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ABSTRACT

The propagating radio signals emitted by the satellites forming the constellation
of Global Navigation Satellite Systems (GNSS) interact with the electron content
inside the ionosphere, resulting in scintillation. The ionospheric scintillation can
have significant impact on the availability, accuracy, continuity, and integrity of the
positioning for users of such systems. It is a source of disturbances impairing the
signal processing implemented in the GNSS receivers, where the effects are more
pronounced in their carrier tracking loops, with the induced amplitude and phase
scintillation added to the input signals. The detection, monitoring, and mitigation
of the scintillation effects are challenging from the signal processing perspective,
and constitute relevant topics of research related to GNSS. This work presents con-
tributions to the scintillation monitoring and the scintillation mitigation in GNSS
receivers. Regarding scintillation monitoring, we propose an algorithm composed
of linear time-invariant (LTI) filtering of observables available or easily derived in
traditional or Kalman filter-based carrier tracking loop structures, exploiting their
complementary frequency content, to provide real-time scintillation phase estimates
for monitoring purposes. This algorithm is developed for receivers with traditional
and Kalman frequency locked loops (FLL), but can be adapted to receivers with tra-
ditional and Kalman phase locked loops (PLL). The performance of the algorithm
is evaluated via Monte Carlo simulations with synthetic severe scintillation data,
showing its capability to provide the scintillation phase estimates. In addition, the
algorithm is evaluated with real data presenting equatorial scintillation, collected
by a professional GNSS receiver, where the scintillation phase standard deviation
computed from the estimates provided by the real-time algorithm is compared to
the standard deviation derived by state-of-the-art post-processing procedure, show-
ing good agreement. Regarding scintillation mitigation, we propose two adaptive
Kalman PLL structures employing radial basis function (RBF) networks to model
the scintillation induced effects. In the first structure, the Kalman filter innovations
are computed by the phase discriminator, and the scintillation phase estimates are
provided, in addition to the robust carrier synchronization performed. In the second
structure, the Kalman filter measurements are taken from the prompt correlator
outputs, and a state feedback controller is designed to drive the carrier replica gen-
eration for robust synchronization. In this structure, the Kalman filter also estimates
the scintillation amplitude. In both adaptive Kalman PLL structures, the weights
of the RBF networks are estimated in real-time by recursive sliding window least
squares, and the process and measurement noise covariance matrices of the Kalman
filters are also updated in real-time. Monte Carlo simulations with synthetic severe
scintillation data show the capability of the proposed Kalman PLLs to improve ro-
bustness to scintillation effects in carrier synchronization, presenting performance
similar to the corresponding state-of-the-art structures employing the autoregressive
(AR) scintillation models, with a slight advantage to the proposed structures with
the RBF networks. The RBF networks allow to capture eventual nonlinear dynamics
induced in the receiver by the ionospheric scintillation, an advantage in relation to
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the linear AR models, at the expense of a more complex structure. Simulations with
real scintillation data collected by a professional receiver highlight the learning and
generalization capability of the RBF networks to cope with residual effects related to
the receiver present in the data and evolving scintillation characteristics over time,
with possibly nonlinear effects, with the Kalman PLL structures employing the RBF
networks presenting reduced error when compared to the structures employing AR
models.

Keywords: GNSS receivers. Carrier tracking loops. Ionospheric scintillation real-time
monitoring. LTI filtering. Ionospheric scintillation mitigation. Bayesian filtering.
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FILTROS LINEAR INVARIANTE NO TEMPO E BAYESIANO
PARA MONITORAMENTO E MITIGAÇÃO DE CINTILAÇÃO

IONOSFÉRICA EM RECEPTORES GNSS

RESUMO

Os sinais de rádio emitidos pelos satélites que formam a constelação de Sistemas Glo-
bais de Navegação por Satélite (GNSS) em propagação interagem com o conteúdo
de elétrons da ionosfera, resultando em cintilação. A cintilação ionosférica pode ter
impacto significativo na disponibilidade, acurácia, continuidade, e integridade do
posicionamento de usuários de tais sistemas. É uma fonte de distúrbios que preju-
dicam o processamento de sinais implementado nos receptores GNSS, sendo que os
efeitos são mais pronunciados em suas malhas de rastreio de portadora, com as cin-
tilações induzidas de amplitude e fase adicionadas aos sinais de entrada. A detecção,
o monitoramento, e a mitigação dos efeitos da cintilação são desafiadores do ponto
de vista do processamento de sinais e constituem tópicos relevantes de pesquisa re-
lacionada a GNSS. Este trabalho apresenta contribuições para o monitoramento e
para a mitigação de cintilação em receptores GNSS. Em relação ao monitoramento
de cintilação, propomos um algoritmo composto de filtragem linear invariante no
tempo (LTI) de observáveis disponíveis ou facilmente calculadas em estruturas de
malha de rastreio de portadora tradicionais ou baseadas em filtro de Kalman, ex-
plorando seu conteúdo complementar de frequência, para fornecer estimativas de
fase de cintilação em tempo-real para fins de monitoramento. Este algoritmo é de-
senvolvido para receptores com malhas de captura de frequência (FLL) tradicionais
e de Kalman, mas pode ser adaptado a receptores com malhas de captura de fase
(PLL) tradicionais e de Kalman. O desempenho do algoritmo é avaliado através de
simulações de Monte Carlo com dados sintéticos de cintilação severa, mostrando
sua capacidade de fornecer as estimativas da fase de cintilação. Além disso, o algo-
ritmo é avaliado com dados reais apresentando cintilação equatorial, coletados por
um receptor GNSS profissional, onde o desvio padrão da fase de cintilação calcu-
lado a partir das estimativas fornecidas pelo algoritmo de tempo-real é comparado
ao desvio padrão calculado pelo procedimento de pós-processamento de estado-da-
arte, mostrando boa concordância. Em relação à mitigação de cintilação, propomos
duas estruturas adaptativas de Kalman PLL empregando redes de funções de base
radial (RBF) para modelar os efeitos induzidos por cintilação. Na primeira estru-
tura, as inovações do filtro de Kalman são computadas pelo discriminador de fase,
e as estimativas de fase de cintilação são fornecidas, além da sincronização robusta
de portadora realizada. Na segunda estrutura, as medidas do filtro de Kalman são
tomadas a partir das saídas do correlacionador alinhado no tempo, e um contro-
lador de realimentação de estados é projetado para conduzir a geração de réplica
da portadora para sincronização robusta. Nesta estrutura, o filtro de Kalman tam-
bém estima a amplitude de cintilação. Em ambas as estruturas adaptativas Kalman
PLL, os pesos das redes RBF são estimados em tempo-real por mínimos quadrados
recursivos com janela deslizante, e as matrizes de covariância de ruídos de processo
e medida dos filtros de Kalman também são atualizadas em tempo-real. Simulações
de Monte Carlo com dados sintéticos de cintilação severa mostram a capacidade
das Kalman PLLs propostas para melhorar a robustez aos efeitos de cintilação na
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sincronização de portadora, apresentando desempenho semelhante ao das estrutu-
ras de estado-da-arte correspondentes que empregam modelos autorregressivos (AR)
de cintilação, com um ligeira vantagem para as estruturas propostas com as redes
RBF. As redes RBF permitem capturar eventuais dinâmicas não-lineares induzidas
no receptor pela cintilação ionosférica, uma vantagem em relação aos modelos AR
lineares, à custa de uma estrutura mais complexa. Simulações com dados reais de
cintilação coletados pelo receptor profissional destacam a capacidade de aprendi-
zado e generalização das redes RBF para lidar com efeitos residuais relacionados ao
receptor presentes nos dados e com a evolução das características da cintilação ao
longo do tempo, com efeitos possivelmente não-lineares, com as estruturas Kalman
PLL empregando as redes RBF apresentando erro reduzido quando comparadas às
estruturas empregando modelos AR.

Palavras-chave: Receptores GNSS. Malhas de rastreio de portadora. Monitoramento
em tempo-real de cintilação ionosférica. Filtragem LTI. Mitigação de cintilação io-
nosférica. Filtragem Bayesiana.
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1 INTRODUCTION

In Global Navigation Satellite Systems (GNSS), the position of a user is determined
by measurements of the ranges from satellites emitting signals via radio waves to
the user’s receiver. The processing of the signals emitted by the different in-view
satellites forming the GNSS constellation in a GNSS receiver allows the computation
of the ranges, and by knowing the ranges to a sufficient number of satellites and also
their position, the user position can be obtained.

The basic idea behind the estimation of the range to each satellite is to compute
the time taken by a signal emitted by a satellite to be detected by the receiver,
considering the signal is traveling at the speed of light. If the receiver clock would
be synchronized with the system time, then the knowledge of the ranges to three
different satellites would be sufficient to determine the position of a receiver being
on the surface of the Earth. However, the offset between the system time and the
receiver clock must also be accounted for, requiring the estimation of the range to a
fourth satellite to remove the influence of this clock bias from the positioning, if we
assume that the satellite clocks are all perfectly synchronized with the system time.

Basically, the receiver is performing the task of signal synchronization prior to the
positioning. The synchronization involves the acquisition and tracking of the signals
emitted by the satellites in the so-called receiver processing channels. In acquisition,
the visible satellites are identified and coarse estimates of Doppler frequency shift
and code delay are provided to initialize the carrier and code tracking, respectively.
Carrier and code tracking are traditionally performed in closed loop by, respectively,
phase locked loop (PLL) and delay locked loop (DLL), furnishing the internal observ-
ables employed in the range estimation and positioning. Alternatively, a frequency
locked loop (FLL) can be used for carrier tracking or to provide an augmentation
signal to a PLL (KAPLAN; HEGARTY, 2017).

Many sources of error can contribute to increase the error of the positioning solution,
such as atmospheric propagation errors in the signals emitted by the satellites of
the GNSS constellation, errors in the knowledge of the ephemerides of the satellites,
multipath of the signals incoming to the receiver, and others.

Regarding the atmospheric propagation errors, the ionosphere is a dispersive medium
for radio waves, where the refractive index is a function of the frequency. It is a region
of the atmosphere that extends from about 50 km to 1000 km of altitude where the
solar activity, especially, contributes to the existence of free electrons that affect the
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propagation of radio waves (TEUNISSEN; MONTENBRUCK, 2017).

