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ABSTRACT 

 

In space missions, telemetry data is a key source towards systems health 
monitoring, and the lack of this may compromise the mission. Concerning the 
great number of functional service telemetries, there are some difficulties 
regarding the telemetry analysis. Some satellites have hundreds, even 
thousands of telemetry signals, and to an operator analyzing that to infer 
something about a system is quite laborious. In this scenario, it can be difficult 
to perform in advance the detection, diagnosis, and prevention of anomalies 
and failures, decreasing the reliability and availability of space systems. Thus, 
shortening the system life and service continuity. This research proposes a 
data-driven approach, composed of a hybrid Machine Learning process for 
automatically detecting anomalous behavior on satellites via telemetry data. 
Such approach aims to provide support in the satellites operations when comes 
to telemetry data analysis. Through statistics, data science processes, and 
Machine Learning algorithms, the proposed process was capable of identify 
original anomalies and injected failures in the behavior of the Power Supply 
subsystem of the CBERS1 satellite. 

Keywords: Machine Learning. Satellite. KPCA. DBSCAN. KNN. SVM. 
Anomalous behavior.  
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UM PROCESSO DE APRENDIZADO DE MÁQUINA HIBRIDO PARA A 

DETEÇAO DE COMPORTAMENTOS ANOMALOS EM TELEMETRIA DE 

SATÉLITES 

 

RESUMO 

Em missões espaciais, os dados de telemetria são uma fonte fundamental 
para o monitoramento da integridade dos sistemas, e a falta dela pode 
comprometer a missão. Com relação ao grande número das telemetrias de 
serviço funcionais, existem algumas dificuldades em relação à análise da 
telemetria. Alguns satélites têm centenas, até milhares de telemetrias, e para 
um operador analisar isso para inferir algo sobre o sistema tende a ser 
bastante trabalhoso. Nesse cenário, pode ser difícil realizar antecipadamente 
a detecção, diagnóstico e prevenção de anomalias e falhas, diminuindo a 
confiabilidade e disponibilidade dos sistemas espaciais. Assim, encurtando a 
vida útil do sistema e a continuidade do serviço. Este estudo propõe uma 
abordagem orientada a dados, composta por um processo híbrido de 
Aprendizado de Máquina para detectar comportamentos anômalos em 
satélites por meio de dados de telemetria. Tal abordagem tem como por 
objetivo fornecer suporte nas operações de satélites quando se trata de 
análise de dados de telemetria. Por meio de estatísticas, processos de 
ciência de dados e algoritmos de Machine Learning, o processo proposto foi 
capaz de identificar anomalias originais e falhas injetadas no comportamento 
do Subsistema de Power Supply do satélite CBERS1. 

Palavras-chave: Aprendizado de máquina. Satélites. KPCA. DBSCAN. KNN. 
SVM. Comportamento anômalo 
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1 INTRODUCTION 

1.1 Context and motivation 

The space environment is very harsh for spacecraft due to a variety of factors 

such as direct radiation, great temperature difference, risk of a clash with space 

debris, and so on. It is practically impossible to completely eliminate the 

possibility of anomalies or faults, even if we increase the reliability of the system 

component to the limit. In addition, the space is so distant from the earth that it 

is extremely difficult to directly inspect and repair a damaged component 

(IBRAHIM, 2018). 

Artificial satellites usually provide important services in communication, remote 

sensing, scientific experiments, etc. Satellite damage entails not only a financial 

loss but also the loss of essential and sometimes strategic services. In this 

scenario, early detection, diagnosis, and prevention of anomalies and failures 

promote the reliability and availability of space systems, extending service life 

and long service continuity (AZEVEDO et al., 2012).  

In space missions, telemetry is the only source of system status for the ground 

operations, and the lack of this can compromise the mission since the data set 

from Telemetry is usually the main source for the identification and prediction of 

anomalies on an artificial satellite. However, even with functional telemetry, 

there are some difficulties regarding the analysis of telemetry data. Some 

satellites have hundreds, even thousands of different telemetry signals, and for 

operators analyzing the entire mass of data from that telemetry to infer 

something about the system tends to be laborious. 

Telemetry data is received in real-time and analyzed by specialists and 

operators, constituting the main source of identification and prediction of 

anomalies in artificial satellites (AZEVEDO et al., 2012). The complexity of 

these satellites with a big number of subsystems is reflected by the big number 

of TMs/TCs (WERTZ, 2011). Therefore, a large number of telemetries signals 

makes adequate telemetry analysis an extremely complex task.  
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A satellite may be seen logically as a set of integrated subsystems (orbit and 

attitude control, thermal energy, power supply, structure, payload, a on-board 

computer, etc.). Each subsystem has a set of sensors (thermistors, switches, 

battery discharge, etc.) to measure the subsystem's condition and condition of 

the satellite. These measurements are present in the telemetry data and are the 

starting point of this work.  

Larger satellites made by INPE have a large number of telemetry and remote 

controls and the usage of a Data Science approach may have a positive impact 

in the analysis effectiveness. For example, CBERS-4A, which was launched at 

the end of 2019, has more than one thousands of TMs and TCs, which makes 

the analysis of failures by Control Center operators more difficult and laborious. 

As highlighted by Taburoğlu (2019), supervised learning techniques are no 

longer used because they need knowledge of expertise. There is limited 

unsupervised study, but the number of papers is increasing fast, and presenting 

quite satisfactory results for anomaly detection on systems.  

The employment of data driven approaches as data science or data mining in 

the space systems related has also been studied at INPE. The prospect of 

multiple launches and increased on demand from orbiting satellites in operation 

according to the INPE's satellite program, raised the need of improving safety in 

the planning of routine operations that control the satellites in orbit. Souza 

(2011) proposed the usage of data mining concepts to analyze the data and 

predict the satellite operational states, assisting experts in evaluating the 

performance of the plan. This way improving safety in the planning of 

operations also ensures the integrity of satellites in orbit. 

In this dissertation, the process of detecting data observation presenting 

unexpected behavior is called anomaly detection. Anomalies have an extended 

definition though. Every anomalous observation is considered an outlier, 

however, not all outliers are considered an anomaly on the given problem 

domain. This assumption is made over the fact that in the spacecraft anomaly 

detection domain, some outliers in the telemetry data may be caused by noise 



3 
 

in the measurement, temporary errors in the data conversion or transmission 

process (YAIRI et al., 2017), and these cases will be treated as "trivial outliers". 

1.2 Objective and research methodology 

The objective of the research is to explore a process based on data science 

approach for space systems service telemetry data analysis. Such analysis 

aims of providing support to the operation of artificial satellites, being capable of 

detecting anomalous behavior based on the telemetry data. This study also has 

the goal of being a backbone for a machine learning process capable of 

performing not only detection but also, in the future, failure diagnosis.  

A complete case study was performed with the China-Brazilian Earth Resource 

Satellite 1 (CBERS1) telemetry data, obtained by INPE’s Satellite Control 

Center, to experimentally evaluate the proposed process.  Another case study 

was partially performed with the Data Collection Satellite 2 (SCD2) also 

provided by INPE’s Satellite Control Center. The SCD2 data comprises over 4 

years of satellite telemetry data, totaling over 24GB of raw data and associated 

documentation, with 135 telemetries being tracked. However, due to limitations 

imposed by the available resources for performing the research, the SCD2 case 

study was only partially perform.  

In order to evaluate whether the proposed process is effective from the anomaly 

detection point of view, first the available data were selected and "filtered" using 

rules based on the literature. The obtained data set was then divided into two 

parts. The first part was segmented into training, verification and tuning, being 

the source of information for problem domain characterization. The process 

refinement and insights raised in the first part were used as a knowledge base 

for the following step. The second part was then responsible for training and 

validating the process again the rest of the data. The data used in the second 

part contained a visual-identified anomalous behavior that was used as a first 

validation. A second validation was performed using an injected trend that 

simulated a failure reported in the literature. The validation criteria used was 

checking whether the proposed process, fed by input data, was capable of 
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detecting the identified anomalous behavior, providing useful information that 

could be used as support information for a satellite operator.  

The remainder of this documented is structured as follows: 

 Chapter 2: Presents the theoretical background Space Mission, 

Anomaly detection, Data Science topics necessary for the 

understanding of this dissertation; 

 Chapter 3: Related works in the literature are presented and reviewed, 

as well as anomaly detection approaches to problems that resemble 

the one approached in this dissertation, and how researchers on the 

anomaly detection field are handling such problems; 

 Chapter 4: Presents the method, the case study planning with the 

CBERS1 and SCD2 satellites and showcases the mixed machine 

learning process proposed for enabling anomaly detection on such 

study cases; 

 Chapter 5: Presents a critical analysis of the results, where the 

proposed approach is better suited and where they excelled or had 

drawbacks; 

 Chapter 6: Presents the conclusions, summarizing the usefulness of 

the results and future work. 

1.3 Contribution and limitations 

The contribution of this work is the proposal of a machine learning process that 

can be not only functionally speaking adequate but also is expected to save 

money and time for space organizations that operate satellites and need to 

implement their own telemetry data analysis processes and methods to analyze 

data. This work is performed exclusively with open-source software, open 

literature and aims to publish the satellite telemetry data used as a case study 

for future uses. The dissertation in a certain sense is related to the space 

segment, addressing the satellite health monitoring through telemetry data 
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analysis. However, it contributes to the ground segment since the proposed 

process would be implemented on the satellite control center, in order to 

contribute in a positive way with the telemetry data analysis conducted by the 

satellite operators. 
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2 THEORETICAL BACKGROUND 

This section presents a common ground knowledge needed for the 

understanding of this dissertation. 

2.1 Space mission 

A space system may be seen as a system of systems, where each system is 

responsible for a different part of the space mission. From the interaction of 

these systems, an emerging desirable characteristic arose, fulfilling the given 

space mission purpose. A space system is "made of": 

 A ground segment; 

 A launching segment, translated into the whole launching mission 

framework, and; 

 A space segment, which in the context of this dissertation is fulfilled by 

an artificial satellite, as the example depicted in Figure 2.1. 

A Space mission can have different purposes, such as Earth monitoring, 

astronomy observation, communication, military and etc. The presented case 

study is found within the Earth monitoring category, since it uses telemetry data 

coming from earth resource monitoring satellites. However, the outcome of this 

dissertation intends to aggregate to the ground segment since the proposed 

process may be used on the satellite operations, as highlighted in Section 1.1. 

The ground segment, available currently in Brazil, established for the Complete 

Brazilian Space Mission, can be divided into the mission control center and the 

tracking and control center, being this last one partitioned into the Satellite 

Control Center (CCS), and the ground stations from Cuiabá and Alcântara 

(ORLANDO; KUGA, 2022). 

An artificial satellite (also referred to as a satellite) is partitioned into two distinct 

modules, the service module and the payload module. The service module is 

composed of everything necessary for determining and maintaining the 

operational conditions of the satellite. This module holds the on-board 

equipment, such as the power supply subsystem, the ground communication 
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subsystem, the on-board computer, the attitude and control subsystem, and so 

on. The service module has the aim of keeping the payload healthy, happy and 

pointed in the right direction. The data related to the service module is referred 

to as housekeeping data. The payload is composed of all the necessary 

equipment to accomplish the mission objectives, in broader terms, it is a 

combination of hardware and software, these being sensors, cameras, etc 

(WERTZ; LARSON, 1992). 

 

Figure 2.1 - Space mission example. 

 

Source: Adapted from Wertz and Larson (1992). 

 

Satellites telemetry data can be distinguished, in a first level, by their source. 

The payload telemetry data, which relates to the mission data, in other words, is 

the reason to be of the satellite. These data can be made up of photos taken for 

remote sensing (WERTZ; LARSON, 1992). 

The housekeeping telemetry data is the data used to assess the current status 

of the satellite, not just from the satellite's health point of view but also 

information regarding the system's orbit, attitude, temperature, and other 
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information related to the status and condition of the system. These data most 

of times consist of information relevant for the operation of the satellite, such as 

measurements from sensors spread through satellite's equipment or modes of 

operation of some instrument. Different from the mission data, the 

housekeeping data is usually continuously transmitted. These data are collected 

by the satellite’s on-board computer and are sent to the ground stations via the 

telecommunication sub-system. 

Ultimately, the satellite telemetry data is the unique source of information 

regarding the satellite system situation when it is in orbit. In order to assess 

whether the satellite's health enables its mission, or if the satellite is performing 

the task it should relies on the satellite operation process. And the success of 

the operation of the satellite, relies on this data, and the information retrieved 

through telemetry data analysis performed by the satellite operators, 

responsible for monitoring and operating the satellite on the ground. 

2.2 Anomaly detection 

Anomaly detection techniques perform an important role in many different 

application domains, such as fraud detection over service providers, fault 

detection on spacecraft systems, or intrusion detection in computer networks 

(CHANDOLA et al., 2009). It can be applied to detect performance degradation 

on mechanical parts of a manufacturing system (PURARJOMANDLANGRUDI 

et al., 2014), supporting the maintenance of the system. Or used to perform a 

critical task in a safety-critical environment, detecting abnormal running 

conditions from an aircraft engine rotation (HODGE; AUSTIN, 2004). 

Anomaly detection refers to the problem of finding patterns in data that do not 

conform to expected behavior (CHANDOLA et al., 2009). These patterns, 

consist of outliers, which can be defined as an observation, or a subset of them, 

which appears to be inconsistent with the remainder of that set of data 

(BARNETT; LEWIS, 1994). 

In the literature, anomaly detection is treated by different terminologies by 

different authors, being called as outlier detection, novelty detection, noise 

detection, among others. The same can be seen when comes to observations 
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called as outliers, which can be also referred to as exceptions, discordant 

observations, anomalies, and so on.  

Anomaly detection techniques deals with unwanted patterns in the data, and 

even though it relates to noise removal, these are distinct when comes to each 

technique's goal. In the context of this work, noise is a phenomenon that is not 

an object of interest for the analysis and also imposes difficulties on anomalies 

detection way (CHANDOLA et al., 2009). 

Different application domains present different characteristics that tell a lot 

about how the data could be handled or interpreted, and this aspect shall be 

taken into consideration when thinking about which anomaly detection 

technique should be used. Hence, a problem characterization can be driven by 

the following domain characteristics: 

 Nature of the input data 

 Anomaly type 

 Label availability 

 What kind of output 

In this dissertation context, the input data is a data set containing a set of 

observation, or data instances (also called as point, event, sample, pattern 

among other) (TAN; STEINBACH; KUMAR, 2005). Each observation is 

described by a number of attributes. These attributes unravel the nature of the 

input data and may be found as a continuous value coming from a battery 

temperature sensor, or a binary attribute stating a state of a switch, or a 

categorical data representing the current mode of operation of a given 

equipment. Attributes are also referred as dimensions or features. Other 

relevant aspect of the nature of the input data are whether the data set is 

univariate or multivariate, the last one meaning that each data instance has 

multiple attributes. Not surprisingly, the type of data determines which tools and 

techniques can be used to analyze the data. (TAN; STEINBACH; KUMAR, 

2005), i.e., for nearest-neighbor-based techniques, the nature of attributes 

would determine the distance measure to be used (CHANDOLA et al, 2009). 
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The type of anomaly, given a problem domain, relates to definition of what is the 

observed behavior which is considered as not conforming to the considered 

normal behavior, how this anomalous behavior looks like against the rest of the 

data set. In this matter, the type of anomaly can be divided into three categories 

(CHANDOLA et al, 2009):  

 Point anomalies, which can be seen as an individual data observation 

laying outside of the regions of the considered normal behavior; 

 Contextual anomalies, happens when an observation is considered to be 

anomalous in a given context, but not otherwise. The observations are 

classified against two attributes, a context attribute, and a behavioral 

attribute. This type of anomaly is determined using the value obtained 

from the behavioral attribute within a given context (defined by the 

context attribute); 

 Collective anomalies, refers to the type of anomaly that is identified only 

when a collection of related observations is anomalous against the rest 

of the entire data set. An individual observation within a collective 

anomaly may not be considered as an anomaly by themselves, but the 

occurrence of these observations together as a collection is anomalous. 

