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ABSTRACT 

 

A landslide is a natural phenomenon that becomes a disaster when occurring in urban 

areas. Usually triggered by heavy rainfall, the landslides can cause economic damage, 

social impact, and fatalities. In Brazil, the region called Serra do Mar is one of the most 

affected areas, where several landslides are recorded every year. Therefore, the 

identification, analysis, and monitoring of landslide-prone areas are essential to avoid 

disasters. This doctoral thesis identifies the landslide-prone areas in the Guarujá 

municipality, performs a temporal analysis of urban sprawl from 1990-2021, correlates it 

with landslide occurrences, and develops a landslide early warning system, to avoid 

disasters. The temporal analysis was performed using satellite images from the Landsat 

series and an orthophoto for image classification of the study area. To identify landslide-

prone areas, two mathematical models were tested: TRIGRS (Transient Rainfall 

Infiltration and Grid-based Regional Slope-Stability Model), and SINMAP (Stability 

Index Mapping). The results were validated using a landslide inventory, prepared from 

satellite images and Guarujá Civil Defense data. The susceptibility map developed by IPT 

(Technological Research Institute) supports the validation. The performance of both 

models was compared using statistical indexes and the TRIGRS model performed the 

best. Therefore, an early warning system was developed in Python using TRIGRS to 

model the landslide-prone areas. The system automatically acquired weather forecasts 

from the Climatempo website, calculates the slope stability, and if necessary, sends an 

alert. The results of this study are a landslide susceptibility map for the Vila Baiana 

neighborhood in Guarujá municipality, the correlation between rainfall events, landslides, 

and urban sprawl, and an early warning system using TRIGRS. 

 

Keywords: Landslides. TRIGRS. Early warning system. 

 

 

 

 

 

 

  



xii 
 

  



xiii 
 

ANÁLISE COMPARATIVA ENTRE OS MODELOS TRIGRS E SINMAP PARA 

A DETERMINAÇÃO DE ÁREAS DE DESLIZAMENTO: SUBSÍDIOS PARA O 

DESENVOLVIMENTO DE UM SISTEMA DE PREVISÃO E ALERTA 

 

RESUMO 

Deslizamentos de terra são um fenômeno natural, que se tornam desastres quando 

ocorrem em áreas urbanas. Geralmente desencadeados por chuvas intensas, os 

deslizamentos de terra podem causar prejuízos econômicos, sociais e fatalidades. No 

Brasil, a região chamada de Serra do Mar é uma das áreas mais atingidas, registrando 

diversos deslizamentos todos os anos. Desta forma, a identificação, análise e 

monitoramento das áreas suscetíveis à deslizamentos de terra são essenciais para evitar 

desastres. Esta tese de doutorado identifica as áreas suscetíveis à deslizamentos de terra 

no município do Guarujá, realiza uma análise temporal da expansão urbana de 1990-2021, 

relacionando-a com as ocorrências de deslizamentos, e desenvolve um sistema de 

previsão e alerta de deslizamentos, a fim de evitar desastres. Uma análise temporal foi 

realizada utilizando imagens de satélite da série Landsat, e uma ortofoto para classificar 

a área de estudo. A identificação das áreas suscetíveis à deslizamento de terra foram 

realizadas utilizando-se dois modelos matemáticos: TRIGRS (Transient Rainfall 

Infiltration and Grid-based Regional Slope-Stability Model) e SINMAP (Stability Index 

Mapping). Os resultados foram validados a partir de um inventário de cicatriz de 

deslizamentos, preparado a partir de imagens de satélite e dados da Defesa Civil do 

Guarujá. O mapa de suscetibilidade desenvolvido pelo IPT (Instituto de Pesquisas 

Tecnológicas) auxilia na validação dos resultados. Comparou-se a performance de ambos 

os modelos usando índices estatísticos, e o modelo TRIGRS obteve os melhores 

resultados. Diante disso, um Sistema de previsão e alerta foi desenvolvido em Python, 

utilizando-se do modelo TRIGRS para a identificação das áreas suscetíveis à 

deslizamento de terra. O sistema automaticamente adquire dados de previsão do tempo, 

a partir do site do Climatempo, calcula a estabilidade das encostas e, se necessário, envia 

um alerta. Como resultado desse estudo, gerou-se um mapa da suscetibilidade à 

deslizamentos de terra, no bairro da Vila Baiana localizada no município do Guarujá, a 

correlação entre eventos de chuva, deslizamentos e expansão urbana, e um sistema de 

previsão e alerta usando o modelo TRIGRS. 

 

Palavras-chave: Deslizamento de terra. TRIGRS. Sistema de previsão e alerta. 
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1. INTRODUCTION 

The number of registered disasters has been increasing worldwide, especially since the 

1950s (MARCELINO et al., 2006). Some authors, such as Nicholls (2001) and Pielke 

(2005; 2006), associate the increase in disasters with a higher vulnerability of society. 

However, for Houghton (2003), there is a correlation between disasters and global climate 

change.  

In Brazil, landslides are a natural phenomenon, usually triggered by high precipitation 

rates. This phenomenon can be called “deslizamento” (landslide) or “escorregamento” 

(slip) in Portuguese. Both terms are used to describe a surface rupture with the 

displacement of soil and rocks. Despite that, this study will use the term landslide.   

 When landslides happen in urban areas, they become disasters due to economic damage, 

social impact, and fatalities. As an example, in January 2011, several landslides occurred 

in the mountainous region of Rio de Janeiro State, killing 947 people, leaving more than 

300 missing, and thousands homeless. It was considered one of the worst disasters in the 

country (CEMADEN, 2016).  

Most landslides registered in Brazil occurred during the rainy season, corresponding to 

the summer season (December through March). From 1991 to 2019, 1146 landslides were 

registered, and 69% of them happened in the southeast region of the country, as presented 

in Figure 1.1. Furthermore, Figure 1.2 shows the distribution of how landslides affected 

the population (CENAD, 2013; CEPED-UFSC, 2013; 2020).  

Analyzing Figure 1.2, one observes that more than 1.5 million people were affected 

somehow by landslides. These people account for the homeless, injured (hurt, disease), 

or missing. Therefore, identifying, analyzing, and monitoring landslide-prone areas is 

critical. When preventive actions are not applied, there is an increase in the intensity, 

magnitude, and frequency of hazard impacts (KOBIYAMA et al., 2006). Moreover, the 

development of a warning system with different risk levels also helps avoid and minimize 

the disaster impact. 

In 1987-1988, several landslides occurred in a region called "Serra do Mar", in São Paulo 

State. Consequently, the Civil Defense Preventive Plan – PPDC (in Portuguese: Plano 

Preventivo da Defesa Civil), was created to identify, evaluate, and monitor the susceptible 
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geological areas, mainly related to landslides. One of the essential actions of PPDC is the 

preventive removal of people living in risk areas during rainfall events (MACEDO et al., 

2004; MENDES; FILHO, 2015). 

 

Figure 1.1. Landslides documented in Brazil from 1991 to 2019. 

 

Source: Adapted from CEPED-USFC (2020). 

 

Figure 1.2. The social impact caused by landslides in the southeastern region of Brazil, from 

1991 to 2019. 

 

Source: Adapted from CEPED-USFC (2020). 
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With the current climate variability, there is a tendency to increase extreme weather 

conditions, either with long periods of drought or heavy and long-term rainfall 

(HOUGHTON, 2003). According to Brollo and Ferreira (2016), in São Paulo State from 

2000 to 2015, 10,893 geodynamic phenomena were registered, affecting 971,849 people 

and killing 534. Among these phenomena, 1,430 had geological nature (landslides, debris 

flow, rock displacement), 6,064 hydrological characteristics (flooding, flash flooding), 

2,444 were meteorological (rainfall, storms, hailstones), and 955 related to climate 

(drought, frost). 

 Heavy rainfall might trigger landslides; however, the area's susceptibility is strongly 

related to its geological and geomorphological characteristics. For that reason, it is crucial 

to study how climate and soil’s geotechnical properties interact to understand the hydro-

mechanical aspects responsible for triggering landslides.  

The identification of landslide-prone areas can be performed using statistical methods 

(CARRARA et al., 1991; BAI et al., 2009; CERVI et al., 2010; LI et al., 2012) and 

physically-based models such as the Shallow Slope Stability Model (SHALSTAB) 

(MONTGOMERY; DIETRICH, 1994; DIETRICH, W. E.; MONTGOMERY, 1998; 

DIETRICH; et. al., 2011), Stability Index Mapping (SINMAP) (PACK et al. 1998), 

Transient Rainfall Infiltration and Grid-based Regional Slope Stability Model (TRIGRS) 

(BAUM et al., 2008), physically-based Slope Stability Model (dSLAM) (WU; SIDLE, 

1995), SLOPE/W and  SEEP/W (GEO-SLOPE, 2016).  

The Shalstab - Shallow Landsliding Stability Model, developed by Dietrich and 

Montgomery (1998), is a deterministic mathematical model to identify landslide-prone 

areas. Its formula is based on the infinity slope stability model, defined by the Mohr-

Coulomb Law, and on the steady-state hydrological model, developed by O’Loughlin 

(1986). Shalstab calculates the critical threshold of rainfall for the occurrence of a surface 

rupture and, consequently, a landslide (MONTGOMERY; DIETRICH, 1994; DIETRICH 

AND MONTGOMERY, 1998; VIEIRA; RAMOS, 2015; KÖNIG et al., 2019). 

The Sinmap – Stability Index Mapping, developed by Pack et al. (1998), is a probabilistic 

model based on the steady-state hydrologic concepts and the infinite slope stability 

model, “that balances the destabilizing components of gravity and the restoring 
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components of friction and cohesion on a failure plane parallel to the ground surface” 

(PACK et al., 1998, p. 1).  

Baum et al. (2008) developed the mathematical model TRIGRS (Transient Rainfall 

Infiltration and Grid-based Regional Slope Stability Model) to calculate the variations of 

the Factor of Safety (FS) due to changes in the transient pore-pressure and soil moisture 

during a rainfall infiltration. 

The dSLAM software is a distributed, physically based model that combines the 

mathematical formulation of an infinite slope model with a groundwater kinematic model. 

It uses the continuous changes in vegetation to analyze landslides and the variation of the 

Factor of Safety (FS) on steep slope forests (WU; SIDLE, 1995; 1997).  

The GeoSlope software, developed by the Geo-Slope company in Canada, is a 

mathematical model based on the principle of limit equilibrium to analyze the 

deformation and stability of geotechnical structures. It has two modules: Seep/W and 

Slope/W. The Seep/W module uses numerical analysis to calculate the water infiltration 

process in the soil, for both saturated and unsaturated soil conditions (GEO-SLOPE, 

2012, 2016; GHOSH, 2012; MENDES et al., 2018a). The results from Seep/W are used 

in the Slope/W module to analyze the terrain´s stability and calculate the Factor of Safety 

(FS). (GEO-SLOPE, 2016; MENDES et al., 2018a).  

This doctoral research project is committed to use the TRIGRS model to identify 

landslide-prone areas based on the successful results reported in the literature (CHIEN-

YUAN et al., 2005; GODT et al., 2008; SORBINO et al., 2010; LIAO et al., 2011; PARK 

et al., 2013; ZIZIOLI et al., 2013). The expected outcome is a landslide-prone map for 

the Vila Baiana neighborhood in Guarujá municipality, and the evaluation of TRIGRS as 

a tool for early warning systems. 

This project is based on the hypothesis that TRIGRS has a higher degree of accuracy in 

identifying landslide-prone areas. And it can be used as an early warning system, 

providing alerts based on the soil moisture and variation from the slope Factor of Safety. 

Moreover, a temporal analysis of urban sprawl helps to understand if anthropic changes 

in slope areas induced landslides.  
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2. OBJECTIVES 

The main objective of this work is the development of an early warning system using the 

mathematical model TRIGRS to identify landslide-prone areas in the Guarujá 

municipality. 

2.1.  Specific objectives  

• Perform a temporal analysis of urban sprawl, using satellite images and 

machine learning techniques, and correlate it with landslide occurrences. 

• Analyze the correlation between rainfall events and landslides. 

• Investigate the topographic and lithological aspects of the Guarujá 

municipality. 

• Comparative evaluation of the TRIGRS and SINMAP models for assessing 

landslide-prone areas 

• Development of an early warning system that combines weather forecast and 

TRIGRS predictive analysis to determine risk levels, and issue alerts based on 

the variation of the Factor of Safety. 
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3. THEORETICAL FRAMEWORK 

3.1 Definitions 

Natural phenomena, which occur worldwide, might become a disaster when it affects a 

group of people, disrupting their everyday life (KOBIYAMA et al., 2006; KÖNIG et al., 

2018). Communities that live in areas affected by natural hazards are vulnerable to their 

consequences, and these people are at risk due to financial damage and losses of life. 

There is a correlation among disaster, hazard, risk, susceptibility, vulnerability, and 

resilience; thus, some definitions are necessary. 

The hazard is related to the natural phenomena recurrence, affecting different areas 

individually or combined (one or more natural phenomena happening simultaneously, in 

the same place). It is common for a hazard to cause problems in the affected region. The 

risk happens due to a combination of hazard and vulnerability. It is related to social 

impacts, economic and structural damages. Risk levels (high or low risks) agree with 

vulnerability (e.g., severe hazards affecting a vulnerable group of people constitute high 

risk) (KOBIYAMA et al., 2006). 

The vulnerability is related to people and communities. It is associated with the 

preexisting conditions of material and a social life affected by natural phenomena. The 

susceptibility is related to areas and regions affected by natural hazards (WISNER et al., 

2003; MACEDO; BRESSANI, 2013; TOBIN; WHITEFORD, 2013; KÖNIG et al., 

2018). For example, Etna is an active volcano with frequent eruptions. The cities near 

Etna are in susceptible areas, meaning they are susceptible to volcano hazards. People 

who live in those cities are vulnerable to the same hazards. In a Brazilian context, the 

neighborhood Vila Baiana in Guarujá-SP is susceptible to landslides, and the population 

is vulnerable to the consequences. 

The disasters occur when a group of people or a community is affected by a natural 

hazard, and there is a disturbance in their development and everyday life (e.g., livestock, 

crops, homes, roads, bridges, schools, and hospitals are destroyed) (WISNER et al., 2003; 

MACEDO; BRESSANI, 2013).  
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Resilience is related to the population´s capability to be prepared, cope with, resist and 

recover from a significant disruption caused by a natural hazard within an acceptable time 

(AVEN, 2011; MACEDO; BRESSANI, 2013; BITAR et al., 2015). 

3.2 Pedology and characteristics of mass movements 

Pedology is the study of soil formation, its properties characterization, and the mapping 

of its geographic distribution (SOUZA, 1995). Moreover, a pedological study determines 

the best use for a specific area (i.e.: agriculture, preservation areas, urban expansion). 

The soils consist of roughly parallel sections, called horizons (Figure 3.1), which differ 

from the parent material (hard bedrock) due to pedogenesis. Pedogenesis is the process 

of soil formation, which involves addition, losses, transformation, and translocation of 

matter. The types of soils differ accordingly to the parent material, topography, biota, 

climate, and length of time during pedogenesis (JENNY, 1945; SOUZA, 1995; 

PHILLIPS, 2017; EMBRAPA, 2018). They can be classified based on their 

morphological characteristics: color, texture, structure, porosity, and cohesion. It is also 

analyzed the concentration of iron, aluminum, silica, clay, and organic matter 

(BOCKHEIM et al., 2005). The soil layers have specific characteristics. Horizon O is 

characterized by decomposed and undecomposed organic matter. Horizon A (surface 

horizon) is characterized as the mineral horizon and has a high concentration of organic 

matter. Horizon B is the subsoil, formed due to intense pedogenetic processes, with sandy 

loam or finer texture and a high concentration of clay. The C horizon is the substratum 

(regolith). In this horizon, the rock is partially weathered with fragments of different sizes 

(SOUZA, 1995; EMBRAPA, 2018). There is also a colluvial cover, which is the 

accumulation of soil material and small fragments of rocks on the base of slopes, mainly 

by gravity.   

Each soil has its own physical and chemical properties, which determine the soil´s 

susceptibility to landslides and erosive processes (MENEZES; PEJON, 2010).   

Gravitational mass movements are surface transformations with a displacement of soil, 

rocks, and debris (FELL et al., 2008; KÖNIG et al., 2019). They can be classified into 

four types accordingly to the soil type, water moisture content, velocity, rupture, and 

deformation (VARNES, 1978; CRUDEN; VARNES, 1996; CENAD, 2013), as presented 

in Table 3.1.    
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Figure 3.1. Schematic soil horizons. 

 

Source: Adapted from Larramendy and Soloneski (2019). 

 

Table 3.1. Types of Mass Movements. 

Types of Mass 

Movements 
Description 

Slide 
A large volume of soil displacement moving down on the slope. (i.e., 

translational, and rotational landslides) 

Falls Rock and sediment displacement falling through the air. 

Flows A mix of soil, rocks, and sediments with high water moisture volume 

flowing rapidly down the slope.  (i.e., Debris flow, mudflows/lahar) 

Creeps 
A very slow process (years) of mass movement that happened deeper in 

the ground. 

 

 In Brazil, the slide is the mass movement type that causes several disasters, thus it will 

be emphasized and described as a landslide. According to Cruden and Varnes (1996), 

landslides occur when there is a surface rupture, with soil and rock sliding down slopes. 

The landslides are classified as rotational and translational slides.  
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The translational slides occur in steep parallel surfaces when there is a rupture between 

the shallow soil layer and the impermeable substrate beneath it. They usually happen in 

residual and colluvial soil layers, with the soil rupture occurring at depths from 0.5m to 

5.0m (VIEIRA, 2007; VIEIRA; RAMOS, 2015; MENDES et al., 2018a). Subsequently, 

the impermeable substrate can be a rock or soil layer with high values of clay. The 

rotational slides are characterized by a deep surface rupture that deforms this surface 

concavely. Its occurrence usually happens in landfills and dams (AHRENDT, 2005; 

ZÊZERE et al., 2005).  Figure 3.2 presents the two types of landslides.  

To understand and predict soil behavior, the knowledge of geotechnical and hydrological 

properties is essential. Some geotechnical properties related to the prediction of landslides 

are shear strength, soil cohesion, and internal friction angle; while the hydrological 

properties are hydraulic conductivity and diffusivity. The definitions of these parameters 

are presented in Table 3.2. 

 

Figure 3.2. Representation of a rotational slide (A) and translational slide (B). 

 

Source: Adapted from CEMADEN (2016). 
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Table 3.2. Definitions of soil properties. 

Soil 

Properties 
Definitions 

Geotechnical 

Properties 

Soil 

Cohesion 
It is the force that holds the soil particles. 

Internal 

Friction 

Angle 

The angle between the shear strength and the normal effective 

stress in which a failure occurs. 

Shear 

Strength 
It is related to the maximum shear stress a soil can sustain.  

Hydrological 

Properties 

Hydraulic 

Conductivity 

Also called the Coefficient of Permeability - It is a measure of 

velocity with which the water can pass through soil layers. 

Hydraulic 

Diffusivity 

It is the ratio of Hydraulic Conductivity to the effective 

porosity, i.e., the water capacity to infiltrate. 

Source: Ahrendt (2005); Das and Kondraivendhan (2012); Roy et al. (2017). 