The interaction of transient fluctuations of electron content inside the ionosphere
with the propagating radio waves via refraction and diffraction results in scintilla-
tion of radio signals. These fluctuations depend on factors such as solar activity,
geomagnetic activity, location, daytime (MORAES et al., 2012). They are generated
by different physical processes depending on these factors, such as plasma dynam-
ics, electron density gradients, ionization and recombination process induced by the
daily solar activity (ALFONSI et al., 2011),(TEUNISSEN; MONTENBRUCK, 2017). For
GNSS in particular, ionospheric scintillation can have a significant impact on the
availability, accuracy, continuity, and integrity of the positioning with such systems.

Regarding the carrier of the GNSS signals, ionospheric irregularities are one source
of amplitude and phase scintillations adding up to the line-of-sight (LOS) dynamics,
which is the dynamics of the movement of the line-of-sight vector from a receiver
to a GNSS satellite, reflected in the phase evolution related to the Doppler effect in
the carrier tracking loops of the receiver. The scintillation introduces disturbances to
the GNSS tracking algorithms in the receiver that in many cases cause a reduction
of precision in the positioning and eventually the loss of lock of the satellite signals.
Such disturbances are more prominent in high-latitude and equatorial regions of
the Earth, mainly associated with the magnetic poles and the equatorial magnetic
anomaly, respectively, and manifest in different ways. While at high latitudes the
effect is in general milder and more frequently observed in the phase (JIAO et al.,
2013a), the equatorial region experiences the most significant activity including rapid
amplitude and phase scintillations with deep amplitude fades for short periods of
time (VILÁ-VALLS et al., 2020). The ionospheric scintillation effects are generally
observed after the sunset.

The detection, monitoring and mitigation of ionospheric scintillation effects in re-
ceivers are relevant topics of research related to GNSS. They constitute challenging
problems in GNSS receivers from the signal processing point of view (VILÁ-VALLS et

al., 2020). Ionospheric scintillation monitoring contributes to the scientific research
of the ionosphere, where networks of spatially distributed monitoring stations pro-
vide data to support the study of the dynamics of the related physical processes.
Monitoring stations are deployed for other purposes also, such as for space weather
research (XU et al., 2015a), as part of the infrastructure for aircraft instrument land-
ing systems (MAYER et al., 2009), or any other GNSS application where ionospheric
scintillation poses a major threat, performing forecast and broadcast of information
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used by the target application. In the monitoring stations, usually a reliable and
precise receiver in a known position provides estimates of the LOS dynamics using
additional accurate information, so the scintillation induced effects can be isolated
from the LOS dynamics tracked by the receivers (LEE et al., 2017), (DIERENDONCK

et al., 1993). We further discuss about scintillation monitoring in Chapter 4.

In the ionospheric scintillation mitigation problem, the intent is to increase the re-
ceiver robustness to the scintillation induced effects in the carrier tracking loops,
improving the availability, continuity and the accuracy of the estimates provided by
the carrier tracking loop. High availability, continuity and accuracy in the carrier
tracking is vital for modern receivers applying carrier-based positioning techniques,
such as real-time kinematics (RTK) and precise point positioning (PPP) (JACOBSEN;

ANDALSVIK, 2016), (BANVILLE; LANGLEY, 2013). Originally, the traditional PLLs
and FLLs have fixed parameters adjusted for LOS-only tracking, not directly han-
dling the disturbance of the scintillation induced effects. A first attempt to improve
robustness in these structures is to tune their parameters such as noise bandwidth
in PLLs (LEGRAND et al., 2000) or use a PLL assisted by an augmentation signal of
a FLL (XU et al., 2015b). However, the Kalman filter has been successfully employed
in the carrier tracking loop with the intent of scintillation mitigation, from the early
applications with static Kalman gains obtained by the solution of the steady-state
Riccati equation (STATMAN; HURD, 1990), to the state-of-the-art extended Kalman
PLLs which explicitly account for the scintillation induced effects, along with the
LOS dynamics, with phase and amplitude scintillation modeled as autoregressive
(AR) processes and adaptive update of model parameters and process and measure-
ment noise covariance matrices (VILÁ-VALLS et al., 2018). We further discuss about
state-of-the-art scintillation mitigation in Chapter 5.

In this work we propose algorithms for scintillation monitoring and for scintilla-
tion mitigation. Regarding ionospheric scintillation monitoring, the typical approach
found in the literature consists of the batch post-processing of data collected by a
GNSS receiver, where scintillation amplitude and phase metrics are computed from
phase and amplitude estimates obtained after post-processing of the stored data
(DIERENDONCK et al., 1993), (FREMOUW et al., 1978), (ZHANG et al., 2010), (FORTE,
2007), (O’HANLON et al., 2011), (NIU et al., 2012). Our approach is to explore a linear
approximation of a traditional FLL, evaluating its frequency content characteris-
tics, to recover the complementary information in the frequency domain based on
its sensitivity and complementary sensitivity transfer functions from internal ob-
servables, to design a real-time scintillation monitoring algorithm based on linear

3



time-invariant (LTI) filtering. The algorithm provides estimates of the scintillation
phase, from which the scintillation phase metrics can be computed also in real-time.
The parameters of the filters can be adjusted to delimit the frequency band of inter-
est, as is also typically done in the batch post-processing with Butterworth filters, as
well. The approach is extended to LOS-only Kalman FLLs by analogy with the tra-
ditional FLL, and then to LOS-only traditional and Kalman PLLs. The performance
of the algorithm is evaluated by numerical simulations with synthetic scintillation
data and real scintillation data collected by a commercial off-the-shelf (COTS) pro-
fessional GNSS receiver located close to the magnetic equator in Fortaleza, Brazil.

Regarding the problem of ionospheric scintillation mitigation, we propose two
Kalman filter PLL structures employing radial basis functions (RBF) networks
(POWELL, 1985), (HARDY, 1971), (BROOMHEAD; LOWE, 1988) to model scintilla-
tion dynamics, for carrier synchronization with increased robustness to scintilla-
tion induced effects. We call these structures discriminator-based Kalman PLL and
correlator-based Kalman PLL. In the discriminator-based Kalman PLL, the residu-
als are taken from the phase discriminator, and the scintillation phase model is added
to the LOS dynamics model. In the correlator-based Kalman PLL, the observations
are obtained from the in-phase/quadrature (I/Q) prompt correlators and both the
scintillation phase and amplitude models are added to the LOS dynamics model. We
propose to use RBF networks to model scintillation phase and amplitude dynamics,
instead of the AR models, as suggested in the literature. The nonlinear radial basis
functions provide more flexibility to capture nonlinear dynamics eventually present
in the phase and amplitude scintillation. The performances of the proposed Kalman
PLLs are evaluated by numerical simulations with synthetic scintillation data and
real scintillation data collected by a commercial GNSS receiver.

Thesis outline

This thesis consists of six chapters. After presenting above the motivations and the
proposed contributions of the work in this introductory Chapter 1, in Chapter 2
we present the basic signal model of the GNSS receiver used in the subsequent chap-
ters, describing the structure of the GNSS signal emitted by the satellites employing
Direct Sequence Code Division Multiple Access (DS-CDMA) technique to the trans-
mission channel access, and specializing to the Global Positioning System (GPS) sig-
nal, which will be used throughout the thesis. The baseband (BB) signal model in
the receiver is then presented for the GPS at L1 frequency coarse/acquisition (C/A)
code, including the terms related to the ionospheric scintillation induced effects. We
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also present the model of the LOS dynamics, related to the Doppler dynamics, of
GPS satellites with respect to a static receiver positioned on ground, and the metrics
largely accepted to evaluate the severity of the scintillation activity.

In Chapter 3, we present a review of the stochastic processes and Itô stochastic
differential equations, and the AR and the kinematic process models, used to model
scintillation and LOS dynamics, respectively, in the state-of-the-art Kalman filters.
Then, the derivation of the Bayesian nonlinear filter is presented, which is specialized
to the Kalman filter in the following.

In Chapter 4 we present the first contribution of the work, a real-time monitor-
ing algorithm. Firstly, we present the linear approximation of a traditional FLL,
which is compared to the nonlinear traditional FLL via numeric simulations consid-
ering the response to initial conditions and the response to sinusoidal inputs. Then,
we explore the frequency domain characteristics of the linear model, especially the
characteristics of the sensitivity and complementary sensitivity of the closed loop,
to design the filters that compose the real-time monitoring algorithm. The moni-
toring algorithm is extended to Kalman FLLs, traditional PLLs and Kalman PLLs.
Its performance is evaluated via Monte Carlo simulations including synthetic severe
scintillation variations and via simulations with real scintillation data collected by
a commercial GNSS receiver.

In Chapter 5 we present the second contribution of the work, two Kalman PLL
structures for scintillation mitigation employing RBF networks to model the am-
plitude and phase scintillation. The modeling of the mitigation problem for both
the discriminator-based and correlator-based Kalman PLLs is presented, first con-
sidering the AR models to represent scintillation dynamics, and then substituting
them by the RBF networks. The Kalman PLLs employing the RBF networks are
evaluated via Monte Carlo simulations with synthetic severe scintillation data and
via simulation with real scintillation data. Their performance is compared to the
performance of the state-of-the-art Kalman PLLs with scintillation modeled by AR
processes. In Chapter 6, a summary and the conclusions of the work are presented.
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2 MODELING IONOSPHERIC SCINTILLATION EFFECTS ON
GNSS RECEIVERS

This chapter presents the signal model employed throughout the work. This model
considers typical characteristics of a GNSS signal received by a GNSS receiver, the
typical signal processing implemented in the tracking loops of a GNSS receiver,
the Doppler effect and the ionospheric scintillation induced effects. The derived
signal model is employed in the design and analysis of the ionospheric scintillation
monitoring and mitigation algorithms, which are presented in Chapter 4 and Chapter
5, respectively.

First, the overall GNSS signal and GNSS receiver structures are presented. In this
work, we consider only the GPS L1 C/A code signal by taking into account the
analog operations of the front-end up to the signal quantization. The digital sig-
nal processing implemented in a receiver is presented, and also the signal model
including the ionospheric scintillation induced effects. We discuss the Doppler ef-
fect based on the LOS dynamics of GPS satellites to a static receiver positioned on
ground. Then, the characteristics of the ionospheric scintillation induced effects are
presented, relevant to the signal processing implemented in the receiver, describing
the typical parameters and indexes largely accepted to evaluate scintillation activity.
Lastly, we describe the adopted model to generate the synthetic scintillation data
used in the numerical simulations throughout this work.

