above
and the observed region. To avoid boundary artifacts in calcu-
lating the power spectrum of the maps, we use the NaMaster1

(Alonso et al. 2019) package to produce an apodization of type
C2 and width 5◦ in the mask. The result is shown in the bottom
right panel of Fig. 3, with a visible area of 12.2% of the sky.

3.3. Assembling the simulated foreground maps

The set of sky simulations used in this work was created to
investigate the efficiency of our component-separation pipeline
against simulated foregrounds with different synchrotron models
for different numbers of frequency channels and with the addi-
tion of foregrounds and noise data from another experiment at a
frequency outside the BINGO band.

In order to test the robustness of the method against different
foreground models, we created two sets of simulated data. Each
set contains a different synchrotron model (MD or GD) in addi-
tion to all other components described in the Sect. 3.1. These sets
were created with the BINGO project baseline configuration of
30 frequency bins and were called MD30 and GD30.

The sky at low radio frequencies (<10 GHz) is dominated
by astrophysical foregrounds, mainly Galactic synchrotron emis-
sion. Independent foreground observations in frequencies out-
side the BINGO band may improve the characterization of the
synchrotron contribution and other components, facilitating its
removal. The C-Band All-Sky Survey (CBASS) is an all-sky sur-
vey at a frequency of 5 GHz and 1 GHz bandwidth, with a sen-
sitivity .0.1mK RMS (per beam) and a resolution of 45 arcmin.
CBASS was designed to provide complementary data to the
CMB surveys (Jones et al. 2018). Therefore, we also perform
a component-separation test, adding the simulated CBASS sky
and noise to the MD30 base dataset. We refer to the result of this
data combination as MD30+CBASS. The CBASS noise level is
∼437 µK for a HEALpix Nside = 256. The simulated CBASS all-
sky foreground and noise emission maps are shown in Fig. 4.

3.4. Simulation plan

We generated sets of simulated data with 20, 30, 40, 60, and 80
frequency bins to evaluate the efficiency with which the 21 cm
signal is reconstructed as a function of the number of channels
used. To perform this test, we used the MD model for the syn-
chrotron component, keeping the other components as described
in Sect. 3.1. The created sets were called MD20, MD30, MD40,
MD60, and MD80.

The BINGO input maps used in the tests described above
are the result of the sum of Hi and foregrounds convolved with
a 40 arcmin beam plus the estimated BINGO noise. In the case
of combining BINGO and CBASS data with the BINGO fre-
quency bins, we added a channel with CBASS foregrounds plus
noise. In this configuration, the maps of the cosmological and

1 https://namaster.readthedocs.io

astrophysical components, both from BINGO and CBASS, are
convolved with a beam of 45 arcmin. The CBASS foregrounds
map contains the same components considered in the BINGO
data (see Sect. 3.1). A summary of our simulation plan, defined
by the foregrounds configuration, is provided in Table 1.

4. GNILC method

The GNILC method was developed to be used in CMB exper-
iments (Remazeilles et al. 2011a) and was later adapted to the
Hi IM (Olivari et al. 2016). The way GNILC functions is by
using not only spectral information but also spatial information
(angular power spectrum) to, through a constrained principal
component analysis (PCA; Murtagh & Heck 1987), discriminate
between foregrounds and our targeted signal, considered here as
Hi plus thermal noise (see Sect. 6.1). GNILC is a blind method,
that is, it does not assume prior knowledge about the properties
of foregrounds, but only about the power spectrum of the desired
signal. Below, we present a summary of the method, as applied to
this work, and refer the reader to the original papers cited above
for more details.

The sky signal at the frequency ν and pixel p can be modeled
as

dν(p) = sν(p) + fν(p), (2)

where sν(p) is the true targeted signal and fν(p) is the contribu-
tion of the Galactic and extragalactic foregrounds to the data. To
adjust component separation to the local conditions of contami-
nation, both in pixel and in harmonic spaces, the method uses a
set of bandpass filters defined in the multipole domain ` (spheri-
cal wavelets), h( j)

`
, called needlets. A set of needlets respects the

relation
∑

j

[
h( j)
`

]2
= 1, where j is the index associated with the

window that filters the signal referring to a certain range of angu-
lar scales (or multipole range). Thus, each dν(p) is decomposed
into maps of d( j)

ν (p), where j varies from zero to the adopted
number of needlets minus one, and is the result of the inverse
spherical harmonic transform of dν(`,m) × h( j)