 

3.3 Satellite images 

Satellite images have been used in several different types of research: change detection 

of land use and land cover, occupation, disasters management, and detection of burning 

areas or forest degradation, among others (GUILD et al., 2004; HENRIQUE et al., 2008; 

NOVACK, 2009;  PINHO et al., 2012; RODRIGUES, 2014; LIBONATI et al., 2015; 

PECHINCHA; ZAIDAN, 2015; KÖNIG et al., 2019).  

Today, there are several satellite sensors, each of them with specific characteristics. They 

have different spectral, spatial, and radiometric resolutions. The revisit frequency and 

swath width also change. Some satellite sensors with high spatial resolution have a more 

refined spectral resolution, like IKONOS, WorldView-2, and 3, QuickBird, and Planet, 

among others. These images are widely used in urban areas studies because they provide 

the opportunity to differentiate individual trees, different vegetation species, landslides 

scars, and types of constructions (houses, buildings) or roads (PINHO; et. al., 2005; 

SANTOS; et. al., 2011; PU; LANDRY, 2012; MENEGHETTI; KUX, 2014; KÖNIG, 

2018). 

In 1972, the Landsat 1 was launched into space, and despite the low spatial resolution of 

the Landsat program (30 m), they are useful for temporal analysis. Furthermore, this 

doctoral project use Planet images to identify landslide scars and the Landsat collection 
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(Landsat 5, 7, and 8) for the temporal analysis of the study area. Table 3.3 presents a 

summary of each satellite´s spatial resolution that will be used in this project. 

 

Table 3.3. Summary of the sensor’s specifications. 

Satellite Sensor Bands 
Spectral 

Resolution 

Spatial 

Resolution 

Radiometric 

Resolution 

Landsat 

5 
TM 

Blue  
0.45 - 0.52 

µm 

30 m 

 8 bits 

Green 
0.50 - 0.60 

µm 

Red 
0.63 - 0.69 

µm 

Near Infrared 
0.76 - 0.90 

µm 

Landsat 

7 
ETM+ 

Blue  
0.45 - 0.52 

µm 

Green 
0.50 - 0.60 

µm 

Red 
0.63 - 0.69 

µm 

Near Infrared 
0.76 - 0.90 

µm 

Panchromatic 
0.52 - 0.90 

µm 
15 m 

Landsat 

8 
OLI 

Coastal 

aerosol 

0.43 - 0.45 

µm 

30 m 

16 bits 

Blue  
0.45 - 0.51 

µm 

Green 
0.53 - 0.59 

µm 

Red 
0.64 - 0.67 

µm 

Near Infrared 
0.85 - 0.88 

µm 

Panchromatic 
0.50 - 0.68 

µm 
15 m 

Dove Planet 

Blue  
0,45 - 0,51 

µm 

3 m 12 bits 
Green 

0,50 - 0,59 

µm 

Red 0,59 -0,67 µm 

Near Infrared 
0,78 - 0,86 

µm 
Source: Adapted from Engesat (2020). 
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3.4 Data mining and image classification 

With the advancement of Remote Sensing techniques and the total amount of digital data 

available, it is important to determine which data and information are crucial for a specific 

study and research. However, the extraction of the most relevant data is laborious and 

time-consuming. From that necessity, Knowledge Discovery in Databases (KDD) was 

developed. According to Fayyad et al. (1996), KDD is a process that extracts essential 

data from a massive volume of information. The steps are data acquisition, pre-

processing, data transformation, data mining, interpretation, and evaluation, resulting in 

knowledge (Figure 3.3). 

The primary step of KDD is Data Mining. This process automatically finds patterns and 

attributes from large data volumes, clustering then. It can be descriptive, which 

characterizes the data properties, or predictive, which uses the data information to make 

forecasts about them (HAN et al., 2012, KÖNIG et al., 2019). Some data mining 

algorithms use statistical methods, neural networks, fuzzy logic, or decision tree, among 

others (GOLDSCHMIDT; PASSOS, 2005). The statistical methods are used to resume 

and describe a group of data, helping in the validation process. 

In Remote Sensing applications, the data mining process is used to extract attributes and 

characteristics (spatial and spectral information) from pixels or objects (regions) present 

in digital images (NOVO, 2010). An example of a system that uses data mining 

techniques for digital image analysis is GeoDMA, developed by Körting et al. (2013). 

GeoDMA has a decision tree, Self-Organizing Maps (SOM), and neural networks as 

algorithm options.  

The software WEKA provides the C4.5 algorithm to perform data mining, as presented 

in Novack (2009), Carvalho (2011), Pinho, et al. (2012), and Bento (2016) studies. 

Moreover, the eCognition platform uses the Classification and Regression Trees (CART) 

algorithm for the data mining process (BENTO, 2016; KÖNIG, 2018; KÖNIG et al., 

2019), among others. 
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Figure 3.3. Steps of the KDD process. 

 

Source: Adapted from Fayyad et al. (1996). 

 

Once the data mining process is finished, and the data are clustered according to specific 

attributes (spectral, texture, form, color), the image classification process starts. The 

Object-based Image Analysis (OBIA) paradigm is frequently used for high spatial 

resolutions images classification. The OBIA paradigm extracts information from satellite 

images in a semi-supervised way. It clusters similar objects, considering the pixel 

information and its neighbors. The advantage of this paradigm is to segment the image 

objects, which makes the interpretation easier (HAY; CASTILLA, 2006; PINHO et al., 

2012; DRONOVA, 2015; CHEN et al., 2018; KÖNIG et al., 2019).  

3.5 TRIGRS mathematical model 

Baum et al. (2008) developed the mathematical model TRIGRS (Transient Rainfall 

Infiltration and Grid-based Regional Slope Stability Model) to calculate variations in the 

Factor of Safety (FS) due to changes in the transient pore-water pressure (pressure exerted 

by water in the soil pores) and soil moisture (soil water content) during a rainfall 

infiltration. The Factor of Safety is the ratio of the shear strength to the shear stress acting 

on the soil, meant to determine the slope stability. A FS equal to or higher than 1 means 

stability, and lower values (FS< 1) indicate unstable slopes (AHRENDT, 2005). 

This model, written in FORTRAN, associates the hydrological model based on Iverson 
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(2000), who linearized the one-dimensional analytical solutions of Richards Equation 

(Equation 3.1) and a stability model based on the equilibrium limit principle, giving rise 

to its final formulation (Equation 3.2). It represents the vertical rainfall infiltration within 

homogeneous isotropic materials (BAUM et al., 2008). 

 

(
𝛛𝛉

𝛛𝐭
) = (

𝛛

𝛛𝐳
) [𝐊(𝛙) (

𝟏

𝐜𝐨𝐬𝟐𝛅

𝛛𝚿

𝛛𝐳
− 𝟏)]                                  (3.1) 

 

where θ is the soil volumetric moisture content (dimensionless), t is the rainfall time 

duration (s), z is the soil depth (m), K (Ψ) is the hydraulic conductivity (m/s kPa) in the 

z-direction, and Ψ is the groundwater pressure head (kPa).  

                                         

𝐅𝐒 = (
𝐭𝐚𝐧 𝛟

𝐭𝐚𝐧 𝛂
) + [(

𝐜−𝚿(𝐙,𝐭)𝚼𝐰 𝐭𝐚𝐧 ∅

𝚼𝐬𝐙 𝐬𝐢𝐧 𝛂 𝐜𝐨𝐬 𝛂
)]                                    (3.2) 

 

where c is the cohesion (kPa), 𝜙 is the internal friction angle (deg.), 𝛶𝑤 is the unit weight 

of groundwater (kN/m³), 𝛶𝑠 is the soil-specific weight (kN/m³), Z is the layer depth (m), 

α is the slope angle (0º < α < 90º), and t is the time (s).   

The TRIGRS input data are the geotechnical parameters (cohesion, soil specific weight, 

hydraulic conductivity, and internal friction angle), hydrological data (initial infiltration 

rate and initial groundwater table depth), and rainfall duration and intensity. The model 

allows for the variation of input values, such as soil properties cell by cell, because it 

considers horizontal heterogeneity. It is possible to have more than one type of soil in the 

same area, with specific physical properties. This is called horizontal heterogeneity. 

According to Baum et al. (2008, p.2), “the model results are very sensitive to the initial 

conditions, particularly the steady component of the flow field and initial groundwater 

table depth”. Figure 3.4 represents the components of the TRIGRS model in which, 

during a rainfall event, infiltration and surface run-off happen simultaneously. There is 

an increase in the groundwater table and, consequently, an increase in pore-water 

pressure. 
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Figure 3.4. Representation of how the TRIGRS model calculates the variation of the Factor of 

Safety, based on the rainfall infiltration in soil layers and the groundwater table 

variation. 

 

Source: Adapted from Grelle et al. (2014). 

 

3.6 SINMAP  

Sinmap is a probabilistic model based upon the steady-state hydrologic concepts with the 

infinite slope stability model, “that balances the destabilizing components of gravity and 

the restoring components of friction and cohesion on failures plane parallel to the ground 

surface” (PACK et al., 1998, p. 1).  The approach is appropriated to determine slope 

instability due to shallow translational landsliding phenomena.   

It obtains the input information, such as slope and specific catchment area, from a digital 

elevation model (DEM). According to Pack et. al., (1998) the soil thickness is constant 
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and measured perpendicular to the slope. The transmissivity is also constant. This model 

considers the real uncertainties about the estimation of the other input parameters. It 

accepts values for upper and lower bounds, using a uniform distribution. Therefore, the 

model requires the calibration regions, which are sub-samples of the study area based on 

the difference between soil, vegetation, or geological data (PACK, 1998; MEISINA; 

SCARABELLI, 2007; MICHEL; et. al., 2012, 2014; ZIZIOLI et al., 2013; THIEBES et 

al., 2016; CARDOZO; et. al., 2018). 

The input parameters are the lower and upper bound of T/R (ratio of transmissivity to the 

effective recharge), cohesion, and internal friction angle. The output of Sinmap is a 

Stability Index (SI) defined as the probability of the location being stable, ranging from 

0, most unstable, to 1, stable, as presented in  Table 3.4. 

The term “Lower threshold” refers to regions with a failure probability above 50%, while 

“Upper threshold” means the probability of failure below 50%. The “Defended slope 

zone” refers to areas where, according to SINMAP, are unstable no matter the parameter 

range specified, or the model is unable to compute stability. An example is bedrock 

outcrop areas and deep-seated instability such as earth flows and rotational slumps. 

According to the Sinmap approach, the Factor of Safety (FS) is calculated when the most 

conservative set of parameters still results in stable areas, and they are usually represented 

by values greater than 1. Equation 3.3 presents the FS formula. 

 

𝑭𝑺 =
{𝑪𝒓+𝑪𝒔+𝒄𝒐𝒔𝟐𝜽[𝝆𝒔  𝒈(𝑫−𝑫𝒘)+(𝝆𝒔  𝒈− 𝝆𝒘  𝒈)𝑫𝒘]𝒕𝒂𝒏𝝓}

𝑫 𝝆𝒔  𝒈 𝒔𝒊𝒏𝜽𝒄𝒐𝒔𝜽
                             (3.3) 

 

Where Cr is root cohesion [N/m²]; Cs is soil cohesion [N/m²]; θ is slope angle; ρs is wet 

soil density [kg/m³]; ρw is the density of water [kg/m³]; g is gravitational acceleration 

[9.81 m/s²]; D the vertical soil depth [m]; Dw the vertical height of the water table within 

the soil layer [m] and; 𝜙 the internal friction angle of the soil [degrees]. The slope angle 

θ is the arc tangent of the slope; S is expressed as a decimal drop per unit of horizontal 

distance (PACK et. al., 1998). The model computes the slope and wetness at each grid 

point assuming the constant distribution of parameters over the study area. 
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Table 3.4. Sinmap Stability Index. 

Condition 
Predicted 

state 
Parameter range 

The possible influence of factors 

not modeled 

SI > 1.5 
Stable slope 

zone 

The range cannot model 

instability 

Significant destabilizing factors are 

required for instability 

1.5 > SI > 1.25 
Moderately 

stable zone 

The range cannot model 

instability 

Moderate destabilizing factors are 

required for instability 

1.25 > SI > 1.0 
Quasi-stable 

slope zone 

The range cannot model 

instability 

Minor destabilizing factors could 

lead to instability 

1.0 > SI > 0.5 

Lower 

threshold 

slope zone 

Pessimistic half of the 

range required for 

instability 

Destabilizing factors are not 

required for instability 

0.5 > SI > 0.0 

Upper 

threshold 

slope zone 

Optimistic half of range 

required for stability 

Stabilizing factors may be 

responsible for the stability 

0.0 > SI 
Defended 

slope zone 

The range cannot model 

stability 

Stabilizing factors are required for 

stability 

Source: Pack et. al. (1998).  

 

3.7 Literature review 

3.7.1 SINMAP 

The probabilistic model SINMAP has been widely used to identify landslide-prone areas. 

Cardozo; et al., (2018) used the Sinmap to study the municipality of Nova Friburgo, Brazil, 

located in the mountainous area of Serra do Mar. It is a steep slope area with a declivity 

ranging from 15º to more than 35º degrees. The data consisted of a 10-meter DEM, a 

landslide scars inventory produced based on GeoEye-1 satellite data, and soil parameters 

acquired from the literature. Considering the geotechnical parameters' uncertainty, the 

authors simulated three scenarios, changing the range of the cohesion and internal friction 

angle. As a result, the model provides excellent results and successfully identified 90% of 

the landslides (55% within the unstable zones, and 35% in areas with critical conditions 

for soil rupture).  However, the authors claim that geotechnical and hydraulic parameters 

performed in situ and tested in laboratories would provide more accurate results. 

A similar approach was applied by Pechincha and Zaidan (2015). The authors determined 

the landslide-prone areas in the Córrego Matirumbide watershed, Juiz de Fora, Brazil. The 
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area has clayish soils, an annual average rainfall of 1300 mm, and unauthorized human 

settlement on steep slope areas. A DEM with 1 meter of spatial resolution, extracted from 

LiDAR images, was used as input. The geotechnical data were acquired from the literature, 

and a landslide scars inventory was prepared during the field survey. As a result, the 

instability area identified by SINMAP was validated with the presence of landslide scars. 

The authors verified a correlation between most of the unstable areas and their location in 

the steepest slope areas, with human settlement. The model proved its efficacy for the 

identification of landslide-prone areas. 

Similar results were acquired by Nery and Vieira (2015), which used the SINMAP model 

to identify the unstable areas in the Ultrafertil watershed, in Cubatão, Brazil. The area, 

located in the Serra do Mar mountains, has declivities ranging from 30º to 50º degrees. 

Input data were geotechnical and hydrological parameters acquired from the literature. A 

2-meter of spatial resolution Digital Terrain Model was used. The landslide inventory was 

elaborated based on aerial orthophotos from 1985, the year when more than a thousand 

landslides were registered. Three scenarios were proposed to analyze the sensitivity of 

each parameter in slope stability. The model correctly identified 90% of the landslides in 

unstable areas. The authors concluded that hydraulic parameters are the most sensitive 

ones regarding slope stability. 

The SINMAP model proved to correctly identify landslide-prone areas when applied on 

different terrains and lithologies. Thiebes et al., (2016) applied the SINMAP model in two 

different study areas: Swabian Alb, Germany, and Wudu County, China. The lithology of 

the area in Germany is characterized by clay soil underlying marl and limestone. The 

slopes are covered by debris from previous landslides, usually triggered by rainfall, snow 

melting, and earthquakes. A small town, named Eningen, is in the study area. The input 

data were a DEM with 1 meter of spatial resolution, geotechnical parameters acquired 

from the literature, a landslide inventory extracted from LiDAR images, and field 

mapping. As a result, 8% of the study areas were classified as unstable, and the model 

correctly identified 80% of the landslides. The high quality of topographic data led to 

excellent results.  

The lithology from the Chinese study area is characterized by slates, schist, and loess 

deposits, and it is predominantly used for agriculture. The landslides are usually triggered 
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by rainfall, especially during summer, and by tectonic activity. The input data used was a 

30-meters spatial resolution DEM, geotechnical parameters acquired from laboratory tests, 

and a landslide inventory prepared from optical remote sensing data. As a result, 22.6% of 

the area was classified as unstable, and 67.5% of landslides were correctly mapped. The 

low resolution of topographic data justified the relatively poor results for Wudu.   

A volcanic area usually suffers from landslides and monitoring the slope stability helps 

disaster management. Therefore, Deb and El-Kadi, (2009) applied the SINMAP model in 

Oahu – Hawaii, USA. The geology of the study area is the result of volcanism. It has steep 

slopes areas with declivities above 80º and a colluvial layer on the slopes formed from 

weathered basalt. The annual precipitation ranges from 650 mm to 700 mm (DEB; EL-

KADI, 2009). The topographic characteristics of the study area might generate flash 

floods. A landslide inventory was prepared using aerial photography, hydrological and 

geotechnical parameters were acquired from the Soil Survey Geographic (SSURGO) 

database and literature. A 10-meter DEM was used as input da-ta. Four calibration regions 

were chosen, according to geological, geomorphological, and land-cover characteristics. 

As a result, the SINMAP correctly identified all the landslides within the most unstable 

classes. The model classified 18% of the study area as very high susceptibility, and 21% 

as high susceptibility. The authors also compare the SINMAP results with the debris-flow-

hazards maps and realized that the model can be used as a tool to identify both hazard 

types.  

Pack et. al. (1998) applied the SINMAP in the Kimpala drainage, British Columbia, 

Canada. The soils are characterized by coarse granular tills and colluvium derived from 

basaltic bedrock. They used a DEM with 10-meters of spatial resolution and a landslide 

inventory acquired from the government. The model correctly identified 69.2% of the 

landslides. The authors agree that the combination of aerial photos and field mapping 

would improve the model results.  

The previous studies show that the probabilistic model acquired good results to identify 

landslide-prone areas in regions with different geological characteristics. Moreover, the 

quality of input data has a significant impact on the SINMAP results. A summary of 

studies using SINMAP is presented in Table 3.5. 
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Table 3.5. Summary of SINMAP literature review. 

Author 
Study 

Area 

Triggered 

Mechanism 

Acquisition 

data 
Validation Results 

(CARDOZO; 

LOPES; 

MONTEIRO, 

2018) 

Nova 

Friburgo, 

Brazil 

Rainfall Literature 
Landslides 

inventory 

55% landslides 

in unstable areas 

(PECHINCHA; 

ZAIDAN, 

2015) 

Juiz de 

Fora, 

Brazil 

Rainfall Literature 

Landslides 

inventory and 

Susceptibility 

maps 

78,5%landslides 

in unstable areas 

(NERY; 

VIEIRA, 2015) 

Cubatão, 

Brazil 
Rainfall Literature 

Landslides 

inventory 

90% landslides 

in unstable areas 

(THIEBES et 

al., 2016) 

Swabian 

Alb, 

Germany 

Rainfall, Snow 

melting, 

Earthquakes 

Literature 
Sensitivity 

analysis 

80% landslides 

in unstable areas 

Wudu 

county, 

China 

Rainfall and 

Earthquakes 

Laboratory 

tests 

Sensitivity 

analysis 

67,5% 

landslides in 

unstable areas 

(DEB; EL-

KADI, 2009) 

Oahu, 

Hawaii, 

USA 

Rainfall and 

Volcanism 
Literature 

Landslides 

inventory and 

Susceptibility 

maps 

92% landslides 

in unstable areas 

PACK et al., 

(1998) 

British 

Columbia, 

Canada 

Rainfall Literature 
Landslides 

inventory 

69.2% 

landslides in 

unstable areas 

 

3.7.2 TRIGRS 

Several studies have used TRIGRS to identify slope stability. Godt et al. (2008) applied 

the TRIGRS model in the steep coastal bluff of Puget Lowland, north of Seattle, USA. 

