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ABSTRACT

MATOPIBA is an agricultural frontier, located mainly in Cerrado. MATOPIBA is
an acronym for its location over: Maranhão, Tocantins, Piauí and Bahia states. In
this region, fires are essential for its biodiversity maintenance. However, the increase
in its recurrence and intensity, as well as accidental fires can lead to socioeconomic
and environmental losses. Due to this dual relationship with fire, near real-time
fire management is required throughout the region. In this context, we developed,
to the best of our knowledge, the first Machine Learning algorithm based on time
series obtained from GOES-16 ABI, an optical sensor able to detect and monitor
Active Fires in near real-time in MATOPIBA. ABI is onboard GOES-16, and it
presents 16 spectral bands, with a nominal spatial resolution of 2 km at nadir,
and a full disk image every 10 minutes over Americas. To do so, we analyzed the
best combination of three Machine Learning algorithms and how long it takes to
consider a historical time series able to support accurate active fire predictions. We
used the most accurate combination for the final model development. The results
show that the final model ensures an overall accuracy rate of approximately 80%.
The final model potential is remarkable not only for single detections but also for
a consecutive sequence of positive predictions. Roughly, the final model achieves an
accuracy rate peak after around 20 h of consecutive active fire detections, but there
is an important trade-off between the accuracy and the time required to assemble
more fire indications, which can be decisive for firefighters in real life.

Keywords: Active Fires. Wildfires. Time Series Analysis. Machine Learning.
Geotechnologies.
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DETECÇÃO E MONITORAMENTO DE FOGOS ATIVOS QUASE
EM TEMPO REAL: DESENVOLVIMENTO DE UM ALGORITMO
DE MACHINE LEARNING PARA A REGIÃO DO MATOPIBA,

BRASIL

RESUMO

MATOPIBA é uma fronteira agrícola, localizada principalmente no Cerrado. A área
se chama MATOPIBA por ser um acrônimo da sua localização ao longo dos estados
do Maranhão, Tocantins, Piauí e Bahia. Nessa região, as queimadas são essenciais
para a manutenção da biodiversidade. No entanto, o aumento de sua recorrência e
intensidade, bem como incêndios acidentais podem acarretar prejuízos socioeconômi-
cos e ambientais. Devido à essa relação dupla com o fogo, o manejo do fogo quase em
tempo real é necessário em toda a região. Neste contexto, desenvolvemos, até onde
sabemos, o primeiro algoritmo de Machine Learning baseado em séries temporais
obtidas a partir do GOES-16 ABI, um sensor óptico capaz de detectar e monitorar
Fogos Ativos quase em tempo real no MATOPIBA. ABI está a bordo do GOES-16,
e apresenta 16 bandas espectrais, com resolução espacial nominal de 2 km no nadir,
e uma imagem completa a cada 10 minutos sobre as Américas. Para isso, analisamos
a melhor combinação de três algoritmos de Machine Learning e quanto tempo leva
para considerar uma série temporal histórica capaz de suportar previsões precisas
de fogos ativos. Usamos a combinação mais precisa para o desenvolvimento do mo-
delo final. Os resultados mostram que o modelo final garante uma taxa de acerto
geral de aproximadamente 80%. O potencial do modelo final é notável não apenas
para detecções simples, mas também para uma sequência consecutiva de previsões
positivas. A grosso modo, o modelo final atinge um pico de taxa de precisão após
cerca de 20 horas de detecções consecutivas de fogos ativos, mas há um importante
trade-off entre a precisão e o tempo necessário para reunir mais indicações de fogos,
o que pode ser decisivo para os bombeiros na vida real.

Palavras-chave: Fogo Ativo. Incêndios. Análise de Séries Temporais. Machine Lear-
ning. Geotecnologias.
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1 INTRODUCTION

Fire incidence has the potential to consume and modify large areas of vegeta-
tion (BOND et al., 2005), to decrease the surface-to-atmosphere water transfer, to
increase surface warming (IVO et al., 2020), and to release aerosol and gases that con-
tributes to global climate change (LASHOF, 1991; WERF et al., 2010). In Brazil, fires
are also an important source of air pollution with harmful health consequences (SILVA
et al., 2016). It has become a burden for the public health system (URIARTE et al.,
2009; ARAGÃO et al., 2020) owing to an increase in respiratory diseases during the
fire season (MACHADO-SILVA et al., 2020). The fire season is a period of the year when
the fires are most likely to occur (PIVELLO et al., 2021), which takes place mainly
during the transition from dry to the wet season, July-October (RISSI et al., 2017).

A staggering number of fires in 2019 and 2020 in different Brazilian biomes revealed
the national criminal fire management unpreparedness (PIVELLO et al., 2021), espe-
cially in August, 2019, when fires reached a turning point that was widely covered by
the media around the world (ALENCAR et al., 2020; BENCHERIF et al., 2020). Differ-
ent from the Brazilian Amazon and Pantanal biomes, fires in the Brazilian tropical
savanna Cerrado can be associated with both human land-use activities and natural
drivers (RAMOS-NETO; PIVELLO, 2000; FIDELIS, 2020). It is the easiest and cheapest
way to boost the fresh grass growth for cattle ranching, as well as to open new agri-
cultural areas (MIRANDA et al., 2002; KLINK; MACHADO, 2005; PIVELLO, 2011). At
the same time, natural fire ignitions can be caused by lightning (RAMOS-NETO; PIV-

ELLO, 2000), making Cerrado species adapted for fires. Without this phenomenon,
the region would be dominated by grasses, and over time, forest encroachment could
cause a biodiversity loss (ABREU et al., 2017). While human-induced fires are frequent
and intense, impacting the biodiversity and aboveground biomass, natural fires are
usually rapid, have low intensity and do not spread over large areas. In addition, nat-
ural fires occur every 3-6 years, maintaining the regional biodiversity and ecological
processes (PIVELLO et al., 2021). Thus, Cerrado presents a singular dual relationship
with fire: its incidence is necessary for biodiversity preservation (FIDELIS et al., 2018;
FIDELIS, 2020), but the increase in its recurrence and intensity, as well as accidental
fires, has the potential to cause negative social, economic and environmental im-
pacts (MIRANDA et al., 2010; PIVELLO, 2011). Nonetheless, different from what was
speculated, meteorological conditions did not play a role in the increasing number
of fires in 2019. Instead of that, changes in Land Use and Land Cover (LULC) are
likely to be the main drivers (KELLEY et al., 2021).
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Cerrado is a global biodiversity hotspot (DAMASCO et al., 2018). Even though, nearly
half of its original vegetation has already disappeared, mainly due to advancing agri-
cultural frontiers (SCHMIDT; ELOY, 2020). Brazil’s most recent agricultural frontier
is located in northern Cerrado, in a region known as MATOPIBA (an acronym for its
location over: Maranhão, Tocantins, Piauí and Bahia states) (MIRANDA et al., 2014).
MATOPIBA contains 38% of the Cerrado biome, and it has experienced almost half
of Cerrado’s deforestation (INPE, 2022). Besides, MATOPIBA presents, at the same
time, the largest undisturbed remnants of Cerrado vegetation and a quarter of the
Cerrado’s soybean area (MIRANDA et al., 2014; SOTERRONI et al., 2019), both im-
portant for environmental and economic issues, respectively. Nonetheless, over the
last decade, the combination of climate change and land-use change has severely
increased drought conditions in the region, which contribute to a higher fire risk,
mainly during the fire season (MARENGO et al., 2022), and jeopardize biodiversity
and food security.

Given that fire has a dual-character in Cerrado and that it is considered a highly
dynamic phenomenon, the use of near real-time (NRT) remote sensing datasets avail-
able from geostationary satellites has provided promising results for fire monitoring
in this biome (PLETSCH et al., 2019). Even though such datasets usually present
a trade-off between spatial and temporal resolutions (WOOSTER et al., 2021), the
Advanced Baseline Imager (ABI) onboard the new generation of Geostationary Op-
erational Environmental Satellite-R (GOES-R) Series was designed to overcome it
by improving spatial, temporal and radiometric characteristics of the previous GOES
Imager (SCHMIT et al., 2005; SCHMIT et al., 2017). GOES-16 ABI can be considered
an ultrahigh temporal resolution sensor, with temporal resolution of 10 minutes, and
spatial resolution from 0.5 to 2 km (NOAA AND NASA, 2022b). Although ABI as well
as others geostationary satellite sensors are available, they are yet underused (ABDI

et al., 2022).

Due to the data deluge, high velocity production and Earth surface target diver-
sity (LANEY et al., 2001), the ABI dataset can also be considered big data. While
it presents a vast amount of unexplored information, its access, process, and com-
prehension become impossible by means of traditional methods that rely on hand-
made procedures. To overcome this challenge, scientists (from NASA/FIRMS por-
tal (NASA, 2021) and INPE/Fire Monitoring Program (INPE, 2021)) have been devel-
oping algorithms and Machine Learning (ML) models using different remote sensing
data for fire detection and monitoring, and releasing the results to support fire
management. Although some developments were already done for ABI, they were
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developed based on the previous sensors. An example is the Fire Detection and
Characterization Algorithm (FDCA), which was created based on the Wildfire Auto-
mated Biomass-Burning Algorithm (WF-ABBA) (SCHMIDT et al., 2010). Currently,
FDCA has been undergoing validation and refinement (SCHMIDT, 2019; SCHMIDT,
2020). However, some authors have indicated that the reliable AF detection chal-
lenge remains (HALL et al., 2019; LI et al., 2020), once it is necessary to adapt the
algorithms to the current sensor characteristics (CHUVIECO et al., 2020; HALL et al.,
2019). Besides, the lack of ground truth data also is a hindrance for the validation
process (SCHMIDT, 2019).

The Moderate Resolution Imaging Spectroradiometer (MODIS) (GIGLIO et al., 2016)
and the Visible Infrared Imaging Radiometer Suite (VIIRS) (SCHROEDER et al.,
2014) present well-designed and already established fire products. Nonetheless,
MODIS’ temporal resolution, when considering both Aqua and Terra satellites, is
four times a day, whereas VIIRS is only twice a day. Even when MODIS and VIIRS
data are used together, it does not provide an NRT dataset.

Therefore, to ensure Brazilian biodiversity by means of fire management, we devel-
oped, to the best of our knowledge, the first ML algorithm (hereafter, Final Model-
FM) able to detect and monitor Active Fires (AF) in NRT in MATOPIBA. FM uses
GOES-16 ABI imagery and is focused on the LULC of Natural Formation, which
is composed of Natural Forest, Savanna Formation, and Grasslands. For the FM
development, we first analyzed the performance of three ML algorithms and estab-
lished how much historical data (expressed in days, hereafter called lag) from before
a fire event the FM is required to make accurate AF classifications. Then, the most
accurate algorithm and lag were selected for the FM development. In this process,
we used MODIS and VIIRS AF products for comparison as reference satellites and
filtering purposes and manually mapped BA on Sentinel-2 imagery. This procedure
was required to have access to the most reliable fire data possible. In addition, its
finer spatial resolution data (10-20 m) are commonly used for validation processes
from coarser-resolution satellites (LI et al., 2020).

The novelty of this study is mainly regarding the development of a Machine Learn-
ing model and the use of an ultrahigh temporal resolution dataset of 10 minutes.
In addition, it also complements the literature by comparing ML models for AF
detection and monitoring and the comprehension of how much historical data are
required to train an ML model to accurately classify AF. Finally, we also present
in this thesis, to the best of our knowledge, the first analysis of the nature of fire
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based on the Aristotle’s four causes (material, formal, efficient, and final), which is
essential to have a complete comprehension about fires.

1.1 Objectives

Considering the importance of ensuring the Brazilian biodiversity by means of fire
management and the gaps presented, the central goal of this thesis is to develop,
to the best of our knowledge, the first ML algorithm (hereafter Final Model - FM)
based on GOES-16 ABI sensor able to detect and monitor Active Fires (AF) in NRT
in MATOPIBA’s Natural Formations.

Furthermore, this thesis aims at answering the following research questions:

• What is the overall performance of the FM? Does Land Used and Land
Cover (LULC) play an important role in FM accuracy?

• Does the size of the burned area (BA) influence the FM accuracy? Is the
FM influenced by BA found in the surroundings of a central ABI pixel
grid?

• What is the potential of FM considering a sequence of positive fire predic-
tions? What is its agreement with MODIS and VIIRS dataset?

• Assuming that we have a certain number of consecutive AF detections by
FM, what is the fire reality in the remaining data along MATOPIBA?

• How does FM perform in detail considering single detections, the reference
satellites and the manually mapped BA along the time?

To answer these questions, we organized the thesis in seven specific objectives:

• Chronologically structure ABI data in the known Data Cube;

• Develop algorithms able to apply and validate the ML models in large
datasets in automated processes;

• Identify among three ML algorithms, Random Forest, Logistic Regression
and Extreme Gradient Boosting, which is the most suitable for fire detec-
tion and monitoring;

• Analyse how many days (lag) are indicated to consider in a historical time
series able to support accurate fire predictions;
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• Manually develop a burned area mapping based on Sentinel-2 able to sup-
port the FM assessment;

• Develop a FM (based on the most indicated ML algorithm and lag) able
to support the monitoring of fires in the daily activities of fire managers;

• Comprehend FM potential and variables that influence its performance.

1.2 Thesis outline

This thesis is divided in 5 chapters. Firstly, we present a general background about
the main issues already presented (Section 2). After that, we present the methodol-
ogy (Section 3), followed by results (Section 4), and discussions (Section 5). Finally,
we present in Section 6 the conclusions and recommendations for future work.
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2 LITERATURE REVIEW

In the first subsection of this chapter, we present a literature review about Cerrado,
its fire studies and initiatives for fire management in the region. In the second
subsection, we explain, as far as we know, for the first time the fire causality based
on the Aristotle’s four (be)causes, answering the paramount question: Why does
fire comes into existence? In the same section, we also explain the fire regimes, fire
behaviour and wildfires.

After that, we present the whole conundrum related to fire monitoring, remote sens-
ing, time series, data cube, data mining and machine learning. In the last section,
we bring a literature review about the related works, such as the use of ABI and
ML for fire management in and out of Cerrado. It is important to highlight that in
order to avoid citations redundancy, the complementary bibliography is presented
in the different sections of the chapter Results.

2.1 Cerrado biome

The Cerrado is the second largest biome in South America, with more than 2 mil-
lion km2, and about 24% of the Brazilian territory (RIBEIRO; WALTER, 2008; MMA,
2009) (Figure 2.1). This biome extends over the Federal District and the states
of Goiás, Tocantins, Maranhão, Mato Grosso do Sul, Minas Gerais, Mato Grosso,
Piauí, São Paulo, Bahia, Paraná and Rondônia.

Comprehending 22.4◦ in latitude, Cerrado varies considerably, from the sea level
to 1,800 m of elevation (SANO et al., 2010; MMA, 2014). According to the cli-
mate Köppen-Geiger classification, Cerrado predominantly presents dry winter
(Aw), April-September, and hot summer (Cwa), October-March (PEEL et al., 2007;
RIBEIRO; WALTER, 2008; ALVARES et al., 2013). Considered a savanna, this hetero-
geneous environment presents average annual precipitation ranging from 1,300 to
1,600 mm, and temperature of 20,1 ◦C (RIBEIRO; WALTER, 2008), yet both vary
over the years (FERREIRA et al., 2018).
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Figure 2.1 - Map of Brazil and the Brazilian States with highlight in the green of the
Cerrado biome.
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Cerrado holds the richest biodiversity among the tropical savannas (SANO et al.,
2010), especially regarding the flora. That is mainly because of the high range
of edaphic-climatic factors, which results in a diversity of plant-available moisture
regime, latitude, chemistry of the soil, geomorphology, topography, and frequency
of fire processes (CIANCIARUSO et al., 2005; RIBEIRO; WALTER, 2008). As a result,
Cerrado presents 11 different types of physiognomies, varying from open cerrado
grasslands (e.g. Open Grassland - Campos Limpos) to dense cerrado woodland (e.g.
Tall Woodland - Cerradão) (Figure 2.2) (RIBEIRO; WALTER, 2008). These vegetation
types vary both spatially and temporally. Spatially due to the Cerrado extension,
and temporally by means of the season influences. Moreover, about 70% of the alive
biomass is underground, representing thus an important storage of carbon (CASTRO;

KAUFFMAN, 1998; KLINK; MOREIRA, 2002; MMA, 2014).
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Nonetheless, the role of Cerrado is not limited to biodiversity, it also includes food
security (KLINK; MOREIRA, 2002). Currently, Cerrado is one of the top grain and
beef-producing regions in the world (PEREIRA et al., 2012). Even though in a first
moment the Cerrado was considered unsuitable for cultivation, with the technologi-
cal advances in the recent decades it has become an agricultural frontier, especially
in the in the northern Cerrado, in a region known as MATOPIBA (an acronym of
its location along: Maranhão, Tocantins, Piauí and Bahia states) (MIRANDA et al.,
2014).
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Figure 2.2 - Vegetation physiognomies in the Cerrado biome. In a biomass gradient, from
the smallest - grasslands and savannas, to the largest forest formations, from
the left to the right, respectively.
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Although MATOPIBA is mainly located in Cerrado, it also embraces a small portion
of Amazonia and Caatinga biomes, covering an area of approximately 730.000 km2,
which is two times larger than Germany. MATOPIBA presents, at the same time,
the largest undisturbed remnants of the Cerrado vegetation and a quarter of the
Cerrado’s soybean area (MIRANDA et al., 2014; SOTERRONI et al., 2019), equally
important for environmental and economic issues.

