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ABSTRACT

In the present work, the stability of a viscoelastic fluid flow is studied by linear stability theory, and some results are verified by direct
numerical simulation. The investigation considers the fluid flow between two parallel plates, modeled by the Giesekus constitutive equation.
The results show the influence of the anisotropic tensorial correction parameter aG on this model, showing a stabilizing influence for two-
dimensional disturbances for small values of aG. However, as aG increases, a reduction in the critical Reynolds number values is observed,
possibly hastening the transition to turbulence. Low values for aG for three-dimensional disturbances cause more significant variations for
the critical Reynolds number. This variation decreases as the value of this parameter increases. The results also show that low values of aG
increase the instability of three-dimensional disturbances and confirm that Squire’s theorem is not valid for this model. As for the two-
dimensional disturbances, the anisotropic term on the Giesekus model lowers the critical Reynolds number for higher quantities of polymer
viscosity in the mixture and high values for the Weissenberg number.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0125989

I. INTRODUCTION

Polymers are increasingly replacing other materials. Therefore,
products that use polymers should have satisfactory mechanical perfor-
mance for a given application. In this sense, with the development of
computer technology, there is a great interest in working with numerical
simulations of these industrial applications and developing efficient
numerical methods to simulate viscoelastic fluid flows. This requires a
smaller financial investment compared to experiments in laboratories.
These materials exhibit viscous and elastic properties simultaneously.
They present complex molecules and high molar mass (long and struc-
tured molecules). Therefore, the classical Navier–Stokes equations can-
not describe the flow dynamics of this type of material, and additional
constitutive equations are required for the stress field, resulting in addi-
tional unknowns.

Maxwell’s model1,2 was one of the first attempts to describe the
effect of the viscoelasticity of a given fluid. This model incorporates
the idea of a fluid that exhibits characteristics of a Hookean elastic
solid and Newtonian viscous fluid. The Oldroyd-B model2–5 derives

from the kinetic theory for concentrated and molten polymer solu-
tions.6 The polymer chain is represented by a set of two spheres linked
by a spring. In this configuration, the spheres represent the system’s
center of mass. They are related to the hydrodynamic interaction
between the solvent and the polymeric solution’s macromolecules (the
solvent’s viscous drag force on the molecules). The springs represent
the elasticity effect of the macromolecules or the restorative effect of
the polymer. This ball/spring configuration called “dumbbell” is sim-
plified by assuming a linear spring or Hooke spring behavior. The
Oldroyd-B model can represent certain fluids with ideal elasticity, also
known as “Boger” fluids.

The rheological model called the Giesekus model7–9 is also based
on molecular considerations with ball/spring systems where the spring
follows Hooke’s law. For the Giesekus model, a non-isotropy effect
was introduced in defining the drag force on the spheres. This model
results in equations with the form analogous to the UCM and
Oldroyd-B models but containing nonlinear terms given by the prod-
ucts between the stress tensor components.
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For any fluid flow, the transition to turbulence can be generalized
as the result of the amplification of disturbances that may be present.
The mathematical explanation for the occurrence of instabilities in
Newtonian flows is a direct consequence of the nonlinear convective
term in the momentum equation. However, in viscoelastic flows, the
nonlinearities emerge through convection terms in the momentum
equation and in the extra-stress tensor equation. Draad et al.10

reported a transition delay for viscoelastic fluid flows; the onset was
postponed to a higher Reynolds number than Newtonian fluid flows.
In another study, Ram and Tamir11 observed that turbulence sets in at
a Reynolds number smaller than in the Newtonian case, a phenome-
non called “early turbulence.” It has recently been demonstrated that
at a large Weissenberg number, the anisotropic elastic stresses destabi-
lize flows with curved streamlines even in the absence of inertia, result-
ing in so-called “purely elastic linear instabilities.”12 It is clear that the
instability for viscoelastic fluid flows is not only inertial since it may
exist at a zero Reynolds number.13

Several purely elastic instabilities have been reported in recent
years corresponding to experimental or theoretical work using linear
stability analysis.14–19 In most works on this type of analysis in visco-
elastic flows, the UCM and Oldroyd-B constitutive models have been
employed. The constitutive model choice directly affects the stability
analysis results. For example, the Oldroyd-B model shows more stabi-
lization than the UCM model in a parallel flow when the solvent vis-
cosity is taken into account.20 Therefore, several works in the literature
perform the stability analysis for other types of viscoelastic models,
geometries, and fluid flow types.21–26 Even today, studies in parallel
flows have not been widely developed, and some questions still need
to be answered, especially in viscoelastic fluid stability. Furlan et al.27

presented theoretical results regarding the influence of the molecular
composition of viscoelastic fluids and its relation to the stability of
these fluids. Viscoelastic models with anisotropic terms, such as
Giesekus, LPTT, and FENE-type models, do not satisfy Squire’s theo-
rem.27 Therefore, three-dimensional disturbances may have a stronger
destabilizing effect than two-dimensional ones.

This work presents numerical results for the stability analysis of
2D and 3D disturbances in viscoelastic fluid flows between two parallel
plates. The Giesekus constitutive equation is used to model the fluid.
Linear stability theory (LST) has been used to analyze the stability of
an incompressible parallel flow of a viscoelastic fluid. The stability
problem is solved using a system of linearized equations, rewriting in
an eigenvalue problem solved through the matrix method. Different
viscoelastic fluid characteristics are considered, such as the fraction of
polymer viscosity in the mixture, the mobility parameter that regulates
the fluid’s shear thinning behavior and different values of the
Weissenberg number (ratio of elastic and viscous forces). The adopted
baseflow is 2D, although the stability of 2D and 3D disturbances are
analyzed, assuming periodicity in the spanwise direction. The fact that
Squire’s theorem is not valid is observed through the LST analyses,
and direct numerical simulation (DNS) results double-check some
results.28

Previous investigations on the stability of non-Newtonian flows
based on the Giesekus model indicate the need to investigate flow
instability to three-dimensional disturbances due to anisot-
ropy.22,27,29,30 In the present work, the effects of the mobility parame-
ter aG on the stability of the planar Poiseuille flow are investigated and
how these effects change when the other parameters (Wi;b, and

spanwise wavelength c) change. The results will show that three-
dimensional disturbances can be more unstable than two-dimensional,
as previously suspected but not quantified.