`
, according to

d( j)
ν (p) =

∑
`

∑̀
m=−`

dν (`,m) h( j)
`

Y`m (p) , (3)

where j defines the angular scales isolated by the respective
needlet function. For each pixel p and each j-needlet window,
a covariance matrix R( j) (p) is calculated, whose elements for a
frequency pair ν, ν

′

are given by

R( j)
νν
′ (p) =

1

N( j)
p

∑
p′∈Dp

d( j)
ν

(
p′

)
d( j)
ν
′

(
p′

)
, (4)

where N( j)
p is the number of pixels that constitute the domain Dp

centered on the pixel p and whose size is chosen so as to avoid
creating artificial anti-correlations between the target signal and
the foregrounds. These anti-correlations created when working
with small regions of the sky can result in loss of the power of
the reconstructed signal and this can be measured by the multi-
plicative ILC bias b, according to Delabrouille et al. (2009). The
number of pixels N( j)

p is therefore adjusted for each j-needlet
window according to the choice of the ILC bias b value, which
is defined as one of the GNILC input parameters. The relation
between the number of pixels in theDp domain and the ILC bias
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Fig. 3. Description of the masking process. Top left: map with the sum of all foregrounds considered in this work, including the synchrotron MD
model (see Sect. 3.1), in the lowest frequency bin of a total of 30 channels centered on 984.7 MHz and limited to 10 K. Top right: result of applying
the Galactic mask to the all-foregrounds map. Bottom left: BINGO apodized (5 deg) Galactic mask, preserving a sky fraction of 12.2%. Bottom
right: result of applying the BINGO mask to the all-foregrounds map centered at 984.7 MHz. All maps are in celestial coordinates and the dashed
lines delimit the BINGO covered area.

Fig. 4. CBASS 5 GHz all-sky maps. Left: CBASS all-sky foregrounds map, which is a result of the sum of the components described in Table 1.
Right: CBASS white-noise map. The temperature scale of the foregrounds map is saturated at ±105 µK. The temperature scale of the noise map is
saturated at ±2 × 103 µK and the noise level is ∼437 µK.

is given by

N( j)
p =

n( j)
p (nch − 1)

|b|N( j)
m

, (5)

where n( j)
p is the total number of pixels in the j-needlet map, nch

is the number of frequency channels, and N( j)
m is the number of

spherical modes in the j-needlet window.
GNILC uses an estimate of the target signal covariance

matrix, R̂( j)
s (p), produced with map realizations from prior

knowledge of the HI + thermal noise power spectrum to trans-
form and diagonalize the data covariance matrix, R( j)(p), disen-
tangling foregrounds and signal subspaces on each needlet angu-
lar scale. This is the PCA step of the method. Omitting needlet

scale ( j) and pixel p, the diagonalization of the matrix resulting
from the transformation R̂−1/2

s RR̂−1/2
s , can be approximated by

R̂−1/2
s RR̂−1/2

s '

'
[
U f Us

]
×



1 + µ1
. . .

1 + µnfg

1
. . .

1


×

U
T
f

UT
s

 .

(6)

The eigenvalues of R̂−1/2
s RR̂−1/2

s that are ' 1 do not contain
any relevant power of the foregrounds; that is, the sky emission
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Table 1. Foregrounds configurations and simulation plan.

Set Foregrounds Number of channels

MD30 Synchrotron MD + freefree + AME + TD + SZ + FRPS 30 (BINGO)
MD30 Synchrotron MD + freefree + AME + TD + SZ + FRPS 30 (BINGO)
+CBASS + 1 (CBASS)
GD30 Synchrotron GD + freefree + AME + TD + SZ + FRPS 30 (BINGO)
MD20 Synchrotron MD + freefree + AME + TD + SZ + FRPS 20 (BINGO)
MD40 Synchrotron MD + freefree + AME + TD + SZ + FRPS 40 (BINGO)
MD60 Synchrotron MD + freefree + AME + TD + SZ + FRPS 60 (BINGO)
MD80 Synchrotron MD + freefree + AME + TD + SZ + FRPS 80 (BINGO)

is dominated by the target signal. The corresponding subset of
eigenvectors Us spans the target signal subspace. The subset of
nfg eigenvectors U f for which eigenvalues of R̂−1/2

s RR̂−1/2
s depart

significantly from unity (1 + µi � 1) spans the foregrounds sub-
space. For each j-needlet scale and each pixel p, the statisti-
cal Akaike information criterion (AIC) Akaike (1974) is used
to select the subset of n( j)

fg (p) eigenvectors U f of the covariance

matrix R̂−1/2
s RR̂−1/2

s for which eigenvalues are�1.
After estimating the dimension of the foregrounds subspace,

a n( j)
fg (p)-dimensional ILC is performed for each needlet scale j.