From this perspective, biodiversity and agriculture aspects unravel Cerrado’s im-
portance, yet only 6% of its native vegetation is located in integral protection ar-
eas1 (FRANÇOSO et al., 2015). The severe changes in Land Use and Land Cover
(LULC) in the last few decades have been threatened Cerrado (FEARNSIDE, 2001;
BEUCHLE et al., 2015). Currently, it is estimated that only about 52% of Cerrado’s
vegetation remains (INPE, 2018a), and that the main driver of Cerrado conversion
is the agricultural expansion (GIBBS et al., 2015).

Along the region, the indiscriminate use of fire to boost fresh grass growth
and to open new agricultural areas is an important source challenge to over-
come (COUTINHO, 1990; KLINK; MACHADO, 2005; MMA, 2014). This is especially
true during the dry season, since there is a precipitation deficit and extreme veg-
etation conditions (MATAVELI et al., 2018). To support the mapping of fire, the
Brazilian INPE/ Programa Queimadas 2 is the main initiative that uses RS data to
continuously detect, monitor, and store the AF data. Coordinated by the Brazil’s
National Institute for Space Research (INPE), the Program uses RS data provided
by 19 different satellites, and its database also provides the detection mapping since
1998 (INPE, 2018b). According to the dataset, in August, 2019, a total of 560,000
AF were identified in Cerrado (INPE, 2018b). However, fire detection in the region
is complex because of its heterogeneity. Due to such an amount of AF, we selected
August, 2019, to work in this study.

2.1.1 Fires in Cerrado

The interest in the effects of fire in Cerrado biome date back to the 1970s, and
the idea of an integrated and cooperative project with such purpose was born in
1985, yet just in 1988, effective and extensive studies were conducted under the Fire
Project (DIAS; MIRANDA, 2010). Since then, even though some issues are contro-
versial and gaps remain, a lot of knowledge has been gathered. For instance, due

1Government states that this sum is of 9% instead of 6%, but the 3% remaining difference
corresponds to deforested areas according to Françoso et al. (2015).

2https://queimadas.dgi.inpe.br/queimadas/portal
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to the lack of a deep research on the problem, firstly, it was thought that the fire
incidence was strictly human induced (COUTINHO, 1990; NASCIMENTO, 2001; DIAS;

MIRANDA, 2010). However, fire signs date before the human establishment in the
region (FERRAZ-VICENTINI, 1999; NASCIMENTO, 2001; MIRANDA et al., 2009), indi-
cating the presence of natural fires. In this context, natural and human induced fire
processes coexisted for more than 10,000 years in the region (MIRANDA et al., 2010;
PIVELLO, 2011).

In Cerrado, natural fires are caused by showers with thunderstorms and light-
ning (RAMOS-NETO; PIVELLO, 2000). Besides, Brazil is one of the countries with
the highest incidence of lightning, and the numbers have been increasing probably
due to climatic events (PIVELLO, 2011). Such amount of lightning events also has
the potential to influence the fire incidences in Cerrado. Rarely consuming taller
woody plants, the fires in Cerrado occur normally on the surface level (MISTRY,
1998; MIRANDA et al., 2009), and in a high speed, presenting a velocity between
0.2 ms−1 and 0.5 ms−1, with the potential to be faster according to the environment
conditions (COUTINHO, 1990; MIRANDA et al., 2010). Without the incidence of fire in
this environment, grasses may dominate the region, making it inappropriate for the
rich fauna in Cerrado. For instance, fire enables the regrowth of several herbaceous
stratum species, producing a suitable habitat for species such as the pampas deer
(veado-campeiro) (ROSS, 1996). Moreover, in areas with fully forest encroachment,
the loss reaches 27% in plant species, and 35% in ants (ABREU et al., 2017).

Cerrado presents an adapted environment to fire processes with morphological and
physiological vegetation adaptations (PIVELLO, 2011; DURIGAN; RATTER, 2016).
Nevertheless, human induced fires are more intense and frequent, impacting this
environment on different levels, including biodiversity, nutrient cycling, and human
health (COUTINHO, 1990; MISTRY, 1998; NASCIMENTO, 2001; MMA, 2009; MMA,
2014). Yet it is also used for hunting by indigenous (ANDERSON; POSEY, 1987;
LEEUWENBERG; SALIMON, 1999; MELO, 2004). Currently, fire is the easiest and
the cheapest way of land management. It enables the boosting of fresh grass growth
for cattle ranching, and can also be used to open new agricultural areas (ROSS, 1996;
MISTRY, 1998; RAMOS-NETO; PIVELLO, 2000; NASCIMENTO, 2001; MIRANDA et al.,
2002; KLINK; MACHADO, 2005; PIVELLO, 2011).

Between 2003 and 2012, all the physiognomies presented an average superior to
7,500 AF per year (MMA, 2014). As identified by Coutinho (1990), fires in the Cer-
rado biome usually begin in May and reaches a peak in August. Almost 30 years
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after Coutinho (1990) publication, it was also reported that the incidence of fire is
concentrated in the dry season presenting variations within the biome, but mainly
in September and October, since there is a precipitation deficit and extreme vegeta-
tion conditions (MATAVELI et al., 2017; MATAVELI et al., 2018). From both points of
view, the interval between August and October presents the potential to affect huge
areas, due to the low relative air humidity during the hottest hours of the day. In
this manner, due to human interferences, fire processes in the region have changed.

The frequency of natural fire incidence in Cerrado is estimated to occur from one to
nine years or more, while the interval of burn occurrence induced by humans drops
from one to four years (COUTINHO, 1990). In such a way, since the earliest times, the
main cause of fire in the Cerrado is human induced, as well as worldwide savannas’
trends (ARCHIBALD et al., 2012).

2.1.2 Fire management initiatives in Cerrado

As a response to the lack of conservation approaches until the beginning of the
century (NASCIMENTO, 2001; SILVA et al., 2006), different efforts have been recently
made in order to manage the threats faced by Cerrado. However, efforts to moni-
tor and manage the changes in LULC in Cerrado have been yet overlooked when
compared with Brazilian Amazon (KLINK; MACHADO, 2005; BEUCHLE et al., 2015;
STRASSBURG et al., 2017).

Due to the dual character of fire, which is necessary for the environmental manage-
ment and at the same time destructive if more frequent and intense, Zero-Fire public
policies were the source of intense discussions, once it aimed the total avoidance of
the incidence of fire in Cerrado. On the one hand, fire processes control and support
the development of a range of plants. Besides, longer periods without fire enable the
increase of dead biomass, invasive grasses, and consequently the gathering of fuel
load, which may lead to wildfires3 mainly towards more open physiognomies once
it is more fire prone than forest patches. In Cerrado, regardless of fire season, the
percentage of dead fuel (mainly dead biomass of graminoids), is one of the most
important variables related to fire intensity and flame height (RISSI et al., 2017).
That means that the frequency of fires is inversely proportional to their intensity,
and Zero-fire policies are not indicated (AGEE, 1998; RAMOS-NETO; PIVELLO, 2000;
MORGAN et al., 2001; KLINK; MACHADO, 2005; FRIZZO et al., 2011; FIDELIS et al.,
2018).

3Fire that is out of control (WHELAN, 1995).
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Some governmental efforts implemented early dry season prescribed burning in pro-
tected areas with the objective of reducing the area and severity of late dry season
fires (FRANKE et al., 2018). However, the main factors influencing fire intensity in
areas with fire exclusion for two years are the dead fuel and fuel load, not the fire
season (RISSI et al., 2017). In this manner, it would be suitable to control cool fires
every four to six years in order to reduce fuel (PIVELLO, 2011), yet there is not a
consensus about the most ideal practice. Since fire presents different perspectives,
studies that focus on comprehending and gathering knowledge about fire charac-
teristics are essential in order to support solid public policies and a suitable use
of fire by local managers (MISTRY, 1998; RAMOS-NETO; PIVELLO, 2000; DURIGAN;

RATTER, 2016; FIDELIS et al., 2018).

Besides, such initiatives have been made aiming to increase the adoption of sus-
tainable practices and systems for agriculture in degraded or abandoned areas, for
instance, through the training of technicians, farmers, and students in low carbon
agricultural practices, reducing the use of fire. Furthermore, adaptive fire manage-
ment actions were implemented considering its social, ecological, and economic im-
portance through the hiring and training of fire fighters at different government
levels, and the deployment of two operational bases for preventing and fighting for-
est fires (MMA, 2009; MCTIC, 2017).

A prominent example of a governmental policy is the Action Plan for the Prevention
and Control of Deforestation and Forest Fires in the Cerrado (PPCerrado) (MMA,
2009). Created in 2010, PPCerrado is an instrument of the National Policy on Cli-
mate Change - PNMC (Law No. 12,187/2009). Aiming to reduce deforestation, for-
est degradation, and incidence of forest fires in the Cerrado biome, it presents three
main action axes: i) Monitoring and Control; ii) Protected Areas and Land Use
Planning; and iii) Fostering Sustainable Activities. As a consequence of its imple-
mentation, progress has been achieved from 2010 to 2015. For instance, a systematic
monitoring of the changes in LULC has been enhanced through the TerraClass Cer-
rado project by means of a solid methodological protocol, providing information for
decision makers and public policy (MMA, 2015).

Currently, the regulation of the fire use for ecological purposes is also present in
the Law for Protection of Native Vegetation (Law 12.651/2012) and the Brazilian
Integrated Fire Management Policy Bill (PL 11.276).
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2.2 Fires

2.2.1 The nature of fire

Explaining the fire taxonomy is essential in order to have a deeper knowledge about
the nature of the fire and its further developments. In the context of the science
of nature, the Aristotle’s four causes, also known as the four (be)causes or the
four whys MacLennan (2018), were selected for a broader understanding of the fire
phenomenon (Table 2.1). The four causes are: i) material cause: that out of which
something comes to be (what something is made of); ii) formal cause: the form
(essence, shape, or appearance); iii) efficient cause: the starting-point (agent of the
event); and iv) final cause: for the sake of which an event comes out (end/goal of
the event) (REECE, 2019).

Table 2.1 - Aristotle’s four causes of fire.

Cause Definition Fire cause

Material

that out of which
something comes to be

(what something
is made of)

Chemical reaction of
oxygen, heat, and fuel

Formal the form (essence,
shape, or appearance)

Depends on the sensor.
It can be seen through
visible flames according

to the human eyes,
and heat release by

remote sensing sensors
on board satellites

Efficient the starting-point
(agent of the event)

Natural and
human induced

Final

for the sake of
which an event

comes out (end/goal
of the event)

Natural: discharge of
electricity

Human induced: land
management and hunting

Source: Author’s own elaboration.

The material cause of fires is the chemical reaction of oxygen, heat (ignition temper-
ature), and fuel, which is commonly known as the fire triangle. Once the combustion
chain reaction is also a requirement for the fire, this concept can also be incorporated
as the so called fire tetrahedron. For the combustion, it is necessary that the fuel is
heated enough to achieve its ignition temperature.
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In order to support the comprehension of fire incidence on biomes (wildfires), the
fire triangle was also adapted, for instance, formed by topography, fuel (vegeta-
tion), and air mass (COUNTRYMAN, 1972). In Table 2.2, we developed an adapta-
tion for the here called wildfire triangle, which was based on different authors (Ta-
ble 2.2) (MORITZ et al., 2005; FALK et al., 2007; PARISIEN; MORITZ, 2009; MCKENZIE

et al., 2011; GOMES et al., 2018). Such elements influence the fire aspects (fire be-
haviour) (CRUTZEN; GOLDAMMER, 1993), and it presents a very high spatiotemporal
variability (MCKENZIE et al., 2011; LEHMANN et al., 2014).

Table 2.2 - Fire and wildfire material cause elements, and their influential factors.

Fire
triangle
elements

Wildfire
triangle
elements

Example

Heat/
Ignition

Topography
(landform)

Topographic effects
and influences on fire spread
(Slope, aspect, elevation)

Fuel Vegetation
(landscape)

Fuel biomass condition, postfire
recovery, and distribution

(fuel sizes and chemical composition)

Oxygen

Air mass
(microclimate,

weather,
climate)

Temperature, wind,
relative humidity, cloud cover,
precipitation, air stability

Source: Based on Batchelder and Hirt (1966), Countryman (1972), Moritz et al. (2005), Falk et
al. (2007), Parisien and Moritz (2009), McKenzie et al. (2011), and Gomes et al. (2018).

The formal cause of the fire is the flames, whose matter consists mainly of hot
gases. In the process of combustion, there is the release of heat, light, and other
reaction products (gases) in the form of flames. However, fire appearance can also
vary according to the remote sensing sensor. While the human eyes see fires through
the visible flames, remote sensing sensors on board satellites can be sensitive for
instance to the heat release, which could support to identify the fire phenomenon
based on the shape of a time series dataset, deeply described in the next sections.

There are two fire efficient causes along the Brazilian savannas: natural and human
induced, which have been coexisting in the region for more than 10,000 years (MI-

RANDA et al., 2010; PIVELLO, 2011). Fire signs date before the human establishment
in the region (FERRAZ-VICENTINI, 1999; NASCIMENTO, 2001; MIRANDA et al., 2009),
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indicating the presence of natural fires.

The last but not least, the final cause of fires in Cerrado is also divided according
to the agent of the fire. Natural fires are caused by rains with thunderstorms and
lightning (RAMOS-NETO; PIVELLO, 2000), the final cause is the discharge of electric-
ity. While the human induced fires are used for hunting by indigenous (ANDERSON;

POSEY, 1987; LEEUWENBERG; SALIMON, 1999; MELO, 2004), and it is easiest and the
cheapest way of land management, once it enables the boosting of fresh grass growth
for cattle ranching, and can also be used to open new agricultural areas (ROSS, 1996;
MISTRY, 1998; RAMOS-NETO; PIVELLO, 2000; NASCIMENTO, 2001; MIRANDA et al.,
2002; KLINK; MACHADO, 2005; PIVELLO, 2011).

2.2.2 Fire regimes and behaviours

The concept of fire regime is used to designate an ensemble of fire-related parameters,
which is divided into i) sensu stricto - when, where and which fire characteristics
(Figure 2.3-A); and ii) sensu lato - conditions of the fire occurrence, which deter-
mines the characteristics of fire events, and immediate effects/impacts (Figure 2.3-B
and C). Used in specific conditions, parameters derived from the aforementioned
categories can be combined in order to develop methods for fire monitoring and
modelling (KREBS et al., 2010) (Figure 2.3-D).
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Figure 2.3 - Fire regime concepts.

SOURCE: Krebs et al. (2010).

