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“A vida é a arte do encontro, 

embora haja tanto desencontro pela vida” 
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ABSTRACT 

 

Urban Reservoirs provide relevant ecosystem services to the population worldwide. 
Although its recognized importance, there is an increasing degradation trend of 
metropolitan water systems' due to anthropical impacts. Cultural eutrophication is 
highlighted as a negative effect of human activities, with severe consequences such as the 
intensification of algae blooms. Cyanobacteria are the most concerning bloom-forming 
species for inland waters due to the environmental impacts and potential to produce toxic 
compounds. Therefore, this research presents a state-of-art methodology for monitoring 
Cyanobacteria based on orbital hyperspectral images and Machine Learning Algorithms 
(MLA) in tropical urban reservoirs. The photosynthetic pigment C-Phycocyanin (PC) was 
used as a proxy for the Cyanobacteria biomass once this billiprotein is specific from this 
algae group. Billings reservoir was chosen as the study area due to the constant presence 
of Cyanobacteria and its importance to the regional urban water supply. Eight field 
campaigns were made for collecting radiometric, photosynthetic pigments, and 
taxonomical samples. A hyperspectral image from the PRISMA was acquired in match-
up condition, and tree atmospheric correction algorithms were assessed (ASI, ACOLITE, 
and 6SV). Synthetic multispectral Landsat-8/OLI and Worldview-3 images were 
generated from PRISMA’s best surface reflectance product. Random Forest (RF), 
Extreme Gradient Boost (XgBOOST), and Support Vector Machine (SVM) were chosen 
to retrieve PC from Remote Sensing data. Previously published PC algorithms, 
Normalized Index, and Line Heights were generated from resampled in-situ radiometry 
for each sensor. A data-driven feature selection followed by a decorrelation procedure 
was used to identify the most informative layers. The Grid Search algorithm tuned the 
hyperparameters. PC was modeled from in-situ data through Monte Carlo simulations for 
all assessed sensors and MLA. Then, the best combinations were used for mapping PC in 
the hyperspectral and synthetic multispectral images. The results for in-situ and orbital 
modeling were compared with the state-of-art PC algorithm Mixture Density Network 
(MDN) (O’SHEA et al., 2021). PC from 0 to 301.81 µg/L were found, with mean and 
median values of 20.28 and 2.9 µg/L. Cyanobacteria species were at least abundant in 
96% of the taxonomical samples. ASI was the best surface reflectance product (MAE < 
20% for the visible spectrum). ACOLITE and 6SV underperformed ASI’s product by two 
to ten folds. MDN has sharply overestimated PC in both orbital and in-situ assessments. 
RF had the best estimates for all assessed sensors using in-situ data, with MAE ranging 
from 59-86%. The best result from orbital data was achieved by PRISMA/RF (MAE = 
45%). XgBOOST produced the best results for Worldview-3 (MAE = 49%) and Landsat-
8/OLI (MAE = 74%) synthetic images. Those are the best-reported results for low PC 
concentrations and reduced PC:Chla ratios. The low PC:Chla ratios are also the most 
likely explanation for MDN’s errors once the model was trained with samples with 6 
times higher the mean PC:Chla found in this study. Specked noise was identified in 
hyperspectral mapping and is probably due to the reduced Signal-to-Noise ratio. More 
studies assessing PC in tropical waters are recommended to understand the effects of 
different latitudes on PC production. Finally, Landsat-8/OLI was identified as the most 
feasible sensor for monitoring PC due to the reasonable accuracy, the increased temporal 
resolution (8 days with Landsat-9), and the free access data policy. 
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Keywords: Cyanobacteria, C-Phycocyanin, Remote Sensing, PRISMA, Machine 
Leaning, Inland Water, Eutrophication, Urban Reservoir. 
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MONITORAMENTO DE CIANOBACTÉRIAS EM RESERVATÓRIOS URBANOS 

UTILIZANDO DADOS ORBITAIS DE SENSORIAMENTO REMOTO E 

ALGORITMOS DE APRENDIZADO DE MÁQUINA 

 

RESUMO 

 
Os reservatórios urbanos oferecem importantes serviços ecossistêmicos. Contudo, esses 
sistemas aquáticos têm a qualidade de suas águas impactada pela antropização. A 
eutrofização cultural é destacada como um efeito negativo das ações humanas e 
intensifica a ocorrência de florações de algas. As Cianobactérias são as espécies 
formadoras de florações mais preocupantes em águas continentais devido aos impactos 
ambientais causados e o potencial para produzir compostos tóxicos. Portanto, esse estudo 
apresenta uma metodologia para monitorar Cianobactérias por meio de imagens orbitais 
hiperespectrais e Algoritmos de Aprendizado de Máquina (AAM) em reservatórios 
tropicais urbanos. O pigmento fotossintético C-Ficocianina (PC) foi usado como proxy 
para a biomassa de Cianobactérias. O reservatório Billings serviu como área de estudo 
devido à presença constante de Cianobactérias e o uso para o abastecimento público. Oito 
campanhas foram realizadas para coletar dados radiométricos, pigmentos 
fotossintentizantes, e taxonomia. Uma imagem hiperespectral do sensor PRISMA foi 
adquirida concomitantemente com uma das amostragens, e três algoritmos de correção 
atmosférica foram avaliados (ASI, ACOLITE e 6SV). Imagens sintéticas dos sensores 
Landsat-8/OLI e Worldview-3 foram geradas pelo melhor produto de reflectância de 
superfície do sensor PRISMA. Random Forest (RF), Extreme Gradient Boost 
(XgBOOST), e Support Vector Machine (SVM) foram escolhidos para modelar a PC. 
Algoritmos de PC, Índices Normalizados, e Line Heights foram gerados por meio de 
dados radiométricos reamostrados para cada sensor. Uma metodologia de seleção de 
atributos baseada em dados foi utilizada para selecionar as feições mais informativas. O 
algoritmo Grid Search foi aplicado para ajustar os hiperparâmetros. A PC foi modelada 
com dados de campo por meio de Simulações Monte Carlo para todos os sensores e AAM 
avaliados. As melhores combinações foram usadas para mapear a PC nas imagens 
multiespectrais sintéticas e na hiperespectral. Os resultados foram comparados com o 
algoritmo Mixture Density Network (MDN) (O’SHEA et al., 2021). Foram encontrados 
valores de PC entre 0 to 301,81 µg/L, com uma média e mediana de 20,28 e 2,9 µg/L. As 
Cianobactérias foram pelo menos abundantes em 96% das amostras taxonômicas. A ASI 
teve o melhor produto de reflectância de superfície (MAE < 20% para o espectro do 
visível). ACOLITE e 6SV tiveram resultados de duas a dez vezes piores que o da ASI. O 
MDN superestimou os valores de PC tanto nas análises in-situ como orbitais. O RF obteve 
as melhores estimativas para todos os sensores com dados in-situ, com MAE entre 59-
86%. O melhor resultado para dados orbitais foi obtido pelo PRISMA/RF (MAE = 45%). 
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O XgBOOST teve os melhores resultados para as imagens sintéticas do Worldview-3 e 
(MAE = 49%) e Landsat-8/OLI (MAE = 74%). Esses são os melhores resultados 
reportados para baixas concentrações de PC e baixas razões PC:Chla. A razão PC:Chla 
também é a melhor explicação para os erros do MDN, uma vez que o modelo foi treinado 
com amostras 6 vezes maiores do que a PC:Chla deste estudo. Mais estudos avaliando a 
PC em águas tropicais devem ser realizados para entender o impacto de diferentes 
latitudes na produção de PC. Finalmente, o sensor Landsat-8/OLI foi identificado com o 
sensor mais adequado para o monitoramento de PC devido suas métricas de predição 
razoáveis, alta resolução temporal e acesso de dados gratuito. 

Palavras-chave: Cianobactérias, C-ficocianina, Sensoriamento Remoto, PRISMA, 
Aprendizado de Máquina, Águas Continentais, Eutrofização, Reservatórios Urbanos. 
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1 INTRODUCTION 

Urban reservoirs provide relevant ecosystem services worldwide (LUNDY; WADE, 

2011). Water supply and hydroelectric power are the most listed, but recreation, fishery, 

and irrigation are other relevant benefits, typically depreciated due to the anthropic 

impacts (SCHOLES; FAULKNER; TAPSELL, 2008). Derived from human activities, 

cultural eutrophication leads to a primary production increase in the water column 

(SCHINDLER, 2006) and has been highlighted as one of the most threatening processes 

for metropolitan water supply systems (LEI et al., 2014). The rising eutrophication of 

inland waters has guided a global trend of Cyanobacteria Harmful Algae Blooms 

(CyHABs) intensification (HO; MICHALAK; PAHLEVAN, 2019). Furthermore, 

Cyanobacteria toxins have been described as a threat to environmental and human health 

(WOOD, 2016). They can cause neurotoxic, hepatotoxic, and even carcinogenic effects 

to organisms that ingest contaminated water (CARMICHAEL, 2001). Urban Reservoirs 

are among the most suitable environments for Cyanobacteria development due to the high 

concentration of nutrients, increased residence time, recurrent stratification, and low 

biodiversity (SCHINDLER, 2006; OLIVER; CORBURN; RIBEIRO, 2019). Thus, 

monitoring those aquatic ecosystems has become essential to assure the health of cities’ 

populations.  

Microscopy is recurrently used for Cyanobacteria identification and cell counting on 

traditional water monitoring (HILLEBRAND et al., 1999). Despite being accurate, this 

monitoring approach is time-consuming and might lead to poor spatial and temporal 

representation. Remote sensing-based methods are widespread for monitoring 

phytoplankton in ocean and inland water ecosystems, providing timely and synoptic Earth 

surface observations (BLONDEAU-PATISSIER et al., 2014; PALMER; KUTSER; 

HUNTER, 2015). However, Chlorophyll-a (Chla) based approaches are imprecise for 

Cyanobacteria monitoring since Chla is present in all phytoplankton species (SIMIS; 

PETERS; GONS, 2005). On the other hand, C-Phycocyanin (PC) is a photosynthetic 

pigment with a major presence in Cyanobacteria, making it a better proxy for monitoring 

CyHABs (KIRK, 2010). PC capacity for retrieving biomass information about 

Cyanobacteria through remote sensing data has been evaluated by several studies (RUIZ-

VERDÚ et al., 2008; OGASHAWARA et al., 2013).  
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Monitoring PC from space in urban reservoirs is challenging due to the lack of sensors 

with adequate spectral and spatial resolutions. PC has an absorption feature around 620 

nm (SIMIS; PETERS; GONS, 2005), which is unusual in the spectral range of most 

multispectral satellites. One of the most feasible sensors for monitoring phytoplankton in 

inland waters, Sentinel-2/MSI, has the applicability for estimating Cyanobacteria biomass 

hindered by the absence of that specific band. The ocean color sensors typically have a 

band at 620 nm (e.g., Sentinel-3/OLCI, Aqua/MODIS, Envisat/MERIS), but the spatial 

resolution is often medium or course for monitoring urban reservoirs. To overcome those 

limitations, Castagna et al. (2020) have proposed a methodology for deriving a virtual 

orange band (590-635 nm) for Landsat-8/OLI. This OLI channel has shown the potential 

to monitor PC at a 30 meters scale with a revisit period of 8 days considering Landsat-9 

(KUMAR; MISHRA; ILANGO, 2020). Worldview-2 and Worldview-3 have adequate 

spectral and spatial resolutions for monitoring CyHABs in an urban reservoir. A 

Worldview-2 synthetic image simulated from airborne hyperspectral data was 

successfully used to derive PC and showed the platform’s potential for estimating 

Cyanobacteria biomass (BECK et al., 2017).  

With hundreds of narrow and contiguous spectral bands, hyperspectral sensors provide 

opportunities for assessing the unique features of the water constituents (GIARDINO et 

al., 2019). Many studies were developed using airborne hyperspectral sensors to derive 

water quality parameters (KUDELA et al., 2015; BECK et al., 2016; YIM et al., 2020), 

but assessments based on orbital spectrometry are still relatively scarce (GIARDINO et 

al., 2019). However, with the increasing number of instruments launched recently (e.g., 

DESIS, PRISMA, Geofen-5/AHSI) and soon to come (e.g., EnMAP, PACE, CHIME), 

the applications for hyperspectral remote sensing data are to increase. Phytoplankton 

community structure analysis will be one of the most benefited from radiometric data 

with high spectral resolution (GIARDINO et al., 2019). Besides more precise Chla 

estimates, hyperspectral images have proven to be able to retrieve PC from freshwater 

ecosystems (DEV et al., 2022). The Italian PRISMA hyperspectral satellite is suitable for 

recording accurate data from water ecosystems (GIARDINO et al., 2020) and has been 

successfully used for deriving Chla, Total Suspended Solids, Colored Dissolved Organic 

Matter, and PC (NIROUMAND-JADIDI; BOVOLO; BRUZZONE, 2020; BRESCIANI 

et al., 2022). Besides the increased spectral resolution, PRISMA’s Landsat-like spatial 
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sampling (30 meters) and the off-nadir revisit of 7 days provide the appropriate 

specifications for PC monitoring in urban reservoirs. 

Accurate PC quantification from remote sensing data can be difficult to achieve even 

when adequate sensor resolutions are available. When PC concentration is low (PC < 50 

µg/L) and/or the PC:Chla ratio is reduced (PC:Chla < 1.5), a sharp accuracy decrease was 

reported on most previously published PC algorithms (RUIZ-VERDÚ et al., 2008). 

Precise predictions of the PC absorption coefficient in 620 nm may be hindered by the 

spectral properties of other compounds in optically complex waters, increasing the errors 

of semi-analytical and quasi-analytical algorithms (SIMIS et al., 2007). Additionally, the 

relatively low PC absorption capacity superposed by other spectral features may produce 

non-linear relationships between radiometric data and PC concentrations (SHI et al., 

2019). The lack of linearity can explain the failure of traditional statistic models to predict 

the Cyanobacteria’s photosynthetic pigment, especially in low concentrations. Able to 

predict linear and non-linear relationships, Machine Learning Algorithms (MLA) are 

recurrently overperforming traditional approaches for deriving water quality products 

(BELGIU; DRĂGU, 2016). Sun et al. (2012) reported the first use of MLA to retrieve PC 

concentration from hyperspectral data and observed the potential of Support Vector 

Machine to produce better estimates than previously published algorithms. Recently, 

O’Shea et al. (2021) provided an important advance on building a global PC algorithm 

capable of predicting precisely even in low concentrations. The authors used the largest 

reported bio-optical PC dataset (N = 939) and the MLA Mixture Density Network (MDN) 

to retrieve estimates from hyperspectral HICO and PRISMA data. This study introduces 

the potential of joining orbital hyperspectral data with the complex statistics of MLA for 

increasing the performance of PC predictions. 

The Billings reservoir is the largest water body in São Paulo Metropolitan Region and 

contributes to the water security of millions of habitants (MOSCHINI-CARLOS et al., 

2009). Although important for the regional population, the water quality has been 

degraded over the last decades due to the intense urbanization on its margins (MILZ et 

al., 2022). Furthermore, the frequent algae bloom of potentially toxic cyanobacteria 

species evidence the risk of water contamination (CARVALHO et al., 2007; GEMELGO 

et al., 2008; RIBEIRO et al., 2020). Thus, Monitoring PC at Billings from orbital images 

will improve the water management of the São Paulo Metropolitan Region, giving the 
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importance of the reservoir for the public supply. However, few efforts have been made 

to validate the remote sensing methodologies for estimating PC in optically complex 

tropical waters (OGASHAWARA et al., 2013). The dendritic shape with relatively 

narrow branches makes the use of ocean color satellites unfeasible, remaining the 

hyperspectral and few multispectral sensors for monitoring the reservoir. Therefore, this 

study has evaluated the potential of different platforms and MLA for estimating PC in the 

Billings reservoir. We collected a PRISMA image in match-up with a field campaign, 

which was used to generate synthetic Landsat-8/OLI and Worldview-3 images. The same 

boundary conditions enabled the comparison of multispectral and hyperspectral data for 

predicting PC. Three MLA algorithms were calibrated using in-situ radiometry and 

validated thought orbital data for each of the assessed sensors, and the results were 

compared with the state-of-art MDN algorithm produced by O’Shea et al. (2021). MDN 

was calibrated with samples from high latitudes aquatic ecosystem and its applicability 

to predict PC for complex tropical waters is unknown. This study also reported the results 

of one of the first atmospheric correction assessments of PRISMA data.  

1.1 Hypothesis 

C-Phycocyanin can be estimated from orbital hyperspectral and multispectral remote 

sensing data using machine learning models. 

1.2 Objective 

This study aimed to develop a remote sensing-based approach for mapping cyanobacteria 

and Cyanobacteria Harmful Algae Blooms, through C-Phycocyanin spectral features 

using orbital image. 

1.3 Specific objectives 

The following research questions were addressed in this dissertation: 

• What is the best surface reflectance product for PRISMA hyperspectral data? 

• Are Machine Leaning Algorithms able to predict C-Phycocyanin accurately? 

Among the three tested, which is the best ? 

• Is there an accuracy gain in using hyperspectral data over multispectral data for 

predicting C-Phycocyanin? 

Based on these questions, three specific objectives were proposed in this research: 



5 
 

• Evaluate different atmospheric correction processors to estimate PRISMA surface 

reflectance data. 

• Assess three Machine Learning Algorithms for predicting C-Phycocyanin 

concentrations. 

• Compare the C-Phycocyanin estimates from PRISMA hyperspectral data and 

synthetic multispectral data. 
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2 THEORETICAL BACKGROUND 

2.1 Eutrophication of urban reservoirs and implications on water quality 

Urban Reservoirs have become one of the most important sites for water management 

and an opportunity gap for increasing the environmental and social quality of cities 

population (LUNDY; WADE, 2011). They can provide a wide array of ecosystem 

services, like water supply, flood control, fishing, hydropower, swimming sites, and 

scenic beauty (Figure 2.1). However, metropolitan water bodies are usual targets of 

anthropogenic impacts (SCHOLES; FAULKNER; TAPSELL, 2008). Contamination by 

heavy metals, biodiversity loss, fish mortality, anoxia, and unpleasant odors are 

frequently identified (MCGRANE, 2016). Among those negative processes, 

eutrophication is highlighted as the most concerning for urban reservoirs worldwide 

(OLIVER; CORBURN; RIBEIRO, 2019). 