First, the matrix U( j)
s , whose dimension is nch ×

(
nch − nfg

)
, is

determined for each pixel p, and then the mixing matrix of the
target signal, Ŝ, is calculated through

Ŝ( j) =
[
R̂( j)

s

]1/2
U( j)

s . (7)

A multidimensional ILC filter (ILC weights matrix) is
applied to the data vector d( j) (p) to make an estimate of the HI
signal ŝ( j) (p), according (omitting p and ( j)) to

ŝ = Ŝ
(
ŜT R−1Ŝ

)−1
ŜT R−1d. (8)

Finally, each reconstructed j-needlet map, ŝ( j)
ν (p), is trans-

formed to spherical harmonic space and their harmonic coef-
ficients are again band-pass-filtered by the respective j-needlet
window, h( j)

`
, and the filtered harmonic coefficients are trans-

formed back to maps in pixel space, recreating a single map per
j-needlet window, according to

ŝ( j)
ν (p) =

∑
`

∑̀
m=−`

ŝ( j)
ν (`,m) h( j)

`
Y`m (p) . (9)

These ŝ( j)
ν maps are then added to give, for each frequency chan-

nel ν, the full reconstructed map ŝν(p).
GNILC has two input parameters that control the locations

used in the calculation of covariance matrices, both in the pixel
and in the harmonic domains: the set of needlets and the ILC
bias, and this work tested GNILC with different bias and needlets
combinations. The best match for our simulations was the set
of cosine-shaped needlets with peaks at ` = [0, 128, 384, 767],
according to Fig. 5, and the ILC bias b = 0.005, and these were
the input parameters used in this work. The GNILC method was
tested in this work using simulated data with different configu-
rations and the results are presented in Sect. 6.

5. Debiasing procedure

Section 4 describes the GNILC method, which refers to the sig-
nal of interest as the component to be recovered. Due to the

Fig. 5. Set of cosine-shaped needlets with peaks located at ` =
[0, 128, 384, 767].

characteristics of the 21 cm signal and the noise, we chose to
recover both as a single component. For more details on this
choice, see Sect. 6.1. After obtaining the reconstructed 21 cm
plus noise maps, we use a debiasing procedure to reconstruct
the power spectrum of the 21 cm signal as a single component.
This method consists of estimating the residual noise content
and the loss of the Hi signal, after passing the data through the
ILC filter (see Sect. 4), and correcting their effects on the power
spectra of the GNILC output maps. This procedure was also used
by Fornazier et al. (2022) in the reconstruction of 21 cm power
spectra from simulated data in a configuration of 30 frequency
bins. Here, we explore the same method considering different
configurations, as presented in Table 1 and Sect. 6.2. A brief
description of the technique is presented below.

The debiasing procedure to reconstruct the 21cm power
spectra is divided into two steps: (1) estimate the projected noise
power spectra, Ĉnoise−proj,ν

`
, and debias the GNILC map power

spectra from this additive bias; and (2) estimate the multiplica-
tive bias, b̂ν

`
, and correct the noise-debiased GNILC power spectra

from it. These two steps can be summarized by the equation

Ĉ21cm,ν
`

=
CGNILC,ν
`

− Ĉnoise−proj,ν
`

b̂ν
`

, (10)

where Ĉ21cm,ν
`

is our final estimate of the 21cm power spectrum
at the frequency channel ν.

The additive noise bias Cnoise−proj,ν
`

is estimated by generat-
ing Nrealis white noise map realizations for each frequency chan-
nel ν and projecting them through the ILC weights matrix (see
Eq. (8)) computed in Sect. 4 for the data. The power spectra of
the resulting projected noise realizations are then averaged over
all realizations.

The multiplicative bias bν
`

is estimated by generating Nrealis
realizations of 21 cm signal maps at all frequency channels ν
and computing the projected 21 cm signal by applying the ILC
weights matrix again to the pure 21 cm map realizations. For
each frequency channel ν, we then compute the ratios between
the power spectra of the projected 21 cm realizations and the
power spectra of the input 21 cm realizations, which we average
over all realizations in order to estimate bν

`
.