The hydraulic and geotechnical data were collected in situ and tested in a laboratory, and 

the landslide inventory was prepared from aerial photography. As a result, the model 

tends to underpredict the spatial extent of landslides for this study area. 

On the other hand, Chien-Yuan et al. (2005) had excellent results applying the TRIGRS 

model in Tenliao Mountain, the northern part of Taipei County, Taiwan. The geotechnical 

and hydrological parameters were acquired during fieldwork. Soil samples were collected 

and analyzed in a laboratory to provide the input parameters. However, the analysis’s 

initial condition consists of saturated soil due to more than 500 mm of rain in the previous 

days. The rainfall infiltration and the soil moisture had a significant impact on triggering 

landslides and debris flow. 
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Tan et al. (2008) investigated the landslide-prone areas in the Ta-Chia River watershed, 

in Taiwan. Due to the difficulty in acquiring soil samples, this research assumed that the 

soil´s geotechnical properties are strongly related to geology and used these values as 

input to the TRIGRS model. As a result, the model underestimated the unstable zone 

compared with the landslide occurrences. The results might be related to the initial 

conditions: differences in the initial groundwater table and the soil layer´s shear strength. 

These results show how the model results can be very sensitive to the initial conditions 

(BAUM; et. al., 2008). 

The quality and accuracy of the input parameters allowed TRIGRS to provide better 

results. Listo and Vieira (2015) compared the TRIGRS performance in two scenarios: 

first using geotechnical and hydrological parameters collected in situ, and in the second 

scenario, data were acquired from the literature. The study area was the Guaxinduba River 

watershed, in the municipality of Caraguatatuba, Brazil. The results were validated using 

landslides inventory and statistical analysis, such as Scar Concentration (SC), Landslide 

Potential (LP), and Probability of Detection – POD. The authors concluded that the first 

scenario had better results than the second one.  

Related results are presented in the research conducted by Park et al. (2013), who applied 

the TRIGRS model in Woomyeon Mountain, South Korea. Geological investigations 

were conducted by governmental institutions, providing accurate geotechnical and 

hydrological parameters for the area. This data was used as input, and the results 

corroborated the reality: TRIGRS classified the areas with landslide scars as unstable. 

The input parameter's accuracy contributed to TRIGRS's excellent results.  

The most typical application of TRIGRS models is to identify landslide-prone areas and 

validate the results using a landslide inventory. Statistical analysis, such as the Receiver 

Operating Curve (ROC) analysis, quantitative indexes (Scar Concentration – SC and 

Landslides Potential – LP; Probability of Detection – POD, False Alarm Ratio - FAR, 

Critical Success Index – CSI, and Success-Error index (SI and EI) also help to assess the 

performance and reliability of the model.  

To exemplify, Paul et al. (2018) identified the landslide-prone areas in Rio do Sul, Brazil, 

using the TRIGRS model. The geotechnical and hydrological parameters were acquired 

in situ. A rainfall series of 2011 events were used as input. Statistical indexes, such as 
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Success Index (SI) and Error Index (EI), were used to validate the results.  Past landslide 

events have been used to evaluate the model’s efficiency, and the results were accurate. 

Related studies were presented by Listo (2016); Schwarz and Michel (2016); Marín et al. 

(2018); García-Aristizábal et al. (2019) and Ciurleo et. al. (2019).  

The mathematical model has proven to be an appropriate tool to identify landslide-prone 

areas, and Listo et al. (2018) decided to analyze the models' capability to identify the 

surface rupture depth. TRIGRS was applied in Caraguatatuba, Brazil, to analyze the FS 

variation in different soil depths. The geotechnical and hydrological parameters were 

acquired in situ, and a landslide inventory from the 1967 event was prepared to validate 

the results. Statistical analysis, such as Scar Concentration (SC), Landslide Potential (LP), 

and Probability of Detection – POD, was used to validate the results. The model identified 

areas between 2 and 2,5 m depth with FS<1, which corroborate the surface ruptures from 

the 1967 landslides. Therefore, the TRIGRS model correctly identified the most unstable 

areas and the depth of surface rupture.  

Marín and Salas (2017) evaluated the influence of vegetation in landslide susceptibility 

analysis. They applied a model for the prediction of rainfall interception in forest 

canopies. The results of real rainfall infiltration were used in TRIGRS as initial soil 

moisture input to calculate the FS. The results show that areas without vegetation tend to 

be more unstable than those with arboreal cover. However, the authors agreed that tree 

roots and specific weight might have more influence on slope stability than rainfall 

interception, thus, future studies are necessary. 

Some studies evaluate how TRIGRS predicted slope stability during rainfall events, as 

shown in Liao et al. (2011). This study tested if the TRIGRS model could predict the most 

unstable areas during hurricane Ivan. The geotechnical parameters were extracted from 

the State Soil Geographic, which mapped the soil in the USA, and the River Forecast 

Center provided hourly rainfall data from Ivan'. The initial conditions of analysis 

consisted of a saturated soil layer due to the passage of hurricane Frances a week earlier. 

As a result, the model could predict almost 98% of the landslides, proving to be a useful 

tool for early warning systems of landslides events. The input parameters were very 

accurate, which provide even more precise results. 
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Similar results were presented by Zhuang et al. (2017), which analyzed the TRIGRS 

performance during a 24-hour rainfall in Yan’an, China. As a result, the model generates 

four slope stability maps, corresponding to 6:00, 12:00, 18:00, and 24:00 hours. TRIGRS 

predicted how the total amount of unstable areas (FS<1) scaled with increased rainfall 

duration. At the beginning of rainfall (6:00), the areas with FS< 1 represented just 0.2% 

of the total area. As time passed, the area increased to 3.3%, 3.8%, and 5.1%, respectively. 

A summary of studies using TRIGRS is presented in Table 3.6. 

 

Table 3.6. Summary of research on TRIGRS. 

Authors Study Area 
Triggered 

Mechanism 

Acquisition 

data 
Validation Results 

Godt et 

al., 

(2008) 

Seattle - USA Rainfall 
Laboratory 

tests 
ROC analysis 

80% landslides 

in unstable 

areas 

Chien-

Yuan et 

al., 

(2005)  

Taipei County 

-Taiwan 
Rainfall 

Laboratory 

tests 

Landslides 

inventory and 

Variation of 

pore-water 

pressure 

Variation of 

pore-water 

pressure 

changes the 

soil rupture 

mechanism  

Tan et 

al., 

(2008) 

Tai Chi - 

Taiwan 

Rainfall and 

Typhoon 
Literature 

Landslides 

inventory and 

Typhoon data 

Landslides and 

unstable areas 

agree with 

typhoon 

trajectory 

Liao et 

al., 

(2011) 

Macon 

County, 

North 

Carolina, 

USA 

Rainfall and 

Hurricane  
Literature POD/FAR/CSI 

98% landslides 

in unstable 

areas 

Park et 

al., 

(2013) 

Woomyeon 

Mountain, 

Seoul - South 

Korea 

Rainfall 

Literature 

and 

Laboratory 

tests 

ROC analysis, 

SI/EI, SC/LP, 

POD/FAR/CSI 

33% landslides 

in unstable 

areas 

Zhuang 

et al., 

(2017) 

Yan’an - 

China  
Rainfall 

Literature 

and 

Laboratory 

tests 

Landslides 

inventory and 

ROC analysis 

Several 

landslides 

registered in 

areas with 

FS<1 

Listo and 

Vieira 

(2015) 

Caraguatatuba 

- Brazil 
Rainfall 

Literature 

and 

Laboratory 

tests 

Landslides 

inventory 

SC/LP/ POD 

The 

parameters 

collected in 

situ have a 

better result 

continue 
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Table 3.6. Conclusion. 

Authors Study Area 
Triggered 

Mechanism 

Acquisition 

data 
Validation Results 

Listo 

(2016) 

Caraguatatuba 

- Brazil 
Rainfall 

Literature 

and 

Laboratory 

tests 

Landslides 

inventory 

SC/LP/ 

POD 

70% of the study 

area has FS<1 

Listo et 

al., (2018) 

Caraguatatuba 

- Brazil 
Rainfall 

Laboratory 

tests 

Landslides 

inventory 

SC/LP/ 

POD 

Identification of 

surface rupture 

depth 

Marín and 

Salas 

(2017) 

Vale de 

Aburrá - 

Colombia 

Rainfall and 

tree 

interception 

Literature 

Comparison 

among 

different 

scenarios 

The rainfall 

interception has 

little influence on 

slope stability 

and further 

analysis are 

necessary 

Paul et al., 

(2018)  

Rio do Sul - 

Brazil 
Rainfall 

Laboratory 

tests 

Landslide 

inventory, 

SI/EI 

80,3% landslides 

in unstable areas 

Marín et 

al.; (2018) 

Copacabana - 

Colombia 
Rainfall 

Literature 

and 

Laboratory 

tests 

Landslide 

inventory, 

ROC 

analysis 

The identification 

of landslide-

prone areas 

allows the 

calculation of 

vulnerability and 

risk 

Schwarz 

and 

Michel 

(2016) 

Ibirama - 

Brazil 
Rainfall 

Laboratory 

tests 

Landslide 

inventory, 

SI/EI 

50% of the 

landslides 

happened in 

areas with FS<1 

García-

Aristizábal 

et al., 

(2019) 

Envigado - 

Colombia 
Rainfall Literature 

Reliability 

analysis 

 1,05% of the 

area has FS< 1 

Ciurleo et 

al., (2019). 

Favazzina - 

Italy 
Rainfall Literature 

Landslide 

inventory, 

SI/EI 

Accuracy of 80% 

in the 

identification of 

landslide-prone 

areas 

 

Each studied area had different geological and geomorphological aspects, proving that 

this model´s application is not limited to specific conditions. Several studies from all over 

the World were presented, including America (Brazil, Colombia, and EUA), Europe 

(Italy), and Asia (China, Taiwan, and South Korea). A few similarities should be 

highlighted: the landslides usually happened in the colluvial soil layer, and the most 
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unstable areas have declivities above 25º. Some geotechnical data were acquired from the 

literature, while others were measured in situ. There is an agreement that TRIGRS is very 

sensitive to the quality of input data, especially those related to the initial soil moisture 

content.  

Notwithstanding, the best results were presented in the studies with the most precise 

geotechnical and hydrological parameters, which were usually measured in situ. The 

prevailing validation method used was a landslide inventory. Still, the statistical analyses 

also supported the results produced by TRIGRS.  

Furthermore, the model proved to be a useful tool to identify landslide-prone areas and 

predict slope stability. Despite the excellent results from Liao et al. (2011) and Zhuang et 

al. (2017), more studies using TRIGRS as a tool that predicts the most unstable areas 

during a rainfall event are necessary.  

TRIGRS has the potential to become an early warning system, and the use of weather 

forecasts and soil moisture monitoring sensors might enhance its applicability. Knowing 

the soil moisture content of the area favors modeling the slope stability with higher 

accuracy. Furthermore, the weather forecast allows the preparation of slope stability 

scenarios, identifying the critical areas. Such information is essential for disaster 

prevention. Therefore, the governments can anticipate the landslide-prone areas related 

to the actual rainfall event and act in preventive removal of the population at risk. 

This project aims to test TRIGRS as a tool for early warning systems, using weather 

forecasts from the Climatempo website (https://www.Climatempo.com.br/) and sensor-

based soil moisture information from CEMADEN. Moreover, a risk alert can be defined 

based on the variation of FS, which is different from the critical rainfall threshold currently 

in use for alerts. An early warning system based on FS will be provided using the TRIGRS 

model. And the landslide-prone map produced will be compared with SINMAP results.  
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4. STUDY AREA 

The study area of this work is the Vila Baiana neighborhood, within the municipality of 

Guarujá, located within the Brazilian southeastern State of Sao Paulo, as presented in 

Figure 4.1.  

 

Figure 4.1. Study area location. 

 

 

According to IBGE (2019), the municipality has 320,459 inhabitants and a territorial 

extension of 144,794 km². The mean annual precipitation is 3,000 mm, and the mean 

annual temperature is 22ºC. 

As for its geology, the area is on a crystalline plateau, with gneiss and granite from the 

Pre-Cambrian period. Tropical forests cover the area, and the coastal plain has quaternary 

coastal sediments of fluvial-marine origin. In some areas, the crystalline basement 

becomes apparent. Elevations may reach 150 m, such as Morro do Botelho (ARAKI et 
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al., 2001).  There are four types of soil in Guarujá, classified according to the Brazilian 

Soil Classification System (SBCS): Haplic Cambisols, Humiluvic Spodosol1, Gleysols2, 

and Lithic Neosoils3 (EMBRAPA, 2018), as presented in Figure 4.2.  

 

Figure 4.2. Types of soils in Guarujá. 

 

The Haplic Cambisols is a developed soil composed of mineral material and characterized 

by an incipient B horizon. There is a predominance of clay texture and an aluminic 

 
1 Humiluvic Spodosols are classified as Podzols by World Reference Base for Soil Resources (WRB), recognized 

by International Union of Soil Science (IUSS). More information: <<http://www.fao.org/3/a-i3794e.pdf>. 
2 Gleysols are classified as Solonchaks by World Reference Base for Soil Resources (WRB), recognized by 

International Union of Soil Science (IUSS). More information: <<http://www.fao.org/3/a-i3794e.pdf>.  
3 Lithic Neosoils are classified as Leptosols by World Reference Base for Soil Resources (WRB), recognized by 

International Union of Soil Science (IUSS). More information: <<http://www.fao.org/3/a-i3794e.pdf>. 
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qualifier (EMBRAPA, 2018). The Humiluvic Spodosol is soil with mineral compound 

and a spodic B horizon with 200 cm depth. Spodic B horizon is a subsurface horizon, 

with 2,5 cm depth, with the presence of organic matter and aluminum (Al).  Iron (Fe) can 

be found as well (EMBRAPA, 2018). The Gleysols have a “Gley” horizon in the upper 

50 cm. A Gley horizon is a mineral layer, characterized by the losses of Iron (Fe) due to 

the presence of water; is a saturated soil horizon (EMBRAPA, 2018). The Lithic Neosoils 

are characterized as poorly developed soils (20 cm thick), without a B horizon. It is 

composed of mineral or organic material. The A horizon is directly in contact with the C 

horizon or the rock and presents coarse fragments such as quartz gravel bed, gravel, 

pebbles, and boulders (EMBRAPA, 2018).   

The urban occupation started in flat and mangrove areas. However, the city has 

experienced considerable population growth since the 1950s, intensified in the 1970s, 

with the economic development due to industries, port-related activities, civil 

constructions, and tourism. Consequently, the price of land increased sharply, and people 

with low income started to build their houses in steep areas, on cheap but improper terrain 

(ARAKI et al., 2001). Figure 4.3 presents the population growth from 1980 to 2020. 

 

Figure 4.3. Population growth from 1980 to 2020. 

 

Source: Adapted from SEADE (2020). 
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The Guarujá municipality presents several registered landslide occurrences. According to 

COMPDEC-Guarujá data, from 1991 to 2019, February is the month with the most 

landslide records, totalizing 292 events. 

Vila Baiana neighborhood is one of the most landslide-susceptible areas, followed by 

Morro da Cachoeira and Morro do Engenho (COMPDEC-Guarujá). Table 4.1 presents 

the number of landslides per area, from 1991 to 2019.  

 

Table 4.1. Landslide occurrences per risk area, from 1991 to 2019. 

Risk areas Total number of occurrences (1991-2019) 

Vila Baiana 331 

M. da Cachoeira 172 

M. do Engenho 127 

V. da Morte 62 

M. Bela Vista 70 

Source: Adapted from COMPDEC (2019).  

 

Vila Baiana has a population of 10,835 inhabitants, equivalent to 3,7% of the Guarujá 

municipality population. The demographic density is 6442,88 inh./km², and on average 

there are 3,5 people per household (IBGE 2019). This population density in a landslide-

prone area tends to enhance the order of magnitude of disasters in the area.  

On March 3rd of 2020 after heavy rainfall, several landslides were registered. The most 

affected areas were Vila Baiana, Morro do Engenho, and Morro do Macaco Molhado. The 

impacts extended over 140 houses, causing structural damages and 33 deaths. The 

accumulated rainfall expected for that month was 263 mm. However, 320 mm of rainfall 

was recorded in 24 hours. The total amount of precipitation registered in only 24 hours was 

more than the expected volume for March (CEMADEN, 2020). 

The recurrent disasters triggered by landslide events, associated with a large population 

density in risk areas, justify choosing Vila Baiana as the study area for this project.   
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5. MATERIALS AND METHODS 

The materials used in this work were four Landsat satellite images of the study area, one 

orthophoto with a 1-meter resolution for the image classification of the Vila Baiana 

neighborhood, soil geotechnical parameters for modeling with TRIGRS and SINMAP, 

IPT susceptibility map, the landslide inventory from Guarujá Civil Defense, historical 

rainfall data acquired from DAEE, CEMADEN and weather forecast from Climatempo 

website. The software’s used were ArcGIS, eCognition, and ENVI. Figure 5.1 presents 

the methodological workflow. The methods applied are further detailed. 

The first part of the work is an investigation of the urban sprawl from Guarujá city, 

analyzing its influence on the increase of landslide-prone areas and disasters. Therefore, 

four images of Landsat satellites from the years 1990 (Landsat 5), 2013 (Landsat 8), 2020 

(Landsat 8), and 2021 (Landsat 8) were acquired and preprocessed. To improve the 

understanding of land use and occupation and how they influenced landslide disasters, a 

detailed classification of Vila Baiana, which frequently suffers from landslides, was 

provided. Using an orthophoto with 1-meter of spatial resolution and eCognition 

software, the Vila Baiana neighborhood was classified accordingly to the types of soil 

covers (ceramic roof, concrete roof, vegetation). 

The satellite images were pre-processed, which consisted of two steps: pansharpening 

and orthorectification. Both processes were performed using ArcGIS and ENVI software. 

The orthorectification corrects distortions in the images caused by topographical variation 

between the terrain and the sensor’s position. It was carried out using the 2021 image 

from Landsat 8 as a reference. The pansharpening operation provided an image with the 

best spatial resolution from the panchromatic band while retaining the spectral content 

from the multispectral bands. This study used imagens from both Landsat 5 and 8, 

however, Landsat 5 images do not have a panchromatic band, therefore, the 

pansharpening process was only performed for Landsat 8 images. To better understand 

the pansharpening procedure, an example is presented in Figure 5.2.  
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Figure 5.1. Methodological workflow. 
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Figure 5.2. Example of pansharpening procedure using Gram-Schmidt method with IKONOS 

image: a) panchromatic band, b) multispectral band and c) pansharpened image. 

 

Source: Adapted from König (2018). 