Figure 2.1 - Urban reservoirs and lakes. 

 
Some of the urban reservoirs in the world. I – Lake Xalotlán/Nicaragua. II – Lake Erie/United 
States. III – Lake Zurich/Switzerland. IV – Billings Reservoir/Brazil. V – Lake Victoria/Kenya. 
IV – Lake Taihu/China. 

Source: Author’s elaboration.  
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Eutrophication causes an increase in primary production and is associated with the rising 

availability of photosynthesis limiting factors (CHISLOCK et al., 2013). This 

phenomenon is an inherent process of lake succession (CARPENTER, 1981). Natural 

eutrophication is recorded within a geological time scale, even though some events might 

cause acute trophic state changes for short periods (e.g., wildfires, landslides). However, 

anthropogenic activities can also trigger eutrophication, called Cultural Eutrophication 

(CE). CE differs from Eutrophication in both time scale and capacity of environmental 

recovery. The former can cause rapid changes in the trophic state, and those alterations 

will last until the cause ceases. Several drivers can induce CE, but one of the most 

common is increasing the nutrient input (SCHINDLER, 2006). CE's consequences are 

hypoxia, economic loss, impact on recreational activities, and algae blooms (CHISLOCK 

et al., 2013). Urban Reservoirs are commonly affected by Cultural Eutrophication, and 

hence, by frequent algae blooms (OLIVER; CORBURN; RIBEIRO, 2019).  

2.2 Cyanobacteria Harmful Algae Blooms 

Algae Blooms are potentially dangerous to aquatic environments and human activities 

(CHISLOCK et al., 2013). However, the intense growth of phytoplankton in the water is 

insufficient to be classified as a Harmful Algae Bloom (HABs). To be classified as HABs, 

they must offer potential harmful effects to aquatic biota, terrestrial animals, or even 

humans through toxins production (CARMICHAEL; BOYER, 2016). HABs are usually 

characterized by a monospecific toxic-phytoplankton bloom, mostly identified as 

Diatoms, Dinoflagellates, and Cyanobacteria (WYATT, 2014). Although responsible for 

the marine red tides, toxic Dinoflagellate species are not registered in freshwater 

ecosystems (VASCONCELOS, 2006). In contrast, Diatoms HABs’ can occur in inland 

waters and change their organoleptic characteristics. Still, Diatoms metabolites were not 

identified as toxic for human beings (VASCONCELOS, 2006). The most common and 

concerning HABs for freshwaters are caused by Cyanobacteria (CARMICHAEL; 

BOYER, 2016), frequently called Cyanobacteria Harmful Algae Blooms (CyHABs).  

Cyanobacteria, or blue-green algae, are ancient phytoplankton with first registers dating 

billions of years ago. They are responsible for forming an oxygen-rich atmosphere and 

the ozone layer (ALLEN; MARTIN, 2007). This group of algae is adapted for adverse 

environmental conditions and inhabits every aquatic environment on Earth 
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(CASTENHOLZ, 2015). Cyanobacteria have characteristics that provide ecological 

advantages over other taxa, such as: (i) Akinetes, the resist cells that can be dormant for 

long periods; (ii) Heterocyst, which are specialized cells that can fixate Nitrogen from the 

atmosphere; (iii) Storing high volumes of Phosphorus as intracellular Polyphosphate 

granules; (iv)  Control their position in the water column through gas vacuoles; (v) 

Production of toxins and other strategies for avoiding grazers (DOKULIL; TEUBNER, 

2000). Nevertheless, it is worth nothing that Cyanobacteria is a large phylum with various 

described species. Therefore, each taxon will gather defined structures, rather than all of 

them occurring simultaneously.  

In some CyHABs species, the gas vacuoles provide a passive buoyancy capacity that 

responds to environmental conditions. When photosynthesis rates are high, the fixed 

carbon makes the cells heavy, so they sink. Otherwise, CyHABs develop gas vesicles and 

and float to increase the light-harvesting. The persistence of low photosynthetic rates 

continually activates the buoyancy system making the cells float to the water surface, 

creating scums (HUMPHRIES; LYNE, 1988). Scum formation is an efficient strategy for 

maintaining the CyHAB and Cyanobacteria domination. This condition allows 

Cyanobacteria to fixate carbon dioxide directly from the atmosphere and to get the 

advantage of capturing solar irradiation. Scums also shade the water column and prevent 

competition with other phytoplankton, prolonging the CyHAB (Figure 2.2) (DOKULIL; 

TEUBNER, 2000).  

Phytoplankton growth is often limited by Phosphorus and Nitrogen availability (ELSER; 

MARZOLF; GOLDMAN, 1990). As Cyanobacteria can fix Nitrogen directly from the 

atmosphere, they succeed in growing in Phosphorus rich but Nitrogen poor environments 

(low Nitrogen:Phosphorus ratios). Besides the allochthonous sources (e.g., sewage), 

Phosphorus inputs might also come from inside the water body. Frequently caused by 

algae blooms, anoxia can induce the resuspension of Phosphorus from the hypolimnion, 

provoking positive feedback for other bloom events (SØNDERGAARD; JENSEN; 

JEPPESEN, 2003). Furthermore, Cyanobacteria dominance in inland water can be further 

aggravated by climate changes and water warming (EL-SHEHAWY et al., 2012; VISSER 

et al., 2016). First, Cyanobacteria usually have their temperature optimum above other 

phytoplankton species ( >25ºC) (PAERL; HUISMAN, 2009). Then, warmer waters are 

highly susceptible to thermal stratification. Stratified waters usually restrict 
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phytoplankton movement through the water column, limiting their capacity to harvest 

light and nutrients. However, some bloom-forming Cyanobacteria are least affected by 

stratification due to the high mobility offered by the gas vacuoles (WAGNER; ADRIAN, 

2009).  

Figure 2.2 - Cyanobacteria scum. 

 
Source: Adapted from Grahan et al. (2008). 

 

CyHABs cause adverse effects on aquatic ecosystems (HAVENS, 2008). Some of the 

most listed are anoxia, unpleasant odor, and taste of water (e.g., methylisoborneal and 

geosmin), reduction of phytoplankton biodiversity, and pH rise. However, the reason for 

those blooms to be called “Harmful” is the production of Cyanotoxins 

(VASCONCELOS, 2006). Since Francis (1878) related CyHABs and cattle intoxication, 

water managers have been worried about Cyanobacteria. Cyanotoxins are toxic 

compounds produced inside Cyanobacteria cells that are usually released into the 

environment after the cell death or zooplankton predation (CARMICHAEL, 2001). 

However, some species can also excrete those metabolites into the extracellular medium 

to prevent competition (DOKULIL; TEUBNER, 2000). There were two well established 

cases of human intoxication by cyanotoxins. The first one happened in Australia, 

intoxicating 148 persons per contaminated water supply (HAWKINS et al., 1985). The 

second one occurred in Brazil in 1996, causing injuries to 131 persons, of which 76 of 
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them died from dialysis water contamination (CARMICHAEL et al., 2001). The Brazilian 

case is the first confirmed case of human death involving cyanotoxins (WOOD, 2016), 

although the intoxication of fishes, birds, and other terrestrial animals is usual (CODD; 

BELL; BROOKS, 1989).  

The most common cyanotoxins are Microcystins, Cylindrospermopsins, Saxitoxins, and 

Anatoxins (CARMICHAEL, 2001). The first two are hepatotoxic and caused both 

described human intoxications cases (HAWKINS et al., 1985; CARMICHAEL et al., 

2001). The last ones are neurotoxic, with the Saxitoxins responsible for causing the 

Paralytic Shellfish Poisoning (NEGRI; JONES, 1995; CARMICHAEL; BOYER, 2016). 

Although confirmed cases of human deaths have been registered once, there are reasons 

to believe that they are underreported (CARMICHAEL; BOYER, 2016), since some 

cyanotoxins are prone to bioaccumulation on aquatic organisms (NEGRI; JONES, 1995). 

Biodegradation of the metabolites occurs within several days after the CyHAB 

dissipation, and some can persist in the water (HO et al., 2012). In some cases, 

cyanotoxins can be present in water after traditional water treatment but usually in low 

concentration (LAMBERT; HOLMES; HRUDEY, 1996). The consumption of 

cyanotoxins in chronic doses has proven to be carcinogenic (CARMICHAEL, 2001). 

Besides, most cases are likely to happen in healthcare-limited communities, hampering 

the correct diagnosis and adequate report. 

Urban Reservoirs are one of the most suitable environments for Cyanobacteria 

development (OLIVER; CORBURN; RIBEIRO, 2019). This can be explained by the 

high concentration of nutrients, increased residence time, recurrent stratification, and low 

biodiversity (SCHINDLER, 2006). Therefore, the risk of water contamination in 

reservoirs commonly used for water supply is evident. Furthermore, the environmental 

factors that lead Cyanobacteria to produce cyanotoxins are not well elucidated. It means 

that the presence of toxic species and CyHABs are not sufficient for assessing 

cyanotoxins (CARMICHAEL et al., 2001; CARMICHAEL; BOYER, 2016). The 

unpredictability of a CyHAB being poisonous and the health risk of cyanotoxins are the 

main reason for constant water monitoring. Consequently, the precise and fast 

identification of CyHABs can support the decision-makers to respond with timely actions.  
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2.3 Water quality assessment 

 In situ approaches 

Monitoring based on in situ samplings is the most widespread approach for assessing 

eutrophication and cyanobacteria presence in aquatic ecosystems (DIXON; CHISWELL, 

1996). Some of the most important parameters can only be determined by standard 

laboratory procedures, such as cyanotoxins identification and quantification. Field 

campaigns also enable profiling since the algae biomass distribution might be 

heterogeneous in the water column (KUTSER; METSAMAA; DEKKER, 2008). 

Furthermore, cell counting still is the most reliable alternative for quantifying 

cyanobacteria (SRIVASTAVA et al., 2013). However, in situ approaches also have some 

disadvantages because the field campaigns are expensive and time-consuming, limiting 

water quality parameters’ spatial and temporal representation (STACHELEK; 

MADDEN, 2015). Moreover, laboratory protocols are costly and usually cannot provide 

timely results (ARNDT et al., 2022). Therefore, monitoring based on a limited number of 

sampling stations and time-consuming analyses is not enough to address the CyHABs 

problem correctly. 

 Remote sensing approaches 

The synoptic view and time repeatability at a relatively low cost are advantages of 

incorporating Remote Sensing (RS) to monitor water bodies (BARBOSA; NOVO; 

MARTINS, 2019). This approach is based on the interactions between electromagnetic 

radiation and the water column (KIRK, 2010). Due to water’s absorption bands, photons 

from shorter wavelengths than blue and longer than near-infrared cannot penetrate deeply 

(POPE; FRY, 1997; KIRK, 2010). Therefore, water quality assessments are restricted to 

those constituents that interact with visible and near-infrared (VNIR) radiation (KIRK, 

2010; BARBOSA; NOVO; MARTINS, 2019). Satellites and field radiometers can 

continually record the spectral sign from water. Then, those radiometric measurements 

can estimate water quality parameters through calibrated bio-optical models, enabling 

near real-time results. Hence, integrating in-situ and RS assessments is recommended to 

achieve a representative diagnosis, subsidize the decision-making process, and ensure 

socio-ecological health (SRIVASTAVA et al., 2013). 
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2.4 Optical properties of the aquatic ecosystems 

 Inherent Optical Properties (IOPs) 

The electromagnetic radiation field inside water ecosystems is subjected to two processes: 

Absorption and Scattering (KIRK, 2010). Absorption occurs when a molecule captures a 

photon, increasing its internal energy (Figure 2.3) (BARBOSA; NOVO; MARTINS, 

2019). It is selective because each molecule will need a different amount of energy 

(corresponding to different wavelengths) to promote an electronic swift, creating a 

specific absorption spectrum (KIRK, 2010). Scattering may be defined as a deviation of 

a photon from its current propagation direction to another caused by a particle or molecule 

(Figure 2.4) (BARBOSA; NOVO; MARTINS, 2019). Larger particles are responsible for 

most scattering in aquatic ecosystems, even though they are of lower density than small 

particles (KIRK, 2010). Most photons diverted by particles are scattered by refraction in 

the forward direction, while few are backscattered (KIRK, 2010). However, 

backscattering is why an electromagnetic signal comes from the water column (MISHRA; 

OGASHAWARA; GITELSON, 2017).  

Figure 2.3 - Absorption properties of natural inland waters. 

 
Spectral absorption properties from different Brazilian inland waters. I- Tapajós River/Pará State. 
II – Ibitinga Reservoir/São Paulo State. III – Lake Curuai/Pará State. Optically Active 
Constituents' values are shown on the left boxes. The line graphs show the mean absorption 
coefficient for the first 60 cm of the water column. The measures were taken in situ with an ACS. 
The photos are the visual aspects of waters with those optical properties. TSS = Total Suspended 
Solids; Chla = Chlorophyll-a; aCDOM(440) = Colored Organic Dissolved Matter absorption 
coefficient at 440 nm. 

Source: Author’s elaboration. 
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The absorption and scattering measurements are called Inherent Optical Properties (IOPs) 

(MOBLEY, 1994). IOPs are those properties whose magnitudes depend only on the 

aquatic medium's substances and not on the geometric structure of the light fields (KIRK, 

2010). The most important are the attenuation coefficient, the absorption coefficient, the 

scattering coefficient, and the volume scattering function. The first two are measurements 

of the absorbed or scattered fractions of an orthogonally incident amount of 

electromagnetic radiation within a thin water layer (KIRK, 2010). The unit is meters-1, 

and the measurements are usually made spectrally. The attenuation coefficient is the sum 

of the absorption and scattering coefficients, while the volume scattering function is the 

angular distribution of the scattered photons (MOBLEY, 1994). The integration of the 

volume scattering function is the scattering coefficient (MOBLEY, 1994). Despite the 

importance of optical characterization, IOPs are difficult to determine directly. Most 

methods are based on water sampling or in situ measurements with expensive equipment 

(e.g., Absorption and Attenuation meters) (KIRK, 2010). Therefore, indirect methods 

were developed for estimating IOPs based on the Apparent Optical Properties, as the 

Quasi-Analytical Algorithm (LEE; CARDER; ARNONE, 2002). 

Figure 2.4 - Scattering properties of natural inland waters. 

 
Spectral scattering properties from different Brazilian inland waters. I - Tapajós River/Pará State. 
II - Ibitinga Reservoir/São Paulo State. III - Lake Curuai/Pará State. Optically Active 
Constituents' values are shown on the left boxes. The line graphs show the mean scattering 
coefficient for the first 60 cm of the water column. The measures were taken in situ with an ACS. 
The photos are the visual aspects of waters with those optical properties. TSS = Total Suspended 
Solids; Chla = Chlorophyll-a; aCDOM(440) = Colored Organic Dissolved Matter absorption 
coefficient at 440 nm. 

Source: Author’s elaboration. 
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 Apparent Optical Properties (AOPs) 

The other group of optical properties from aquatic ecosystems are the Apparent Optical 

Properties (AOPs). AOPs are combinations of radiometric quantities (e.g., quantities 

related to electromagnetic radiation) used for describing the alterations of an incident 

electromagnetic radiation field by the water (BARBOSA; NOVO; MARTINS, 2019). 

They are functions of IOPs and environmental variables, such as the electromagnetic field 

structure, wind, water surface, clouds, Sun’s position, and others (MOBLEY, 1994). 

However, AOPs demonstrated to be most determined by IOPs and are quite stable to other 

variables changes (BARBOSA; NOVO; MARTINS, 2019). The most common AOPs are 

the reflectance values, especially the Remote Sensing Reflectance (Rrs, unit steradian-1). 

It is a directional measure of the reflectance calculated by the ratio of water-leaving 

radiance and downward irradiance (MOBLEY, 1999). The variation in depth of the Rrs is 

attributed to the vertical structure of IOPs,  allowing IOPs modeling from AOP measures 

(Figure 2.5) (ZANEVELD, 1982).  
Figure 2.5 - Apparent optical properties of natural inland waters. 

 
Apparent Optical Properties from different Brazilian inland waters. I - Tapajós River/Pará State. 
II - Ibitinga Reservoir/São Paulo State. III - Lake Curuai/Pará State. Optically Active 
Constituents' values are shown on the left boxes. The line graph shows the Remote Sensing 
Reflectance (Rrs). The photos are the visual aspects of waters with those optical properties. TSS 
= Total Suspended Solids; Chla = Chlorophyll-a; aCDOM(440) = Colored Organic Dissolved Matter 
absorption coefficient at 440 nm. 

Source: Author’s elaboration. 
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 Optically Active Constituents (OACs) 

The Optically Active Constituents (OACs) are those particles or molecules in the water 

column that interact with the electromagnetic radiation (KIRK, 2010). OACs have been 

categorized based on spectral behavior similarities: pure water, Colored Dissolved 

Organic Matter (CDOM), tripton, and phytoplankton. Each OAC class has its specific 

IOPs values. Therefore, summing partial OACs contributions results in total IOPs' 

coefficients once this is a conservative feature. Pure water refers to molecular water 

spectral properties. It has minor importance for freshwater ecosystems once the visible 

region's spectral shape is most dominated by other OACs (BARBOSA; NOVO; 

MARTINS, 2019). CDOM is the organic compounds dissolved in the water that 

originated from allochthonous (e.g., plants decomposition) or autochthonous (e.g., 

decomposition of organic matter excreted by algae) processes (KIRK, 2010). Tripton or 

Non-Algal Particles (NAP) are the inanimate suspended solids that are not 

photosynthetically active, including inorganic and organic suspended compounds (KIRK, 

2010). Phytoplankton have photosynthetic structures and other optically active 

compounds (BIDIGARE et al., 1990). There are different phytoplankton taxa, with 

several photosynthetic and protection pigments absorbing photons selectively (KIRK, 

2010).  