Even though there are attempts to segregate the fire regime elements (Figure 2.3), it
is not a trivial task. The whole mechanism of conditions for the fire occurrence (mate-
rial cause elements also known as drivers), immediate impacts (effects), and specific
fire behaviours (when, where and which) are integrated directly or not (Figure 2.4).
In this manner, according to the drivers, fire can present different behaviours and
immediate effects (COUNTRYMAN, 1972; KREBS et al., 2010). The generated impacts
influence the atmosphere and land cover, which also influences the drivers.
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Figure 2.4 - A holistic view of a fire regime: conditions for the fire occurrence (drivers),
immediate impacts (effects), and specific fire aspects (fire behaviours).

SOURCE: Gomes et al. (2018).

Understanding and describing the fire behaviours and their effects are necessary
for fire detection and management. Generally, the fire behaviours and their effects
can be spatial, temporal and also spatiotemporal (Table 2.3). Among them, the
fire severity does not present a single unit, but several possibilities, according to
the impacted element and the unit of the analysis measurement. For instance, it
can be related to the degree of the occurred change in the mortality of the overstory
vegetation, which can refer to different characteristics such as the basal area, canopy
cover, and forest types (SINGH et al., 2018).
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Table 2.3 - Fire behaviours and effects description.

Dimension Behaviour/
effect Description Unit of measure/

symbol

Spatial
Extent/size Total scale of the fire

or burned area km2

Severity

Degree of change
occurred (e.g.

mortality of overstory
vegetation)

-

Spatial
pattern /
variability

Spatial heterogeneity
of the fire/burned area

km2, pixels,
%, patches

Temporal

Frequency/
interval/
recurrence

How often on average
fire returns to a

given place
(fire return interval)

Number of
fires d−1

Duration/
residence

time

How persistent the
event is d

Seasonality/
timing

When the fire occurrs
along a year or
in relation to

meteorological and
phenological events
(temporal pattern)

-

Spatio-
temporal

Magnitude/
intensity

Amount of energy
released by a
flaming front
(heat released)

Watts (W),
kW, MW

Expansion Area burned by
a fire for a day km2 d−1

Speed

Expansion (km2 d−1)
divided by the length
of the fire line (km)
on the same day

km2 d−1

Source: Based on Agee (1998), Falk et al. (2007), Myers and Rodríguez-Trejo (2009), Archibald et
al. (2012) and Andela et al. (2019).

The pattern (variability) is closed related to landscape ecology metrics, whose units
can be measured in square kilometers (km2), pixels, percentage (%), and patches.
GeoDMA, for instance, is a system of image analysis that supports the spectral and
spatial features segmentation, as well as landscape-based features (KÖRTING et al.,
2013). The magnitude (intensity) of a fire is related to the amount of heat released
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per unit time. Once the fuel pursues chemical energy, when it is burnt the energy
is transformed into thermal energy, and it can be measured by means of the heat
release rate (HRR) (HADDEN, 2020). While in Table 2.3 we have the fire behaviours
mainly horizontally distributed on the space, there is also the fire type as a vertical
spatial distribution, which can be classified as surface fire (ground fuels), crown fire
(aerial fuels), ground fire (organic soil fuel), or some combination of them (SCOTT

et al., 2013).

2.2.3 Fire monitoring

The current knowledge about fire behaviour is mainly based on field works using
controlled fires, restricted to small areas compared to natural environments (MI-

RANDA et al., 2010; GOMES et al., 2018). Nonetheless, fire processes are complex and
present a spatiotemporal variability (DWYER et al., 2000), requiring a broad, real
and long-term burning events analysis. The development of a feasible and suitable
approach to support a large scale fire management, such as the FM presented in this
thesis, required the integration of three main areas: i) Remote Sensing (RS) data,
which is acquired by means of sensors on board satellites (JOYCE et al., 2009; LIBON-

ATI et al., 2015; MATAVELI et al., 2017) (Section 2.3); ii) Time Series and Data Cube
development (Section 2.4; and iii) Pattern recognition (Section 2.5) (Figure 2.5).
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Figure 2.5 - Remote Sensing Time Series Data Mining.
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2.3 Remote Sensing for fire management

In general, a RS sensor has four different resolutions: i) spectral - refers to the
number and size of the bands/channels; ii) spatial - represents the measure of the
smallest separation between two objects; iii) temporal - means the frequency of
data acquisition; iv) radiometric - the sensitivity to detect differences in the signal
strength (JENSEN, 2015). RS data present different taxonomies, for example, a sensor
with a spatial resolution refiner than 10 m is considered a high spatial resolution
sensor, between 10 and 50 m, is medium, and more than 50 m is low (EHLERS et al.,
2002).

Furthermore, some mathematical operations engender synthetic images with pro-
portional responses to the occurrence of certain targets in nature. In some cases,
such procedure generates spectral indices, which may even boost the potential of the
RS data (BANNARI et al., 1995).

Based on such RS dataset settings and on the phenomena, there is a plenty of
possible uses of RS data. For instance, different sensors provide spectral bands with
capacity to support fire studies. Detecting and monitoring fire events through the
RS dataset are generally based on two main approaches: Active Fire (AF) products
(hot spots) and Burned Area (BA) mapping (ANDERSON et al., 2005).

However, it is worth mentioning the strong trade-off between temporal and spatial
resolutions. On the one hand, studies focused on small regions it is indicated refined
spatial resolution data. On the other hand, for a more broad and regional fire anal-
ysis, coarse spatial resolution data are normally used since finer temporal accuracy
is required for fire behavior studies. Consequently, a range of techniques has been
developed for geosynchronous (temporal resolution of 60 min or less) and polar or-
biting meteorological satellites (temporal resolution of 1 to 2 days) (GIGLIO et al.,
1999), at the expense of the spatial resolution. Even though over larger areas coarse
spatial resolution sensors are mainly used to fire activity analysis (CHUVIECO et al.,
2019), they can also be used for BA estimation (OLIVA; SCHROEDER, 2015).

2.3.1 Active Fire detection

The AF data are normally based on middle infrared (3.9 µm) and thermal (10.7 µm)
bands from sensors on board geosynchronous (temporal resolution of 60 minutes or
less), and polar orbiting satellites (temporal resolution of 1-2 days), presenting a
coarse spatial resolution (250 m, 2 km) (GIGLIO et al., 1999; WEAVER et al., 2004).
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Even though a fire occupies just a fraction of the pixel, it can increase the brightness
in the entire pixel, which indicates that low spatial resolution data are also suitable
for this task. However, the flux of radiance should be sufficient to be detected, but
not so intense to cause saturation in the pixel (ROBINSON, 1991).

Also around 4 µm, Fire Radiative Power (FRP) can be obtained, which is associated
to the fuel consumption and smoke emission rates (WOOSTER et al., 2005; XU et al.,
2010), thus a measure of fire intensity and destructive power (CALLE; CASANOVA,
2008; GIGLIO et al., 2008). If sufficiently fast, the FRP data could be useful for
fire management, once it could be used to characterize the frontal strength of the
fire (ZHUKOV et al., 2006). Meanwhile, the fire light can be detected on nocturnal
data through the visible wavelengths (CHUVIECO; KASISCHKE, 2007), although it
would be limited by the time interval. In summary, the AF products are able to
detect and characterize current fire spots, while FRP products are indicatives of
intensity.

RS data have been widely used to identify and monitor fire products at different
spatial scales (JUSTICE et al., 2002; SCHROEDER et al., 2016). However, according to
the user’s necessity, it is important to take into account the pros and cons of each
application (MORGAN et al., 2001). RS products with coarse spatial but with the finer
temporal resolution are indicated to better comprehend fire behaviour through AF
datasets, such as Advanced Very High Resolution Radiometer (AVHRR), Moderate
Resolution Imaging Spectrometer (MODIS), Visible Infrared Imaging Radiometer
Suite (VIIRS), and Advanced Baseline Imager (ABI) (Table 2.4). The meteorology
satellite Himawari-8 carries the geostationary sensor, Advanced Himawari Imager
(AHI), and presents similarities with the ABI. Nonetheless, Himawari-8 provides
data only from the western Pacific. Because of that, we do not present here further
details.
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Table 2.4 - Main current coarse spatial resolution sensors for fire analysis: Advanced Very
High Resolution Radiometer (AVHRR), Moderate Resolution Imaging Spec-
trometer (MODIS), Visible Infrared Imaging Radiometer Suite (VIIRS), and
Advanced Baseline Imager (ABI).

Sensor
(satellite)

Resolution
Spectral

(number of bands)
Spatial
(m) Temporal

AVHRR (NOAA-15 and 19) 6 1,100 1-2 days
MODIS (Aqua and Terra) 36 250-1,000 1-2 days

VIIRS (Suomi-NPP) 22 375-750 1-2 days
ABI (GOES-16) 16 2,000 05-10 minutes

Source: Author’s own elaboration.

As reported by Csiszar et al. (2005), the monitoring of AF through a systematic
satellite approach began in the 1980s with the sensor AVHRR. Currently, the optical
multispectral sensor AVHRR-3 is aboard NOAA (National Oceanic and Atmospheric
Administration) polar orbiting satellites (NOAA-15 and NOAA-19), and presents
six spectral bands, with a spatial resolution of about 1.1 km at nadir and 1-2 days
temporal resolution (NOAA, 2014).

Launched a year after the AVHRR, MODIS sensor was the first instrument with
specific band characteristics for fire detection. Onboard NASA’s Terra and Aqua
satellites, the MODIS sensor has provided global fire data for over a decade. It is
a sun-synchronous orbit sensor, with 36 bands, and spatial resolution of 250 m,
500 m, and 1 km, and temporal resolution from 1 to 2 days (JUSTICE et al., 2002).
The smallest fire detected by MODIS is around 50 m2 (GIGLIO et al., 2018). MODIS
is already working with Collection 6, which aims to address Collection 5 limitations
such as false AF detections. With 1-km spatial resolution, Collection 6 is driven
mainly by regional differences and fire sizes (GIGLIO et al., 2016).

VIIRS sensor is onboard two different satellites, the Suomi National Polar-orbiting
Partnership (S-NPP) and NOAA-20. Its AF products were designed based on the
previous MODIS Fire Thermal Anomalies algorithm in order to support data con-
tinuity (SCHROEDER; GIGLIO, 2018). VIIRS, with a 375 m spatial resolution, has
already been validated by different studies proving to be superior in detecting small
AF when compared with MODIS (CAO et al., 2013; CSISZAR et al., 2014; SCHROEDER

et al., 2014). Besides, it presents 22 spectral bands and a temporal resolution of 1-2
days.
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The Geostationary Operational Environmental Satellite system (GOES) is a joint
effort of the National Aeronautics and Space Administration (NASA) and the Na-
tional Oceanic and Atmospheric Administration (NOAA) and comprehends a con-
stellation of satellites. GOES-16, launched in November, 2016, is the first satellite
from GOES-R Series. The multispectral imager instrument ABI is onboard GOES-
16, and it presents 16 spectral bands (Table 2.5), with a nominal spatial resolution
of 2 km at nadir, and a full disk image every 10 minutes over North and South
Americas (SCHMIT et al., 2017; SCHMIT et al., 2018). That means 144 daily remote
sensing imagery acquisition (≈8 GB).

GOES-16 ABI also presents a wide range of products4 and uses. Some of the spectral
bands are more likely to support the AF detection and monitoring than others. The
description of the GOES-16 ABI bands is presented as follow.

Band 01 (B01) provides information for smoke and aerosols monitoring (LINDSTROM

et al., 2017a). Band 02 (B02) pursues the finest spatial resolution of all ABI bands.
As such, it is used to identify features of small-scale, including boundaries and
clouds (LINDSTROM et al., 2017g), while Band 03 (B03), known as Veggie, has the po-
tential to detect burned areas through the computation of vegetation indices (LIND-

STROM et al., 2017h). Considering a visible rainbow spectrum, it is possible to allocate
the B01 and B02, and the location of the B03, referred as the vegetation band, pre-
senting different potential according to the analyzed target, as shown in Figure 2.6.
Although B03 is not centered in the green (0.55 µm), it is possible to use the three
bands to generate true color RGB images, with the Veggie band instead of the green
band, or by combining the B01, B02, and B03 to generate the lacking band (BAH et

al., 2018).

4The whole list of products as well as quick guides are freely available respectively at:
www.ncdc.noaa.gov/data-access/satellite-data/goes-r-series-satellites; and http://
rammb.cira.colostate.edu/training/visit/quick_guides/
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Figure 2.6 - Bands 01, 02, and 03 GOES-16 ABI spectral response along with the re-
flectance spectra for different features, asphalt, dirt, grass, and snow.
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SOURCE: Adapted from Bah et al. (2018).

The Cirrus band (B04) detects thin cirrus clouds during the daytime (LINDSTROM

et al., 2017i). Furthermore, in Band 05 (B05) during the daytime, liquid water clouds
are bright, and ice clouds are darker, supporting the inference of the cloud phase.
Its nighttime application is regarding the detection of very hot fires (LINDSTROM

et al., 2017j). Moreover, during the day, it is also possible to compare B05 and B02
to discern AF in areas free of clouds (SCHMIT et al., 2018). Band 06 (B06) is used
in conjunction with other bands for a couple of applications, including estimating
cloud particle sizes, to create cloud masking and to detect hot fires in the absence of
clouds (LINDSTROM et al., 2017k). Band 07 (B07) also can be used along a whole day.
At night, it can identify fog and low clouds, and during the daytime among others,
to detect AF and to estimate the temperature of sea-surface. Due to bands 05, 06,
and 07 potential to detect AF (Figure 2.7), a product known as Fire Temperature
RGB (FT-RGB) can be generated through a RGB composition (R7;G6;B5). While
the True Color RGB can be used to show the fire smokes and BA, the FT-RGB
indicates AF. However, there are some limitations: clouds may hide fire signals, and
dry regions may present false positive AF (NOAA AND NASA, 2018), once there are
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spatio-temporal color variations (SEAMAN et al., 2017; SCHMIDT, 2019).

Figure 2.7 - Spectral Response of Bands 5, 6 and 7 from GOES-16 with the different hot
target spectral behaviours.
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The Bands 08 (B08), 09 (B09), and 10 (B10) are the water vapor bands on the
ABI, and its primary use is atmospheric feature identification (BACHMEIER et al.,
2017c; BACHMEIER et al., 2017d; BACHMEIER et al., 2017a). The Band 11 (B11) is
important for volcanic activity monitoring (LINDSTROM et al., 2017b), while the Band
12 (B12) in combination with other bands shows the dynamics of the atmosphere
near the tropopause (LINDSTROM et al., 2017c), which is the boundary between the
troposphere and the stratosphere (HAQQ-MISRA et al., 2011). Band 13 (B13) is used
among others to improve the atmospheric moisture corrections and to identify and
classify atmospheric features (BACHMEIER et al., 2017b). Moreover, the Band 14
(B14) is used in a range of products such as to support the analysis of land surface
Temperature, and fire (LINDSTROM et al., 2017d). Also, part of different products,
including Cloud Top Properties, and AF characterization, the Band 15 (B15) is used
to identify moisture and dust (LINDSTROM et al., 2017e). Finally, the Band 16 (B16)
is used due to its potential to highlight tropopause aspects, applied thus in a range
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of products, including cloud mask (LINDSTROM et al., 2017f).

Table 2.5 - GOES-16 spectral bands.

Band
Number

Central
Wavelength

(µm)
Type Nickname

Spatial
Resolution

(km)
01 0.47 Visible Blue 1
02 0.64 Visible Red 0.5
03 0.86 Near-Infrared Veggie 1
04 1.37 Near-Infrared Cirrus 2
05 1.6 Near-Infrared Snow/Ice 1

06 2.2 Near-Infrared Cloud
particle size 2

07 3.9 Infrared Shortwave
window 2

08 6.2 Infrared Upper-level
water vapor 2

09 6.9 Infrared Midlevel
water vapor 2

10 7.3 Infrared Lower-level
water vapor 2

11 8.4 Infrared Cloud-top
phase 2

12 9.6 Infrared Ozone 2

13 10.3 Infrared
"Clean"
longwave
window

2

14 11.2 Infrared Longwave
window 2

15 12.3 Infrared
"Dirty"
longwave
window

2

16 13.3 Infrared CO2
longwave 2

Source: NOAA and NASA (2022a).