This work is organized as follows: Sec. II presents the governing
equations, the linear stability equations, and the solution method.
Section III shows the results obtained for the linear stability analysis
for two- and three-dimensional disturbances. The main conclusions
are presented in Sec. IV.

II. MATHEMATICAL FORMULATION

Incompressible and isothermal flows in dimensionless form for
viscoelastic fluids can be governed by the mass conservation equation

r � u ¼ 0; (1)

and by the momentum equation

@u
@t
þr � ðuuÞ ¼ �rpIþ b

Re
r2uþr � T; (2)

where p is the pressure, u is the velocity field, t is the time, and
b ¼ gs=g0 is the coefficient that controls the solvent viscosity contri-
bution (g0 ¼ gs þ gp), where gs and gp are the solvent and the poly-
mer viscosity, respectively. Re ¼ ðqULÞ=g0 is the Reynolds number, q
is the fluid density, L is the length scale (for the channel flow is the
channel half-width in the y direction), U is the velocity scale, and T is
the symmetric non-Newtonian extra-stress tensor. The velocity U¼ 1
is adopted for the non-dimensionalization. The same flow rate for the
Newtonian flow (

Ð 1
�1 udy ¼ 4=3) is adopted in the baseflow solution.31

The viscoelastic constitutive equation for the Giesekus model8 is given
by

TþWi
@T
@t
þr � ðuTÞ � ru � T� T � ruT

� �
þ aGReWi
ð1� bÞ ðT � TÞ

¼ 2
ð1� bÞ

Re
D; (3)

where D ¼ ð1=2Þðruþ ðruÞTÞ is the rate of deformation tensor,
Wi ¼ kU=L is the Weissenberg number, and k is the relaxation time
of the fluid. The aG represents the mobility parameter that regulates
the fluid’s shear thinning behavior and the amplitude of anisotropy,
with aG ¼ 1 denoting maximum anisotropy and aG ¼ 0 denoting the
original isotropic relaxation in the UCM model.32 The terms with aG
can be associated with the anisotropic hydrodynamic drag on the con-
stituent polymer molecules.6

Figure 1 illustrates the computational domain. The 2D-baseflow
adopted is a fully developed flow, and it is obtained by a semi-
analytical solution.31 The baseflow solution is obtained for each com-
bination of fluid and flow parameters. The main flow direction is in
the x direction, the flow is confined between two parallel plates placed
in fixed y positions, and periodicity is adopted in the spanwise direc-
tion z.

A. Linear stability theory

It is assumed that the instantaneous flow can be decomposed
into laminar and disturbance components. Adopting u, v, and w as
velocity components in the x, y, and z directions, respectively, the vari-
ables can be decomposed as follows:
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uðx; y; z; tÞ ¼ UðyÞ þ ~uðx; y; z; tÞ;
vðx; y; z; tÞ ¼ ~vðx; y; z; tÞ;
wðx; y; z; tÞ ¼ ~wðx; y; z; tÞ;

pðx; y; z; tÞ ¼ Pðx; yÞ þ ~pðx; y; z; tÞ;

and the non-Newtonian extra-stress tensors components can be
decomposed as

Tðx; y; z; tÞ ¼ TbðyÞ þ ~T ðx; y; z; tÞ;

where the components of the laminar flow (baseflow) are U(y), P(x, y),
and Tb(y). The components of the disturbed flow (disturbances) are rep-
resented with a superscript �. The non-Newtonian tensor components
Tbxz, Tbyz, and Tbzz are zero for the baseflow. Figure 2 presents an exam-
ple of a baseflow result considering Re¼ 3400, b ¼ 0:5; aG ¼ 0:1, and
Wi¼ 6. The maximum streamwise velocity component is below 1, but
the flow rate is the same as that of the Newtonian fluid flow
(
Ð 1
�1 udy ¼ 4=3). The extra tensor components Txx, Txy, and Tyy are nor-

malized by each maximum absolute value, 4:66� 10�04; 5:38� 10�05,
and 1:24� 10�05, respectively. The derivative of this velocity compo-
nent in the wall-normal direction, also normalized by its maximum
absolute value, is shown. The Giesekus fluid parameters significantly
influence the baseflow, and the solution shown in Fig. 2 is only an exam-
ple. Baseflow examples and the influence of each parameter can be found
in Furlan et al.31

The baseflow is assumed steady (does not change in time) and
constant in the x and z directions. By the continuity equation, the

normal-wall component of the mean velocity is zero (the flow is locally
parallel). The baseflow was obtained using the solution form presented
by Furlan et al.31 Substituting this decomposition into the equations
and subtracting from the resulting equations, the equations satisfied
by the laminar flow, and we obtain the linear equations with coeffi-
cients not depending on t, x, and z. Therefore, a solution in terms of
normal modes may be sought for the disturbances ~u; ~v; ~w; ~p, and ~T .
Rewriting the system of equations for the flow disturbances using the
solutions obtained by normal mode decomposition

~uðx; y; z; tÞ ¼ 1
2

�uðyÞeiðaxþcz�xt tÞ þ cc:
h i

;