2.1 GNSS signal model

The positioning in a GNSS receiver is obtained by range measurements from the
receiver to different in-view satellites from the GNSS constellation. If the system
time scale, the receiver clock and also all satellite clocks are synchronized to the
system time scale, and the ephemerides of the satellites are known, then the range
estimates based on the signals emitted by three satellites of the constellation allows
to determine the receiver position in three dimensions with the ambiguity of two
points: the intersection of two satellite-centered spheres is a circle, and the inter-
section of this circle with a sphere centered at the third satellite is a set with two
points. Ambiguity would be resolved with the introduction of an additional ranging
signal from a fourth satellite. In fact, the receiver clock is not perfectly synchronized
to the system time scale, and this timing bias must be determined as well, requir-
ing the measurement of a ranging signal emitted by a fifth satellite. For a receiver
positioned on ground, Earth can act as one of the spheres, so only four satellites
can be used in the computation of the positioning solution. Individual ranging er-
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rors to each satellite due to several sources, such as atmospheric propagation errors
and ephemeris errors, contribute to delimit a region of uncertainty around the true
receiver position.

The ranging signals emitted by the GNSS satellites share a common transmission
medium or channel. Different multiple access (MA) techniques can be employed
to share the transmission medium or channel. The basic techniques employed are:
frequency division multiple access (FDMA), time division multiple access (TDMA)
and code division multiple access (CDMA) (HAYKIN, 2014). In FDMA, multiple
carrier frequencies are used to transmit multiple signals. In TDMA, each signal is
transmitted in its respective time slot. Finally, in CDMA, different spreading codes
are used to allow the sharing of a common carrier frequency (KAPLAN; HEGARTY,
2017). A combination of these techniques can also be employed. Most existing GNSS
use direct sequence spread spectrum (DSSS) CDMA, or DS-CDMA (LEE; MILLER,
1998), where each satellite uses a different code sequence for transmitting its signal,
and most existing systems use different carrier frequencies allocated in L-band, but
S-band is also used (KAPLAN; HEGARTY, 2017).

Employing the spreading symbols in the direct sequence enables precise ranging due
to the frequent phase inversions in the signals. It also enables multiple satellites to
transmit signals simultaneously and at the same carrier frequency, and further pro-
vides significant rejection of narrow band interference (KAPLAN; HEGARTY, 2017).
Pseudo-random (PR) or pseudo-random noise (PRN) binary sequences (SIMON et

al., 1994), which are periodic and can be assumed to be zero mean wide-sense cy-
clostationary (WSCS) (PAPOULIS; PILLAI, 2002), are typically employed as code or
spreading sequences. They can be described by

c(t) =
∞∑

i=−∞
di
√
Tcδ(t− iTc) ∗ p(t), (2.1)

where {di} ∈ {−1, 1} is a PR sequence, Tc is the chip period, δ(t) is the Dirac
delta, ∗ is the convolution symbol, and p(t) is the chip pulse shape. The periodic
direct sequence c(t) is composed of Nd chips, with period T = NdTc, considering it
is employed in an open service (OS) signal (KAPLAN; HEGARTY, 2017). Restricted-
use signals use ranging codes that are encrypted and thus are aperiodic (KAPLAN;

HEGARTY, 2017). For example, in baseline (nonmodernized) GPS satellites, two
direct PR sequences are generated with rectangular chip pulse shapes: the C/A
code and the precision P(Y) code. The C/A sequence is a Gold sequence (GOLD,
1967) with Nd = 1023 chips and period T = 1 ms, so the chipping rate is 1.023×106
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chips per second. The P(Y) is generated with a period of several days, but reset each
week, with a chipping rate of 10.23 × 106 chips per second. The chip pulse shape is
not constrained to specific shapes, although the rectangular pulse pR(t) is the more
commonly employed chip pulse shape. It can be described by

pR(t) = 1√
Tc

[
U
(
t+ Tc

2

)
− U

(
t− Tc

2

)]
, (2.2)

where U(t) is the unit step or Heaviside’s unit step function, with

U(t) =

0, t < 0

1, t ≥ 0
. (2.3)

The binary offset carrier (BOC) became standard in GNSS signals design (BETZ,
2002), (REBEYROL, 2007), (HEGARTY et al., 2004), and their chip pulse shapes are
generated by a multiplication of a rectangular pulse and a square wave subcarrier. A
BOC(nS, nC) signal is parametrized by the nS subcarrier rate and the nC chip rate. If
the cosine function is used to generate the square wave, instead of the sine function,
the direct sequence is represented by BOCcos(nS, nC). Composite signals can also be
formed by linear combination of BOC signals (TEUNISSEN; MONTENBRUCK, 2017).

The GNSS ranging signals emitted by the satellites are bandpass signals composed of
the modulation of a radio frequency (RF) carrier with the direct sequence in the case
of DS-CDMA. The carrier frequency will be allocated in the L band for most GNSS
signals. Navigation data can also be included in the modulation, although in more
modern GNSS signals, as Galileo OS, the total power is split into two components,
the data and the pilot. In this case, the pilot component is not modulated by the
navigation data, but both are modulated by a spreading signal. Modulation with
the navigation data is a digital modulation, generated by binary phase shift keying
(BPSK), with 180◦ phase shifts in navigation bit transitions (SIMON et al., 1994). Two
binary DS signals can be combined at the same frequency using quadrature phase
shift keying (QPSK), where two carriers with a phase difference of 90◦ are used in
the modulation of the two DS signals and then added together. Other multiplexing
techniques can be employed as well to accommodate more than two signals on one
carrier while in most cases achieving a constant-envelope signal (SPILKER JUNIOR,
1977), (BUTMAN; TIMOR, 1972), (TIMOR, 1972), (DAFESH et al., 1999).

This work deals with the ionospheric scintillation induced effects on the GNSS re-
ceivers in baseband. Henceforth, we consider the GPS C/A code signal transmitted
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on the L1 carrier frequency fL1 = 1575.42 MHz in the remainder of the work, so
that in the following only the ranging signal emitted by GPS satellites is described
to obtain the BB signal processed by a GNSS receiver, without loss of generality.

A simplified block diagram of a GNSS receiver is shown in Figure 2.1. In the front-
end side of the receiver, the antenna is the first element in the received signal path.
Characteristics of the antennas used in GNSS receivers can be found in antenna
theory textbooks, such as (STRAW, 2003), (BALANIS, 1996), (TSUI, 2000). The signal
is amplified in a first stage by the low noise amplifier (LNA), then is mixed with the
signal generated by the local oscillator (LO) to downconvert the carrier frequency
to an intermediate frequency (IF), which could be zero if the received signal is to be
translated to baseband. Downstream, the signal is low pass and/or band-pass filtered
and then sampled by the analog-to-digital converter (ADC). In the software (SW)
based side of the receiver or in a software-defined radio (SDR) receiver, the discrete
I/Q samples at IF or BB frequencies from the front-end ADC are the input signals to
be processed by the implemented digital signal processing (DSP) algorithms to track
the ranging signals and compute the observables needed by the navigation solution
algorithm (NAV) to compute the position, velocity and timing (PVT) information.
In the diagram of Figure 2.1 we solely considered a SDR receiver since the scope of
the work is the digital signal processing employing estimation algorithms including
Bayesian estimation.

Figure 2.1 - Simplified schematic of a GNSS receiver.

Antenna

LNA Filtering

LO

ADC DSP NAV
PVT

Front-end SW Receiver

SOURCE: Author’s production.

10



Considering a narrow band-pass filter around the C/A code frequency in the front-
end, the P(Y) code content is distorted (BORRE et al., 2007). After downconversion to
an intermediate frequency in the front-end and disregarding this P(Y) code content
and noise component, the GPS L1 C/A code signal from one satellite can be given
as the real signal

sIF (t) = A(t)g(t− τ(t))c(t− τ(t)) cos[2πfIF t+ ϕT (t)], (2.4)

where A(t) is the signal amplitude, g(t − τ) and c(t − τ) are, respectively, the
navigation data and the C/A code delayed by τ(t), fIF is the intermediate frequency
(IF) in Hz, and ϕT (t) is the total carrier phase, including Doppler, reference oscillator
offset, and other sources of phase variations, such as ionospheric scintillation. This
IF signal downconverted to baseband and filtered by a low pass filter with single-
sided bandwidth B in the front-end, prior to the quantization, has the following
complex I/Q components



I(t) = A(t)g(t− τ(t))c(t− τ(t)) cos(ϕT (t)) + nI(t)

= A(t)g(t− τ(t))c(t− τ(t)) cos(ϕD(t) + ϕ(t)) + nI(t)

Q(t) = A(t)g(t− τ(t))c(t− τ(t)) sin(ϕT (t)) + nQ(t)

= A(t)g(t− τ(t))c(t− τ(t)) sin(ϕD(t) + ϕ(t)) + nQ(t),

(2.5)

where ϕD(t) is the phase component related to the Doppler frequency shift due to
the relative velocity between the GPS satellite and the receiver, and ϕ(t) is the
phase component that includes all other sources of phase variations. Therefore, the
complex BB signal is

s(t) = I(t) + jQ(t), (2.6)

and nI(t) ∈ R and nQ(t) ∈ R are the independent noise processes of the complex
Gaussian white noise

n(t) = nI(t) + jnQ(t), (2.7)

each with power spectral density with value N0/2.