The accuracy of the estimation of additive and multiplicative
biases depends directly on the number of realizations used. How-
ever, the choice of Nrealis is not free, but limited by the available
computational capacity. The greater the number of channels or
realizations used, the longer the debiasing processing time. Con-
sidering our computing resources and the settings adopted for
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Fig. 6. Simulated 21 cm plus thermal noise
input map (top), the GNILC reconstructed map
and the respective residuals (middle), and the
difference between the two (bottom), corre-
sponding to a channel centered at 1115 MHz
in the MD30 configuration. The maps are in
celestial coordinates and are covered by the
apodized Galactic mask defined in Sect. 3.2. The
Hi component was convolved with a FWHM =
40 arcmin beam.

the simulated data, we chose to test the debiasing procedure with
two different numbers of realizations, as can be seen in Sect. 6.2.

6. Results

Our component-separation pipeline can be divided in two steps:
a foreground removal stage, where we use the GNILC method
described in the Sect. 4 to recover the 21 cm signal together with
the noise from the BINGO simulated data maps; and a debias-
ing stage, where we use the procedure described in Sect. 5 to
obtain the 21 cm power spectra from the GNILC output maps.
The BINGO simulated data maps used in this work are the result
of the sum of astrophysical foregrounds, Hi, and thermal noise,
as described in Sect. 3. In the simulations that include an inde-
pendent foreground observation, we add the CBASS 5 GHz map
(foregrounds plus noise) to the set of BINGO simulated data
maps. The results obtained in these two steps for the simulation
plan in Table 1 are described in the following subsections.

6.1. Reconstruction of 21 cm plus noise maps

When trying to recover the Hi signal as a single component
using GNILC, it was observed that the reconstructed power spec-
trum was contaminated by a residual content of thermal noise,
mainly at small scales (Olivari et al. 2016), which contributes
to the 21 cm component estimation error. As it is possible to
obtain the thermal noise characteristics with good precision in an
experiment, we chose to reconstruct the Hi and noise signals as
a single component in a first step, as described in this section. In
Sect. 6.2, we use the debiasing procedure to estimate and remove
the noise content present in our power spectra in order to be able
to reconstruct the pure Hi signal.

First, we present the results in the pixel domain for the MD30
case, the BINGO project baseline configuration. Figure 6 shows
the input (expected), the reconstructed and the residual 21 cm
plus noise maps, all observed near to the central frequency of the
BINGO band (1120 MHz). Figure 7 shows the total foreground
emission and the respective residual map after the component
separation with GNILC. We note the effect of the apodized Galac-
tic mask on the edges of the apparent region of the maps. This
result shows the effectiveness of GNILC in removing contami-
nants: the content of foregrounds in the data is reduced from
about 105 to tens of µK. Figure 8 shows a comparison between
the real and reconstructed power spectra of Hi plus noise, as well
as the residual foregrounds after GNILC.

The power spectra are plotted in the range of multipoles
30 ≤ ` ≤ 270, which is equivalent to angular scales ∼6◦ to
∼0.7◦. We do not consider very large angular scales, that is,
` < 30, in accordance with the limited area of the sky cov-
ered by BINGO, or small angular scales, ` > 270◦, in line with
the angular resolution of the instrument, of namely 40 arcmin.
Furthermore, as BINGO covers a fraction of the sky, the power
spectra of its maps suffer from a loss of angular resolution, given
by ∆` ∼ 180◦/γmax, where γmax is the maximum extent of the
observed area (Ansari & Magneville 2010). In our case, con-
sidering the repositioning of the horns during the mission, as
described in Wuensche et al. (2022) and Liccardo et al. (2022),
we have γmax = 17.5◦. Therefore, in order to respect this limi-
tation and better adapt to the range of multipoles adopted (30 ≤
` ≤ 270), we choose to use a resolution of ∆` = 12.

We begin by checking the efficiency of GNILC in reconstruct-
ing the 21 cm signal considering different models for the domi-
nant component of the simulated data, the Galactic synchrotron
emission. To this end, we performed the component separation
with the MD30 and GD30 data sets (see Table 1). To quantify
the reconstruction efficiency of the maps, we used the Pearson
coefficient, defined as

ρν =

∑
p(ŝν(p) − µŝν )(sν(p) − µsν )√∑

p(ŝν(p) − µŝν )2 ∑
p(sν(p) − µsν )2

, (11)

where ŝν(p) and sν(p) are the reconstructed and expected Hi plus
noise maps, respectively, in a given pixel p and frequency chan-
nel ν. The µŝν and µsν terms are the mean value over the pixels of
the reconstructed and expected Hi plus noise maps, respectively.
The Pearson coefficients between the input and reconstructed Hi
plus noise maps are presented in Fig. 9. The result is seen to
vary very little between the two configurations. Furthermore, the
average Pearson coefficient over all channels is the same for the
two cases, ρ̄ = 0.853, which shows that GNILC appears to be
robust against different synchrotron models in an analysis in the
pixel domain.

