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Abstract: In this study, we evaluated the performance of the Brazilian Global Atmospheric Model
(BAM), in its version 2.2.1, in the representation of the surface variables solar radiation, temperature
(maximum, minimum, and average), and wind speed. Three experiments were carried out for the
period from 2016 to 2022 under three different aerosol conditions (constant (CTE), climatological
(CLIM), and equal to zero (ZERO)), discarding the first year as a spin-up period. The observations
came from a high-resolution gridded analysis that provides Brazil with robust data based on observa-
tions from surface stations on a daily scale from 1961 to 2020; therefore, combining the BAM outputs
with the observations, our intercomparison period took place from 2017 to 2020, for three timescales:
daily, 10-day average, and monthly, targeting different applications. In its different simulations,
BAM overestimated solar radiation throughout Brazil, especially in the Amazon; underestimated
temperature in most of the northeast, southeast, and south regions; and overestimated in parts of the
north and mid-west; while wind speed was only not overestimated in the Amazon region. In relative
terms, the simulations with constant aerosol showed better performance than the others, followed
by climatological conditions and zero aerosol. The dexterity indices applied in the intercomparison
between BAM and observations indicate that BAM needs adjustments and calibration to better
represent these surface variables. Where model deficiencies have been identified, these can be used
to drive model development and further improve the predictive capabilities.

Keywords: climate model evaluation; BAM-v2.2.1; solar radiation; temperature; wind speed

1. Introduction

Society demands increasingly accurate numerical weather forecasts, given the current
scenario of an increase in the number of occurrences of natural disasters of meteorological
origin [1], as well as the need to better manage water resources for the consumption and
generation of energy [2,3]. Moreover, a new area of the productive sector that uses more
and more information from numerical models is that of renewable energies, mainly in
relation to the variables wind speed and solar radiation [4,5].

For a country of continental dimensions such as Brazil, in addition to it being essential
to have a wide network of surface meteorological observations, it is essential to have a
well calibrated and parameterized numerical model according to its own characteristics of
soils, vegetation, hydrography, etc. [6], to provide useful and reliable weather and climate
products [7,8].

In view of the common challenges in the development of numerical weather and
climate models (shortage of in situ observations, difficulties related to the use of remote
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sensing observations, and difficulty in interpreting microwave signals from clouds, with
regard to the assimilation system data [9]; in addition to the complexity of surface boundary
conditions due to variations in land use and occupation, vegetative dynamics, and fast-
developing mesoscale systems [10]; as well as the complexity of processes’ sub-grid physics,
boundary layer stability, mixed-phase clouds, and radiative transfer [11–13]), Brazil has a
model entirely developed by the global modeling group of the Center for Weather Forecast-
ing and Climatic Studies (CPTEC/INPE): the Brazilian Global Atmospheric Model (BAM).

The BAM was recently described and widely evaluated [6,14–20]. However, a perfor-
mance analysis of the BAM in its latest version 2.2.1 is required. In this sense, according to
the vertiginous growth of energy production from natural resources in Brazil (wind and
solar), our objective is to evaluate the performance of the BAM for three surface variables:
global solar radiation (MJ/m2), which we mention in this work only as solar radiation;
wind speed (m·s−1); and temperature (maximum, minimum, and average (◦C)), from 2017
to 2021, at three accumulation levels: daily, decennial, and monthly. The observed data
compared to the BAM are from the grid analysis in [21].

This study uses the BAM model version 2.2.1, which is incorporated into the spec-
tral dynamic core, with quadratic triangular truncation and a hybrid vertical coordinate
(sigma/pressure). This version features a new dynamic core that incorporates a two-
level monotonic semi-Lagrangian scheme. This grid point scheme calculates the three-
dimensional moisture transport (specific humidity) of microphysics’ prognostic variables
(liquid water, ice, etc.) and tracers (ozone, aerosols, CO2). In version 2.0.0, a horizontal
diffusion parameterization was introduced in grid point, to replace the old horizontal
diffusion parameterization performed in the spectral space. This new parameterization of
diffusion allows controlling which region to apply more diffusion to in relation to other
regions (without topography) that do not need this type of adjustment.

The physical parameterizations used by the BAM model are equivalent to those used
in other weather and climate forecast models in other operational centers. However, to
improve the BAM model for the tropical region and South America, it was necessary to
develop more efficient processes and physical parameterizations. New physical processes
such as fine root dynamics, change in soil heat capacity as a function of sand and clay
percentage, and different soil layer thickness configurations, have been introduced into the
IBIS surface scheme. In the radiation parameterization, a new formulation was introduced
to calculate the cloudiness fraction.

The BAM model version 2.2.1 can use, as lower bound conditions (over the oceans),
the prescribed time series of sea surface temperature (SST) obtained from the Optimal
Interpolation SST of the National Oceanic and Atmospheric Administration (NOAA-OISST),
and it can also be coupled to an ocean model.