Disregarding the navigation message g(t− τ(t)), the I/Q components can be given
by  I(t) = A(t)c(t− τ(t)) cos(ϕT (t)) + nI(t)

Q(t) = A(t)c(t− τ(t)) sin(ϕT (t)) + nQ(t).
(2.8)

Considering only a scintillation induced term as a source of disturbance, multiplica-
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tive in amplitude and additive in phase ρ(t)ejϕ(t), the signal amplitude can be written
as

A(t) = A0(t)ρ(t), (2.9)

where A0(t) is the undisturbed amplitude, and the signal total phase can be written
as

ϕT (t) = ϕD(t) + ϕ(t), (2.10)

disregarding other sources of phase variations in ϕ(t). The phase ϕD(t) is the integral
of the angular Doppler frequency fD(t)

ϕD(t) =
∫ t

t0
fD(t̃) dt̃, (2.11)

which can be approximated by a Taylor series in a sufficiently short period of time
in relation to the LOS dynamics. Truncation of the series after the second order
term can represent constant Doppler frequency drift in the LOS signal, and yields

ϕD(t) = ϕD(t0) + fD(t0)(t− t0) + (1/2)aD(t0)(t− t0)2, (2.12)

where aD(t) is the Doppler frequency drift. The complex BB signal (2.6) sampled
with sampling frequency fs = 1

Ts
= 2B, n = 0, . . . , N − 1, and k = 0, 1, 2, . . . ,∈ Z+

can be given as

s((kN + n)Ts) =A((kN + n)Ts) c((kN + n)Ts − τ((kN + n)Ts))

ejϕT ((kN+n)Ts) + n((kN + n)Ts), (2.13)

where N = fsTI samples are collected for the kth coherent integration period of
duration TI . The fast functions of the receiver, such as carrier and code wipe-off,
are performed at fS. Assuming that A(t), ϕ(t), fD(t), and τ(t) are approximately
constant over one coherent integration period, the discrete input sequence can be
written in vector form as

s[k] = A[k]ejϕ[k](c[k; τ [k]] ⊙ d[k; fD[k]]) + n[k], (2.14)
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where

s[k] = [s(kNTs), . . . , s((kN +N − 1)Ts)]T , (2.15)

n[k] = [n(kNTs), . . . , n((kN +N − 1)Ts)]T , (2.16)

c[k; τ [k]] = [c(kNTs − τ [k]),

. . . , c((kN +N − 1)Ts − τ [k])]T , (2.17)

d[k; fD[k]] =
[
ejϕD[k], . . . , ej(fD[k](N−1)Ts+ϕD[k])

]T
, (2.18)

and ⊙ denotes element-by-element multiplication of two vectors (Hadamard-Schur
product).

Before the despreading, all operations have to be performed on the data with a
rate of fS. After correlation or despreading, all operations can be performed with
a significantly smaller rate. The coherent integration time TI defines this rate of
operations and the tracking loops.

The result of the prompt correlation with the code c[k; τ̂ [k]] generated by an estimate
of the time-delay τ̂ [k] after mixing with the carrier d[k; f̂D[k]] generated by Doppler
phase ϕ̂D[k] and frequency f̂D[k] estimates can be given by

y[k] = 1
N

(c[k; τ̂ [k]] ⊙ d[k; f̂D[k]])Hs[k], (2.19)

where H denotes Hermitian of a matrix or vector. Other algorithms can be used
for the signal mixing with the carrier replica generated by the receiver (KAPLAN;

HEGARTY, 2017).

Considering that τ [k] ≈ τ̂ [k] we get

y[k] = A[k]
N

ej(ϕ[k]+ϕD[k]−ϕ̂D[k])
N−1∑
n=0

ej(fD[k]−f̂D[k])nTs + ηD[k]. (2.20)

The zero-mean complex white Gaussian noise sequence ηD[k] has variance σ2
ηD

=
σ2
n/N , where σ2

n = 2BN0 is the variance of n((kN + n)Ts). With δϕD[k] = ϕD[k] −
ϕ̂D[k] and δfD[k] = fD[k] − f̂D[k] we get 1

y[k] = A[k]
N

sin(NδfD[k]Ts/2)
sin(δfD[k]Ts/2) ej(ϕ[k]+δϕD[k]) (2.21)

ej[(N−1)Ts/2]δfD[k] + ηD[k].

1∑N−1
n=0 ejnz = sin(Nz/2)

sin(z/2) ej(N−1)z/2, with z = δfD[k]Ts.
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Substituting Ts = TI/N ≈ TI/(N − 1) yields

y[k] = A[k]
N

sin(δfD[k]TI/2)
sin(δfD[k]TI/2N)e

j(ϕ[k]+δϕD[k]) (2.22)

ej(TI/2)δfD[k] + ηD[k].

Assuming that δfD[k]TI/2N is sufficiently close to zero, sin(δfD[k]TI/2N) ≈
δfD[k]TI/2N , and we can derive an approximate expression for the prompt cor-
relator output after mixing with the carrier generated by the receiver as 2

y[k] = A[k]sinc
(
δfD[k]TI

2π

)
ej(ϕ[k]+δϕD[k]) (2.23)

ej(TI/2)δfD[k] + ηD[k].

If |δfD[k]TI | ≪ 1, sinc
(
δfD[k]TI

2π

)
≈ 1. For an unitary amplitude of the carrier undis-

turbed by scintillation, A[k] = ρ[k]. Thus, we can write the I/Q components of
y[k] = yI [k] + jyQ[k] as



yI [k] = ρ[k] cos
(
ϕ[k] + δϕD[k] + TI

2 δfD[k]
)

+ ηDI
[k]

yQ[k] = ρ[k] sin
(
ϕ[k] + δϕD[k] + TI

2 δfD[k]
)

+ ηDQ
[k],

(2.24)

with σ2
ηDI

= σ2
ηDQ

= σ2
ηD
/2. Further simplifying, by disregarding the term in δfD[k],

we get  yI [k] = ρ[k] cos (ϕ[k] + δϕD[k]) + ηDI
[k]

yQ[k] = ρ[k] sin (ϕ[k] + δϕD[k]) + ηDQ
[k].

(2.25)

Application of the four quadrant arctangent εP [k] = atan2[yQ[k], yI [k]] yields

εP [k] = ϕ[k] + δϕD[k] + ηA[k], (2.26)

where ηA[k] is the noise at the output of the four quadrant arctangent. Its variance
σ2
ηA

can be computed by the approximate expression (PARKINSON; SPILKER JR.,
1996), (LUO et al., 2017)

σ2
ηA

= 1
2c/n0TI

(
1 + 1

2c/n0TI

)
, (2.27)

2sinc(t) = sin(πt)/(πt).
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where c/n0 is defined as the carrier-to-noise density ratio in Hz, obtained from C/N0,
which is defined as the carrier-to-noise density ratio in dB-Hz, as c/n0 = 10C/N0/10.
An estimation of the rate of εP [k] can be obtained by the frequency discriminator
(TEUNISSEN; MONTENBRUCK, 2017)

εD[k] = atan2 [cross, dot]
TI

= εP [k] − εP [k − 1]
TI

(2.28)

where cross = yQ[k]yI [k−1]−yQ[k−1]yI [k] and dot = yI [k]yI [k−1]+yQ[k]yQ[k−1].
The noise variance of the frequency discriminator σ2

ηB
can be obtained from the above

expression, as (LUO et al., 2017)

σ2
ηB

=
σ2
ηA

+ σ2
ηA

T 2
I

= 1
c/n0T 3

I

(
1 + 1

2c/n0TI

)
. (2.29)

2.2 Doppler geometry

Considering a Keplerian orbit with null eccentricity for one GPS satellite with height
h = 20184 km, its velocity magnitude is, approximately

v =
√

µE
h+RE

≈ 3.87 km/s, (2.30)

where µE = 3.986 × 105 km3/s2 is the Earth’s standard gravitational parameter and
RE = 6378 km is the mean radius of the Earth. The satellite orbital period is

T = 2π
√

(h+RE)3

µE
≈ 43083 s. (2.31)

Considering a minimum elevation angle of 5◦ of the satellites with respect to user’s
position on Earth, the angle of the cone of visibility is 71.2◦ (PARKINSON; SPILKER

JR., 1996).

Defining an Earth-centered-Earth-fixed (ECEF) coordinate system such that axes x
and z are in the orbit plane of one GPS satellite, with z coincident with the satellite
visibility center, and axes x and y are in the equator plane of the Earth, then the
satellite radius vector r and velocity vector v, the user position vector on Earth
ru and the line-of-sight vector from user position to the satellite lu are defined as
shown in Figure 2.2. Also shown in Figure 2.2 is the visibility cone in green, the user
position vector rotated to the orbit plane rp by the user east-longitude φu and at
same co-latitude θu, and the position vector from this point to the satellite lp. All
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vectors in black are in the orbit plane and Earth is considered a sphere.

Figure 2.2 - User-satellite geometry for Doppler shift computation.

u

z

SOURCE: Author’s production.

For the hemisphere containing the visibility cone, the radius r, velocity v and ac-
celeration a vectors of the satellite can be given, in spherical coordinates, by

r = r


sin θ cosφ

0
cos θ

 , v = rθ̇


cos θ

0
− sin θ

 , a = −rθ̇2


sin θ cosφ

0
cos θ

 , (2.32)

where θ is the satellite co-latitude, θ̇ = 2π/T , r = ∥r∥ and φ is the satellite east-
longitude, which is π over negative x axis and 0 over positive x axis. The user
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position, and user position rotated to orbit plane are, respectively

ru = RE


sin θu cosφu
sin θu sinφu

cos θu

 , rp = RE


sin θusign[cosφu]

0
cos θu

 . (2.33)

From the geometry in Figure 2.2, lp = r − rp and lu = lp + rp − ru = lp + ∆r, where
∆r is a constant vector. The Doppler shift for GPS L1 frequency is

fD = −
(

v − vu
c

· lu
lu

)
fL1 = −fL1

c

v · lu
lu

, (2.34)

where vu is the user velocity, which was considered zero, lu = ∥lu∥, fL1 = 1575.42
MHz is the GPS L1 frequency, and c = 3 × 108 m/s is the speed of light. Taking the
derivative of the equation above, we get

ḟD = −fL1

c

lud(v · lu)/dt− l̇u(v · lu)
l2u

, (2.35)

with
l̇u = v · lu

lu
, (2.36)

and
d

dt
(v · lu) = a · lu + v · d

dt
(lu) = a · lu + v · v, (2.37)

taking into account that dlu/dt = dlp/dt = dr/dt = v. Therefore, (2.35) relates the
Doppler shift fD dynamics with the dynamics of the LOS lu.