To verify the effect of adding an extra channel to the MD30
configuration with the simulated data from the CBASS exper-
iment (see Sect. 3.3), we compared two cases: MD30 and
MD30+CBASS. The Pearson coefficients between the GNILC
output maps and the expected Hi plus noise maps are plotted in
Fig. 9. As expected, we see an improvement in the reconstruction
of Hi plus noise maps when we add the CBASS channel com-
pared to the MD30 case. The average Pearson coefficient calcu-
lated across all channels is ρ̄ = 0.853 without CBASS, while it is
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Fig. 7. Map containing the sum of all fore-
grounds described in Sect. 3.1 (top) and their
respective residuals after GNILC (bottom) at
1115 MHz in the MD30 configuration (see
Table 1). The maps are in celestial coordinates
and are covered with the apodized Galactic mask
defined in Sect. 3.2. We note the region of
extreme declination where the signal is attenu-
ated by the apodized mask.

Fig. 8. Input 21 cm plus noise (black), reconstructed 21 cm plus noise (dashed green), and foregrounds residuals (dashed red) power spectra for
frequency channels centered at 0.985 GHz (left), 1.115 GHz (center), and 1.255 GHz (right) for the MD30 configuration. The multipole range
considered is 30 ≤ ` ≤ 270, with a multipole bin size of ∆` = 12.

ρ̄ = 0.860 with the addition of the CBASS channel. Furthermore,
the Pearson coefficient shows a more significant improvement in
the extreme frequencies of the band.

The accuracy with which GNILC reconstructs the Hi plus
noise map depends mainly on the number of frequency channels
adopted. Theoretically, as we increase the number of frequency
bins, GNILC becomes increasingly able to remove astrophysical
foregrounds from the data. This is because GNILC is able to adapt
the number of degrees of freedom nfg (see Sect. 4) dedicated
to describing the foregrounds to the number of channels. This
is done both in the pixel domain and in the harmonic domain,
optimizing the reconstruction of the Hi plus noise signal (see
Olivari et al. 2016). Therefore, we tested the efficiency of the
GNILC in reconstructing 21 cm plus noise maps considering 20,
30, 40, 60, and 80 channels. To this end, we used the datasets
in the MD20, MD30, MD40, MD60, and MD80 configurations
(see Table 1).

The Pearson coefficients for configurations with different
numbers of channels are shown in Fig. 9. It is possible to observe
that, in general, the Pearson coefficient values increase with
an increasing number of channels. However, the points seem
to tend towards a limit. The difference in reconstruction effi-
ciency improvement seems to decrease as the number of bins
increases. Between the MD60 and MD80 configurations, this
difference is already very small, indicating that there is a near-
optimal choice of the number of channels, which in our case
appears to be around Nch = 80. The average Pearson coef-
ficient, calculated over all channels, is also directly related to

the number of frequency bins. The calculated values range from
ρ̄ = 0.835 in the MD20 configuration to ρ̄ = 0.872 in the MD80
case. As expected, an increase in the number of bins gives the
method more degrees of freedom to describe and remove the
foregrounds, improving the recovery of the Hi plus noise sig-
nal. However, there seems to be a threshold number of channels
above which there is negligible improvement in the reconstruc-
tion of the signal of interest.

Figure 9 shows that, in general, the Pearson coefficient is
lower at the extreme frequencies of the band due to the edge
effect, as observed by Wolz et al. (2014). This is because the
adjustment for the extreme channels is restricted to only one
side, while for the inner channels this is done by both sides
(Harker et al. 2009). A possible solution to this is to extend the
frequency coverage beyond the nominal values, as proposed by
Alonso et al. (2015). Furthermore, at the lower frequencies of
the band, the removal of foregrounds is also affected by the
greater intensity of synchrotron emission. Finally, an increase
in the Pearson coefficient is observed in relation to the extreme
frequencies for the MD30+CBASS case and for the configura-
tions with a greater number of frequency channels, such as the
MD60 and MD80.