~vðx; y; z; tÞ ¼ 1
2

�vðyÞeiðaxþcz�xt tÞ þ cc:
h i

;

~wðx; y; z; tÞ ¼ 1
2

�wðyÞeiðaxþcz�xt tÞ þ cc:
h i

;

~pðx; y; z; tÞ ¼ 1
2

�pðyÞeiðaxþcz�xt tÞ þ cc:
h i

;

~T ðx; y; z; tÞ ¼ 1
2

�T ðyÞeiðaxþcz�xt tÞ þ cc:
h i

;

where the variables with overbar are the amplitude in each y position,
and cc. is the complex conjugate. Removing the overbar for simplicity
and simplifying, Eq. (1) can be rewritten as

iauþ icwþ dv
dy
¼ 0; (4)

the momentum equation—Eq. (2), in each direction, can be given as

�ixtuþ iUauþ v
dU
dy
¼ �iapþ b

Re
�ða2 þ c2Þuþ d2u

dy2

 !

þ iaTxx þ
dTxy

dy
þ icTxz; (5)

�ixtvþ iUav ¼ � dp
dy
þ b
Re
�ða2 þ c2Þvþ d2v

dy2

 !

þ iaTxy þ
dTyy

dy
þ icTyz; (6)

FIG. 1. Computational domain.

FIG. 2. Baseflow components for Re¼ 3400, b ¼ 0:5; aG ¼ 0:1, and Wi¼ 6. (a) Streamwise velocity component u. (b) dudy, and tensor component profile.
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�ixtwþ iUaw ¼ �icpþ b
Re
�ða2 þ c2Þwþ d2w

dy2

 !
þ iaTxz

þ dTyz

dy
þ icTzz; (7)

and the components of the extra stress tensor, Eq. (3), can be given as

Txx þWi

�
�ixtTxx þ iaUTxx � 2iaTbxxu

þ dTbxx
dy

v� 2
dU
dy

Txy � 2Tbxy
du
dy

�

þ 2aGWiRe
ð1� bÞ ðTbxxTxx þ TbxyTxyÞ ¼

2iað1� bÞ
Re

u; (8)

TABLE I. Comparison between the wave velocities presented in Blonce22 and the results obtained in this work. The results of the present work were performed using 150
Chebyshev modes.

b aG Re Wi xt Blonce ar LST a

0.2 0.1 5489.34 4.720 832 4 0.207 149 60 1.0420 1.044 79 � 0.000 185 2i
0.3 4064.09 3.495 117 4 0.222 186 04 1.0636 1.063 30þ 0.000 065 2i
0.5 3593.21 3.090 160 6 0.229 959 84 1.0776 1.077 50þ 0.000 081 4i

0.5 0.1 4944.61 4.252 364 6 0.236 887 20 0.9970 1.001 25 � 0.000 044 3i
0.3 4271.79 3.673 739 4 0.244 079 86 1.0061 1.005 99þ 0.000 002 1i
0.5 4070.37 3.500 518 2 0.251 057 88 1.0107 1.020 64 � 0.000 436 2i

0.8 0.1 5350.89 4.601 765 4 0.259 226 70 1.013 1.012 98þ 0.000 014 9i
0.3 5092.37 4.379 438 2 0.264 117 04 1.0174 1.020 31 � 0.000 031 3i
0.5 4980.98 4.283 642 8 0.264 454 52 1.0187 1.018 53þ 0.000 011 4i

FIG. 3. Neutral curves for two-dimensional disturbances for different values of aG considering Wi¼ 2, for (a) b ¼ 0:125, (b) b ¼ 0:25, (c) b ¼ 0:5, and (d) b ¼ 0:75.
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Txy þWi

�
�ixtTxy þ iaUTxy � iaTbxxv

þicTbxywþ
dTbxy
dy

v� dU
dy

Tyy � Tbyy
du
dy

�

þ aGWiRe
ð1� bÞ TbxyðTxx þ TyyÞ þ TxyðTbxx þ TbyyÞ

� �

¼ ð1� bÞ
Re

du
dy
þ iav

� �
; (9)

Txz þWi �ixtTxz þ iaUTxz � iaTbxxw� Tbxy
dw
dy
þ� dU

dy
Tyz

� �

þ aGWiRe
ð1� bÞ ðTbxxTxz þ TbxyTyzÞ ¼

ð1� bÞ
Re

ðicuþ iawÞ; (10)

Tyy þWi �ixtTyy þ iaUTyy þ
dTbyy
dy

v� 2iaTbxyv� 2Tbyy
dv
dy

� �

þ 2aGWiRe
ð1� bÞ ðTbxyTxy þ TbyyTyyÞ ¼

2ð1� bÞ
Re

dv
dy
; (11)

Tyz þWi �ixtTyz þ iaUTyz � iaTbxyw� Tbyy
dw
dy

� �

þ aGWiRe
ð1� bÞ ðTbxyTxz þ TbyyTyzÞ ¼

ð1� bÞ
Re

dw
dy
þ icv

� �
; (12)

Tzz þWið�ixtTzz þ iaUTzzÞ ¼
2icð1� bÞ

Re
w; (13)

with i ¼
ffiffiffiffiffiffi
�1
p

.
These equations indicate that the disturbances propagate as

waves, with frequency xt, wavelength Kx ¼ 2p=a, and Kz ¼ 2p=c.
The wave speed can be given as c ¼ xt=a, with a being the wavenum-
ber in the x direction and c the wavenumber in the z direction, and
the respective amplitudes u, v, w, p, and T.