The problem of anomalous behavior detection is divided in three fundamental 

different approaches (HODGE; AUSTIN, 2004), that differs in respect to the 

availability of labels on the data set that is going to be used as input. Data sets 

containing labeled observation for anomaly as well as normal classes, are 

approached by techniques considered as "Supervised learning" techniques i.e., 

Nearest Neighbors algorithms or Support Vector Machines (SVM). However, 

usually these data sets present an imbalanced class distribution. 

Semi supervised techniques are applied when only normal behavior classes are 

available as observation labels. In spacecrafts, an anomaly scenario would 

signify an accident which is not easy to model, therefore, building a model for 

the normal behavior class and consider anything else as anomalous is more 

typical (FUJIMAKI et.al, 2005). 
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When a data set presents no label at all, an unsupervised approach has to be 

implemented. Due the fact that such techniques do not rely on labels 

availability, they are widely applicable. In order to unsupervised techniques be 

capable of generating a model, an assumption that the frequency rate of normal 

observations and anomalous observations are so disparate, being the normal 

class far beyond more frequent, is made. Based in this assumption regarding 

the normal class frequency in a data set, semi supervised techniques can be 

also used for unsupervised anomaly detection, requiring just some adaptation 

(CHANDOLA et al., 2019). Two examples of unsupervised techniques are, K-

Means algorithm, used for clustering, and Principal Component Analysis (PCA), 

performing dimensionality reduction.  

Anomaly detection techniques, typically, provide outputs of two different types, 

scores and labels. When a technique provides a value, or index, which indicates 

how much of an anomaly was that observation considered, the output type is 

scores. On the other hand, when the approach provides an output that is an 

assignment to a specific class, then it is said that its outputs generate labels for 

the observations. 

In a nutshell, the anomaly detection challenge comes from the fact that the 

problem domain, or application domain, has different aspects, such the nature 

of the input data, the notion of anomaly, the challenges associated with 

detecting those anomalies. Furthermore, to define which are the existing 

techniques of anomaly detection that can be used to the given problem domain, 

all these aspects shall be taken into consideration (CHANDOLA et al., 2019). 

Some examples of types of algorithms based on the anomaly detection 

technique are shown in Figure 2.2. 
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Figure 2.2 - Different anomaly detection techniques examples. 

 

Source: Author's production. 

 

2.2.1 Space systems anomaly detection 

Being capable of detecting failure and tracing diagnosis on a space system 

equipment has been important and necessary since the first space flight in the 

50s and have gained even more importance in the late years with the beginning 

of manned flights. Independently if the system under observation is a spacecraft 

or a launcher vehicle or an artificial satellite, the fact that these systems are far 

beyond the reach to be physically probed and assessed. To be capable of 

failure detection and diagnosis is a fundamental key to keep a system alive and 

functional, from the mission point of view. In artificial satellites, the failure 

detection capability has to be on time and accurate in order to reduce the 

aggravation of its health. This health monitoring approach it is what determine 

whether the satellite can safety, reliably operate through a long-life. 

In-space applications, as many other ones, impose challenges to perform 

autonomous anomaly detection which can be summarized as the problem 

domain characterization (AZEVEDO et al., 2012). Furthermore, in artificial 

satellites the availability of the data and its characteristics can impose even 

more difficulties to narrow down to an appropriate approach. To identify and 

apply the most appropriated techniques for automatic detection of anomalies in 



13 
 

artificial satellite telemetry data, the problem domain should be characterized in 

regard to some key aspects (CHANDOLA et al., 2009), which are cited below 

and depicted in the Figure 2.3:  

 Data type: Generally, telemetry data from artificial satellites carry out 

information regarding the different equipment and sensors on board, due 

that every time observation can present several different attributes, 

therefore, these data are multivariate, presenting categorical and 

continuous for the different attributes it contains. 

 Anomaly type: artificial satellites operate in different scenario which 

present different circumstances, i.e., operating while hidden in the 

shadow of the earth, or operating having full sight to the sun light. It 

means that the telemetry data carries context attributes embedded. This 

way, point anomalies or collective anomalies have to be handled as a 

contextual anomaly detection problem. 

 Label availability: Not having available label of the input dataset is the 

general situation in this space application. In this case, the decision on 

the anomaly detection approach to be taken relies on time, cost and 

expert knowledge availability (i.e., supervised, semi-supervised or 

unsupervised. 

 Expected outcome: tells what kind of result would be more adequate for 

the given domain. The outcome can be classificatory, generating labels 

to the data observation i.e., instances anomalous or normal. The 

outcome can generate index values which will give a probabilistic value 

to the observations that will indicate how much anomalous an 

observation can be.  
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Figure 2.3 – Key aspects for Spacecraft fault detection. 

 

Source: Author's production. 

 

When comes to space applications anomaly detection, the limit-checking 

approach has been the most basic and common technique of detecting 

anomalies in spacecraft systems for a long time (FUJIMAKI et al., 2005). 

Basically, it monitors important attributes in the telemetry data and checks 

whether the value is within the pre-defined upper and lower limits for the given 

attribute, or measurements. Though the limit-checking has an advantage that it 

is simple enough to be applied to any types of spacecrafts, it can suffer from the 

problem of false alarms. 

Another approach used for such purposes is the knowledge-based, also known 

as expert systems. In these systems, human expert knowledge about the 

system, i.e., knowledge from satellite operators, is used to create a set of 

statements that together delimitate the boundaries of the satellite expected 

behavior. Such system is powerful and flexible. However, it suffers from the 

bottleneck of knowledge acquisition, which is the difficulty in achieve an 

accurate and complete knowledge base.  
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According to the literature, perform anomaly detection for health monitoring in 

space application can also be achieved through different ways. In order to 

detect an anomaly and predict a problem, a model of the satellite can be 

established based on the system design, also known as model-based 

approach, where the satellite system design is used to model the expected 

behaviors of the system. This approach can be considered a more sophisticated 

one when in contrast to the limit-checking method. 

The above approaches of limit-checking, knowledge-based, and model-based, 

all share the characteristic of being very human experts dependent, what can 

be seen as a drawback in some situations. On the other hand, a model of the 

system behavior can also be obtained from the actual telemetry data coming 

from the in-orbit satellite, through data mining. Due the variety of elements in 

the satellites context that can cause performance degradation on the satellite, 

the changing in its behavior through the time in-orbit, especially for long-life 

systems is expected, and one significant way of tackling this effect is anomaly 

detection driven by telemetry data (YANG et al, 2013). 

According to Fujimaki et al. (2005), a reasonable approach to this problem is 

the application of data mining and machine learning techniques to the 

spacecraft telemetry data. In this approach can be see the usage of different 

techniques such as classification-based, nearest neighbor-based, clustering, 

statistical, and mixed process techniques which are discussed in Section 3.  

2.3 Data science 

According to IBM (2022), Data Science is the combination of different areas of 

the knowledge, as math, statistics programming, analytics, artificial intelligence 

(AI), and machine learning, aggregated to a domain know-how to unravel under 

covered insights.  

The data science process adopted in this dissertation is depicted in Figure 2.4. 

The steps of interest within this process are Clean Data, Exploratory Data 

Analysis (EDA), Machine Learning Algorithms Statistical Models, and the 

Communicate/Visualizations/Report Findings. 
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Figure 2.4 - The data science process according to Schutt and O'Neil. 

 

Source: Schutt and O’Neil (2013). 

 

Briefly, Clean Data in this context means make the data tidy, in other words, 

apply a standard way of mapping the meaning of a dataset to its structure, 

obtaining at the end a data set which has each variable as a column, each 

observation as a row, and every cell is a single value (WICKHAM, 2014). Once 

the data set is clean, a data analysis shall be performed to summarize 

characteristics of the data, using statistical numbers and graphs, process also 

known as Exploratory Data Analysis 

2.3.1 Exploratory Data Analysis 

Exploratory Data Analysis (EDA) is a detective work, being this numerical, 

counting, or graphical. EDA, can never be the whole story, however, nothing 

else can serve as the foundation stone (TUKEY, 1977). Being the first step 

towards building a model, it is through EDA that an analyst can unraveled 

aspects of the data have insights and build intuitions. In EDA, there is no 

hypothesis and there is no model. The “exploratory” aspect means that, as the 

analyst systematically goes through the data, plotting distributions (box plots), 

transforming variables, analyzing pairwise relationship between these and 

generating summary statistics. The understanding of the problem ones is being 

solved, or might solve, is changing as ones go (SCHUTT; O’NEIL, 2013). At the 
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end of the process, Parametric Statistical Modeling methods can be achieved 

for outlier removal or detection. 

Chandola et al. (2009) describe that within the set statistical anomaly detection 

techniques, parametric techniques such as the box plot rule, makes usage of 

box plots (box-and-whisker plots) to identify anomalous data points in a given 

data sample. Such graphical representation depicts the data using summary 

attributes such as quartiles, smallest and largest observations representations, 

as depicted in the Figure 2.5. In the box plot, the box delineates the range of 

values from the quartiles Q1 and Q3 (25% and 75%) and is cut at the median 

(50th percentile). Typically, whiskers are added to show the range of the highest 

and lowest value (min and max). 

 

Figure 2.5 - Box and whisker plots showing the quartiles of a distribution. 

 

Box-and-whisker plot of weight as a function of height in a population sample. The 

median weight increases with height, but not the maximum, because fewer points in 

the tallest bucket reduces the chance for an outlier maximum value. 

Source: Skiena (2017). 

 

A method to create a model for outliers detection, having the box plots 

information as input, is making usage of the Tukey Fences (TUKEY, 1977). 

Here the Inter Quartile Range (IQR), associated with a "step", named as beta 
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(𝛽), can be used to define upper and lower limits to data values when comes to 

what is considered to be a normal or expected value for a given feature. The 

IQR is obtained as 𝐼𝑄𝑅 = 𝑄3 − 𝑄1, and the upper and lower limits, or Tukey 

Fences, can be obtained as the Equations (2.1)(2.2). 

 

𝐿𝑜𝑤𝑒𝐿𝑖𝑚𝑖𝑡 = 𝑄1 −  𝛽 ∗ 𝐼𝑄𝑅 (2.1) 

𝑈𝑝𝑝𝑒𝑟𝐿𝑖𝑚𝑖𝑡 = 𝑄3 +  𝛽 ∗ 𝐼𝑄𝑅 (2.2) 

 

With this, a data point which lies over the limits, upper or lower, will be treated 

as an anomaly (SOLBERG; LAHTI, 2005). Modifications of such technique can 

also be found in the literature where instead of quartile representations, the 

study presented an approach using percentiles representations (YAIRI et al., 

2017), in order to create a rule to preprocess the data before using it as input 

for a machine learning algorithm. 

2.3.2 Machine learning 

In Schutt and O’Neil (2013), machine learning algorithms are part of the data 

science process. The machine learning step is a key point in the process of 

obtaining a means of solving a given classification, prediction or basic 

description problem, as shown in Figure 2.4. 

Machine learning, broadly defined, is a field of Data science, where 

computational learning techniques, driven by data, can improve performance of 

a given process or make accurate predictions combining computer science, 

statistics, probability and optimization concepts. The usage covers a broad 

spectrum of application, like text classification, computer vision, computational 

biology, until applications into the anomaly detection applications set (MOHRI; 

ROSTAMIZADEH; TALWALKAR, 2018). 

These learning techniques are implemented in form of algorithms capable of 

learning from past information in electronic data form. Machine learning 

algorithms, usually, provide as an output a model with which one can perform 

prediction over an input data. However, such model shall be trained with 
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training data set. After the training phase, a machine learning model can be 

verified, or tested, using a testing data set, with which the model will make 

predictions upon, based on the training data set. Machine learning essentially 

creates analytics models from past data (HURWITZ; KIRSCH, 2018). 

The decision regarding which machine learning algorithm can be use relies on 

which kind of task we have to perform, to solve the problem that we have, in 

other words, it is strongly connected to the problem domain characterization. 

And, when comes to the problem of detect anomalous behavior, most of the 

times, the applicable algorithms regarding the technique, are Classification-

based, Nearest Neighbor-based, Clustering-based, Statistical, or Spectral, as 

depict in the Figure 2.2, and according to Mohri, Rostamizadeh and Talwalkar 

(2018). These techniques can be used to perform distinct standard machine 

learning task such as classification, regression, clustering, dimensionality 

reduction or manifold learning, and. ranking. 

2.3.2.1 Classification 

Classification is the problem of, given an input observation, assigning the right 

label or value to it. The classification model, or target function, is responsible for 

mapping each observation x to one of the predefined labels y (TAN; 

STEINBACH; KUMAR, 2005). The classifier (a.k.a. classification model) is 

obtained through a learning phase using a training data set. The obtained 

classifier is then verified using a testing data set. In anomaly detection 

techniques based on classification, the approach is to assume that a classifier 

that can distinguish between normal and anomalous classes can be learned in 

the given feature space (CHANDOLA et. al, 2009).  

Classification problems, in Figure 2.6, can be approached by different 

techniques based in different algorithms as depict in Figure 2.2, and even 

though Classification and Nearest Neighbors techniques are placed in different 

groups, a Nearest Neighbor-based technique such as the k-Nearest Neighbors 

(kNN) algorithm, can be used for a classification task (TAN; STEINBACH; 

KUMAR, 2005). 
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The k-Nearest-Neighbors algorithm is feasible when it is assumed that 

similarities in the feature space imply into similarities in the label space. The 

similarity, or closeness of a given point x to a possible neighbor w, in the kNN 

algorithm, is obtained through a distance metric. 

 

Figure 2.6 - 3-Class Nearest Neighbors classification with k equals to 15. 

 

Fisher's Iris data set sample classification when comes to sepal length and width using 

nearest neighbors approach 

Source: Scikit-Learn (2022). 

 

Smaller the distance between the points more similar they are and the more 

likely the label from w will be assigned to x. However, the distance metric by 

itself is not enough since other neighbors with different attributes can interfere in 

the classification task. To tackle this, the number of neighbor points that shall be 

assessed before assigning a label to an x point shall be defined, this value is 

the k (SCHUTT; O’NEIL, 2013). How labeled points are arranged allied with the 

number of k, shapes the feature space into different regions, where all the 

points in a given region will have assigned to then the same label. The basic k-

Nearest neighbor classification algorithm is the following: 
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a) Being k the number of nearest neighbors, d a test sample, and D the 

training data set; 

b) Compute the distance between d and every sample in D; 

c) Choose the k samples in D that are nearest to d; denote the set by 

points P (belonging to D); 

d) Assign to d the most frequent class (or the majority class). 

There are different ways to assign the proper value of k. According to Skiena 

(2017), the correct method for such is to assign a fraction of labeled training 

samples to perform an evaluation, and then perform experiments with different 

values of the parameter k, in order to assess which values achieves the best 

classification performance. These evaluation values can then be thrown back into 

the training/target set, once k has been selected. 

Manhattan and Euclidean are very commonly distance metrics used for 

similarity calculation (BROWNLEE, 2020). The Manhattan distance (MD), 

known as City block distance, thought by Hermann Minkowski in 19th-century 

Germany, is a distance that represents the sum of the absolute differences 

between two real-valued vectors, as shown in Equation (2.3). 

 

MD(x, y) =  |𝑥 − 𝑦 | (2.3) 

 

As depict in Figure 2.7, typically there are many possible shortest paths 

between two points. There is no possibility of taking advantage of a diagonal 

short cut, this way the distance between two points is then the sum of x-

dimension differences and the y-dimension differences. Manhattan distance is 

the total sum of the deviations between the dimensions (SKIENA, 2017). 
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Figure 2.7 - The different pathways between two points in a Manhattan distance-
fashion. 