Among the spectral bands, the ABI Band 7 (3.90 µm) is the most indicated for
AF detection, once its short wavelength is more sensitive to the hottest part of a
pixel (NOAA AND NASA, 2021). Nonetheless, two of the main limitations of such
dataset are: i) small fires can be overlooked, and ii) solar reflectance can influence
the ABI Band 7 values (NOAA AND NASA, 2021). Figure 2.8 shows an example of
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the ABI Band 7 on a given day with and without the presence of fire, based on the
reference satellites and on the manually mapped BA.

Figure 2.8 - ABI Band 7 values for two different pixel locations along a day with and
without the detection of AF and BA.

AF: Active Fire; BA: Burned Area.
SOURCE: Author’s own elaboration.

The bands used by the Programa Queimadas are around 0.6 µm, 3.9 µm, and
11.0 µm, yet the first and last wavelengths are used to remove noises during the day.
The global Wild Fire Automated Biomass Burning Algorithm (WF_ABBA) uses
the bands around 0.6 µm (optional), 3.9 µm, 11.0 µm (optional), and 12.0 µm (HOFF-

MAN et al., 2011). Once the AF is detected, notifications are sent to the fire public
managers, such as firefighters. An example of such bulletins is found in Python
programming language at LINDLEY et al. (2016).

Comparatively, while MODIS can identify smaller fires due to the finer spatial reso-
lution, ABI may pursue fewer false alarms because of the high temporal information
available (SCHMIDT et al., 2010), being thus suitable for more large fires (ROBIN-

SON, 1991). According to the literature, detecting a fire through the ABI dataset
is possible if the fire incidence is intense, a difference between the middle in-
frared and thermal bands of about 10◦-15◦C, or wide enough, 2% of the pixel area
(0.08 km2) (WEAVER et al., 2004). In this manner, low spatial resolution data are
also suitable for AF detection, once a small fraction of the pixel with fire can already
increase the brightness of the entire pixel. Although the ABI sensor presents such
potential with an ultra-high temporal resolution, the use of this sensor in the litera-
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ture is yet scarce in the regional scale, probably due to its coarse spatial resolution
and high complexity for data processing and analysis (PLETSCH et al., 2019a).

2.3.2 Burned area mapping

In the 1980s, the first BA products were based on medium resolution sensors (CHU-

VIECO et al., 2019), such as the Landsat Series. The BA mapping is mainly detected
based on visible and infrared wavelength bands from near-polar and sun-synchronous
orbit satellites (temporal resolution of 8-16 days), and with a medium spatial res-
olution (20-30 m) (CHUVIECO et al., 2019). The same approach could also be used
to detect fire smoke, but the direct use of plumes is not so as usual and efficient as
the others approaches. In the case of BA, the detection is based on two main proce-
dures, the charcoal (char) deposition, and on the effects of the vegetation spectral
response, fire scar. The first one is quickly vanished due to wind and rainfall, and
the later one is more persistent, resisting for a couple of days or weeks in tropical
grasslands, and years in boreal ecosystems (PEREIRA et al., 1997; ROY et al., 2002;
CHUVIECO et al., 2019).

With 30 m spatial resolution, and temporal resolution of about 16 days, Landsat
satellites are commonly used for fire studies, but they are usually limited to a local
scale. Another example of medium spatial resolution is the satellites Sentinel-2 A
and B, presenting a temporal resolution of 5 days (ESA, 2015). Due to their sim-
ilarities, studies have been developed aiming to integrate Landsat and Sentinel-2
datasets in order to refine the temporal resolution without jeopardizing the spatial
resolution (ROY et al., 2019), and also to extrapolate methods from one sensor to
another, such as the automatic BA mapping, which uses a dependent threshold of
the image statistics to detect BA (WOŹNIAK; ALEKSANSDROWICZ, 2019).

Even though Sentinel-2 data does not provide the exact time of the fire occur-
rence, for BA mapping, it is one of the most suitable free available dataset, since it
presents a 10-20 m spatial resolution and a revisit time of five days. For a BA
mapping by means of Sentinel-2 imagery at Sentinel Hub viewer (available at:
https://www.sentinel-hub.com/), the false color composite shortwave infrared
(SWIR), RGB (B12, B8A, B04) is the most suitable, once it enables the fire damage
mapping (Sentinel Hub, 2021) (Table 2.6).
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Table 2.6 - Sentinel-2 bands most indicated for BA mapping.

Bands
Central

Wavelength
(µm)

Resolution
(m)

B4 - Red 0.665 10
B8A - Narrow NIR 0.865 20

B11 - SWIR1 1.610 20
B12 - SWIR2 2.190 20

Source: Adapted from Sentinel Hub (2021).

Finally, the Planet imagery is also remarkable and could be used for BA mapping.
Operated by Planet, the PlanetScope is a constellation of approximately 130 satel-
lites. Providing daily images from the entire land surface of the Earth, its spatial
resolution is approximately 3 meters (PLANET DEVELOPERS, 2022). Planet imagery
access is possible by means of commercial agreements.

Aiming to highlight the affected areas, BA mapping is possible through some ap-
proaches, that may include the dimension of time (See Section 2.4), and Spectral
Index (SI) (Table 2.7), which are mathematical operations performed on RS im-
agery (BANNARI et al., 1995; KEY; BENSON, 2005). SI with such focus normally use
both near (NIR) and short-wave (SWIR) infrared bands (Table 2.6), where NIR
presents a strong reflectance decrease after the burning process, while the dryness
results in an increase in the SWIR reflectance (CHUVIECO et al., 2019), as indicated
by reflectance response of healthy vegetation and burned areas presented in Fig-
ure 2.9. Besides, according to VAN DIJK et al. (2021), the SWIR bands 11 and 12
from Sentinel-2 have also proven to be effective to distinguish between unburned
and BA.

The Normalized Difference Vegetation Index (NDVI) (Table 2.7), which ranges from
[-1.0, +1.0], is a SI that presents information regarding the presence of live green veg-
etation in RS images, and was first developed based on the Landsat dataset (ROUSE

et al., 1974). The Burned Area Index (BAI), Mid-Infrared Burn Index (MIRBI), and
Normalized Burn Ratio (NBR) aims to highlight burned areas. BAI was tested on
Landsat TM and NOAA images (CHUVIECO et al., 2002), while MIRBI, on MODIS
(Moderate Resolution Imaging Spectroradiometer) data and on Landsat TM, they
presented satisfatory results in savannas (TRIGG; FLASSE, 2001). NBR was also de-
signed for the Landsat dataset, as well as the Normalized Burn Ratio Thermal
(NBRT). The NBRT particularity is the use of the thermal band, but at the time
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Figure 2.9 - Spectral response of healthy vegetation and burned areas.

SOURCE: USDA (2022).

of its development, Landsat thermal band ranged [10.40 - 12.50 µm], and Landsat
8 already presents two finer thermal bands.

A new SI for BA detection is the NBR+, which was developed based on Sentinel-
2 imagery (ALCARAS et al., 2022). Presenting exceptional results, the NBR+ has
the advantage of excluding part of false positives, which is mainly common due to
the presence of clouds or water bodies. The SI results also has the potential to be
combined and refined in order to highlight phenomena (PLETSCH et al., 2019b). Even
though there is a range of SI, some challenges remain, such as the variations between
the so called burned and unburned areas (CHUVIECO et al., 2019).
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Table 2.7 - Main spectral indices used for burned area mapping. ρ: surface reflectance
factor; NIR: near-infrared band; SWIR: short-wave infrared band; LSWIR:
longer short-wave infrared band; STIR: scaled brightness temperature of the
thermal band (TIR) divided by 10,000.

Spectral
Index Acronym Equation Reference

Normalized
Difference
Vegetation

Index

NDVI
ρNIR− ρRed

ρNIR + ρRed
Rouse et al. (1974)

Burned
Area
Index

BAI
1

(0.1 + ρRed)2 + (0.06 + ρNIR)
Chuvieco et al. (2002)

Mid-Infrared
Burn
Index

MIRBI 10 ∗ ρLSWIR− 9.8 ∗ ρSWIR + 2 Trigg and Flasse (2001)

Normalized
Burn
Ratio

NBR
ρNIR− ρSWIR

ρNIR + ρSWIR
Key and Benson (2005)

Normalized
Burn Ratio
Thermal

NBRT
ρNIR− (ρSWIR ∗ STIR)

ρNIR + (ρSWIR ∗ STIR)
Holden et al. (2005)

Normalized
Burn Ratio

Plus
NBR+ Alcaras et al. (2022)

Source: Author’s own elaboration.

2.4 Time series and data cube development

At a first moment, RS data was observed mainly spatially, but with the advance in
computer algorithms and the amount of available data, researchers identified that
it was also possible to take into account the time as an extra dimension. In this
manner, values ordered in time could enable the identification of trends, seasonal
patterns and even predict future values. For that, when necessary and according
to the study goal, certain Time Series (TS) processing is required, such as the
harmonization when dealing with different RS imagery sources, and calibration when
data is not yet calibrated. However, the creation of a Data Cube (DC) may lead to
an information loss during the TS processing, for instance, by means of the use of
filtering algorithms (APPEL; PEBESMA, 2019).

A TS can be composed of different RS data, such as raw digital numbers, reflectance
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values (KUENZER et al., 2015), or other subproducts as spectral indices. RS vegetation
indices, such as NDVI, are broadly used to analyze phenological metrics (also known
as phenometrics), which refers to the observation of seasonal pattern of vegetation
changes (REED et al., 2009). Due to the Big Data challenges, DC infrastructures are
considered an important tool able to manage and share a great amount of data (NA-

TIVI et al., 2017).

Generating a TS is possible by staking the RS data in a chronological order, and the
product is known as Data Cube (DC) (Figure 2.5). According to Bovolo et al. (2018),
multitemporal data analysis can be classified as bi-temporal and TS data, regarding
the use of a few and a dense quantity of data, respectively. In this context, after the
RS data acquisition (Figure 2.5), the next steps required to use RS datasets for fire
management are the Time Series (TS) processing and Data Cube (DC) development.

The mathematical models used in TS are known as deterministic and stochastic.
In the first one, the exact calculation of an element trajectory along the time is
possible. Considering that unknown variables may influence the data, natural phe-
nomena are rarely totally deterministic. On the other hand, when it is not possible
to exactly predict the behaviour of an object, probability (stochastic) models are
indicated (BOX et al., 2015). Due to the RS nature, we will consider hereafter the TS
dataset as stochastic, requiring thus probabilistic analysis.

The step of obtaining usable information and analysing data patterns in DC is
possible through Data Mining (DM) techniques, which include automatic or semi-
automatic mechanisms of searching, discovering, and extracting relevant information
in a database (HAN et al., 2006; WITTEN et al., 2016) using the integration of multiple
approaches from Statistics and Machine Learning. For that, it is essential to analyze
the TS, which is according to Dodge (2008), the process of making the mathematical
descriptions and estimation of the four TS components:

• Trend - general tendency of data over a long period;

• Seasonal variations - changes that occur in a regular and periodic manner;

• Cyclical fluctuations - periodical changes but not with seasonal variations.
Often used for business cycles in economic data, for instance, prosperity,
recession and depression;

• Irregular variations (remainder) - random variations (unforeseen and un-
predictable).
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In case the mean, variance and covariance do not vary in a TS, it is called stationar-
ity (Figure 2.10), and if it does, non-stationary (Figure 2.11). To predict phenomena,
it is indicated the use of stationarity TS. For that, it is necessary to perform a "de-
trending" (removal of long-term linear trend), and/or a "de-seasonalisation" (removal
of seasonal variations) approach on the non-stationary TS, whose two main elements
are trend and seasonality. In some cases, smoothing the TS is already enough. In
others, it is necessary to apply decomposition techniques, which refers to computing
differences in a particular time lag, and modeling the components to remove trend
and seasonality, respectively (JAIN, 2016).

Finally, the decomposition of the TS can be additive or multiplicative. While the
additive model assumes that the TS components are independent from each other
and the TS is a function of the sum of its components, the multiplicative model
considers that the components can influence one another and the TS is a function
of the product of its components (ADHIKARI; AGRAWAL, 2013). In this manner, for
the "de-trending", it would be necessary to subtract the trend estimates (additive
decomposition) or to divide the series by the trend values (multiplicative decompo-
sition).

Figure 2.10 - Example of stationary TS, with no variation of mean, variance, and covari-
ance.
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Figure 2.11 - Example of non-stationary TS, with a variation of: A. Mean; B. Variance;
C. Covariance.
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2.5 Pattern recognition

A pattern is a set of measurements that is able to describe a phenomenon. In this
manner, in order to identify certain phenomena, it is essential to recognize patterns.
By means of that, we can have a better comprehension of regions, which is imperative
for a sustainable development and preservation. A popular object of study for several
decades, the pattern recognition techniques for RS imagery have been continuously
developed. However, the increasing resolution of data, expansions of data volume
and complexity are yet the main open challenges. The same is also true for Cerrado,
where not only the RS dataset but also geospatial methods based on DM and ML
are essential to process and extract useful information from the data (FONSECA et

al., 2021).

2.5.1 Data science: Discovering knowledge from databases

Data science is a broad field of study that includes all the processes related to data
projects, whether the data is structured (i.e., Excel files - tabular format with rela-
tionship between the different rows and columns), semi-structured (i.e. XML files),
or unstructured (i.e., RS imagery). It takes advantage of Big Data and the myr-
iad of other field studies and approaches. The Knowledge Discovery from Databases
(KDD) (Figure 2.12) is a subset of Data Science that aims to find useful information
in a dataset and to use the information to recognize hidden patterns.
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Figure 2.12 - Knowledge Discovery from Databases (KDD).

SOURCE: Adapted from Fayyad et al. (1996), Han et al. (2006), Yeung and Hall (2007).

KDD is a pipeline for extracting knowledge from large datasets and presents seven
iterative steps (FAYYAD et al., 1996; HAN et al., 2006; YEUNG; HALL, 2007):

• Data Cleaning: to detect and treat noises and inconsistent data, such as
missing values, which should be either omitted or replaced. Specific math-
ematical treatments are indicated according to the analysis purpose;

• Data Integration: multiple data sources may be combined and stored in a
data warehouse;

• Data Selection: relevant data is retrieved from the database for analysis;

• Data Transformation: data are transformed and consolidated into appro-
priate structures for modelling, for instance, by means of aggregation op-
erations. In this step, it is also possible to apply data reduction to obtain
a smaller data representation without losing the data integrity. In some
cases, the Data Transformation can occur before the Data Selection;

• Data Mining: methods are applied to extract data patterns;

• Pattern Evaluation: evaluation of the DM results;

• Knowledge Representation: visualization and communication of the results.

Data Cleaning and Data Integration can be considered as part of the preprocessing
step. After that, Data Selection and Transformation are necessary to comprehend
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and prepare the data to apply suitable statistical tools. After those steps, there is
the DM application, and the post-processing, which includes the Pattern Evaluation
and Knowledge Representation (Figure 2.5). In this manner, Data Mining (DM) is
one of the seven aforementioned steps. Nonetheless, DM is commonly used as a
synonym for KDD. Due to its broad use, in this thesis review we adopted the term
Data Mining for the whole process of KDD.

DM is performed through the integration of multiple approaches including Statistics
and Machine Learning (ML). According to Fayyad et al. (1996), broadly, there are
six main primary DM methods for data description and prediction:

• Classification: a function that classifies the data;

• Regression: a function that discovers the functional relationship between
variables;

• Clustering: identify clusters to describe the data;

• Summarization: finding a compact description for a subset of data;

• Dependency Modeling: description of significant dependencies between
variables;

• Change and Deviation Detection: based on previously measured or norma-
tive values, it is the process of discovering the most significant changes in
the data.

Due to the complexity of applying DM to discover knowledge from databases, Cross
Industry Standard Process for Data Mining (CRISP-DM) framework was developed
aiming to make large DM projects faster, more reliable, repeatable, manageable
and at the same time with reduced time and costs (WIRTH; HIPP, 2000). Basically,
CRISP-DM incorporated KDD generating six phases (Figure 2.13). The sequence
of the phases is neither strict nor it is linear.
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Figure 2.13 - Cross Industry Standard Process for Data Mining CRISP-DM.