B. Solution method

The stability analysis is performed by obtaining the solution of
the system of equations (4)–(13). The system of equations is written in
matrix form, and the stability analysis problem becomes an eigen-
value/eigenvector problem. In the present work, the spatial analysis of
the disturbances was performed where the amplification rate ai is ana-
lyzed. Rewriting the system of equations in matrix form as

FIG. 4. Neutral curves for two-dimensional disturbances for different values of aG considering Wi¼ 6, for (a) b ¼ 0:125, (b) b ¼ 0:25, (c) b ¼ 0:5, and (d) b ¼ 0:75.
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LV ¼ aFV; (14)

for the eigenvector V,

V ¼ u; au; v; av;w; aw; p;Txx;Txy;Txz;Tyy;Tyz;Tzz½ �: (15)

It is possible to solve the stability analysis problem by finding the
eigenvalue a (or xt for the time analysis), using a method (direct or
iterative) for calculating the eigenvalue.

The y-direction derivatives are approximated using Chebyshev
polynomials.33,34 These polynomials are related to the cosine and sine
functions; therefore, the derivative calculations are found easily, with
the advantage of low discretization errors. Details about the matrices L
and F, their coefficients, and the boundary conditions are presented in
the Appendix.

C. Spatial and temporal analysis of instabilities

The solution of the system (14) corresponds to an eigenvalue
problem, whose solution exists for some values of the parameters a,
xt, c, Re, b, Wi, and aG, and depends on the velocity profile of the
flow. The disturbances analyzed here are non-stationary and propa-
gate as Tollmien–Schlichting waves.

When xt is a real number, and a is a complex number, the
amplitude of the disturbance can increase, decrease, or be neutral in
the direction of the laminar flow. Under these conditions, the formula-
tion is called a spatial formulation. The components xt, ar, and ai rep-
resent the frequency, the wavenumber, and the spatial amplification
rate, respectively. For the temporal formulation, a is a real number,
and xt is a complex number. The components xr, xi, and a represent
the frequency, the temporal amplification rate, and the wavenumber,
respectively.

III. RESULTS

This section presents the results obtained for the stability analysis
of flows considering the Giesekus viscoelastic model. The neutral sta-
bility curves (stability diagram) were built considering the Reynolds
number on the horizontal axis and the angular frequency xt on the
vertical axis.

A. Two-dimensional disturbances analysis

1. Verification

In order to verify the numerical model, Table I presents compari-
sons between the results presented by Blonce22 for the stability analysis

FIG. 5. Neutral curves for two-dimensional disturbances for different values of aG considering Wi¼ 8, for (a) b ¼ 0:125, (b) b ¼ 0:25, (c) b ¼ 0:5, and (d) b ¼ 0:75.
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FIG. 6. Neutral curves for two-dimensional disturbances for different values of aG considering Wi¼ 10, for (a) b ¼ 0:125, (b) b ¼ 0:25, (c) b ¼ 0:5, and (d) b ¼ 0:75.

FIG. 7. Wave Speed variation with ag and b. (a) Wave velocity variation with aG for Re¼ 2500, b ¼ 0:5; xt ¼ 0:2, and Wi¼ 6.0. (b) Wave velocity variation with b for
Re¼ 5000, aG ¼ 0:1; xt ¼ 0:3, and Wi¼ 10.0.
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of the Giesekus model flow with the results obtained using the present
method. This comparison is performed using a neutral growth rate
ai ¼ 0 (i.e., values at the neutral stability curve), obtained by solving the
system (14). Blonce22 uses different variables than the one used in this
paper, such as the parameter E, written as E ¼Wi=Re, and the equa-
tions for the disturbances wave velocity c are used. To verify the results
presented in this work, the value of E ¼ 8:6� 10�4 was adopted.

2. Two-dimensional stability analysis

The parameter aG of the Giesekus model influences two- and
three-dimensional disturbances. Therefore, it is necessary to analyze
the influence of this parameter under both types of disturbances. For
two-dimensional disturbances, a variation of this parameter was per-
formed considering different values of b and the Weissenberg number

TABLE II. Comparison between the amplification rates obtained with the LST and DNS techniques. The results of the present work were performed using 150 Chebyshev
modes.

b aG Re Wi xt c ar ai � LST ai � DNS

0.25 0.005 12 000 8 0.13 0 0.785 534 1 0.004 189 69 0.004 266 69
0.25 0.005 12 000 8 0.13 0.8 0.602 071 8 –0.010 264 97 –0.010 559 78
0.50 0.1 3400 6 0.29 0.1 1.099 696 4 0.010 294 14 0.010 420 72
0.50 0.1 3400 6 0.29 0.8 0.987 494 4 0.025 568 69 0.025 545 35
0.50 0.15 7300 8 0.20 0.2 0.925 387 02 –0.013 519 77 –0.013 497 73
0.75 0.4 4700 8 0.27 1.2 0.820 487 32 0.060 347 85 0.060 122 40

FIG. 8. Neutral curves for three-dimensional disturbances for different values of c considering b ¼ 0:125 and aG ¼ 0:005, for (a) Wi¼ 2, (b) Wi¼ 6, (c) Wi¼ 8, and (d)
Wi¼ 10.
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in order to analyze its influence under many different conditions and
flow characteristics.

Figure 3 presents the neutral stability curves for two-dimensional
disturbances by varying the values of the parameter aG, considering
Wi¼ 2, and b ¼ 0:125, 0.25, 0.5, and 0.75.

It is possible to observe that the parameter aG, for these cases,
acts as a stabilizing factor in the flow for low values of aG. As aG
increases, the instability region starts to grow. In the plots where the
curves do not appear, the stabilization was so high that the critical
Reynolds is higher than 8000. As the percentage of solvent viscosity
contribution increases in the fluid mixture (b! 1), this stabilizing
effect becomes smaller, to the point that the neutral curves for
b ¼ 0:75 do not show significant differences between the Oldroyd-B
fluid (aG ¼ 0) and the Giesekus fluid.