 

Figure 5.2 presents the panchromatic and multispectral bands from the IKONOS sensor 

and the pansharpening result using the Gram-Schmidt method. Figure 5.2a represents the 

panchromatic band, which has the best spatial resolution. The multispectral bands, 

presented in Figure 5.2b, have the best spectral resolution. The pansharpening process 

was performed using the Gram-Schmidt method, and the result is shown in Figure 5.2c. 

The next step consisted of the segmentation procedure (Figure 5.3), which helps the 

classifier algorithm to better discriminate the boundaries of targets (also known as 

objects) (e.g., vegetation, houses, buildings, roads, rivers, among others).   

Figure 5.3a presents the pansharpened image, and Figure 5.3b shows the segmentation 

procedure. The segments divided the image into adjacent regions, named Objects, such 

as roads and trees. Object samples are then collected from the segmented image (Figure 
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5.4). The samples were input to data mining algorithms and based on the available 

attributes, automatically identified patterns from these large data volumes.  

 

Figure 5.3. Example of Segmentation procedure. 

 

Source: Adapted from König (2018). 

 

Figure 5.4. Representation of sample collection. 

 

Source: Adapted from König (2018). 

 

The algorithm Classification and Regression Trees - CART, implemented by the 

eCognition software, was used to extract the most relevant attributes, generating a 
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decision tree. Based on this decision tree, the images were classified using the Object-

based Image Analysis (OBIA) paradigm (KÖNIG et al., 2019). The OBIA paradigm 

extracts semi-supervised information from satellite images. It clusters similar objects, 

considering the pixel information and its neighbors (HAY; CASTILLA, 2006; 

DRONOVA, 2015). The error matrix was calculated to assess the classification accuracy, 

and to determine the global accuracy. Notwithstanding, the NDVI (Normalized 

Difference Vegetation Index) was calculated, to determine the environmental 

degradation.  

A temporal study was conducted to verify how the urban expansion from 1990 to 2020 

affected the area, comparing the four satellite image classifications. The central queries 

solved were: Was there an increase in the number of people living in steep slope areas? 

Did the number of landslides also increase in these areas? Is it possible to link urban 

sprawl and landslide disasters? Is there a correlation between the irregular occupation of 

slope areas, precipitation, and landslide events? 

This study compared the urban sprawl with the number of landslide events from 1990 to 

2020 and analyzed if anthropic changes in steep slope areas have been fostering 

landslides, or otherwise if there was an increase in extreme rainfall events.  

Historical rainfall data from 1991 to 2020, acquired from DAEE, were used to determine 

if there was a correlation between rainfall events and landslide occurrences. The analysis 

of topographic and lithological aspects correlated with landslides was conducted to verify 

how Guarujá geology influences the landslide distribution. Such analysis helps to identify 

the most critical landslide-triggering factors to support decision-making for urban 

planning and management. 

The next step consisted in modelling the landslide-prone areas using the mathematical 

models TRIGRS and SINMAP. These data are the input for modelling landslide-prone 

areas.  

The historical rainfall data was acquired from the DAEE website and applied to determine 

the correlation between rainfall events and landslide occurrences. Using rainfall data from 

March 3rd, 2020, and July 1st, 2022, the model TRIGRS was calibrated, and its 

applicability was verified. As a result, the model generates a landslide-prone map of Vila 

Baiana. The validation was based on the landslides inventory, prepared with satellite 
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images and landslides documented by the Guarujá Civil Defense, and comparing the 

unstable areas from TRIGRS with the IPT susceptibility map. 

Furthermore, an automated early warning system was developed using the TRIGRS 

model as its engine. After the geotechnical parameters were established, a Python script 

acquired the rainfall data (weather forecast) from Climatempo’s public API (Application 

Programming Interface) and simulated the stability scenarios using TRIGRS. The rain 

values from Climatempo are shown in millimeters per hour (mm/h), while TRIGRS uses 

meters per second as a unit. Therefore, the rainfall values are converted to the units used 

in the mathematical model. The following step is to define and set TRIGRS configuration 

parameters for 3 days of rain forecast. The model is executed, creating the three maps of 

FS for 24h, 48h, and 72h. To quantify the FS variation, the program calculates the sum 

of the FS values of the area for each timeframe. An alert was displayed based on the 

variation of the Factor of Safety (FS). This product is relevant for Civil Defenses, which 

predicts the most unstable areas for the preventive removal of the affected population. 

The same input data used in TRIGRS was used in the SINMAP model to produce another 

susceptibility map. The distinct methodologies might generate different results. The 

reliability of both models was evaluated through the Contingency table, Success and Error 

Index (SI/EI index). Therefore, a discussion about these approaches and their influence 

on the susceptibility maps was conducted in this work. 

This study generated landslide-prone maps of Vila Baiana and Guarujá, produced using 

the mathematical model TRIGRS, with a thorough analysis of the landslide-triggering 

factors. Furthermore, an early warning system was developed, helping the Civil Defense 

to quickly identify unstable areas and act preventively to remove and safeguard the 

population at risk. 
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6. RESULTS AND DISCUSSIONS  

6.1 Temporal analysis of urban expansion from 1990 to 2021 

6.1.1 Pan-sharpening process  

A pansharpening procedure was performed to acquire the best spectral and spatial 

characteristics. The Gram-Schmidt method was chosen because it provides the best 

distinction of objects (vegetation, urban area, sand/bare soil, water) in the scene for the 

Principal Components Analysis (PESCK; DISPERATI, 2011; POLIZEL et al., 2011; PU; 

LANDRY, 2012; MENEGHETTI; KUX, 2014). Figure 6.1, Figure 6.2, and Figure 6.3 

present the results of the pansharpening process for the years 2013, 2020, and 2021.  

Figure 6.1. Pansharpening process for 2013 image: a) multispectral band, b) panchromatic band, 

c) result of pansharpening. 
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Figure 6.2. Pansharpening process for 2020 image: a) multispectral band, b) panchromatic band, 

c) result of pansharpening. 

 

 

Figure 6.3. Pansharpening process for 2021 image: a) multispectral band, b) panchromatic band, 

c) result of pansharpening. 
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6.1.2 Segmentation, samples acquisition, and data mining 

The image segmentation and the sample acquisition were performed using the eCognition 

software. The multiresolution segmentation was applied. The parameters used in the 

multiresolution segmentation procedure of the Landsat images are presented in Table 6.1. 

It is important to highlight that the values of shape and compactness vary from 0 to 1, 

indicating each parameter's weight in the segmentation process.  

 

Table 6.1. Segmentation parameters applied in the satellite images. 

Year Satellite/Sensor Scale  Shape  Compactness 

1990 Landsat-5/ TM 50 0.1 0.5 

2013 Landsat-8/OLI 350 0.1 0.5 

2020 Landsat-8/OLI 300 0.1 0.5 

2021 Landsat-8/OLI 300 0.1 0.5 

 

The results of the segmentation process and sample acquisition for each satellite image 

are presented in Figure 6.4, Figure 6.5, Figure 6-6, and Figure 6.7. 

 

Figure 6.4. Segmentation (a) and samples acquisition (b) from 1990 satellite images of Landsat-

5. 
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Figure 6.5. Segmentation (a) and samples acquisition (b) from 2013 satellite images of Landsat-

8. 

 

 

Figure 6.6. Segmentation (a) and samples acquisition (b) from 2020 satellite images of Landsat-

8. 
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Figure 6.7. Segmentation (a) and samples acquisition (b) from 2021 satellite images of Landsat-

8. 

 

 

The Vila Baiana classification is characterized by different land covers, such as variable 

types of roofs, roads, and vegetation. An orthophoto with 1-meter of spatial resolution 

was used. Due to the different sizes of the objects in the scene, two segmentation levels 

were applied: level 1 to discriminate larger objects, such as blocks and streets, and level 

2 to identify the types of roofs and vegetation cover. The first level consisted of the 

distinction between blocks and streets. A multiresolution segmentation was performed 

using a thematic layer considering the following parameters: scale 500, shape 0.9, and 

compactness 0.5 (Figure 6.8). 
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Figure 6.8. Segmentation (a) level 1 and classification (b) of blocks and roads. 

 

 

Following, the “elliptic fit” attribute was performed to identify if an object fits in an 

elliptic with similar proportions, in which 0 means that the object does not fit, and 1 that 

it fits. The block objects range from 0.6 to 0.8. Afterward, using the “assign class” 

algorithm, two threshold conditions were defined: objects >= 0.6 are assigned as blocks, 

and objects <= 0.1 are assigned as roads.  

The second segmentation level is performed to identify smaller objects, such as types of 

roofs and vegetation cover. In segmentation level 2, the class Blocks was used as a filter, 

meaning that the segmentation procedure occurs only within the blocks. The 

multiresolution segmentation algorithm was applied, using the following parameters: 

scale 30, shape 0.1, and compactness 0.5. (Figure 6.9). 
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Figure 6.9. Multiresolution segmentation Level 2. 

 

 

The last step before the classification was the sample acquisition. It consists of the 

selection of image features that correctly represent the class objects. Five classes were 

described: ceramic roofs, concrete roofs, roofs with different materials (named “other 

roofs”), arboreal vegetation, and grass vegetation. Figure 6.10 presents the sample 

selection in Vila Baiana orthophoto. 
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Figure 6.10. Samples acquisition in Vila Baiana orthophoto. 

 

 

Data mining is important to determine the most relevant attributes to classify the image. 

This study used the CART algorithm, available on the eCognition platform. The process 

was carried out in three stages: training operation (Train), analysis operation (Query), and 

application of data mining results (Apply). The first step consists of generating a file with 

the statistics information from the objects selected (the samples). This statistical 

information is based on selected attributes and parameters set by the user. It results in a 

decision tree containing the variables and determining thresholds for the identification 

and separation of each class. The analysis operation (Query) allows the visualization and 

analysis of the decision tree (Appendix A) generated in the Train operation. And the last 

step consists of the application of thresholds and variables to classify the image. 

6.1.3 Image classification, NDVI index, and discussion 

The urban sprawl is a direct consequence of population growth and the development of 

Guarujá municipality. During the past 31 years (1990-2021), deforestation of native 
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vegetation increased to open space for urbanization. Figure 6.11 presents the temporal 

analysis of urban sprawl for 1990, 2013, 2020, and 2021.   

 

Figure 6.11. Urban sprawl from 1990, 2013, 2020, and 2021. 

 

 

Analyzing Figure 6.11, it is possible to verify an intense increase in the urban area from 

1990 to 2021, represented in gray. Moreover, the urban sprawl continues to intensify 

rapidly since, in 2021, the increase was 7,9% above the amount in 2020. Furthermore, the 

removal of natural vegetation continues, giving space to the city's expansion. Table 6.2 

shows the built-up area occupied by the town and the vegetation cover for the years 1990, 

20213, 2020, and 2021. Appendix B shows the urban sprawl from 2013 to 2021. 
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Table 6.2. Variation of urban and vegetation area (km²) from 1990 to 2021. 

Year Urban area (km²) Vegetation (km²) 

1990 36.252 96.003 

2013 37.618 89.912 

2020 43.764 88.734 

2021 47.252 84.252 

 

Table 6.2 shows a correlation between the increase in urban areas and the decrease in 

vegetation-covered areas. From 1990 to 2021, the urbanization process increased by 30%, 

while the vegetation area suffered a 12% reduction.  

An error matrix was calculated to assess the classification accuracy, as presented in Table 

6.3, Table 6.4, Table 6.5, and Table 6.6. The diagonal values, highlighted in yellow, 

represent the count of correctly classified polygons, and the columns show the number of 

polygons classified in each class. The producer’s reliability is the percentage of a 

reference polygon to have been correctly classified, and the user’s accuracy is the 

percentage of the classified polygon being in the correct class. Values closer to or equal 

to 1 indicate the best results (NAGAMANI et al., 2015).  

 

Table 6.3. Error matrix of 1990 classification. 

1990 

  Reference polygon 

C
la

ss
if

ie
d

 p
o
ly

g
o
n

 

  Water 
Urban 

area 

Sand/bare 

soil 
Vegetation Total 

User's 

accuracy 

Water 10 0 0 1 11 0.91 

Urban 

area 
0 54 3 1 58 0.93 

Sand/bare 

soil 
0 1 10 1 12 0.83 

Vegetation 2 3 0 129 134 0.96 

Total 12 58 13 132 215   

Producer's 

accuracy 
0.83 0.93 0.77 0.98     

Global 

accuracy 
0.94           
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Table 6.4. Error matrix of 2013 classification. 

2013 

  Reference polygon 
C

la
ss

if
ie

d
 p

o
ly

g
o

n
 

  Water 
Urban 

area 

Sand/bare 

soil 
Vegetation Total 

User's 

accuracy 

Water 40 0 0 3 43 0.93 

Urban 

area 
0 157 1 2 160 0.98 

Sand/bare 

soil 
0 1 57 1 59 0.97 

Vegetation 2 4 0 315 321 0.98 

Total 42 162 58 321 583   

Producer's 

accuracy 
0.95 0.97 0.98 0.98     

Global 

accuracy 
0.98           

 

 

Table 6.5. Error matrix of 2020 classification. 

2020 

  Reference polygon 

C
la

ss
if

ie
d

 p
o
ly

g
o
n

 

  Water 
Urban 

area 

Sand/bare 

soil 
Vegetation Total 

User's 

accuracy 

Water 24 0 0 2 26 0.92 

Urban 

area 
0 124 1 3 128 0.97 

Sand/bare 

soil 
0 1 24 1 26 0.92 

Vegetation 1 2 0 255 258 0.99 

Total 25 127 25 261 438   

Producer's 

accuracy 
0.96 0.98 0.96 0.98     

Global 

accuracy 
0.97           
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Table 6.6. Error matrix of 2021 classification. 

2021 

  Reference polygon 
C

la
ss

if
ie

d
 p

o
ly

g
o

n
 

  Water 
Urban 

area 

Sand/bare 

soil 
Vegetation Total 

User's 

accuracy 

Water 21 0 0 2 23 0.91 

Urban 

area 
0 174 1 4 179 0.97 

Sand/bare 

soil 
0 2 37 1 40 0.93 

Vegetation 3 2 0 259 264 0.98 

Total 24 178 38 266 506   

Producer's 

accuracy 
0.88 0.98 0.97 0.97     

Global 

accuracy 
0.97           

 

 

All the classification’s error matrices presented a global accuracy higher than 0.9. 

However, there is spectral confusion between vegetation and urban areas. The probable 

cause is the proximity of some constructions to the forest canopy in Guarujá. 

The development of urban areas destroys vegetation. To improve the distinction between 

the urban area and the vegetation, the Normalized Difference Vegetation Index (NDVI) 

was calculated. The NDVI is used to differentiate the vegetation areas from the non-

vegetation areas. The leaves have a strong reflectance in the near-infrared band, while 

chlorophyll and other leaf pigments have a weak reflectance in the visible wave band red  

(LÜDEKE; et. al., 1996; MENG; et. al., 2013). The NDVI formula is presented in 

Equation 6.1, and the temporal analysis of vegetation changes using NDVI is shown in 

Figure 6.12. 

𝑵𝑫𝑽𝑰 =
(𝑵𝑰𝑹−𝑹𝒆𝒅)

𝑵𝑰𝑹+𝑹𝒆𝒅
                                             (6.1) 
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Figure 6.12. Temporal analysis of variation in NDVI for 1990, 2013, 2020, and 2021. 

 

 

 

The analysis of Figure 6.12 shows the vegetation changes in the past 31 years. The water, 

represented in red, has low reflectance and, consequently, lower values of NDVI. The 

colors orange and yellow characterized the urban areas according to the degree of 

urbanization (high level of urbanization and medium level, respectively). The vegetation 

is represented by green: the light green areas have lower biomass than those in dark green. 

In the 1990 classification, it was observed that the vegetation cover is denser and spreads 

over most of Guarujá municipality. Dark green is the predominant color, meaning that 

most forest areas were preserved. However, in 2021, a reduction of the vegetation-

covered areas and the green-leaf density is perceptible. Few forest areas were maintained, 

and the leaf-area density decreased. 

There is a strong annual building activity due to the city's development. Land prices 

increased sharply, and low-income people made their homes in steep areas on cheap but 

improper terrain (ARAKI et al., 2001), as presented in Figure 6.13. Moreover, the 

deforestation processes are directly related to the construction on steep slope areas. In 
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Figure 6.13, it is possible to identify steep slope areas overlapping urban areas. These are 

landslide-prone areas, and people living there are at risk; they can lose their houses and 

lives.  

 

Figure 6.13. Overlap between slope and the classification of urban areas for 2021. 

 

 

Those people who cannot afford a house or land in the central part of Guarujá start to 

build their houses on the slopes, favoring deforestation (MODENESI-GAUTTIERI; 

HIRUMA, 2004; KÖNIG et. al., 2019). To build houses under such conditions, the 

vegetation is destroyed and vertical cuts in the slope are made without retaining walls. 

Most of these constructions have low building standards, which decrease the slope 

stability, and increase the risk of accidents to the population (MENDES et al., 2018b; 

KÖNIG et. al, 2020). 
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The weight of several constructions on steep slope areas, associated with improper water 

drainage and deforestation, could change the soil moisture and thus, any amount of rain 

can trigger landslides. Vila Baiana neighborhood is one of these areas, where several 

houses were improperly constructed in slope areas, which are commonly affected by 

landslides. 

Therefore, to identify and distinguish the types of construction in Vila Baiana, a 

classification of the orthophotos was performed, as presented in Figure 6.14. 

 

Figure 6.14. Classification of Vila Baiana. 

 

 

Figure 6.14 identifies several constructions built on the edge of the arboreal vegetation, 

especially in steep slope areas. Generally, these constructions have a low building 

standard, and most have a concrete roof.  

Moreover, the roads are well delimited in the flat land but not on the upper slopes. There 

is any pavemented street in high declivity areas, becoming difficult to access the area.   
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Furthermore, the government did not authorize construction in these areas. Besides that, 

sanitation and garbage collection are nonexistent.   

Areas with high declivities are susceptible to landslides, and the inappropriate ways of 

land use and occupation can induce landslides, putting at risk everyone living there 

(AHRENDTH, 2005; MENDES et. al., 2018a). Table 6.7 presents the values of the area 

and the perimeter of each class related to the classification of Vila Baiana. 

 

Table 6.7. Values of area and perimeter by class. 

Class Area (m²) Perimeter (m) 

Roads 25.136 5.764 

Ceramic roof 8.254 5.958 

Concrete roof 74.340 48.348 

Other roofs 22.930 17.154 

Arboreal vegetation 240.684 73.172 

Grass vegetation 26.719 16.518 

 

 

Table 6.7 shows a predominance of constructions with concrete roofs in Vila Baiana, 

totaling 74.340 m². The houses localized on slope sections, meaning on the edge of 

arboreal vegetation, have mostly concrete roofs, and just a few present different types of 

roofs (“other roofs” in the classification). In these slope areas, it is not possible to identify 

roads, but many houses are observed in a small area. 

Notwithstanding, the ceramic roof class is the less representative roof type, with only 

8.254 m² of constructed area. They occur in places where it is still possible to determine 

the blocks and the roads, meaning that these areas are part of the urban planning of 

Guarujá municipality. 

The grass vegetation predominates in two blocks, and both are soccer fields. The arboreal 

vegetation occurs mostly in steep slope areas, with only a few polygons mixed with the 

constructions. 