Figure 10 shows the Pearson coefficient as a function of the
number of channels, calculated in channels centered at lower,
central, and higher frequencies, within the BINGO band (980–
1260 MHz). This figure more clearly reveals the stabilization
trend in the efficiency of the reconstruction of the 21 cm plus
noise maps with the increase in the number of channels. This
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Fig. 9. Left column: Pearson coefficient ρ calculated for each pair of expected and reconstructed 21 cm plus thermal noise maps. The ρ̄ value
in parentheses is the average correlation calculated over all frequency channels. Right column: reconstruction error of the 21 cm signal power
spectrum η calculated as an average over the multipole range 30 ≤ ` ≤ 270, on each frequency channel. The value η̄ in parentheses is the average
error calculated over all frequency channels. Top row: comparison between the results of ρ and ν for the MD30 and GD30 configurations (different
synchrotron models). Center row: comparison between the results of ρ and ν for the MD30 and MD30+CBASS configurations (inclusion of an
independent foreground observation). Bottom row: comparison between the results of ρ and ν for the MD20, MD30, MD40, MD60, and MD80
configurations (different numbers of frequency bins).

effect is more evident in the central frequency channels, where
the Pearson coefficients are already higher than in the other bins.
This result reinforces the conclusion mentioned above regarding
our ability to obtain a near-optimal reconstruction in the MD80
configuration.

So far we have presented the GNILC performance in the
reconstruction of the 21 cm plus noise maps. In the following
section, we show the results of using the debiasing procedure
described in the Sect. 5 to recover the noiseless 21 cm power
spectra.
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Fig. 10. Left: Pearson coefficients calculated for each pair of expected and reconstructed Hi plus thermal noise maps. Right: 21 cm power spectrum
reconstruction error, calculated as an average over the multipole range 30 ≤ ` ≤ 270. Both parameters are calculated for simulated data with a
different number of channels (MD20, MD30, MD40, MD60 and MD80 configurations), in channels centered at three different frequency channels:
lowest frequencies (channels centered on 987, 984.7, 983.5, 982.3, and 981.7 MHz), central frequencies (channels centered on 1113, 1115.3,
1116.5, 1117.7, and 1118.2 MHz), and highest frequencies (channels centered on 1253, 1255.3, 1256.5, 1257.7, and 1258.2 MHz).

6.2. Noiseless 21 cm power spectrum reconstruction

In this section, we present the results of noiseless 21 cm sig-
nal recovery in the multipole domain using the debiasing pro-
cedure presented in Sect. 5. The power spectra of the GNILC out-
put maps (CGNILC,ν

`
) obtained in the previous section are used

here as one of the inputs for the bias-correction method (see
Eq. (10)). To measure the reconstruction error of the 21 cm
power spectrum, we define the index η(ν) given by the abso-
lute mean difference between the recovered C21cm,r

`
(ν) and real

C21cm,s
`

(ν), normalized by the real power spectrum, according to

η(ν) =
1
N`

`max∑
`=`min

∣∣∣∣∣∣∣C
21cm,r
`

(ν) −C21cm,s
`

(ν)

C21cm,s
`

(ν)

∣∣∣∣∣∣∣ × 100% . (12)

This index is calculated for each frequency channel ν and for a
multipole range 30 ≤ ` ≤ 270, as defined in Sect. 6.1.

To perform the debiasing for all cases proposed in Table 1
on a reasonable timescale, we chose to work with a low number
of realizations. Therefore, we initially adopted a base number
Nrealis = 10 and after correcting the bias for all the configura-
tions, we performed a test increasing this amount for the config-
uration with the best results.

Initially, we performed the debiasing on the power spectra of
the GNILC reconstructed maps for the cases with different syn-
chrotron models. Figure 9 shows the error η of power spectrum
reconstruction of the 21 cm signal in each frequency channel of
the MD30 and GD30 configurations. The mean reconstruction
error for the case MD30 is 7.2% and for the case GD30 is 6.4%.
This difference is due to the ability of GNILC to adapt to the
spatial variation of foregrounds in order to describe and remove
them (see Sect. 4). Thus, maps generated with different models
(MD and GD) may require different numbers of degrees of free-
dom to represent the contaminants in a given region of the sky
and to reconstruct the target signal.

Figure 11 shows the power spectra of the foreground emis-
sion in the MD30 and GD30 configurations and their respec-
tive residuals after component separation with GNILC. At scales
` < 100, GNILC can be seen to remove more foregrounds from
the GD30 configuration than from the MD30. Furthermore, these

residuals are preserved after the debiasing step, contributing to
the error in estimating the power spectrum of the 21 cm signal.

Next, we present the results of the debiasing procedure in its
basic project configuration (MD30 case), considering the addi-
tion of a channel with simulated CBASS map to the BINGO
data. Figure 9 shows the error η of power spectrum reconstruc-
tion of the 21 cm signal in each frequency channel. The recon-
struction error for the MD30 and MD30+CBASS cases is 7.2%
and 5.7%, respectively. As expected, the inclusion of an extra
channel with CBASS data increases the number of degrees of
freedom available to describe the foregrounds, improving the
reconstruction of the 21 cm Hi signal.