An interesting behavior in these results is how the neutral curve
decreases in size (increasing the critical Reynolds) and then increases
again (decreasing the critical Reynolds) as the parameter aG increases.
This behavior is more pronounced when we look at the neutral curves

considering smaller values for b, that is, the most significant non-
Newtonian contribution in the fluid mixture (about 87.5%). As the
Newtonian contribution increases in the fluid mixture with increasing
b, this behavior reduces, as shown in Fig. 3(d).

As the aG parameter is related to the mobility of the fluid, it is
interesting to analyze its influence as the elasticity of the fluid
increases. Figure 4 presents the neutral stability curves for two-
dimensional disturbances by varying the values of the parameter aG,
consideringWi¼ 6, and b ¼ 0:125, 0.25, 0.5, and 0.75.

The parameter aG stabilizing effect held for small values even
with increasing Weissenberg. It can be observed that this effect
was more substantial, as a slight increase in aG (0! 0:001) caused
the critical Reynolds to increase from �2500 to more than 8000
(considering the cases b ¼ 0:125 and 0.25). It is also possible to
observe that, as the value of the parameter aG increases (values
greater than 0.05), the critical Reynolds decreases to the point that
for aG ¼ 0:4, the critical Reynolds is smaller than that of the
Oldroyd-B model.

FIG. 9. Eigenfunctions for b ¼ 0:50; aG ¼ 0:1, Re¼ 3400, Wi¼ 6, xt ¼ 0:29; c ¼ 0:8, and ai ¼ 0:025 568 69. (a) Velocity components and the pressure. (b) Extra stress
tensor components.

FIG. 10. Eigenfunctions for b ¼ 0:50; aG ¼ 0:15, Re¼ 7300, Wi¼ 8, xt ¼ 0:20; c ¼ 0:2; and ai ¼ �0:013 519 77. (a) Velocity components and the pressure. (b) Extra-
stress tensor components.
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When the value of the Weissenberg number increases to 8, the
behavior of the neutral stability curves can be observed in Fig. 5 for
b ¼ 0:125, 0.25, 0.5, and 0.75.

The critical Reynolds value decreases as the Weissenberg number
increases for higher amounts of polymer viscosity in the mixture.
When the amount of solvent viscosity in the mixture increases, this
behavior is less pronounced since the amount of polymer viscosity is
high. However, the increase in aG continues to cause the instability
regions to increase after a certain threshold. The results show the influ-
ence of aG, which for low values is stabilizing, even considering higher
values for the Weissenberg number. However, for higher values of this
parameter, it is possible to observe that the destabilizing effect also
increases.

The viscosity of the polymer has the effect of increasing the
potential of the parameter aG. The stabilizing and destabilizing effects
are enhanced for high amounts of polymer in the mixture. As the
amount of polymer in the fluid decreases, both effects decrease their
power.

Figure 6 presents the neutral curves for the same values of aG
shown in the last figures, consideringWi¼ 10. The behavior exhibited

by the influence of the parameter aG holds for this value of the
Weissenberg number.

Comparing the results from Figs. 3 and 6, the lower critical
Reynolds numbers for higher Wi as aG increases may be associated
with both the increased influence of the anisotropic stress tensor com-
ponents and shear thinning associated with higher aG. The stabilizing
effect of the high values of elastic forces (Wi¼ 10) and solvent viscos-
ity effect (increasing b) is offset by the destabilizing effects of the aniso-
tropic stress tensor and shear thinning for large values of aG. This
effect will be considered again for three-dimensional disturbances
where, in addition, the anisotropic fluid properties are relevant to the
amplification of oblique waves.

3. Wave speed analysis

Figure 7 analyzes the influence of the shear thinning parameter,
aG, and the amount of solvent in the mixture, b, on the wave speed
c ¼ xt=ar . In Fig. 7(a), it can be seen that the phase velocity slightly
increases after ag ¼ 0:05, but for values lower than 0.05, a significant
increase in the phase velocity is observed. However, the maximum

FIG. 11. Critical Reynolds number for three-dimensional disturbances for different values of b and aG for Wi¼ 2, for (a) b ¼ 0:125, (b) b ¼ 0:25, (c) b ¼ 0:5, and (d)
b ¼ 0:75.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 124109 (2022); doi: 10.1063/5.0125989 34, 124109-10

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/phf


difference observed in this graphic is around 0.09. The influence of b
presented in Fig. 7(b) shows that after b ¼ 0:25, the change in the
phase velocity is small, but a more considerable increase can be
observed for b ¼ 0:125. The substantial variation observed on the
neutral curves when aG increases from zero to 0.05 is also observed for
the wavenumber ar and, consequently, on the wave speed, as observed
in Fig. 7(a).

B. Three-dimensional disturbance analysis

As presented in Furlan et al.,27 it is impossible to predict the
behavior of three-dimensional disturbances by considering Squire’s
theorem for the Giesekus model. Therefore, it is necessary to perform
a separate analysis for three-dimensional disturbances.

1. LST and DNS comparisons

Table II compares the LST results with DNS results28 considering
three-dimensional disturbances (c > 0). Araujo28 solved the stability
problem for this same viscoelastic model using the DNS technique.

The DNS code adopted28 is based on vorticity–velocity formulation
and is an extension of the 2D code adopted by Brandi et al.26 The code
uses compact finite differences for the streamwise and wall-normal
directions and Fourier transforms in the spanwise direction for spatial
discretizations.

Table II shows a good agreement between the results obtained by
the two computational techniques for the stability analysis. This agree-
ment assures the quality of the results obtained in this work consider-
ing three-dimensional disturbances.