2. Materials and Methods
2.1. Region of Study

The study area is related to the entire Brazilian territory, the largest country in South
America and the fifth largest in the world in territorial extension with 8.51 × 106 km2.
Brazil has a complex territory, with 7491 km of coastline bathed by the Atlantic Ocean,
where warm coastal ocean currents predominate, favoring a typical biome of this area,
the Atlantic Forest. Other important biomes are the Amazon, whose highest percentage
is found in the north region of Brazil; the Cerrado in the central portion of the country;
the Caatinga that predominates in the interior of the northeast region; the Pantanal in part
of the center-west; and the Pampa in the south region. Brazil has extensive hydrographic
basins, including the Amazon basin whose largest river in the world in terms of length and
volume, the Amazon, discharges 12.5 billion liters per minute into the ocean, which is the
highest average flow of a freshwater river on the planet. There is diversity of vegetation
types and topography, with plains, plateaus, and mountains. All of these features, among
others, pose challenges to numerical weather forecasting.
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Figure 1a shows the Brazilian territory and its topography, and Figure 1b shows
the distribution of the 715 BAM grid points over Brazil used to evaluate the model’s
performance for the variables solar radiation, wind speed, and temperature. Further details
of the model and the analyzed variables can be found in this section.
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Figure 1. (a) Geographical location of Brazil in South America, highlighting its topography, and
(b) spatial distribution of grid points of data observed and simulated by BAM for intercomparison.
In (b), the grid points inserted in each region that served as the basis for the sub-regional analyses
are highlighted by color: north region (NO), blue; northeast region (NE), red; mid-west region (CO),
green; southeast region (SE), yellow; south region (S), purple.

2.2. Observed Data

The authors of [21] updated and made available the most complete gridded analysis
of surface meteorological variables in Brazil, based on all existing observation networks,
from federal, state, municipal, and independent agencies. As described in their work,
all precipitation, temperature, relative humidity, wind speed, and solar radiation data
collected between 1961 and 2020 were exposed to strict quality control, and then the data
were interpolated following the best results obtained via cross-validation between inverse
distance weighting (IDW) and angular distance weighting (ADW) methods, to generate a
high resolution 0.1◦ × 0.1◦ grid. To pay attention only to the variables of interest in our
study, which were temperature, solar radiation, and wind speed, we briefly describe the
methodology used in [21].

2.2.1. Temperature

Two grids were built, one for maximum temperature and another for minimum tem-
perature. For the construction of these grids, an elevation adjustment was performed on
the basis of the heights of each station point that provided data, according to a temperature
lapse rate of 0.006 ◦C·m−1. To represent the topographic relief of Brazil, the Global Multires-
olution Terrain Elevation Data 2010 (GMTED2010, [22]) were used, acquired with a spatial
resolution of 30′′ × 30′′. The interpolation method that offered the best result for grid
construction was IDW for maximum temperature and ADW for minimum temperature,
both adjusted for elevation. Data from 1375 stations spatially distributed throughout Brazil
contributed to the construction of the temperature grid. A grid for the average temperature
was obtained simply by dividing the maximum and minimum values. The results of this
new grid adjusted by the lapse rate showed greater correlation and smaller errors than those
obtained by the grid built and detailed in [23], which did not have this altitude correction.
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2.2.2. Solar Radiation and Wind Speed

Analogous to the construction of the temperature grid, high resolution grids of solar
radiation and wind speed were built. For these variables, the interpolation method that
proved to be the most efficient was the ADW. The lowest performance of solar radiation
was observed in the Amazon basin with a correlation of 0.689, and the best performance
was observed in the area of the Uruguay River basin and in the South Atlantic region,
with correlations of 0.94 and 0.92, respectively. Wind speed presented similar results to
solar radiation.

2.3. BAM v.2.2.1 Experimental Design

BAM-3D is currently used operationally to perform numerical weather, sub-seasonal,
and seasonal forecasts, which is its main function as an important support for operational
weather forecasting and associated decision making. BAM in its ocean-coupled version
(BESM) is also used for climate change simulations, where the inclusion of aerosols is
essential [6–8].

BAM version 2.2.1 has spectral, quadratic triangular truncation, with the maximum
number of waves equal to 126, equivalent to approximately 1◦ of longitude by 1◦ of latitude
of horizontal resolution. The vertical coordinate is a hybrid represented by 42 vertical levels,
from 1000 to 2.0 hPa. The ERA5 reanalysis was used as the model’s initial condition [24,25],
with a spatial resolution of 0.25◦ × 0.25◦, and a temporal resolution of 1 h for the variables
temperature, specific humidity, zonal and meridional wind speed, surface pressure, and
orography. The lower boundary condition (SST data) over the oceans was from NCEP-
NOAA with a horizontal resolution of 1.0◦ and monthly frequency [26]. The initial condition
of soil moisture was from the climatology of [27]. The physical processes’ components of
BAM used to perform the simulations evaluated in this study are shown in Table 1.

Table 1. Components of physical processes of experiments.

Parameterization

Cloud microphysics [28,29]
Surface processes IBIS-CPTEC

Short-wave radiation CLIRAD-SW [30], modified by [31]
Long-wave radiation CLIRAD-LW [32], modified by [31]

Planetary boundary layer Moist diffusion scheme [33]

Deep convection Revised and simplified by Arakawa-Shubert
[34]

Aerosol optical depth [35]
Thermal plume for convective boundary layer [36]

Gravity wave drag [37]

Three experiments were performed for the period from 2016 to 2022 (with three hourly
outputs) under three different aerosol conditions (a constant aerosol (CTE), a climatological
aerosol varying monthly (CLIM), and an aerosol equal to zero (ZERO)). The first year was
discarded as a spin-up period for the evaluations during the study. Due to the discarding
of the year 2016 and the limitation of the observed data from the grid in [21] until 2020,
the BAM outputs from the years 2017 to 2020 of temperature, solar radiation, and surface
wind speed were used for comparison to the observed data, on three timescales: daily,
10-day average, and monthly. These three timescales are justified by the fact that [21] data
are daily, and, as mentioned in [38], the daily scale is important for analyzing climate
extreme indices [39–45]. On the other hand, the 10-day scale is important for application in
agrometeorological studies, as this is the timestep used in many crop growth simulation
models [46–48], whereas the monthly scale is essential for studies that involve analyses of
the influence of modes of variability on climate dynamics, as well as for research in the area
of seasonal and sub-seasonal climate forecasts [49–54].
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2.4. Methodology for Intercomparison