The error matrix was calculated to assess the classification accuracy, as presented in Table 

6.8. It shows that the class “Road” was correctly classified because a thematic layer with 

all the street vectors was used in the segmentation and classification process. However, 
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there is a spectral confusion between the classes “Other roof” and “Concrete roof.” 

Analyzing the orthophoto, it is observed that some concrete roofs are lighter than others. 

The material used in these constructions probably has a similar composition to those used 

by the class “Other roof,” justifying the confusion in the classification process.   

 

Table 6.8. Error Matrix of Vila Baiana classification. 

 Reference polygon 

C
la

ss
if

ie
d

 p
o

ly
g

o
n

 

  Roads 
Ceramic 

roof 

Concrete 

roof 

Other 

roofs 

Arboreal 

Vegetation 

Grass 

Vegetation 
Total 

User's 

accuracy 

Roads 2 0 0 0 0 0 2 1.00 

Ceramic 

roof 
0 64 1 1 0 0 66 0.95 

Concrete 

roof 
0 0 369 8 2 1 380 0.97 

Other 

roofs 
0 1 11 325 3 2 342 0.95 

Arboreal 

vegetation 
0 0 2 1 728 15 746 0.98 

Grass 

vegetation 
0 0 7 1 3 76 87 0.87 

Total 2 64 386 337 740 94 1623   

Producer's 

accuracy 
1.00 0.98 0.96 0.96 0.98 0.81     

Global 

accuracy 
0.96               

 

Moreover, there is spectral confusion between the grass vegetation and the concrete roof. 

Most polygons wrongly classified as grass vegetation are in the areas with high declivity 

because these sections were covered with forest, and to build houses, the trees were 

removed, and the grass is regrowth. Therefore, a grass pixel in a polygon that can 

confound the algorithm, classifying it incorrectly. Due to the spectral similarity, the 

classes “Arboreal vegetation” and “Grass vegetation” also presented some 

misclassification.  

Despite some incorrectly classified polygons, the global accuracy is 0.96, meaning a good 

accuracy of the classification processes. Visualizing the classified map, it is possible to 

affirm that several constructions in slope areas contributed to deforestation. Furthermore, 
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the high density of houses, close to each other, increases the soil weight, making it more 

fragile and susceptible to suffer fractures and landslides (MENDES et al., 2018a, 2018b). 

6.1.4 Correlation between urban sprawl and landslide occurrences 

Analyzing the populational growth and the landslide occurrences, it is possible to verify 

that from 1990-2000, the population went from 202.910 in 1990 to 264.235 in 2000 (see 

Figure 4.3). There was an increase of 30.22% in the population of Guarujá within ten 

years. 

Therefore, during this period, more than 60 thousand people settled and built houses all 

over the municipality. The area suffers from environmental degradation and an increase 

in the weight of the new constructions, justifying the 482 landslide occurrences. 

Notwithstanding, from 2000-2010 the population increased by 9.95% when compared 

with the previous decade, and 473 landslides were documented. Table 6.2 shows, in 2013, 

a decrease of 6.34% in vegetation cover. 

Furthermore, from 2010-2020, the populational growth increases by 10.30%, totalizing 

320.459 people. Consequently, the vegetation-covered area was reduced by 5.05%, and 

the urban area was incremented by 7.97%. Therefore, the environmental degradation 

caused by population growth and urban sprawl has consequences in soil changes and 

induces landslides.  

Moreover, from the 336 landslides documented during 2010-2020, 138 happened due to 

an extreme climatic event on March 3rd, 2020. Most landslides in Brazil are triggered by 

rainfall, thus the correlation between heavy rainfalls and phenomena like El-Niño and La-

Niña is important to the identification and monitoring of landslides-prone areas. 

6.2 Correlation between landslides and rainfall  

According to the Civil Defense of Guarujá, from 1991-2020, 1319 landslides were 

recorded, as presented in Figure 6.15. The years with higher landslide occurrences were: 

1991, 1993, 2005, 2009, 2010, and 2020.  
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Figure 6.15. Landslides Occurrences in Guarujá from 1991 to 2020. 

 

 

The Vila Baiana neighborhood is one of the most affected areas, followed by Morro da 

Cachoeira, Morro do Engenho, Morro Bela Vista, and Vale da Morte (COMPDEC – 

Guarujá). During 1991 - 2020, more than 338 landslides happened in Vila Baiana. Figure 

6.16 presents the distribution of landslides over the years.  

 

Figure 6.16. Landslide occurrences in Vila Baiana during 1991-2020. 
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As we can see, the years with higher landslide occurrences in Guarujá (1991, 1993, 2009, 

and 2010) had more landslides in Vila Baiana as well. The landslide occurrences 

corroborate with the annual average rainfall, shown in Figure 6.17. 

 

Figure 6.17. Comparison between annual average rainfall and landslide occurrences in Guarujá. 

 

 

Figure 6.17 shows a correlation between the annual average rainfall and landslide 

occurrences. There is a tendency for more landslides during the rainy years, such as in 

1991, 1993, 2005, 2009, and 2010. However, in 1996 the annual rainfall average was 

189,6 mm, but the number of landslides was only 32 when compared with the year 2005, 

which had 75 landslides and a yearly rainfall average of 188,8 mm. A similar result 

happened in 2015 when only 20 landslides were documented, but the annual rainfall 

average was 218.05 mm. It is also important to notice that 46 landslides were registered 

in 1995, the year with the lowest rainfall annual average (46,0 mm). Notwithstanding, 

during the year 2020, 138 landslides were documented, and the annual rainfall average 

was 118.54 mm. This means that the annual rainfall average was lower than in other years, 

such as 1993 and 2010, but more landslides occurred.  

Therefore, it is important to determine if an extreme rainfall phenomenon happened and 

might have triggered those landslides. It is considered an extreme rainfall event when 

20% or more of the total amount of rain expected for a month, falls in one day  

(LIEBMANN et. al., 2001; CARVALHO et. al., 2002). The Civil Defense of Guarujá 
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Guarujá). Table 6.9 presents statistical values of landslides triggered by heavy rainfall 

events. The years selected represents those with higher annual rainfall averages and with 

documented landslides triggered by heavy rainfall both in Guarujá and Vila Baiana. 

 

Table 6.9. Heavy Rainfall events with a threshold >70 mm in 24h. 

Year Location 
Total 

Landslide  

Landslides triggered 

by heavy rainfall > 70 

mm in 24h 

(%) Landslides triggered 

by heavy rainfall > 70 mm 

in 24h 

1991 
Guarujá 97 21 21.65 

Vila Baiana 49 10 20.41 

1993 
Guarujá 106 68 64.15 

Vila Baiana 38 22 57.89 

2009 
Guarujá 65 47 72.31 

Vila Baiana 31 20 64.52 

2010 
Guarujá 101 57 56.44 

Vila Baiana 26 20 76.92 

2013 
Guarujá 17 14 82.35 

Vila Baiana 2 2 100 

2015 
Guarujá 20 12 60 

Vila Baiana 3 3 100 

2020 
Guarujá 138 138 100 

Vila Baiana 7 7 100 

 

The analysis of Table 6.9 shows an increase in landslides triggered by heavy rainfall, 

from 1991 to 2010, in Vila Baiana. Moreover, in 2013, 2015, and 2020, 100% of the 

landslides in Vila Baiana were triggered by rainfall with a threshold of >70mm in 24h. 

Furthermore, these results corroborate the years with a higher annual rainfall average in 

Guarujá, as presented in Figure 6.18. The years in navy blue are those with a higher yearly 

standard. 
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Figure 6.18. Annual rainfall average (mm) in Guarujá. 

Source: Adapted from DAEE (2021). 

 

Analyzing Figure 6.18, it is possible to identify that those years with higher annual 

averages are the same with most landslides triggered by heavy rainfall. The exception is 

in 1996 because, despite an average of 189,6 mm, only 46,88% of documented landslides 

in Guarujá (and 44,44% in Vila Baiana) were triggered by rainfall with a threshold >70 

mm. In 2019, the rainfall average was 196,6 mm, and only 30 landslides were recorded 

in Guarujá (none in Vila Baiana). The year 2020 is interesting, because the annual rainfall 

is 118.54 mm, but presented more landslide occurrences. This case is further discussed, 

because extreme rainfall happened, triggering 138 landslides in 24h. 

Since Vila Baiana is the study area, further analysis will examine the relationship between 

some landslides and rainfall events. Figure 6.19, Figure 6.20, Figure 6.21, and Figure 

6.22, are presented the accumulated volume of rainfall for 24h and 72 hours on the same 

days of the landslides occurrences. 
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Figure 6.19. Accumulated rainfall (mm) for 24h and 72h in Vila Baiana in 1991. 

 

Source: Adapted from DAEE (1991). 

 

In 1991, 97 landslides were recorded in Guarujá, of which 47 happened in Vila Baiana. 

The PPDC (Preventive Plan of Civil Defense – in Portuguese) determined that 80 mm is 

the threshold of accumulated rainfall during 72h. Values above 80 mm/72h indicate that 

landslides might happen. Analyzing Figure 6.19, it´s possible to observe that since March 

21st, the areas have been affected by several rainfalls, justifying the higher values of 

accumulated rain in 72h. Furthermore, on March 25th, with 95,9 mm of accumulated 

precipitation, 12 landslides were registered in Vila Baiana (COMPDEC – Guarujá). 

However, 9 landslides occurred with a threshold < 80 mm, indicating that anthropic 

changes and human influence might have contributed to triggering some landslides.    

In 1993 (Figure 6.20), 38 landslides happened in Vila Baiana. On February 18th, after a 

heavy rainfall of 74,5 mm in 24h (90,0 mm in 72h), 60 landslides were recorded in 

Guarujá, and 19 of them occurred in Vila Baiana (COMPDEC – Guarujá). Although 

several landslides were triggered by heavy rainfall, 6 of them happened with a threshold 
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reported on April 6th, despite the lowest rainfall values (0,0 mm in 24h and 2,9 mm in 

72h) (COMPDEC – Guarujá). 

 

Figure 6.20. Accumulated rainfall for 24h and 72h in Vila Baiana in 1993. 

 

Source: Adapted from DAEE (1993). 
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with a threshold < 80,0 mm. It is interesting to enhance that on May 13th, a landslide 

occurred, but it wasn´t triggered by rainfall (0 mm was registered for both 24h and 72h) 

(COMPDEC – Guarujá).  This disaster probably has anthropic influence.  
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Figure 6.21. Accumulated rainfall for 24h and 72h in Vila Baiana in 2009. 

 

Source: Adapted from DAEE (2009). 

 

Similar results were founded in 2010 when 26 landslides were documented in Vila 

Baiana, and 6 of them were triggered with a threshold < 80,0 mm. A landslide happened 

on April 14th, despite the absence of rain for 72h (COMPDEC – Guarujá). These cases 

foment the idea of anthropic contribution to trigger landslides. 

 

Figure 6.22. Accumulated rainfall for 24h and 72h in Vila Baiana in 2010. 

 

Source: Adapted from DAEE (2010). 
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In 2020 (Figure 6.23), extremely heavy rainfall occurred, triggering 138 landslides in 

Guarujá municipality, of which 7 of them were at Vila Baiana. Despite the several days 

with constant rainfall, on March 3rd more than 320 mm of rainfall were registered by rain 

gauges and PCDs in 24h.   

 

Figure 6.23. Accumulated rainfall for 24h and 72h in Vila Baiana in 2020. 

 

Source: Adapted from DAEE (2020). 

 

Most landslides happen during the summer (December to March), but January, February, 

and March are the months with higher landslide records. From 1991 to 2020, March was 

the month with more landslide events, followed by February (COMPDEC – Guarujá), as 

presented in Figure 6.24. 

 

Figure 6.24. Total landslide events per month from 1991-2020 

  

Source: Adapted from COMPDEC (2021). 
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Therefore, the analysis of the rainfall average is essential to determine if the mentioned 

months had experienced extreme climatic events, such as heavy rainfalls. The DAEE 

(Water and Electrical Energy Department of São Paulo State - in Portuguese: 

“Department Departamento de Águas e Energia Elétrica do Estado de SP”) provides 

rainfall data since 1937; thus, Figure 6.25 presents the monthly average rainfall for the 

years 1991, 1993, 2009, 2010 and the global average (timeframe 1937-2020).  

 

Figure 6.25. Monthly average rainfall (mm). 

 

Source: Adapted from DAEE (2021). 
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In 2009, the month with the highest rainfall average was February and March was the 
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of rainfall. However, January was the month with the most rainfall events. 

Furthermore, Figure 6.26 compares the variation of monthly rainfall for the mentioned 

year with the global average.  
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Figure 6.26. Comparison among rainfall variation. 

 

 

Figure 6.26 shows that in January 1991, the total amount of rainfall was 36% lower than 

the global rainfall (1937-2020). However, February and March presented an increase of 

0,15% and 81,52%, respectively, compared with the worldwide average. In 1993, 

February registered a rainfall value of 3,02% lower than the global one. But during 

January and March, the registered rainfall was higher than the global (3,25% and 62,26%, 

respectively).  
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water. La Niña is the opposite when the sea temperature decreases by -0,5 or more. 

Moreover, these phenomena can be classified by their intensity: weak (variation of SST 

between 0,5 – 0,9), moderate (1,0- 1,4), Strong (1,5 – 1,9), and very strong (> 2,0). Table 

6.10 presents the occurrences of both phenomena and their intensity from 1991-2021. 

 

Table 6.10. El-Niño and La Niña events during 1991-2021. 

   Period Phenomeno Intensity 

1991-1992 El Niño Strong 

1994-1995 El Niño Moderate 

1995-1996 La Niña Moderate 

1997-1998 El Niño Very Strong 

1998-2000 La Niña Strong 

2002-2003 El Niño Moderate 

2004-2007 El Niño Weak 

2007-2008 La Niña Strong 

2009-2010 El Niño Moderate 

2010-2012 La Niña Strong 

2014-2015 El Niño Weak 

2015-2016 El Niño Very Strong 

2017-2018 La Niña Weak 

2018-2019 El Niño Weak 

2020-Present La Niña Moderate 

Source: Adapted from Golden Gate Weather Service (2022). 

 

In the southeast Brazilian region, the consequence of El-Niño is an increase in rainfall 

volume and intensity, while in the northeast region, droughts are common. Meanwhile, 

the La Niña phenomena generate a dry clime in the southeast region and a rainy season 

in the northeast of the country.    

Analyzing Table 6.10, it is possible to associate the volume of rainfall for 1991, 2009, 

and 2010 with El-Niño. Moreover, the years 2005 and 2015, both marked by the influence 

of El-Niño (intensities weak and very strong, respectively), had an average annual rainfall 

>188,0 mm (Figure 6.18). Notwithstanding, from 1990-2000, the El-Niño phenomenon 

occurred three times, with intensities varying from Very Strong, Strong, and Moderate, 

and as mentioned in Section 6.1.4, 482 landslides were documented. From 2000-2010, 

moderate El-Niño had its influence and was associated with the urban sprawl, inducing 
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473 landslides. This corroborates the hypothesis that a climatic phenomenon justifies 

some heavy rainfalls. 

However, the exception happened during 1996, which was marked by the influence of La 

Niña but also had an annual rainfall average of 189,6 mm. During 2010-2020, the La-

Niña was more representative, but heavy rainfalls happened and triggered landslides. That 

is the case of March 3rd, 2020, when a heavy rainfall with almost 320mm of rain, triggered 

138 landslides all over the Guarujá municipality. 

Heavy rainfalls have been proved to trigger landslides, and the El-Niño impacts the rainy 

season. Therefore, knowing if the current year under study is influenced by El-Niño helps 

to determine the probability of more heavy rainfall events and their consequences. 

6.3 Analysis of topographic and lithological aspects correlated with landslides 

Certain areas are prone to suffer more from landslides than others. Different geology and 

lithologies might contribute to landslide susceptibility. Therefore, thematic maps 

(hypsometry, aspect, curvature, slope, and pedology) and tables containing the Frequency 

of Distribution (Fd) of each class, Scars Concentration (SC), and the Landslides Potential 

(LP), were prepared to identify which characteristics prevail in landslide-prone areas. The 

scar concentration (SC) determines the scar distribution in each stability class. It is the 

ratio between the number of cells (of each class) affected by the landslide with the total 

cells of that class. The landslide potential (LP) indicates the distribution of the landslides 

among the stability classes. It is the ratio between the number of cells of each class 

affected by the landslides with the total cell affected in the study area. And the Frequency 

of Distribution (Fd) represents the distribution of each stability class, calculated by the 

ratio of the cell number per class to the total cells in the study area (VIEIRA, 2007; 

LISTO; VIEIRA, 2015; VIEIRA; RAMOS, 2015; LISTO; et. al., 2018).   

The altitude might influence the landslide-prone areas due to the pluviometry variation at 

different heights, meaning that the orographic rain varies accordingly to the altitude. 

Observing the hypsometry map, presented in Figure 6.27 and Table 6.11, it is noticed that 

91.09% of the landslides happened in elevations ranging between 30-150 m above sea 

level.  
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Table 6.11. Percentage distribution of scar concentration, landslide potential, and frequency for 

each hypsometry class. 

Hypsometry 

Class 
Scar Concentration 

(%) 

Landslide 

Potential (%) 

Frequency Distribution 

(%) 

0 - 20m 59.11 0.47 72.12 

20 - 90m 36.60 0.29 9.92 

90 - 150m 3.95 0.03 9.05 

150 - 200m 0.33 0.00 6.28 

200 - 320m 0.00 0.00 2.63 

 

Figure 6.27. Hypsometry map of Guarujá municipality. 
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 In agreement with the hypsometric map, the declivity map (Figure 6.28), and the 

distribution of landslides for each slope declivity (Table 6.12), indicates that the 

landslide scars are concentrated in declivities above 15%. Moreover, in Guarujá 

municipality, 16.3% of the area has declivities higher than 15%, as presented in the 

Frequency distribution.  

 

Figure 6.28. Declivity Map of Guarujá Municipality. 
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Table 6.12. Percentage distribution of scar concentration, landslide potential, and frequency in 

each declivity class. 

Slope 

Class 
Scar Concentration 

(%) 

Landslide Potential 

(%) 

Frequency Distribution 

(%) 

0-5% 17.72 1.60 65.78 

5-10% 17.28 1.56 7.73 

10-15% 15.78 1.43 10.19 

15-30% 25.83 2.34 10.84 

>30% 23.39 2.11 5.46 

 

Notwithstanding, these areas suffer from deforestation to open space for several houses 

in irregular occupations. The urbanization process decreases vegetation in such areas, 

reducing evapotranspiration. Consequently, soil moisture rapidly increases during rainfall 

events. When associated with slope overload, leakages, and irregular settlements, the 

landslides are easily triggered (PRIETO et al., 2017; MENDES et al., 2018a; KÖNIG et 

al., 2019, 2020, 2022). Similar results were founded by Larsen and Torres-Sanchez 

(1998). Studying the frequency of landslides in three mountainous areas in Puerto Rico, 

these authors identified a higher frequency of landslides in the slopes modified by human 

settlements.   

The thematic map of the aspect (Figure 6.29) shows the slope directions. These directions 

could affect, directly and indirectly, the slope stability, due to the frequency of solar 

incidence, soil moisture, and vegetation type (VIEIRA, 2007). Table 6.13 presents the 

distribution of scar concentration, landslide potential, and frequency for each Aspect 

class.  
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Table 6.13. Distribution of scar concentration, landslide potential, and frequency in Aspect classes 

of Guarujá. 