The only change in the second line of Table II compared to the
first line is that the spanwise wavenumber c changes from 0 to 0.8.
The ai changes from a positive value to a negative one, showing
that the three-dimensional disturbance is unstable while the
two-dimensional one is stable. This proves the non-applicability of
the Squire theorem for this fluid model. This behavior is also illustrated
in Fig. 8, for Wi¼ 2, Wi¼ 6, Wi¼ 8, and Wi¼ 10. This figure
shows neutral stability curves for different values for the spanwise wave-
number c.

Figure 8 shows that increasing theWeissenberg number stabilizes
two-dimensional disturbances. This effect is so strong that, from

FIG. 12. Critical Reynolds number for three-dimensional disturbances for different values of c and aG for Wi¼ 6, for (a) b ¼ 0:125, (b) b ¼ 0:25, (c) b ¼ 0:5, and (d)
b ¼ 0:75.
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Wi¼ 6 [Fig. 8(b)], the critical Reynolds for these disturbances is
above 12 000. However, for Wi¼ 2 [Fig. 8(a)], it is possible to
observe that Squire’s theorem is not valid for this fluid. Increasing
the spanwise wavenumber causes a reduction in the critical
Reynolds for the neutral curves of the three-dimensional disturban-
ces. The increase in the spanwise wavenumber causes possible antici-
pation of the transition, characterizing a destabilizing factor for
these flows. This behavior is more pronounced as the Weissenberg
number increases. The critical Reynolds number for the two-
dimensional disturbances of these flows is above 12 000. However,
the critical Reynolds numbers for the three-dimensional
disturbances of these flows are Rec � 9 285:937 for Wi¼ 6,
Rec � 9 320:41 forWi¼ 8, and Rec � 8 585:16 forWi¼ 10.

Therefore, for fluid flows of this viscoelastic model, three-
dimensional disturbances can be much more unstable than
two-dimensional ones. The same parameters adopted for the two-
dimensional analysis were used in the three-dimensional analysis,
changing the spanwise wavenumber c. These results are presented by
using the critical Reynolds numbers. To standardize and make it easier
to understand the graphs, for the different values of the Giesekus

model parameter aG, the colors used for these two-dimensional curves
in Fig. 3 were kept.

2. Eigenfunction analysis

The eigenfunction for the data in 4 and 5 lines of Table II are
shown in Figs. 9 and 10, respectively. These choices correspond to sta-
ble and unstable results, respectively. The eigenfunction of the velocity
components and the pressure are normalized by the maximum abso-
lute value of the eigenfunction u. The eigenfunction of the extra-stress
tensor components are normalized by the maximum absolute value of
the Txx eigenfunction. The eigenfunctions of the velocity components
and the pressure are shown in Figs. 9(a) and 10(a), respectively. The
eigenfunctions of the extra stress tensor components are shown in
Figs. 9(b) and 10(b), respectively.

The streamwise and spanwise velocity disturbance eigenfunctions
are higher near the walls, where the streamwise base flow velocity gra-
dients and the shear stresses and shear strain are higher and correspond
to the region where the fluid stretching is also highest. At the wall, the
extra stress tensor is at its maximum value, decaying toward the center

FIG. 13. Critical Reynolds number for three-dimensional disturbances for different values of c and aG for Wi¼ 8, for (a) b ¼ 0:125, (b) b ¼ 0:25, (c) b ¼ 0:5, and (d)
b ¼ 0:75.
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where the streamwise velocity gradients go to zero. These results show
a strong relation between shear and non-Newtonian behavior.

The maximum values of the streamwise eigenfunctions are very
close to the critical layer yc, where the wave speed c matches the base
flow streamwise velocity UðycÞ. These values are y ¼ 60:851 and
y ¼ 60:878 for the cases shown in Figs. 9 and 10, respectively.

The wave speed variation with b [see Fig. 7(b)] increases signifi-
cantly when b increases from 0.125 to 0.25. This corresponds to a shift
of the critical layer away from the wall.

3. Three-dimensional disturbance critical Reynolds
analysis

Figure 11 presents the variation of the critical Reynolds number
for different values of the Giesekus model, considering Wi¼ 2, for
b ¼ 0:125; 0:25; 0:5, and 0.75.

It is worth noting that some flows do not have points for span-
wise wavenumbers. This is because, for these wavenumbers, stabiliza-
tion has caused the critical Reynolds to shift to values above 12 000.

Figure 11, for the same values of b analyzed in the last figure,
shows that, as the Newtonian contribution in the fluid mixture
increases, the range of values for critical Reynolds decreases. In other
words, for high b values, aG has a more limited influence on Rec. This
result shows the influence of the polymer viscosity on the stability of
the flow and was also observed for two-dimensional disturbances pre-
sented in Figs. 3–6. The influence of aG is reduced by the polymer vis-
cosity and elasticity.

To analyze the influence of elasticity under the three-dimensional
disturbances and its stabilizing/destabilizing effect, Figs. 12–14 present
the variation of the Reynolds number, consideringWeissenberg number
equal to 6, 8, and 10, respectively. The values of b shown in these figures
are b ¼ 0:125; b ¼ 0:25; b ¼ 0:5, and b ¼ 0:75.

For three-dimensional disturbances, it becomes evident that
Squire’s theorem is not valid for the Giesekus model, for which aG is
associated with anisotropy effects. Figures 12–14 show that, for low
values of aG, increasing three-dimensionality may result in lower criti-
cal Reynolds numbers. As aG or b increases, three-dimensional waves
tend to be more and more stable than two-dimensional waves. The

FIG. 14. Critical Reynolds number for three-dimensional disturbances for different values of c and aG for Wi¼ 10, for (a) b ¼ 0:125, (b) b ¼ 0:25, (c) b ¼ 0:5, and (d)
b ¼ 0:75.
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result is somewhat unexpected since higher values of aG correspond to
higher anisotropy, which is the main reason to contradict Squire’s
theorem.