SOURCE: Adapted from Wirth and Hipp (2000).

Following, the six phases of CRISP-DM are described based on Wirth and Hipp
(2000):

• Business Understanding: firstly, it is necessary to understand the DM prob-
lem that needs to be solved, the project objectives, requirements from a
business and strategy perspective, and a preliminary plan to achieve the
objectives;

• Data Understanding: this phase comprehends the initial data collection and
all the activities to get familiar with the data, first insights, and hypotheses.
Business Understanding and Data Understanding have a close connection,
since the formulation of the DM problem and the creation of a preliminary
action plan requires some understanding of the dataset;
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• Data Preparation: this phase includes all the activities to create the final
dataset/DC, including the KDD phases: data cleaning, data integration,
data selection, and data transformation for modeling, such as adding labels
and splitting data into training and testing set;

• Modeling: in order to perform DM and recognize patterns in large datasets,
Machine Learning (ML) models are commonly used and indicated, once
algorithms are created to perform complex tasks. Thus, in this phase, dif-
ferent modeling techniques based on ML and Statistics can be selected,
applied and assessed. Finally, there is a close relation between Data Prepa-
ration and Modeling, once different models may require certain data struc-
tures;

• Evaluation: based on the Business Understanding/issue to be solved, in
this phase, the results are interpreted and evaluated. The evaluation is not
only technical, but also theoretical: the developed model really resolves the
problem?. In this manner, there is a review process and discussions in order
to create a list of possible actions for the next steps;

• Deployment: the actions that need to be carried out in order to make use
of the developed model. It can be the creation of reports, the development
of web applications (i.e. interfaces to allow users to consume the model,
APIs - Application Programming Interface) as well as the implementation
of repeatable DM process, for instance, for AF detection. In some cases,
it is necessary even to publish scientific articles in order to gain reliability
and communicate the findings to a larger public.

2.5.2 Machine Learning

Machine Learning is a subset of Artificial Intelligence (AI), which refers to com-
puter systems able to imitate somehow human behaviours. By means of complex
algorithms, it is possible to train machines to process large data, learn patterns
and deliver results. ML is based on heuristics, enabling scientists to build models
according to empirical processes, encapsulating phenomena in mathematical expres-
sions (HAN et al., 2006; YEUNG; HALL, 2007; CLARKE et al., 2009; GORUNESCU, 2011).

In order to learn patterns, ML algorithms adjust their own internal parameters
during the learning process. Before that, pre-configured parameters, also known as
“hyperparameters”, should also be inputted to guide the learning process. Because
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hyperparameters are not the same for every problem, and if not well set can cause
a great impact on the ML model performance, there are different hyperparameter
optimization strategies (ELGELDAWI et al., 2021). For instance, grid search is a simple
application for an exhaustive search of hyperparameters adjustments in a defined
subset. Nonetheless, its computing cost increases exponentially.

Three of the most popular hyperparameters optimization algorithms (LIASHCHYN-

SKYI; LIASHCHYNSKYI, 2019) are:

• Grid Search: makes an exhaustive search of hyperparameters adjustments
in a defined subset of the hyperparameters space;

• Random Search: selects combinations of hyperparameters by means of ran-
dom selection;

• Genetic Algorithm: simulating the process of natural selection, and using
mechanisms that resemble biological evolution, this algorithm makes dif-
ferent small adjustments by sequentially selecting, combining, and varying
hyperparameters.

The ML models can learn patterns through unsupervised or supervised learning.
Whereas the unsupervised learning does not require labelled data, the supervised
learning does. In this manner, once the labelled dataset is created, it is indicated to
randomly split the data into:

• Training Set: data used to train the model. It should be as representative
as possible and without bias. Otherwise, the error will be propagated;

• Validation Set: it is common to create multiple models by trying differ-
ent algorithms and combinations of hyperparameters. In this manner, the
Validation Set is used to evaluate the models’ performance;

• Test Set: after selecting the model with the best combination of hyperpa-
rameters, it is performed a final evaluation of the model, but by means of
an unbiased dataset, the test set.

In this manner, the model learns repeatedly about the data behaviour and adjust
itself for a defined purpose by means of the training dataset. Because of that, it is nec-
essary an effort to obtain a large number of high-quality training samples (MAXWELL
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et al., 2018). Once the model is built, the validation dataset is used to evaluate how
well the model makes predictions, providing helpful information even to optimize the
model’s hyperparameters. If the model performance is not satisfactory, the model
can be trained again. Finally, the test data is used to provide a final real-world check
of an unseen dataset to confirm that the ML algorithm was trained effectively and
can make accurate predictions. In other words, the test data is used to determine
the model’s true performance, which is essential before the model deployment.

There is a long list of ML algorithms, with different pros and cons. Because there
is no theory beforehand about the algorithms’ prediction performance in certain
studies, it is indicated to experiment multiple methods to find the best one for
the problem (MAXWELL et al., 2018). Some important supervised algorithms for fire
management are: Random Forest, Gradient Boosting, Logistic Regression (JAIN et

al., 2020; BOT; BORGES, 2022), and Deep Learning.

Random forest is an ensemble of decision tree ML algorithms, an extension of boot-
strap aggregation (Bagging), which combines the predictions from many decision
trees into a ’forest’ (BREIMAN, 2001). That means, that RF combines the output of
multiple decision trees to reach a single result. The combination of the tree predic-
tors can be used to predict, classify or cluster events. Boosting, on the other hand,
describes a strategy that uses a sequential additive model to combine a set of weak
learners to make a strong learner, usually through decision threes (JAIN et al., 2020).
In this manner, while the training process is parallel for Bagging, it is sequential for
Boosting, as presented in Figure 2.14 (GARRIDO, 2016). Faster and with a higher
performance when compared to the traditional Gradient Boosting, the Extreme Gra-
dient Boosting (XGBoost) is a tree-based ensemble ML algorithm that continuously
minimizes the bias error aiming to produce a new optimized model (FRIEDMAN,
2001; AMPOMAH et al., 2020).
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Figure 2.14 - Training process for Bagging (parallel) and Boosting (sequential) approaches.

SOURCE: Garrido (2016).

Logistic Regression (LR) is an analysis method indicated for binary outcomes, such
as the presence or absence of fires. LR is able to predicts a dependent data variable
by analyzing the relationship between one or more existing independent variables.
As such, LR allows the analysis of the explanatory power of the independent vari-
ables (i.e., temperature brightness) on the response variable (i.e., fires) through the
analysis of the regression coefficients of those independent variables (LEGENDRE;

LEGENDRE, 1998). Finally, Deep Learning (DL) refers to those algorithms with a
brain-like logical structure. There are many DL models, such as the Convolutional
Neural Networks (CNN) and the Recursive Neural Network (RNN). While CNN
is commonly used for image processing, segmentation, and classification, RNN was
designed to process and interpret temporal (or sequential) data.

2.5.3 Model evaluation

Different statistical metrics can be applied to make a final model evaluation. Besides
the traditional confusion matrix, when the main issue is related to a binary classifi-
cation (i.e., fire / not fire), the indicated statistical metrics are: prevalence, accuracy
rate, sensitivity, specificity, positive predictive value, and negative predictive value
(detailed at Shreffler and Huecker (2022)).

The confusion matrix (Figure 2.15) is the comparison between the predicted value
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and the real value, which is normally tabled as: True Positive (TP), True Negative
(TN), False Positive (FP), or False Negative (FN). Where the predicted value by the
model is described as Positive and Negative, and the actual values in "real-world"
as True and False.

Figure 2.15 - Example of a confusion matrix. Where: True Positive (TP), True Negative
(TN), False Positive (FP), or False Negative (FN).

SOURCE: Adapted from Kohavi and Provost (1998).

• TP: The model predicted positive and it’s true in real-world;

• TN: The model predicted negative and it’s true in real-world;

• FP (Type 1 Error): The model predicted positive and it’s false in real-
world;

• FN (Type 2 Error): The model predicted negative and it’s false in real-
world.

The prevalence is simply the proportion of the phenomenon’s presence in the pop-
ulation. This metric is important, once it shows how common the phenomenon is.
For instance, in a study about AF detection, when the dataset presents rare cases of
AF in the region, the model performance can be affected by the data imbalance (HE;

GARCIA, 2009; MAXWELL et al., 2018). It is stated by:

Prevalence = cases with AF / total population
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The accuracy rate is related to the overall accuracy, and is expressed as:

Accuracy rate = number of cases correctly classified / total population

Sensitivity (or Recall) is the ability of the model to yield a positive result for a subject
that presents AF. In other words, the ability to correctly classify is essential, and is
calculated as:

Sensitivity = TP / (TP + FN)

Specificity is the ability of the model to yield a negative result for a subject that
does not present AF. The equation for specificity is the following:

Specificity = TN / (TN + FP)

The positive predictive value (or Precision) determines: out of all the AF detections,
how many are TP. While negative predictive value is: out of all the absence of AF,
how many are TN. The equations are:

Positive predictive value = TP / (TP + FP)

Negative predictive value = TN / (TN + FN)

2.6 Traditional methods for pattern recognition in Remote Sensing
Time Series

Due to the amount of available data, most of the ML approaches for TS were de-
veloped for Landsat series, with temporal resolution at the maximum of twice a
month, and analysis along years. In such case, the long term (trend curve) com-
ponents could be of interest to climate scientists, while seasonal studies could be
related to agriculture growth analysis (KUENZER et al., 2015; BOVOLO et al., 2018).

A remarkable example of that is the TIMESAT system, developed by (JÖNSSON;

EKLUNDH, 2004). It aims to smooth curves on dense TS in order to extract sea-
sonal parameters (JONSSON; EKLUNDH, 2002). According to the authors, TIMESAT
is based on three different least-squares methods, whose preliminary definition of
seasonality could be uni or bi-modal combined with growing season approximate
timings. Due to the high presence of noise, it is difficult to identify the number of
annual seasons based on a single year’s data. In this manner, the determination
of the number of seasons is based on a model function, and the analysis of the
surrounding years data to reduce mistakes.
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Aiming to smooth the data and suppressing disturbances/noises, Savitzky-Golay
filtering is used. The Savitzky-Golay filtering is based on different steps, and as
a result it presents a smoothed curve. Nonetheless, according to the parameters
used, the filtering may affect the detection of abrupt changes. Finally, seasonal data
are extracted according to the season characteristics (Figure 2.16). The increased
and decreased value are characterized as the beginning (Figure 2.16-a) and the end
(Figure 2.16-b) of the season, respectively. The mid of the season (e) is estimated
between 90% of the fitted function left (c) and right (d). The difference between
the peak value and the average of right and left minimum values indicates the
amplitude (f). Over the growing season, there are two integrals, which represent the
active vegetation (h), and the total vegetation production (i). For evergreen areas,
active vegetation may be really small.

Figure 2.16 - Examples of Timesat parameters. Where: a) beginning of the season; b) end
of the season; c) left 90% level; d) right 90% level; e) peak; f) amplitude;
g) length of season; h) integral over growing season giving area between fitted
function and the average of left and right minimum values; i) integral over
growing season giving area between fitted function and zero level.
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The Breaks For Additive Seasonal and Trend (BFAST) (Figure 2.17) (VERBESSELT

et al., 2010) is another example of an algorithm that decomposes TS. BFAST as-
sumes for that a linear trend and harmonic season in the components model. In this
manner, the ordinary least squares residual moving sum (OLS-MOSUM) statistical
test is used to determine whether the breakpoints are occurring, the number, and
its position in the TS.

BFAST is able to detect changes with NDVI magnitudes greater than > 0.1 in TS
with different levels of noise and seasonal amplitudes. It was designed to be generic
enough to comprehend a range of data types without the requirement to normalize
the dataset, select a reference period, threshold, or change trajectory. If the ordinary
least squares approach does not indicate significant change (P < 0.05), the breaking
point is not identified. Besides, BFAST considers an additive model. In case of a
multiplicative TS, BFAST can be used if it is converted to additive by taking a log
of the TS (ABBES; FARAH, 2017).

Figure 2.17 - Example of BFAST application on a 16-day NDVI TS of a pine plantation.
In order to support comparisons, the bars on the right hand side of the plot
show the same data range.
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In this perspective, the use of an ultra high temporal resolution as the ABI sen-
sor, with a new image every 10 minutes, opens a completely new perspective and a
paradigm shift is required. The general trend of ABI sensor TS could be the values
gradually shifting along a month, due to the amount of available data. The sea-
sonality is related to the seasonal differences and could also be considered along a
year. The cyclical movements could be the days and nights variations. It is worth
noting that such day and nighttime fluctuations would be cyclic in the cases of
the ABI bands that depend on the reflected visible solar radiation, as the visible
and near-infrared bands, presenting thus three main phases: stable, increase and
decrease values (Figure 2.18). Unexpected variations refer to random movements,
such as noises.

Figure 2.18 - Example of a three phase visible solar radiation of a daytime dependable
ABI band.
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2.7 Recent supporting studies for fire management

Several studies have been developed aiming to detect and monitor fires. An exten-
sive research trends analysis of studies using RS to retrieve fire information is found
in Chuvieco et al. (2020), Barmpoutis et al. (2020) and Jain et al. (2020). Rostami
et al. (2022) used a deep Convolutional Neural Network (CNN) “MultiScale-Net” for
AF detection in Landsat-8 datasets at the pixel level worldwide. Besides an innova-
tive Active Fire Index (AFI) for AF detection through Landsat-8, a combination of
bands SWIR2, SWIR1 and Blue, the study achieved a F1-score of more than 90%.
Although the study presents such a high accuracy, it is important to highlight that
Landsat-8 temporal resolution is 16 days, and in the best case scenario, 8 days. As
already explained, for a suitable fire management, it is imperative the use of RS
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dataset in NRT.

Aiming to detect early fires, a recent study used a deep learning framework (based
on Gated Recurrent Units - GRU), GOES-16 and GOES-17 datasets in diferent
LULC (ZHAO; BAN, 2022). The training dataset was based on US, in four large
wildfires in California in 2020, and the model was tested in thirty eight different
areas along US, Canada and Brazil. The bands used were Band 7 (sensitive to
burning processes) and Band 14, due to its good contrast to the Band 7. After
that, a normalized difference equation was applied. The band 15 was also used as a
cloud and smoke mask. The results showed that the proposed method has a great
ability to detect AF. It could detect AF earlier or similar to the VIIRS dataset.
Finally, the authors also compared the deep learning approach with two classical
ML algorithms: the Support Vector Machine (SVM) and the Random Forest (RF).
Both ML algorithms were trained using the same training dataset and tested over
three regions. In this comparison, SVM F1 score varied from 0.12 to 0.63, RF varied
from 0.17 to 0.69, and the deep learning approach, from 0.18 to 0.71.

Aiming to characterize fire, precipitation and vegetation condition regimes and to
establish spatial patterns in Cerrado from 2002 to 2015, Mataveli et al. (2018) used
different RS data: i) TRMM monthly precipitation product (3B43); ii) MODIS fire
products, AF, BA and FRP; iii) the global MODIS 1km Normalized Difference
Vegetation Index (MOD13A3) to determine the Vegetation Condition Index (VCI),
which is useful for evaluating fire incidence danger; iv) MODIS MCD12Q1 land
use and land cover type product. After a boxplot analysis of the monthly total
hotspots, monthly total BA, monthly average precipitation and monthly average
VCI, the algorithm BFAST was applied to identify trends in the four TS. For the
spatial statistical analysis, the Pearson’s correlation coefficient (R) was used to show
the linear relationship between the datasets. As result, the article presents the fire
frequency, extension, seasonality, and variability along the biome. About 70% of the
AF were identified along the physiognomy of savanna formations. Besides, possibly
there is an inverse relationship between the incidence of fire and vegetation and
precipitation.

Alvarado et al. (2017) analyzed the history of the fire incidence along 31 years (1984-
2014) in the region of Serra do Cipó in Minas Gerais state. The dataset comprehends
daily precipitation, burn scars based on Landsat images visually interpreted, and
MODIS products (MCD45A1v5, MYD14, and MOD13Q1, which represent BA, EVI,
and AF, respectively). In order to comprehend the extension, pattern, frequency, du-
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ration, seasonality, and synergism of fire with the rainfall, the authors created some
hypotheses about the relation between rainfall and BA. For that, a simple linear
regression model was used to test the relationship between BA and mean annual
rainfall. According to the authors, the strongest predictor of BA was drought dur-
ing the ignition season, with an increasing fire occurrence during the driest periods.
That means, the annual rainfall volume was weakly and negatively correlated with
BA. Additionally, there is a lower fire frequency in higher density woody vegetation.