One passage of a GPS satellite over the visibility cone for different user positions on
Earth was simulated, with the formulation described above, and the Doppler shift,
the Doppler drift, and the Doppler drift rate were computed. The results are shown
in Figures 2.3, 2.4, and 2.5, respectively. The red lines show fD, dfD/dt, and d2fD/dt

2

for user positions in the orbit plane, for different co-latitudes. The blue lines show
fD, dfD/dt, and d2fD/dt

2 for user positions out of the orbit plane, on the positive
y axis side, for different east-longitudes. A symmetric result is expected for user
positions on the negative y axis side. The grid for the simulations was formed by 7
points equally spaced from 0◦ to 71.2◦ for co-latitudes and by 7 points equally spaced
from 0◦ to 180◦ for east-longitudes. From Figures 2.3, 2.4, and 2.5, the approximate
maximum absolute values of Doppler shift, Doppler drift, and Doppler drift rate are,
respectively, 4866 Hz, 0.94 Hz/s, and 1.35 × 10−4 Hz/s2.
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Figure 2.3 - Doppler shift. Red lines are relative to user positions in the orbit plane and
blue lines are relative to user positions out of the orbit plane.

SOURCE: Author’s production.
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Figure 2.4 - Doppler drift. Red lines are relative to user positions in the orbit plane and
blue lines are relative to user positions out of the orbit plane.

SOURCE: Author’s production.
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Figure 2.5 - Doppler drift rate. Red lines are relative to user positions in the orbit plane
and blue lines are relative to user positions out of the orbit plane.

SOURCE: Author’s production.

2.3 Scintillation induced effects on GNSS receivers

The ionosphere is an ionized region of the atmosphere between 50 km to 1000 km of
altitude with free electrons generated especially by ionization processes related to the
solar activity. The ionosphere is a dispersive medium for radio propagation, with the
refractive index being a function of the frequency, and mainly characterized by the
electrons density (TEUNISSEN; MONTENBRUCK, 2017). The interaction of transient
fluctuations of electron content inside ionosphere with the propagating radio waves
via refraction and diffraction results in amplitude and phase scintillation of the radio
signal.

The ionospheric behavior is very dynamic and irregular, with the motion of electrons
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controlled by the geomagnetic field and plasma instabilities related to vertical drift
mechanisms. The plasma vertical drift is more common in the equatorial region,
generally downwards after sunset due to the plasma cooling, but upwards during
equinoxes and summer solstice of the south hemisphere, with a pre-reversion peak
in the vertical drift just after sunset, in general, and intensification upwards from
18:00 to 21:00 local time. An eastward directed electric field contributes to the
upwards drift. Increased scintillation activity is more pronounced in the equatorial
region from sunset to midnight, and can also be observed along strong ionization
gradients related to ionization and a recombination process induced by the daily solar
activity (ALFONSI et al., 2011),(TEUNISSEN; MONTENBRUCK, 2017). The occurrence
probability of equatorial scintillation depends on solar activity and the season, being
more probable around the equinoxes over African region and around the solstices
over American region (NISHIOKA et al., 2008). At high latitudes, irregularities on the
solar wind may create chaotic plasma structures that can also result in scintillation,
which is not limited to post sunset hours (SMITH et al., 2008),(JIAO et al., 2013a).
Thus, scintillation are more frequently observed at equatorial and high latitude
regions, and, in general, the electron fluctuations depend on factors such as solar
activity, geomagnetic activity, location, and daytime (MORAES et al., 2012).

While large scale irregularities are more associated to signal refraction resulting
in lower frequency variations in the code and carrier of the signal, smaller scale
irregularities of approximately 400 m are more associated to signal diffraction, where
the primary ray is scattered into many different rays at terrestrial receiver level. The
constructive and destructive interactions of these diffracted rays result in stronger
and more rapid variations in both amplitude and phase of the carrier (TEUNISSEN;

MONTENBRUCK, 2017).

At high latitudes, the scintillation effects on a GNSS receiver can be observed for
many hours, they are normally milder and more associated with phase variations
when compared to the equatorial scintillation effects, where severe scintillation with
signal intensity fading depth up to 25 dB can be observed (BASU et al., 1988). The
deep power fades in signal intensity are typically associated to abrupt phase vari-
ations, and the rapidity of scintillation is measured by the decorrelation time τ0,
where values smaller than 0.5 s implies in effects changing rapidly with time (TEU-

NISSEN; MONTENBRUCK, 2017). The consequence of scintillation to a receiver is a
degradation of the precision of the estimates provided by the tracking loops, eventu-
ally leading to a loss of lock of a satellite in the respective processing channel (MYER

et al., 2017). The abrupt variations in strong equatorial scintillations, with the large
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power fades and half-cycle phase jumps, can induce cycle slips in the carrier track-
ing loops (KINTNER et al., 2009b), which is particularly relevant for carrier-based
positioning techniques such as RTK and PPP. Signal intensity effects are measured
by the S4 index, which is a variational coefficient of the intensity standard deviation
over its mean. Phase variation effects are typically measured by the phase standard
deviation σϕ.

2.3.1 Scintillation effect quantification - signal intensity index

The metric commonly used in scintillation monitoring to quantify the strength of
amplitude scintillation is the S4 index

S4 =

√√√√E[S2] − E[S ]2
E[S ]2 , (2.38)

which is the ratio of the standard deviation of the signal intensity S to the absolute
value of its mean. Therefore, the S4 index is a positive and normalized measure.
Referring to the continuous-time BB signal amplitude (2.9), we can write

S(t) = A2(t), (2.39)

and after signal sampling and despreading, the discrete sequence of the signal inten-
sity must be estimated. The standard algorithm for the signal intensity estimation
is based on the narrow and wide band powers (DIERENDONCK et al., 1993) of the
prompt correlator outputs (2.24). They are computed by, respectively

NBP[i] =
(i+1)K−1∑

k=iK
yI [k]

2

+
(i+1)K−1∑

k=iK
yQ[k]

2

, (2.40)

and

WBP[i] =
(i+1)K−1∑
k=iK

(
y2
I [k] + y2

Q[k]
)
, (2.41)

where the last K samples of the discrete sequences yI [k] and yQ[k], the I/Q outputs
of the prompt correlators (2.24), respectively, are used to compute the narrow band
power NBP[i] and the wide band power WBP[i] sequences. As the index k represents
the kth integration period TI , the index i represents an update period of KTI . To
avoid the computation over navigation bit transitions, which occurs with a 20 ms
period, K = 20 is chosen for a coherent integration time of 1 ms. Therefore, in this
case, NBP[i] and WBP[i] are computed every 20 ms, or at a 50 Hz sampling fre-
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quency. The signal intensity can be estimated by the difference between the narrow
and wide band powers

Ŝ [i] = NBP[i] − WBP[i]. (2.42)

If the receiver gain is constant, this difference is proportional to the received signal
power. An enabled automatic gain control (AGC) may introduce errors in this com-
putation (DIERENDONCK et al., 1993). For a practical computation of the S4 index,
a temporal averaging is employed to approach the expectations of S in (2.38), and
the index can be computed as

S4[i] =

√√√√⟨Ŝ2⟩M − ⟨Ŝ⟩2
M

⟨Ŝ⟩2
M

, (2.43)

where the symbol ⟨·⟩M denotes the temporal mean in a time window of M samples.
For a GNSS receiver statically positioned on Earth, the means are typically com-
puted over a 60 s time window (DIERENDONCK et al., 1993), (NIU et al., 2012). Once
the index i is increased in a 50 Hz rate, M = 3000 for a 60 s time window.

Fluctuations in the received signal power can occur due to fluctuations in signal
generation, antenna patterns, and multipath, and because of this, Ŝ is typically de-
trended dividing its raw value by its low pass filtered value (DIERENDONCK et al.,
1993), (FREMOUW et al., 1978). The filtering is performed by up to three cascaded
digital second order filters sampled at 50 Hz, and typically Butterwoth filters are
employed (DIERENDONCK et al., 1993), (ZHANG et al., 2010). The idea is to remove
spurious low-frequency content present in the input signal. Typically, the cutoff fre-
quency of the filters is chosen to be 0.1 Hz (FREMOUW et al., 1978), but adjustments
may be needed to better characterize the scintillation phenomenon (FORTE, 2007).
Calling the low pass filtered signal intensity by ŜF , the detrended signal intensity
ŜD is

ŜD[i] = Ŝ [i]
ŜF [i]

, (2.44)

and the filtered signal intensity is represented in the z-domain as

ŜF (z) = HLP (z)Ŝ(z), (2.45)

where HLP (z) represents the cascaded low pass filters.

The computed value of S4 can be overrated due to the ambient noise. The formula

23



to compute the noise contribution is (DIERENDONCK et al., 1993)

S4N
=

√√√√ 2
KTIc/n0

(
1 + 1

2 (K − 1)TIc/n0

)
, (2.46)

where c/n0 is the carrier-to-noise density ratio in Hz. For a coherent integration time
of TI = 1 × 10−3 s, K = 20 and an estimated carrier-to-noise density ratio discrete
sequence ĉ

n0
[i], the noise component in the S4 index is

S4N
[i] =

√√√√√ 100
ĉ
n0

[i]

1 + 500
19 ĉ

n0
[i]

. (2.47)

Hence, the S4 index corrected of ambient noise is

S4C
[i] =

√
S2

4 [i] − S2
4N

[i] =

√√√√√⟨Ŝ2
D⟩M − ⟨ŜD⟩2

M

⟨ŜD⟩2
M

− 100
ĉ
n0

[i]

1 + 500
19 ĉ

n0
[i]

. (2.48)

Since the noise contribution is removed, in the case of absence of ionospheric scintil-
lation, the value computed inside the square root will fluctuate around 0. This is an
indication that the noise contribution is being correctly removed, and a protection
against the computation of negative numbers inside the square root must be inserted
in the algorithm (DIERENDONCK et al., 1993).