The comparison between observations and simulations was based on extracting solar
radiation, wind, and temperature time series from the 715 BAM grid points shown in
Figure 1b. For these same points, the time series of observations from the grid analysis
by [21] were extracted. BAM data were output every 3 h UTC. These times were converted
to local time in order to match the synoptic times of observations from conventional
and automatic stations that were the main pillar of construction of the gridded analysis
in [21]. Thus, to compose the daily data of solar radiation and wind speed, the respective
accumulations/averages referring to the 24 h period were obtained; for the maximum
temperature, the time of 18 UTC was obtained (closer to the time the daily maximum
temperature of a station was obtained), and, for the minimum temperature, the model
value of 06 UTC was used (closest to the time where the minimum temperature of a station
was obtained daily). The solar radiation data originally in the model in W/m2 and the
temperature in K were converted to the observation units of MJ/m2 and ◦C, respectively,
while the wind speed data from BAM were already in the same observation units (m·s−1).

After such adjustments in the databases, a qualitative verification was carried out,
comparing the seasonal averages of each variable in the 4 years of observation/simulation,
in order to highlight the basic premise that a model should basically represent the average
annual cycle of any surface variable that is intended to be studied. Then, a quantitative
verification was performed at daily, 10-day average, and monthly levels, using two mea-
sures of dexterity (Pearson’s correlation coefficient (r, Equation (1)) and the concordance
index (CI, Equation (2)), proposed by [27]) and three error measures (the bias (BIAS,
Equation (3)), the mean absolute error (MAE, Equation (4)), and the mean squared error
(RMSE, Equation (5))). Models were compared to real observation grid points in many stud-
ies to attest the effectiveness of a model, a grid analysis, or a reanalysis [55–57]. Statistical
analyses were performed using the free software R, version 4.0.3.

In addition to these metrics, the probability density function (PDF) (Equation (6))
was applied for a sub-regional evaluation comparing each of the five Brazilian regions:
north, northeast, mid-west, southeast, and south; the average performance of the three
experiments of BAM represented the monthly annual cycle of the observed variables.

r =
Cov(x, s)

σ(x, s)
(1)

CI = 1−
[

∑(si − xi)
2

∑(|si − X|+ |xi − X|)2

]
(2)

BIAS =
1
N

N

∑
i=1

(si − xi) (3)

MAE =
1
N

N

∑
i=1

ABS(si − xi) (4)

RMSE =

√
1
N ∑N

i=1(si − xi)
2 (5)

PDF =
1

σ×
√

2π
× e

−(x−µ)2

2σ2 (6)

where N is the total number of elements in the series, si is the variable extracted from each
BAM time series at each time i of each point of the model grid, xi is the time series of
the observations at each time i at each point of the gridded analysis, X is the average of
the values observed, Cov(x, s) is the covariance between the data, σ(x, s) is the respective
standard deviation, x is the climatological variable (solar radiation, wind velocity, and air
temperature), σ is the standard deviation, and µ the mean of the dataset.
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3. Results
3.1. Description of Present Climatology

One of the criteria commonly used in evaluating the performance of a model is
whether or not the historical condition (observation) can be replicated [58]. Therefore, it is
indispensable that the methods used to parameterize a numerical model of weather and
climate are efficient to the point of allowing simulations of variables that demonstrate the
same properties of the observations, resulting in a good correlation between both, and that
present reliability in the characterization of the average observed in a reference period.

Figure 2 shows the BAM’s ability to represent the annual seasonal cycle of solar
radiation in Brazil between 2017 and 2020. In the summer, DJF is presented in the upper
panel in Figure 2a (observed mean), followed by the means obtained with the three different
BAM aerosol conditions: climatological—CLIM in Figure 2b, constant—CTE in Figure 2c,
and zero—ZERO in Figure 2d. The middle panels in the sequence show the same for
autumn: MAM (Figure 2e–h), winter—JJA (Figure 2i–l), and spring—SON (Figure 2m–p).

Figure 2. Seasonal averages of solar radiation (MJ/m2). In the upper panel, values obtained for
summer (DJF) from observations (a), BAM-CLIM (b), BAM-CTE (c), and BAM-ZERO (d). In the
second panel, the same for autumn (MAM) from observations (e), BAM-CLIM (f), BAM-CTE (g), and
BAM-ZERO (h). In the third panel, the same for winter (JJA) from observations (i), BAM-CLIM (j),
BAM-CTE (k), and BAM-ZERO (l). In the last panel, the same for spring (SON) from observations (m),
BAM-CLIM (n), BAM-CTE (o), and BAM-ZERO (p).
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It can be seen from these images that the results of the three simulations with different
aerosol conditions overestimated solar radiation, especially in the Amazon region in all
seasons of the year, with an emphasis on summer (Figure 2b–d) and spring (Figure 2n–p). In
autumn and winter, overestimation was still noticeable in the Amazon and north of the north-
east, but simulated mean values were closer to the observation in the central and southern
portions of Brazil, with the BAM-CTE condition demonstrating the greatest similarity.

Figure 3 shows the same results as Figure 2, but for wind speed. The BAM tended
to subtly underestimate the wind speed in the Amazon region, whereas it considerably
overestimated it in other areas, mainly in the coastal areas of the northeast and south
regions of Brazil. These features were milder in summer (Figure 3b–d), increased in
intensity in autumn (Figure 3f–h), and intensified especially in winter (Figure 3k–l) and
spring (Figure 3n–p), according to observations of whether velocity values were much
higher than those mainly propagating throughout the interior of the northeast region.