Researchers have been categorizing water bodies based on their water optical properties 

to facilitate bio-optical modeling. Morel and Prieur (1977) first separated the water bodies 

into blue and various green waters, subdivided into Case 1 and Case 2. Blue waters are 

those with spectral features like pure water. Case 1 waters were defined as water bodies 

whose radiometric spectral behavior was determined by Chlorophyll-a and other AOPs 

covary with the phytoplankton pigment. In Case 2 waters, the assumption of Chlorophyll-

a spectral dominance is violated, and the optical properties depend on all OACs. This 

classification was important for developing IOPs modeling since bio-optical algorithms 

were created based on the assumptions made for each class (MOBLEY et al., 2004). 

However, Mobley et al. (2004) suggested that water must be seen as a mixed bulk of 

dissolved and suspended particles influenced by other environmental factors and should 

be analyzed individually. Recently, some efforts have been made to categorize the 

freshwater ecosystems in Optical Water Types (OWTs) to facilitate RS assessments 

(SPYRAKOS et al., 2017). 
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2.5 Bio-optical modeling 

Bio-Optical models can be subdivided into five classes: empirical, semi-empirical, semi-

analytical, quasi-analytical, and analytical (MOREL, 2001). The major difference 

between them is the use of physics or statistics to derive the OACs from radiometry. 

Empirical and semi-empirical algorithms are based on statistical relationships (YAN; 

BAO; SHAO, 2018). Empirical algorithm band selection is built only at the best 

correlations between radiometric data and OACs measurements (SHI et al., 2019). It 

means that the model can be constructed based on a ocasional relationship, limiting their 

application for different time and space observations. Semi-empirical models take 

advantage of a physical background to find the best correlations. The expected behavior 

of an OAC is used for limiting the spectral search, but statistical models still make the 

conversion of radiometric quantities to concentration. 

The semi-analytical and quasi-analytical approaches rely on the inversion of the optical 

properties based on the radiative transfer theory (LEE; CARDER; ARNONE, 2002). 

They turn AOPs into IOPs and then analytically estimate the OACs. Quasi-analytical 

models derive total IOPs from AOPs and then partition them into the specific 

contributions of each OACs group. Otherwise, semi-analytical models directly derive 

IOPs for each OAC class. The analytical models are based only on physical properties, 

such as Gons (1999), which derived the concentration of Chlorophyll-a from total 

phytoplankton absorption and phytoplankton specific absorption ratio. A complete 

analytical approach may not be achieved once the radiative transfer equation isn’t 

completely solved yet (MOBLEY, 1994). However, simplifications are made for 

analytically estimating OACs after deriving IOPs from semi-analytical or quasi-analytical 

approaches (Figure 2.6). 

Bio-optical modeling has been used to estimate Phytoplankton, Non-Algal Particles 

(NAP), and Colored Dissolved Organic Matter (CDOM) in aquatic ecosystems 

(PALMER; KUTSER; HUNTER, 2015). Although this is the most used approach to 

derive water quality parameters from RS data, Machine Learn Algorithms (MLA) have 

recently gained some space (PYO et al., 2019; CAO et al., 2020). MLA are empirical 

algorithms once the estimates are also based on statistical relationships (SAGAN et al., 

2020). The data blending capacity and non-linear relationship sensitivity are advantages 
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of using MLA. The greatest disadvantage of this modeling approach is that the equations 

for retrieving the output parameters from the input data are often unknown (LARY et al., 

2016). However, MLA have shown solid results and outperformed bio-optical models 

(SAGAN et al., 2020).  

Figure 2.6 - Flowchart of the bio-optical approaches classification. 

 
Source: Ogashawara (2015). 

 

2.6 Advances in remote sensing-based methodologies for C-Phycocyanin 

estimation 

Cyanobacteria and CyHABs monitoring based on RS were first based on by Chlorophyll-

a (Chla) estimation (REINART; KUTSER, 2006). This photosynthetic pigment is present 

in all phytoplankton species and is a widespread proxy for primary production (GURLIN; 

GITELSON; MOSES, 2011). Several studies focused on Chla retrieval have succeeded 

in Cyanobacteria biomass estimation over inland water ecosystems (SHI et al., 2019). 

The use of Chla as a proxy for cyanobacteria can be considered a good approximation for 

waters dominated by Cyanobacteria. However, this assumption does not work for sites 

with diverse phytoplankton communities (SIMIS et al., 2007). Therefore, Chla cannot be 
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used as a Cyanobacteria biomass proxy as a rule. Phytoplankton has proteins other than 

Chla that interacts with electromagnetic radiation, which could be used in RS assessments 

(KIRK, 2010). A variety of photosynthetic pigments have been described and were 

organized into three classes: Chlorophylls, Carotenoids, and Biliproteins. The first two 

are present in all phytoplankton, but biliproteins are only found on Rhodophyta (red 

algae), Cyanophyta (blue-green algae), and Cryptophyta (KIRK, 2010).  

There are four kinds of biliproteins: phycoerythrins, phycoerythrocyanins, phycocyanins, 

and allophycocyanin (Figure 2.7). In Rhodophyta and Cyanophyta, biliproteins are 

organized in structures called phycobilisomes. They are responsible for harvesting the 

electromagnetic energy and transferring it to Chla, where photosynthesis occurs (KIRK, 

2010). For this reason, biliproteins are called accessory pigments. Despite being present 

in Rhodophyta and Cryptophytes, C-Phycocyanin (PC) is a major component only in 

Cyanophyta. Because it is correlated only to cyanobacteria biomass, PC is potentially 

better than Chla for Cyanobacteria monitoring in inland waters (SIMIS; PETERS; GONS, 

2005; KIRK, 2010). The main spectral feature of PC is the absorption maxima near 620 

nm, which allows the detection of cyanobacteria employing RS methodologies 

(DEKKER, 1993; SIMIS; PETERS; GONS, 2005; MISHRA; MISHRA; LEE, 2013). 

 

Figure 2.7 - Biliproteins absorption spectra. 

 
Absorption spectra, in absorbance units, of Cryptophyta (3, 4, 6, 7) and Rhodophyta (1, 2, 4, 6, 
7) biliproteins. Phycoerythrins (A) 1- R-Phycoerythrin; 2- B-Phycoerythrin; 3- C-Phycoerythrin. 
Phycocyanins (B) 4- Phycoerythrocyanin; 5- R-Phycocyanin; 6- C-Phycocyanin; 7- 
Allophycocyanin. C-Phycocyanin (6) spectral features are widely used as a Cyanobacteria 
biomass proxy in remote sensing methodologies (HUNTER et al., 2009). 

Source:  Adapted from Roy et al. (2011). 
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From the spectral features of PC, bio-optical algorithms were developed for monitoring 

CyHABs. Based on the published reviews (RUIZ-VERDÚ et al., 2008; OGASHAWARA 

et al., 2013; YAN; BAO; SHAO, 2018; SHI et al., 2019), the most cited are presented in 

Table 2.1. Dekker (1993) has made the first attempt to derive PC from RS data. Also, the 

author noticed that using only radiometric measurements from PC absorption maxima 

and the pigment concentration were not enough for accurate estimates. Therefore, he 

created a spectral baseline from two wavelengths with the minor influence of PC and then 

related it to the pigment absorption feature, reducing the effect of other OACs. Simis et 

al. (2005) adapted the Chla semi-analytical algorithm of Gons (1999) and published one 

of the most successful bio-optical algorithms for PC retrieval. It was the first time that the 

spectral influence of Chla in 620 nm was addressed in the modeling process. Liu et al. 

(2017) advanced on trying to isolate the spectral sign from PC and considered the 

influence of CDOM and other phytoplankton pigments in a semi-empirical four-bands 

algorithm. However, Sun et al. (2012) proved that MLA could be more accurate than bio-

optical algorithms. Band ratios, correlated with PC concentration, were used as input 

features in a Support Vector Regression and the results overperformed previously 

published algorithms. More recently, O’Shea et al. (2021) calibrated a Mixture Density 

Network for predicting PC based on radiometric measurements simulated for HICO and 

PRISMA sensors. This study has achieved accurate estimates even for low PC 

concentrations, where other publications were usually inaccurate. Considering the 

accuracy consistency for different concentration ranges and the broad number of 

reservoirs used for calibrating and validating the algorithm, MDN is the closest to a global 

PC model ever published. 
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Table 2.1 - Review from remote sensing algorithms for C-Phycocyanin retrieval. 

Publication Model Type Model PC Range Accuracy 

Dekker 
(1993) 

Semi-
Empirical 𝑃𝐶 ∝ 0.5[𝑅(0!")#$$ + 𝑅(0!")#%&] − 𝑅(0!")#%& 7 – 130 µg/L 

STE = 2.34 
µg/L 

Schalles and 
Yacobi 
(2000) 

Semi-
Empirical 𝑃𝐶 ∝ 𝑅(650)/𝑅(625) 0 – 530 µg/L R² = 0.612 

Simis et al. 
(2005) 

Semi-
Analytical 

𝑎'((620) = ({[𝑅(709)/𝑅(620)] ∗ 	 [𝑎)(709) + 𝑏*]}
− 𝑏* − 𝑎)(620)) ∗ 	𝑑!"𝑑!"d

!"𝑑!"
− [𝑒 ∗ 𝑎(+,(665)][𝑒 ∗ 𝑎(+,(665)][e
∗ 𝑎(+,(665)][𝑒 ∗ 𝑎(+,(665)] 

𝑃𝐶 = 𝑎'((620) 𝑎'(∗ (620)⁄  

0 – 80 µg/L 
RMSE = 6.5 

µg/L 

Hunter et al. 
(2010) 

Semi-
Empirical 𝑃𝐶 ∝ [𝑅./!"(615) − 𝑅./!"(600)] ∗ 𝑅./(725) 0 – 93.7 µg/L 

RMSE = 2.65 
µg/L  

Sun et al. 
(2012) 

Machine 
Learning Support Vector Regression 1.6 – 754.9 

µg/L 
RMSE = 38.4 

µg/L  

Mishra et al. 
(2013) 

Quasi-
Analytical QAA 68.13 – 

3032.47 µg/L 
ARE = 34.9 

µg/L 

Mishra and 
Mishra 
(2014) 

Semi-
Empirical 𝑃𝐶 ∝ [𝑅01!"(629) − 𝑅01!"(659)] ∗ 𝑅01(724) 

68.13 – 
3032.47 µg/L 

STE = 150.38 
µg/L 

Liu et al. 
(2017) 

Semi-
Empirical 𝑃𝐶 ∝ ?

1
𝑅./(620)

−
0.4

𝑅./(560)
−

0.6
𝑅./(709)

@ 𝑅./(754) 
0 – 329.4 
µg/L 

RMSE = 
27.691 µg/L 

Ogashawara 
and Li (2019) 

Semi-
Empirical 𝑃𝐶 ∝ 	

𝑅./(709)
𝑅./(620)

− A𝑅./(709)𝑅./(665)
𝜑"C

1 − (𝜑"𝜑%)
 

0.73 – 370.95 
µg/L 

RMSE ≤ 
23.004 μg/L 

O’Shea et al. 
(2021) 

Machine 
Learning Mixture Density Network 0 – 1000 µg/L e = 44.3% 

The accuracy metrics were chosen based on the most informative metrics presented by the 
authors. PC = C-Phycocyanin, RMSE = Root Mean Squared Error, STE = Standard Error, ARE 
= Absolute Relative Error, Rrs(l) = Remote Sensing Reflectance at wavelength l, R(0-1)l = 
Irradiance Reflectance just below the water surface at wavelength l, R(l) = Reflectance Factor 
just below the water surface at wavelength l, QAA= Quasi Analytical Algorithm (LEE; 
CARDER; ARNONE, 2002), apc(620) = PC absorption coefficient at 620 nm, bb = Backscattering 
coefficient, aw(l) = Water absorption coefficient at wavelength l, d = Optimization coefficient, e 
= Median Symmetric Accuracy (MORLEY; BRITO; WELLING, 2018), a*

pc (620) = PC specific 
absorption coefficient at 620 nm, R² = Coefficient of determination, achl(l) = Chl-a absorption 
coefficient at wavelength l, j1 = Coefficient to correct the influence of Chl-a on PC absorption 
at 620 nm, j2= Coefficient to correct the influence of PC on Chl-a absorption at 665 nm, ε = 
Conversion factor from achl(665) to achl(620). 

Source: Author’s elaboration. 

 

Despite several publications, there is no universal model for predicting PC (SHI et al., 

2019). The major challenge is predicting low concentrations since algorithms are most 

accurate at moderate PC:Chla ratios. For example, Simis et al. (2005) found optimum 

estimates at PC:Chla > 0.4. Increasing the proportion of PC over Chla indicates 
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Cyanobacteria dominance and CyHABs establishment. This condition enhances PC 

absorption feature and enables a more precise estimate from RS data. However, the 

influence of other OAC’s absorption signs around 620 nm at high and low PC:Chla ratios 

are difficult to correct. When Chla is abundant in the water, its absorption spectrum is 

expanded toward longer and shorter wavelengths (ZHANG et al., 2012). The contribution 

of Chla absorption at 620 nm is responsible for observed overestimations at high PC:Chla 

(SIMIS; PETERS; GONS, 2005). Some of the reported algorithms provide coefficients 

for removing the effects of the Chla absorption, but the results showed that a residual 

contribution might still be present after the correction. It was observed that coefficients 

calibrated based on in vitro or empirical approaches were prone to packaging effect and 

site dependence, respectively (SIMIS; PETERS; GONS, 2005; OGASHAWARA; LI, 

2019). The packaging effect was also an underestimation factor in PC modeling at high 

algae concentrations (ALCÂNTARA et al., 2016). 

Figure 2.8 - Spectral shape of Cyanobacteria dominated inland waters. 

 
In situ measured Remote Sensing Reflectances (Rrs) from different Cyanobacteria-dominated 
inland waters. The scattering peak (red), the fluorescence peak (yellow), the C-Phycocyanin 
reflectance peak (blue), and Chlorophyll-a reflectance peak (green) are also shown. 

Source: Shi et al. (2019). 

 

Disregarding MLA, the most reasonable error metrics for low concentration ranges are 

provided by Simis et al. (2007) and are limited to samples with PC > 50 µg/L. Low 
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PC:Chla ratios might indicate a more diversified phytoplankton community and increase 

the chance of the spectral influence of other photosynthetic pigments than Chla (SIMIS 

et al., 2007). Chlorophyll-b, Chlorophyll-c, Phaeophytin, Fucoxanthin, 

and Allophycocyanin-b absorption spectra were described as overlapping PC features 

(Figure 2.8). Therefore, the increased absorption from other pigments than PC around 

620 nm is a source of overestimations at low PC:Chla ratios. Furthermore, the PC spectral 

sign is difficult to detect at low concentrations due to its reduced absorption rates. Dekker 

(1993) has reported PC-specific absorption coefficient threefold lower than Chla for the 

same concentrations. In addition to the impact of other pigments, the optical complexity 

related to them and the remaining OACs is still to be addressed. Most PC algorithms make 

assumptions to simplify bio-optical modeling, such as invariant backscattering from red 

to NIR region or negligible CDOM and NAP absorption at PC absorption range (LIU et 

al., 2017). Those simplifications are also sources of error, which become more expressive 

at low PC concentrations (LIU et al., 2017). At last, the lack of a standard laboratory 

procedure for extracting PC from cyanobacteria cells reduces the reliability of the 

analytical determinations (RUIZ-VERDÚ et al., 2008). Those associated errors tend to 

be more relevant at low PC concentrations. 

2.7 Orbital data for cyanobacteria monitoring 

 Multispectral orbital data 

Satellite remote sensing data have grown in number over the last years. With the 

increasing number of open access policy missions, monitoring through RS has been 

democratized even for nations without a spatial program (BELWARD; SKØIEN, 2015). 

However, assessing information about inland water ecosystems from space is still 

challenging. RS applications for freshwater usually demand high spatial, spectral, high 

temporal resolutions and a high Signal to Noise Ratio (SRN) (BARBOSA; NOVO; 

MARTINS, 2019). However, no available sensors present all those characteristics, and 

the resolution’s trade-off limits the application of the available orbital sensors. Still, the 

scientific community has found alternatives to suit the available data. Ocean Color 

Sensors (OCS) were designed for RS ocean water applications, with adequate spectral 

bands for assessing the most important OACs features and high SNR (YAN; BAO; 

SHAO, 2018; OGASHAWARA; LI, 2019). Considering that most free-data OCS have 
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been decommissioned or near the mission’s end, the European Space Agency’s Sentinel-

3 is the most promising satellite family for water applications. This sensor has been 

extensively used for freshwater and ocean water quality assessments (BLIX et al., 2018; 

KRAVITZ et al., 2020; VANHELLEMONT; RUDDICK, 2021), and some authors have 

pointed out it as the most suitable available instrument for monitoring cyanobacteria and 

CyHABs  (YAN; BAO; SHAO, 2018; SHI et al., 2019). The spectral band centered at 

620 nm and almost daily images are the greatest advantages of using the Ocean and Land 

Color  Instrument (OLCI) to monitor CyHABs. However, its application to urban 

reservoir monitoring is questionable due to its spatial resolution of 300 meters.  In 

contrast, the Multispectral Instrument (MSI), abord Sentinel-2, has an adequate spatial 

resolution for monitoring Urban Reservoirs, and the inclusion of Red-Edge bands 

enhanced the retrieval of Chla in inland waters (BRAMICH; BOLCH; FISCHER, 2021). 

However, the lack of a spectral band centered at 620 nm limits the application of Sentinel-

2/MSI to monitor PC. 

The Landsat family is the oldest series of satellites designed for Earth Observation 

(LOVELAND; IRONS, 2016). The Landsat-8, equipped with the Operational Land 

Imager (OLI), has been successfully used for deriving freshwater ecosystems information 

worldwide, including in tropical reservoirs (MISHRA; OGASHAWARA; GITELSON, 

2017; MACIEL et al., 2019). Using Landsat data also guarantees an almost half-century 

image archive for assessing water quality parameters, giving a unique opportunity to carry 

out long-term analysis and evaluate temporal environmental changes (SHI et al., 2019). 