As the Weissenberg number increases, three-dimensional distur-
bances become more predominant in flow’s destabilization. Even with
the solvent contribution increase, which has the characteristic of stabi-
lization, it is possible to observe a reduction of the critical Reynolds
value for b ¼ 0:5, showing that the three-dimensional disturbances
remain more unstable than the two-dimensional ones. This shows the
influence of the effect of elasticity on flow stability. Higher elasticity in
the viscoelastic fluid means a significant influence of three-
dimensional disturbances on flow stability. If combined with low
values for the parameter aG and with high polymer viscosity in the
mixture, one can have a reduction in the critical Reynolds value from
�11 000 considering two-dimensional disturbances to �7000 consid-
ering c¼ 1 [Fig. 14(a)] for the same flow.

IV. CONCLUSION

This work presents a linear stability analysis for viscoelastic fluid
flows to non-stationary disturbances. The constitutive equation for the
Giesekus model (3) was used as the viscoelastic model. The fluid flow
adopted was incompressible, isothermal viscoelastic flow between par-
allel plates. In the present work, only the spatial analysis was per-
formed. The adopted method was verified by comparing the results
obtained using the present formulation with the work of Blonce,22

showing an excellent agreement.
The results explore the influence of the parameter aG of the

Giesekus model over the flow stability. It could be verified that small
values for this parameter stabilize the flow, increasing the value of the
critical Reynolds number. However, as this parameter increases, the
opposite effect is verified, becoming a destabilizing factor in the flow.
These characteristics are intensified with the increase in the
Weissenberg number and when considering higher polymer viscosity
in the fluid mixture. These characteristics are valid for both two- and
three-dimensional disturbances.

Furlan et al.27 presented a theoretical study on the validity of
Squire’s theorem for viscoelastic fluid models. That study has shown the
validity of Squire’s theorem for isotropic non-Newtonian models. On
the other hand, for anisotropic models, both DNS and LST results show
that Squire’s theorem is not valid. Therefore, the numerical results pre-
sented in this work support the theoretical study by Furlan et al.27

The results show that low values of aG associated with low values
of b and high values of Wi result in three-dimensional disturbances
that are more unstable than two-dimensional disturbances. It shows
that, in this case, Squire’s theorem is not applicable. As aG increases,
two-dimensional disturbances tend to be more critical than three-
dimensional disturbances, and as b and Wi increase, the destabilizing
effect of anisotropy is reduced.
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APPENDIX: MATRIX METHOD

The matrix method consists of rewriting the system of equa-
tions (4)–(13) in the form

LV ¼ aFV ; (A1)

with the eigenvector V defined as

V ¼ u; au; v; av;w; aw; p;Txx;Txy;Txz;Tyy;Tyz;Tzz½ �T : (A2)

Here, the mathematical manipulation required for this solu-
tion method is presented.

The matrix system is rewritten in such a way that each row of
the matrix corresponds to an equation of the system (4)–(13), and
the addition of three rows is required to make the system closed
and the matrices square. The matrices L and F have the coefficients
for the disturbances in the eigenvector V.

We are defining the matrix L [left-hand side of the system—
Eq. (A1)] and the matrix F [right-hand side of the system—Eq.
(A1)] in the form with the subindexes (i, j) of Li;j and Fi;j denoting
row and column, respectively.

For consistency and familiarity with the subindex notation, we
rewrite the eigenvector (A2) as follows:

V ¼ V1;V2;V3;V4;V5;V6;V7;V8;V9;V10;V11;V12;V13½ �T : (A3)

For the first line i¼ 1, the continuity equation [Eq. (4)] is
rewritten in the form
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L1;3 � V3 þ L1;5 � V5 ¼ aF1;1 � V1; (A4)

with

L1;3 ¼ Dy;

L1;5 ¼ icI;

and

F1;1 ¼ �iI:

It is worth noting that each element of the matrices L and F is
square matrices with dimension n� n, with n being the number of
Chebyshev modes used to approximate the derivatives by polyno-
mials; the term Dy is the Chebyshev matrix for the first derivative,
and Dy2 is the Chebyshev matrix for the second derivative. All
other elements for both matrices in this row are null.

The second line, i¼ 2, is one of the lines included in the sys-
tem so that the matrices L and F are square, so in that line, we have

L2;2 � V2 ¼ aF2;1 � V1; (A5)

with L2;2 ¼ F2;1 ¼ I.
For i¼ 3, the momentum equation in the x direction [Eq. (5)]

is rewritten as

L3;1 � V1 þ L3;3 � V3 þ L3;9 � V9 þ L3;10 � V10

¼ aðF3;1 � V1 þ F3;2 � V2 þ F3;7 � V7 þ F3;8 � V8Þ; (A6)

with

L3;1 ¼ �ixtI�
b
Re
ðDy2� c2IÞ; L3;3 ¼

dU
dy
;

L3;9 ¼ �Dy; L3;10 ¼ �icI;

F3;1 ¼ �iU ; F3;2 ¼ �
b
Re

I;

F3;7 ¼ �iI; F3;8 ¼ iI:

For i¼ 4, the procedure is the same as for the row i¼ 2,

L4;4 � V4 ¼ aF4;3 � V3; (A7)

with L4;4 ¼ F4;3 ¼ I.
For i¼ 5, the momentum equation in the y direction [Eq. (6)]

is rewritten as

L5;3 � V3 þ L5;7 � V7 þ L5;11 � V11 þ L5;12 � V12

¼ a F5;3 � V3 þ F5;4 � V4 þ F5;9 � V9ð Þ; (A8)

with

L5;3 ¼ �ixtI�
b
Re
ðDy2� c2IÞ; L5;7 ¼ Dy;

L5;11 ¼ �Dy; L5;12 ¼ �icI;

F5;3 ¼ �iU; F5;4 ¼ �
b
Re

I; F5;9 ¼ iI:

For i¼ 6, the procedure is the same as for the rows i¼ 2 and
i¼ 4,

L6;6 � V6 ¼ aF6;5 � V5; (A9)

with L6;6 ¼ F6;5 ¼ I.