Figure 3. Seasonal averages of wind speed (m·s−1). In the upper panel, values obtained for summer
(DJF) from observations (a), BAM-CLIM (b), BAM-CTE (c), and BAM-ZERO (d). In the second
panel, the same for autumn (MAM) from observations (e), BAM-CLIM (f), BAM-CTE (g), and
BAM-ZERO (h). In the third panel, the same for winter (JJA) from observations (i), BAM-CLIM (j),
BAM-CTE (k), and BAM-ZERO (l). In the last panel, the same for spring (SON) from observations (m),
BAM-CLIM (n), BAM-CTE (o), and BAM-ZERO (p).
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As for the average temperature (Figure 4), as a result of the average of maximums
and minimums (panels not shown), lower values could be observed in all seasons of the
year than those in the northeast and extreme north of the north region, while, in the center–
west Amazon and mid-west region, there was a predominance of overestimation of the
BAM, with no evident sign of under- or overestimation in the south region. These results
are consistent with the characteristics observed for the maximum temperature, which
was a slight underestimation in the north region, strong underestimation in the northeast
region, and mild underestimation in the south region, but a slight overestimation in the
mid-west; however, for the minimum temperatures, we observed an overestimation in
almost all regions, stronger in the Amazonian south and mid-west region, with a slight
underestimation only in the interior of the northeast region, a known semiarid area.

Figure 4. Seasonal averages of mean temperature (◦C). In the upper panel, values obtained for
summer (DJF) from observations (a), BAM-CLIM (b), BAM-CTE (c), and BAM-ZERO (d). In the
second panel, the same for autumn (MAM) from observations (e), BAM-CLIM (f), BAM-CTE (g), and
BAM-ZERO (h). In the third panel, the same for winter (JJA) from observations (i), BAM-CLIM (j),
BAM-CTE (k), and BAM-ZERO (l). In the last panel, the same for spring (SON) from observations (m),
BAM-CLIM (n), BAM-CTE (o), and BAM-ZERO (p).

3.2. Comparison between Model and Observations on the Different Timescales

In a sub-regional analysis, we calculated the mean values of each variable and re-
spective dexterity indices for each region of Brazil: north (NO), northeast (NE), mid-west
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(CO), southeast (SE), and south (S), according to the distribution of grid points arranged in
Figure 1b, as well as for an average time series representative of all BAM grid points and
observations. Moreover, we specialized each dexterity index commented on in Section 2.4
in order to better observe the distribution of areas with higher/lower correlations/errors.
All analyses were carried out for three accumulation timescales: daily, 10-day average,
and monthly.

Table 2 shows the average observed and simulated values of the variables in each
region. It can be noted that the three BAM outputs with climatological, constant, and zero
aerosol concentrations overestimated the radiation in all regions, with emphasis on the
NO, with average differences around 5 MJ/m2, followed by the NE with 2.8 MJ/m2, CO
with 2.6 MJ/m2, SE with 2.5 MJ/m2, and S with 2.2 MJ/m2. Among the simulations, the
greatest differences from the observations were obtained with BAM-ZERO and the smallest
were obtained with BAM-CTE. The average values of maximum temperature showed an
average result of underestimation of the BAM with the three simulations. In this case,
the smallest differences were obtained with BAM-ZERO for four regions, NO, NE, CO,
and SE, and with BAM-CTE for S. The largest differences varied between BAM-CLIM
and BAM-CTE, with the exception of the latter for the S region. With regard to minimum
temperature, the results in terms of mean deviations were the opposite to those verified for
the maximum temperatures, with all simulations overestimating, on average, the minimum
temperature in each region, with the CO region showing the greatest positive differences
>4 ◦C, followed by the NW and S regions >2.5 ◦C, Se with an average value of 1.7 ◦C,
and NE with 1.5 ◦C; BAM-ZERO showed the largest deviations between the simulations.
The combination of BAM underestimation for the maximums and underestimation for
the minimums resulted in average temperatures with regional average values close to
those observed, as in the specific cases of the NW and S regions, with an underestimation
greater than −2 ◦C on average in the regions NE and SE, and an overestimation of 1 ◦C on
average in the CO, as shown in Table 2. Lastly, we have the comparative results of the BAM
simulations with the observation for wind speed. For this variable, simulated mean values
were very close to those observed in the NW region and higher than those observed for CO
(0.6 m·s−1 on average), S (0.7 m·s−1 on average), SE (1.5 m·s−1 on average), and NE with
the highest simulated values in relation to observations (1.8 m·s−1 on average). Simulations
with BAM-ZERO, on average, showed the greatest differences against observations, with
BAM-CLIM and BAM-CTE showing very similar mean values.

The results in Table 2 for solar radiation, summarized by region, were confirmed by
the BIAS, MAE, RMSE, correlation, and CI spatial maps of each BAM experiment at daily,
decennial, and monthly levels. Figure 5 shows the predominantly positive BIAS ranging
up to 8 MJ/m2, with the lowest values associated with the BAM-CTE simulations and the
highest values for the BAM-ZERO. The smallest BIAS extended across the NE, SE, and S
regions in the three simulations, with the Amazon region showing the greatest positive
biases. These results reflect the MAE and RMSE values in Figures 6 and 7, showing the
largest errors with BAM-ZERO and the smallest with BAM-CTE; however, unlike BIAS, a
decrease in errors could be observed with longer periods of accumulation on the 10-day
average and monthly scales. In agreement with these results, Figure 8 shows the highest
correlations in eastern Brazil among NE, SE, and S, with values that exceeded 0.8 in areas
of these regions, and the lowest in the NW and CO, especially for a border area along the
NO, NE, and CO regions. All these results confirm what can be observed in Figure 9 of the
CI, where the best performance of the simulations with BAM-CTE is clear, but with all the
simulations being more efficient across the NE, SE, and S regions, and less efficient in NO
and CO.
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Table 2. Average values per region (north—NO, northeast—NE, mid-west—CO, southeast—SE, and
south—S) of solar radiation (MJ/m2), temperature (◦C), and wind speed (m·s−1) observed and with
BAM for three different experiments of aerosol concentrations.