The estimates of AF, BA, and emissions are important variables to evaluating in-
terannual fire variability. In this way, this set of variables was used by Chen et al.
(2013) to analyze the fire incidence in the South America between 2001 and 2012.
Using also fire persistence, deforestation and precipitation datasets, the study found
out that there is a positive trend of fire activity at the leading edge of the deforesta-
tion frontier. Besides, the AF detections in evergreen forest and savanna biomes of
South America covaried from year to year.

With a dataset with spatial resolution varying from 25 m to 9 km, and temporal
resolution of hourly to days (ERA5-Land imagery, MODIS, FIRMS, etc.), Aposto-
lakis et al. (2021) implemented a RF classifier to predict AF in Greece, and showed
promising results, with precision varying from 77% to 94%, which could be used
to support fire management in the region. Furthermore, among the used features,
NDVI presented one of the most important data used.

2.8 First results of AF detection and monitoring along Cerrado by
means of ABI bands

Since there was no complete model that describes near real-time AF in Cerrado, we
investigated the potential of GOES-16 ABI TS through the known Fire Temperature
RGB (FT-RGB) composition bands as a support for near real-time AF detection
and characterization in Cerrado (PLETSCH et al., 2019). The premise used was that
aiming to detect fires, GOES-16 has additional ABI bands in the near- and shortwave
infrared (Table 2.8). Using the bands 7, 6, and 5 in a RGB composition (R7;G6;B5),
hot spots and fires are highlighted in red, orange, yellow or white, as the fire gets
hotter and the pixels become saturated, and according to the fire size. Green and
blue shades can be related to ice and water clouds, respectively. Besides, the True
Color RGB composition can be used to show the fire smokes (NOAA AND NASA,
2018).

Some limitations of the application are the presence of clouds, which can hide fire
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signals, the possible false red fires in more dry regions (NOAA AND NASA, 2018),
and the color variations along days, seasons, and localization (SEAMAN et al., 2017;
SCHMIDT, 2019). Finally, due to the possibility of a more frequent data acquisi-
tion (LINDLEY et al., 2016), the incorporation of TS analysis in FT-RGB bands was
a novel approach by itself in the work of Pletsch et al. (2019).

Table 2.8 - GOES-16 spectral bands used in a FT-RGB composition, R7;G6;B5.

Band Band central
wavelength (µ m)

Contribution to a
saturated pixel

Fire
Temperature

7 3.9 Hot land surface Low
6 2.2 Small ice/ water particles Medium
5 1.6 Water clouds High

Source: Adapted from NOAA and NASA (2018).

Based on the concept of near (<3.0 km), and far (>6.0 km) from AF pixels, and
using VIIRS and MODIS AF, two main questions guided the analysis: 1) How does
the GOES-16 ABI TS behave in near and far from AF environments?; 2) How does
the GOES-16 FT-RGB compositions behave in near and far from AF environments?
To answer that, Pletsch et al. (2019) assessed the FT-RGB bands behaviour in a
study area of about 3,000 km2 located in Tocantins State during one day (October
24th, 2018) in the Cerrado biome. The answers (extracted from the original scientific
article) are detailed below.

2.8.1 How does the GOES-16 TS behave in near and far from AF envi-
ronments?

Bands 5 (B05) and 6 (B06) do not present information from 9:00 pm to 8:00 am
due to the lack of daylight, while band 7 (B07) does. Even though, this period was
not analyzed in B07, once there was no True Color composition to support the
analysis (Figure 2.19).
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Figure 2.19 - TS spectral behaviour of the average values of the GOES-16 FT-RGB bands
near (<3.0 km) and far (>6.0 km) from AF pixels - October 24th, 2018. A
highlight is available during the acquisition of AF data (2:00 pm - 5:00 pm).
A. Band 5 (B05) along a whole day; B. B05 from 2:00 pm to 5:59 pm -
interval with detected AF; C. Band 6 (B06) along a whole day; D. B06 from
2:00 pm to 5:59 pm - interval with detected AF; E. Band 7 (B07) along a
whole day; F. B07 from 2:00 pm to 5:59 pm - interval with detected AF.
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SOURCE: Pletsch et al. (2019).

The B05 TS curve presented a quite similar behaviour in near (NAF) and far
from AF (FAF) spectral curves along the day, with peaks around 10:00 am and
4:00 pm (Figure 2.19-A). From 8:00 am to about 12:00 pm, the area presented dense
clouds, which may have affected the band curve in this period. During the time
interval between 2:00 pm and 4:00 pm, the NAF values were higher (Figure 2.19-B),
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which may indicate that the presence of AF increases the values in this band.

TS of B06 data also presents an analogous pattern to the B05, with peaks in both
curves, NAF and FAF, around 10:00 am and 4:00 pm (Figure 2.19-C). The first one
can be also due to the presence of clouds. The second peak as well as B05, NAF
values are superior. At 5:00 pm, as well as in B05, there is a decrease in the values,
probably due to the sunset and the inherit sensor characteristics (Figure 2.19-D).
Both bands can be physically related to aerosol particle size, and especially the B06
primary use was hot spot detection at the emission of temperatures greater than
600 K.

Differently from the aforementioned bands, the B07 values pursue another pattern
along the time, and it was not possible to identify the influence of the clouds around
10:00 am. B07 TS presented just a soft peak curve from 9:00 am to 9:00 pm (Fig-
ure 2.19-E), which can be explained considering this band contains a daytime solar
reflectance component. Along it, it seems that the curves NAF and FAF are over-
lapped. Nonetheless, a closer analysis between 2:00 pm and 5:59 pm shows that the
curves are slightly different, and the NAF values are again higher (Figure 2.19-F).

Such results could support the development of a reliable process able to classify
GOES-16 based on the spectral-temporal characteristics. However, the use of nearer
pixels (<3 km) may distinguish the results of NAF and FAF even better. Fur-
thermore, the aforementioned bands main advantage is in RGB composition, but
GOES-16 presents 16 different bands. As such, it would be suitable to develop an
approach, as an index that can use the full potential of the integrated bands. For
instance, the use of a middle infrared band (B07) may be even boosted when inte-
grated with the thermal infrared band (Band 14 in the case of GOES-16). Moreover,
the analysis of FAF temporal patterns could benefit the identification of anomalies
in TS that can be related to the incidence of fires.

2.8.2 How do the GOES-16 FT-RGB compositions visually behave near
and far from AF environments?

According to the FT-RGB quick guide (NOAA AND NASA, 2018), colors derived
from the composition can be related to different targets. In theory, near black color
is more related to water/snow/night, shades of blue to water clouds, green to ice
clouds, purples/pinks to clear land, red to warm fire, and shades of brown to burn
scars. However, for the same target the presented color may vary in space and time.
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In this study, the True Color RGB composition enabled the identification of just
three different targets in Cerrado: natural vegetation, cloud, and cloud shadow. In
general, the presence of clouds was highly accurate with the pixels in shades of blue
and green. The FT-RGB could identify a small water course in the north of the
scene mainly from 2:00 pm to 2:45 pm (Figure 2.20). As the size of the water course
is too small, possibly there are contributions from other factors for the amount of
near black pixels.

Figure 2.20 - GOES-16 FT-RGB compositions near (<3.0 km) and far from (>6.0 km)
AF environments along October 24th, 2018, from 2:00 pm to 5:45 pm.
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Due to the complexity of the TS, we are going to present in detail three different
analyses. In the first one (Figure 2.20, white dotted square), it is possible to notice
at 2:00 pm the presence of a red pixel in the center of the square, which is the
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source of an AF detected by the satellites Terra at 2:15 pm, and S-NPP at 3:48 pm.
Except for the presence of cloud or cloud shadow, this pixel remained with a hot
color palette during the whole analyzed interval.

The second analysis (Figure 2.20, dark blue dotted square) also presented a pixel
in the center with shades of red, orange, pink, and purple. It was identified AF in
this pixel or in the adjacent pixel above at 5:00 pm and 5:30 pm, by the satellites
Aqua and S-NPP, respectively. As it is located in the extreme southwest of the area,
a region that presents clouds along the afternoon, the result may be influenced by
this target. The last analysis (Figure 2.20, orange dotted square) is regarding two
adjacent pixels in the center of the square, whose color along the period was also red,
orange, pink, and purple. It was identified AF by the satellites S-NPP at 3:48 pm,
Aqua at 5:00 pm, and in the adjacent pixel above by the S-NPP at 5:30 pm.

Due to the spatio-temporal variations of the colors in the FT-RGB composition, it
would be necessary to assess the correlation between the targets and the possible
correspondent band values in Cerrado. Furthermore, the presence of clouds could
have influenced the analysis of the red pixels and the AF spots. Such a process would
be crucial to identify which values of the RGB could endorse the presence of fire.

2.8.3 GOES-16 FT-RGB findings

In Pletsch et al. (2019), we analyzed the use of GOES-16 TS to characterize near
real-time AF in Cerrado. As a result, they identified a certain pattern along the
24 hours TS from bands 05, 06, and 07. However, the TS curve analysis was in-
fluenced by the presence of clouds from 8:00 am to 12:00 pm. During the presence
of AF (2:00 pm - 5:59 pm), the NAF values tend to be slightly higher than FAF,
which may indicate that techniques of digital image processing could strength the
differences and separate both groups to improve the AF detection.

Regarding the FT-RGB composition, they visually identified a certain relation of: i)
shades of red with AF; ii) shades of blue and green with clouds; iii) the color black
with the presence of water; iv) shades of brown with clear sky. For a deeper analysis
of AF, the presence of water clouds was a hindrance to better relate the color with
the target. Moreover, they identified as a limitation of the technique the minimum
and maximum RGB values, which presents a spatio-temporal variation, and may
influence the final color. Finally, the ABI Band 7 also showed promising results in
order to detect hot land surfaces, and it was highly indicated for AF detection and
monitoring.
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3 METHODOLOGY

The methodology was developed based on the CRISP-DM (Figure 2.13) framework
presented in Section 2.5.1. Firstly, the used Data is described in Section 3.1. The
Business Understanding step, which is related to understand the DM problem that
needs to be solved, was already presented in Section 2, especially regarding Fires in
Cerrado (Section 2.1.1). The Data Understanding process was performed by means
of exploratory statistical and visual data analysis, and guided the steps required for
the Data Preparation and Modeling (Section 3.2). The Evaluation step is presented
in Sections 4 and 5, and the possible steps and studies prior to the Deployment are
presented as Recommendations for Future Work in Section 6.2.

3.1 Data

The dataset used in this thesis is composed of AF products from the reference
satellites (MODIS and VIIRS), GOES-16 ABI (Band 7), and Sentinel-2 (Bands 4,
8A, and 12) imagery, and Mapbiomas LULC mapping (Figure 3.1). Planet imagery
(Bands 1, 2, and 3) was used only to support the visual pixel analysis (Section 4.5).

Figure 3.1 - Dataset used and the filtering process of the data.

AF: Active Fire; LULC: Land Used and Land Cover.
SOURCE: Author’s own elaboration.

Among the products, MODIS and VIIRS are the most prominent and are consid-
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ered references to identify AF (Figure 3.1, red dotted rectangle). The AF datasets,
MODIS and VIIRS, were acquired from the Fire Information for Resource Manage-
ment System (available at https://firms2.modaps.eosdis.nasa.gov/, accessed
on 20th November 2020) for August, 2019 and filtered for our study area and con-
fidence level, higher than 50% for MODIS, and nominal and high confidence for
VIIRS because false alarms are particularly undesirable. The data were used both
to indicate the most representative burned ABI Band 7 pixels in order to train the
FM model and to assess the FM performance.

Besides, we also used the Band 7 imagery ABI pixel grid raster and brightness tem-
perature for the whole month of August, 2019, over MATOPIBA (≈240 GB) (Fig-
ure 3.1, pink dotted rectangle). Due to such big data, firstly, we randomly se-
lected 5% of the ABI pixel grid to work with. Afterward, we used the 2019 Brazil-
ian Annual LULC Mapping Project (MapBiomas), the 4th collection (available at
https://mapbiomas.org/, accessed on 10th October 2020), to filter the random grid
only for those with a majority of LULC natural formations once it presented the
most expressive number of AF throughout August, 2019. In addition, the Natural
Formation also composes the most representative LULC with 70% of MATOPIBA
territory: 16% Natural Forest (NF), 43% Savanna Formation (SF), and 11% Grass-
lands (Gr). For the selected areas, we extracted brightness temperature from Band
7 imagery for the whole month of August, 2019.

Based on VIIRS and MODIS data, we selected 2% of the ABI filtered pixel grid with
the highest AF recurrence for the manual BA mapping using Sentinel-2 imagery (Fig-
ure 3.1, blue dotted rectangle). In addition, the pixels were equally distributed based
on the three LULC natural formations in order to identify areas more prone to fire
and, therefore, better support our ML training and modeling.

The BA mapping was performed considering both: (i) the inside of the central ABI
pixel grid and (ii) the surroundings of the central pixel, as one of the assumptions
of this study is that the presence of BA in the surrounding pixels may influence
the brightness temperature of the ABI Band 7 central pixel. In this manner, for
the BA mapping, we used Sentinel-2 imagery at Sentinel Hub viewer (available at:
https://www.sentinel-hub.com/, accessed on 25th January 2022). We also used
the false color composite shortwave infrared (SWIR), RGB (B12, B8A, B04), as it
enables fire damage mapping (Sentinel Hub, 2021). An example of such a process is
available in Figure 3.2.

Even though Sentinel-2 data does not provide the exact time of a fire occurrence, it
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is one of the most suitable satellites since it presents a 10–20 m spatial resolution
and a five-day revisit time. Due to the satellite temporal resolution, the BA mapping
was quantified by the ABI pixel grid and by date and only in cloud and cloud shadow
free areas. The use of such data allowed us to design the FM in a way that it could
detect AF, whose impact can be seen on Sentinel-2 imagery by means of burned
areas.

Finally, for specific results analysis, when necessary and available, Planet imagery
(Bands 1, 2, and 3) was used to visually support fire comprehension.

Figure 3.2 - Example of burned area mapping in the central ABI pixel grid and surround-
ings based on Sentinel-2 imagery. RGB (B12, B8A, B04).

(A) Remote sensing image without BA mapping. (B) Remote sensing image with BA
mapping.

SOURCE: Author’s own elaboration.

3.2 Methods: data preparation and modeling

As indicated by KDD, after that data cleaning, integration and selection, we trans-
formed the data to create a DC, where different algorithms were performed (available
at: https://github.com/MikhaAJSP).

For the DC, firstly, the ABI dataset was pre-processed, including the transformation
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from NetCDF to TIF dataset format, reprojection to WGS 84 (EPSG: 4326), and
data cropping to the extension of the study area. Due to the technical improvements
that ABI presents over the previous GOES imagers, including calibration and navi-
gation (KALLURI et al., 2018), no further pre-processing was necessary. Furthermore,
once the used dataset comprehends only 30 days, the TS was considered stationary,
which means that there are no trend or seasonality influences. Hence, no TS decom-
position was required. Finally, the remaining data was also integrated into a data
frame, generating thus the DC.

Once the DC was prepared, we were able to perform the next steps of the method-
ology: data split, data processing and experiments, FM development, and FM as-
sessment by means of important question analysis (Figure 3.3).

Figure 3.3 - Methods for Data Preparation, Modeling, and Evaluation divided into four
main steps: Data Split, Data Processing and Experiments, FM Development,
and Questions Analysis.

XGBoost: Extreme Gradient Boosting; FM: Final Model.
SOURCE: Author’s own elaboration.