Figure 9 shows the Pearson coefficient ρ calculated between
the expected and reconstructed 21 cm plus thermal noise at
each frequency channel, and the reconstruction error η of the
21 cm signal in the harmonic domain in each frequency chan-
nel, considering simulated data with different numbers of chan-
nels: MD20, MD30, MD40, MD60, and MD80. An improve-
ment in the cosmological signal reconstruction can be observed
with an increase in the number of channels because the number
of dimensions available to describe the components increases, as
discussed in Sects. 4 and 6.1. The smallest average error over all
channels is η̄ = 4.7%, obtained with 80 frequency channels.

Figure 10 (right) shows the power spectrum reconstruction
error calculated in three different channels, corresponding to the
lowest, central, and highest frequencies within the BINGO band
(980–1260 MHz). We note a reduction in the estimation error
with an increasing number of channels, in addition to a stabi-
lization trend of this reduction. This effect is more evident in
the lowest frequency channels, where the estimation errors are
already higher for smaller numbers of channels. This result cor-
roborates the findings presented in Sect. 6.1 regarding obtaining
a near-optimal reconstruction with 80 frequency bins.

To evaluate the effect of varying the number of realizations
on the 21 cm spectrum reconstruction error, we reprocessed the
debiasing procedure with a greater number of Hi and noise real-
izations. To this end, we chose the MD80 configuration, the case
with the best results in the previous analysis, and performed the
bias correction with Nrealis = 50 realizations. We then compared
with the previous results presented in Fig. 12. The 21 cm sig-
nal reconstruction error for the case MD80 with Nrealis = 10 is
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Fig. 11. Power spectra of foreground emission in MD30 (red) and GD30 (blue) configurations, as well as their respective residuals present in the
signal reconstructed with the GNILC (dashed red and dashed blue). The power spectra are plotted for frequency channels centered at 0.985 GHz
(left), 1.115 GHz (center), and 1.255 GHz (right). The multipole range considered is 30 ≤ ` ≤ 270, with a multipole bin size of ∆` = 12.

Fig. 12. Reconstruction error η of the 21 cm signal power spectrum cal-
culated as an average over a multipole range, defined here as 30 ≤ ` ≤
270, on each frequency channel of a dataset with MD80, considering
two different numbers of realizations (Nrealis = 10 and Nrealis = 50).
The value η̄ in parentheses is the average error over all channels in each
dataset. The mean error for the Nrealis = 10 case is η̄ = 4.7% and for the
Nrealis = 50 case is η̄ = 3.0%.

4.7% and with Nrealis = 50 is 3.0%. As expected, the recon-
struction of the 21 cm signal is better when we use more Hi
and thermal noise realizations to estimate the additive and mul-
tiplicative bias present in the GNILC reconstructed 21 cm plus
noise power spectrum. This is because with more realizations
the method improves the estimation of the reconstructed spectra
bias. Our objective here is not to optimize the number of realiza-
tions, which would require much more computational processing
time than we had available, but to perform a sensitivity analysis
of the debiasing method with this parameter.

To make our final estimate of the 21 cm power spectrum, we
repeat the entire component separation procedure presented so
far Nrealis times, considering different Nrealis realizations of the
GNILC input maps (different realizations of Hi and noise plus
foregrounds). Each debiasing procedure was performed with
Nrealis independent realizations of Hi and noise. Finally, we took
the debiased power spectra and calculated the mean and the stan-

dard deviations (error bars). We carried out this entire procedure
for Nrealis = 10 and Nrealis = 50 using the data in the MD80 con-
figuration. Figure 13 shows the 21 cm all-sky real and estimated
power spectra for two different Nrealis and in three different fre-
quency channels. It can be observed that the spectrum relative to
Nrealis = 50 is closer to the real power spectrum in all the fre-
quencies presented. The best result is obtained for Nrealis = 50
at 1258 MHz, where the average power spectrum reconstruction
error is η̄50r = 2.8%.

It is expected that a better estimate of the 21 cm power spec-
trum can be made with a larger Nrealis. However, due to our
available computational capacity, we limit the number of real-
izations to Nrealis = 50. The complete set of simulations for the
MD80 configuration took two and a half months to be ready. For
this, we used 56 cores of the processor Intel Xeon Gold 5120
2.20 GHz and 512 GB of RAM.