Solar Radiation (MJ/m2) NO NE CO SE S

Observed 16.8 19.5 17.9 18.0 16.3
BAM-CLIM 21.7 22.3 20.4 20.4 18.4
BAM-CTE 21.2 21.6 19.9 19.9 17.9

BAM-ZERO 22.5 22.9 21.3 21.3 19.2

Maximum temperature (◦C) NO NE CO SE S

Observed 32.0 32.0 32.1 29.1 25.5
BAM-CLIM 30.7 28.5 31.2 25.8 24.4
BAM-CTE 30.8 28.4 31.3 25.7 24.9

BAM-ZERO 30.9 28.5 31.3 26.0 24.6

Average temperature (◦C) NO NE CO SE S

Observed 27.2 26.5 26.0 23.2 20.3
BAM-CLIM 27.3 24.4 27.0 21.1 20.2
BAM-CTE 27.3 24.3 27.0 21.1 20.4

BAM-ZERO 27.5 24.4 27.2 21.3 20.3

Minimum temperature (◦C) NO NE CO SE S

Observed 22.4 21.0 20.0 17.2 15.0
BAM-CLIM 25.0 22.5 24.1 18.9 17.5
BAM-CTE 25.0 22.4 24.1 18.8 17.6

BAM-ZERO 25.2 22.5 24.4 19.2 17.6

Wind velocity (m·s−1) NO NE CO SE S

Observed 0.9 1.6 1.1 1.3 1.8
BAM-CLIM 0.9 3.4 1.7 2.7 2.5
BAM-CTE 1.0 3.4 1.8 2.7 2.5

BAM-ZERO 1.0 3.4 1.8 2.8 2.6

For maximum temperature, we observed a prevalence of negative BIAS in all three
experiments, with positive BIAS restricted to parts of CO and NO. In NE and SE, there was
negative BIAS down to −6 ◦C on average, from a daily to monthly scale, as can be seen in
Figure S1 (Supplementary Materials). The MAE and RMSE (Figures S2 and S3, Supplemen-
tary Materials) showed the lowest errors associated with the BAM-CTE and BAM-ZERO
experiments, and slightly higher errors in the BAM-CLIM. The better performance of the
BAM-CTE was only confirmed by observing the correlation (Figure S4, Supplementary Mate-
rials), with an overall mean correlation of 0.644 versus 0.605 for the BAM-ZERO, compared to
0.584 for the BAM-CLIM. The CI proved that the areas with results closest to those observed
in the three experiments were in the central–south Amazon region of the NO region and in
southern Brazil with values close to 1 (Figure S5, Supplementary Materials).

The minimum temperature presented different results from the maximum temperature,
with predominantly positive BIAS especially in the Amazonian south of the NW region
and in CO, with negative areas in the interior of NE (Figure S6, Supplementary Materials).
The high BIAS values in NO and CO led to the highest relative errors (Figures S7 and S8,
Supplementary Materials), up to 7–8 ◦C on average across the three timescales. The
correlation (Figure S9, Supplementary Materials) gradually increased with accumulation
intervals exceeding 0.8 in much of the NE, SE, CO, and S, with the exception of low and
negative values in the western NE and NO. The CI (Figure S10, Supplementary Materials)
showed that it was in eastern Brazil where there was the best agreement between observed
and simulated values. BAM-CLIM and BAM-CTE performed better than BAM-ZERO.
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Figure 5. Solar radiation BIAS (MJ/m2). The upper panel is derived from the BAM-CLIM simulations,
the middle panel is derived from the BAM-CTE simulations, and the bottom panel is derived from
the BAM-ZERO simulations. The left column shows BIAS on a daily scale, the middle column shows
BIAS on a decennial scale, and the right column shows BIAS on a monthly scale.
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Figure 6. MAE of solar radiation (MJ/m2). The upper panel is derived from the BAM-CLIM
simulations, the middle panel is derived from the BAM-CTE simulations, and the bottom panel is
derived from the BAM-ZERO simulations. The left column shows MAE on a daily scale, the middle
column shows MAE on a decennial scale, and the right column shows MAE on a monthly scale.
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Figure 7. RMSE of solar radiation (MJ/m2). The upper panel is derived from the BAM-CLIM
simulations, the middle panel is derived from the BAM-CTE simulations, and the bottom panel is
derived from the BAM-ZERO simulations. The left column shows RMSE on a daily scale, the middle
column shows RMSE on a decennial scale, and the right column shows RMSE on a monthly scale.
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Figure 8. Solar radiation correlation. The upper panel is derived from the BAM-CLIM simulations,
the middle panel is derived from the BAM-CTE simulations, and the bottom panel is derived from
the BAM-ZERO simulations. The left column shows correlation on a daily scale, the middle column
shows correlation on a decennial scale, and the right column shows correlation on a monthly scale.
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Figure 9. Solar radiation CI. The upper panel is derived from the BAM-CLIM simulations, the
middle panel is derived from the BAM-CTE simulations, and the bottom panel is derived from the
BAM-ZERO simulations. The left column shows CI on a daily scale, the middle column shows CI on
a decennial scale, and the right column shows CI on a monthly scale.