2.3.2 Scintillation effect quantification - phase standard deviation

The metric generally accepted to quantify phase scintillation is the phase standard
deviation σϕ. A detrending procedure is also necessary to minimize the influence of
undesired effects in the index computation. In addition to the phases related to the
LOS dynamics and scintillation considered in the total phase (2.10), a phase term
induced by the receiver clock needs also to be considered. Thus, for the receiver
channel i, discarding the noise term, we have

ϕTi
[k] = ϕDi

[k] + ϕi[k] + ϕR[k], (2.49)

where ϕR[k] is the clock induced phase, ϕDi
[k] is the phase related to the LOS

dynamics and ϕi[k] is the scintillation induced phase, for the index k representing
each coherent integration period. The clock induced phase variation is considered
to be common for all channels. Therefore, one possibility to remove its effect is to
choose one non-scintillating channel r as reference, with ϕTr [k] = ϕDr [k] + ϕR[k],
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and subtract its phase from channel i (O’HANLON et al., 2011), yielding

∆ϕTir
[k] = ϕTi

[k] − ϕTr [k] (2.50)

= ϕDi
[k] − ϕDr [k] + ϕi[k]

= ∆ϕDir
[k] + ϕi[k].

This procedure can remove a common mode clock induced phase. However, if this
effect is very small, the fluctuating tracking error of the reference channel carrier
tracking loop can slightly increase the phase variance of the ith channel.

A 3rd order polynomial is considered to fit the LOS dynamics or the difference LOS
dynamics ∆ϕDir

(NIU et al., 2012). A procedure to remove the LOS dynamics applied
in data post-processing is to fit the polynomial to a time-moving data window of
typically 60 s (NIU et al., 2012) and subtract this estimated LOS dynamics ∆ϕ̂Dir

[k]
from ∆ϕTir

[k]. A 4th order polynomial with time-moving data window of 100 s can
also be employed (ZHANG et al., 2010). The resulting detrended phase is

∆ϕ̃Tir
= ∆ϕTir

[k] − ∆ϕ̂Dir
[k] ≈ ϕi[k]. (2.51)

In order to detrend the phase, removing low frequency components, three cascaded
2nd order Butterworth high pass filters represented by HHP (z) with cut-off frequency
of 0.1 Hz are generally applied (NIU et al., 2012), resulting in

∆ϕFir
(z) = HHP (z)∆ϕ̃Tir

(z). (2.52)

The phase standard deviation is then computed, where the mean is computed over a
period of typically 60 s for a static receiver on-ground. Thus, the standard deviation
of the carrier phase can be given as

σϕ =
√

⟨∆ϕ2
Fir

⟩ − ⟨∆ϕFir
⟩2. (2.53)

2.3.3 Scintillation effect quantification - severity classification

As the scintillation effects at high latitudes can be observed for longer periods, are
normally milder and more associated with phase variations, at equatorial latitudes,
more severe effects can be observed with signal fading and associated rapid phase
variations, so that the classification of scintillation severity based on S4 index and
σϕ can take different approaches.
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At high latitudes, in order to consider that a tracked satellite signal is under scintilla-
tion, separating the observed effect from multipath in the data analysis, a threshold
of S4 > 0.12 and σϕ > 0.1 rad to eliminate multipath false alarms was employed in
(TAYLOR et al., 2012). In (JIAO et al., 2013b), mild scintillation events are considered
if S4 > 0.15 and σϕ > 0.26 rad, and the same threshold of (TAYLOR et al., 2012)
for low scintillation events was used. In (JIAO et al., 2013a) the same threshold of
(TAYLOR et al., 2012) was chosen, to not exclude weak scintillation events. Others
consider σϕ > 0.25 rad as the threshold for moderate scintillation activity (DUBEY

et al., 2006), (LINTY et al., 2018).

Concerning equatorial scintillation, some works consider moderate scintillation ac-
tivity if 0.2 < S4 ≤ 0.5 and strong scintillation activity if S4 > 0.5 (JIAO; MORTON,
2015), (JIAO, 2013). Others consider S4 > 0.4 as threshold for significant scintilla-
tion activity (DUBEI et al., 2005). In (HUMPHREYS et al., 2009), amplitude scintillation
strength is considered weak if S4 ≤ 0.4, moderate if 0.4 < S4 ≤ 0.6 and severe if
S4 > 0.6, and equivalently, phase scintillation is considered weak if σϕ ≤ 0.25 rad,
moderate if 0.25 < σϕ ≤ 0.5 rad, and severe if σϕ > 0.5 (VILÁ-VALLS et al., 2020).

In order to minimize multipath effects in the data analysis, a mask of 30◦ degrees of
satellite elevation can be employed (JIAO; MORTON, 2015) to filter out satellites with
elevation lower than 30◦ degrees. Also, carrier-to-noise density ratio C/N0 mask can
be employed to filter out satellite signals with less than 40 dB-Hz (CURRAN et al.,
2015).

2.4 Generation of synthetic scintillation data for simulations

The Cornell Scintillation Model (CSM) is a statistical model adjusted with empirical
data gathered from GPS receivers, including data gathered by the Brazilian Institute
for Space Research (INPE) (HUMPHREYS et al., 2005), (HUMPHREYS et al., 2004),
(CERRUTI et al., 2006), and from the WIDEBAND satellite project (KINTNER et al.,
2009a). The complex samples of scintillation time series synthesized by the model
are described by a Rice distribution characterizing the amplitude and by an auto-
correlation function of a complex white noise with Gaussian distribution passing
through a second order low pass Butterworth filter (HUMPHREYS et al., 2010).

The amplitude distribution is specified by the S4 index, which is directly related to
the Ricean parameter K, and the cutoff frequency of the Butterworth filter is related
to the decorrelation time τ0, which is the time taken to the auto-correlation function
decay from its value at time 0 to e−1 (KINTNER et al., 2009a). The sampling time
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of the model is 10 ms. The model parameters were adjusted in a software testbed,
where the implemented carrier tracking loops were tested with the empirical data,
comparing statistics produced by the model, such as the phase standard deviation,
mean time to first cycle slip and number of cycle slips, with the statistics computed
with the collected data. Additional validation was accomplished with hardware-in-
the-loop test of a GNSS receiver implemented on a DSP (Digital Signal Processor)
chip (KINTNER et al., 2009a), (HUMPHREYS et al., 2010).

Besides the CSM, there are other models available for synthetic scintillation data
generation to assess the performance of GNSS receivers via simulation (VILÁ-VALLS

et al., 2018), (VILÁ-VALLS et al., 2020). The most widely used are the WideBand
Model (WBMOD) (SECAN et al., 1997), phase-screen models (PSIAKI et al., 2007),
the Global Ionospheric Scintillation Model (GISM) (GIOVANNI; RADICELLA, 1990)
and the GPS Scintillation Simulator from the University of Colorado (JIAO et al.,
2018). The CSM is considered to have some limitations, since only time series rep-
resenting equatorial scintillation can be generated, with a maximum value of S4

equal to 1, and wideband UHF (Ultra High Frequency) observations were used in
the model validation (MACABIAU et al., 2012), in addition to L1 observations. De-
spite of this, the CSM is a popular model, largely employed in the literature for
generation of scintillation data (VILÁ-VALLS et al., 2020), and is more convenient for
simulation (VILÁ-VALLS et al., 2018). Thus, the CSM is used throughout this work
in the simulations with synthetic scintillation data.
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3 STOCHASTIC PROCESSES AND BAYESIAN FILTERING

This chapter presents a review of the stochastic processes relevant for the model-
ing of the LOS dynamics and the induced ionospheric scintillation effects, the Itô
stochastic differential equations, and the derivation of the Bayesian nonlinear filter,
from which the Kalman filter is derived. The kinematic process model, employed for
LOS dynamics modeling in the Kalman filters, and the AR process model, employed
in the scintillation mitigation problem, are also presented. We present the more gen-
eral autoregressive moving average (ARMA) model, from which the AR model can
be derived.

3.1 Stochastic models for Bayesian estimation of LOS and scintillation
dynamics

In this section, we present a review of the basic stochastic processes, the stochastic
differential equations, and the AR as well as the kinematic process models.

3.1.1 Wiener process

The Wiener process µ(t) is a continuous-state process generated by taking the sum
of independent steps s → 0, equally probable in each direction, at time intervals
h → 0 such that s√

h
→

√
α, where α is a constant. The probability density function

of µ(t) is the normal (Gaussian) distribution N (0, αt), with zero mean and variance
αt (BAR-SHALOM et al., 2001), (PAPOULIS; PILLAI, 2002).

Requiring the limiting process with s → 0 and h → 0 to have variance σ2 per unit
time and zero mean allows to write in the limit s = σ

√
h, so the constant α = σ2

is the variance per unit time. The step s is proportional to the square root of the
time interval

√
h. The increments in the Wiener process during the time interval are

independent and normally distributed random variables (COX; MILLER, 1965). We
can write for the Wiener process

µ(t) =
∫ t

0
n(t̃)dt̃, (3.1)

or, otherwise
dµ(t) = n(t)dt, (3.2)

where n(t) is Gaussian white noise, so the independent normal increments dµ(t) have
variance σ2dt. The Wiener process is not stationary since its variance is a function
of time, and therefore it does not have a power spectral density representation.
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3.1.2 Markov process

In a Markov process, the conditional probability of the random variables does not
have to be computed considering their past occurrences over the complete time inter-
val, but can be computed considering only the latest time interval. The probabilities
over long time intervals can be derived recursively from the probabilities over shorter
time intervals. The Wiener process is a Markov process, since

µ(t) =
∫ t

0
n(t̃)dt̃

=
∫ tk

0
n(t̃)dt̃+

∫ t

tk

n(t̃)dt̃

= µ(tk) +
∫ t

tk

n(t̃)dt̃,

(3.3)

for tk < t.

If we evaluate the Markov process in discrete time instants, the formed discrete
sequence of random variables has the property that the conditional distribution
depends only on the current state (COX; MILLER, 1965). We can obtain a discrete
time (DT) Wiener process which is a Markov process. If we consider a finite time
interval h, a variance per unit time σ2 and an increasing sequence of time 0, ..., tk−1, tk

on the index k such that tk − tk−1 = h, we get

µ(tk) = µ(tk−1) +
∫ tk

tk−1
n(t̃)dt̃

= µ(tk−1) +
∫ tk

tk−1
dµ(t̃)

= µ(tk−1) + ν(tk−1),

(3.4)

where ν(tk) is a Gaussian white noise sequence with variance σ2h. Generalizing, we
can obtain the following discrete representation of a linear dynamic system excited
by Gaussian white noise

x(tk) = F(tk−1)x(tk−1) + ν(tk−1), (3.5)

for the state and noise vectors x(tk) ∈ Rnx×1 and ν(tk) ∈ Rnx×1, respectively, and the
state transition matrix F(tk). Thus, we consider a Gauss-Markov sequence, which
is Gaussian because of the linearity and Markov because of whiteness of the noise
sequence (BAR-SHALOM et al., 2001).