For the line i¼ 7, the momentum equation in the z direction
[Eq. (7)] is rewritten as

L7;5 � V5 þ L7;7 � V7 þ L7;12 � V12 þ L7;13 � V13

¼ a F7;5 � V5 þ F7;6 � V6 þ F7;10 � V10ð Þ; (A10)

with

L7;5 ¼ �ixtI�
b
Re
ðDy2� c2IÞ; L7;7 ¼ icI;

L7;12 ¼ �Dy; L7;13 ¼ �icI;

F7;5 ¼ �iU; F7;6 ¼ �
b
Re

I; F7;10 ¼ iI:

For i¼ 8, the constitutive equation for the tensor Txx [Eq. (8)]
is rewritten as

L8;1 � V1 þ L8;3 � V3 þ L8;8 � V8 þ L8;9 � V9

¼ a F8;1 � V1 þ F8;8 � V8ð Þ; (A11)

with

L8;1 ¼ �2WiTbxyDy; L8;3 ¼Wi
dTbxx
dy

;

L8;8 ¼ I� ixtWiIþ 2
ReWiaG
ð1� bÞ Tbxx;

L8;9 ¼ �2Wi
dU
dy
þ 2

ReWiaG
ð1� bÞ Tbxy;

F8;1 ¼ 2iWiTbxx þ 2i
ð1� bÞ

Re
I; F8;8 ¼ �iWiU :

For i¼ 9, the constitutive equation for the tensor Txy [Eq. (9)]
is rewritten as

L9;1 �V1 þ L9;3 �V3 þ L9;5 �V5 þ L9;8 �V8 þ L9;9 �V9 þ L9;11 �V11

¼ a F9;3 �V3 þ F9;9 �V9ð Þ; (A12)

with

L9;1 ¼ �WiTbyyDy �
ð1� bÞ

Re
Dy; L9;3 ¼Wi

dTbxy
dy

;

L9;5 ¼ icWiTbxy; L9;8 ¼
ReWiaG
ð1� bÞ Tbxy;

L9;9 ¼ I� ixtWiIþ ReWiaG
ð1� bÞ Tbxx þ Tbyy

� �
;

L9;11 ¼ �Wi
dU
dy
þ ReWiaG
ð1� bÞ Tbxy;

F9;3 ¼ iWiTbxx þ i
ð1� bÞ

Re
I; F9;9 ¼ �iWiU :

For i¼ 10, the constitutive equation for the tensor Txz [Eq.
(10)] is rewritten as

L10;1 � V1 þ L10;5 � V5 þ L10;10 � V10 þ L10;12 � V12

¼ a F10;5 � V5 þ F10;10 � V10ð Þ; (A13)

with
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L10;1 ¼ �ic
ð1� bÞ

Re
I; L10;5 ¼ �WiTbxyDy;

L10;10 ¼ I� ixtWiIþ ReWiaG
ð1� bÞ Tbxx;

L10;12 ¼ �Wi
dU
dy
þ ReWiaG
ð1� bÞ Tbxy;

F10;5 ¼ iWiTbxx þ i
ð1� bÞ

Re
I; F10;10 ¼ �iWiU :

For i¼ 11, the constitutive equation for the tensor Tyy [Eq.
(11)] is rewritten as

L11;3 � V3 þ L11;9 � V9 þ L11;11 � V11 ¼ a F11;3 � V3 þ F11;11 � V11ð Þ;
(A14)

with

L11;3 ¼Wi
dTbyy
dy
� 2WiTbyyDy � 2

ð1� bÞ
Re

Dy;

L11;9 ¼ 2
ReWiaG
ð1� bÞ Tbxy;

L11;11 ¼ I� ixtWiIþ 2
ReWiaG
ð1� bÞ Tbyy;

F11;3 ¼ 2iWiTbxy; F11;11 ¼ �iWiU :

For i¼ 12, the constitutive equation for the tensor Tyz [Eq.
(12)] is rewritten as

L12;3 � V3 þ L12;5 � V5 þ L12;10 � V10 þ L12;12 � V12

¼ a F12;5 � V5 þ F12;12 � V12ð Þ; (A15)

with

L12;3 ¼ �ic
ð1� bÞ

Re
I;

L12;5 ¼ �WiTbyyDy �
ð1� bÞ

Re
Dy;

L12;10 ¼
ReWiaG
ð1� bÞ Tbxy;

L12;12 ¼ I� ixtWiIþ ReWiaG
ð1� bÞ Tbyy;

F12;5 ¼ iWiTbxy; F12;12 ¼ �iWiU :

Finally, for the line i¼ 13, the constitutive equation for the
tensor Tzz [Eq. (13)] is rewritten as

L13;5 � V5 þ L13;13 � V13 ¼ aF13;13 � V13; (A16)

with

L13;5 ¼ �2ic
ð1� bÞ

Re
I;

L13;13 ¼ I� ixtWiI;

F13;13 ¼ �iWiU :

The boundary conditions imposed no slip and no penetration
at the wall, setting u, v, and w equal to zero at these boundaries.
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