The average temperature, resulting from the average of the maximums and minimums,
showed values closer to the observations, with a certain balance between areas that were
underestimated in the simulated maximums and overestimated in the minimums. This
junction resulted in an east–west gradient from negative to positive BIAS (Figure S11,
Supplementary Materials), with extreme BIAS down to−6 ◦C in parts of the NO and SE and
up to 5 ◦C in points in the NE and CO, excluding the S region where there was no prevalence
of positive or negative BIAS. The errors decreased significantly with higher accumulation
intervals, going from 2–3 ◦C to 0–1 ◦C on the daily to monthly scale (Figures S12 and S13,
Supplementary Materials), highlighting S and the interior of NE with higher relative errors.
The correlation was lowest only in the NW region, ranging from 0–0.2 to 0.4–0.6 on the daily
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to monthly scale, and from 0.2–0.4 to 0.8–1 in parts of the NE and CO, and throughout the SE
and S (Figure S14, Supplementary Materials). The CI, in turn, showed the areas of greatest
agreement in portions of the NO, CO, SE, S, and east of NE (Figure S15, Supplementary
Materials). There was a similarity across the simulations, with a slight superiority of BAN-
CTE in relation to BAM-ZERO and BAM-CLIM, with global correlations of 0.775, 0.759,
and 0.751, respectively.

Lastly, we analyzed the spatial performance of the experiments with BAM for wind
speed. The three simulations showed very similar results, overestimating the velocity in
the eastern NE by up to 6 m/s. A wide band of positive BIAS extended across NE, SE, S,
and parts of CO, with a predominance of negative BIAS in NO (Figure S16, Supplementary
Materials). However, it was in NO where the MAE and RMSE values were lower, not due
to better BAM performance in this region, but probably due to the low values normally
observed for the variable in this region (Figures S17 and S18, Supplementary Materials),
corroborated by the low correlation values, with the largest being observed in the interior
of the NE and in parts of the SE and S, with greater accumulation intervals (Figure S19,
Supplementary Materials). CI (Figure S20, Supplementary Materials) presented moderate
values in relation to the other variables, and this fact can be attributed to the equally
moderate performance of the simulations in relation to the observations, with global
average correlations of 0.499, 0.490, and 0.487 for BAM-CLIM, BAM-CTE, and BAM-ZERO.

3.3. PDF Analysis

We observed in the previous sections that BAM was efficient in simulating the ob-
served seasonal averages (Figures 2–4), with a similarity between the simulations of each
experiment for each region analyzed (Table 2), although the analyses of the dexterity in-
dices demonstrated that it was possible to identify which simulations had greater efficiency
among themselves for certain variables and regions when comparing the observations.

To complement these verifications and denote a more particular characteristic of the
BAM simulations as a whole, we generated an ensemble of the three experiments and
extracted a representative time series of all grid points located in each region, which were
compared to a series with the same characteristics extracted from the observations. With
these series, we made graphs with the probability density of each observed variable and
the ensemble, in order to assess whether the BAM captures the basic climatic characteristics
of each variable to support the model that can be used as a representation tool.

Figure 10 shows the solar radiation PDF, with the observed data on the left and the
BAM data on the right. It can be noted that the temporal distribution of the variable in
all regions was highly seasonal, a characteristic well captured by the BAM, albeit clearly
overestimated in all months of the year. For the maximum temperature, Figure 11 shows
that the model underestimated the observations more, as well as their amplitude, in the
winter months in all regions, with an emphasis on NE (Figure 11c,d) and SE (Figure 11g,h).
As for the minimum temperatures, the PDFs in Figure 12 show that the model captured
the seasonality well in the NE (Figure 12c,d) and S (Figure 12i,j) regions, accentuating it in
CO (Figure 12e,f) and SE (Figure 12g,h), in addition to imposing bimodal distributions on
NO (Figure 12a,b) and reducing its amplitude by overestimating its values, which was also
observed in the S region. There was close agreement between observations and the BAM,
resulting in more similar PDFs, with emphasis on NE (Figure 13c,d), SE (Figure 13g,h),
and S (Figure 13i,j), while maintaining bimodal distributions with greater amplitude in
NO (Figure 13a,b) in the hottest months of the year, in addition to the BAM increasing
seasonality in CO (Figure 13e,f). The wind speed PDFs exhibited the most interesting
configurations, with the BAM managing to capture distributions that were often trimodal
in NO, albeit out of phase with the observed distribution (Figure 14a,b). The BAM, in
addition to overestimating the velocities in NE, SE, CO, and S, strongly increased the
seasonality in NE (Figure 14c,d), CO (Figure 14e,f), and SE (Figure 14g,h), with lighter
seasonality in S (Figure 14i,j).
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Figure 10. Solar radiation probability density (MJ/m2), with observed data on the left and BAM data
on the right, for each Brazilian region: NO (a,b), NE (c,d), CO (e,f), SE (g,h), and S (i,j).
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Figure 11. Maximum temperature probability density (◦C), with observed data on the left and BAM
data on the right, for each Brazilian region: NO (a,b), NE (c,d), CO (e,f), SE (g,h), and S (i,j).
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Figure 12. Minimum temperature probability density (◦C), with observed data on the left and BAM
data on the right, for each Brazilian region: NO (a,b), NE (c,d), CO (e,f), SE (g,h), and S (i,j).
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Figure 13. Mean temperature probability density (◦C), with observed data on the left and BAM data
on the right, for each Brazilian region: NO (a,b), NE (c,d), CO (e,f), SE (g,h), and S (i,j).
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Figure 14. Probability density of wind speed (m/s), with observed data on the left and BAM data on
the right, for each Brazilian region: NW (a,b), NE (c,d), CO (e,f), SE (g,h), and S (i,j).