Aspect 

Class 
Scar Concentration 

(%) 

Landslide Potential 

(%) 

Frequency Distribution 

(%) 

N 25.84 12.87 11.94 

NE 5.93 2.95 10.22 

E 12.63 6.29 12.27 

SE 2.39 1.19 15.27 

S 2.36 1.18 11.90 

SW 3.10 1.54 10.36 

W 10.71 5.33 11.25 

NW 37.05 18.45 16.79 

 

Figure 6.29. Aspect map of Guarujá municipality. 
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Analyzing Figure 6.29 and Table 6.13, it is observed that most slopes have Northwest 

(16.79%) and Southeast (15.27%) directions. Additionally, the slopes with a north 

direction (N, NE, and NW) represent 38.95% of the area, while the south-oriented slopes 

(S, SE, and SW) occupied 37.53% of the site. Observing the scar concentration, the slopes 

facing NW present 37.05% of the landslides, and 25.84% happened in the North. Those 

slopes facing E, NE, and SE sum up 20.94% of the landslides registered, while slopes 

facing W, SW, and NW sum up 50.86% of documented landslides. 

Some studies found a correlation between the slope aspect and landslide susceptibility. 

For example, both Vieira (2007) and Gao (1993)  identified that the most frequent 

landslides in their respective study areas occur on slopes with a South orientation (S, SE, 

and SW). However, Guimarães (2000) identified that the susceptibility in the Tijuca 

watershed is higher on slopes facing NW. A similar result is found in Guarujá; although 

the frequency of class distribution is similar, the slopes facing NW and N have together 

62.89% of the landslide scars. These areas deserve more attention during the rainy season 

since the landslide susceptibility is higher than in other areas. Further analysis will 

determine if there is a correlation between landslides with the curvature and pedology. 

The curvature map shows if a slope is convex, rectilinear, or concave. The type of 

curvature is related to the processes of water accumulation and changes in the soil’s 

amount of organic matter and minerals due to gravity. Observing the curvature map 

(Figure 6.30)  and the distribution of frequency, scar concentration, and landslide 

potential (Table 6.14), it is noticed that 32.63% of Guarujá slopes are concave and 31.19% 

are convex. The rectilinear areas represented 36.17% of the municipality. 
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Figure 6.30.  Curvature map of Guarujá municipality. 

 

 

Table 6.14. Distribution of scar concentration, landslide potential, and frequency according to 

slope's curvature. 

Curvature 

Class 

Scar Concentration 

(%) 

Landslide Potential 

(%) 

Frequency Distribution 

(%) 

Concave 40.03 0.44 32.63 

Rectilinear 0.69 0.01 36.17 

Convex 59.28 0.65 31.20 

 

The convex area is usually more susceptible to landslides due to water accumulation and 

increased soil moisture (CANAVESI et al., 2013). According to IPT (1986 and 1988) and 

Vieira (2007), the slopes in the Serra do Mar are predominantly rectilinear and steep. In 
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the mid-slope sectors, the rectilinear and convex profiles alternate, and if associated with 

declivities above 15%, the landslide susceptibility of the area increases. Analyzing the 

distribution of the landslide’s scars, it is noticed that 59.28% of the landslide happened 

on a convex slope and 40.03% on a concave one.  

Additionally, the landslide susceptibility should be analyzed accordingly to the soil types. 

Each soil has unique physical properties, and these characteristics change the slope 

susceptibility. Figure 6.31 shows the correlation map between the landslides and the soils 

in Guarujá. Table 6.15 presents the landslide scars in each soil class, its distribution, and 

landslide potential.  

 

Table 6.15. Distribution of scar concentration, landslide potential, and frequency according to 

pedology classes in Guarujá. 

Pedology 

Class 
Scar Concentration 

(%) 

Landslide Potential 

(%) 

Frequency Distribution 

(%) 

Urban area 25.44 0.57 26.94 

Cambisols 65.12 1.46 34.15 

Podzols 0.00 0.00 18.44 

Solonchaks 9.43 0.21 13.50 

River 0.00 0.00 6.87 

Neosoil 0.00 0.00 0.09 

 

Most landslides (65.12%) happened in Cambisols, followed by 9.43% registered in 

Solonchaks. There is no record of landslides in the Neosoil and Podzol classes. However, 

25.44% of the landslides occurred in urban areas on the edge of the Cambisols and steep 

slopes. Colluvial layers and landfill deposits cover these areas, and as mentioned in item 

3.1, this type of soil cover could suffer ruptures and become a landslide (MENDES et al., 

2018a). Furthermore, 34.15% of the municipality is covered by Cambisols, and 26.94% 

is an urban area.  

In Guarujá municipality, a combination of geological and physical aspects characterizes 

the most susceptible areas. Therefore, convex, or rectilinear slopes with altitudes above 

30 m, declivities higher than 15%, Cambisols, and urban areas covered by colluvium and 

landfill deposits are very likely to suffer landslides.   



73 
 

Figure 6.31. Correlation between landslides and pedology in Guarujá. 

 

 

Nonetheless, the soil behavior is modified due to the variation of moisture content, thus, 

saturated soils can trigger landslides. Further analysis of soil saturation during a landslide 

event was prepared using the PCD (data acquisition platform) data from CEMADEN. 

6.4 Analysis of landslide events and soil moisture 

When combined, some geological and physical characteristics increase the probability to 

develop into a landslide. The knowledge of rainfall intensity and the influence of 

phenomena such as El-Niño helps to understand the quantity of landslides occurrences, 

providing a “global” parameter of the situation.  
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The identification of landslide-prone areas demands more data such as soil moisture. 

Some landslides happened without rainfall to justify the disaster. In this case, two possible 

situations could have triggered such events: human influence (anthropic changes in slope) 

or high soil moisture values. Below it was analyzed the landslides from March 3rd, 2020, 

and the soil moisture behavior. Soil moisture and pluviometry data were acquired from 

the CEMADEN PCD, installed in Vila Baiana. 

On March 3rd, heavy rainfalls hit Guarujá municipality, and 138 landslides were 

recorded. According to CEMADEN, the rain gauge registered 320,0 mm in 24 hours, 

10% above of what was expected for the entire month (monthly average of 289,66 mm). 

Figure 6.32 shows the soil moisture and the pluviometry recorded during 72 h (March 1st 

to March 3rd of 2020) by a PCD installed in Vila Baiana. 

Figure 6.32 shows that the accumulated rainfall rapidly increased after 54 hours. An 

extreme heavy rain occurred in the early morning of March 3rd, increasing the volume of 

accumulated rainfall. All the sensors indicate that the soil moisture changes agreed with 

the rainfall intensity. The initial soil moisture (0h) at 0.5m depth was 38.64%, and the 

sensor's registered the highest value (39.27%) after 60h. The initial soil moisture at the 

1.0m depth sensor was 40.94%, with the highest value of 41.49% at 66h. Moreover, the 

1.5m sensor depth had minimal variation (0.26%) of soil moisture during the analyzed 

period. At 0h, this sensor registered soil moisture of 42.92%, and the maximum registered 

was 43.18% after 66h. At 2m depth, the initial soil moisture was 34.38% and increased 

to 35.8% after 66 hours. Furthermore, the 2.5m sensor registered initial soil moisture of 

46.84%, and after 66h, the sensor indicated an increase of soil moisture to 47.28%. This 

is the highest soil moisture value documented during this 72 h.  
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Figure 6.32. Variation of soil moisture and rainfall intensity during 72 h (March 1st to March 3rd 

of 2020) in Vila Baiana. 

 

 

According to CEMADEN (2020), soil moisture of 50% means saturated soil, and with 

low cohesion between its particles, prone to fractures and landslides. The deepest sensor, 

at 3m depth, had a different behavior: the initial soil moisture (0h) was 44.65%. During 

the first 12h, the soil moisture decreases to 44.60%. But due to the rainfall, it increased, 

reaching 45.02% at 66h. 

Despite the soil moisture variation in agreement with the rainfall intensity, it is essential 

to remind that the initial values of soil moisture at all depths were above 34%, meaning 

that the soil wasn't very cohesive and had the propensity to fracture and trigger landslides. 

The soil moisture sensors show lower values on days without rain, as presented in Figure 

6.33. 

Figure 6.33 represents the soil moisture during 72h, from July 1st to July 3rd, 2022. In 

July, there are usually fewer rainfall events in Guarujá, with extended drought periods. 

Therefore, it is possible to compare the soil moisture values during drought and rainfall. 

Figure 6.33 shows that no rainfall was registered during the 72h considered. The sensor 

at 0.5m depth indicates a decrease in soil moisture values, from 34.76% at 0h to 34.33 

after 72h. Similar behavior is shown at the 1.0m depth sensor: the initial soil moisture 

(0h) was 38.45% and decreased to 38.35% after 72h. Both sensors at 1.5m and 2.0m depth 
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presented the minimum variation: initial soil moisture of 40.09% and 30.07%, 

respectively, with a decrease to 41.02% (at 1.5m) and 29.99% (at 2.0m). A reduction in 

soil moisture values was also observed at 2.5m depth, yet this sensor had the highest 

values. At 0h, the soil moisture was 43.86%, and after 72h, the value decreased to 43.74%. 

At 3.0m depth, the last sensor had initial soil moisture of 38.97% which changed to 

38.81% after 72h.  

 

Figure 6.33. Variation of soil moisture and rainfall intensity during 72 h (July 1st to July 3rd of 

2022) in Vila Baiana. 

 

 

Comparing both soil moisture values presented in Figure 6.32 and Figure 6.33, one 

verifies that the highest soil moisture values occurred at 2.5m depth. Most of the landslide 

surface ruptures in Guarujá had depths ranging between 0.5 to 3.0m. During the landslides 

of March 3rd, 2020, the 2.5m sensor indicated 47.28% of soil moisture. In July of 2022, 

the lowest soil moisture value registered was 43.74%, meaning that even during periods 

of drought, the soil moisture at 2.5m is above 40%. Therefore, any rainfall rapidly 

increases the soil moisture, and this soil layer can be saturated, triggering landslides.  

To predict and avoid disasters, the knowledge of the soil's initial conditions, such as soil 

moisture, besides geotechnical and physical parameters, is necessary. 
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6.5 Modeling with TRIGRS  

The mathematical model TRIGRS was chosen to determine the landslide-prone areas in 

Guarujá municipality and the Vila Baiana neighborhood. As mentioned in Section 3.4, this 

model calculates the Factor of Safety (FS) variation using the soil’s physical and 

hydrological parameters.  

The geotechnical parameter used to model the landslide-prone areas were acquired from 

Wolle (1988) and are presented in Table 6.16. 

To verify the influence of the soil moisture in the initial conditions for the assessment of 

slope stability, a comparison between the FS of Vila Baiana and Guarujá between March 

3rd, 2020, and July 1st, 2022, was performed using the model TRIGRS. 

 

Table 6.16. Geotechnical parameters used as TRIGRS inputs. 

Zones 
Depth 

(m) 

Cohesion 

(kPa) 

Internal 

friction 

angle (º) 

Hydraulic 

Conductivity 

(m/s-1) 

Hydraulic 

Diffusivity 

(m/s-1) 

Specific 

Weight 

(kN/m³) 

1 0 - 1m  4.00E+03 39 1.0x10-5 6.0x10-6 1.95E+04 

2 1 -2m 1.00E+03 34 1.0x10-5 6.0x10-6 1.71E+04 

 

In March 2020, during the summer and rainy seasons, the soil moisture was higher (as 

presented in Section 6.4), whereas in July 2022, during the dry winter season, there are 

lower soil moisture levels. Table 6.17 shows the rainfall values used for both periods. The 

results of the comparison between the landslide-prone areas from March 1st, 2020, and July 

1st, 2022, are presented in Figure 6.34 for Guarujá municipality and Figure 6.35 for Vila 

Baiana. Black circles in both figures highlight areas with major changes in the FS. 

 

Table 6.17. Rainfall values were used as inputs for March 1st, 2020, and July 1st, 2022. 

Date Rainfall (m/s) 

March 1st 2020 5.21x10-7 

July 1st 2022 2.31x10-8 

 

Regarding Figure 6.34 and Figure 6.35 it is observed that on March 1st of, 2020, more 

areas are susceptible to landslides, with FS < 0.5. On July 1st of, 2022, some areas that had 
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FS< 0.5 in March 2020 now display FS 0.5 – 1.2. The black circle in both images indicates 

areas with expressive changes in the FS. Table 6.18 presents a comparison with the 

proportion of areas according to FS. 

 

Table 6.18. Comparison between the proportion of stability classes on March 1st of 2020 and July 

1st of 2022 for both Vila Baiana and Guarujá. 

 

Count (%) class Vila Baiana Count (%) class Guarujá 

March 1st 2020 July 1st 2022 March 1st 2020 July 1st 2022 

FS < 0.5 6.07 3.99 4.05 1.14 

0.5 - 1.0 16.58 16.71 14.94 14.06 

1.0 - 1.2 21.59 22.40 11.84 14.95 

1.2 - 1.5 6.10 7.12 2.58 3.07 

FS > 1.5 49.66 49.79 66.60 66.78 
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Figure 6.34. Comparison between landslide-prone areas from March 1st, 2020, and July 1st, 2022, for Guarujá. 
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Figure 6.35. Comparison between landslide-prone areas from March 1st, 2020, and July 1st, 2022, 

for Vila Baiana. 

 

 

Analyzing Table 6.18, it is noted that in March 2020 at Vila Baiana, 6.07% of the area had 

FS<0.5, while in July 2022, only 3.99% of the area presented FS lower than 0.5. A similar 

pattern is observed in Guarujá: 4.05% of the area has FS<0.5 in March 2020, and only 

1.14% during July 2022. These results indicate that these areas easily decrease the FS 

during rain events and, consequently, must be monitored cautiously.  

However, even during periods of drought, there are slopes with FS< 0.5, which means that 

these areas are very unstable and have a high chance of suffering from soil ruptures. 

Besides that, fewer changes in the proportion of regions with FS between 0.5 -1.0 are 

noticed. In Vila Baiana, 16.58% of the areas have FS between 0.5 and 1.0 during March, 

while in July, the proportion is 16.71%. For Guarujá, in 2020, 14.94% of the areas have FS 

from 0.5 to 1.0, and 14.06 in 2022. These areas are unstable, no matter if it is a rainy or 

drought season and must be constantly monitored to avoid disasters. 

To determine if the model TRIGRS is suitable to become an early warning system, a 

rainfall period was chosen to analyze how the model calculates the FS variation. From 
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February 29th to March 3rd, several heavy rainfalls occurred in Guarujá and triggered 

landslides (CEMADEN, 2020). Table 6.19 shows the precipitation levels used in TRIGRS. 

 

Table 6.19. Rainfall values from February 29th to March 3rd of 2020. 

Date Time (h) Rainfall (m/s) 

Feb 29 24h 1.8x10-7 

March 1 48h 5.21x10-7 

March 2 72h 8.4x10-7 

March 3 96h 1.96x10-6 

 

Modeling 96 hours allows to observe the changes in slope stability. With several 

consecutive rainy days, the soil moisture increases, and consequently, the slope stability 

decreases. The variation of the Factor of Safety represents the changes in slope stability, 

indicating those areas are more susceptible to a soil rupture. Figure 6.36 and Figure 6.37 

present the results of the FS variation from February 29th to March 3rd in Guarujá and Figure 

6.38 in Vila Baiana.  

In Figure 6.36, Figure 6.37, and Figure 6.38, it is noteworthy that the FS changes are in 

agreement with the rainfall intensity. On February 29th, the volume of rainfall registered 

was 15.51 mm, and only a few sections had a FS<1 (represented in red). During the next 

72h, March 1st and 2nd, the rainfall volume was 45.05 mm and 52.78 mm, respectively. Due 

to the increase in soil moisture and the constant rainfall, more areas become susceptible to 

landslides, which is represented by the increase of areas with FS<1. On March 3rd, heavy 

rainfall in Guarujá triggered several landslides. After 96h and four days of consecutive 

rainfall, most areas of Vila Baiana have a FS<1, and several landslides were registered in 

areas with FS<0.5.  

The results show that the FS changes agree with the rain intensity and duration. The 

landslide scars corroborate with the areas computed by TRIGRS as unstable (FS<1), 

validating the model´s performance. To validate the TRIGRS modeling, a landslide 

inventory was used. The landslide scars were collected from both satellite images of 

Google Earth and documents from Guarujá Civil Defense. Moreover, 197 landslides were 

registered in the landslide inventory from 2019-2020, which were used to validate the 

TRIGRS results.  
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Figure 6.36. FS variation from February 29th to March 3rd in Guarujá. 
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Figure 6.37. FS variation from March 2nd and 3rd in Guarujá. 
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Figure 6.38. FS variation from February 29th to March 3rd in Vila Baiana. 

 

Two statistical indexes were defined to confirm TRIGRS efficiency: the Success Index (SI) 

and the Error Index (EI). The SI, presented in Equation 6.2, corresponds to the percentage 

of correctly classified unstable classes, and the EI (Equation 6.3) indicates when the 

computed unstable class does not correspond to verified landslide scars (SORBINO et al., 

2010; SCHWARZ; MICHEL, 2016; PAUL et al., 2018; CIURLEO et al., 2019; KÖNIG 

et al., 2022).  

𝑆𝐼 = (
𝐴𝑖𝑛

𝐴𝑢𝑛𝑠
) ∗ 100                                                        (6.2) 

 

The variable 𝐴𝑖𝑛 is the computed unstable areas within the triggering areas, and 𝐴𝑢𝑛𝑠 are 

the triggering areas. 

𝐸𝐼 = (
𝐴𝑜𝑢𝑡

𝐴𝑠𝑡𝑏
) ∗ 100                                                       (6.3) 
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The variable 𝐴𝑜𝑢𝑡 is the computed unstable areas outside the triggering areas, and  𝐴𝑠𝑡𝑏 is 

the stable area. 

This statistical index was calculated only for Guarujá municipality because in Vila Baiana, 

on March 3rd, 2020, only seven landslides were registered, which is not enough to calculate 

statistical indexes. Table 6.20 presents the SI and EI index for Guarujá municipality. 

 

Table 6.20. Success and Error index for Guarujá municipality. 

Location Success Index (SI)  Error Index (EI) 

Guarujá 54.24 % 17.11% 

 

Analyzing the SI and EI of TRIGRS results, it is observed that the model had a SI of 

54.24% and an EI of 17.11%. High values of SI and lower values of EI indicate the model’s 

efficiency in correctly identifying landslide-prone areas and its usefulness as an early 

warning tool.  Notwithstanding, the scar concentration (SC), landslide potential (LP), and 

Frequency of distribution (Fd) were calculated to improve the validation of the TRIGRS 

results. These indexes' results are presented in Figure 6.39. 

 

Figure 6.39. Scar concentration, landslide potential, and Frequency of distribution for March 3rd 

of 2020 in Guarujá. 

 

28,98

38,46

18,52

12,03

2,012,84 0,93 0,53 1,66 0,01
3,65

14,78 12,38

2,59

66,60

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

FS < 0.5 0.5 - 1.0 1.0 - 1.2 1.2 - 1.5 FS > 1.5

(%
)

Stability classes

TRIGRS - Guarujá March 3rd 2020

Scar Concentration (%) Landslide Potential (%) Frequency Distribution (%)



86 
 

Figure 6.39 shows that 67.44% of the landslide scars are in FS < 1.0, and these classes 

represent 18.43% of the Guarujá area. The classes considered stable (FS > 1.0) have 

landslide scars (32.56%), which corroborates the assumption that anthropic influences 

enhance the chances of soil rupture.  