Unfortunately, Landsat-8/OLI does not have a spectral channel at 620 nm. Still, Landsat 

platforms were already used to monitor PC through the original-designed spectral bands 

(VINCENT et al., 2004). However, Castagna et al. (2020) have developed a method of 

deriving a virtual contra-band from the panchromatic channel capable of detecting the 

spectral signature of PC. Kumar et al. (2020) have assessed the use of the virtual contra-

band derived from Landsat-8/OLI for monitoring cyanobacteria in Lake Erie and 

concluded that the band has a similar radiometric response to OLCI orange band, with 

potential for use in CyHABs monitoring. This technique has never been used to evaluate 

tropical urban reservoirs, which can be one the most beneficed water bodies once they 

usually are not great enough to be assessed by OCS. 
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The Worldview is a series of high-resolution satellites which launched its first platform 

in 2007. The greatest advantage of using Worldview data is the multispectral bands at a 

resolution of fewer than 2 meters in VNIR (ZHAO et al., 2022). This spatial sampling 

capacity enables the application of Worldview data to anthropic environments (VERLIČ 

et al., 2014). Worldview radiometric data have proven suitable for water ecosystem 

applications (WILSON; WONG; DEVRED, 2022). Additionally, Worldview-2 images 

were used for deriving Chla in optically complex inland water ecosystems with accuracy 

metrics compared with OCS (WANG; GONG; PU, 2018). Therefore, the increased 

spatial resolution, the short-revisit period (about 1 day), and the presence of a spectral 

band centered at 605 nm enables Worldview-2 and Worldview-3 to monitor 

cyanobacteria in urban reservoirs. Beck et al. (2017) estimated PC fluorescence values in 

a temperate reservoir using aircraft hyperspectral data simulated to Worldview-2/3 

spectral response function. The results from the high-resolution satellite were comparable 

to or better than other Earth Observation programs. However, the on-demand imaging 

and the commercial data access police are limitations for applying Worldview data in 

continuous water monitoring programs. Additionally, the reduced swath width of the 

Worldview series (13-18 km) might limit the monitoring of large reservoirs. 

 Hyperspectral orbital data 

Multispectral sensors have been used to monitor natural landscapes with a high degree of 

success since the launch of the first Landsat platform back in 1972 (WULDER et al., 

2019). Concerning those sensors, specialists are responsible for designing the spectral 

resolution to maximize the applications and avoid atmospheric noises (e.g., bands placed 

on atmospheric windows). However, the growing interest in Remote Sensing and the 

investigation of new complex subjects might demand a better spectral resolution than the 

Multispectral satellites offer (DIERSSEN et al., 2021). Therefore, sensors with an ultra-

high spectral resolution, called Hyperspectral (or Spectrometer), were meant to cover the 

electromagnetic spectrum with hundreds of narrow and contiguous channels 

(GIARDINO et al., 2019). The development of hyperspectral sensors occurred in the 

1970s, conducted by NASA’s Jet Propulsion Laboratory. At the time, the need for 

validating the data of the recently launched Landsat-1 pushed the creation of the firsts 

portable and airborne spectrometers (GOETZ, 2009). The Airborne Imaging 

Spectrometer (AIS) was the earliest hyperspectral imager, which covered 307 nm from 
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2030-2320 nm with a sampling interval of 9.6 nm and resolution of 32x32 pixels. AIS 

data was successfully used for identifying surface mineralogy, which wasn’t possible 

using Multispectral data, and increased the investments and interest in hyperspectral 

imaging (GOETZ, 2009). Then, in 1987, the first flight of the Airborne Visible/Infrared 

Imaging Spectrometer (AVIRIS) produced a hyperspectral image from 400 to 2400 nm 

with 224 bands (9.6 nm resolution). AVIRIS was a great advance for spectrometry due to 

its large spectral range (covering the VNIR) and improved radiometric quality (GREEN 

et al., 1998). Other airborne instruments came after AVIRIS; however, it was only in 2000 

that the first hyperspectral orbital sensor was launched: NASA’s Hyperion, abord the 

Earth Observation-1 (EO-1). 

Brando and Dekker (2003) produced maps of Chla, CDOM, and NAP from Hyperion 

data for Deception Bay (Australia) and marked the beginning of the use of orbital 

hyperspectral data for water applications. The authors used the semi-analytical approach 

to retrieve water quality parameters and concluded that Hyperion had enough radiometric 

quality to produce accurate estimates for water products. EO-1/Hyperion data was also 

used for retrieving Chla and NAP in inland waters, using the Italian Lake Garda as a study 

case (GIARDINO et al., 2007). However, despite some successful attempts to use orbital 

images, most studies produced in the last 20 years using hyperspectral data were 

developed based on airborne platforms (GIARDINO et al., 2019). There are some 

reasonable explanations for the lack of assessments using satellite data. First, 

hyperspectral data have reduced SRN due to the improved spectral resolution (MOSES 

et al., 2012). This characteristic is especially problematic when analyzing water 

ecosystems that are considered ‘dark targets’, and even low radiometric noise 

introduction might greatly influence the final outputs (BARBOSA; NOVO; MARTINS, 

2019). Secondly, a few years ago, the huge amount of data contained in a hyperspectral 

image was very hard to handle (GOETZ, 2009). Besides the challenge of processing and 

storing so much data, few techniques and software were available for manipulating the 

images obtained from hyperspectral sensors. Finally, the atmospheric correction had to 

be improved because of the increased presence of atmospheric effects on the spectral 

bands outside the atmospheric window (GAO et al., 2009). 

Even with the challenges presented above, some hyperspectral platforms were launched 

besides Hyperion in the millennium's first decade. PROBA-1/CHRIS and ISS/HICO were 
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also used for studying inland water ecosystems and contributed to the early development 

of hyperspectral instruments and applications (MOSES et al., 2014; TORBICK; 

CORBIERE, 2015). However, the last years of the 2010s decade have brought a new 

generation of hyperspectral sensors. The improvements in the engineering of detectors 

and the development of computational resources (e.g., cloud computing, petabyte 

databases, increase in hardware processing power) has enabled the construction of 

powerful instruments and reduced the problems reported in the past (DIERSSEN et al., 

2021). Some of those missions are expected to revolutionize the Earth Observation 

applications, such as: PRISMA (PRecursore IperSpettrale della Missione Applicativa), 

EnMAP (Environmental Mapping and Analysis Program), PACE (Plankton, Aerosol, 

Cloud, ocean Ecosystem), DESIS (German Aerospace Center’s Earth Sensing Imaging 

Spectrometer), HyspIRI (Hyperspectral Infrared Imager), CHIME (Copernicus 

Hyperspectral Imaging Mission for the Environment) and Geofen-5/AHSI (Advanced 

Hyperspectral Imager). Those satellites are also expected to enhance the monitoring of 

C-Phycocyanin from space. The applicability of hyperspectral data for retrieving PC in 

inland waters was already confirmed by studies using airborne imagery (KUDELA et al., 

2015; BECK et al., 2017; YIM et al., 2020). However, few attempts were made to use 

orbital spectroscopy (TORBICK; CORBIERE, 2015; O’SHEA et al., 2021; BRESCIANI 

et al., 2022), evidencing the gap in the development of studies based on satellite images. 
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3 MATERIAL AND METHODS  

The flowchart in Figure 3.1 resumes the applied methodology, and detailed information 

is given in the next items. On the left side of Figure 3.1, the image processing is explained, 

whereas on the right-side information about PC modeling is presented. The center of the 

flowchart regards PC mapping and validation.  

Figure 3.1 - Methodology flowchart. 

 

Source: Author’s elaboration. 

 

3.1 Study area 

Billings Reservoir (BIL) is the largest reservoir in São Paulo Metropolitan Region 

(SPMR) (Figure 3.2). It is an artificial water body with an approximate surface area of 

120 km² and a mean depth of 10 meters. BIL has a central role in the water supply of the 

SPMR, providing water directly for 1.2 million habitants (CÔRTES et al., 2015). 

Additionally, Billings indirectly supply other SPRM regions due to the transposition of 

its waters to other reservoirs. Despite its importance to water security, BIL suffers an 

intense eutrophication and water contamination, as evidenced by the long-term 

monitoring system (CETESB, 2019). Algae blooms are frequent in the reservoir, with 

regular CyHABs events reported (CARVALHO et al., 2007; GEMELGO et al., 2008). 

Raphidiopsis raciborskii and Microcystis aeruginosa, both potentially toxic 
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cyanobacteria species, have been constantly dominant or abundant in the phytoplankton 

community. The low N:P ratio, high residence time, low phytoplankton/fish biodiversity, 

intense load of contaminants, and water thermal stratification events are the most 

important factors that lead to continuous Cyanophyta presence at BIL (MOSCHINI-

CARLOS et al., 2009; WENGRAT; BICUDO, 2011).  

Figure 3.2 - Study area. 

 
Source: Author’s elaboration. 

 

3.2 In situ data 

Eight field campaigns between November/2020 and December/2021 collected the 

radiometric and limnologic data for calibrating the PC models (Table 3.1). The data 

acquisition was performed from 10:00 to 14:00h local time to avoid low Sun elevations. 

In addition, the campaigns were carried out during different periods of the year to capture 

seasonal variability in the water body composition.  
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Table 3.1 - Field campaigns description. 

Year Month n radiometric 
samples 

n pigments 
samples 

n taxonomical 
samples 

2020 November 17 17 11 

2021 July 24 24 0 

2021 August 30 30 9 

2021 August 7 7 0 

2021 September 8 8 0 

2021 October 8 8 2 

2021 November 24 13 4 

2021 December 8 8 0 

Source: Author’s elaboration. 

 

 Chlorophyll-a and C-Phycocyanin determination 

Water samples were collected from the subsurface (~0.2m), stored in dark bottles, and 

put into ice to prevent photo and thermal degradation. After no longer than six hours, 

subsamples (100-500 mL) were filtered in GF/F filters (Whatman, 47 mm diameter, 0.7 

μm pore), under low light conditions and low vacuum, packaged on dark recipients, and 

kept in liquid nitrogen until the end of the campaign. Then, the filtered samples were 

stored at -70ºC until they were analyzed. For Chla determination, extraction and 

determination followed the method described by APHA (1998). First, the filters were 

homogenized, and the pigments were extracted using 90% acetone. After a period of 

extraction of least than 12 hours at ~4ºC, the samples were centrifugated for 20 minutes 

at 3000 rpm. Next, the supernatant was placed on quartz cuvettes and read on a 

spectrophotometer. Then, the samples were acidified with hydrochloric acid (HCl 0.1M), 

and after a reaction time of 90 seconds, another spectrophotometric measurement was 

made. The Chla concentrations were calculated by Lorenzen’s equation (APHA, 1998), 

correcting for the presence of Pheophytin-a. PC extraction followed the protocol 

proposed by Sarada et al. (1999) and adapted by Horváth et al. (2013). The filters were 

suspended in a phosphate buffer (100 mM and pH 7.2) and submitted to 3 freeze-thaw 

cycles (-70ºC and 35ºC). Then, the samples were sonicated for 90 seconds at a frequency 

of 20 kHz and centrifugated for 15 minutes at 3000 rpm. The PC concentration was 

determined spectrophotometrically through the formula proposed by Bennet and Bogorad 
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(1973). Duplicates were made for all sampling stations, where a simple mean was used 

for further analysis.  

 Taxonomical analysis 

Some sample stations were selected for taxonomical identification and quantification of 

the phytoplankton community. The water samples were taken concomitantly for all the 

described limnological analyses. For the taxonomical identification, a volume was 

concentrated using a membrane of 0.55 μm pore and fixated with formalin (4%). As for 

the phytoplankton quantification, 100 mL of water from the subsurface was preserved 

with Lugol solution (1%). All samples were stored in the dark and at room temperature. 

The analysis was made using an inverted Carl Zeiss optic microscope with augmentation 

of 400X and sedimentation chambers of 5 mL and 10 mL. The phytoplankton cell density 

was expressed in individuals per milliliters. The densities were converted to biovolume 

(mm³/L) as described by Hillebrand et al. (1999) and Fonseca et al. (2014). A specie was 

considered dominant when its biovolume was more than half of the total phytoplankton 

biovolume (LOBO; LEIGHTON, 1986). The abundant species are those that exceed the 

average biovolume of the sample. 

 Radiometric data 

In situ radiometric measurements were carried out using TRIOS-RAMSES 

spectroradiometers, ranging from 400-900 nm with a sampling interval of approximately 

3.3 nm. The three intercalibrated radiometric equipment were mounted in the boat bow, 

following the configuration proposed by Mobley (1999) (Figure 3.3): 

• One radiance radiometer, with 7º Field-of-View (FOV), was used to measure total 

water-leaving radiance (Lt). This sensor was positioned at a sensor-viewing 

geometry of 45º zenithal angle and approximately 135º azimuth angle (taking the 

Sun position as reference); 

• One irradiance radiometer equipped with a cosine collector pointed up, 

perpendicular to the water surface, to measure downward irradiance (Es); 

• With the same FOV as the first, another radiance radiometer measured the diffuse 

sky radiance (Lsky). It was positioned at 45º from the nadir direction and 

approximately 135º azimuth angle, forming a right angle with the Lt radiometer. 
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Figure 3.3 - Sensor-viewing geometry. 

 
The number one represents the downward irradiance sensor (Es); the number 2 represents the total 
water-leaving radiance sensor (LT); the number 3 refers to the sky radiance sensor (Lsky); θ is the 
zenithal angle from the total water leaving radiance sensor (45º) and Θ” the nadiral angle from 
the sky radiance sensor (45º). 

Source: Adapted from Maciel  (2019). 

 

The 135º azimuthal angle was defined to reduce the Sun glint influence over the 

radiometric measurements (MOBLEY, 1999). The radiometers were placed at 1.5 meters 

from the water surface. All the radiometric quantities measurements were made 

concomitantly. The radiometric spectral measurements were processed following Mobley 

(1999) procedure. First, according to Equation 3.1, the water leaving radiance (Lw) was 

calculated as: 

 𝐿'(𝜃, 𝜙, 𝜆) = 𝐿((𝜃, 𝜙, 𝜆) − 𝜌(𝜃, 𝜙)	𝐿)*+(𝜃, 𝜙, 𝜆) (3.1) 

 

Where Lw, Lt, and Lsky are a function of the zenithal angle (𝜃), azimuthal angle (𝜙), and 

wavelength (𝜆). The factor 𝜌	(𝜃, 𝜙) was obtained in Mobley (2015), using Sun’s zenithal 

angle and sensor-viewing geometry, and the wind speed, which was measured with an 

anemometer concomitantly with the radiometric sampling. Then, Remote Sensing 

Reflectance (Rrs) was estimated following Equation 3.2 (MOBLEY 1999): 
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𝑅,)(𝜃, 𝜙, 𝜆) =

𝐿'(𝜃, 𝜙, 𝜆)
𝐸)(𝜆)

 (3.2) 

 

After processing all the radiometric data from each point, the outliers were removed 

through visual inspection, and one spectrum was chosen to represent the sample station 

based on the result of Equation 3.3 (MACIEL et al., 2019): 

 
𝐷𝑖𝑓-,)(!,0) = 8 |𝑅𝑟𝑠(𝑖, 𝑗, 𝜆) − 𝑅𝑟𝑠234!56(𝑗, 𝜆)|

7##

89:##

 (3.3) 

 

Where 𝐷𝑖𝑓-,)(!,0) is the absolute spectral difference between an i-th sample and the 

median spectrum for a j-th sampling station. For some specific wavelength (𝜆), 

𝑅𝑟𝑠(𝑖, 𝑗, 𝜆) is the sample Rrs and  𝑅𝑟𝑠234!56(𝑗, 𝜆) is the median Rrs value for the j-th 

station. The chosen spectrum was the one that reached the lowest value of 𝐷𝑖𝑓-,)(!,0) in 

each sampling station. After selection, the chosen Rrs spectrum was interpolated for a 

resolution of 1 nm. Finally, all sample station spectra were simulated for PRISMA, 

Landsat-8/OLI, and Worldview-3 Spectral Response Function (SRF). 

 
𝑅𝑟𝑠;564(!) =

∫ 𝑆𝑅𝐹(𝜆) ∗ 𝑅𝑟𝑠2(8)𝑑𝜆	
8&
8%

∫ 𝑆𝑅𝐹(𝜆)𝑑𝜆8&
8%

 (3.4) 

 

Where 𝑅𝑟𝑠;564(!) is the i-th simulated band for the target sensor, 𝑆𝑅𝐹(𝜆) is the Spectral 

Response Function in a given wavelength, and the 𝑅𝑟𝑠2(8) is the in situ measured Rrs 

for the same wavelength.  

3.3 Hyperspectral PRISMA data processing 

 Hyperspectral PRISMA image 

The PRecursore IperSpettrale della Missione Applicativa (PRISMA) is a hyperspectral 

platform launched by the Italian Space Agency (ASI, from Italian) in 2019. The mission 

combines two medium-resolution VNIR-SWIR hyperspectral instruments (30 meters) 

and a high-resolution panchromatic camera (5 meters). The platform operates in a Sun-
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Synchronous low Earth orbit (615 km), with a nadir revisit period of 29 days that is 

enhanced by a roll system that enables re-looks for the same target every seven days. 

PRISMA can image longitudes from -180º to +180º and latitudes between -70º and +70º 

in the equinox (higher latitudes can be imaged depending on the Sun’s Zenith angle). The 

swath width is 30 km, and the standard scene size has 30 x 30 kilometers, but it can be 

extended to a maximum of 1800 x 30 km. The VNIR spectrometer has 66 bands covering 

from 400 to 1010 nm (spectral sampling < 11 nm and bandwidth < 15 nm), whereas the 

SWIR instrument operates between 920-2500 nm resulting in 174 spectral bands (spectral 

sampling < 11 nm and bandwidth < 15). Table 3.2 presents information about the SNR 

of the instrument estimated after launch for different spectral ranges. 