 

The image to have in mind is that of a taxi having to travel the city streets of 

Manhattan, which is laid out in a grid-like fashion  

Source: Skiena (2017). 

 

The Euclidean Distance (ED) calculates the geometrical distance that connects 

two data points, x = (x1, x2) and y = (y1, y2), as depict in Figure 2.8. 

Considered as the most popular distance metric, ED is based on the 

Pythagorean theorem, and it has a generalized formula for a domain with n 

continuous attributes, where the distance is defined in Equation (2.4). This 

distance represents the root of the sum of the squared difference between the 

opposite values in vectors. 

 

ED(x, y) = (𝑥 − 𝑦 )   (2.4) 
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Figure 2.8 - The Euclidean distance between two points in a two-dimensional space. 

 

Source: Kubat (2017). 

 

As concluded by Alfeilat et al. (2019), the kNN algorithm classifiers have their 

accuracy, precision, and recall, strongly dependent on the used distance metric, 

and as shown in the same study. There is no optimal distance metric option 

which fits all kinds of datasets, in other words, it the distance metric applied 

depends on the characteristics of the problem domain. 

2.3.2.2 Clustering 

Clustering is a machine learning task to solve problems which requires an 

unsupervised learning approach. Clustering is often used to analyze very large 

data set, partitioning a data set into homogeneous groups of data points 

(MOHRI; ROSTAMIZADEH; TALWALKAR, 2018), which are considered to 

belong to a same group due some similarity they present. Cluster analysis can 

be understood as the art of finding groups (clusters) on the data (KAUFMAN; 

ROUSSEEUW, 1990). Cluster analysis separate the data into clusters that 

communicate, or depict, some aspect of the natural structure of the data that at 

first hand would not be so obvious. This approach plays an important role in 

domains like pattern recognition, biology, social sciences, anomaly detection, 

and so on (TAN; STEINBACH; KUMAR, 2005). An outcome of a clustering task 

is shown in the Figure 2.9 where two groups are depicted. 
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Figure 2.9 - Outcome of clustering over a data set of persons characteristics. 

 

This data set contain measurements of Height and Weight from people and a clustering 

task was conducted using 2-means clustering through the K-Means algorithm 

Source: Skiena (2017). 

 

The clustering process can be divided into many algorithm types as 

overlapping, exclusive, fuzzy, complete, partial, and the two most commonly 

used (KAUFMAN; ROUSSEEUW, 1990; SKIENA, 2017), partitioning and 

hierarchical. 

Partitional clustering, or unnested clustering, divides a data-set D, into k non-

overlapping clusters, in a way that each data point belongs to only one cluster 

as depicted in Figure 2.10. In this kind of algorithms, the input parameter k is 

very important, therefore, some domain knowledge is required, which may not 

be available (ESTER et al., 1996). An example is the K-Means algorithm. 
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Figure 2.10 - Partitional-type clustering algorithm outcome with k value of 3. 

 

Source: Author's production. 

 

Hierarchical clustering, or nested clustering, differently from partitional 

algorithms, does not need an k value as an input parameter. This defines a set 

of nested clusters organized as a tree (or a dendrogram), where apart from the 

leafs, each node is a cluster, each cluster is a union of its subclusters, and the 

tree root is a cluster which contains all the objects in the given data set, as 

depicted in the Figure 2.11. 

.  

 

Figure 2.11 - Hierarchical clustering algorithm output. 

 
Source: Author's production. 
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The hierarchical clustering process in this case can also be seen working as a 

bottom-up clustering, or agglomerative clustering where at the beginning each 

data point is a cluster, then the points started to be merged and becoming a 

new cluster. The stop condition is when all data points found aggregated into 

one single cluster. The other way around, known as divisive clustering, starts 

with a cluster containing all the data points, which is divided into smaller cluster, 

till the point a cluster contains only one data point, or a singleton cluster (TAN; 

STEINBACH; KUMAR, 2005; GLEN, 2022). A hierarchical clustering can be 

seen as a sequence of partitional clustering.  

Another important aspect regarding the clustering task is the type of cluster, 

which can be defined in several different ways, and among then the following 

types are more relevant for this dissertation:  

 Well-separated cluster, where each data point within the cluster is more 

similar to every other in the cluster than to any data point out of the 

cluster. The distance between any two points in different clusters is 

larger than the distance between any two points within a cluster (TAN; 

STEINBACH; KUMAR, 2005). 

 Prototype-based, sometimes referred as center-based clusters are 

formed by a group of objects which are more similar to the prototype that 

defines the cluster than to the prototype of any other cluster, i.e., for data 

with continuous attributes, the prototype of a cluster is often a centroid. 

 Density-based clusters are formed because there is a considerable 

higher density of point within the cluster than outside it (ESTER et al., 

1996). An example is the Density-based spatial clustering of applications 

with noise (DBSCAN). Such algorithm is capable of work with data with 

noise also because the density within the areas of noise is lower than the 

density in any of the clusters. 

Among a variety of clustering techniques available, two simple important 

techniques are the K-means and the DBSCAN. The K-means is a partitional, 

prototype-based, clustering technique that attempts to find a k-number of 

clusters (user input) represented by their centroids. The DBSCAN is, a density-
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based, partitional clustering technique, in which the number of clusters is 

automatically determined by the algorithm (TAN; STEINBACH; KUMAR, 2005). 

Within a DBSCAN cluster, data points can be classified in two different ways, 

those inside of the cluster, therefore named core points, and those ones on the 

borders of the cluster, name border points. Those points, found in a sparsely 

occupied region, out of a cluster, are considered as noise points. An example is 

depicted in Figure 2.12. 

 

Figure 2.12 - DBSCAN clusters. 

 

Source: Tan, Steinbach and Kumar (2005). 

 

The DBSCAN algorithm requires two inputs from the user to be capable of 

delineate the clusters. The first one is an Epsilon (Eps) value used to determine 

the Eps-neighborhood value, which defines the size of a given point 

neighborhood 𝑁 (𝑝). A point p neighborhood is defined by 𝑁 (𝑝) =

 {𝑞 ∈ 𝐷| 𝑑𝑖𝑠𝑡(𝑝, 𝑞) ≤ 𝐸𝑝𝑠}. In simple terms, Eps specifies a radius size around a 

point under assessment. The second input parameter, called minimum number 

of points (MinPts), is a value that together with the Eps-neighborhood of a point 

value, can determine whether a point within a cluster is a core point or a border 

point. A data point p within a cluster is a core point. When within is 

neighborhood there are a number of points equal or higher to the value define 
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by the MinPts value, also see as | 𝑁 (𝑝)| ≥ 𝑀𝑖𝑛𝑃𝑡𝑠. However, when a data 

point within the cluster cannot fulfill the core point condition, but fall within the 

core point neighborhood, 𝑞 ∈  𝑁 (𝑝), then the data point q is considered as a 

border point (TAN; STEINBACH; KUMAR, 2005). 

Formally, according to Ester et al. (1996), given a data set D, taking into 

account the Eps and MinPts input values, a cluster C is a non-empty subset of 

D satisfying the following conditions:  

 ∀ 𝑝, 𝑞 ∶  if  𝑝 ∈ 𝐶 and 𝑞 is density − reachable from 𝑝 then 𝑞 ∈ 𝐶. 

 ∀ 𝑝, 𝑞 ∈ 𝐶 ∶ 𝑝 is density − connected to 𝑞. 

While noise can be defined as a set of points in data set D not belonging to any 

cluster C of a set of clusters, i.e., 𝑛𝑜𝑖𝑠𝑒 =  {𝑝 ∈ 𝐷|∀ 𝑖: 𝑝 ∉ 𝐶 }. 

A point p is density-reachable from a point q with regards to. Eps and MinPts if 

there is a chain of points 𝑝 , … , 𝑝 , 𝑝 = 𝑞, 𝑝 = 𝑝  such that 𝑝  , is an element 

of the 𝑁 (𝑝 ), and 𝑝  is a core point ( 𝑝  is directly density-reachable from 

𝑝 ). A point p is density-connected to a point q with regards to Eps and MinPts if 

there is a point o such that both, p and q are density-reachable from o with 

regards to Eps and MinPts (ESTER et al, 1996). 

Given the definitions of a cluster, a core point, a border points, and noise point 

the DBSCAN algorithm can be roughly defined as follow: 

1. Labeling of all data point according to the core, border or noise point; 

2. Eliminate noise points; 

3. Put an edge between all core points that are within Eps of each other; 

4. Make each group of connected core points into a separate cluster; 

5. Assign each border point to one of the clusters of its associated core. 

DBSCAN is a clustering technique that can find many clusters that cannot be 

found using K-means, however, DBSCAN present drawbacks when comes to 

widely varying cluster-densities and high-dimensional data set due difficulties in 

defining the density for such data (TAN; STEINBACH; KUMAR, 2005).  
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2.3.2.3 Dimensionality reduction 

According to Mohri, Rostamizadeh and Talwalkar (2018), dimensionality 

reduction, in a data set containing a large number of features, is the act of 

transforming its initial representation into a lower-dimensional representation, 

while preserving some of its properties. This technique helps in the removal of 

data that might not be useful for the analysis, as redundant data, outliers, and 

other non-useful data. Reduce the dimension of data set also can be used as a 

support for analysts to visualize the data (HURWITZ; KIRSCH, 2018). The main 

arguments to use dimensionality reduction techniques are computational in 

order to compress data as a preprocessing step, visualization in order to make 

the exploratory data analysis possible in two or three dimensions, and finally for 

feature extraction seeking a smaller and more useful set of features. 

Two main groups of algorithms for dimensionality reduction can be highlighted, 

the first one is driven by linear algebra, comprising the Principal Component 

Analysis (PCA) algorithm, the Singular Value Decomposition and the Non-

Negative Matrix Factorization. The second group is the one from the Manifold 

learning methods, comprising the algorithms, t-distributed Stochastic Neighbor 

Embedding (t-SNE), and Kernel-Principal Component Analysis (KPCA) 

(BROWNLEE, 2020). 

The objective of the PCA algorithm is to obtain a new set of dimensions 

(features). The new set is the most meaningful in representing the variability of 

the data. The output of the algorithm provides components (dimensions or 

features), where the first component usually has the responsibility for capturing 

as much of the variability of the data as possible. The second component is 

orthogonal to the first and subject to that constraint, captures as much of the 

remaining variability as possible and so on (TAN; STEINBACH; KUMAR, 2005). 

This is depicted in Figure 2.13, where a curve of number of components used 

versus percentage of absolute variance captured can be seen. 

In order to obtain the components that represent the data the most, the PCA 

algorithm has to find the eigenvectors which have the bigger associated 

eigenvalues, because these will be the principal components. 
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Figure 2.13 - Number of components vs. amount of data variance explained. 

 

The first component (feature) is responsible for explaining more than 60% of the 

variance of the data. As more components are added, more of the variance is 

explained, however, the aggregated value per each new added component starts to be 

irrelevant from the fifth component on.  

Source: Author's production. 

 

In a multiple dimensions data set (many features), the most important k features 

from the original m features are going to be represented by the eigenvectors 

associated with the k largest eigenvalues. The eigenvectors and eigenvalues 

can be obtained through the Equation (2.5) :  

 

𝑆𝑒 = 𝜆 𝑒  (2.5) 
 

 

Where S is a matrix, e is an eigenvector, and 𝜆 denotes the eigenvalue. For 

each eigenvalue in S, (𝜆 , 𝜆 , … , 𝜆 )  correspond to the variance associated to 

each principal component (𝑃𝐶 , 𝑃𝐶 , 𝑃𝐶 , … 𝑃𝐶 ) (RIBEIRO, 2022). The used 

matrix is a covariance matrix, which represent the covariance measurement 

between the variables (features in the data), given on its principal diagonal. The 

Equation (2.6) demonstrates how to calculate the covariance between two 
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variables (two dimension) for all the observations on a matrix that is 

representing a data set of two dimensions. 

 

𝑪𝒙,𝒚 =
𝟏

𝒏 − 𝟏
(𝒙𝒊 − 𝒙)(𝒚𝒊 − 𝒚)

𝒏

𝒊 𝟏

 (2.6) 

 

 𝐶 ,  covariance of features x and y 

𝑥   specific value from feature x 

𝑦   specific value from feature y 

�̅�  mean over all observations of feature x 

𝑦  mean over all observations of feature y 

𝑛  number of observations 

 

The left side of Figure 2.14 shows what is achieved when the eigenvector 

whose eigenvalues is the biggest is found, for a data set input of two 

dimensions. There, a component traced through the data points can represent 

as much as possible of the variance of the data points, it is the vector through 

the dataset that maximizes the variance. On the right side, the opposite 

happens with an orthogonal component not being capable of represent as much 

as variance as the left example depicts. 

Figure 2.14 - Example of components and the variance they can represent. 

 

Source: Dhalla (2022). 
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In simplified terms, the PCA algorithm can be seen as an unsupervised learning 

technique and its process of obtaining principal components can be 

summarized as follows, given a dataset D composed of n dimensions: 

 Calculate the mean of the n-dimensions;  

 Compute the covariance matrix of all n-dimensions of D; 

 From the covariance matrix, obtain the eigenvectors and the associated 

eigenvalues; 

 Choose k eigenvectors with the largest eigenvalues to form a d X k 

dimensional matrix W; 

 Use the W-transposed matrix to transform the original matrix onto the 

new subspace, or: 

𝐹𝑖𝑛𝑎𝑙𝐷𝑎𝑡𝑎𝑆𝑒𝑡 = 𝑒𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑡𝑜𝑟𝑀𝑎𝑡𝑟𝑖𝑥 ∗ 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝐷𝑎𝑡𝑎𝑀𝑎𝑡𝑟𝑖𝑥  (2.7) 
 

Among the several appealing characteristics of the PCA algorithm, the most 

important for this dissertation is the capability of reducing high-dimensional 

data, into a relatively low-dimensional data, enabling the usage of the given 

data set as input of other techniques that might not work well with high-

dimensional data, as DBSCAN clustering algorithm. 

Even though the PCA algorithm can perform dimensionality over data set 

providing good and adequate results, it has some limitation since it is validated 

for linearly separable data, however, many real-world data require nonlinear 

methods in order to perform tasks that involve the analysis and discovery of 

patterns adequately (RASCHKA, 2014). In cases involving such kind of data, to 

achieve non-linear dimensionality reduction, a variation of the PCA algorithm 

can be used. This variation makes usage of positive definite kernel functions to 

efficiently compute principal components in high-dimensional feature spaces. 

This kernel-based method for performing a nonlinear Principal Component 

Analysis is called Kernel Principal Component Analysis (KPCA) (SCHÖLKOPF; 

SMOLA, 2002). 
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In Figure 2.15 the data points are from the different features and cannot be 

linearly separated by a straight line. 

 

Figure 2.15 – Non-linearly separable data (on the left) to be used as input to an PCA 
algorithm and its outcome (on the right). 

 

Source: Scikit-Learn (2022). 

To be capable of dealing with linearly inseparable data, the idea is to project the 

data onto a higher dimensional space where it becomes linearly separable, as 

depict in the Figure 2.16. 

Figure 2.16 - Projection of the non-linear separable data set with KPCA. 

 

Source: Scikit-Learn (2022). 
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This process of high dimensional mapping of the data coming from lower 

dimensions in a high dimension space is described as: 

 

𝜙: 𝑅 → 𝑅  
(𝑋 , 𝑋 )| → (𝑋 , 𝑋 , 𝑋 + 𝑋 ) 

 

This is done making usage of a nonlinear mapping function 𝜙 which will map 

the data points 𝜒 of the original data set as 𝜒 →  𝜙(𝜒), called the kernel function. 

Assuming this mapping, a covariance matrix, can be represented in the new 

feature space as the Kernel matrix 𝑲, see Equation (2.8) (SCHÖLKOPF et al., 

1997). 