3.2.1 Data split

For the ML processes, we used the areas with BA mapping, equally distributed
among the three Natural Formation LULC. For the training set, 94 of the brightness
temperature pixels were selected, from which 25% of the observations were used
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for the validation set (Figure 3.3(1a)). Besides, 40 pixels were used for the test
set (Figure 3.3(1b)). It was divided once each pixel presented more than 4000 GOES-
16 observations due to its ultrahigh temporal resolution. The remaining 2291 pixels
were used for the final inference process (Figure 3.3(1c)).

3.2.2 Data processing and experiments

The data processing workflow used in this study starts with the identification of the
amount of historical data (lag) the FM requires before a fire event to make accu-
rate AF classifications (Figure 3.3(2a)). To do so, we applied the data normalization
known as standard score (z-score), which requires not only the last brightness tem-
perature but also a historical time series, from which the last brightness temperature
can be compared and analyzed. In this manner, we would like to know how distant
the last value is from the historical time series average. Based on an empirical anal-
ysis, the premise is that the average pixel value is the absence of fire, positive values
are related to fires, and negative values, to the presence of clouds. In this thesis,
the unit of the historical time series lag is a day, where 1 lag represents the last
144 ABI Band 7 observations, and 15 lags represent the last 2160 observations. It is
important to highlight that the greater the amount of data, the more computational
power is required.

Integrated with the lag analysis, we also conducted experiments with the three
different ML algorithms, aiming to identify the most suitable combination for the
FM development (Figure 3.3(2b)). The ML algorithms used were Random Forest
(RF), Logistic Regression (LR), and Extreme Gradient Boosting (XGBoost). They
were selected based on their performance and literature recurrence as techniques
for fire management and decision-making processes (JAIN et al., 2020; BOT; BORGES,
2022).

Because GOES-16 ABI presents such an ultrahigh temporal resolution dataset, for
the FM analysis, there were two main hindrances: the necessity to (i) create an ap-
proach able to compare datasets with different temporal resolutions (GOES-16 ABI,
MODIS/VIIRS, and Sentinel-2); (ii) develop ways to support firefighters prioritiza-
tion planning to maximize the efficiency of the response team. In this manner, for
the FM performance assessment, we analyzed not only a single AF detection (naive)
but also consecutive AF indications as well.
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3.2.2.1 Algorithms and hyperparameters optimization

By using RF, XGBoost, and LR, we aimed to develop a model trained by the
historical time series in order to correctly identify AF by means of a NRT dataset.
For the experiments, we used 10% of the training set and created a z-score based on
historical time series of 1 to 15 lags. For each lag, we applied each ML algorithm.

Aiming more fast and effective results, we developed our own hyperparameter opti-
mization strategy. For that, we developed two base approaches: i) adjustment of all
the hyperparameters; ii) adjustment of only one of the hyperparameters based on
the best hyperparameters combinations until that moment. Both were used alter-
natively, whose prioritization was based on the incremental performance gain and
processing time cost. Due to the number of ML algorithm hyperparameters, we also
developed and applied an optimization step for each model and lag (days), where
the automatic hyperparameter adjustments were run for at least three hours on the
computer and with a minimum of 100 attempts per model (Figure 3.3(2c)). The
possibilities of lag and algorithm combinations reached almost 10,000 models.

3.2.2.2 Lag and Machine Learning algorithm selection

According to Milanović et al. (2021), RF models were more efficient than LR for
forest fire probability mapping, in our study, XGBoost presented an even higher
performance. RF and LR hardly achieved an accuracy of 60–70%, whereas XGBoost
achieved an accuracy of 70–80% (Figure 3.4).
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Figure 3.4 - Lag comparison over 15 days and overall Machine Learning models perfor-
mance.

SOURCE: Author’s own elaboration.

In XGBoost lag accuracy, lags 12 and 13 had the best results. Although lag 12
presented the greatest number of accurate models, 70–80%, we selected lag 13 as it
presented more accurate models than those of lag 12—around 80%. In other words,
using lag 13 means that for every new piece of ABI data, the spectral distance from
the mean of the last 13 days is analyzed in standard deviation units in order to
confirm if it is above or below the local pattern, where positive z-score values are
generally related to fires and negative z-score values to clouds.

Once the algorithm XGBoost and lag 13 were selected, the FM was developed and
applied to the whole dataset in order to answer the proposed questions.

3.2.3 Final model development and assessment

For the FM, we aimed to optimize its hyperparameters until its saturation by means
of 25% of the training data (Figure 3.3(3a)). This process generated about 2,150
models (Figure 3.3(3b)). Afterward, 75% of the remaining training data and the
test set were used to assess the models in a process known as cross-validation (Fig-
ure 3.3(3c)).

The most accurate model was then selected (Figure 3.3(3d)) and trained based on
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the training set (Figure 3.3(3e)), which resulted in the FM (Figure 3.3(3f)). We
then assessed the FM with the test set (Figure 3.3(3g)) and applied it to the pixels
without BA mapping for the inference process (Figure 3.3(3h)). Due to the temporal
resolution difference of the GOES ABI dataset (10 min), reference satellites (12 h),
and the BA mapping (5 days), we assessed the FM accuracy in the test set consid-
ering both: a single indication of AF and a certain sequence of AF. The consecutive
AF indications represent a more persistent fire in TP cases. For fire management,
it is important to comprehend the presence of fire throughout the territory (single
detection). Nonetheless, it is also essential to understand how persistent a fire is in
order to direct efforts to where it is most needed (sequence of consecutive AF detec-
tion). In addition, it is vital to highlight that as a consequence of the used dataset,
only fires whose BA impact can be seen on Sentinel-2 false color composition can
be detected by the FM.

For both single and sequential AF detections, the analysis was conducted from 14
to 31 August 2019. As lag 13 was selected, the first 13 days of August were only
used to compose the historical data required for the z-score. The accuracy analysis
for the single detection approach (named hereafter as ’naive’) aimed to identify,
based on the previous 13 days’ z-score, if the brightness temperature found on the
14th day would present a fire or not. The same was performed for the consecutive AF
detections; however, we considered a certain number of consecutive AF indications
as a prediction. An attention was given to 15 and 125 consecutive AF detections.

Evaluating FM performance is a complex task because all of the data used have dif-
ferent temporal resolutions. In this manner, for the overall FM performance analysis
by LULC and BA mapping, we only considered the dataset on the days with BA
mapping. In addition, for the FM performance evaluation considering a consecutive
sequence of AF indications, we analyzed the previous days of a BA mapping in order
to identify the presence of AF indication from FM and the reference satellites.
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4 RESULTS

4.1 Overall performance of the FM

The FM applied to the test set resulted in an accuracy rate of 78.9% (Table 4.1).
In our analysis, the probability of an FM being right when it points out an AF
detection is around 87%, and when it indicates a non-fire, around 70%.

In order to understand if LULC plays an important role in FM performance, we also
analyzed the FM for each LULC natural formation: Natural Forest (NF), Savanna
Formation (SF), and Grassland (Gr) (Table 4.1). We observed that the percentage of
fire prevalence among the classes varies up to 50%. Nonetheless, the overall accuracy
rate ranged between 70% and ≈ 90%, which indicates that the FM performance is
versatile among the three natural formations.

Furthermore, to explore the weaknesses and strengths in specific situations, it is
important to take into account the rate of FM accuracy in detecting AF when there
is fire (sensitivity) and not detecting AF when the fire is absent (specificity). In this
manner, it is possible to have greater clarity on the FM classifications’ interpretabil-
ity and the required further improvements in the FM.

The FM performance in the different LULC (Table 4.1) can be grouped into two:
(i) Natural Forest (NF), with high sensitivity (more than 90%) and low specificity
(58.9%); and (ii) Savanna Formation (SF) and Grasslands (Gr), with low sensitivity
(58% and 54%, respectively) and high specificity (72% and 77%, respectively). In
NF, the FM has a tendency to identify practically all the AF activities; however,
it can indicate more AF than there really are, whereas in SF and Gr, we have the
opposite process. Even though the FM presents such specificities, its performance
in any LULC presents an overall accuracy rate higher than 70%, which means that
the FM classifications will be right in at least 70% of the cases.

Compared with NF and Gr, SF presents higher false positives (≈11%). Such result
could be related to (i) the high heterogeneity of the physiognomies presented in this
natural formation that embraces areas with defined tree and shrub-herbaceous stra-
tum, and (ii) the absence of BA on the Sentinel-2 imagery due to the fast grassland
vegetation recovery. Finally, Gr presented the highest true negatives and the lowest
false positive among the natural formations, probably due to the predominance of
herbaceous-shrub species.
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Table 4.1 - Overall and Land Use and Land Cover (LULC) final model prediction assess-
ment metrics. NF: Natural Forest; SF: Savanna Formation; Gr: Grassland; BA:
Burned Area. True positives, false positives, false negatives and true negatives.
Results in absolute numbers and percentage.

FM Assessment by LULCMetrics Overall FM
Assessment NF SF Gr

True positives
(real: fire, predicted: fire)

6607
(40.60%)

3906
(82.09%)

1691
(24.98%)

1010
(21.28%)

False negatives
(real: fire, predicted: non-fire)

2468
(15.17%)

419
(08.81%)

1190
(17.58%)

859
(18.10%)

False positives
(real: non-fire, predicted: fire)

971
(05.96%)

178
(03.74%)

763
(11.27%)

30
(00.63%)

True negatives
(real: non-fire, predicted: non-fire)

6228
(38.27%)

255
(05.36%)

3125
(46.17%)

2848
(60.00%)

Fire prevalence on test data 55.8% 90.9% 42.6% 39.4%
Accuracy rate 78.9% 87.5% 71.1% 81.3%
Sensitivity 72.8% 90.3% 58.7% 54.0%
Specificity 86.5% 58.9% 80.4% 99.0%
Positive Predictive Value 87.2% 95.6% 68.9% 97.1%
Negative Predictive Value 71.6% 37.8% 72.4% 76.8%

4.2 FM performance regarding burned areas mapping

The size of the BA does not influence the FM accuracy (Table 4.2a). Actually,
smaller BAs (0.01–0.1 km2) presented about 10% higher true positives than those of
bigger BAs (>1.0 km2), which can be explained by the following reasons: (i) most of
the BA data are smaller than 1.0 km2, and as a consequence, there is a great number
of representative samples of smaller BA proportions within the pixels to train the
models; (ii) fires of different proportions may present different z-score patterns, and
due to the great number of small BA samples (<1.0 km2), the FM is probably more
focused on this dimension of fire. In other words, the FM can be more accurate at
predicting AF at the beginning of the fire phenomenon; (iii) larger BAs (>1.0 km2)
can be generated by means of fire of small proportions burning for a longer period
of time, which would not necessarily sensitize the FM.

Table 4.2b shows that when there is a larger BA mapping in the surroundings
(>1.0 km2), the FM result presents a higher false negative in the central pixel. In
addition, BA mapping in the surroundings larger than 0.1 km2 already negatively
affects the true positive values in the central pixel.
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Table 4.2 - Final model prediction accuracy considering burned areas. F: Fire; NF: Non
Fire.

a) FM accuracy according to BA
Mapping in the central pixel (km2)

0 - 0.01 0.01 - 0.1 0.1 - 1.0 >1.0
Classification F NF F NF F NF F NF

F 0.00% 0.00% 77.10% 22.90% 71.20% 28.80% 67.80% 32.20%BA
Mapping NF 13.50% 86.50% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

b) FM accuracy according to BA
Mapping in the surroundings (km2)

0 - 0.01 0.01 - 0.1 0.1 - 1.0 >1.0
Classification F NF F NF F NF F NF

F 0.00% 4.00% 82.00% 10.00% 31.00% 13.00% 47.00% 28.00%BA
Mapping NF 12.00% 84.00% 0.00% 8.00% 9.00% 47.00% 4.00% 21.00%

4.3 What is the FM potential when considering a consecutive sequence
of positive predictions?

Aiming to explore ABI temporal resolution of 10 min, we analyzed the FM accuracy
considering a single detection (naive) and a sequence of 15 and 125 consecutive AF
detections (Figure 4.1). While the accuracy rate of the naive approach is 56.6%, 15
consecutive AF detections (after 2.5 h) is 67.3%, and 125 (after ≈ 20 h) achieves an
accuracy peak of 73.4%. From then on, the increase in consecutive AF detections
does not improve fire detection performance. Such a fact can also be associated with
the low number of samples with more than 20 h of consecutive fire indications.
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Figure 4.1 - FM consecutive AF prediction assessment metrics.

SOURCE: Author’s own elaboration.

Comparatively, the results show that with the increase in consecutive AF detec-
tions, there are slightly lower true positives, around 6%, but significantly higher
true negatives, more than 20% (Table 4.3). Moreover, it also presents lower false
positive cases, from ≈39% of the naive approach to ≈16% of the 125 consecutive
AF. Roughly, until the 125 consecutive AF detections, more detections result in bet-
ter overall accuracy metrics, but the time required to identify more fire indications
can be decisive for firefighters in real life. Furthermore, fires with a shorter lifetime
are more likely to be unseen when a longer consecutive AF detection approach is
considered.

The accuracy rate of the reference satellites is almost 71% and roughly half of the
fires are correctly detected. In addition, reference satellites (MODIS and VIIRS)
rarely commit false positives, less than 3%, yet their true positives are lower than
those of the FM. In comparison with the reference satellites, in the three presented
approaches, FM has a higher sensitivity and a lower specificity. In addition, the 125
consecutive AF detection has a higher accuracy rate. However, it is noteworthy that
due to our methodology, the reference satellites have an advantage, as the data were
already filtered, and low confidence detections were removed.
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According to the BA manual mapping, almost 50% of the 125 consecutive AF de-
tections from the FM and the reference satellites are correct and in agreement, and
almost 5% are incorrectly classified by both (Figure 4.4). The main difference is
regarding the errors. While the 125 consecutive AF detections approach sees more
fires than there are (false positives is almost 16%), the reference satellites are more
restrictive and point to fewer fires than there really are (false negative is 23%),
probably due to the filtering process of high confidence AF from the reference satel-
lites. In this context, the FM can be considered an important improvement over the
reference satellites, not because it is more accurate, but because it presents a high
agreement with traditional methods, not to mention its ultrahigh temporal resolu-
tion of 10 min, which could be integrated with the already consolidated reference
data in order to provide NRT fire detection in the MATOPIBA region.

Table 4.3 - Reference satellites (MODIS and VIIRS) and Final Model (FM) prediction
assessment metrics by 1 (naive), 15, and 125 consecutive Active Fire (AF)
detections. Results in absolute numbers and percentages.

Consecutive AF DetectionMetrics Reference
Satellites Naive 15 125

True positives
(real: fire, predicted: fire)

32
(28.32%)

58
(51.33%)

56
(49.56%)

51
(45.13%)

False negatives
(real: fire, predicted: non-fire)

30
(26.55%)

4
(3.54%)

6
(5.31%)

11
(9.73%)

False positives
(real: non-fire, predicted: fire)

3
(2.65%)

45
(39.82%)

31
(27.43%)

19
(16.82%)

True negatives
(real: non-fire, predicted: non-fire)

48
(42.48%)

6
(5.31%)

20
(17.70%)

32
(28.32%)

Fire prevalence on test data 55.76% 55.76% 55.76% 55.76%
Accuracy rate 70.80% 56.64% 67.26% 73.45%
Sensitivity 51.61% 93.55% 90.32% 82.26%
Specificity 94.12% 11.76% 39.22% 62.75%
Positive Predictive Value 91.43% 56.31% 64.37% 72.86%
Negative Predictive Value 61.54% 60.00% 76.92% 74.42%
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Table 4.4 - Agreement between the Final Model (FM) and the reference satellites (MODIS
and VIIRS). True Positive (TP); True Negative (TN); False Positive (FP);
False Negatives (FN).

Reference satellites
TP FN FP TN

TP 22.10% 23.00% 0.00% 0.00%
FN 6.20% 3.50% 0.00% 0.00%
FP 0.00% 0.00% 0.90% 15.90%125 consecutive AF detections

TN 0.00% 0.00% 1.90% 26.50%

4.4 Fire reality in the remaining data over MATOPIBA

We applied the FM consecutive AF detections to the remaining 5% of the dataset in
MATOPIBA territory throughout August, 2019. Thus, the fire prediction varied ac-
cording to the selected FM approach. If we considered the naive approach, we would
have more than 26,000 AF. For the 5 consecutive AF detections, it would represent
more than 4200, and for the 125 consecutive AF, 1042 detections (Figure 4.2).