Table 3.2 - Signal to Noise Ratio between 400-2500 nm for the PRISMA sensor after launch. 

Spectral Range SNR 

400-450 nm (VNIR) 161 - 209 

450-1000 nm (VNIR) 200 - 450 

1000-1300 nm (SWIR) 300 - 800 

1500-1750 nm (SWIR) 200 – 400  

1950-2500 nm (SWIR) 100 - 200 

Source: Cogliati et al. (2021). 

 

PRISMA imaging must be required before the passage of the sensor on the official ASI’s 

website (https://prisma.asi.it), where the user can inform the location, the period range, 

and the processing level. Then, the request is uploaded to the platform, and the acquisition 

is made inside the time window informed by the user if the weather (e.g., clouds) and 

geometrical requirements are achieved. In addition, there is an online platform to check 

the orbits of the sensor in a region of interest (http://prisma-prefeasibility.asi.it). After 

being acquired, the data can be downloaded in ASI’s catalog in different processing 

levels: L1 (radiance at the top-of-atmosphere) and L2 (geolocated and geocoded 
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atmospherically corrected images). More information about the PRISMA mission and 

radiometric validation is described by Cogliati et al. (2021). 

A PRISMA image was acquired on 23/11/2021, in match-up condition, during a cloudless 

day with a low turbidity atmosphere. The sensor’s roll angle was -12.7 degrees from nadir. 

The scene has a size of 30 x 30 kilometers and covers the entire reservoir. The acquisition 

time was at 10:20h (GMT +3), creating a match-up window of ± 4 hours from the 

collected field data. The image has 234 continuous bands from 400 to 2500 nm. The 

VNIR cube has 63 spectral channels ranging from 400 to 970 nm. The data was 

downloaded from ASI’s portal (https://prisma.asi.it) in two different processing levels: 

L1 (radiance at the top-of-atmosphere) and L2C (surface reflectance without geocoding). 

 Atmospheric correction 

Three Atmospheric Correction (AC) processors were applied to the PRISMA image to 

evaluate the best surface reflectance product for mapping PC: 

• ASI’s Surface Reflectance Product (L2C): This product was acquired directly 

from the ASI’s portal and contains reflectance values corrected for the 

atmospheric effects without geocoding. It was chosen over the final ASI’s product 

(L2D) once the geolocation for the study area was displaced compared to a 

reference raster (Sentinel-2/MSI or Landsat-8/OLI images). This method uses 

hyperspectral bands for deriving atmospheric parameters, such as the water vapor 

and the Aerosol Optical Thickness (AOT). First, the water vapor is retrieved pixel-

by-pixel using the water’s absorption features at Near-Infrared bands (e.g., 940 

nm). Then, a mean AOT is derived for the whole scene using the Dark Dense 

Vegetation method (GUARANI et al., 2018). Then, the radiative transfer model 

is inverted using MODTRAN, Look-Up Tables (LUT), and ancillary data. 

• ACOLITE: This open-source, multi-sensor AC processor was developed for 

retrieving radiometric information from aquatic ecosystems 

(VANHELLEMONT; RUDDICK, 2018). For PRISMA data, ACOLITE takes as 

input both L1 and L2C products. L1 provides radiometric data, and the processor 

extracts the view geometry from L2C. The radiance measured by the sensor was 

converted to reflectance and then was corrected using the Dark Spectrum Fitting 

(VANHELLEMONT, 2019) with default options. The glint correction was 



35 
 

disabled to permit comparing with other AC processors. First, the AOT at 550 nm 

is derived from different spectral bands for different aerosols models (e.g., 

Continental and Maritime). Next, the band with the lowest AOT different from 

zero was selected for each aerosol model. Then, the best band and aerosol model 

are chosen by optimization. Finally, the other necessary parameters to perform the 

AC are retrieved from LUT, considering the calculated AOT at 550 nm for the 

selected band. ACOLITE processing is detailed by Vanhellemont (2019).  

• 6SV: The Second Simulation of a Satellite Signal in the Solar Spectrum (6SV) 

has been successfully applied for different orbital sensors for inland waters 

applications (MARTINS et al., 2017; MACIEL et al., 2019; KRAVITZ et al., 

2020). The 6SV radiative transfer model takes as input the top-of-atmosphere 

reflectance and some atmospheric and environmental parameters for simulating 

the bottom-of-atmosphere reflectance. The L1 PRISMA image was converted 

from radiance to reflectance and used as the radiometric input. The geometries of 

illumination and viewing were acquired from the PRISMA image metadata. The 

aerosol profile was set as ‘Continental’, and the AOT at 550 nm was extracted 

from the daily MODIS product MOD08. MOD08 also provided the water column 

information, and the ozone was measured by the Ozone Monitoring Instrument 

aboard the Aura satellite. Billings’ elevation was provided by SRTM (30m). 

Given the input parameters, Surface Reflectance was calculated as described by 

Paulino et al. (2022). 

After atmospherically corrected, all images were georeferenced. Then, the spectral values 

from the pixels coincident with the field match-up stations were extracted and compared 

with in-situ radiometric samples simulated for PRISMA bands. The spectral similarity 

will also be assessed by calculating the difference angles from the in-situ dataset and the 

AC products. Finally, the best AC was chosen by evaluating the accuracy metrics 

described in Section 3.5. 

 Synthetic multispectral data generation 

Comparing estimative of water quality products from different orbital sensors is 

challenging due to the influence of other variables in the final output (e.g., differences in 

atmospheric conditions, geometries of illumination and acquisition, and the water body 
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trophic state). As PRISMA data have high-resolution spectral information, it allows for 

simulating images from other multispectral sensors and comparing the applicability of 

PC models in orbital data with the same boundary conditions (BECK et al., 2017). 

Therefore, Landsat-8/OLI and Worldview-3 synthetic images were generated using 

PRISMA hyperspectral image to identify the most suitable sensor for PC monitoring at 

BIL. Those platforms were chosen based on the potential for monitoring PC in urban 

reservoirs. First, the best atmospherically corrected product provided fifty-four PRISMA 

spectral channels, from 419 to 898 nm. Then, a linear interpolation was applied to achieve 

a resolution of 1 nm for each pixel. Finally, the interpolated data were resampled with 

SRF to target multispectral sensor bands. Information about the simulated bands for 

Landsat-8/OLI and Worldview-3 are described in Table 3.2. The synthetic data was 

assessed for the match-up points through comparisons of the field radiometric data 

resampled for the target sensor and the generated image. 

Table 3.3 - Multispectral synthetic data description. 

Multispectral Sensor Central Wavelength (nm) Spectral Range (nm) Spatial Resolution (m) 

Landsat-8/OLI 482 436-528 30 

Landsat-8/OLI 561 512-610 30 

Landsat-8/OLI 613 590-635 30 

Landsat-8/OLI 655 625-691 30 

Landsat-8/OLI 865 829-900 30 

WorldView-3 480 450-510 30 

WorldView-3 545 510-580 30 

WorldView-3 605 585-625 30 

WorldView-3 725 705-745 30 

WorldView-3 832 770-895 30 

Source: Author’s elaboration. 

 

3.4 Machine learning for C-PC modeling 

This study selected three Machine Learning Algorithms (MLA) for modeling PC: 

Random Forest, Extreme Gradient Boost, and Support Vector Machine. Firstly, the 

algorithms were trained and validated using in-situ data simulated for the different 

sensors. Secondly, the previously trained MLA were applied to the hyperspectral and 

synthetic multispectral images, and the PC estimates were validated with in-situ 

coincident measurements of the photosynthetic pigment. Finally, the PC results obtained 
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in this study were compared with the predictions made by the Mixture Density Network 

(MDN) for the Billings dataset using simulated and orbital data. 

 Models description 

• Random Forest (RF) is a supervised MLA widely used for Remote Sensing 

applications (BELGIU; DRĂGU, 2016). It is an ensemble learning method that 

can be used to solve classification and regression problems. Ensemble algorithms 

are those which, instead of predicting based on only one classifier, generate 

several “weak” learners that are used together to produce a “strong” learner. First, 

RF creates different uncorrelated decision trees, each making an independent 

prediction of the target variable. Then, the response of all classifiers is used to 

define the final prediction. In the case of classification tasks, the predicted label 

is the one that receives the majority of votes from the learners. For regressions, 

the final output is the mean of all predictions. Each tree is constructed from a 

subset of the training dataset randomly sorted sample by sample (allowing 

repositions). This method is called “bagging” or “bootstrapping” and aim to 

produce uncorrelated trees to enhance the prediction. Each tree is composed of 

leaf nodes and decision nodes. Leaf nodes are the last component of each branch 

and represent a class label (e.g., “contaminated”, or “not-contaminated”). The 

decision nodes are responsible for splitting the data until the final prediction on a 

terminal leaf node. They are generated based on the input features, and the 

splitting rule is defined based on minimalizing a cost function (e.g., what are the 

thresholds for a specific input feature that produces the minimum possible value 

for the cost function Mean Absolute Error?). The diagram in Figure 3.4 illustrates 

the structures of a decision tree. Overall, RF has a powerful generalization 

capacity and can provide good estimates even with small training datasets. 
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Figure 3.4 - Structures of a decision tree. 

 

Source: Author’s elaboration. 

 

• The Extreme Gradient Boost (XgBOOST) is another supervised ensemble 

algorithm based on decision trees. XgBOOST shares most of the characteristics 

described for RF; however, the strategy for generating each tree is the greatest 

difference between those classifiers. While RF applies bootstrapping, XgBOOST 

uses the boosting approach. Instead of creating uncorrelated trees from random 

subsamples (bootstrapping), XgBOOST chooses the samples based on the 

predictions made from the previous trees. At each iteration, the algorithm 

evaluates the residuals of the generated tree and increases the chance of the 

misclassified samples being included in the subset that will create the next tree. 

This way, the algorithm can iteratively learn from the previous trees' errors to 

improve the next's accuracy. XgBOOST has been used to derive water quality 

parameters from radiometric data (CAO et al., 2020) due to its high performance 

in regression problems. 

• Support Vector Machine (SVM) is also a supervised MLA that can be used for 

classification and regression tasks. First, SVM creates an n-dimensional space 

depending on the number of input features. Each informed feature will represent 

an axis coordinate in this newly created space. For classification problems, the 

algorithm calculates a decision boundary (or hyperplane) that can split the training 

samples into unique classes/labels. Then, when a new observation is presented to 

the algorithm, it uses the boundaries to classify the latest data. The hyperplane is 

constructed based on a pre-defined kernel function (a mathematical function that 
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might be linear or non-linear) to maximize the margin (distance) between the 

support vectors, which are the closest points of each label/class to the hyperplane 

(Figure 3.5). In regressions tasks, the algorithm uses the informed kernel to create 

a hyperplane that includes the greatest number of sample points (or support 

vectors). The epsilon defines the distance from the hyperplane (tolerated error) 

that a sample might have to be included as a support vector. The mathematical fit 

is then used to predict new observations (Figure 4.5). 

Figure 3.5 - Support vector machine for regression and classification tasks. 

 

Source: Author’s elaboration. 

 

• The Mixture Density Network (MDN) combines a Deep Neural Network (DNN) 

and a mixture of contributions. The algorithm presupposes that any data 

distribution can be fitted using multiple Gaussians and the DNN is able to retrieve 

the adequate parameters for generating those curves. First, the user informs input 

layers that are provided to the DNN. Then, the DNN generates parameters (e.g., 

mean and standard deviation) to create n Gaussian curves to describe the input 

data. Mixing coefficients are also provided by the Neural Network and are used 

for combining the gaussian into a combinate function. Finally, this final function 

is used for predicting new observations. O’Shea et al. (2021) used multispectral 

algorithms, band ratios, and line heights as input layers and a combinate function 

using five Gaussians for calibrating their MDN PC algorithm (Figure 3.6).  
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Figure 3.6 - MDN calibration flowchart for estimating PC and Chla. 

 
Source: O’Shea et al. (2021). 

 

 Features generation 

Each sample from the training dataset was composed of a Rrs spectrum aligned with a PC 

measurement. PC concentrations from 0 to 0.1 µg/L were set to 0.1 µg/L, and then the 

dataset was log-transformed to reduce the asymmetry of the data distribution and prevent 

negative estimates. Although any of the applied MLA presupposes normal data 

distribution, predictions using high asymmetric datasets tend to be biased for some 

concentration range (QIANG; XINDONG, 2006). Then, the in-situ resampled spectral 

bands were selected for modeling PC. Wavelengths shorter than 500 nm are highly 

susceptible to atmospheric noise and are absent of PC features (O’SHEA et al., 2021), 

whereas wavelengths in the longer Near-Infrared and Mid-Infrared few contribute to 

OACs modeling due to the water’s absorption (POPE; FRY, 1997). Therefore, forty 

bands from 500 to 877 nm were selected from the PRISMA dataset, as Landsat-8/OLI 

and Worldview-3 had all the bands beyond 500 nm. The individual spectral bands were 

not used as input for the MLA to avoid creating models sensitive to atmospheric-derived 

uncertainties. Instead, Normalized Indexes (NI), Line Heights (LH), and PC algorithms 

were used. 

𝑁𝐼	(𝜆%, 𝜆&) =
𝑅,)(𝜆%) − 𝑅,)(𝜆&)
𝑅,)(𝜆%) + 𝑅,)(𝜆&)

 (3.5) 
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𝐿𝐻	(𝜆!", 𝜆", 𝜆#") = 𝑅$%(𝜆") − +𝑅$%(𝜆#") − ,(𝑅$%(𝜆!") − 𝑅$%(𝜆#")) ∗ 	
𝜆#" − 𝜆"
𝜆#" − 𝜆!"

./		 (3.6) 

 

All possible combinations from NI were calculated for the evaluated sensors considering 

the selected bands for modeling PC (Equation 3.5). Since the same spectral information 

is contained in 𝑁𝐼	(𝜆%, 𝜆&) and 𝑁𝐼	(𝜆&, 𝜆%), only the NI where 𝜆% > 𝜆& were selected as 

input features. The LH is calculated based on three different wavelengths (or bands) in 

sequential ascending order. The first (𝜆"#) and the last (𝜆$#) are used to create a baseline 

for extracting valuable information from the central wavelength (𝜆#) (QI et al., 2014). 

Different intervals from 𝜆# might be used to calculate the LH, which might increase or 

decrease the relationship with some target variable. Therefore, LH was calculated using 

different intervals from the center wavelength to identify the best arrangements for 

predicting PC. For PRISMA, LH with 1 band, 3 bands, and 5 bands interval from 𝜆# were 

derived. Worldview-3 had 1 band and 2 bands LH, while Landsat-8/OLI only had one-

interval band LH. The PC algorithms were calculated considering the available bands for 

each sensor. The input features are described in Table 3.3. After generated, the features 

and PC values were normalized by subtracting the subset mean and dividing by the subset 

standard deviation. 

Table 3.4 - Input features description. 

Orbital Sensor n bands Normalized Indexes Line Heights PC algorithms 

PRISMA 40 780 64 MM141, LIU172, OGA193, 
HUN104 

Landsat-8/OLI 4 6 2 - 

WordView-3 5 10 4 OGA193 

The formula for each PC algorithm is described in Table 2.1. References for the C-Phycocyanin 
algorithms: 1(MISHRA; MISHRA, 2014); 2(LIU et al., 2017); 3(OGASHAWARA; LI, 2019); 
4(HUNTER et al., 2010). 

Source: Author’s elaboration. 

 
 Features selection 

Features generated from hyperspectral data are prone to multicollinearity (KUMAR; 

GHOSH; CRAWFORD, 2001). MLA are sensitive to correlated features, with a sharp 

performance decrease observed in this situation (CHAN et al., 2022). Therefore, a feature 
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selection was made to remove the most correlated features. First, the calculated spectral 

layers (LH and NI) were ordered by their importance in predicting PC through the 

Predictive Power Score (PPS). The PPS is a univariate metric which scores each feature 

based on their relevance to predict a label (KIM et al., 2022). The PPS is calculated based 

on the loss function of a single decision tree, which was created from the evaluated feature 

and the target label. This metric can translate linear and non-linear relationships, 

overperforming traditional scores. PPS varies from 0 to 1, where features with no 

predictive power are penalized with 0, and a perfectly predictive feature achieves a unit 

score. Features that had a zero score were excluded, and the remain ones were organized 

in descending order relative to their PPS value. Then, a correlation matrix was calculated 

for every pair of input features. A Pearson Coefficient threshold was used to exclude the 

most correlated features, starting from the most important feature to predict PC in 

direction to the least important. To find the best Pearson value, a sensibility test was 

performed, varying the coefficient from 0.5 to 0.95 with an increment of 0.05 at each 

round.  

 Model training  

The models were trained in a loop, varying the Pearson Coefficient value for selecting 

the input features. First, Grid Search was used to find the best hyperparameters for RF, 

XgBOOST, and SVM. Hyperparameters are used to control the learning rates of a 

machine learning algorithm (JIN, 2022). Each MLA is programmed with a default 

configuration, but fine adjustments of hyperparameters can increase the accuracy of the 

final predictions (LIN et al., 2021). Grid Search is one of the existent algorithms used to 

potentialize the search for the best combination (BELETE; HUCHAIAH, 2021). This 

methodology generates all configurations of a set of hyperparameters informed by the 

user and assesses each one at the target MLA (Figure 3.4). To find the best configuration, 

the dataset was divided into 5 equal parts (folds), and at each iteration, 4 were used for 

training, and 1 was used for testing (cross-validation). The best configuration is achieved 

with lowest mean accuracy metric (e.g., Mean Absolute Error) for all rounds. RF was 

tuned for the number of trees which informs the number of decision trees generated and 

maximum depth, which limits the number of splits allowed for each decision tree. For 

XgBOOST, different values for maximum depth, learning rate, and the number of trees 

were tested. The learning rate controls how much a generated decision tree will learn from 
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the previous misclassification. While for SVM, the kernel function, the epsilon, and the 

C values were optimized. The kernel is the mathematic function used to create the 

hyperplane (e.g., linear, radial basis function, polynomial) for splitting the samples. The 

C value is a parameter used to control the misclassifications from the samples used for 

training (might result in overfitting when C is too high, or underfitting for low C values). 