 

𝑲 = Φ(X)Φ(𝑋)  (2.8) 

 

The dot product 𝜙(𝑥 ) ⋅ 𝜙 𝑥  in the Equation (2.8) regards to the measure of 

similarity between the instances 𝑥𝑖𝑎𝑛𝑑 𝑥𝑗, in the transformed space. It calculates 

this similarity using the original attribute set without really mapping each data 

point to a high-dimensional space which is a very costly operation the algorithm 

makes usage of the so called "kernel trick". The "kernel trick" implies to use a 

defined kernel function, such as Gaussian, or RBF, or Sigmoid to express the 

similarity between instances in the original space (SHAWE-TAYLOR; 

CRISTIANINI, 2004). The dot product between two input vector v and w in the 

transformed space, expressed in terms of the original space, after some 

algebraic simplification, is denoted as the Equation (2.9):  

 

𝐾(𝐯, 𝐰) =  Φ(𝐯) ⋅ Φ(𝐰) = (𝐯 ⋅ 𝐰 + 1)  (2.9) 

 

Considering a mapping function Φ: (𝑥 , 𝑥 ) → (𝑥 , 𝑥 , 2𝑥 , 2𝑥 , 1)  
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This way, the Kernel matrix K, scaled with the number of data points, takes the 

form of following representation: 

 

𝑲𝒊𝒋 ≔ 𝜙(𝑥 ) ⋅ 𝜙 𝑥 =  
𝐾(𝑥 , 𝑥 ) ⋯ 𝐾(𝑥 , 𝑥 )

⋮ ⋱ ⋮
𝐾(𝑥 , 𝑥 ) ⋯ 𝐾(𝑥 , 𝑥 )

 (2.10) 

 

In summary, the KPCA algorithm can be seen as the following (SHAWE-

TAYLOR; 2004): 

a) Choose a Kernel function 𝑘 𝑥 , 𝑥 , calculate the kernel matrix 𝐾; 

b) Center the data in feature space by computing the centered kernel 

matrix 𝐾 = 𝐾 − 𝟙 𝐾 − 𝐾𝟙 + 𝟙 𝐾𝟙 ; 

c) Solve the eigenproblem  [𝑉, Λ] = 𝑒𝑖𝑔(𝐾). Where 𝛼 = 𝜆 𝑣 , 𝑗 =

1, … , 𝑘; 

d) Compute the low dimensional representation points 𝑦  with the 

following formula: 

𝑥 = 𝛼 𝑘(𝑥 , 𝑥)  (2.11) 
 

Having as an output the transformed data 𝑆 = {𝑥 , … . . 𝑥 }. 

One of the main advantages of the Kernel PCA method is that its process is 

essentially linear algebra, having no nonlinear optimization involved, and as the 

standard PCA algorithm, only Eigenvalue problem has to be solved. Another 

important aspect is that the algorithm does not require the number of 

components of the output space as an input (SCHÖLKOPF; SMOLA, 2002). 

PCA feature extraction has found application in many areas, including noise 

reduction, pattern recognition, regression estimation, and image indexing. In all 

cases were taking into account nonlinearities might be beneficial, kernel PCA 
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provides a new tool which can be applied with little computational cost and 

possibly substantial performance gains (SCHÖLKOPF et al., 1997). 
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3 RELATED WORKS 

This Chapter presents the literature related to this dissertation topic. It covers 

the usage of machine learning algorithms for failures detection and health 

monitoring, those being applied to space systems or not. A summary of the 

reviewed methods is given in Table 3.1. 

Machine learning algorithms are known by presenting a very good accuracy to 

prediction and usage of Data mining techniques for analyzing telemetry data to 

anomaly detection applied on the space. In one of these studies, Azevedo et al. 

(2012) presented an effectiveness comparison between two clustering 

algorithms, K-means and Expectation Maximization (EM), applied in two 

different study cases from real satellites. K-means divides the data set with the 

number of groups represented by the variable K. EM is an iterative algorithm for 

learning probabilistic categorization model from unlabeled data. They have 

calculated the dissimilarity indexes using both Euclidean and Manhattan 

distances, then they have used clustering algorithms. The study showed the 

clustering algorithms approach can be good to anticipate anomalies given some 

constraints on the problem domain, more precisely, when several telemetries 

behave abnormally and at least one of them tends to go out of limit. The 

advantages of the usage of clustering approaches relies on the fact that these 

clustering algorithms work with unsupervised learning, being capable of use 

unlabeled data, working in an automated way.  

Gao et al. (2012) proposed a method based on Principal Component Analysis 

(PCA) and Support Vector Machine (SVM). The PCA is used to extract feature 

vectors reducing the complexity and dimensionality, which is an inherent feature 

in telemetry data coming from space system applications. While the Binary 

SVM, which can be seen as a field of pattern recognition that classifies data into 

two classes, was used to detect faults. In order to tailor the binary aspect of it 

and be able to identify fault types, a Multi-class SVM approach was used. The 

result shows that the method is efficient and practical for fault detection and 

diagnosis of spacecraft systems. 
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However, hybrid approaches, combining supervised and unsupervised 

methods, are researched as seen in the usage of unsupervised learning 

algorithm to cluster time series data by (BISWAS et al., 2016). This study 

revealed the hypothesis that the larger groups of clusters unveil normal 

behavior, but smaller groups show anomalous situations. They have used 

hierarchical clustering method followed by a verification of the outcome by 

consulting domain experts. Although they achieve good results, this method can 

be seen as not automate and cheap.  

In a more recent study, Ibrahim et al. (2019) presented an approach chain ‘‘K-

means – LAD – FTA”.  The telemetry data is clustered, and classified in failure 

and non-failure, using K-means clustering algorithm based on t-SNE function 

which is used for dimensionality reduction. The clustered data is used as an 

input to LAD. As a result of classification, LAD generated positive patterns that 

are unique for each class and indicate conditional parameters values. 

Probabilities are estimated from FTA to get the most probable cause that lead 

to the satellite failure estimating the probability and dependencies of each 

parameter range with respect to the top event. LAD discovers the general 

patterns of failure; while FTA defines which basic event (corresponds to certain 

pattern) causes satellite failure. 

In Yairi et al. (2017) the authors proposed a new health-monitoring and anomy 

detection method for artificial satellites, where a mixture of probabilistic principal 

component analyzers and categorical distributions, where, real-valued 

continuous variables are handled by the mixture of probabilistic principal 

component analyzers, while categorical discrete values are modeled by a 

categorical mixture distribution. Being able this way of performing 

dimensionality reduction and clustering over the satellite housekeeping data. 

Apart from the algorithm used to generate their model, this study also speaks 

about data processing, an important step to be applied before performing the 

model generation. 

Another way of providing a reliable health monitoring system, as far as satellites 

goes aging, is based on the use of operational satellite simulators to support 
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their operational procedures. But, how to make aging the models of an 

operational satellite simulator? The framework proposed by Rodrigues et al. 

(2021) uses an Artificial Neural Network (ANN) to reproduce the battery voltage 

behavior of a large sun-synchronous remote sensing satellite, the CBERS-4, 

considering its aging. The study makes usage the genetic algorithm to find the 

best network architecture of ANN, allowing then to obtain a model which 

presented less than 1% of error. Such simulators, due their high fidelity can be 

used to generate the data of satellites failure scenarios which could be used to 

train failure diagnostics algorithms, overtaking this difficulty associated with the 

lack of available data when comes to system abnormal behavior. 

The research on the usage of data science and artificial intelligence on the 

forecast of anomalous behavior on a system is wide-spread and applied, not 

only to space systems and their telemetries, but to several different areas of 

science and technology as well (ZHANG, 2016). 

Li et al. (2018) present a study case of a Nuclear Power Plant (NPP), applying a 

method based on Principal Component Analysis (PCA) for condition monitoring 

of the sensors used in the NPP. The goals of the study are fault detection, 

identification, and reconstruction of sensors data. The authors combine various 

methods, like statistics-based ones, with PCA method to optimize the model 

performance. Their approach has led them to reach valuable achievements. 

Another application out of the space field, makes usage of machine learning to 

perform condition-based maintenance and repair as demonstrated in 

Purarjomandlangrudi, Ghapanchi and Esmalifalak (2014). The authors apply 

classification to distinguish among defect examples from rolling-element bearing 

in rotative machinery. The proposed method extracts from the given data two 

different features, kurtosis and Non-Gaussianity Score (NGS) in order to 

develop the anomaly detection algorithm. 

Another application on bearing fault diagnosis is performed by Safizadeh 

(2014), where a novel Condition-based Monitoring system (CBM) consisting of 

sensing, signal processing, feature extraction, classification, high-level fusion 

and decision-making module has been proposed. The study applies a machine 
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learning algorithm on the feature extraction module, through Principal 

Component Analysis (PCA), and later on in the fourth module. K-Nearest 

Neighbor (KNN) classifier has been used in order to identify the condition of the 

ball bearing based on vibration signal and load signal. Finally, in the last module 

of the Waterfall Fusion Process Model, a logical program is used to decide 

about the condition of the ball bearing. According to the authors, experimental 

results show the effectiveness of this method. 

Wang et al. (2021) proposes on a technique aiming fault diagnosis on Nuclear 

Power Plants. In this paper, the Kernel Principal Component Analysis (KPCA) is 

primarily presented for fault detection and feature extraction. After that, support 

vector machine is carried out for fault diagnosis. Subsequently, a similarity 

clustering algorithm is used for analyzing degree. The authors claim that 

opposed to other ‘black box’ data-driven methods; this technique allows the 

results to be illustrated in a visual form in order to be assessed by operators. 

In the literature it may be found works combining, in different manners, tools, 

techniques and algorithms, to deal with the complex inherent characteristic of 

the data under analysis, to make the process more automated and reliable, but 

above all to approach more efficiently the fault analysis and diagnoses problem 

when comes to detection of a real problem.  

The approach in this dissertation proposes a new data-driven health monitoring 

and anomaly detection method for artificial satellites based on probabilistic 

dimensionality reduction and clustering, taking into consideration the 

miscellaneous characteristics of the spacecraft housekeeping data. 

Table 3.1 summarizes all the approaches and applications in the papers 

discussed in this Chapter. The columns 3 and 4 highlight the used methods and 

the application of each work respectively.   
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Table 3.1 – Summary of the discussed Articles. 

Author,date Approach Method Application 

(AZEVEDO et 
al., 2012) 

K-means algorithm and Expectation Maximization are evaluated 
for anomaly detection in telemetry data. The results are 
compared to each other. In these experiments, an anomaly 
could be detected 6 hours in advance. 

Clustering 
(Unsupervised Learning) 

Telemetry data of two 
real cases of satellite 
anomalies in Brazilian 
space mission 

(GAO et 
al.,2012) 

Firstly, dataset is limited with Euclidean distance. Then, k-
Nearest Neighbors (kNN) algorithm is used to anomaly 
detection.  

Unsupervised learning, 
Nearest Neighbor 
Algorithm 

TM data of the power 
subsystem of in-orbit 
satellite. 

(SAFIZADEH, 
2014) 

Processed data has its dimensionality reduced by PCA. Then 
kNN algorithm is used over the two principal component data 
to decide which maintenance action should be taken. 

Unsupervised learning, 
Nearest Neighbor 
Algorithm 

Data from two different 
sensors are placed on 
the same mounting 

(PURARJOMA
NDLANGRUDI 
et al., 2014) 

An Anomaly Detection (AD) algorithm defined by the author 
and a Support Vector Machine (SVM) are applied. The results 
are compared to each other 

Supervised learning, 
Support Vector 
Machine. 

Data from different 
accelerometer sensors 
placed on the bearing  

(BISWAS et al., 
2016) 

Unsupervised learning is used to cluster large telemetry 
database of time series data. Expert opinion is used for some 
inputs (supervised method). 

Mixed Method 
(Unsupervised and 
Supervised methods) 

Telemetry data from 
the EPS of the LADEE 
spacecraft. 

  

continue 
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Table 3.1 – Continuation. 

Author,date Approach Method Application 

(YAIRI et al., 
2017). 

New data-driven health monitoring and anomaly detection 
method based on probabilistic dimensionality reduction and 
clustering. Comparisons were made against one-class support 
vector machine and support vector data description algorithms. 

Unsupervised method, 
Mixture of Probabilistic 
Principal Component 
Analysis and Categorical 
Distribution (MPPCACD) 

Telemetry data from 
the Small 
Demonstration Satellite 
4 (SDS-4) of JAXA. 

(LI et al., 2018) PCA is applied for fault detection allied to statistic-based 
methods to reduce the false alarms. Sensor measurement from 
a real NPP is used to evaluate the optimization of the PCA 
performed. 

Unsupervised method, 
Principal Component 
Analysis 

Data coming from 
sensors in a Nuclear 
Power Plant (NPP)  

(IBRAHIM et 
al., 2019) 

Summary of the performance of processing telemetry data 
using AutoRegressive Integrated Moving Average (ARIMA), 
Multilayer Perceptron (MLP), Recurrent Neural Network (RNN), 
Long Short-Term Memory Recurrent Neural Network (LSTM 
RNN), Deep Long Short-Term Memory Recurrent Neural 
Networks (DLSTM RNNs), Gated Recurrent Unit Recurrent 
Neural Network (GRU RNN), and Deep Gated Recurrent Unit 
Recurrent Neural Networks (DGRU RNNs). 

Mostly supervised 
method, MLP, RNN, 
LSTM RNN, DLSTM 
RNNs, GRU RNN, DGRU 
RNNs 

Telemetry data of 
battery temperature, 
power bus voltage and 
load current received 
from Egyptsat-1 
satellite. 

    

continue 
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Table 3.1 – Conclusion. 

Author,date Approach Method Application 

(WANG et al., 
2020) 

KPCA is applied in two stages, at the beginning to reduce false 
alarms, later, for feature extraction. At the end, a similarity 
clustering is combined to verify results coming from the SVM 
algorithm 

Unsupervised method, 
Kernel Principal 
Component Analysis 
(KPCA), SVM 

Data coming from a 
reactor coolant system 
of pressurized water 
reactor 

(RODRIGUES e
t al., 2021) 

An ANN is used to obtain accurate models for operational 
satellites simulators that enable analyses of satellite behavior 
over time. 

Supervised method, 
Artificial Neural 
Network (ANN) 

Telemetry data from 
CBERS 4 satellite 

Source: Author's production. 
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4 THE MACHINE LEARNING PROCESS 

This Chapter presents the proposed machine learning process in a break down 

structure manner, starting from the high overview and descend to detailing each 

step. The steps are described and illustrated with information of a case study. 

Two case studies were developed. Section 4.1 introduces the case studies 

planning, made with telemetry data from two satellites, and some of its 

characteristics. Section 4.2 describes the proposed process.  

4.1 Case study planning  

This Section presents the two satellites, the China-Brazil Earth Resources 

Satellite One (CBERS-1) and the Data Collection Satellite Two (SCD2), that 

were taken as case study to experimentally demonstrate the capabilities and 

constraints of the proposed process. Both systems are briefly presented in the 

following. Considerations regarding the experiment conductions are presented 

in Section 4.1.3. 

4.1.1 CBERS-1 satellite 

The CBERS-1 satellite was used as study case in this dissertation for the 

design phase of the machine learning process. CBERSs satellites were 

developed in a cooperative program between the Chinese Academy of Space 

Technology (CAST) of the People's Republic of China, and the Instituto 

Nacional de Pesquisas Espaciais (INPE) of Brazil. The program goal was to 

establish a complete remote sensing system to supply both countries with 

multispectral remotely sensed imagery Figure 4.1 depicts a commemorative 

mission patch for the CBERS mission stablished between China and Brazil.  
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Figure 4.1 – China-Brazil Earth Resources Satellite program patch. 

 

Source: INPE (2022). 