30



3.1.3 Linear stochastic differential equations

The independent increment characteristics of the Wiener process makes it suitable
to model unknown variables and define the stochastic differential equations to be
employed in problems of state estimation. A continuous time (CT) linear state-
space representation of a system of first order Itô (ITÔ, 1951) stochastic differential
equations can be defined as

dx(t) = Fcx(t)dt+ Gcdµ(t), (3.6)

where x(t) ∈ Rnx×1 is the system state vector, µ(t) ∈ Rnµ×1 is a vector of Wiener
processes modeling the process noise with incremental covariance Qcdt ∈ Rnµ×nµ ,
Fc ∈ Rnx×nx is the system matrix and Gc ∈ Rnx×nµ is the process noise gain matrix.
The solution of the state equation can be given as

x(t) = Φ(t, t0)x0 +
∫ t

t0
Φ(t, s)Gcdµ(s), (3.7)

where Φ(t, s) is the fundamental matrix, with the property dΦ(t,t0)
dt

= FcΦ(t, t0), and
x0 = x(t0). The computation of the state solution for one finite sampling interval
tk − tk−1 = h leads to

x(tk) = Φ(tk, tk−1)x(tk−1) +
∫ tk

tk−1
Φ(tk, t)Gcdµ(t)

= Φ(tk, tk−1)x(tk−1) + ν(tk−1).
(3.8)

The covariance of the Gaussian white noise sequence ν(tk−1) is

E[ν(tk−1)νT(tk−1)] = E

[∫ tk

tk−1

∫ tk

tk−1
Φ(tk, t)Gcdµ(t)dµT(s)GT

c ΦT(tk, s)
]

=
∫ tk

tk−1

∫ tk

tk−1
Φ(tk, t)GcE[dµ(t)dµT(s)]GT

c ΦT(tk, s)

=
∫ tk

tk−1
Φ(tk, t)GcQcGT

c Φ(tk, t)dt ≜ Q

(3.9)

3.1.4 Autoregressive moving average process

The CT ARMA process y(t) is generated by the time-invariant model

Ac(p)y(t) = Bc(p)ec(t), (3.10)
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where Ac(p) = pn + a1p
n−1 + ... + an and Bc(p) = b0p

m + b1p
m−1 + ... + bm are

polynomials on the differential operator p of order n and m < n, respectively. The
ARMA model output is y(t), and ec(t) is Gaussian white noise with spectral density
σ2, defined such that dµ(t) = ec(t)dt is the increment of the Wiener process µ(t),
with incremental variance σ2dt. Proper rational models (m = n) lead to unbounded
variance of y(t) (WAHLBERG et al., ). In order to have a stationary process, it is also
required that the real parts of the roots of the polynomial Ac(p) to be negative,
resulting in a stable system (GARNIER; WANG, 2008).

The ARMA model is a general linear model representation that yields the stationary
process y(t), with rational power spectral density based on its autoregressive and
noise terms. A pure AR model is obtained by making Bc(p) = 1. The CT ARMA
model state-space representation is

dx(t) = Fcx(t)dt+ Gcdµ(t)

y(t) = Hx(t),
(3.11)

with Fc ∈ Rn×n, Gc ∈ Rn×1 and H ∈ R1×n. The relationship between the polynomial
representation and the state-space representation is obtained via the CT spectrum
Φc(s), in terms of the Laplace operator s (SÖDERSTRÖM, 2002)

Φc(s) = σ2B(s)B(−s)
A(s)A(−s) = H(sI − Fc)−1Gcσ

2GT
c (−sI − FT

c )−1HT, (3.12)

and the spectral density is obtained by evaluating Φc(jω). The evaluation of the
ARMA process at discrete instants of time with time interval h, such that tk−tk−1 =
h, leads to the DT model

x(tk) = Fx(tk−1) + ν(tk−1)

y(tk) = Hx(tk),
(3.13)

with the index k = 0, 1, 2, . . . ,∈ Z+, F = eFch, and

ν(tk) =
∫ tk+h

tk

eFc(tk+h−s)Gcdµ(s) =
∫ tk+h

tk

eFc(tk+h−s)Gcec(s)ds (3.14)

is a vector-valued white-noise sequence with covariance matrix

Q = E[ν(tk)νT(tk)] =
∫ h

0
eFcsGcσ

2GT
c e

FT
c sds. (3.15)
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The DT ARMA model can be obtained from the DT state-space representation, and
can be written in the polynomial form as

D(q)y(tk−n) = C(q)ed(tk−m), (3.16)

where D(q) = qn+d1q
n−1 + ...+dn and C(q) = qm+c1q

n−1 + ...+cm are polynomials
on the shift operator q, which is defined as qs(tk) = s(tk+1) or q−1s(tk) = s(tk−1)
for a signal s(tk) (LJUNG, 1987), (AGUIRRE, 2000), and ed(tk) is a Gaussian white
noise sequence with variance E[e2

d(tk)] = λ2. The discrete spectrum Φd(z) in terms
of the z-transform is (SÖDERSTRÖM, 2002)

Φd(z) = λ2 C(z)C(z−1)
D(z)D(z−1) = H(zI − F)−1Q(z−1I − FT)−1HT. (3.17)

Note that, once we have F from Fc and Q from Fc, Gc and σ2, for the sampling
interval h, the right side of the equation above will be defined. Then, the variance
λ2 of the white noise sequence and the polynomials D(q), with D(z) = det(zI − F),
and C(q) forming the polynomial representation of the DT ARMA model could be
found by solving the spectral factorization problem defined by the equation above
(SÖDERSTRÖM, 2002), where det(·) is the determinant of a matrix.

The spectral density is obtained by evaluating Φd(ejωh). The DT stochastic model
has the same covariance function ry(τ) of the original CT stochastic model, evaluated
at multiples of the time interval h, and the spectral density of the DT stochastic
model tends to the spectral density of the original CT stochastic model as the
sampling period h tends to zero, provided there is no aliasing effect (SÖDERSTRÖM,
2002).

The state covariance matrix P in the steady-state must satisfy the CT Lyapunov
equation (SÖDERSTRÖM, 2002)

FcP + PFT
c + σ2GcGT

c = 0, (3.18)

and P also must satisfy the DT Lyapunov equation (SÖDERSTRÖM, 1991)

R = P − FPFT. (3.19)

The state covariance function Rx(τ) = E[x(t+τ)xT(t)] for the time lag τ is (SÖDER-

STRÖM, 2002)
Rx(τ) = eFcτP, (3.20)
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and the output covariance function ry(τ) = E[y(t+ τ)y(t)] is (SÖDERSTRÖM, 2002)

ry(τ) = HeFcτPHT. (3.21)

The state and output DT covariance functions can be obtained by evaluating Rx(τ)
and ry(τ) at times τ multiples of sampling period h, respectively.

Pure AR discrete time models derived from sampling of the continuous time stochas-
tic models will occur with zero probability if the parameters in the continuous model
are chosen at random (SÖDERSTRÖM, 1990). A continuous AR model of order n with
m < n zeros yields a discrete AR model with m intrinsic zeros and n−m− 1 sam-
pling zeros (GARNIER; WANG, 2008), (ÅSTROM, 1970). Therefore, a discrete-time
AR model of order greater than one cannot be generated from a continuous-time
stochastic AR model. This model should have moving average terms, thus being
an ARMA model. However, an AR model of any order can be defined directly in
discrete time, thus not having a counterpart in continuous time. A continuous-time
AR model is directly obtained by making Bc(p) = 1 in (3.10). A discrete-time AR
model is directly obtained by making C(q) = 1 in (3.16).

3.1.5 Kinematic process model

A kinematic process model (BAR-SHALOM et al., 2001) is derived from the equations
of motion of a rigid body, taking into account the kinematic relations between the
states describing the motion, obtained by differentiation. The velocity is obtained
by differentiation of the position, acceleration is obtained by differentiation of the
velocity, jerk is obtained by differentiation of the acceleration, and so on. The model
does not encompass the dynamics of the motion, but the kinematic relations obtained
by the sequential differentiation of the position. Such models are widely used in
target tracking problems (LI; JILKOV, 2003).

In the deterministic case, if we want to describe a constant velocity motion, we
consider a null acceleration. In the stochastic case, we consider the acceleration to
be a Gaussian process with zero mean and a determined variance, meaning that, in
practice, the velocity undergoes some changes. If we consider changes in acceleration,
the jerk is a zero mean Gaussian process, and, therefore, the acceleration is a Wiener
process, leading to a third order state-space model.

Considering the case of acceleration as a Wiener process µ(t) with variance per unit
time of σ2

jD
, and with position, velocity and acceleration as the states x1, x2 and x3,
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respectively, we get the model
dx1

dx2

dx3

 = Fc


x1

x2

x3

 dt+ Gc


0
0

dµ(t)

 , (3.22)

with the matrices

Fc =


0 1 0
0 0 1
0 0 0

 , (3.23)

and

Gc =


1 0 0
0 1 0
0 0 1

 . (3.24)

Since only the acceleration is a stochastic process, the noise gain matrix Gc is the
identity matrix for the noise vector

[
0 0 dµ(t)

]T
, which possesses a covariance per

unit time

Qc = σ2
jD


0 0 0
0 0 0
0 0 1

 . (3.25)

The state transition matrix Φ(u2, u1) = eFc(u2−u1) can be obtained by computation of
the matrix exponential via the power series eFc(u2−u1) = I+Fc(u2 −u1)+ F2

c(u2−u1)2

2 +
..., where, truncating at the second order term, since Fn

c results in a matrix where
all elements are equal to zero for n ≥ 3, we get

Φ(u2, u1) =


1 0 0
0 1 0
0 0 1

+


0 (u2 − u1) 0
0 0 (u2 − u1)
0 0 0

+


0 0 (u2 − u1)2/2
0 0 0
0 0 0



=


1 (u2 − u1) (u2 − u1)2/2
0 1 (u2 − u1)
0 0 1

 .
(3.26)

The state transition matrix also could be obtained via the computation of the inverse
Laplace transform of

(sI − Fc)−1 =


1/s 1/s2 1/s3

0 1/s 1/s2

0 0 1/s

 , (3.27)
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considering that the inverse transform of 1/s is 1 and the inverse transform of n!/sn+1

is tn, for n = 1, 2, ..., with t substituted by u2 − u1.