Epsilon control the margin of errors that are tolerated in the model.  

Figure 3.7 - Grid search flowchart.  

 
Source: Author’s elaboration. 

 

After tunning, a Monte Carlo Simulation with 1000 rounds was performed. For each 

iteration, the dataset was split into 80% for training and 20% for testing. The accuracy 

metrics were calculated for each round, and the median value for all rounds was used to 

assess the results. The best MLA for each orbital sensor was the one that resulted in the 

lowest error metrics aligned with the least number of selected features for a specific 

Pearson Coefficient value. Finally, all samples simulated to PRISMA were used to predict 

PC using the Mixture Density Network (MDN) model developed by O’Shea et al. (2021). 

This algorithm does not allow any extra training or parameters setting. Therefore, it was 

applied in default mode as provided by the authors (https://github.com/STREAM-

RS/MDN-Phycocyanin). The model took 26 bands from 500 to 719 nm as input and 

calculated PC and Chla concentrations. The MDN results were compared with the PC 

estimates from this study. 
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 PC estimated from orbital data 

After validated using in-situ radiometry, all MLA were applied to the available orbital 

data (Synthetic multispectral and hyperspectral images). The algorithms were re-trained 

using the field dataset, except the samples acquired in match-up condition with PRISMA. 

The same tunned hyperparameters from the previous modeling step were used to set the 

algorithms. Then, the selected features were generated from the spectral bands, and the 

models estimated PC concentrations. The PC maps were validated by comparing the 

match-up samples and the coincident pixel value. Then, the MDN was also used to 

estimate PC from the PRISMA image. The same validation strategy was used, and the 

outputs were compared with the modeled PC values from the MLA model. 

3.5 Validation metrics 

Two major validation metrics were used to assess the obtained results. The Mean 

Absolute Error (MAE) and Bias, both on a log scale, were calculated to compare 

atmospheric corrections, synthetic data generation, and PC modeling. MAE and Bias 

were calculated according to Equations 3.6 and 3.7, respectively.   

 

 𝑀𝐴𝐸 = 10	^	K
∑ |𝑙𝑜𝑔%#(𝑀!) − 𝑙𝑜𝑔%#(𝑂!)|6
!9%

𝑛 R	 (3.7) 

   

 𝐵𝑖𝑎𝑠 = 10	^	K
∑ 𝑙𝑜𝑔%#(𝑀!) − 𝑙𝑜𝑔%#(𝑂!)6
!9%

𝑛 R (3.8) 

 

Where 𝑀! is the modeled value, 𝑂! is the observed value, and 𝑛 is the sample size. MAE 

values will always be greater than 1.0, and any deviations are interpreted as the error 

magnitude (e.g., 1.4 means 40% of error). A Bias smaller than a unit indicates 

underestimation, while a greater one represents overestimation (e.g., a Bias of 0.7 means 

30% of general underestimation, and 1.8 indicates an overestimation by 80%). Unit Bias 

is achieved when there is no trend of overestimation or underestimation. Those accuracy 

metrics were chosen due to the lack of data distribution assumptions and low sensibility 

to outliers (SEEGERS et al., 2018). Besides, they are adequate for comparing the results 

of data with the asymmetric distribution 
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The atmospherically corrected products had an additional metric for assessing the spectral 

similarity from in situ spectra and orbital data. This analysis does not account for the 

measurement intensity but rather the spectral shape similarity (KRUSE et al., 1993). The 

greater the calculated angle, the greater the difference between the measured and 

estimated Rrs.  

 
𝑑 = cos"% X

∑ 𝑏"!𝑏!6;
!9%

Y∑ 	𝑏"!&	6;
!9% Z%/&Y∑ 	𝑏!&	6;

!9% Z%/&
[ (3.9) 

 

Where 𝑑 is the degree (unit radians) of similarity from the measured and estimated 

spectrum,  𝑏"! is the i-th PRISMA’s band from the evaluated AC product, 𝑏! is the 

simulated PRISMA’s band from field data, and  𝑛𝑏 is the number of bands. Finally, a 

summary of the number of samples used for validating and calibrating procedures is 

presented Table 3.4.  

 
Table 3.5 - Summary of the number of samples used for validating and calibrating procedures. 

 N samples for 
Calibrating 

N samples for 
Validating Observations 

Atmospheric 
Correction - 24 Match-up samples with PRISMA passage 

(with and without PC measurements) 

PC modeling 
(in-situ data) 92 23 80% for calibrating and 20% for validating 

(For each round of the Monte Carlo Simulation) 

PC modeling 
(orbital data) 102 13 Calibrated with all dataset but the match-up stations 

with PRISMA passage (with PC measurements) 

MDN 
(in-situ data) - 115 All in-situ PRISMA simulated dataset 

MDN 
(orbital data) - 13 Match-up samples with PRISMA passage (with PC 

measurements) 

Source: Author’s elaboration. 
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4 RESULTS 

4.1 Biological and radiometric in-situ data 

The biological analyses included photosynthetic pigments determination and 

Phytoplankton identification and quantification. Figure 4.1 shows the sampling stations’ 

spatial distribution. A total of 115 samples of photosynthetic pigments concentrations 

were determined over eight different periods during 2020 and 2021. Table 4.1 provides 

descriptive statistics of PC and Chla for each field campaign. The PC maximum was 

301.81 µg/L, while the minimum was 0 µg/L. The mean PC value was 20.28 µg/L, the 

median was 2.9 µg/L, and the standard deviation was 46.81 µg/L. Regarding Chla, the 

dataset ranged from 4.54 to 906.15 µg/L, with a mean value of 89.20 µg/L, a median 

value of 42.67 µg/L, and a standard deviation of 133.16 µg/L. The median PC:Chla from 

this study was 0.09, and the mean was 0.14. Median Chla concentrations were almost 14 

times greater than median PC. The boxplot (Figure 4.1) shows that PC values above 40 

µg/L are considered outliers, while for Chla, the upper limit is 200 µg/L. Both pigment 

density distributions are positively skewed (Chla = 3.80 and PC = 4.16). The pigment 

concentrations were compared with the estimated phytoplankton biovolume for some 

samples (n = 26). Chla had a strong linear positive relationship with the total 

phytoplankton biovolume, while the same was observed regarding PC and the 

Cyanophyta phylum (Figure 4.2). 

Table 4.1 - Descriptive statistics from Phycocyanin (ug/L) and Chlorophyll-a (ug/L). 

Statistic 11/2020 07/2021 08/2021 08/2021 09/2021 10/2021 11/2021 12/2021 

Chla min 29.34 16.04 16.04 40.10 4.54 7.68 15.37 40.43 

Chla max 486.16 114.94 149.69 225.87 256.61 103.80 196.91 906.15 

Chla mean 156.45 41.65 40.37 88.54 86.47 43.49 75.28 337.59 

Chla median 98.31 24.06 26.73 57.47 61.27 36.37 65.49 163.22 

Chla STD 153.41 8.83 31.77 64.96 90.70 30.33 51.56 325.72 

PC min 1.92 0.05 0.00 2.86 0.00 0.25 1.68 3.26 

PC max 186.49 33.16 47.76 95.49 2.59 17.51 77.68 301.81 

PC mean 30.94 5.65 7.46 24.00 1.26 7.50 22.23 119.24 

PC median 7.14 1.86 1.43 12.76 1.30 5.2 18.18 53.77 

PC STD 49.50 30.84 14.06 32.59 0.83 6.31 20.72 117.50 

PC:Chla median 0.087 0.080 0.062 0.165 0.02 0.164 0.26 0.33 
Source: Author’s elaboration. 



47 
 

Figure 4.1- Photosynthetic pigments boxplot and sampling stations’ spatial locations. 

 
Source: Author’s elaboration. 

 

During the studied period, the phytoplankton community from Billings reservoir was 

marked by the presence of Cyanobacteria. Cyanophyta phylum represented more than 

half of the total biovolume in 65% of the samples (n = 26). In 6 of them, Cyanobacteria 

represented the totality of phytoplankton in the water. The taxonomic analysis revealed 

that a single taxon was dominant on 14 samples, where 12 were Cyanobacteria species. 

Furthermore, in ten of these twelve, Microcystis aeruginosa dominated, while 

Raphidiopsis raciborskii and Planktothrix isothrix were the majority in each of the 

remaining two. The other two samples had the Dinoflagellate Ceratium furcoides as the 

dominating taxon. Furthermore, at least one Cyanobacteria species was abundant or 

dominant in 25 of the 26 analyzed samples. Likewise, Eukaryote species were observed 

17 times. Microcystis aeruginosa was abundant in at least 80% of the samples (20), while 

Raphidiopsis raciborskii achieved the same condition in ten samples. Excluding 
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Cyanobacteria, the most represented phytoplanktonic classes were Zygnematophyceae, 

Coscinodiscophyceae, and Dinophyceae.  

Figure 4.2 - Phytoplankton biovolume and comparison with photosynthetic pigments. 

 
On the top graphic, PRISMA match-up stations have an asterisk (*). A) Total biovolume of each 
sample station split into Cyanophyta and Eukaryotic Phytoplankton. B) Measured Chla 
concentration compared with measured total biovolume. C) Measured PC concentration 
compared with measured Cyanobacteria biovolume. 

Source: Author’s elaboration. 

 

The species richness varied from 3 to 33, with a mean of 13 taxa per sample. This value 

decreased by 23% (10 species) when considering just the Cyanobacteria-dominated 

sample points. When analyzing just samples where no domination was identified (mixed 

community), there was an increase of 31% (17 species). A spatial trend was observed 

regarding the phytoplankton community structure (Figure 4.3). Taking the Imigrantes 

Highway as a reference, the western side of the reservoir (Pedreira Arm, Taquacetuba 

Arm and the western part of the Central Body) had 10 of the 13 samples dominated by 

Cyanobacteria with a mean species of 8. All sample stations in Pedreira Arm were 

dominated by Microcystis aeruginosa. Meanwhile, the eastern side of Imigrantes 

Highway (Rio Grande arm, Rio Pequeno Arm, Capivari Arm, and the eastern part of the 
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Central Body) had only 3 of its 13 sample stations presenting species domination and a 

mean richness of 16 taxa. 

Figure 4.3 - Phytoplankton community structure and species richness. 

 

 Source: Author’s elaboration . 

 

In-situ radiometric samples were used to calibrate and validate the PC bio-optical 

algorithms. The radiometric measurements were carried out in a total of 126 sample 

stations, during the eight field campaigns. Figure 4.4 shows the estimated Rrs for those 

sites. Of the total dataset, 115 stations had photosynthetic pigments concentrations 

concurrent with Rrs, and 11 had just radiometric in-situ data. The Rrs without pigments 

reference were used for increasing the match-up rate with PRISMA and increase the 

atmospheric correction validation dataset.  
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Figure 4.4 - Remote sensing reflectance spectra. 

 
Source: Author’s elaboration. 

 

4.2 Atmospheric correction and synthetic data generation 

Figure 4.5 shows the results for the validation of PRISMA’s atmospheric corrected 

products. Only the bands used for modeling PC were assessed (500 to 877 nm). Twenty-

four Rrs samples acquired in match-up condition with PRISMA (± 4 hours) were used as 

a reference for evaluating the retrieved surface reflectance. ASI’s product had the most 

consistent estimates for all the calculated accuracy metrics. ACOLITE followed 

PRISMA’s official product, and 6SV had the worst performance from the tested methods. 

When considering all bands, ASI had a spectral MAE of 1.39, while ACOLITE and 6SV 

had 1.55 and 1.65, respectively. In addition, ASI had a 19% overestimation tendency, 

while the other AC processors had no general trend (Bias ~1).  
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Figure 4.5 - Atmospheric correction accuracy metrics. 

 
Metrics for the atmospheric Correction Processors (ASI, ACOLITE, and 6SV). A) Mean Absolute 
Error (MAE). B) Spectral difference between satellite and in-situ data. C) Bias. D) Scatter plot 
comparing ASI estimated Rrs versus field data. E) Scatter plot comparing ACOLITE estimated 
Rrs versus field data. F) Scatter plot comparing 6SV estimated Rrs versus field data. 

Source: Author’s elaboration. 

 

ASI had MAE lower than 20% for all bands from the visible region until the red edge, 

slightly underestimating the Rrs. ACOLITE and 6SV had MAE from two to more than ten 

times greater than ASI processor for the same spectral region, with a pronounced 

underestimation tendency. The accuracy metrics beyond 700 nm are similar for all AC 

processors, with a small advantage of ACOLITE. From 700 to approximately 780 nm, 

MAE increases, and Bias shows an overestimation trend in the Near-Infrared. Then, from 

780 to 820 nm MAE sharply decreased, followed by another increase from 820 to 877 

nm. ASI also had the most similar spectra compared with reference Rrs, with a median 

difference of 0.22 radians. ACOLITE achieved 0.29 radians, and 6SV exhibited the 

greatest difference with a 0.35 median value. ASI and ACOLITE had a common outlier 

sample, evidenced by the spectral difference boxplot. Considering the presented results, 

ASI was selected to proceed with PC modeling. A comparison from all the AC processors 

and reference in-situ  data is provided for some sample stations (Figure 4.6). 
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Figure 4.6 - Comparison between orbital and in-situ Rrs. 

 
Source: Author’s elaboration. 

 

To understand how the radiometric noise has propagated to the Worldview-3 and 

Landsat-8 synthetic images, their data were compared with the in-situ Rrs simulated to the 

respective sensor (Figure 4.7). The same 24 match-up Rrs samples were used as reference 

data. The accuracy metrics revealed that the errors on both synthetic images were directly 

proportional to the errors from the integrated spectral region of the original PRISMA 

atmospheric corrected image. Therefore, there is no evidence that resampling the 

hyperspectral image has reduced the data’s radiometric quality.  Overall, MAE was lower 

than 16% in the visible spectrum for all the synthetic bands. As for Bias in the same 

spectral region, all channels were underestimated concerning the in-situ data with a 

maximum Bias value of -15%. The NIR bands showed more expressive errors than the 

visible range. The Landsat-8/OLI NIR band had a MAE of 2.64 and a Bias of 2.6, while 

Worldview bands had a MAE of 1.7 and 2.0, with a Bias of 1.08 and 1.92 for the Red 

Edge and NIR channels, respectively. The MAE increase and the overestimation tendency 
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in the NIR region followed the same pattern as observed in Figure 4.5 for the PRISMA 

image. 

Figure 4.7 - Synthetic images accuracy metrics. 

 
Metrics for the synthetic images generated from PRISMA orbital data. A) Scatter plot comparing 
Landsat-8/OLI synthetic Rrs and in-situ data. B) Scatter plot comparing Worldview-3 synthetic 
Rrs and in-situ data data. C) Mean Absolute Error (MAE). D) Bias. 

Source: Author’s elaboration. 

 

4.3 C-Phycocyanin estimated from radiometric data  

The Machine Learning Algorithms for predicting C-Phycocyanin were first calibrated 

and validated using PRISMA, Worldview-3, and Landsat-8/OLI bands simulated from 

in-situ radiometric data. This approach was used to reduce the uncertainties derived from 

modeling using orbital data, especially due to the atmospheric noise. Figure 4.8 presents 

the results of the Pearson Coefficient sensibility test. This approach had the objective of 

defining the threshold for selecting the best input bands to estimate PC for each assessed 

sensor. For Worldview-3, the best combination was achieved with a Pearson of 0.9 and 

four input layers. Landsat-8/OLI had the best MAE for a threshold of 0.95, which resulted 

in three layers. Although PRISMA had the most accurate predictions for SVM with 

Pearson of 0.85 (9 input layers) (Figure 4.8-B), the difference between the error metrics 
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achieved in RF and XgBOOST on 0.8 (5 input layers) wasn’t enough to justify adding 

almost double input features. Therefore, the five layers selected from the 0.8 coefficient 

were used for further analysis.  

Figure 4.8 - Results of pearson sensibility test. 

 
Each plot represents the results for PC modeling using a Monte Carlo simulation varying the 
Pearson Coefficient value used for selecting the input features. This assessment was made using 
in-situ hyperspectral data resampled for different orbital sensors. The left scale refers to MAE 
magnitude (line plot) while the right indicates the number of features in the bar plots; results for: 
A) Worldview-3. B) PRISMA. C) Landsat-8/OLI. 

Source: Author’s elaboration. 

 
Table 4.2 presents the selected input features considering the different orbital sensors. 

ordered by their importance for predicting PC, considering the calculated Predictive 

Power Score. To be selected, the input feature had to offer some predictive power for 

estimating PC (PPS > 0) and present a degree of collinearity with the other features 

smaller than the Pearson threshold. This strategy maximized the information variance 

used for estimating the target label. Therefore, elements that did not contribute to PC 

modeling or contained the same spectral information of a previously selected feature were 

excluded. Figure 4.9 shows the importance of the features calculated by the Machine 

Learning Algorithms. The elements that most contributed for retrieving PC coincided 

with its relative PPS score for most MLA. As expected, features using bands centered 

around the PC absorption feature (620 nm) were select for predicting the target variable 

(e.g., LH (546,608,659), NI (608,546), MM14, LH (561,613,865)) However, the data-

driven feature selection revealed that features based on the Green and Near-infrared 

regions were also sensitive to variations in the photosynthetic pigment concentrations. 
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PRISMA’s most important feature for all MLA was the 𝑁𝐼(563,555). The LH 

considering three Near-Infrared wavelengths, also had foremost importance for the 

hyperspectral sensor (𝐿𝐻(739, 802,855)). Predictions from Worldview-3 also used 

Near-Infrared information for retrieving PC (𝐿𝐻(659,724,831)). Due to its limited 

spectral resolution, Lansat-8 estimates were based only on the PC absorption band. After 

the input layers were selected, the hyperparameters were tuned for each MLA algorithm. 