 

CBERS-1 is the first satellite of its series, was launched in 1999 and kept itself 

operational for 45 months, being decommissioned in July of 2003, its orbit cycle 

was of 26 days, making 14 revolutions per day, having a nodal period of 100 

min and an eclipse time of 35 min (BO, 2002).  

The CBERS-1 satellite payload module accommodated an optical system 

comprising a High-Resolution CCD Camera, an Infrared Multispectral Scanner, 

and a Wide-Field Image, used for Earth observation and the Repeater for the 

Brazilian System of Environmental Data Collection. The service module 

contained the subsystems that ensures the satellite basic operation such as 

generating, conditioning and distributing power supply, the satellite's controls, 

the satellite's telecommunications and other functions.  

The 1100 W of electrical power necessary for the operation of the on-board 

pieces of equipment was obtained through solar panels, which were the 

satellite's primary source of energy, these ones opened when the satellite was 

placed in orbit and were continuously oriented towards the Sun by automatic 

control. A block diagram representation of the power subsystem can be seen in 

Figure 4.2. 
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Figure 4.2 - Power Supply Subsystem block diagram. 

 

This diagram depicts a simplified model of the CBERS-1 Power Supply Subsystem 

(PSS), where the Solar Array Generator (SAG), the SHUNT, the Battery Discharge 

Regulator (BDR), ant the two batteries are identified.  

Source: Adapted from Azevedo (2012). 

 

The energy obtained is stored on the batteries, a secondary source of energy 

for the satellite. Apart from generating and conditioning, the power subsystem 

was also responsible for distributed the energy, at different voltage levels, to the 

other subsystems (INPE, 2022).  

The CBERS-1 satellite had more than 2000 different types of telemetry 

channels available to be analyzed by the operators. These represented values 

measured by sensors and equipment status. They were classified as analog 

measurements, representing analogical values such current, voltage level, 

temperature, and so on, or as binary, indicating, for example, an equipment 

state (ON/OFF). 

This dissertation made usage of telemetry data related to the PSS. Usually, the 

satellite telemetry data is characterized by the presence of continuous (analog) 

and discrete (binaries) variables, however, in this case study, only the 

continuous values telemetries were used. Even though discrete values 

telemetries could give insight regarding the state of some mechanism of the 

subsystem, it is in the analogic value telemetries that the satellite power supply 
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emerging behavior will be depicted, especially those associated with solar 

panels, SHUNT, batteries and BDR equipment.  

The telemetry data used here corresponds to telemetry acquisitions made in the 

years 2000 and 2003. However, the available data was not continuous but 

segmented in some specific months. The available time-window were: 

 From January 1st to January 30th of 2000; 

 From March 1st to March 16th of 2000; 

 From January 1st to January 30th of 2003; 

 From March 1st to March 16th of 2003, and; 

 From June 1st to June 30th of 2003. 

Table 4.1 shows the list of telemetry channels that were analyzed. These 

telemetries were chosen because they are the most representative of the power 

subsystem behavior and thus have the greatest potential to identify problems 

and anomalies (AZEVEDO et al., 2012). 

Table 4.1 - Telemetries used from CBERS-1. 

Source: Author's production. 

Telemetry ID Description Limits 

TM001 Main Bus Voltage 27 a 29V 

TM002 Main Bus Current 0 a 36A 

TM003 Main Error Amplifier (MEAS) Output Voltage 8 a 23.5V 

TM013/017 BDR Input Current 0 a 13A 

TM014/018 Battery voltage 43.2 a 56.5V 

TM015/019 Battery Temperature 0 a 10°C 

TM016/020 3-cell minimum group voltage 3.6 a 4.65V 

TM021 BDR Output Current 0 a 36A 

TM022/023 Solar Panel Current (SG1 and SG2) 0 a 7.2A 
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The CBERS1 case study was divided in two parts. The first part was conducted 

over the data set taking in respect the following setup:  

 Training and Test data set comprehending the observations made from 

January 1 st to January 30th of 2000, having a distribution of 75% of the 

data assigned for training the model, and the rest for testing; 

 Validation data set comprehending all the observations made from March 

1st to March 16th of 2000. 

 Taking into analysis all the telemetries described in Table 4.1 but the 

TM001 due its lack of variability which have no relevance to modeling the 

power supply subsystem behavior. 

The second part of the study case was conducted over the data set taking in 

respect the following setup:  

 Training data set comprehending the observations made from January 

1st to March 16th of 2003. Differently from the first part, the whole data set 

was used as "training". 

 Validation data set comprehending all the observations made from June 

1st to June 30th of 2003. 

4.1.2 SCD2 

The Data Collection Satellite Two (SCD2) has over 20 years of continuous 

operations by the Satellite Control Center at INPE. It was the second satellite 

designed, tested and assembled in Brazil, from the SCD family of data 

collection satellites (OLIVEIRA, 1996). The mission goal was to retransmit data 

obtained from a network of Automatic Environmental Data Collection Platforms 

(PCD) to assigned receiver stations Figure 4.3 depicts a commemorative 

mission patch for the satellite. 
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Figure 4.3 - SCD2 mission patch. 

 

Source: INPE (2022). 

 

The PCDs were distributed throughout the Brazilian territory, and those were 

composed of a UHF-band transmitter that collected environmental data that 

were continuously transmitted to the space (MIGUEZ et al., 1993).  

The SCD2 satellite is composed of ten subsystems, including the Data 

Collecting Platform (DCP) payload. With over 20 years of operation, more than 

135 telemetry data points and generating over 8GB of data per year, there is a 

lot to be analyzed from the housekeeping telemetry data alone, composed by 

31 different telemetry signals. This work used data taken between 2014 and 

2018 and amounts to about 23GB of CSV files.  

4.1.3 Case studies planning considerations 

The case study using telemetry data from the CBERS1 satellite was made in 

order to raise the key components associated with an anomaly detection 

technique, and from that, define the process (also considered as a data science 

strategy) of performing the anomaly detection task.  

The CBERS1 case study was divided in two parts. The first part of the study 

case was conducted over the data set taking in respect the following setup:  

 Training and Test data set comprehending the observations made from 

January 1st to January 30th of 2000, having a distribution of 75% of the 

data assigned for training the model, and the rest for testing; 
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 Validation data set comprehending all the observations made from March 

1st to March 16th of 2000; 

 Taking into analysis all the telemetries described in the Table 4.1 but the 

TM001 due its lack of variability which translate into not having relevance 

when comes to modeling the power supply subsystem behavior. 

The second part of the study case was conducted over the data set taking in 

respect the following setup:  

 Training data set comprehending the observations made from January 

1st to March 16th of 2003. This time differently from the first part, the 

whole data set will be used as "training"; 

 Validation data set comprehending all the observations made from June 

1st to June 30th of 2003. 

The case study using telemetry data from the SCD-2 satellite had the same 

objective as the CBERS-1 case. 

In both study cases, the application domain is the same, anomaly detection on 

telemetry data coming from an artificial satellite for Earth resources observation, 

which implies that the nature of the input data, availability or not of labels, as 

well as constraints and requirements shall be similar but not the same. 

The input data from both study cases have the same nature and therefore 

present similar attributes, being those, a mixture of binary and continuous data 

in form of status indicator telemetries and measurement telemetries, i.e., output 

current of the solar panel array.  

However, even though the nature of the data is the same an unexpected 

difference among the two data sets arose, the sampling rate, or number of 

observations for a given period of time is absurdly different, being the data from 

the SCD2 the one with the highest sampling, more than 100.000 samples.  

The resource constraint imposed by the limited computational resource, in 

personal notebooks, currently available for the research, limited the SCD2 

dataset analysis. The process had to stop in the Data Preparation due to 

resources constraints and technical obstacles. The experiments made in the 
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data from the SCD2 satellite could not be run during the machine learning 

model development. An analysis of alternative was evaluated taking into 

account current literature, which are discussed in Section 5.3. 

4.2 The proposed process 

The machine learning process proposed and applied in this research combines 

different approaches found in the literature.  

The process applied in the first part of the study, at a high abstraction level, 

can be understood as the data science process proposed in Schutt and O’Neil 

(2013). Closely, the data-driven anomaly detection process is divided into four 

steps, namely, Data Preparation, Dimensionality Reduction, Clustering, and 

Classification, as depicted in Figure 4.4. The last two steps can be seen as a 

Machine Learning steps in charge to generate and verify the model, as the 

approach proposed in Yairi et al. (2017) and Zare (2018) and others mentioned 

by Taburoğlu (2019). 

 

Figure 4.4 - Data-driven anomaly detection flow. 
 

 

Flow of the mixed machine learning process presented in this dissertation, applied for 

anomalous behavior detections. 

Source: Author's production. 

 

The process applied in the second part of the study presents a similar flow 

of the one presented in Figure 4.4, having exactly the three first steps. The 

process applied in the case study part 2, is depicted in the Figure 4.5. Although, 

in the second part, the machine learning process finished with the clustering 
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step, being the DBSCAN algorithm responsible for "classify" the data identifying 

patterns in the telemetry that are validate through visual analysis.  

 
Figure 4.5 - Definitive machine learning process for anomaly detection. 

 

Flow of the mixed machine learning process containing only three steps,  applied for 

anomalous behavior detections in the case study part 2. 

Source: Author's production. 

 

The flow of information of the process is shown in the Figure 4.6. There, the 

start of the process has an input of raw data which may come either from a 

database or from an online source represented by the satellite control center. 

 
Figure 4.6 - Dataflow over the proposed process. 

 

Source: Author's production. 
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The process, to be able of detecting anomalous behavior, requires a pre-step 

which has the objective of training and tuning the hyperparameters used as 

input for the algorithms applied. The training and tuning step, depicted in Figure 

4.7, provides a set of hyperparameters values as an input to the process when it 

is used for online anomaly detection. The set of hyperparameters is also 

referred as abstract model. 

 
Figure 4.7 - Training and tuning phase of the process. 

 
Source: Author's production. 

 

As shown in Figure 4.8, differently from the tuning phase which uses historical 

data from a database, the online anomaly detection phase uses data, which is 

online gathered, in other words, data coming from the satellite control center 

during a satellite pass. The online phase has two inputs, one is the telemetry 

data coming in, and the other one is the abstract model. 

 
Figure 4.8 - Online detection phase. 

 

Source: Author's production. 
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All the processes performed on both studies were made using Python as 

programming language, Jupyter Notebook as framework, Visual studio code as 

code editor (having Anaconda environment as an option), and free third-party 

libraries as Pandas, Scikit-learn, Scipy, Seaborn among others. Figure 4.9 

depicts a layered-architecture diagram of the set of tools and solutions used to 

process the telemetry data. This way it is possible to see the different software 

entities that were used to achieve the outcome obtained with the demonstrated 

machine learning process. 

 

Figure 4.9 - Layered- architecture diagram of the toolchain used during the studies. 

 

Here is depicted the main parts used in this framework. Other libraries like matplotlib 

and plotly are not depicted. The code editor used is also not highlighted since it is 

irrelevant when comes to the outcome of this study.  

Source: Author's production. 

 

Make usage off-the-shelf solutions relies on the fact that the aim of the study 

was to study the possibility of making usage of machine learning algorithms to 

perform anomalous behavior detection, and not the development of tools or 

algorithms implementations. 

 



55 
 

4.2.1 Data preparation 

In a nutshell, the data preparation, or data processing, comprehends the 

following tasks: to import the raw data from the files, to clean the data making it 

tidy, to remove the trivial outliers and finally, to normalize the data. However, 

before that, the data shall be imported from where it is contained as detailed in 

the following section. 

4.2.1.1 Importing data 

The task of importing data is fully dependent of the data format and the storage. 

In the CBERS case study, the telemetry data was provided in .csv (comma 

separated value) format and divided into different files so that each file 

represents an observation window for a given month in a given year. When it is 

said that the mass of data was stored in .csv format it means that without the 

use of an interpreter of such format, the data looks as seen in  

Figure 4.10. 

 

Figure 4.10 - Raw set of archived TM data in *.csv format. 

 

Source: Author's production. 

 

To import the data from this source and place it in the Pandas DataFrame 

format, the 'read_csv' function was used, from the Pandas library, which 

provides a series of different functionalities, but here it was only used to export 

the mass of data found in a path inside the computer used in the study. The 

Pandas DataFrame is a two-dimensional, changeable in size and potentially 
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heterogeneous, tabular data structure with labeled axes (rows and columns). 

Arithmetic operations are aligned on row and column labels. It can be thought of 

as a dictionary-like container for series objects. The function on data returns 

organized in a data-frame-tidy as seen in the Figure 4.11. 

 

Figure 4.11 - First visualization of archived TM data using Pandas Library. 

 

Source: Author's production. 

 

The data is then extracted from a CSV file and shaped as a pandas data frame. 

This data frame still presents raw telemetry value that has to be processed to 

turn it into tidy before being used (WICKHAM, 2014). Each telemetry channel 

presents a variable with different engineering magnitudes represented by 

different measurements units. The telemetry data, now shaped as a data frame, 

present each telemetry variable place in a column, these can be referred as 

features or dimensions. Even though the data in Figure 4.11 data frame 

presents a better organization. 

4.2.1.2 Data cleaning 

The task of cleaning the data consist of identifying and correcting mistakes or 

errors in the data which can disturb the analysis to be performed by an 

algorithm. In the CBERS case, this task consists of removing telemetries 

signals which present the following characteristics: 

a) Variables values which are not continuous. 

b) Time stamp variables. 
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c) Variables with low variation, which are nearly constant over time. 

d) Variables which are not related to subsystem used as test case. 

These characteristics were considered to be either irrelevant to the purpose of 

this study or would impose more complexity to the proposed process of 

analyzing multi type variables. The exclusion of such telemetries variables is 

easily achieved through the "drop" method from data-frame class contained at 

the pandas library. The results of the data-frame head, after executing the 

clearing task according to the established rules, can be seen in Figure 4.12. 

 

Figure 4.12 -  Dataframe after some clean up. 

 

Source: Author's production. 

 

It is important to highlight that it is valuable to check whether there are NaN 

values within the data because those ones can jam the execution of some 

machine learnings algorithm applied here. These values when present, are 

replaced by an interpolation of the two values around the NaN value. 

This way, at the end of this sub process, a data frame is ready to be taken to 

the next step of the data preparation. 

4.2.1.3 Trivial outlier removal 

The trivial outlier removal step may be optional depending on the clustering 

algorithm. In the proposed process of this research, it is used a mixture model 

approach which uses a dimensionality reduction algorithm to preprocess the 

data before using a clustering algorithm. The chosen clustering algorithm is the 

DBSCAN mainly due its ability to deal with noise data. This clustering algorithm 

could be enough to handle the kind of data available for this study, due its 

"noise resistant" characteristic (ESTER et al, 1996), therefore a trivial outlier 

removal would not be needed. However, this statement is only true if the 
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dataset is given directly to the clustering algorithm, in other words, if the data is 

not preprocessed with a dimensionality reduction algorithm beforehand, as 

described in Yairi et al. (2017). 

In Yairi et al. (2017) the authors discuss about an effect called "Trivial Outliers", 

which is defined as abnormal values caused by errors in data conversion or 

transmission. Another study found in the literature on how to handle outliers 

which are no related to failures or anomalous behavior is in Li et al. (2018) 

when talking about data preprocessing the authors proposed a "Singular points 

and Random fluctuations eliminations" through the use of arithmetic average 

and standard deviation.  

The method presented in Yairi et al. (2017) was adopted in this study due its 

easy implementation. The authors start stating a common understanding that 

trivial outlier occur very rarely and abruptly, and furthermore, present values 

very different from those of the neighboring data points. In face of that, they 

calculate the upper and lower bounds of acceptable values, i.e., the thresholds 

values, presented in equation (4.1) and (4.2) by theta upper and theta lower. 