Figure 4.2 - Number of active fires detected according to the number of consecutive AF
indicated by the FM.

SOURCE: Author’s own elaboration.

For the same area and time interval, according to the confusion matrix from the
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reference satellites, the total number of AF would reach 1209. Comparing the fire
prediction based on the reference satellites and the 125 consecutive AF detections,
the difference between the results was only 167 AF in more than 2400 of the analyzed
pixels. Although fire characteristics (quantity, velocity and persistence) can be a
hindrance when comparing AF of different sources and temporal resolutions, both
aforementioned approaches presented similar results.

4.5 Detailed pixel and fire behaviour analysis

To support the results comprehension, we performed a detailed pixel and fire anal-
ysis, presented in Table A.1. The whole list of detailed pixel analysis is presented
in Appendix. When there was more than one fire incidence in the same pixel along
August, we divided the pixel analysis into sub-analysis (A, B and so on).

Table 4.5 - Detailed pixel analysis. FM: Final Modell RefSat: Reference Satellites. NA:
Not Applicable. d: day.

ID
analysis

Fire firstly
detected by

Fire
duration
(days)

Fire
extent
(km2)

Expansion
(km2 d−1)

Days of
burning
(August)

Figure

01 FM 4 2 0.5 26-31 4.3
02-A RefSat 5 0.52 0.10 14-18 4.4
02-B FM 1 0.12 0.12 22 4.4
02-C RefSat 1 0.52 0.52 25 4.4
03 FM 2 0.08 0.04 30-31 4.5
04 FM 4 0.28 0.07 26-29 4.6
05 RefSat 2 2.6 1.3 15-16 4.7
06 FM 4 3.3 0.83 24-27 4.8
07 RefSat 2 2.8 1.4 20-22 4.9
08 RefSat 4 3.2 0.8 19-22 4.10

In the ID analysis 01 (Figure 4.3), the fire behaviour achieved an expansion of about
0.5 km2 d−1 with a fire extent of about 2 km2. Presenting a very high agreement
between FM and the Reference Satellites, FM could identify fire firstly. Whereas,
in the ID analysis 02 (Figure 4.4), two of the three fire events were firstly detected
by the Reference Satellites (Table A.1, ID analysis 02-A and 02-C). One important
issue is related to the continuous FM fire indication after a more intense fire, which
could indicate that FM can be sensitive not only to the presence of AF but also to
a more severe anomaly such as BA.
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Figure 4.3 - Detailed analysis ID 01.

SOURCE: Author’s own elaboration.

Figure 4.4 - Detailed analysis ID 02.

SOURCE: Author’s own elaboration.
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FM and the Reference Satellites also presented agreement at the end of August in
the analysis 03 (Figure 4.5), even though the fire extent was only 0.08 km2 and
expansion of 0.04 km2 d−1. However, FM presented false positive values on 16th and
17th. The same confusion is possible to notice in the analysis 04 (Figure 4.6). It is
also possible to notice the gap of information access due to the presence of clouds
on 23th. On 28th, because we noticed the AF on the ground, we considered that the
fire started between 25th and 26th with duration until 29th, according to FM and the
Reference Satellites.

Figure 4.5 - Detailed analysis ID 03.

SOURCE: Author’s own elaboration.
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Figure 4.6 - Detailed analysis ID 04.

SOURCE: Author’s own elaboration.

In the ID analysis 05 (Figure 4.7), 06 (Figure 4.8), 07 (Figure 4.9) and 08 (Fig-
ure 4.10), we notice an agreement between the FM and the Reference Satellites
detections, but as well as in the analysis 02, there is continuous FM fire indication
after the intense fire. Supported by Planet imagery, we could identify that the fire
duration in the analysis 06 was of 4 days and not 8 as indicated by FM. Looking
with more detail for the analysis 07, we also found out that the fire in the area was
lasts only for 2 days, while FM detected AF for at least 10 days. In the analysis 08,
the fire duration was about 4 days, but the FM indicated AF for around 9 days.
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Figure 4.7 - Detailed analysis ID 05.

SOURCE: Author’s own elaboration.

Figure 4.8 - Detailed analysis ID 06.

SOURCE: Author’s own elaboration.
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Figure 4.9 - Detailed analysis ID 07.

SOURCE: Author’s own elaboration.
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Figure 4.10 - Detailed analysis ID 08.

SOURCE: Author’s own elaboration.
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5 DISCUSSION

As presented in Table 4.1, FM proved to be versatile among the three analyzed
natural formations, NF, SF, and Gr, but with specificities in each one of them.
Although the overall accuracy rate of FM is high, the FM single detection accuracy
can be negatively influenced by BA greater than 1 km2 in the central pixel and in
its surroundings. Consequently, the greatest potential of this approach is when the
fire is in its initial phase. In addition, considering that the fire intensity needs to be
high enough to sensitize the ABI sensor, and the human-induced fires are frequent
and intense (PIVELLO et al., 2021), most of the FMs potential is also regarding this
kind of fire.

In order to visually compare FM and the Reference Satellites in different scenarios,
we performed a detailed pixel analysis (Section 4.5). It was possible to notice a
certain agreement between FM and the references satellites AF detections, where
both were suitable for AF detection at the same time that they can complement
each other. In such occasions, either the FM or the Reference Satellites would firstly
detect AF or even detect it when the other would not. FM presents generally two
sensitive points: i) occasional presence of FM false positives; and ii) when the surface
presents an AF followed by a severe BA, FM continues to detect AF, probably due to
the Machine Learning training process used. In this manner, FM indicates not only
AF but also burning anomalies on the ground. Finally, among the analyzed pixels,
the fire duration ranged from 1 to 5 days, burning up to 3 km2 and maximum
expansion of 1.3 (km2 d−1).

Because fire is a dynamic phenomenon, NRT datasets are the most recommended
for AF studies. However, ultrahigh temporal resolution data such as GOES-16 ABI
is thus far poorly explored in this field. Higa et al. (2022) proposed an approach
based on object detection methods to map AF in the Brazilian Pantanal biome. For
that, the authors used deep learning (a subset of ML-based on neural networks)
and CBERS 4A (China Brazil Earth Resources Satellite) imagery. After extensive
experiments and the generation of 150 models, the study achieved a high precision,
more than 80%. Nonetheless, CBERS 4A presents a spatial resolution of 55m and a
five-day revisit time. A similar approach was also developed by (PEREIRA et al., 2021),
where deep learning techniques were used for active fire detection. The final model
achieved a precision of more than 87%; however, the authors used the Landsat-8
imagery, with a revisit time of 16 days. Considering that different sensors present
idiosyncrasies, we can also notice an opportunity to harmonize multi-sensors for AF
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studies.

Understanding fire behavior is essential for fire management. As resources are scarce,
and proper allocation of firefighters is essential for firefighting success, a more re-
fined AF detection and monitoring are imperative. Because of that, we developed the
FM consecutive AF. It presented a higher accuracy, reaching its peak after around
20 h (125 consecutive AF). Even though there is an important trade-off between the
consecutive AF and time, the 125 consecutive AF presented a number of true posi-
tives almost as accurate as those of the reference satellites. Therefore, incorporating
the approach of consecutive AF detection, for instance, at INPE’s Fire Monitoring
Program, is vital for proper firefighting and management. Such an approach could
provide not only a single AF detection but also a better comprehension of the NRT
fire behaviours. Moreover, different AF sources could also be integrated to boost the
confidence of one another.

In this study, the FM was developed based on the XGBoost ML model and also
considering the z-score of the last 13 days. However, once it is implemented to sup-
port fire management, retraining the FM is recommended throughout the year due
to the seasonal variability. Furthermore, since a pixel is the smallest unit of analysis,
the FM could also be trained for other biomes. As such, not only MATOPIBA but
also other areas could benefit from the FM predictions. Further studies are needed
to improve the FM in order to reduce weaknesses, such as the false positives found
in SF. Finally, the FM could also be improved by using a fire prediction confidence
rate instead of the binary prediction (true or false). Additionally, the integration of
the FM with other models, for instance, the integration of FM results with the fuel
load dynamics and fire spread probability (OLIVEIRA et al., 2021), could also better
guide firefighters in allocating resources efficiently where they are most needed.

The combination of factors such as the removal of natural vegetation and the in-
adequate soil management by means of recurrent human-induced fires has already
been proven to contribute to soil degradation in MATOPIBA (VIEIRA et al., 2021).
Because of such impacts, different laws and initiatives have been developed in order
to protect natural tropical biomes. In Brazil, the “Zero Fire” policy aimed to ban
fires. However, the advance of science in the 1970s resulted in changes in fire man-
agement discussions, and from the 2000s on, it became more evident that such policy
was inefficient in protecting fire-dependent biomes, including Cerrado (PIVELLO et

al., 2021). Hence, other more updated strategies have been created, such as the Law
for Protection of Native Vegetation (Law 12.651/2012) and the Brazilian Integrated
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Fire Management Policy Bill (PL 11.276), which include in their regulation the use
of fire for ecological purposes.

Although some initiatives already exist, there is a lack of studies in areas with
high fire frequency in Cerrado, as already indicated by Arruda et al. (2018), and
little can be achieved without deeper knowledge about fire behavior in the region.
Consequently, the NRT dataset and ML approaches, such as the FM, are crucial in
supporting fire management.

MATOPIBA may lose approximately 120,000 km2 of natural formations to anthro-
pogenic uses before 2050 (VIEIRA et al., 2021). That being the case, fire management
and new agricultural practices in MATOPIBA are fundamental not only to pre-
serving local biodiversity but also to guaranteeing food security and avoiding its
associated impacts on the national economy. However, contrary to what is needed,
environmental management and research have suffered budget cuts by the Brazilian
government in recent years (SCHMIDT; ELOY, 2020).

To avoid further impacts, it is of utmost importance to have financial support for
infrastructure as well as human resources for environmental monitoring and research
development, where techniques with cutting-edge technology, such as the FM, can
be developed and applied for better national fire management. While budgets are
scarce, the integration among share- and stakeholders is inefficient, and public poli-
cies remain only on paper, and the fire phenomenon persists as an open issue in
Brazil.
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6 FINAL CONSIDERATIONS

6.1 Conclusions

Active fire mapping based on geostationary satellites is already proven to be an
important source of information for wildfire management and surveillance initi-
aties (WICKRAMASINGHE et al., 2018). In this thesis, we developed the Final Model,
the first Machine Learning algorithm able to detect AF in near real-time in the
MATOPIBA region. In addition, Final Model can also be considered a major im-
provement over the reference satellites for a couple of reasons: the Final Model is
versatile and can be used not only considering a single detection but also consec-
utive AF detections while retaining a high overall accuracy rate. Such process is
able to support an expanded comprehension of fire behavior (e.g., duration and ex-
pansion) and prioritize the daily activities of firefighters. In regions so extensive as
MATOPIBA and with low resources for environmental management, such prioriti-
zation is essential.

Although further advances and studies are required, Final Model and the reference
satellites could even be integrated, providing an even more accurate AF detection
and monitoring in the region; for instance, those fires that are already burning and
were also detected by VIIRS/MODIS should have a priority.

Finally, because consistent fire policies are urged for Cerrado conservation (DURI-

GAN; RATTER, 2016), and objective regulations require a better comprehension of
the fire scenario, Final Model can be an important tool for providing detailed infor-
mation about the fire behaviour in the region.

6.2 Recommendations for future work

This thesis was developed based o CRISP-DM framework. In this manner, once
Final Model was evaluated and published (PLETSCH et al., 2022), it is indicated its
diffusing for a large public as well as technical training about its use and application
in real life for fire management.

Besides the diffusing, future studies could be focused on data, modeling and appli-
cations:

• It is important to obtain a larger number of high-quality BA training
samples to train more realistic and updated models;
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• Incorporation of new and harmonized data, including the integration of
Band 7 with other bands, smoke/fire plumes, NDVI, and precipitation,
once there is an inverse relationship between the incidence of fire and veg-
etation and precipitation Mataveli et al. (2018);

• The use of statistical metrics, such as minimum, maximum, and standard
deviation, from different bands could also be used instead of the whole
time series. This process could provide a less computational process re-
quirements;

• Consider the fire susceptibility as a support data in the model, where more
susceptible areas could have more weight. For instance, the fuel moisture
content is also important for fire management, once it can support fire-
fighters strategies (CHUVIECO et al., 2020). In this manner, Remote Sensing
dataset related to local moisture could also be used to create an algorithm
able to perform fire risk maps incorporated to Final Model results;

• Comprehend in more detail the ABI temporal behaviour for different tar-
gets;

• Because Machine Learning is still an active area of research in Remote
Sensing, different algorithms have been continuously developed (MAXWELL

et al., 2018). As such, we indicate the use of CRISP-DM for new algorithms,
which could provide improved Machine Learning performance;

• We used binary classification, as such it would be interesting to measure
the probabilistic relationships between variables;

• Train the model for the whole Brazil and not only for MATOPIBA;

• Studies are required to understand: After how much time it is indicated to
retrain the model?

• Exploration of more fire behaviours by means of Final Model, such as fire
direction;

• Compare the results with similar AF datasets.
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APPENDIX A - COMPLETE DETAILED PIXEL ANALYSIS

Below, we present the complete detailed pixel analysis (Table A.1). When there were
more than one fire incidence in the same pixel along August, we divided the pixel
analysis into sub-analysis (A, B and so on).

Table A.1 - Complete detailed pixel analysis. FM: Final Modell RefSat: Reference Satel-
lites. NA: Not Applicable. d: day.

ID
analysis

Fire firstly
detected by

Fire
duration
(days)

Fire
extent
(km2)

Expansion
(km2 d−1)

Days of
burning
(August)

Figure

09-A RefSat 6 1.76 0.29 15-20 A.1
09-B RefSat 4 0.48 0.12 24-28 A.1
10-A FM 1 0.04 0.04 15 A.2
10-B FM 1 0.07 0.07 21 A.2
10-C FM 2 0.52 0.26 23-24 A.2
11 RefSat 5 2.04 0.41 24-28 A.3

12-A FM 1 0.07 0.07 16 A.4
12-B RefSat 1 0.04 0.04 21 A.4
12-C FM 1 0.04 0.04 27 A.4
13 NA A.5

For the analysis 09 (Figure A.1), FM also points out more AF than there really
were (09-A), but also presented a high agreement with the Reference Satellites, spe-
cially in the analysis 09-B, which presented around 4 days of fire duration, 0.48 km2

of fire extent and 0.12 km2 d−1 of fire expansion.

In the period of 15th to 17th, FM detected AF in the analysis 10-A (Figure A.2), yet
only a small BA of 0.04 km2 was detected on 18th. The same also happens on 23th,
when a BA of 0.07 km2 was also detected by FM (10-B). Finally, a more significant
BA was found on 28th, however, it is not exactly certain the fire duration, which we
supposed that occurred from 23th to 24th. The analysis 11 (Figure A.3) presented
a case, where FM wrongly detected AF from 15th to 17th, and only the Reference
Satellites could correctly identify the AF. Once FM was mainly trained with smaller
AF, it is a case where FM does not perform so well for fire with greater extent.
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Figure A.1 - Detailed analysis ID 09

SOURCE: Author’s own elaboration.

110



Figure A.2 - Detailed analysis ID 10.

SOURCE: Author’s own elaboration.

Figure A.3 - Detailed analysis ID 11.

SOURCE: Author’s own elaboration.
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The analysis 12-A and 12-C (Figure A.4) present cases where only FM detected
the small AF, 0.07 and 0.04 km2, respectively. Whereas in the ID analysis 12-B,
there is a disagreement between FM and the Reference Satellites. Because it is not
possible to detect AF on 23th, as pointed by FM, we considered that the Reference
Satellites correctly indicated fire on 21th. Finally, the analysis 13 shows an example
of a detected AF on 13th that was continuously indicated as fire by FM until 20th.

Figure A.4 - Detailed analysis ID 12.

SOURCE: Author’s own elaboration.
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Figure A.5 - Detailed analysis ID 13.

SOURCE: Author’s own elaboration.
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