Therefore, it is important to analyze the correlation among the susceptibility map from IPT, 

the landslide inventory, and TRIGRS results. Figure 6.40 presents the IPT susceptibility 

map and the landslide occurrences. 

 

Figure 6.40. IPT's susceptibility map of Guarujá and landslide occurrences. 
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Figure 6.40 shows that most declivity areas have high or medium levels of susceptibility, 

with several landslides recorded. The areas with a high level of susceptibility registered 

83.93% of the landslides. Areas with medium susceptibility levels recorded 7.14% of 

landslides and 8.93% in classes with a low level of susceptibility. 

Figure 6.41 shows the comparison between the instability areas from TRIGRS (FS< 1.0) 

and the IPT susceptibility map. The red color is usually used to represent the most unstable 

areas. To differentiate the landslide-prone areas, a light red was applied to indicate 

TRIGRS unstable areas, and yellow to represent the IPT unstable areas. 

 

Figure 6.41. Comparison between the instability areas from TRIGRS and IPT susceptibility map. 

 

 

Figure 6.41 shows that TRIGRS unstable areas match the high susceptibility class from the 

IPT map. The results show the applicability of TRIGRS to identify the landslide-prone 

areas in Guarujá, and the possibility to be applied as an early warning system for landslides.   
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6.6 Modeling with SINMAP  

With a different approach, the mathematical model SINMAP is a probabilistic model to 

determine the landslide-prone areas in Guarujá municipality and the Vila Baiana 

neighborhood. The Stability Index (SI) indicates the most susceptible areas.  

The SINMAP uses a range of values (lower and higher values) to determine the landslide-

prone areas. Therefore, the range of values is the same parameters used in both scenarios 

of the TRIGRS model. Table 6.21 presents the geotechnical parameters used in SINMAP, 

which were acquired from Wolle (1988).  Figure 6.42 shows the SINMAP model result 

for Guarujá municipality, and Figure 6.43 for Vila Baiana.  

 

Table 6.21. Geotechnical parameters used in SINMAP. 

  
Cohesion 

(kPa) 

Internal 

friction angle 

(º) 

T/R (m/h) 

Hydraulic 

Conductivity 

(m/ s-1) 

Specific 

Weight 

(kN/m³) 

Lower 4.00E+03 39 46 1.0x10-5 1.71E+04 

High 1.00E+03 34 142 1.0x10-5 1.71E+04 

 

Analyzing the results of the landslide-prone areas of Guarujá (Figure 6.42), it is observed 

that the lower and upper threshold limits encompassed more than 17.11% of the area, 

characterizing the area as a region with a high probability of landslides. However, the 

stable class, which represents the flat area of Guarujá, represents 74.05% of the 

municipality area. Therefore, excluding the stable class, it is observed that 65.92% of the 

area has high susceptibility to landslides.  

For Vila Baiana, the lower and upper threshold limits represent 27.75% of the area. By 

excluding the stable class, which represents 57.72% of the neighborhood, the landslide-

prone area is 65.65%. Moreover, three landslides were registered in the lower threshold 

limit, two in the Quasi-stable class, and two in the Moderate-stable limit. 

To validate the SINMAP results, the Success Index (SI), Error Index (EI), Scar 

Concentration (SC), Landslide Potential (LP), and Frequency of distribution (Fd) were 

calculated. The statistical indexes were calculated for Guarujá only, due to the lower value 

of landslides (only seven) in Vila Baiana. The SI and EI results are presented in Table 

6.22. 
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Table 6.22. SINMAP's Success and Error indexes. 

SINMAP 

Success Index (SI) Error Index (EI) 

17.48 6.71 

 

The statistical index of SINMAP identified a Success Index of 17.48 and a 6.71 Error 

Index. The model has lower values of SI and EI, indicating that the model’s performance 

was not satisfactory.  To understand the model's SI and EI, it is necessary to analyze the 

correlation between the landslides and the model’s unstable areas. 
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Figure 6.42. Results of landslide-prone areas with Sinmap model for Guarujá. 
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Figure 6.43. Results of landslide-prone areas with Sinmap model for Vila Baiana. 

 

 

Figure 6.44 shows the values of Scar Concentration, Landslide Potential, and Frequency 

of distribution.   

 

Figure 6.44. SC, LP and Fd of SINMAP model for Guarujá. 

 

10,86

30,66

13,10
7,50

37,87

3,07
8,68

3,71 2,12

10,72
4,09

13,01

5,21 3,63

74,05

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

Upper threshold High threshold Quasi-stable Moderately-stable Stable

(%
)

Título do Eixo

SINMAP - Guarujá

Scar Concentration (%) Landslide Potential (%) Frequency Distribution (%)



92 
 

Figure 6.44 identified that 37.87% of the landslide scars happened in the stable class, 

followed by a high threshold limit (30.66%). The upper threshold limit has 10.86% of the 

landslide’s scars, while the Quasi-stable class has 13.10%. These values corroborate with 

the Success and Error index (Table 6.22) since several landslides’ scars were in areas with 

medium or low susceptibility.    

The SINMAP results were compared with the IPT susceptibility map, as presented in 

Figure 6.45. The red-light color indicates the unstable classes from the SINMAP (SI < 

1.0) and in yellow the high susceptible areas from the IPT map. 

 

Figure 6.45. Comparison between SINMAP unstable areas and IPT susceptibility map. 

 

 

Figure 6.45 shows that the probabilistic model SINMAP classified fewer areas as unstable 

than the IPT map. This result confirms the lower value for the SI index and explains why 

several landslides were in areas with medium or low susceptibility. The model 

underestimates the landslide-prone areas. 
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6.7 Comparison between TRIGRS and SINMAP results 

The two mathematical models TRIGRS and SINMAP were applied to identify the 

landslide-prone areas. Due to the specificity of each model, the results are different. Their 

different approach was summarized in Table 6.23. 

 

Table 6.23. Comparison between SINMAP and TRIGRS different approaches. 

  SINMAP TRIGRS 

Input parameters 

Cohesion Cohesion 

Internal friction angle Internal friction angle 

R/T Soil depth 

DEM DEM 

  

Hydraulic Conductivity 

Hydraulic Diffusivity 

Rainfall 

Data from the study area Multi-resolution calibration Parameter cell by cell 

Output results Stability Index (SI) Factor of Safety (FS) 

Output File format Shapefile ASCII 

Interface ArcView 3.3 Command Line 

Mathematical approach Probabilistic Deterministic 

 

Therefore, the reliability of both models was evaluated through the Contingency table 

(FAWCETT, 2006), and SI/EI index (SORBINO; et. al., 2010). Figure 6.46 presents the 

comparison between the SINMAP and TRIGRS results for Vila Baiana. 
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Figure 6.46. Comparison between SINMAP and TRIGRS results for Vila Baiana. 

 

 

Observing Figure 6.46, there is a visual difference in the unstable classes for both models. 

The SINMAP model classified 27.75% of areas within the upper and lower threshold 

limit (SI < 1.0) and the TRIGRS model identified 22.65% of the area as unstable (FS 

<1.0). Moreover, the probabilistic model classified only 5.21% of Vila Baiana as Quasi-

stable (1.0 > SI < 1.2), and TRIGRS computed 21.57% of the area. The model SINMAP 

estimated 63.05% of Vila Baiana as stable (SI > 1.2; Moderately stable and stable limits) 

and 55.78% of the area for TRIGRS. Figure 6.47 presents the comparison between 

stability classes computed by both models. 
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Figure 6.47. Stability classes computed by TRIGRS and SINMAP for Vila Baiana. 

 

 

Figure 6.48 shows the comparison between SINMAP and TRIGRS results for Guarujá 

municipality, and the stability areas computed by both models are presented in Figure 

6.49. 

TRIGRS model estimated 18.98% of the study area as unstable (FS < 1.0), while 

SINMAP calculated 17.11% of areas with SI < 1.0 (upper and lower limits). 

Notwithstanding, the probabilistic model determined 5.21% of the area as Quasi-stable 

(1.0 > SI < 1.2), and TRIGRS computed that 11.83% of Guarujá has 1.0 > FS < 1.2. The 

stable classes represented 69.19% of the municipality for TRIGRS and 77.68% for 

SINMAP. 
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Figure 6.48. Comparison between SINMAP and TRIGRS results for Guarujá. 
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Figure 6.49. Stability classes computed by TRIGRS and SINMAP for Guarujá. 

 

 

Comparing the SI and EI indexes from both models (Table 6-24), the model SINMAP 

had a lower value of SI and EI than TRIGRS. According to Sorbino et al., (2010), the 

ratio between SI and EI indicates the model’s efficiency to represent the area’s reality. 

The model with a higher value of SI/EI had the best performance.  

 

Table 6.24. Comparison between Success and Error indexes from both mathematical models. 

Model Success Index (SI)  Error Index (EI) SI/EI 

SINMAP 17.48 6.71 2.60 

TRIGRS 54.24 17.11 3.17 

 

The analysis of Table 6.24, shows that TRIGRS had the best performance to identify 

landslide-prone areas in comparison with SINMAP.  

The contingency table, based on Fawcett (2006), is a two-by-two confusion matrix, that 

compares the model’s results. The comparison is determined by the four outcomes: true 

positive (TP), false negative (FN), true negative (TN), and false positive (FP). For a 

landslide analysis, the TP is when a landslide occurred in unstable areas. A false negative 
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is a landslide in stable areas. True negative refers to stable areas without landslides scars, 

and False positive is related to unstable areas without landslides. Table 6.25 presents the 

contingency table. Therefore, the following indexes can be determined: accuracy, 

precision, sensitivity, and specificity, as presented in Table 6.26. The performance is 

determined by the ratio between sensitivity and the False Positive Ratio (FPR); thus, 

higher values indicate better performance. 

 

Table 6.25. Contingency table, based on Fawcett (2006). 

Positive (P) Negative (N) 

True Positive (TP) False Positive (FP) 

False Negative (FN) True Negative (TN) 

 

Table 6.26. Statistical indexes are calculated from the Contingency table. 

Index Parameters Performance 

Accuracy 
𝑉𝑃 + 𝑉𝑁

𝑃 + 𝑁
 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝐹𝑃𝑅
 

Precision 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Sensitivity 
𝑇𝑃

𝑃
 

Specificity 
𝑇𝑁

𝐹𝑃 + 𝑇𝑁
 

False Positive Ratio 

(FPR) 

𝐹𝑃

𝑁
 

 

Table 6.27 presents the results of the contingency table for both TRIGRS and SINMAP. 
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Table 6.27. Contingency table for SINMAP and TRIGRS models. 

Index SINMAP TRIGRS 

Accuracy 0.829 0.820 

Precision 0.003 0.026 

Sensitivity 0.415 0.965 

Specificity 0.829 0.819 

False Positive Ratio 0.171 0.181 

Performance 2.435 5.348 

 

The analysis of Table 6.27 shows that the TRIGRS model had a better performance than 

SINMAP. Since SINMAP is a probabilistic model, there is a tendency to overestimate 

the unstable areas. The best model to identify unstable areas is that one whose results of 

the most unstable class coincide with the landslides scars, and which represents the minor 

area of the study basin (HUANG; KAO, 2006; DIETRICH; et. al., 2011; PARK; et. al., 

2013; ZIZIOLI et al., 2013; MICHEL; et. al., 2014; NERY; VIEIRA, 2015). 

The TRIGRS model has provided the most realistic scenarios when compared to Sinmap, 

due to its capability to evaluate the transient pore-water pressure during rainfall events. 

The steady-state hydrology approach from Sinmap leads to widespread landslide- prone 

areas (FRATTINI et al., 2004; SORBINO; et. al., 2010; ZHUANG et al., 2017). 

Notwithstanding, TRIGRS can be applied as an early warning system for landslides. 

6.8  Landslides early warning system using TRIGRS 

The model TRIGRS shows its applicability in predicting landslides-prone areas during a 

rainfall event. Therefore, this model can be used as an early warning system. 

 To accomplish that, a Python script was developed to automatically acquire the weather 

forecast data from Climatempo’s API and perform the TRIGRS modeling for Vila Baiana. 

The script (presented in Appendix C) provides the variation of FS for the next 24h, 48h, 

and 72h, and if needed, an alert is sent. 

The script uses Climatempo’s API to request Guarujá’s weather forecast, hourly for the 

following 72h. The rain values from Climatempo are shown in millimeters per hour 

(mm/h), while TRIGRS uses meters per second as a unit. Therefore, the rainfall values are 

converted to the units used in the mathematical model. The following step is to define and 

set TRIGRS configuration parameters for 3 days of rain forecast. The model is executed, 
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creating the three maps of FS for 24h, 48h, and 72h. To quantify the FS variation, the 

program calculates the sum of the FS values of the area for each timeframe. Following that, 

the Python script compares the values for the periods considered. Moreover, the automated 

process provides the percentage of cells with FS ≤ 1 for each map. The alert is sent when 

the FS sum decreases by 0.22%. This workflow is presented in Appendix D. 

To determine the FS threshold, several landslides that happened in Vila Baiana were chosen 

(Table 6.28), and the FS variation was computed using TRIGRS. The PPDC determined a 

rainfall threshold of 80mm in 72h for Guarujá. Therefore, to verify the FS variation and its 

correlation with the rainfall, nine landslides were selected. Three of the landslides selected 

happened with rainfall values lower than 80mm/72h. Three occurrences had values closer 

to 80mm/72h, and the last three selected data happened during extreme rainfall events 

(values above 80mm/72h). 

 

Table 6.28. Landslides in Vila Baiana to determine the FS threshold. 

Data Rainfall 24h (mm) Rainfall 72h (mm) FS 24h (%) FS 72h (%) 

10/02/2010 7.3 38.6 -0.03 -0.19 

19/03/2009 43.0 43.0 -0.16 -0.43 

18/10/2009 49.2 66.9 -0.18 -0.59 

14/12/2010 59.4 79.6 -0.22 -0.74 

17/04/2005 80.0 80.0 -0.30 -0.91 

27/02/2013 82.7 82.7 -0.31 -0.95 

26/03/1991 70.9 95.9 -0.26 -0.93 

26/02/2009 82.1 191.5 -0.31 -1.37 

23/03/1991 70.4 230.5 -0.26 -1.44 

 

Table 6.28 shows that the decrease in slope stability is directly related to the accumulated 

rainfall. Notwithstanding, this correlation validates the use of an FS threshold as an alert. 

The improvement of using TRIGRS as an early warning system is the fact that the model 

computes slope stability based on how much rain infiltrates in the soil, and the increase in 

soil moisture decreases the FS. In addition to that, the results are maps, that help visualize 

how the area will be affected by the predicted rain. Today, the early warning defined by 

PPDC analyzes only the accumulated rainfall in 72h. Using this new system, the alerts will 

be based on FS variation that takes soil moisture over time into consideration.  
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It is important to observe that extreme events in a very short period, have become 

commonplace. As presented in Table 6.9, several landslides were triggered by heavy 

rainfall in 24h. From 1991-2020, 48.58% of the landslides happened with a threshold 

higher than 70mm in 24 hours.  

Moreover, to determine an FS threshold that could predict these extreme events, an analysis 

using the methodology proposed by Tatizana et al., (1987a, 1987b) and applied by Molina 

et al. (2015) e Santoro et al. (2010) e Tachini et al. (2021), among others were conducted.  

This methodology consists of determining the correlation between landslides and 

precipitations levels, using scatter plots adjusted accordingly with Equation 6.4.  

I = 𝑘 ∗ (𝑃𝑎𝑐)−𝑏                                                         (6.4) 

 

In Equation 6.4, “I” is the hourly intensity, Pac is the accumulated precipitation, 𝑘 and b 

are constant values of geometric adjustment. The respective values of 𝑘 and b were 

automatically defined by the software (Excel) using the Least Squares method, and hourly 

intensity referring to the previous 24h of accumulated rainfall.  

The coefficient of determination, denoted as R², was calculated to validate the curve 

projected by the scatter plot, and values close to 1 mean an improved curve adjustment.  

Two criteria were used to determine the best correlation of landslide and rainfall in 24h 

and 72h, as shown in Table 6.29. The results are presented in Figure 6.50 and Figure 6.51. 

 

Table 6.29. Criteria to determine the correlation between landslide and rainfall events. 

Rainfall threshold criteria 

Criteria 24 hours 72 hours 

1 60 mm 80 mm 

2 80 mm 100 mm 
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Figure 6.50. Scatter plot of Criteria 1 to determine the best correlation of landslides and rainfall. 

 

 

Figure 6.51. Scatter plot of Criteria 2 to determine the best correlation of landslides and rainfall. 

 

 

The best-adjusted curve corresponds to a threshold of 60 mm and 80 mm for 24 hours. 

Therefore, most of the landslide occurrences happened withing this range of accumulated 

rainfall values. Consequently, considering the landslide involucre from criteria 1 and 2, an 

additional threshold of 60mm for 24 hours is recommended.  

The PPDC already uses an accumulated of 80mm/72h as an alert. Then, to improve the 

reliability of the alerts, and predict extreme events, a few tests of the FS variation, 

considering 60mm of rainfall in 24h was performed. To determine the FS threshold for 

24h, TRIGRS simulated scenarios for 55mm, 60mm, 65mm, 70mm, 75mm and 80mm of 

rainfall in 24h, as presented in Table 6.30. 
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Table 6.30. Simulated scenarios for 24h accumulated rainfall. 

Rainfall 24h (mm) FS variation in 24h (%) 

55.0 -0.20 

60.0 -0.22 

65.0 -0.24 

70.0 -0.26 

75.0 -0.28 

80.0 -0.30 

 

According to Table 6.30, with 60mm of rainfall in 24h, the FS variation is 0.22%. The FS 

decreases according to the increase in rainfall, thus this correlation is a linear regression, 

as presented in Figure 6.52. 

 

Figure 6.52. Correlation between the rainfall infiltration in 24 and the FS variation. 

 

 

For the early warning system, TRIGRS will calculate the slope stability based on the 

weather forecast and rainfall infiltration. Rainfall of lower intensities, but with long 

duration, could trigger landslides due to the increase in soil moisture. Therefore, the 

advantage of using TRIGRS as an early warning system is because this model calculates 

the slope stability based on how the rain forecast will increase the soil moisture of Vila 

Baiana.  Moreover, the results presented in Table 6.30 indicate that the FS threshold for 

this early warning system is 0.22%. 
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When the system starts, it acquires the weather forecast from Climatempo’s website and 

calculates the slope stability. If the scenario computed indicates an FS variation equal to or 

higher than the defined threshold for 24h (FS ≥ 0.22), an alert will be emitted. Despite the 

alert, the script always shows the forecast and FS variation for 24h, 48h, and 72h. The 

unstable areas can be observed in the map that results from the TRIGRS calculation.  

To better illustrate using concrete examples, four dates were chosen: August 8th, December 

12th, 13th, and 16th of 2022. August 8th was chosen because it exemplifies how the variation 

of soil moisture during time changes slope stability. December 12th and 13th were chosen 

due to the strong rainfall events happening in the study area. And December 16th represents 

a day with a lower rainfall forecast. 