 

𝜃 = 𝑃 + 𝛽 ∗ (𝑃 − 𝑃 ) (4.1) 

𝜃 = 𝑃 − 𝛽 ∗ (𝑃 − 𝑃 ) (4.2) 

 

Here are depicted the formulas used for calculating the upper and lower limits of a 

given signal, or feature.  

Source: YAIRI, Takehisa et al. A Data-Driven Health Monitoring Method for Satellite 

Housekeeping Data Based on Probabilistic Clustering and Dimensionality Reduction. 

IEEE Transactions On Aerospace And Electronic Systems, [S.L.], v. 53, n. 3, p. 1384-

1401, jun. 2017. Institute of Electrical and Electronics Engineers (IEEE). 

http://dx.doi.org/10.1109/taes.2017.2671247. 

 

In order to calculate the boundaries, conservative values of alpha and beta 

were chosen. Being alpha equals to 1.0 and beta equals to 0.5 (YAIRI et al., 
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2017). With the threshold values in hands, every data point is evaluated 

according to the following rule: 

 If a value y(t), at time step t, exceeds the one of the thresholds, but its 

previous and next values, i.e., y(t)−1 and y(t)+1, do not exceed the 

thresholds, then the current value, y(t), is considered as a trivial outlier 

and therefore, removed. 

The considered trivial outliers are replaced by NaN values which in a further 

step of the implementation are replaced by a value which is the result of the 

interpolation of the data point values around the NaN value, i.e., y(t)−1 and 

y(t)+1. This way, with trivial outliers removed from the dataset, the normalization 

step can be taken. 

4.2.1.4 Normalization 

A satellite system telemetry data has the main purpose of provide information 

from a variety of subsystems measurements. The transmitted data from the 

satellite to ground systems present the following features: diverse physical 

units, don´t share the same scale, different magnitude, or numerical range, and 

is multivariate data, as exemplified by Yairi et al. (2017). 

Another point is that the feature scaling turns out to be an important step since 

the machine learning algorithms (the DBSCAN), used here, can have their 

output biased by the lack of normalization of the data features. The DBSCAN 

utilizes the distance (Euclidean) between points to determine similarity among 

then, unscaled data creates a problem. Usually, telemetry data that refers to the 

measurement of a given variable or signal have different orders of magnitude, 

or scale, due to the sensor used for such measurement or the way it was stored 

in the database. The lack of scaling, in principal component analysis, can also 

cause a problem making one feature mistakenly considered more important 

than another one, as highlighted by scikit-learn developers (PEDREGOSA et 

al., 2011). 

The normalization applied over each data feature is performed by the Standard 

Scaler method (SKLEARN.PREPROCESSING.STANDARDSCALER, 2022), 

through the scikitlearn preprocessing package (PEDREGOSA et al., 2011). In 
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general terms, the data features are normalized through the performance of a 

standardization by removing the mean and scaling to unit variance. The 

outcome of normalization compared to a non-normalized data can be seen in 

Figure 4.13 and Figure 4.14. 

Figure 4.13 - Non-normalized data. 

 
Source: Author's production. 

 

Figure 4.14 - Normalized data. 

 

Source: Author's production. 
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This boxplot representation shows the comparison between a non-normalized 

and a normalized set of telemetry data. In Figure 4.13, the dataset before 

normalization presenting different magnitudes. In Figure 4.14, a normalized 

one, has the main characteristic of having a centralized mean. 

4.2.2 Dimensionality reduction 

The usage of the dimensionality reduction in this study was inspired by the 

lessons learned gotten from Azevedo et al. (2012) and supported by the idea 

that in machine learning, data with high dimensionality and multimodality, 

frequently are treated by dimensionality reduction as shown in Yairi et al. 

(2017). Furthermore, the clustering algorithms applied in Rasyid et al. (2018) 

and Molchanov and Linsen (2018), i.e., DBSCAN and K-Means, tends to 

present limitations to accurately define cluster when the data set has too many 

features, or presents high dimensionality. 

It is important to highlight that through the research and development of the 

proposed method, different algorithms for dimensionality reduction were 

applied, namely, the t-Distributed Stochastic Neighbor Embedding (t-SNE), the 

Principal Component Analysis (PCA) and its Kernel variation. Among then, the 

Kernel Principal Component Analysis (KPCA) was chosen due its more 

adequate output.  

The dimensionality reduction step applied here does not only performs a feature 

extraction but also enable the visualization of the data in three-dimensional 

space. These key arguments for the usage of this technique are elicited in 

Mohri, Rostamizadeh and Talwalkar (2018). 

The Kernel Principal Component Analysis algorithm (KPCA) is applied to 

reduce the original dataset into a specified number of features called principal 

components. In the proposed process, the KPCA algorithm works as a 

preprocessing stage. In the early stages of the study, instead of KPCA, the 

simple PCA was used, however, as the process developed, the kernelized 

version algorithm delivered better results. 
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The implementation of the KPCA in this work was done by the Kernel-PCA 

method, part of the decomposition module from Scikit-learn library. This 

implementation of the KPCA requires only two hyperparameters as input, being 

, the gamma coefficient and a chosen kernel function. It is also required as 

input, the number of components to be used. This algorithm, in a high 

abstraction level, performs a non-linear dimensionality reduction through the 

use of kernels. Its definition was briefly described in 2.3.2.3 but may be found in 

Schölkopf et al. (1997) as well. 

The choosing of the KPCA´s number of components, to be applied by the kernel 

function, and the gamma hyperparameters values were performed in a heuristic 

way, which can be considered a commonly used approach (ALAM, 2014).  

To define how many components would be used to generate the output data 

set, the eigenvalues from the eigenvectors (principal components) were used as 

a data variance explaining measure (JOLLIFFE; CADIMA, 2016). In the first 

assessment execution of the algorithm, was generated a plot showing the 

relationship of number of eigenvectors, versus the absolute sum of the given 

eigenvalues, depicted as number (#) of features versus the percentage of 

variance explained, respectively, as shown in Figure 4.15. 

 

Figure 4.15 - Explained Variance percentage versus number of features used. 

 

As observed, as the number of features (a.k.a. components) grow, the percentage of 

variance explained raises. The higher the percentages of explained variance better the 

predictions (ROSENTHAL;ROSENTHAL, 2011).Source: Author's production. 
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Although the task of defining the number of components which should be used 

by the KPCA algorithm is quite straightforward, the method to choose the kernel 

function and the gamma value was performed in an empirical way. Since the 

dimensionality reduction had a goal of generate a dataset that could be 

clustered, the kernel function and gamma value assessment were performed 

plotting the result of different permutation of kernel functions gamma value for 

the same number of components. This step took some time, as it is a manual 

fine-tuning step. Figure 4.16 illustrates an example of how the outputs of the 

process can vary, where the plots show the outcome of choosing the RBF 

kernel function. Figure 4.17 depicts the outcome of when the kernel function is 

Sigmoid. This step is repeated until that the desired output is obtained or the 

date present insights that can be understood as a representation of the 

satellite's circumstances during operation. 

 

Figure 4.16 - KPCA output for RBF as the kernel function. 

 
Source: Author's production. 
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Figure 4.17 - KPCA output for Sigmoid as the kernel function. 

 

Source: Author's production. 

 

This study was conducted over the telemetries of the Power Supply Subsystem, 

so, it was expected that the data transmitted from it would depict a behavior or a 

tendency or a variance in the data resulted from the interaction of the parts and 

the elements surrounding it. This tendency or agglomeration was interpreted as 

an emerging attribute, or emerging behavior, which can be understand as 

defined by the system engineering, that the interaction of parts or subsystems 

always generates emerging attributes, that can only be achieved through this 

interaction and no other. Figure 4.18 shows the outcome of a PCA, ran in the 

early stages of this study. There, at first, two cluster are well defined and 

separated by a cloud of points. The two clusters were interpreted as two 

circumstances in which the satellite could be found. One when the satellite is 

receiving sunlight directly and another when the satellite is in the shadow and 

running with the energy stored in the batteries. 
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Figure 4.18 - Output of a PCA in the early stages of this study. 

 

Source: Author's production. 

 

The cloud of the data points, within the two agglomerations, are understood as 

a transition circumstance between the two major ones. There, can be also seen 

some sparse points that could have been turned to be anomalous behavior on 

the data. 

4.2.3 Clustering 

The clustering step is in charge of identifying the cluster to be used, or in other 

terms, it formalizes tendencies on the data set coming out from the 

dimensionality reduction step.  

It is expected that the clustering algorithm be able to identify and define clusters 

that comprehend not only those agglomerated data, but also the sparse data. 

Since one of the main reasons to use clustering algorithm for anomaly detection 

on satellites systems comes from the fact that during the satellite's normal 

operation scenarios, the telemetry data tends to form clusters of characteristics 

(AZEVEDO et al., 2012). 
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It may be found in the literature, different algorithms being used for clustering 

purposes, applied in the space context, as K-Means, Expectation Maximizations 

in Ibrahim et al. (2019) and Azevedo et al. (2012) and Hierarchical 

Agglomerative Clustering in Mital et al. (2019). Each of them presenting pros, 

cons, and different performance depending on what are the characteristics of 

the data being analyzed and what is expected from their usage.  

The Density-Based Spatial Clustering of Application with Noise, or simply 

DBSCAN, is a density-based clustering algorithm which needs minimal 

requirements of domain knowledge to determine the hyperparameter. It is 

capable of not only discover arbitrary-shaped clusters but also present good 

efficiency on large databases (ESTER et al., 1996). 

The implementation used from the DBSCAN in this study was made possible 

through the DBSCAN class, part of the cluster module from the ScikitLearn 

library. This algorithm finds core samples of high density and expands clusters 

from them until it cannot classify points as part of a cluster. Its definition and 

formal explanation are given in Ester et al. (1996). A very educative and 

explanatory execution of the algorithm can be found in Harris (2015). 

The DBSCAN, different from the K-Means, doesn´t require a definition of how 

many clusters one would like to have, instead, it is capable of provide how 

many clusters it can identify, followed by their identification, and also a singular 

cluster colleting those points which don´t fit any other cluster. This is performed 

through the hyperparameters epsilon (eps) and the minimum number of points 

in an eps-neighbourhood (minPts).  

To find the most adequate values for both hyperparameters, two different 

methods can be used. The first one takes the outcome of the algorithm and 

evaluate it using a parameter called Silhouette Coefficient (SC) (KAUFMAN; 

ROUSSEEUW, 1990). The algorithm is executed with different values for 

epsilon, varying from 0.1 to 1.0 in steps of 0.1. For each epsilon increment step, 

the minimum number of points iterates from 2 to 8, and then it is tested. This 

procedure generates a list of different combinations resulting in a collection of 
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number of found clusters and given SC pair, which can be evaluated using the 

rule of thumb shown in Table 4.2. 

 

Table 4.2 - Subjective Interpretation of the Silhouette Coefficient (SC). 

Silhouette 
Coeficient score 

Proposed Interpretation 

0.71 – 1.00  A strong structure has been found 

0.51 – 0.70 A reasonable structure has been found 

0.26 – 0.50 The structure is weak and could be 
artificial;  try additional methods on this 

data set 

≤ 0.25 No substantial structure has been 
found 

 

Source: Kaufman (1990). 

However, take only the SC to assess whether the fitted model fulfill the need to 

clusters identification is not enough. A heuristic evaluation had to be done with 

those hyperparameters which resulted in 5 clusters and a SC reasonable or 

better. This evaluation is made through a plot combining the dataset coming 

from the KPCA with a coloring scheme to represent the found different cluster, 

as presented in Figure 4.19. 

 



68 
 

 

This plot shows the different clusters found by the DBSCAN algorithm. Each cluster 

has a representing color. The points in dark purple are part of no cluster. The 

visualization process allowed the assessment whether the found solution would fit  or 

not the needs. 

Source: Author's production. 

 

In the first method, after the hyperparameters being defined, the algorithm was 

executed once more and from the model fitted. Through an attribute called 

labels, it was possible to perform the retrieving of an array of integers labels 

corresponding to the different clusters. This array then is appended to the 

original data frame as a column of labels, designating a label to each 

observation of a group of telemetries. The relationship between each telemetry 

and the found clusters is plotted through a series of histograms. From the 

samples depicted from Figure 4.20 to Figure 4.23 it is possible to drawn 

conclusions on which cluster represents which satellite's circumstances, and 

how the clusters are distributed among the telemetries observations. 

 

 

 Figure 4.19 -KPCA output data set before and after clustering. 
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Figure 4.20 – Distribution of labels in the telemetry 003 – MEAS Output Voltage. 

 

Source: Author's production. 

 
Figure4.21 -- Distribution of labels in the telemetry 0014 – Battery Voltage. 

 

Source: Author's production. 

 

Figure4.22 - Distribution of labels in the telemetry 0022 – Solar Panel Current. 

 

Source: Author's production. 

 

Figure 4.23 - Distribution of labels in the telemetry 0023 - Solar Panel Current. 

 

Source: Author's production. 

 

The TMD0023 value represents one of the solar panels output current, thus, it is 

possible to infer that cluster #2 is related to the circumstance of the satellite 

when sun is sight, on the other hand, cluster #0 represent the satellite in 
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eclipse, while cluster #3 and #1 are related to the twilight situation and the 

clusters #-1 refers to the anomalous behavior points. 

Till this point, only unsupervised learning was used due to the lack of labels on 

the dataset, although, throw the clustering step, the data observations could be 

separated in different operational scenarios and in one anomalous-behavior 

scenario. This categorization, in form of clusters, and furthermore as labeling 

dimension on the dataset, provides information for the next step of the proposed 

method. 

The second method is presented in the paper (ESTER et al., 1996). In the 

Section 4.2 of that paper "Determining the parameters eps and MinPts” an 

adequate value for eps can be found by calculating the distance to the nearest 

K points for each point, sorting and plotting the results in order to asse where a 

point of inflection happens, or in other terms, the "elbow" or "knee" point 

(RAHMAH; SITANGGANG, 2016). That point will have the adequate value of 

eps to be taken. Additionally, the authors add and thumb rule to define the value 

of the K, being this equal to two times the amount of dimension of the input 

data, i.e., for inputs of two dimensions, K shall be set to 4. The calculation of the 

exact value of eps on the point of inflection was performed through the method 

described in Satopaa et al. (2011), available in the "kneed" open-source library.  

4.2.4 Classification 

Among the classification-based algorithms found in the literature, as Support 

Vector Machine and Neural Network, the K-Nearest Neighbors was chosen to 

perform this Classification step. Being considered as a supervised learning 

algorithm since it requires labeled data to work, it is simple to understand, and 

easy to use. 

The usage of the KNN algorithm in this study was, as the previous stages of this 

process, enabled by an implementation of it on ScikitLean. Through the class 

KNeighnorsClassifier, part of the neighbors module, the generation of 

classification model can be achieved. The implementation requires as input only 

the number of neighbors to be use as the ruler, thus, other parameters can be 

modified as the metric parameters, which is set to Minkowski Distance by 
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default. It can also be modified to Euclidean or Manhattan, among other 

distance calculation methods. In this study, iterations of the KNN using the 

Manhattan and Euclidian distance metrics were performed. 

The algorithm was, initially, executed with an arbitrary value for number of 

neighbors, six. Usually at this point, the KNN algorithm model is trained with a 

training data set, and then the model is evaluated against a testing data set. At 

the first iteration the telemetry data set was divided into two parts, being the first 

one corresponding to 75% of the data set, and used for training the model, and 

the rest to be used for validation. However, to determine a proper value for the 

number of neighbors, an empirical method together with a defined metric was 

applied. The method consists in training the algorithm and test it with different 

number of neighbors within a range of 1 to 40 neighbor points.  

With the outcome of these iterations in hand, using the Accuracy function 

available in the ScikiLearn library, we can calculate the accuracy of the trained 

model. These accuracy values are obtained when comparing the classified data 

versus the real labels on the data frame. The outcome of this heuristic method 

was then used to create a plot that represents the accuracy of the model versus 

the value defined for k. The best accuracy value achieved, through a k value 

bigger than 1 is chosen. The outcome of this process is shown in Figure 4.24. 