The chosen values from Grid Search are in Table 4.3.  

Table 4.2 - Selected input features for each orbital sensor. 

Sensor Selected Features 

Worldview-3 𝐿𝐻(546,608,659), 𝐿𝐻(659,724,831), 𝑁𝐼(724,659), 𝑁𝐼(608,546) 

PRISMA 	𝐿𝐻(739, 802,855), 𝑁𝐼(563,555), 𝐿𝐻(651,699,750),𝑀𝑀14, 𝐿𝐻(531,571,614) 

Landsat-8/OLI 𝐿𝐻(561,613,865), 𝑁𝐼(613,561), 𝑁𝐼(865,613) 

Features are ordered considering its Predictive Power Score for estimating PC. Features names 
are abbreviated considering their input spectral bands.	 𝐿𝐻	(𝜆!", 𝜆", 𝜆#") refers to line heights. 
𝑁𝐼	(𝜆D, 𝜆E) is an abbreviation for the Normalized index. 

Source: Author’s elaboration. 
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Figure 4.9 - Features importance calculated by the assessed machine learning algorithms 
considering the different orbital sensors. 

 
Features names are abbreviated considering their input spectral bands. 𝐿𝐻(l) refers to line heights 
centered at wavelength l. 𝜆D/𝜆E is an abbreviation for the Normalized index 𝑁𝐼	(𝜆D, 𝜆E). 

Source: Author’s elaboration. 

 

Table 4.3 - Tunned hyperparameters. 

Sensor / MLA  Hyperparameter tunned 

 n trees Max depth Learning rate Kernel C Epsilon 

Worldview-3 / RF 120 4 - - - - 

Worldview-3 / XgBOOST 80 2 0.05 - - - 

Worldview-3 / SVM - - - Linear 0.5 0.2 

       

PRISMA / RF 120 4 - - - - 

PRISMA / XgBOOST 120 2 0.15 - - - 

PRISMA / SVM - - - Linear 0.5 0.2 

       

OLI / RF 80 4 - - - - 

OLI / XgBOOST 80 2 0.05 - - - 

OLI / SVM - - - Linear 0.5 0.4 

Source: Author’s elaboration. 
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Considering the best Pearson Coefficient value for each sensor, Table 4.5 resumes the 

results for modeling PC using in-situ radiometric data. The best predictions were with 

PRISMA, followed by Worldview-3 and Landsat-8/OLI. Random Forest outperformed 

the other MLA for all the sensors. In contrast, SVM had the worst results. PRISMA’s best 

performance was 25% more accurate than OLI’s predictions with RF. Compared with the 

Worldview-3 best score, the hyperspectral sensor achieved accuracies 10% better than 

the ultra-resolution sensor. The results also revealed that the accuracy metrics were 

proportional to the number of input features available for predicting PC.  

Table 4.4 - Results for PC modeling using in-situ simulated data for different sensors. 

Sensor / MLA Pearson Selected Bands Median MAE Median Bias 

Worldview-3 / RF  0.9 4 65% 0% 

Worldview-3 / XgBOOST 0.9 4 72% 0% 

Worldview-3 / SVM 0.9 4 75% 9% 

     

PRISMA / RF 0.8 5 59% 0% 

PRISMA / XgBOOST 0.8 5 64% 0% 

PRISMA / SVM 0.8 5 69% 10% 

     

OLI / RF 0.95 3 84%  -4% 

OLI / XgBOOST 0.95 3 86% 0% 

OLI / SVM 0.95 3 99% 0% 

Best results for each sensor are in bold. 

Source: Author’s elaboration. 

 

The Chla and PC estimates from MDN are presented in Figure 4.10. Although PC 

estimate is linearly correlated to the measured values (R² = 0.74), the algorithm showed 

a strong overestimation trend (Bias = 612%). Considering the best achieved MAE for the 

calibrated MLA in this study, RF using PRISMA data as input features is 10.5 times more 

accurate than MDN. Regarding Chla estimates, the model had more success in predicting 

this photosynthetic pigment (MAE = 64%). However, the scatter plot shows an accuracy 

decrease for high concentrations compared to low and medium values. Bias reveals that 

there is no clear trend of overestimation or underestimation. 
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Figure 4.10 - Chla and PC estimated through the MDN algorithm. 

 

This model was implemented by O’Shea et al. (2021) and is the most global PC algorithm. This 
algorithm was used on default settings, as upload by the authors (https://github.com/STREAM-
RS/MDN-Phycocyanin). 

Source: Author’s elaboration. 

 

After being calibrated and validated using in-situ radiometric data, all evaluated Machine 

Learning Algorithms were used to predict PC from PRISMA, Synthetic Worldview-3, 

and Synthetic Landsat-8/OLI images. The generated PC maps were validated by 

comparing the measured and the estimated PC values for the match-up sampling stations. 

The validation metrics of the produced maps are presented in Figure 4.11. The 

combination of PRISMA data and Random Forest also had the most accurate results in 

image-based PC retrieval. This method has achieved a MAE of 45% and a Bias of 13%. 

MAE from orbital PC estimates was 15% lower than the obtained from in-situ radiometry 

for PRISMA/RF method. SVM had an expressive accuracy decrease compared with the 

first modeling step and was also the most inaccurate of the assessed MLA. For 

Worldview-3 and Landsat-8/OLI synthetic images, XgBOOST achieved the best results. 

When comparing with field modeling, there was an accuracy turn-over between RF and 

XgBOOST. Both sensors also had an MAE decrease when comparing the results obtained 

from simulated data and orbital data. The MAE difference between PRISMA and 

Worldview-3 predictions was only 4%. Landsat-8/OLI and Worldview-3 estimates were 

biased for underestimation. 
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Figure 4.11 - Results for PC retrieval using orbital data. 

 
Results for PC modeling using orbital data and different Machine Learning Algorithms. Plots 
marked with an asterisk (*) have points out of the scale’s range. A) Validation using the Synthetic 
Worldview-3 image. B) Validation using the PRISMA image. C) Validation using the Synthetic 
Landsat-8/OLI image. 

Source: Author’s elaboration. 

 

Figure 4.12 presents the PC maps with the best accuracy metrics for each assessed orbital 

sensor. A median filter with a 3x3 window was applied to smooth the results. Overall, the 

same spatial pattern is observed for the three methods throughout the Billings reservoir. 

Transects were made to illustrate differences in PC estimates (Figure 4.13). The same 

spatial pattern from phytoplankton community structure and species richness was 

observed in PC maps. From the Imigrantes Highway, the western side of the reservoir 

was marked by relatively high and medium concentrations, as on the eastern side it was 

observed a sharp concentration decrease and relatively low PC estimates. This trend is 
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observed when comparing Transects #1 and #2 with #3, #4, and #5. PRISMA/RF results 

exhibited high spatial frequency, even after smoothed by a median filter. The high 

variability on PC estimates in short distances are observed in all transects but are more 

expressive for low concentrations (Transects #3 and #5). Worldview-3 and Landsat-

8/OLI results showed spatial frequency lower than that of PRISMA, and the changes in 

PC concentration were observed at greater distances. 

Overall, the same PC concentration distribution pattern was observed for the three 

methods throughout the Billings reservoir. The Pedreira arm (Transept #1) had the 

greatest estimated PC concentrations, also observed with in-situ measured values. 

PRISMA/RF achieved values as high as 230 µg/L, while the maximum peak of 

Worldview-3/XgBOOST and Landsat-8/XgBOOST were 165 µg/L and 80 µg/L, 

respectively. Taquacetuba Arm and Central Body, represented by Transept #2, had the 

second-highest PC concentrations, even though considerably lower than the Pedreira arm. 

However, all methods have identified a high concentration spot near point D. Also, an 

increasing trend in cyanobacteria cells was observed on Transept #4, in the direction to 

point H. Transept #3 and #5 had smaller PC ranges and exhibited lower concentrations 

when compared with Transepts #1 and #2. 

Figure 4.12 - PC mapping for different orbital sensors and MLA. 

 
PC maps for best results for each of the assessed orbital sensors. A) Results for sensor Worldview-
3 and the MLA XgBOOST. A) Results for sensor PRISMA and the MLA Random Forest. A) 
Results for sensor Landsat-8/OLI and the MLA XgBOOST. 

Source: Author’s elaboration. 
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Figure 4.13 - PC concentration transects. 

 
PC concentration transects comparing the different methodologies for the photosynthetic pigment 
retrieval (PRISMA/RF, Worldview-3/XgBOOST, and Landsat-8/XgBOOST). 

Source: Author’s elaboration. 

 

Finally, the results from PRISMA/RF were compared with MDN’s prediction for the 

same orbital sensor. Figure 4.14 shows the same validation strategy applied before, where 

the match-up sampling stations were used to derive accuracy metrics from PC mapping. 

Regarding MDN’s results, the overestimation trend observed in in-situ radiometry was 

repeated for the orbital sensed data (Bias = 280%). Even though MAE has fallen by half 

compared with MDN applied to in-situ data, it was still six times greater than RF 

prediction errors. However, both methods have shown a strong linear trend between the 

modeled and observed PC values (R² > 0.80). Billings reservoir PC maps derived from 

MDN and RF using PRISMA data are shown in Figure 4.15. The same median filter was 

applied in MDN’s results to reduce high variations in PC estimates in short distances. 

Although the same spatial pattern is observed for both methodologies, the disparities in 

the concentration range are evidenced by the different scales used to represent PC 

estimates. However, MDN has achieved smoother results than Random Forest, reducing 

the spatial frequency in PC concentrations observed in the last method.  
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Figure 4.14 - Comparisons between C-Phycocyanin estimated obtained by MDN and RF using a 
PRISMA hyperspectral image. 

 
Source: Author’s elaboration. 

 
Figure 4.15 - PC maps for PRISMA hyperspectral image using MDN and RF. 

 
Source: Author’s elaboration. 
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5 DISCUSSION 

5.1 Billings history of anthropization  

Billings (BIL) is the iconic example of an urban reservoir degraded by anthropogenic 

activities. It is part of the Serra Project that aimed to revert waters from the Upper Tietê 

Basin to São Paulo’s coastal zone and produce hydroelectric energy taking advantage of 

the 720 meters height difference (SMA, 2010). BIL volume results from damming of ten 

rivers for storing and controlling the water flux to Cubatão City, and was finalized in the 

1940’s. To enable the increase of energy production, part of the Pinheiros River flux was 

pumped to BIL (CAPOBIANCO; WHATELY, 2002), which would also reduce São 

Paulo’s floodplain (BRAGA, 2000). By that time, São Paulo had one of the greatest urban 

growth rates of the country, but the sanitation network did not follow the city expansion. 

Therefore, the water quality from most São Paulo’s water bodies rapidly degraded 

(JACOBI, 1997), including BIL that was receiving water transposed from the Pinheiros 

River (CAPOBIANCO; WHATELY, 2002). However, BIL started to supply cities from 

SPMR to handle with the increasing population growing rates. The habitants supplied by 

the reservoir were worried about BIL’s water quality and pressed to stop the Pinheiros’ 

transposition (BRAGA; PORTO; SILVA, 2006). After some years of intense discussions, 

in 1992, the pumping was interrupted unless for flood control emergencies (SMA, 2010). 

Still, this action couldn’t cease the pollution of the reservoir, since the intense human 

occupation of its margins continued to be a source of punctual and diffuse pollution 

(MILZ et al., 2022). Besides, the occasional pumping of Pinheiros’ contaminated waters 

worsens the scenario (WENGRAT; BICUDO, 2011). 

5.2 Billings cyanobacteria content assessed from space 

This study's findings reflect the historical anthropic impacts on the reservoir. 

Cyanobacteria species’ constant dominance is a known symptom of Cultural 

Eutrophication (DOKULIL; TEUBNER, 2000). Figure 4.3 shows the prevalence of 

Cyanobacteria species and low phytoplankton biodiversity near the most densely 

occupied spots and where the water from Pinheiros River is pumped into the reservoir 

(Pedreira Dam). The same pattern is observed in the PC maps produced by all the 

methods, with the highest concentrations estimated for this region. Cyanobacteria scums 

were recorded in Pedreira at all field campaigns, evidencing the perennial presence of 
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CyHABs. This information can be confirmed by the taxonomical analysis, which revealed 

that the potentially toxic Microcystis aeruginosa dominated all the samples collected in 

that region. Maciel et al. (2021) observed that Pedreira and Taquacetuba arms had the 

lowest Secchi Disk Depth for all periods in the monthly average. The authors concluded 

that the phytoplankton growth dominated Billings’ water clarity regime, and the blooms 

intensities followed the precipitation pattern. The same was observed for the present 

photosynthetic pigments’ dataset. The highest mean values of PC and Chla were obtained 

in November and December (begging of the rainy season), and the lowest were found in 

July (peak of drought season). One of the explanations for this phenomenon is the 

increasing volume of the contaminated city runoff and the rising probability of Pinheiros’ 

reversion (WENGRAT; BICUDO, 2011). Therefore, the great amount of nutrients, 

increased residence time (e.g.,720 days), and higher temperatures are the most common 

causes of the phytoplankton growth rates in the Pedreira Arm (PIRES et al., 2015; 

POMPÊO; MOSCHINI-CARLOS, 2020).  

The maps also revealed an environmental quality gradient, with PC concentration 

reducing in the direction of most conserved areas. The Capivari and Rio Pequeno arms 

are near the Serra do Mar conservation Unit, one of the most preserved fragments of the 

Atlantic Rainforest (CAPOBIANCO; WHATELY, 2002). Those branches had the lowest 

PC concentrations for the assessed image. Besides, taxonomical analysis showed that 

86% of these branches’ samples had a mixed community structure and high species 

richness. Therefore, the reduced anthropical presence in those areas is the most reasonable 

explanation for the decrease in Cyanobacteria concentration (SILVA et al., 2014). The 

Rio Grande arm also had lower concentrations of PC when compared with most 

contaminated branches. This reservoir water mass is isolated from the others through 

Anchieta Dam (Figure 3.2). The barrier was constructed to separate Rio Grande from the 

remaining reservoir to protect the public water supply from contamination (SMA, 2010). 

Transept #4 (Figure 4.13) reveals low PC concentrations near Anchieta Dam (where the 

water is collected), increasing towards Rio Grande’s upstream. The use of algicides (e.g., 

Copper Sulfate and hydrogen peroxide) to control the Cyanobacteria populations might 

explain the low PC values (CARVALHO et al., 1997; MOSCHINI-CARLOS; FREITAS; 

POMPÊO, 2010).  
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5.3 Impact of biological effects in RS assessments of Cyanobacteria 

The PC:Chla ratio is one of the most important parameters for accurate predictions of PC 

using Remote Sensing data (SIMIS; PETERS; GONS, 2005). Elevated ratios indicate the 

spectral dominance of PC features, reducing the influence of Chla and other OAC. The 

optimum range for PC predictions from RS data was described as greater than 1.5 (RUIZ-

VERDÚ et al., 2008), whereas the values below this threshold had increased errors. This 

study has one of the smallest PC:Chla ratios observed in Cyanobacteria RS assessments. 

O’Shea et al. (2021), which gathered the greatest reported PC dataset, had median and 

mean PC:Chla of 0.46 and 0.82, respectively. These are 5 and 5.8 folds greater than this 

study's median and mean values (0.09 and 0.14). The disparity is even greater when 

considering the dataset used by Simis et al. (2007), where PC:Chla up to 8 were 

registered. At a first look, those low PC:Chla values might induce to consider the absence 

or reduced presence of Cyanobacteria species. However, the taxonomical analysis refutes 

that hypothesis once 96% of the samples (n = 26) had at least an abundant Cyanobacteria 

species. Another explanation is a possible low extraction efficiency obtained from PC 

samples. Biliproteins extraction standards are not as developed as Chla methods, and the 

specialized literature has reported underestimation trends in most techniques (SARADA; 

PILLAI; RAVISHANKAR, 1999; HORVÁTH et al., 2013). Zimba (2012) observed that 

PC extractions using asolectin-CHAPS as solvent had achieved concentrations 28% 

higher than the Phosphate Buffer used in this study. Therefore, underestimations of PC 

concentrations might have incorrectly reduced the PC:Chla ratios.  

Even though PC standard determination procedures have been appointed as a limitation 

for Cyanobacteria assessments (RUIZ-VERDÚ et al., 2008), this study has used the same 

method as previously published articles (SIMIS; PETERS; GONS, 2005; MISHRA et al., 

2013; LIU et al., 2017). In addition, when comparing the PC concentrations with 

Cyanobacteria biovolume found in Billings Reservoir, a strong linear relationship was 

observed (R² = 0.85). Therefore, at least a regular extraction efficiency was achieved in 

PC determination. Even if it was added 28% to the estimated PC values as reported by 

Zimba (2012), the PC:Chla won’t be as great as reported in other studies. Another 

possible explanation for the reduced values of PC:Chla is the Chromatic Adaptation 

(CA). Cyanobacteria can control biliproteins production based on environmental factors 

(GROSSMAN et al., 1993). Nutrient deprivation and mechanical confinement of 
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Cyanobacteria cells can lead to alterations in PC:Chla ratios (MOORE et al., 2020). In 

the case of CA, those alterations are induced by differences in the incident 

electromagnetic radiation field (TANDEAU DE MARSAC, 1977). Once biliproteins 

main function is to harvest light beyond the Chla absorption spectrum, when the amount 

of energy captured by Chla is enough for maintaining the cell’s basal metabolism, it 

triggers a response for reducing the production of phycobilisomes (LÖNNEBORG et al., 

1985). Thus, when Cyanobacteria cells are exposed to high illumination intensities, they 

might have a reduced PC concentration than others grown in shaded environments 

(HOTOS, 2021).  