7. Conclusions

This paper presents two new results relevant to the BINGO data
analysis and hardware configuration before commissioning time.
The component-separation procedure described here is based
on GNILC, which was introduced by Liccardo et al. (2022) and
Fornazier et al. (2022) as part of the BINGO collaboration, and
is divided in two steps: first, we recover the Hi + thermal noise
maps applying GNILC to the BINGO simulated data; and second,
we reconstruct the noiseless 21 cm power spectra, passing the
first step results through a debiasing procedure. For our analysis,
as default, we used the BINGO project baseline configuration,
MD30, and ten Hi and noise realizations in debiasing, that is,
Nrealis = 10.

Our primary findings show that GNILC is robust against dif-
ferent foreground-emission models. We tested two synchrotron
models, finding that the reconstructed Hi plus noise maps in both
cases show no significant differences in the pixel domain. In the
harmonic domain, after the debiasing procedure, we obtained a
mean Hi power spectra reconstruction error over all frequency
channels in the 30 ≤ ` ≤ 270 interval of 7.2% for the MD30
case and 6.4% for the GD30 case. The difference between the
foreground residuals of the two models is evident for ` < 100.
This is due to the GNILC ability to adapt the foregrounds removal
not only to different regions of the sky, but also to different angu-
lar scales.
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Fig. 13. Real (black) and reconstructed (green for Nrealis = 10 and red
for Nrealis = 50) 21 cm signal all-sky power spectra, with respective
error bars for the MD80 case (see Table 1). The power spectra plotted
refer to the channels centered at 982 MHz (top), 1118 MHz (center),
and 1258 MHz (bottom).

We also confirm, as expected, that an extra channel with a
simulated sky from the CBASS experiment improves our 21 cm
power-spectrum reconstruction. Considering the MD30 config-
uration, the mean error in the power-spectrum reconstruction
decreases from 7.2% without CBASS information to 5.7% when
we include the CBASS 5 GHz channel in the simulated data
(MD30+CBASS case).

Our second important finding is a near-optimal reconstruc-
tion of the Hi signal in a 80-frequency-channel configuration for
the BINGO experiment. In this case, we obtained a mean error in
our power spectrum reconstruction of 3% in the multipole inter-
val of 30 ≤ ` ≤ 270. This result was obtained by comparing
the component-separation results with simulated data with dif-
ferent numbers of frequency bins. These foregrounds-removal
runs indicate a stabilization trend in the reduction of the error
on our estimation of the 21 cm signal with an increasing number
of channels. More precisely, we find that the recovery quality of
the Hi signal begins to stabilize at Nch = 60 to Nch = 80, sug-
gesting that it would not be worth using more than 100 redshift
bins in the component-separation process. The definition of the
optimal number of frequency (redshift) bins will have a signifi-
cant impact on the hardware configuration, helping us to define
the number of binning channels needed to preserve information
from the raw data in < 1 ms sampling mode.

We also tested the effect of increasing the number of real-
izations of Hi and noise used in the debiasing procedure on the
quality of the 21 cm signal estimate. The mean power spectrum
reconstruction error – calculated over all channels – obtained

with Nrealis = 10 is η̄ = 4.7% and with Nrealis = 50 is η̄ = 3.0%.
These results indicate, as expected, that a greater number of Hi
and noise realizations allows a better estimation and correction
of additive and multiplicative biases of the GNILC output power
spectra. For an optimal choice of Nrealis, a more detailed analysis
is necessary.

Finally, we repeated the entire component-separation pro-
cess for 10 and 50 different realizations of the BINGO simulated
input data (sky + noise) in the MD80 configuration and obtained
our final estimates of the reconstructed 21 cm spectra. We com-
pared these results with the power spectrum of an independent
21 cm full-sky realization, considered here as the real map of
Hi. Our estimated spectra are in good agreement with the input
spectra (independent realization). As expected, with 50 realiza-
tions, it is possible to obtain a more accurate reconstruction of
the Hi signal than with 10 realizations. The mean reconstruction
error calculated in the range 30 ≤ ` ≤ 270 is equal to 6.3%,
3.4%, and 2.8% for channels centered at 982 MHz, 1118 MHz,
and 1258 MHz.

Our results indicate that the debiasing procedure described
in this work should work efficiently in the BINGO data-analysis
pipeline, suggesting that, despite recovering the signal with good
efficiency in the harmonic space covered by BINGO, a more
detailed analysis of the debiasing procedure should be carried
out in future works, particularly because we did not include the
1/ f contribution to the overall noise in this analysis.
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