Source: Author's production. 

Figure 4.24 - Model accuracy versus the number of neighbors. 
used 
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After choosing the most adequate value for K, based on the highest accuracy 

value, the algorithm is executed, and a new model is trained. The model 

classification result then is assessed with the support of a confusion matrix. The 

confusion matrix is often applied to evaluate the result of classification 

algorithm. Confusion matrix depicts how confuse is the classification model 

when comes to its predictions (BROWNLEE, 2016), an example is shown in 

Figure 4.25. 

 

Figure 4.25 - Confusion Matrix for a tryout of the KNN algorithm. 

 

Confusion matrix of an early phase of the study. The label noise turned to be what is 

considered anomalous behavior on the data. 

Source: Author's production.  

 

In the confusion matrix depicted in Figure 4.25, using a K value of 5, the 

outcome of the KNN classifier algorithm to classify the data points, as one of the 

five different scenarios, can be clearly visualized, i.e., there were three times 

the model classified a point as Eclipsed scenario but in truth those points were 

noise.  

The usage of such approach to depict the result of the classification model was 

made in order to have a different insight about how good the model is when 

comes to detect anomalous behavior despite its general accuracy.  
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5 ANALYSIS AND DISCUSSION 

This Chapter discusses the results with 3 experiments, namely, CBERS1- 

Part1, CBERS1-Part2 and SCD2, which were ran over the dataset of the two 

satellites: CBERS1 and SCD2.  

The telemetry data of the CBERS1 satellite was used in two experiments 

(CBERS1-Part1 case study and CBERS1-Part2 case study). At the first 

experiment all the effort and time spent was made in order to obtain knowledge 

not just about the inherent aspects of such application domain, but also to ramp 

up the knowledge regarding how to approach anomaly detection task making 

usage of off-the-shelf machine learning solutions. The CBERS1-Part1 case 

study outcome is presented in the Section 5.1. 

The second experiment, the CBERS1-Part2 case study, was conducted in order 

to solve some limitations found in the machine learning process proposed, 

which were detected in the first experiment. Moreover, this experiment validated 

the anomalous behavior detection capabilities of the proposed process. The 

outcome of the second experiment is detailed on Section 5.2. 

The third experiment was conducted with the telemetry data of the SCD2 

satellite. Some problems arose in the handle of the data mass during the 

execution of this experiment did not allow the complete planed experiment, 

however some lessons were learned. These problems faced with the telemetry 

data of the SCD2 satellite are discussed in Section 5.3. 

5.1 CBERS1- Part 1 case study  

This session presents the first steps and analysis of the CBERS1 telemetry 

dataset and discusses the outcomes of such. The first part of the study case 

had the purpose of raise insights about the problem domain and about the 

machine learning algorithms that could be used for the steps described in the 

Section 4.2, it served as a feasibility study performed before performing the part 

2 that is described in the Section 5.2. 
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5.1.1 A brief analysis with the use of PCA at first 

Originally the Dimension Reduction step to be applied over the telemetry 

dataset was supposed to be performed making usage of the PCA algorithm. 

The dimensionality reduction had not just a pre-processing objective in this part 

of the case study, but also to be an enabler for visualizing the data before 

performing the clustering. For the sake of completeness, even though the KPCA 

turned to be the algorithm used for this purpose, the results coming from the 

first analysis made with the PCA are exposed in the following.  

The outcome of the principal component analysis performed over the data 

coming from January of 2000, depicted by the Figure 5.1, demonstrates the 

amount of data variance in percentage can be explained by a given number of 

principal components (features) extracted from the data used as input. 

 

Figure 5.1 - Data variance explained versus number of features. 

Source: Author's production. 

 

The first principal component can explain almost 60% of the variance from the 

original dataset. The choice of having 3 principal components extracted from 

the original dataset would give an amount of 77.52% of the data variance 

represented, and at the same time, to enable the visualization of the new 
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reduced data set in a 3 dimensional perspective, as depicted in the Figure 5.2 

by the plot on the left side. 

The plot on the right side is depicting the outcome of the clustering process 

performed with the DBSCAN algorithm. The clustering was executed having the 

hyperparameters values of epsilon and minPts set to 0.7 and 7 respectively. 

These values were obtained through a small experiment in which Eps values 

ranging from 0.2 to 1.5, which steps of 0.1, combined with minPts values 

ranging from 2 to 8, a table as the one depicted in Figure 5.3 was generated. 

 

Figure 5.2 - New PCA data set clustering outcome. 

  

Source: Author's production. 
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Figure 5.3 - Eps and minPts combination assessed by silhoute score. 

 

Source: Author's production. 

 

The heuristic assessment made in this context was driven by finding a small 

eps value which, combined to a minimum number of points equal or bigger than 

6, would result in a good enough silhouette score. The combination chosen, 

shown in Figure 5.3, is an eps value of 0.7 with a minimum number of points of 

7, which resulted in 4 clusters, one of them containing the outliers. The result is 

presented in Figure 5.4. This result was considered good enough since through 

a visual assessment the clustering result seemed to present a better definition 

of cluster when comes to homogeneity and number, representing in a high level 

different main circumstances in which the satellite could be found. This can be 

seen from the manner in which the data is grouped and therefore clustered. 

These different scenarios can be understood as one for when the satellite is 

being hit by sunlight, another one when in the shadow, and a third one 

representing the twilight condition. All the other points left were outliers 

assigned to the "noise clusters". The definition of which cluster is representing 

which scenario was made through the assessment of the distribution of 

observation among the identified clusters. 
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Figure 5.4 - Clustering outcome with hyperparameters set by heuristic evaluation. 

 
Source: Author's production. 

 

Figure 5.5 depicts the distribution of data points from the TMD023. These TM 

data correspond to current values in one of the solar array outputs. The data 

distribution indicates that the pca_cluster = 2 gathers the points related to the 

"hit by sunlight" scenario, and the pca_clusters = 0 gathers the points from the 

"in the shadow" scenario, while the pca_cluster = 1 holds the points for the 

"twilight" scenario, the pca_cluster = -1, as mentioned before, is the one which 

the outliers are assigned to belong. 

 

Figure 5.5 - Data points of the TMD023 distribution among the found clusters. 

 
Source: Author's production. 



78 
 

These statements were made over the following assumptions:  

 Cluster = -1: noise or outliers, because this is how the algorithm were 

implemented; 

 Cluster = 0: Sun eclipsed, because this cluster holds most of the values 

for output current near to zero; 

 Cluster = 1: Twilight, because this cluster holds values from both 

situations, sunlight and eclipse; 

 Cluster = 2: Sun sight, because this cluster holds the most of the values 

for maximum output current. 

The found clusters, given back by the DBSCAN implementation as an array of 

indexes were concatenated to the original data set (from January 2000), this 

way making the cluster indexes as labels for each observation in the data set, 

as shown Figure 5.6. 

 

Figure 5.6 – Data frame having the clusters indexes as labels. 

 

Source: Author's production. 

 

The given data set then was divided between a training and a testing data sets. 

The training set was used for training the KNN model using a k hyperparameter 

value of 6, following the same thumb rule used for calculating the minPts value. 

The KNN fitted model was tested using the testing data set and its result 

assessed with the help of the confusion matrix depicted by Table 5.1. 
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Table 5.1 - Confusion Matrix for the data set preprocessed by PCA. 

 Predict 
Outlier 

Predict 
Eclipsed 

Predicted 
Twilight 

Predict 
Sunsight 

Outlier 7 4 1 2 

Eclipsed 0 149 0 0 

Twilight 0 0 8 0 

Sunsight 0 0 2 155 

Source: Author's production. 

 

With the confusion matrix in hand, in order to calculate the accuracy of the 

generated model, the correct predicted values presented on the main diagonal 

are summed and then divided by the sum of all other elements. The obtained 

accuracy was 0.973 from a maximum score of 1.0. In a first moment the value 

seems pretty good; however, the purpose of this work is to be able to detect 

anomalous behavior, which, in the Table 5.1, is called as outlier. When 

calculating the outliers detection accuracy the found value was 0.5 from 1.0. As 

one can see, when evaluating only the noise accuracy of the model, it is 

possible to realize that in fact the model maybe not so good. The same 

assessment of KNN model was made with a data set containing not 3 but 5 

feature, in the sense that it could generate a more accurate model, the values 

obtained for it were not better, being the total accuracy of 0.963, and the outlier 

detection accuracy of 0.368. This is summarized in the Table 5.2. 

 

Table 5.2 - KNN model accuracy for different feature number-wise data sets. 

Number of features Total accuracy (%) Outlier detection acc.(5) 

3 97.3 50.0 

5 96.3 36.8 

Source: Author's production 
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It is clear that at this point the performance of the classification model is not 

good enough for anomalous behavior detection. From this first result, some 

considerations were raised in order to assess a way to increase the anomaly 

detection ability of the proposed process.  

This study proposes a mixture model approach which uses a dimensionality 

reduction algorithm to preprocess the data before use a clustering algorithm. 

The clustering algorithm used here is the DBSCAN, chosen mainly due its 

ability to deal with noise data. This "noise resistant" characteristic from the 

clustering algorithm would be enough to say that the trivial outliers removal 

techniques are not needed; however, this is true only if the dataset would be 

given to the clustering algorithm directly, in others words, if the data were not 

being preprocessed with a dimensionality reduction algorithm previously. This 

conclusion is confirmed with what is proposed by (Yairi et. al. 2017) and (LI et 

al., 2018). In face of that, the trivial outlier removal step, detailed in the  4.2.1.3 

was performed in the data set before performing the dimensionality reduction. 

The clustering step was once more performed, and the outcome is depicted  

Figure 5.7.  

 
Figure 5.7 - Trivial outlier cleaned data set after clustering. 

  

Source: Author's production. 
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After applying the trivial outlier’s removal process the data set obtained from the 

PCA algorithm presented a worse outcome. The result was considered to be 

not adequate because: 

 The feature reduced data set do not present clearly separable data; 

 As shown in   

 Figure 5.7, the number of clusters found didn't meet the assumption taken 

as requirement of 4 well-defined clusters interpreted as a representation 

the satellite's behavior due different circumstance.  

The result obtained at this step showed that the PCA algorithm was not 

adequate for performing dimensionality reduction over the given data set. This 

can be explained by the non-linear nature of the data used in this study. 

Unfortunately, such characteristic cannot be handled by the classic PCA. 

5.1.2 Data preparation using KPCA+DBSCAN+KNN 

During the experiments performed in the Part 1, different Kernel functions were 

tested in order to raise the one which associated with the principal component 

analysis would perform better. Experiments were made using the linear kernel, 

radial basis function (rbf) kernel and the sigmoid kernel. For each function a 

visual assessment was made through the plot of the output data, in order to, 

from “trying and testing” steps (see Figure 4.7) to define a value for the 

hyperparameter gamma. The percentage of variance, explained by the number 

of eigenvectors composing the output of the KPCA data set, was assessed for 

the three different kernels experimented. The results are shown in Table 5.3. 
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Table 5.3 – Variance explained by the number of eigenvectors composing the output. 

Kernel function Number of eigenvectors Variance explained (%) 

Linear 3 93.15022787345725 

5 96.16924194850708 

RBF 3 71.06849793183024 

5 82.9616942975014 

Sigmoid 3 92.05005436958172 

5 94.81223076601363 

Source: Author's production. 

 

The usage of three components of the KPCA already produces a very good  

variance value, and as the data will be plot for visualization, chose three 

components among the other values turns to be the most adequate option. 

These outcomes from the KPCA were obtained setting the hyperparameters 

gamma to a value equal to 0.2.  

For every different kernel experiment, the 3 dimensions visualization of the 

KPCA output data set was made as the outcome from the clustering performed 

by the DBSCAN. The clustering algorithm hyperparameters were set for the 

different kernel input data sets accordingly:  

 Linear kernel-reduced data set as input – eps = 9 and minPts = 7; 

 RBF kernel-reduced data set as input – eps = 0.1 and mintPts = 7; 

 Sigmoid kernel-reduced data set as input – eps = 0.2 and mintPts = 7. 

The visual analysis of the outcome from the clustering process, which was 

made over the plots depicted in Table 5.4, had the purpose of identify among 

the results which one would present the adequate characteristic of well 
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separated and identifiable cluster that could represent the satellite’s behavior in 

different circumstances.  

Table 5.4 – KPCA output before and after DBSCAN clustering process. 

 KPCA output DBSCAN output 

LINEAR 
KERNEL 

  

RBF 
KERNEL 

 
 

SIGMOID 
KERNEL 

  

Source: Author's production. 
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The outcome dataset of the KPCA, showed in more detail in Figure 5.8, run a 

sigmoid kernel with the values of eigenvector and gamma hyperparameters of 3 

and 0.2 respectively. They were used as input for a DBSCAN with epsilon 

equals to 0.2 and a minimum number of samples of 7, provided a silhouette 

score of 0.516, with 5 clusters identified.  However, it is important to draw the 

attention that, after the trivial outliers were removed from the initial dataset, a 

new tunning of the KPCA hyperparameters had to be performed. In this case, 

the gamma had to be improved, and the hyperparameter “fit_inverse_transform” 

had to be assigned, which learn the inverse transform for non-precomputed 

kernels. 

 

Figure 5.8 - Sigmoid KPCA output clustered with a trivial outlier cleared dataset. 

Source: Author's production. 

 

Different from the previous experiment, here, the outcome from both algorithms 

was quite satisfactory with 4 well defined clusters and a cloud of sparse outliers 

assigned to the -1 cluster. This result is adequate, and the indexes of the cluster 

can be used as labels to train a model with the kNN algorithm. The process to 

choose the k parameters was performed having the above result as input for the 

kNN algorithm. The result is shown in Figure 5.9. The best outlier detection 

accuracy value achieved was 0.6875 using K equals 5. After training the model, 
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an evaluation was run over a test dataset, the outcome of this test is shown in 

Table 5.5. 

Figure 5.9 - KNN model accuracy versus number of k. 

 
Source: Author's production. 

 

Table 5.5 - Confusion matrix for results obtained from KNN. 

 Predicted 
noise 

Predict 
eclipsed 

Predicted 
twilight 

Predicted 
sun sight 

Predicted 

twilight 

Noise 11 2 2 1 0 

Eclipsed 0 135 0 0 0 

Twilight 0 0 9 0 0 

Sun sight 0 0 0 156 0 

Twilight 0 0 0 0 12 

Source: Author's production. 

 

The usage of the trivial outliers removal technique allied to the KPCA algorithm 

presented better result when come to anomalous behavior detection. Even 

though the KPCA output got improved by the removal of trivial outliers, the 

KPCA dataset generated at the end of the process presented clusters with 

differences in shape and density, and due to that, the work of the DBSCAN 
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algorithm got difficult. However, we were able to identify clusters with a 

silhouette score of 0.52. Not the best, but good enough. Once more the general 

accuracy was a quite satisfactory value, around 0,979. 

Among the kernel functions implemented in the KPCA sci-kit learn, the one 

which provided a more meaningful output was the kernel function 

sigmoid.  Among the distance metrics implemented in the sci-kit learn for the 

KNN algorithm, two were tested, Euclidian and Manhattan. The Euclidian 

obtained a better accuracy when comes to anomalous behavior detection in the 

test model. Only the Ecludian-metric related results are presented here. 

At this point, having a trained model presenting good results during the testing 

step, the only left step is to validate the model using a totally new and unseen 

data set. In order to perform the validation, the data set had to be firstly 

processed, then reduced, and finally clustered, this way, labels were identified 

for every observation on the given data. This process was conducted having the 

same setting of hyperparameters for the KPCA and DBSCAN. The outcome of it 

was plotted and is illustrated in Figure 5.10. 

Figure 5.10 - KPCA-reduced validation data set before and after clustering. 