Figure 6.53 presents the results of the FS variation forecast for August 8th of 2022.  

 

Figure 6.53. FS variation forecast for August 8th, 2022, in Vila Baiana. 

 

 

Figure 6.53 shows a decrease in the FS of Vila Baiana for the following 72h. The weather 

forecast indicates a 7.20 mm/h of rainfall in the next 24h, thus TRIGRS calculates a 

decrease of 0.03% on the FS. For 48h, with a forecast of 38.40 mm/h of rainfall, the model 

indicates a decrease in the FS (- 0.16%), when compared to the initial condition. And for 
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60 mm/h of rainfall, the model determined that Vila Baiana FS decreases by 0.31%. This 

means that there is an increased possibility of landslides occurring. 

This example perfectly illustrates how the water infiltration in the soil over time, decreases 

the slope stability. The accumulated rainfall for 72h is 60mm, lower than the PPDC 

threshold. However, there is an increase in soil moisture during this period, decreasing the 

FS. The model can prevent landslides that would occur even when the rainfall forecast is 

lower than the PPDC threshold.  

Figure 6.54 presents the maps with FS variation for 24h, 48h, and 72h forecast, and the 

most unstable areas (in red). 

 

Figure 6.54. FS variation for 24h, 48h, and 72h forecast in Vila Baiana on August 8th of 2022. 
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Figure 6.54 presents the TRIGRS results for a 72h forecast. It is observed an increase in 

areas with FS <1, and mostly the areas in red, indicating FS<0.5. These areas have higher 

chances of suffering from landslides. 

Figure 6.55 shows the early warning system for December 12th of 2022, and Figure 6.56 

presents the maps, resulting from TRIGRS calculations. 

 

Figure 6.55. FS variation forecast for December 12th of 2022 in Vila Baiana. 

 

 

Figure 6.55 shows the FS variation of Vila Baiana for the following 72h. It is expected to 

rain 8.40mm in the next 24h, indicating a decrease in the FS of 0.03%. For 48h, the 

forecast is 88.60mm, thus TRIGRS calculates that FS decrease by 0.36%. With this 

volume of rainfall, the soil moisture rapidly increases, and landslides can be triggered. 

And for 72h forecast, the accumulated rainfall is 93.4mm, with an FS varying by 0.56%, 

therefore the landslide alert is emitted. Figure 6.56 shows the maps with the FS variation 

in Vila Baiana. 

In Figure 6.56, the FS variation is easily perceptive. There is an increase in areas with 

FS<1 for 48h forecast, and a few more for 72h. Vila Baiana is known for its high number 

of landslides, and TRIGRS demonstrates how fast the slope stability can change. 
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Figure 6.56. FS variation for 24h, 48h, and 72h forecast in Vila Baiana for December 12th of 

2022. 

 

 

The early warning system was tested on consecutive days, to see its performance with a 

possibility of changes in the rainfall forecast. Therefore, Figure 6.57 presents the results 

obtained on December 13th of 2022.  

Figure 6.57 shows the forecast for December 13th of 2022. The weather forecast shows 

heavy rainfall with 80.20mm in 24h, and an accumulated of 85.0mm in 72h. This early 

warning system emitted the alert of a decrease in FS. Extreme rainfall in a short time can 

trigger landslides and become a disaster. The FS during 24h decreased by 0.30%. For 48h 

and 72h, the FS continued at 0.30% since the accumulated for the next few days was only 

5mm. 
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Figure 6.57. FS variation forecast for December 13th of 2022 in Vila Baiana. 

 

 

Figure 6.58 presents the three maps produced by TRIGRS with the visual variation of FS 

for December 13th of 2022. 
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Figure 6.58. FS variation for 24h, 48h, and 72h forecast in Vila Baiana for December 13th of 

2022. 

 

 

Analyzing two consecutive days (December 12th and 13th) of heavy rainfall events shows 

how the forecast can change within 24h. For example, on December 12th, the forecast 

predicted 88.60mm of rainfall in the next 48 hours (meaning December 13th). And on 

December 13th, the rainfall expected for the first 24h was already 80.20mm. Either way, 

the alert was emitted, due to the decrease in FS. The early warning system adapted the FS 

variation, according to the new rainfall forecast. 

The last example was performed on December 16th of 2022, as presented in Figure 6.59. 
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Figure 6.59.  FS variation forecast for December 16th of 2022 in Vila Baiana.      

 

 

For December 16th, the rainfall forecast predicted 4.80mm in 24h, and the FS decreased 

by 0.02%. During 48h, it is expected 9.60mm of accumulated rainfall, and the FS of Vila 

Baiana decreased to 0.05%. And for 72h, the FS was 0.12% with a, accumulated rainfall 

of 26.4mm. This scenario is under the FS threshold (FS ≥ 0.22%), and no alert was 

emitted. The variation of FS is presented in Figure 6.60. 

Figure 6.60 shows the FS variation for 72h from December 16th. The areas with a decrease 

in the FS are minimal, and a visual comparison of the maps is difficult. However, the area 

represented in red, has FS<0.5, even with lower values of rainfall. Meaning that these 

areas are the most susceptible ones for landslides. 

The script was tested with different rainfall forecasts, and the results are promising. Using 

TRIGRS as an early warning system allows for the identification of unstable areas. The 

FS variation threshold increases the chances of predicting landslides that happen with 

lower values of precipitation, or rainfall events of long duration.   
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Figure 6.60. FS variation for 24h, 48h, and 72h forecast in Vila Baiana for December 16th of 

2022. 
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7. CONCLUSIONS 

The identification and analysis of landslide-prone areas are essential to avoid disasters. 

The use of satellite images from the Landsat sensor allows a temporal analysis of the 

urban sprawl from 1990-2021. Moreover, the populational growth foments the 

construction of houses in steep slope areas. Consequently, the natural vegetation was 

removed, and the total vegetation cover of Guarujá has decreased. Machine learning 

techniques and data mining contributed to classifying the orthophoto of the Vila Baiana 

neighborhood and discriminated the objects of the area. Several constructions were 

observed in steep slope areas, and most of them have precarious building standards. 

Pavement streets are present only in flat areas, where it is possible to discriminate the 

blocks. A vegetation cover is rare. Therefore, the area has a lot of anthropic changes, 

which contribute to become more susceptible to landslides. 

The rainfall events have correlations with the documented landslides in Guarujá. 

However, several occurrences happened with lower levels of rainfall. And an increase in 

heavy rainfalls (extreme events) in a short period, has become more common. The 

importance of developing an early warning system based on the variation of Factor of 

Safety is to predict the landslides considering not only the rainfall values but also the soil 

moisture. 

Two mathematical models were tested to verify which has better results to become part 

of the early warning system: SINMAP and TRIGRS. The results show that TRIGRS has 

the best capability to identify landslide-prone areas and calculate how the FS decreases 

according to the volume of rainfall expected. 

The early warning system, developed in Python, used TRIGRS to determine the slope 

stability of Vila Baiana, and the results are coherent with reality. The model sends an alert 

when the predicted FS is lower than the defined threshold. It can be replicated in different 

areas, adapting it to a different context. Thus, this system does not replace the rainfall 

threshold determined by PPDC and applied by the Civil Defense. On the contrary, it 

should be used in parallel, as a new tool to predict landslides based on FS variation.  
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8. RECOMMENDATIONS FOR FUTURE STUDIES 

For future studies, it is recommended to use geotechnical parameters collected in situ, to 

improve the reliability of the results. The mathematical model TRIGRS determines slope 

stability based on both weather forecasts and rainfall infiltration. The soil moisture has 

an important impact on triggering landslides. CEMADEN has sensors installed in several 

risk areas to analyze the soil moisture at different depths. Therefore, a partnership with 

the CEMADEN project is recommended, allowing automatic access to this data, through 

an API. More precise soil moisture data will improve the reliability of this early warning 

system, leading to improved results and accurate alerts.  
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APPENDIX A - DECISION TREE GENERATED BY CART ALGORITHM IN 

VILA BAIANA CLASSIFICATION. 
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APPENDIX B – COMPARISON BETWEEN URBAN SPRAWL FROM 2013 

AND 2021. 
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APPENDIX C – SCRIPT OF THE MATHEMATICAL MODEL TRIGRS USED 

AS AN EARLY WARNING SYSTEM. 

import json 

import requests 

import pandas as pd 

import subprocess 

import pathlib 

import numpy as np 

import os 

 

# Climatempo's API access token 

token = ''  # Removed to preserve the confidentiality of the token 

 

# API URL for the 72h forecast - 4234 = Guaruja 

api_url = 

'https://apiadvisor.Climatempo.com.br/api/v1/forecast/locale/4234/hour

s/72?token=' + token 

 

# Receives the APIs response 

response = requests.get(api_url) 

response_json = response.json() 

 

# Turns the API's response into a Pandas' DataFrame 

response_df = pd.DataFrame(response_json['data']) 

 

# Creates variables for each day of forecast 

rain_24_sum = 0 

rain_48_sum = 0 

rain_72_sum = 0 

 

# Iteration control variable 

prediction_hour = 0 

 

# For each of the 72h of forecast, sum the hour's precipitation of the 

appropriate variable 

for prediction_rain in response_df['rain']: 

    if prediction_hour < 24: 

        rain_72_sum += prediction_rain.get('precipitation') 

        rain_48_sum += prediction_rain.get('precipitation') 

        rain_24_sum += prediction_rain.get('precipitation') 

 

    else: 

        if prediction_hour < 48: 

            rain_72_sum += prediction_rain.get('precipitation') 

            rain_48_sum += prediction_rain.get('precipitation') 

 

        else: 

            rain_72_sum += prediction_rain.get('precipitation') 

 

    # Increases the hour counter ahead of the loop wrap 

    prediction_hour += 1 

 

# Prints the forecast on the console 

print('24h forecast: %04.2f mm/h' % round(rain_24_sum, 2)) 

print('48h forecast: %04.2f mm/h' % round(rain_48_sum, 2)) 

print('72h forecast: %04.2f mm/h' % round(rain_72_sum, 2)) 
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# Converts mm/24h to m/s 

rain_24_sum_ms = rain_24_sum / 86400000 

rain_48_sum_ms = rain_48_sum / 86400000 

rain_72_sum_ms = rain_72_sum / 86400000 

 

# TRIGRS runs in 24-hour windows 

rain_48_sum_ms_window = rain_48_sum_ms - rain_24_sum_ms 

rain_72_sum_ms_window = rain_72_sum_ms - rain_48_sum_ms 

 

# Defines and sets TRIGRS configuration parameters for 3 days of rain 

forecast 

trigrs_input_text = """Name of project (up to 255 characters) 

PrevisaoScript 

imax, row, col, nwf, tx, nmax 

15889  141  165  21874,  1,  30 

nzs, mmax, nper,  zmin,  uww,     t, zones 

10,    100,   3,   0.001,  9.8e3,  259200,  2 

zmax,   depth,   rizero,  Min_Slope_Angle (degrees) 

-3.001,  -2.4,  1.0e-9,       0. 

zone, 1 

cohesion,phi,  uws,   diffus,   K-sat, Theta-sat,Theta-res,Alpha 

4.0e+03, 39., 1.95e+04,  6.0e-06, 1.0e-05,   0.45,    0.05,    -0.5 

zone, 2 

cohesion,phi,  uws,   diffus,   K-sat, Theta-sat,Theta-res,Alpha 

1.0e+03, 34., 1.71e+04,  6.0e-06, 1.0e-05,   0.45,    0.06,   -8. 

cri(1), cri(2), ..., cri(nper) 

%.2e, %.2e, %.2e  

capt(1), capt(2), ..., capt(n), capt(n+1) 

0,86400,172800,259200. 

File name of slope angle grid (slofil)   

{file/location/for/slope} 

File name of property zone grid (zonfil) 

{file/location/for/zone} 

File name of depth grid (zfil)  

{file/location/for/zmax} 

File name of initial depth of water table grid   (depfil) 

{file/location/for/depthwt} 

File name of initial infiltration rate grid   (rizerofil) 

None 

List of file name(s) of rainfall intensity for each period, (rifil())   

None 

None 

None 

File name of grid of D8 runoff receptor cell numbers (nxtfil) 

{file/location/for/TIdscelGrid} 

File name of list of defining runoff computation order (ndxfil) 

{file/location/for/TIcelindxList} 

File name of list of all runoff receptor cells  (dscfil) 

{file/location/for/TIdscelList} 

File name of list of runoff weighting factors  (wffil) 

{file/location/for/TIwfactorList} 

Folder where output grid files will be stored  (folder) 

%s 

Identification code to be added to names of output files (suffix) 

ThesisScript 

Save grid files of runoff? Enter T (.true.) or F (.false.) 

F 

Save grid of minimum factor of safety? Enter Enter T (.true.) or F 

(.false.) 
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T 

Save grid of depth of minimum factor of safety? Enter Enter T (.true.) 

or F (.false.) 

F 

Save grid of pore pressure at depth of minimum factor of safety? Enter 

Enter T (.true.) or F (.false.) 

F 

Save grid files of actual infiltration rate? Enter T (.true.) or F 

(.false.) 

F 

Save grid files of unsaturated zone basal flux? Enter T (.true.) or F 

(.false.) 

F 

Save listing of pressure head and factor of safety ("flag")? (Enter -2 

detailed, -1 normal, 0 none) 

-2 

Number of times to save output grids 

4 

Times of output grids  

0,86400,172800,259200. 

Skip other timesteps? Enter T (.true.) or F (.false.) 

F 

Use analytic solution for fillable porosity?  Enter T (.true.) or F 

(.false.) 

T 

Estimate positive pressure head in rising water table zone (i.e. in 

lower part of unsat zone)?  Enter T (.true.) or F (.false.) 

T 

Use psi0=-1/alpha? Enter T (.true.) or F (.false.) (False selects the 

default value, psi0=0) 

F 

Log mass balance results?   Enter T (.true.) or F (.false.) 

T 

Flow direction (enter "gener", "slope", or "hydro") 

gener 

Add steady background flux to transient infiltration rate to prevent 

drying beyond the initial conditions during periods of zero 

infiltration? 

T 

""" % (rain_24_sum_ms, rain_48_sum_ms_window, rain_72_sum_ms_window, 

str(pathlib.Path(__file__).parent.resolve()) + "\Outputs\\") 

 

# Creates a new, or replaces the current 'tr_in.txt' in the folder 

with open('tr_in.txt', 'w') as f: 

    f.write(trigrs_input_text) 

 

# Checks whether an Outputs folder exists and creates one if necessary 

pathlib.Path(str(pathlib.Path(__file__).parent.resolve()) + 

"\Outputs").mkdir(parents=True, exist_ok=True) 

 

# Runs TRIGRS to calculate the safety factors 

subprocess.run([str(pathlib.Path(__file__).parent.resolve()) + 

"\TRIGRS.exe"], stdout=open(os.devnull, 'wb'), stderr=open(os.devnull, 

'wb')) 

 

# Reads TRIGRS safety factor output files 

trigrs_output_1 = np.loadtxt('Outputs\TRfs_min_Previsao_1.txt', 

skiprows=6) 

trigrs_output_2 = np.loadtxt('Outputs\TRfs_min_Previsao_2.txt', 
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skiprows=6) 

trigrs_output_3 = np.loadtxt('Outputs\TRfs_min_Previsao_3.txt', 

skiprows=6) 

trigrs_output_4 = np.loadtxt('Outputs\TRfs_min_Previsao_4.txt', 

skiprows=6) 

 

# Replaces the '-9999.' into '0' in order to be ignored (Forces the 

data to be within the values 0 and 10) 

np.clip(trigrs_output_1, 0, 10, out=trigrs_output_1) 

np.clip(trigrs_output_2, 0, 10, out=trigrs_output_2) 

np.clip(trigrs_output_3, 0, 10, out=trigrs_output_3) 

np.clip(trigrs_output_4, 0, 10, out=trigrs_output_4) 

 

# Calculates the sum of all values 

trigrs_output_1_sum = np.sum(trigrs_output_1) 

trigrs_output_2_sum = np.sum(trigrs_output_2) 

trigrs_output_3_sum = np.sum(trigrs_output_3) 

trigrs_output_4_sum = np.sum(trigrs_output_4) 

 

# Calculates the percentage of FS that dropped compared to the initial 

state 

output_percent_24h = (100 * trigrs_output_2_sum / trigrs_output_1_sum) 

- 100 

output_percent_48h = (100 * trigrs_output_3_sum / trigrs_output_1_sum) 

- 100 

output_percent_72h = (100 * trigrs_output_4_sum / trigrs_output_1_sum) 

- 100 

 

# Writes the initial condition and forecasts on the console 

print('\nInitial condition FS sum: %d' % round(trigrs_output_1_sum)) 

print('24h forecast FS sum: %d (%d / %.2f%%)' % 

(round(trigrs_output_2_sum), trigrs_output_2_sum - 

trigrs_output_1_sum, output_percent_24h)) 

print('48h forecast FS sum: %d (%d / %.2f%%)' % 

(round(trigrs_output_3_sum), trigrs_output_3_sum - 

trigrs_output_1_sum, output_percent_48h)) 

print('72h forecast FS sum: %d (%d / %.2f%%)' % 

(round(trigrs_output_4_sum), trigrs_output_4_sum - 

trigrs_output_1_sum, output_percent_72h)) 

 

# Counts the number of cells where the safety factor is 1 or lower, 

ignoring zeros 

trigrs_output_1_sub1count = np.count_nonzero(trigrs_output_1 <= 1) 

trigrs_output_2_sub1count = np.count_nonzero(trigrs_output_2 <= 1) 

trigrs_output_3_sub1count = np.count_nonzero(trigrs_output_3 <= 1) 

trigrs_output_4_sub1count = np.count_nonzero(trigrs_output_4 <= 1) 

 

# Writes the initial condition and forecast FS cell count on the 

console 

print('\nInitial condition FS <= 1 cell count: %d' % 

trigrs_output_1_sub1count) 

print('24h forecast FS <= 1 cell count: %d (+%d / +%.2f%%)' % 

(trigrs_output_2_sub1count, trigrs_output_2_sub1count - 

trigrs_output_1_sub1count, (100 * trigrs_output_2_sub1count / 

trigrs_output_1_sub1count) - 100)) 

print('48h forecast FS <= 1 cell count: %d (+%d / +%.2f%%)' % 

(trigrs_output_3_sub1count, trigrs_output_3_sub1count - 

trigrs_output_1_sub1count, (100 * trigrs_output_3_sub1count / 

trigrs_output_1_sub1count) - 100)) 
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print('72h forecast FS <= 1 cell count: %d (+%d / +%.2f%%)' % 

(trigrs_output_4_sub1count, trigrs_output_4_sub1count - 

trigrs_output_1_sub1count, (100 * trigrs_output_4_sub1count / 

trigrs_output_1_sub1count) - 100)) 

 

# In case the forecast predicts a decrease of 0.22% or greater, a 

warning is issued 

if (output_percent_24h <= -0.22) | (output_percent_48h <= -0.22) | 

(output_percent_72h <= -0.22): 

 

    # Commands that make it bold and red 

    print('\n' + '\033[1m' + '\033[91m' + "Alert: Factor of safety 

indicates risk of landslide" + '\033[0m') 
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APPENDIX D – EARLY WARNING SYSTEM WORKFLOW 
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