4. Discussion

This study aimed to evaluate the ability of the Brazilian Climate Model (BAM-2.2.1)
to reproduce three surface variables, solar radiation, temperature, and wind speed, under
three different configurations of aerosol concentration. Previous versions of the BAM have
been the subject of studies in order to evaluate their performance in simulating different
surface variables and in climate simulations [6–8,17,59].

The results showed that the three simulations with climatological, constant, and
aerosol-free aerosol concentrations were similar, overestimating solar radiation through-
out Brazil, especially in the Amazon, with the BAM-CTE simulations presenting the best
dexterity indices and the BAM-ZERO simulations presenting the worst. Regardless of the
simulation, the overestimation of radiation was identified by [17] for a previous version
of the BAM, which reported an excessive loss of long-wave radiation by the model under
cloudy conditions, associated with an insufficient absorption of radiation from long waves
from lower and warmer atmospheric layers, i.e., the model atmosphere would be more
transparent, with an optical depth of cloudiness smaller than the observed one, leading
to errors in the cloud–radiation interaction. With this more transparent atmosphere, the
retention of heat by short waves on the surface increased, leading to a greater balance of
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radiation by the model, precisely in regions with a predominance of convective clouds as
in the case of the Amazon region, which were underestimated by the model [15,17]. These
results influence the temperature, which, on average, was overestimated in much of the
Amazon region, as reported by [59], who, among other analyses, found that evapotran-
spiration tended to be overestimated by the BAM in this region in the rainy season and
underestimated in the dry season. Wind speed was overestimated in most of Brazil and
underestimated in the Amazon, in agreement with what was verified and discussed by [20],
when studying the representation of monsoons in the northern and southern hemispheres
by BAM1.2 and HadGEM3, where they identified biases of the divergence of flows in the
two models [60].

5. Conclusions

The BAM overestimated the solar radiation observed in the three aerosol experiments,
with the greatest differences observed in the condition without aerosol, and the smallest
observed in the condition with constant aerosol. This result demonstrates the importance
of implementing parameterizations that adequately represent the concentration and char-
acteristics of aerosols, because, even with less overestimation of the observed radiation
values, they were still, on average, higher than 4 MJ/m2 in the north region; 2 MJ/m2

in the northeast, mid-west, and southeast regions; and 1.5 MJ/m2 in the south region.
The BAM underestimated the maximum temperatures throughout Brazil, especially in the
northeast and southeast, at an average of 3.5 ◦C lower than the observations, with average
values very similar across the three experiments. A similar condition was observed for the
minimum temperature, except that the observations were overestimated, with emphasis
on the center–west where, on average, the minimum temperatures were 4 ◦C above those
observed, and in the north and south that, on average, exceeded the observations by 2.5 ◦C.
Since the average temperature of the model was the average of maximums and minimums,
this balance of underestimation of maximums and overestimation of minimums had the
effect of making the average daily temperatures simulated by the BAM more similar to
those observed, with an underestimation greater than 2 ◦C in the northeast and southeast
regions, an overestimation of more than 1 ◦C in the mid-west, and little variation in the
north and south of the country. The winds simulated by the BAM, in average terms, had
values close to those observed in the north region and higher than the observations in the
other regions, exceeding 1.5 m·s−1 on average in the northeast and southeast regions and
around 0.7 m·s−1 in the mid-west and south.

In terms of the calculated statistical dexterity indices, a better performance of the
results obtained from the experiments with climatological and constant aerosol was noticed
in relation to the experiment without aerosol. BAM-CTE had better performances in the
simulations of solar radiation and average temperature, while BAM-CLIM had better
performances in the simulations of wind and maximum and minimum temperatures. The
PDFs demonstrated that the BAM, in general, efficiently reproduced the annual cycle of the
analyzed variables, albeit with shifts in the probability density curves typical of cases where
there was overestimation/underestimation by the model in relation to the observations.