  

Source: Author's production. 

 

Having a labeled data set to be used as a base of comparison, the unlabeled 

version of the same validation data set was given as input to the KNN model 
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obtained earlier and with the output of the KNN’s classification another 

confusion matrix was built, which is depicted in Table 5.6. The calculated 

accuracy for general classification (considered in all the cases) was 0.44, 

meaning that the model misclassified more than the half of the observations 

from the data set, when compared to the label of the given observations. When 

comes to the anomaly (depicted as noise), the model was not capable of make 

an accurate classification. 

 

Table 5.6 - Confusion matrix for results obtained from KNN predict over the validation 
data set. 

 Predicted 
noise 

Predict 
eclipsed 

Predicted 
twilight 

Predicted 
sun sight 

Predicted 

twilight 

Noise 0 14 3 10 8 

Eclipsed 0 247 0 0 3 

Twilight 0 0 0 266 0 

Sunsight 0 1 45 0 0 

Twilight 0 0 0 0 28 

Source: Author's production. 

 

5.2 CBERS1-Part 2 case study  

5.2.1 Data preparation using KPCA+DBSCAN 

The CBERS1-Part2 Case study had the goal of improve the accuracy of the 

anomaly detection as the accuracy of other behaviors in general, and also 

aimed to evaluate the capability of detecting an anomalous behavior in the 

telemetry data using one real case detected in CBERS1 operation. The 

telemetry signals from the month of June, as depicted in Figure 5.11, have 

anomalous behavior noticed more clearly over the TMD002 and TMD0019. 
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Figure 5.11 - Anomalous behavior present in the telemetry signals from the PSS during 
the month of June. 

 

Source: Author's production. 

 

It is known that between 15/06/2003 and 19/06/2003 the value of  the TMD002 

kept flat, within the expected limits, but out of the expected profile (behavior). 

The TMD0021 on the other hand, kept the profile but, by the same amount of 

time, had a negative offset which shifted the values out of the expected level. 

Another anomalous behavior will be simulated according to the situation 

presented in (AZEVEDO et al., 2012). The simulated anomalous behavior 

concerns the TMD019 and follow the trend depicted in the Figure 5.12. 

 

Figure 5.12 - Simulated anomalous behavior over one of the battery temperature 
measure telemetry (TMD019). 

 

Source: Author's production. 

 

In this step, as in the previous one, both data set were cleaned from trivial 

outlier, and normalized. The kernel functions assessed were the linear, sigmoid 

and poly. The outcome from such experiments is depicted in Table 5.7, where 
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the result of the clustering can also be observed. The result presented was 

obtained from the processing of training data set.  

 

Table 5.7 – KPCA output before and after DBSCAN clustering process for the 
CBERS1-Part2 case study. 

 
KPCA output DBSCAN output 

LINEAR 
KERNEL 

 

SIGMOID 
KERNEL 

 
 

POLY 
KERNEL 

 

Source: Author's production. 
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The hyperparameters settings made for the KPCA algorithm, apart from the 

kernel selection, was the number of feature in the output data set, making the 

gamma being equal to 1/N, where N is the number of features of the input data 

(default value from the algorithm implementation). The epsilon and minPts 

hyperparameters for the clustering algorithm were calculated using the "elbow 

method" (RAHMAH; SITANGGANG, 2016) together with the thumb rule for 

minPts definition. The values calculated for the eps are presented in Table 5.8. 

 

Table 5.8 – Epsilon and minPts values for the different clustering and different input 
data sets. 

Kernel function used 
for dimensionality 
reduction 

Eps MinPts 

Linear 0.7818109785966095 

6 Sigmoid 0.122557620970987 

Poly 0.2169080273124639 

Source: Author's production. 

 

This time, there was no concern or requirements when comes to the number of 

clusters identified, there was also no assessment for identify which cluster 

would represent which behavior. The visual analysis and therefore, the 

assessment of the anomaly detection capabilities were made over the plot of 

the output of the DBSCAN as a line-plot, where the cluster-indexes are the y 

axis, and the observation indexes are in the x axis. The assumption made for 

performing such assessment was that the cyclic behavior profile observed in 

many telemetry signals coming from the PSS would be reflected in the 

clustering output, in form of different clusters for different profiles of behavior. In 

other words, the plot of the cluster-indexes is capable of reproduce the 

characteristic behavior of the satellite subsystem. Such assessment was made 

for all the kernel functions experimented, for the DBSCAN hyperparameters 

setting by elbow method and for the silhouette score method, however, since 
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the result obtained using the elbow method was better, they are presented in 

Table 5.9. 
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Table 5.9 – Outcome of the normal behavior modeling. 

Original 

Telemetry signal 

 

Poly Kernel+ 

DBSCAN 

 

  

continue 
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Table 5.9 – Continuation. 

Original 

Telemetry signal 

 

Linear Kernel+ 

DBSCAN 

 

  

continue 
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Table 5.9 – Conclusion. 

Original 

Telemetry signal 

 

Sigmoid Kernel+ 

DBSCAN 

 

Source: Author's production. 

 
 
 
 



95 
 

The same dimensionality reduction algorithm drove by different kernel functions 

over the same input data resulted in different output data sets, these will be 

from now on referred as "kernel function" datasets, i.e., poly-kernel dataset. 

Given the difference between the kernel datasets, different eps values were 

found.  

During the experiments with the DBSCAN algorithm, it was noticed that the 

algorithm is very sensitive when comes to eps value variations, so, it was 

expected as well that the outcome from the DBSCAN running with different eps 

values over different input kernel datasets would produce different outputs. This 

is confirmed when by the number of clusters identified in each experiment. 

While the poly-kenel dataset clustering resulted in 7 clusters, being one of them 

the cluster defined for noise or outlier observations. The sigmoid-kernel dataset 

clustering resulted in only 3 clusters, being one of them, the noise cluster. Such 

difference could also be noticed in the 3-dimensional plots in Table 5.7. 

However, even though the number of clusters found has a big variation among 

the experiments, looking at the plot of the outputs, it is possible to notice that 

the cyclic behavior from the satellite telemetries is presented in every each of 

those. As the training set used at the beginning of the process presents the 

considered normal satellites behavior, it can be said this outcome demonstrates 

that the clustering algorithm, tuned with the given hyperparameters was capable 

of provide an output signal modeled as the satellite's normal behavior.  

On achieving the above presented result, the next step is to validate the setup 

for the clustering algorithm, using the validation data set containing an "original" 

anomalous behavior. The outcome of this new step of the experiment is 

depicted in Table 5.10. 
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Table 5.10 - Outcome of the validation of the model against an original anomalous behavior. 

Original 

Telemetry signal 

 

Poly 

Kernel+DBSCA

N 

 
  

continue 
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Table 5.10 – Continuation. 

Original 

Telemetry signal 

 

Linear Kernel+ 

DBSCAN 

 
  

continue 
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Table 5.10 – Conclusion. 

Original 

Telemetry signal 

 

Sigmoid 

Kernel+ 

DBSCAN 

 
Source: Author's production. 
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The anomalous behavior presented in some telemetry signals from the 

validation dataset were detected by the DBSCAN. It is possible to identify in all 

the output plots depicted in Table 5.10, that in the same time window where the 

anomaly happens in the original dataset, the output of the clustering presents 

an increase in the cluster-index number, depicting where there are data points 

grouped together that form a cluster according to the setting;  however, there 

are not part of cluster which groups the most of the data points. In other words, 

assuming that the normal behavior is the one found by the clustering in the 

modeling phase, the data points, which doesn't belong to the normal cluster and 

are assigns to higher indexes cluster, are by exclusion anomalous data points. 

However, the index value does not mean severity but a classified behavior or 

trend of the data, so the increasing of the cluster-index, making the curve gain 

some amplitude, means actually that, in that moment maybe another 

anomalous behavior was identified, pointing out the normal behavior spectrum 

was identified and therefore, had been assigned to a cluster. 

All the results depicted in Table 5.10, obtained during the validation against the 

original anomaly on the telemetry, had a fairly good result. Although the poly-

kernel and linear-kernel outcomes were more representative than the outcome 

from the sigmoid-kernel. On analyzing the original data, it is possible to identify 

that the amplitude of the signal suffered an attenuation, which is depicted by the 

two other process (poly-kernel and linear-kernel) results, when those assigned 

a different cluster-index for those observations after the index 800. 

A last experiment was then performed in order to try out the obtained model 

against a simulated anomalous behavior injected in one of the telemetries 

holding the batteries temperature. This new validation set, made by the 

concatenation of the original validation set and the telemetry signal with the 

injected fault, was preprocessed by the KPCA and then by the DBSCAN 

algorithm. The outcome of the last experiment is depicted in Table 5.11. 
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Table 5.11 - Outcome from the second validation made against additional injected failure. 

Original 

Telemetry signal 

 

Poly 

Kernel+DBSCAN 

 

 continue 
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Table 5.11 – Continuation. 

Original 

Telemetry signal 

 

Linear Kernel+ 

DBSCAN 

 

  

continue 
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Table 5.11 – Conclusion. 

Original 

Telemetry signal 

 

Sigmoid Kernel+ 

DBSCAN 

 

Source: Author's production. 
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This last experiment has shown that only the poly-kernel succeeded to identify 

the injected anomalous behavior. Matter of fact, this configuration was the only 

one capable of identifying all the anomalous behavior presented on to the given 

validation dataset. A reason that might explain such unexpected outcome from 

the two kernel approaches failed is shown in Table 5.7. In both cases, linear-

kernel and sigmoid-kernel, there are just a few clusters identified, which means 

that, the DBSCAN algorithm assigned many points to the same group (cluster), 

this way, generating big groups that end up erroneously mimic the satellite's 

behavior. One of the reasons of the fail might come from the clustering 

algorithm was not able to identify differences in certain data. The other possible 

reason is that the linear and sigmoid kernel functions used with the KPCA were 

not adequate to well separate the input data, which translate in a hard work for 

the clustering and even bad clustering result. 

Another evidence is that there is no optimal hyperparameter that can be used 

for all types of datasets, as the results show that each dataset favors tuning, 

and this result complies with the "no-free-lunch theorem". 

5.3 SCD2 case study 

In the SCD2 case study, when taking the telemetry data for the Data 

Preparation step, the number of observations for a given period of time was 

absurdly high.  For example, the number of observations made between 

1/1/2015 and 1/7/2015 is more than 105.000 samples, against the 271 samples 

of a similar time window from the CBERS1 telemetry data set. This difference of 

around 400 times the amount of data imposes some constrains on the 

processing of such mass of data. KPCA algorithm is unable to manage the 

amount of data.   

The resource constraint imposed in this situation comes from the limited 

computational resource available currently for running the research 

experiments. Personal notebooks, tends to not have a hardware specification 

needed to be a working station. For example, in order to perform a 

dimensionality reduction over an already reduced set of features from the SCD2 

data set, reducing from 6 dimensions to 3 dimension, using the KPCA 
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algorithm, in a time window of nearly one week, as depicted in the Figure 5.13, 

would need an amount of 85 GB  memory for computing such task. Such 

capacity is usually not available in mid to high level personal notebooks. Figure 

5.13 shows also the error message “Unable to allocate 85 GiB for an array”  

issued by the KPCA algorithm. 

 

Figure 5.13 - Error message issued by the KPCA algorithm. 

 

Source: Author's production. 

 

The memory resource request comes from an inherent characteristic of how the 

KPCA calculates the Kernel matrix, which is NxN matrix, being N the number of 

data points or observations, making the process very costly for big data sample 

as the one mentioned here. The data set of the SCD2 are in .CSV format and 

the process of loading it into the memory for performing the data science 

process also consumes a valuable amount of memory and sometimes the 

process is not possible due the size of the file.  

Studies in the literature propose ways to overcome drawbacks from the KPCA 

algorithm through another training algorithm in order to have more 

computational efficiency (ZHENG; ZOU; ZHAO, 2005; WANG; HU; ZHAO, 

2006), when comes to processing large data sets. However, the technical 

constraints regarding the algorithm’s implementation availability or their back-

draws, such as the difficult of processing too big data set by KPCA algorithm, 

imposed limitations that were not planned to solve by this dissertation since 

developing or implementing tools for machine learning is out of the scope of this 

dissertation.  

The experiments made with the data from the SCD2 satellite stopped during the 

machine learning model development phase due to resources constraints and 
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technical obstacles. However, the process can be improved and modified in 

futures works to be capable of handle such kind of data characteristics.  
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6  CONCLUSIONS 

The research work developed in this dissertation demonstrated that it is 

possible to detect anomalies in the behavior of a satellite subsystem using data-

driven machine learning techniques to generate models from telemetry data. 

Moreover, all the results were obtained on making usage of off-the-shelf tools 

aiming to reduce cost with the development of such kind of tools. Another 

achievement was to show how a machine learning process enables 

improvement on  the activities in a Satellite Control Central with tools to reduce 

operator's effort when comes to satellites telemetry data analysis. 

6.1 Main contributions 

The main contribution of this study was to propose a data science approach to 

provide support to artificial satellites operation in anomaly detection task.  

Even though, the study does not cover how the data science approach will be 

implemented or used by the end users, it indicated that different instances of 

the present approach running from different machines could be capable of 

assess the behavior of different subsystem of the satellite, triggering alarms 

when the behavior of the given subsystem would not conform the normal. 

For INPE’s Satellite Control Center (CCS), one of the main stakeholders from 

this work, the machine learning process proposed showcases an approach that 

can be implemented alongside other existing system to provide support and 

facilitate the work of those involved in satellite operations related activities. 

For the academia, the proposed process adds one more brick of knowledge to 

the hall of anomaly detection proposed frameworks, demonstrating the 

capabilities and constraints achieved when using a density-based clustering 

algorithm associated to preprocessing methods for satellite telemetry data 

analysis. Furthermore, this work contributes with information and knowledge in 

the anomaly detection area of study for the space systems application domain. 

For the correlated works, the results present pathways, possibilities and 

demonstrates as well possible pitfalls to be avoided in the application of certain 

techniques in this application domain. 
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Furthermore, Table 6.1 shows the summary of the published, and currently 

expecting to be published articles that resulted either directly from this work or 

from the wider master’s effort. 

 

Table 6.1 - Resulting published work. 

Name QUALIS 
SCOPUS 

Percentile 
Status 

2nd IAA LASSS 2019 Conference - Published 

WETE 2021 Conference - Published 

IEEE Latin America 

Transactions 
B2 61% Submitted 

IEEE Systems Journal A2 88% Writing 

Source: Author's production. 

 

6.2 Future work 

As future work it is recommended the performance of more tests and validation 

of the proposed process against other failure scenarios, in order to raise the 

capabilities and constraints of it. Define the use cases for it and optimize the 

algorithms. 

Investigations on designing an architecture or a framework where the proposed 

process would fit the current system under usage by the operators would add 

value to satellite operation processes. Moreover, it would be important turn the 

process into a tool with a well-defined interface for users and other systems, so 

it would be a natural step to make this work more tangible to the CCS’s 

operation team. 

Researches at INPE on model-based system design and model-based tests 

fields can combine solutions to propose a model-based failure diagnosis 

approach to have a complete health monitoring system for the operated 

satellites 
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APPENDIX A – USED LIBRARIES  

This study made usage from the following open-source python libraries:  

 General data manipulation 

o Numpy; 

o Pandas; 

o Scipy; 

o Random, and; 

o Embedded python functions. 

 Plots and graphs generation 

o Matplotlib; 

o Seaborn; 

o Plotly. 

 Data science processing and algorithm 

o ScikitLearn, and following modules: 

 DBSCAN from cluster 

 NearestNeighbors and KNeighborsClassifier from 

neighbors 

 Confusion_matrix and silhouette_score from metrics 

 Train_test_split from model_selection 

 StandardScaler from preprocessing, and 

  PCA and KernelPCA from decomposition 
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