The Complementary Chromatic Adaptation (CCA) is related to the spectral properties of 

the illumination field (HATTORI; FUJITA, 1959). Some studies have reported that 

Cyanobacteria growing in green light were prone to increase Phycoerythrin (PE) 

concentrations and reduce PC levels (DE MARSAC; HOUMARD, 1988). The opposite 

was observed for cells illuminated with monochromatic red light. Cyanobacteria alter the 

rate of those produced pigments to better explore the available light outside the Chla 

absorption range (LÖNNEBORG et al., 1985). Also, great light intensities increased 

Carotenoids production in Cyanobacteria cells (ŚLIWIŃSKA-WILCZEWSKA et al., 

2019). Those proteins are recognized as protection pigments against the deleterious 

consequences of the cell’s exposition to high light intensities (SIEFERMANN‐HARMS, 

1987). This study is one of the first PC assessments by RS in tropical reservoirs. Most of 

the study areas are in mid-latitude regions, where the Sun’s illumination conditions are 

different than those observed in Billings. Maybe, the irradiance increase caused by lower 

Sun’s zeniths throughout the year can unleash CA in Billings’ Cyanobacteria cells. In 

addition, the reflectance peak located at the green region in all collected samples possibly 

indicates a predominant green underwater radiation field (Figure 4.4). The green light's 

great availability might provoke CCA and increase PE concentrations over PC. Although 

PE concentrations were not determined in this study, the spectrophotometric analysis (not 

shown) revealed an absorbance increase at 560 nm, where the Phycoerythrin absorption 

peak is reported (BRYANT, 1982). To confirm those hypotheses, more studies evaluating 

CA and CCA must be done in environmental conditions once all available studies are 

designed in controlled laboratories and with monospecific cultures.  
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The low PC:Chla ratio is also the most reasonable explanation for MDN’s failure in 

predicting PC for Billings Reservoir. Once MDN uses the Chla as an input layer for 

predicting PC, the algorithm might be biased for the PC:Chla ratios of the samples used 

for training. Billings PC:Chla is, at mean, almost six times lower than the O’Shea et al. 

(2021) dataset, nearly the same magnitude of overestimation reported by Bias (7.12). It 

also can explain why the estimated Chla was more accurate than PC values. Therefore, 

MDN should receive a representative size of training samples with a low PC:Chla ratio 

to achieve better results for Billings. Also, more studies evaluating tropical and equatorial 

reservoirs need to be done to assess the impact of CA and CCA on PC production. This 

is the only path to achieving a truly global algorithm for predicting PC, where a 

representative dataset can be used for extensive validation work. Furthermore, if the 

hypothesis of CA and CCA were confirmed, low PC concentrations must be better 

interpreted in RS assessments (e.g., Low PC might not necessarily represent absence/low 

concentration of Cyanobacteria). Additionally, studies related to the potential of 

Phycoerythrin to estimate Cyanobacteria biomass might also elucidate the potential of 

this pigment to perform RS evaluations. 

The results achieved for PC modeling in this study differ from most previously published. 

Besides the elevated PC:Chla ratio, the specialized literature considers that values beyond 

50 µg/L are more susceptible to produce accurate estimates using RS data (SIMIS et al., 

2007). However, only ten samples would remain in the present dataset if this threshold 

was applied. Even when compared with the dataset used by O’Shea et al. (2021), which 

has found the best-reported estimates for low PC concentrations, the values obtained by 

the authors are, at the mean, 2.4 and, at the median, 4.9 folds greater than the present 

study. Ruiz-Verdú et al. (2008) noticed a sharp accuracy decrease when predicting PC 

below 50 µg/L compared with the reported optimum range of 50-200 µg/L. The authors 

registered a considerable percentage of negative predictions within 2 of the 3 assessed 

algorithms for PC < 50 µg/L. The capacity of predicting high concentrations more 

accurately might explain why the error metrics were reduced in the orbital data validation 

when compared with the in-situ data modeling. The dataset used in the Monte Carlo 

simulation had a median PC of 2.9 µg/L against 18.18 µg/L for PRISMA match-up 

stations.  
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5.4 Machine Learning Algorithms for predicting PC  

Comparing the results obtained in this study with others is difficult due to the differences 

in the metrics used for assessing the estimates. However, some previous achievements 

are presented below. It is important to note that studies conceived using hyperspectral in-

situ data (e.g., 1 nm resolution) or based on Ocean Color Satellites data weren’t 

considered due to the incompatibility with this study’s objectives (e.g., spatial resolution 

unable to monitor urban reservoirs). Using hyperspectral field data resampled for 

Landsat-8/OLI,  Ogashawara et al. (2022) assessed the linear relationship between the 

band ratios available for the sensor (including the virtual-orange band) and measured PC 

values. The authors achieved a maximum R² of 0.08 considering all obtained samples 

(Mean PC = 40.61 µg/L, Median PC = 21.23 µg/L). Kumar et al. (2020) have found a 

stronger linear relationship (R² = 0.55) between PC concentrations and the band ratio 

virtual-orange/red from a Landsat-8/OLI image acquired in match-up condition (PC from 

0.23 to 170.39 µg/L). Beck et al. (2017) created synthetic images from different sensors 

using a hyperspectral image from Compact Airborne Spectrographic Imager (CASI) and 

used it to estimate match-up PC fluorescence measurements. The algorithm developed 

using the synthetic Worldview-2 image had the best linear relationship with the measured 

fluorescence (R² = 0.79), followed by CASI (R² = 0.78) and Landsat/8/OLI (R² = 0.301). 

Just for comparison, R² values were calculated for in-situ PC modeling. Those values are 

the median R², from all Monte Carlo iterations, obtained from the 20% of samples used 

for validating the MLA predictions. PRISMA/RF achieved a median R² of 0.85, while 

Worldview-3/RF and Landsat-8/RF scored 0.83 and 0.79, respectively. Therefore, the 

worst linear relationship achieved in this study was equal to the best value from the 

reviewed articles.  

The Machine Learning Algorithms capacity of translating non-linear relationships 

between the input features and output labels might explain the success of this approach 

(LARY et al., 2016). They are able to explore the prediction potential of multiple input 

features, which makes them often more precise when compared with a univariate linear 

regressions (SAGAN et al., 2020). Sun et al. (2012) also highlighted the advantages of 

using SVM over linear models to predict PC in productive Chinese waters (MAPE = 

29.5%, PC mean = 106.3 µg/L, and mean PC:Chla = 2.45). The results obtained in this 

study also supported that there is an accuracy gain when using MLA over the previously 
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published algorithms based on linear estimates. The applied algorithms were able to 

predict low PC concentrations with reduced PC:Chla ratios at a reasonable accuracy, an 

achievement that was never reached before. Ensemble algorithms based on Decision trees 

(RF and XgBOOST) presented great applicability in retrieving PC concentrations for the 

Billings Reservoir. They also provided accurate estimates using orbital data, showing that 

they are robust to radiometric noise inputs. Cao et al. (2020) elucidated the advantages of 

using XgBOOST for predicting Chla from Landsat-8/OLI data, while Maciel et al. (2021) 

proved that RF can retrieve Secchi Disk Depth from Sentinel-2/MSI imagery. The 

prediction capacity of RF and XgBOOST may be due to the high generalization and non-

linear predictive power of both algorithms (BELGIU; DRĂGU, 2016). Instead, SVM 

might have underperformed due to the linear approach used for predicting PC. The chosen 

kernel also seems to be the most sensitive to radiometric noise of orbital images. Despite 

of the elucidated advantages of using MLA, some disadvantages were evident during the 

study. As shown by the predictions obtained by MDN, MLA are prone to a sharp accuracy 

decrease when predicting samples outside the range of the training dataset (CAO et al., 

2020). The demand for large datasets might be the greatest challenge of using those 

algorithms (CHAN et al., 2020).  

MLA can also be used to potentialize the use of hyperspectral data in RS assessments. 

Usually, PC assessments using hyperspectral uses only features related to the pigments’ 

absorption feature (near 620 nm) (LI et al., 2010; BECK et al., 2017). To optimize PC 

prediction, O’Shea et al. (2021) used the MDN to explore the spectral range from 500-

710 nm. The capacity of MDN to learn with multiple input layers has also permitted the 

algorithm to predict Chla accurately from Sentinel-2/MSI and Sentinel-3/OLCI images 

(PAHLEVAN et al., 2020). The Predictive Power Score has shown the potential to 

identify input layers to predict PC that didn’t use the band in 620 nm. PPS has highlighted 

LH and NI in the green and NIR regions as important for the prediction of PC. Dekker 

(1993) has noticed that the location of the maximum green reflectance peak was strongly 

related to PC concentrations. Also, green bands might have indirectly predicted PC based 

on PE absorption features. If CCA occurs in Billings, the increased PE concentrations are 

likely to produce more identifiable spectral characteristics, and MLA might have 

translated those relationships in PC concentration. Spectral indexes based only on NIR 

bands for predicting PC weren’t reported in previously published studies. The predictive 
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power of this spectral region might be related to the increased algae scattering in the NIR 

region and Chla fluorescence peaks (LEHMUSKERO; SKOGEN CHAUTON; 

BOSTRÖM, 2018; SANTABARBARA et al., 2020). Also, some Cyanobacteria can 

expand their absorbance spectrum to longer wavelengths by Near-Infrared 

photoacclimation (MIAO et al., 2016). However, more investigation needs to be done to 

understand the potential of isolated NIR bands to predict photosynthetic pigments. 

5.5 Atmospheric correction of PRISMA hyperspectral data 

The present study presents one of the first evaluations of PRISMA atmospherically 

corrected products. Atmospheric Correction (AC) is one of the most limiting factors for 

monitoring water quality parameters from inland water bodies (WARREN et al., 2019). 

Unfortunately, few efforts were made to estimate PC from real satellite images 

(OGASHAWARA, 2019; KUMAR; MISHRA; ILANGO, 2020; O’SHEA et al., 2021). 

Therefore, another valuable contribution is evaluating MLA under residual atmospheric 

noise. The ASI product has shown the potential to deliver accurate bottom-of-atmosphere 

reflectance products, especially in the visible region. Still, an error increase was observed 

at some green bands (550-600 nm). The same happened using the other methods, 

ACOLITE and 6SV. Paulino et al. (2022) have found a similar trend for Sentinel-2/MSI 

images atmospherically corrected with 6SV over Billings Reservoir. The authors have 

attributed those errors to the great contribution of the water’s signal to the top-of-

atmosphere radiance, inducing underestimations even for slight corrections of the 

atmosphere additive noise. Additionally, the strong underestimation tendency observed 

in ACOLITE and 6SV in the visible spectrum might be derived from inaccurate estimates 

from AOT at 550 nm, overcorrecting the output images (PAULINO et al., 2022). NIR 

bands have shown great importance for retrieving accurate PC estimates in this study. 

Furthermore, hyperspectral images are an opportunity for exploring the applicability of 

this spectral region to produce water quality products. All assessed methods had a 

parabolical-shaped error in the NIR (700-813 nm). This wavelength range is characterized 

by variations in atmospheric transmittance (80-100%) (GAO et al., 2009). The errors 

might traduce the reduced capacity of all assessed methods to accurately predict the 

variations of the effects of atmospheric constituents in this range (FROUIN et al., 2019). 

In addition, increased errors in the NIR region were observed in various RS assessments 

in inland waters (SIEGEL et al., 2000; WARREN et al., 2019; TAVARES et al., 2021) 
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and needed to be better addressed to fully explore the potential of hyperspectral images 

(FROUIN et al., 2019). Other studies should evaluate PRISMA atmospheric corrected 

images under different atmospheric conditions.  

5.6 Multispectral and Hyperspectral data for predicting PC 

The results showed a performance increase with the rising availability of spectral bands, 

leading to more input features for MLA predicting PC. Landsat-8/OLI had four spectral 

bands and three input features. The virtual-orange band permitted to estimate the same 

PC spatial pattern in Billings reservoir, although it had the lowest accuracy disregarding 

the sensors. Kumar et al. (2020) reported that Landsat-8/OLI  overestimated PC in regions 

with high inorganic solids presence. However, this tendency couldn’t be evaluated in this 

study once the Billings reservoir has low concentrations of this OAC (MOSCHINI-

CARLOS et al., 2009). Landsat-8/OLI synthetic data was unable to predict the highest 

PC values, which can be observed by comparing the sensors estimates in the Pedreira arm 

(Transept #1). This might be explained due to the near-infrared bandwidth and position 

(829-900 nm), which reduces the applicability of the sensor for estimating photosynthetic 

pigments (BECK et al., 2016). This limitation is overcome by Worldview-3, with the 

additional Red-Edge band. This extra band has considerably reduced the errors in both 

in-situ and orbital PC retrievals. Sentinel-2/MSI red-edge bands were also responsible for 

enhancing Chla estimates (BRAMICH; BOLCH; FISCHER, 2021). Worldview-3 has 

achieved accuracy metrics comparable with PRISMA hyperspectral sensor. With 40 

spectral channels and five input features, the ASI’s sensor had the best-assessed metrics 

in this study. The spectral information offered by the hyperspectral bands is probably the 

motive for overperforming the other sensors. However, PRISMA mapping had high 

variations in PC prediction in low spatial distances. Those errors are probably explained 

by the low Signal-to-Noise Ratio (SRN) from hyperspectral sensor bands (MOSES et al., 

2012). O’Shea et al. (2021) also noticed speckled noise in PRISMA maps and observed 

that LH and Band Ratios might have amplified the errors. The applied median filter 

reduced the effect of low SRN, even though it has reduced the effective spatial resolution 

of the mapping. The synthetic multispectral images presented smoother results once the 

larger bandwidths improved the PRISMA image's SNR and radiometric quality (JORGE 

et al., 2017). 
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All assessed orbital sensors showed to be suitable for monitoring PC in urban reservoirs, 

each one with its pros and cons. PRISMA had the best-assessed results, but the on-

demand image acquisition and reduced SNR are limitations of using the hyperspectral 

sensor for continuous monitoring. Worldview-3 had accurate predictions and has the most 

improved resolution for monitoring almost all urban reservoirs. However, the commercial 

data policy increases the cost of a monitoring plan based on the Worldview images. 

Although presenting the greater MAE, Landsat has the most consolidated Earth 

Observation program. Considering the data acquired from Landsat-8 and Landsat-9, 

orbital images are recorded every eight days and are freely available in the USGS portal. 

Also, the scene size (185x185 km) is the most adequate for different water bodies’ sizes 

and shapes. Therefore, Landsat can be considered the most feasible orbital sensor for 

monitoring PC and CyHABs in the Billings reservoir. More validation studies should be 

done using real Landsat-8/OLI and Landsat-9/OLI-2 images to assess the proposed 

methodologies in this study. 
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6 FINAL CONSIDERATIONS 

This study has assessed the potential of Machine Learning Algorithms and hyperspectral 

imagery to estimate C-Phycocyanin concentrations. The obtained results confirmed the 

initial hypothesis that hyperspectral and multispectral orbital images produce accurate PC 

mappings. Furthermore, accuracy varied according to  Machine Learning Algorithms, and 

the type of images, hyperspectral PRISMA, synthetic multispectral Landsat-8/OLI and 

Worldview-3 images. This way, the following questions could be answered:  

 

1. What is the best surface reflectance product for PRISMA hyperspectral data? 

Three Atmospheric Correction processors were assessed for estimating bottom-of-

atmosphere reflectance for a PRISMA hyperspectral image(ASI’s Analise Ready Data, 

ACOLITE, and 6SV products, from 500 to 877 nm). ASI product had the best-observed 

results, especially in the visible spectrum. For this spectral range, the PRISMA original 

product had errors lower than 20% for all assessed bands. ACOLITE and 6SV 

underperformed ASI’s product with a strong underestimation trend in the visible region. 

In Near-Infrared, the methods had a decreased performance and presented similar outputs, 

with a slight advantage of ACOLITE. Besides, an overestimation trend was observed 

beyond 700 nm against the previously described underestimation tendency from 500-700 

nm. Overall, ASI’s product was the most reliable atmospherically corrected product to 

estimate water quality parameters and was used to estimate PC concentrations in a 

productive tropical urban reservoir. More studies in different atmospheric conditions 

must be pursued to validate the ASI’s surface reflectance product. 

 

Are Machine Leaning Algorithms able to predict C-Phycocyanin accurately? Among the 

three tested, which is the best? 

Yes. Machine Learning Algorithms (MLA) achieved accurate PC estimates  based on in-

situ and orbital Rrs. Random Forest and Extreme Gradient Boost had the most reliable 

results, both ensemble algorithms based on Decision Trees. In contrast, the Support 

Vector Machine had the worst predictions in all tested scenarios and wasn’t a feasible 

option to estimate PC in the present study. In-situ PC modeling had results ranging from 

59-99% Mean Absolute Error, considering the different sensors and MLA, while orbital 
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estimates had values from 45%-112%. Those results are expressive considering the low 

PC:Chla and PC concentrations obtained in this study. 

 

2. Is there an accuracy gain in using hyperspectral data over multispectral data for 

predicting C-Phycocyanin? 

Yes. Hyperspectral data has achieved the most accurate results for orbital and in-situ PC 

modeling. PRISMA retrieved PC concentrations with a Mean Absolute Error (MAE) of 

59% and 45% for resampled in-situ data and an orbital image, respectively. While, 

Landsat-8/OLI had the most inaccurate results, which might be attributed to the most 

limited spectral resolution from the assessed sensors. Worldview-3 presented results 

comparable with PRISMA, with 65% of MAE in in-situ modeling and 49% with a 

synthetic image generated from PRISMA data. This accuracy increase might be due to 

the presence of a Red-Edge band in the ultra-resolution satellite, enhancing the 

applications for algae monitoring. However, due to the low Signal-to-Noise Ratio of 

PRISMA data, a specked noise was observed in the PC mapping. The same was not 

observed in the synthetic multispectral results. 

 

Finally, considering the results obtained in this research, Landsat-8/OLI has the greatest 

potential for monitoring PC in urban reservoirs. Even though the USGS sensor had 

accuracy metrics lower than the other assessed platforms, the high temporal resolution (8 

days considering Landsat-8 and Landsat-9) and the free access data policy are advantages 

of using Landsat data in a continuous monitoring program. However, more studies should 

be done to validate the proposed methodologies for monitoring PC, as well as the impact 

of different PC:Chla ratios in Remote Sensing assessments. 
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