Our results showed that BAM-2.2.1, under different aerosol conditions, was able
to successfully simulate the daily, decennial, and monthly variability of solar radiation,
temperature, and surface wind speed, despite the identified biases and associated errors,
which can serve as a reference to better identify model parameters that need to be improved,
such as the issue of associated cloud–radiation interactions. Where model deficiencies have
been identified, these can be used to drive model development and further improve the
predictive capabilities.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/atmos14010125/s1: Figure S1. Maximum temperature BIAS (◦C).
The upper panel is derived from the BAM-CLIM simulations, the middle panel is derived from the
BAM-CTE simulations, and the bottom panel is derived from the BAM-ZERO simulations. The left
column shows BIAS on a daily scale, the middle column shows BIAS on a decennial scale, and the
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right column shows BIAS on a monthly scale; Figure S2. MAE of the maximum temperature (◦C).
The upper panel is derived from the BAM-CLIM simulations, the middle panel is derived from the
BAM-CTE simulations, and the bottom panel is derived from the BAM-ZERO simulations. The left
column shows MAE on a daily scale, the middle column shows MAE on a decennial scale, and the
right column shows MAE on a monthly scale; Figure S3. Maximum temperature RMSE (◦C). The upper
panel is derived from the BAM-CLIM simulations, the middle panel is derived from the BAM-CTE
simulations, and the bottom panel is derived from the BAM-ZERO simulations. The left column
shows RMSE on a daily scale, the middle column shows RMSE on a decennial scale, and the right
column shows RMSE on a monthly scale; Figure S4. Maximum temperature correlation. The upper
panel is derived from the BAM-CLIM simulations, the middle panel is derived from the BAM-CTE
simulations, and the bottom panel is derived from the BAM-ZERO simulations. The left column
shows correlation on a daily scale, the middle column shows correlation on a decennial scale, and the
right column shows correlation on a monthly scale; Figure S5. Maximum temperature CI. The upper
panel is derived from the BAM-CLIM simulations, the middle panel is derived from the BAM-CTE
simulations, and the bottom panel is derived from the BAM-ZERO simulations. The left column shows
CI on a daily scale, the middle column shows CI on a decennial scale, and the right column shows
CI on a monthly scale; Figure S6. Minimum temperature BIAS (◦C). The upper panel is derived from
the BAM-CLIM simulations, the middle panel is derived from the BAM-CTE simulations, and the
bottom panel is derived from the BAM-ZERO simulations. The left column shows BIAS on a daily
scale, the middle column shows BIAS on a decennial scale, and the right column shows BIAS on a
monthly scale; Figure S7. MAE of the minimum temperature (◦C). The upper panel is derived from
the BAM-CLIM simulations, the middle panel is derived from the BAM-CTE simulations, and the
bottom panel is derived from the BAM-ZERO simulations. The left column shows MAE on a daily
scale, the middle column shows MAE on a decennial scale, and the right column shows MAE on a
monthly scale; Figure S8. Minimum temperature RMSE (◦C). The upper panel is derived from the
BAM-CLIM simulations, the middle panel is derived from the BAM-CTE simulations, and the bottom
panel is derived from the BAM-ZERO simulations. The left column shows RMSE on a daily scale, the
middle column shows RMSE on a decennial scale, and the right column shows RMSE on a monthly
scale; Figure S9. Minimum temperature correlation. The upper panel is derived from the BAM-CLIM
simulations, the middle panel is derived from the BAM-CTE simulations, and the bottom panel is
derived from the BAM-ZERO simulations. The left column shows correlation on a daily scale, the
middle column shows correlation on a decennial scale, and the right column shows correlation on a
monthly scale; Figure S10. Minimum temperature CI. The upper panel is derived from the BAM-CLIM
simulations, the middle panel is derived from the BAM-CTE simulations, and the bottom panel is
derived from the BAM-ZERO simulations. The left column shows CI on a daily scale, the middle
column shows CI on a decennial scale, and the right column shows CI on a monthly scale; Figure S11.
Average temperature BIAS (◦C). The upper panel is derived from the BAM-CLIM simulations, the
middle panel is derived from the BAM-CTE simulations, and the bottom panel is derived from the
BAM-ZERO simulations. The left column shows BIAS on a daily scale, the middle column shows
BIAS on a decennial scale, and the right column shows BIAS on a monthly scale; Figure S12. MAE
of mean temperature (◦C). The upper panel is derived from the BAM-CLIM simulations, the middle
panel is derived from the BAM-CTE simulations, and the bottom panel is derived from the BAM-ZERO
simulations. The left column shows MAE on a daily scale, the middle column shows MAE on a
decennial scale, and the right column shows MAE on a monthly scale; Figure S13. RMSE of mean
temperature (◦C). The upper panel is derived from the BAM-CLIM simulations, the middle panel
is derived from the BAM-CTE simulations, and the bottom panel is derived from the BAM-ZERO
simulations. The left column shows RMSE on a daily scale, the middle column shows RMSE on a
decennial scale, and the right column shows RMSE on a monthly scale; Figure S14. Correlation of mean
temperature. The upper panel is derived from the BAM-CLIM simulations, the middle panel is derived
from the BAM-CTE simulations, and the bottom panel is derived from the BAM-ZERO simulations.
The left column shows correlation on a daily scale, the middle column shows correlation on a decennial
scale, and the right column shows correlation on a monthly scale; Figure S15. Average temperature
CI. The upper panel is derived from the BAM-CLIM simulations, the middle panel is derived from
the BAM-CTE simulations, and the bottom panel is derived from the BAM-ZERO simulations. The
left column shows CI on a daily scale, the middle column shows CI on a decennial scale, and the
right column shows CI on a monthly scale; Figure S16. Wind speed BIAS (m·s−1). The upper panel is
derived from the BAM-CLIM simulations, the middle panel is derived from the BAM-CTE simulations,
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and the bottom panel is derived from the BAM-ZERO simulations. The left column shows BIAS on a
daily scale, the middle column shows BIAS on a decennial scale, and the right column shows BIAS
on a monthly scale; Figure S17. MAE of wind speed (m·s−1). The upper panel is derived from the
BAM-CLIM simulations, the middle panel is derived from the BAM-CTE simulations, and the bottom
panel is derived from the BAM-ZERO simulations. The left column shows MAE on a daily scale, the
middle column shows MAE on a decennial scale, and the right column shows MAE on a monthly
scale; Figure S18. RMSE of wind speed (m·s−1). The upper panel is derived from the BAM-CLIM
simulations, the middle panel is derived from the BAM-CTE simulations, and the bottom panel is
derived from the BAM-ZERO simulations. The left column shows RMSE on a daily scale, the middle
column shows RMSE on a decennial scale, and the right column shows RMSE on a monthly scale;
Figure S19. Correlation of wind speed. The upper panel is derived from the BAM-CLIM simulations,
the middle panel is derived from the BAM-CTE simulations, and the bottom panel is derived from
the BAM-ZERO simulations. The left column shows correlation on a daily scale, the middle column
shows correlation on a decennial scale, and the right column shows correlation on a monthly scale;
Figure S20. Wind speed CI. The upper panel is derived from the BAM-CLIM simulations, the middle
panel is derived from the BAM-CTE simulations, and the bottom panel is derived from the BAM-ZERO
simulations. The left column shows CI on a daily scale, the middle column shows CI on a decennial
scale, and the right column shows CI on a monthly scale.
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