The product Φ(u2, u1)GcQcGT
c ΦT(u2, u1) becomes

Φ(u2, u1)GcQcGT
c ΦT(u2, u1) = (3.28)

σ2
jD


(u2 − u1)4/4 (u2 − u1)3/2 (u2 − u1)2/2
(u2 − u1)3/2 (u2 − u1)2 (u2 − u1)
(u2 − u1)2/2 (u2 − u1) 1

 .

Substituting u2 = tk and u1 = tk−1, such that h = tk − tk−1, in the integral (3.9),
we get the discrete process noise covariance matrix for the kinematic model with
acceleration as a Wiener process

Q = σ2
jD


(tk − tk−1)5/20 (tk − tk−1)4/8 (tk − tk−1)3/6
(tk − tk−1)4/8 (tk − tk−1)3/3 (tk − tk−1)2/2
(tk − tk−1)3/6 (tk − tk−1)2/2 (tk − tk−1)



= σ2
jD


h5/20 h4/8 h3/6
h4/8 h3/3 h2/2
h3/6 h2/2 h

 .
(3.29)

The discrete process matrix F is the fundamental matrix (3.26) also evaluated at
one time interval h, yielding

F = Φ(tk, tk−1) =


1 h h2/2
0 1 h

0 0 1

 . (3.30)

3.2 Bayesian estimation and Kalman filtering

The problem of estimating quantities from a set of observations was introduced
by Gauss (GAUSS, 1963), with his derivation of the least squares (LS) method to
estimate the Keplerian elements of the orbit of celestial bodies from telescopic mea-
surement data. Central for the development of the method was the concept that
incorporation of more observations than the minimum required would reduce the
influence of the measurement errors on the estimation of the parameters, as redun-
dant data would confirm the results from estimation (SORENSON, 1970).
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In the case of the estimation from a noisy set of observations, the probabilistic ap-
proach was first employed in the filtering problem by Kolmogorov (KOLMOGOROV,
1962) and Wiener (WIENER, 1949), assuming a linear system and stationary stochas-
tic processes. Regarding Wiener filtering theory, it was restricted to scalar signals
and noises and assumed an infinite amount of data. The stochastic processes involved
were not modeled by stochastic differential equations and the filtering problem was
reduced to the solution of the Wiener-Hopf integral equation in frequency domain
using spectral factorization (JAZWINSKI, 1970).

The Kalman filter (KALMAN, 1960), (KALMAN; BUCY, 1961), (KALMAN, 1963) gen-
eralizes the Wiener filter to nonstationary stochastic processes, accommodating vec-
tor signals and noises, and using the state space representation of the system (KAY,
1993) with the probabilistic Bayesian approach in which the problem is modeled by a
set of stochastic difference or differential equations (JAZWINSKI, 1970). The Kalman
filter provides estimation of the states of a dynamical system excited by noise from
noisy observations, being the optimal estimator in the minimum mean square error
(MMSE) sense if signals and noises are jointly Gaussian, and the optimal linear
MMSE if they are not jointly Gaussian (KAY, 1993).

A Bayesian estimator takes into account a priori information regarding the states,
which are considered random variables, in the form of prior probability density
function to obtain the maximum a posteriori (MAP) density via Bayes’ rule

Pr{A|B} = Pr{B|A}Pr{A}
Pr{B}

, (3.31)

where events A and B are subsets of the sample space Ω with elements ω, with
probabilities assigned by the probability function Pr{·} defined on a Borel field BF .
Pr{A|B} is the posterior probability of A given B, and Pr{B} ̸= 0. Bayes’ rule is
derived from the definition of conditional probability

Pr{A|B} = Pr{A ∩B}
Pr{B}

, (3.32)

where Pr{A ∩B} is the joint probability of A and B, with Pr{B} ≠ 0.

Taking x ∈ Rn×1 and y ∈ Rm×1 as jointly distributed random vectors with joint
probability density function px,y(x,y), equivalently we can write the Bayes’ rule for
(x,y)

px|y(x|y) = py|x(y|x)px(x)
py(y) , (3.33)
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and the conditional probability

px|y(x|y) = px,y(x,y)
py(y) , (3.34)

where px|y(x|y) is the conditional density of x given {y(ω) = y} and py(y) =∫
px,y(x,y)dx is the marginal density. In this vector notation, for the random vectors

x =
[
x1 · · · xn

]T
and y =

[
y1 · · · ym

]T
, the conditional and marginal densities

can be written in detail, respectively, as

px|y(x|y) = px1,··· ,xn|y1,··· ,yn
(x1, · · · , xn|y1, · · · , ym) (3.35)

and

py(y) =
∫
px,y(x,y)dx

=
∫

· · ·
∫
px1,··· ,xn,y1,··· ,yn

(ξ1, · · · , ξn, y1, · · · , ym)dξ1 · · · dξn.
(3.36)

Considering the random vectors indexed by the time t, namely, vector stochastic
processes, the prior information of the density function of x(t0) at initial time t0
can be incorporated in the Bayesian estimator, together with a realization of the se-
quence of observations of y(t), to obtain estimates x̂(t) from the conditional density
px|y(x(t)|y(t)). Given the sequence of observations Ytl = {y(t0), · · · ,y(tl)} in dis-
crete instants of time t0, · · · , tl, the estimation of x(tk) is a filtering problem if k = l,
a prediction problem if k > l and a smoothing problem if k < l. We consider the fil-
tering problem, where the evolution in time of the conditional density px|y(x(tk)|Ytk)
is to be found (JAZWINSKI, 1970), by first considering a general stochastic dynamic
system represented by a set of Itô (ITÔ, 1951) stochastic differential equations, that
can be written in vector form as

dx(t) = fc(x(t), t)dt+ Gc(x(t), t)dµ(t), (3.37)

where the process x(t) ∈ Rn×1 generated by the Itô’s equation is a Markov process
(JAZWINSKI, 1970), fc(x(t), t) ∈ Rn×1 is a nonlinear vector function of x(t), µ(t) ∈
Rr×1 is a vector of Wiener processes exciting the system with incremental covariance
Qc(t)dt and a noise distribution matrix Gc(x(t), t) ∈ Rn×r nonlinear in x(t).

We first present the derivation of the general nonlinear filter based on the Bayesian
probabilistic approach for the continuous time random state vector x(t). Later,
we specialize the Bayesian filter to the linear case in discrete time to obtain the
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Kalman filter formulation. The derivation mainly follows (JAZWINSKI, 1970). In the
following, we simplify our notation by removing the subscript random variables from
the probability density function notation, so that, for example, px(·) is written as
p(·) henceforth. As we are considering GNSS receivers implemented in software, the
measurements are available at discrete instants of time. Therefore, we consider the
observation equation at discrete instants of time tk

y(tk) = h(x(tk), tk) + n(tk), (3.38)

where y(tk) ∈ Rm×1 is the random observation vector, h(x(tk), tk) ∈ Rm×1 is a
vector function nonlinear in x(t), evaluated at tk, and n(tk) ∈ Rm×1 is a vector
Gaussian sequence n(tk) ∼ N (0,R(tk)).

The Kolmogorov’s forward equation describes the evolution of the transition prob-
ability density of the Markov process x(t) generated by Itô’s stochastic differential
equation, and can be written as (JAZWINSKI, 1970)

dp = L(p)dt, (3.39)

for the forward diffusion operator L defined by

L(·) = −
n∑
i=1

∂(·fci
)

∂xi
+ 1

2

n∑
i=1

n∑
j=1

∂2[·(GcQcGT
c )ij]

∂xi∂xj
, (3.40)

using the simplified notations p = p(x(t)|x(τ)), with τ < t, Gc = Gc(x(t), t),
Qc = Qc(t), fci

are the elements of fc(x(t), t), and xi are the elements of x(t).

Between observations, tk−1 ≤ t < tk, having y(tk−1) available, the Kolmogorov’s
forward equation can be used to compute p(x(t)|Ytk−1) with initial condition
p(x(tk−1)|Ytk−1), as (JAZWINSKI, 1970)

dp(x(t)|Ytk−1) = L(p(x(t)|Ytk−1))dt. (3.41)

At tk, with the observation y(tk) available, we get from Bayes’ rule

p(x(tk)|Ytk) = p(Ytk |x(tk))p(x(tk))
p(Ytk)

=
p(y(tk), Ytk−1|x(tk))p(x(tk))

p(y(tk), Ytk−1) .

(3.42)
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Sequential application of the conditional probability definition on the term
p(y(tk), Ytk−1|x(tk)) leads to

p(y(tk), Ytk−1 |x(tk)) =
p(y(tk), Ytk−1 ,x(tk))

p(x(tk))

=
p(y(tk)|Ytk−1 ,x(tk))p(Ytk−1 ,x(tk))

p(x(tk))

=
p(y(tk)|Ytk−1 ,x(tk))p(Ytk−1 |x(tk))p(x(tk))

p(x(tk))
= p(y(tk)|Ytk−1 ,x(tk))p(Ytk−1|x(tk)).

(3.43)

Equivalently, application of the conditional probability definition to the denominator
term yields p(y(tk), Ytk−1) = p(y(tk)|Ytk−1)p(Ytk−1). Returning to the Bayes’ rule, we
get

p(x(tk)|Ytk) =
p(y(tk)|Ytk−1 ,x(tk))p(Ytk−1 |x(tk))p(x(tk))

p(y(tk)|Ytk−1)p(Ytk−1)

=
p(y(tk)|Ytk−1 ,x(tk))p(x(tk)|Ytk−1)p(Ytk−1)p(x(tk))

p(y(tk)|Ytk−1)p(Ytk−1)p(x(tk))

=
p(y(tk)|Ytk−1 ,x(tk))p(x(tk)|Ytk−1)

p(y(tk)|Ytk−1) ,

(3.44)

where, from the first to the second line, the Bayes’ rule was applied to ob-
tain p(Ytk−1|x(tk)) = p(x(tk)|Ytk−1 )p(Ytk−1 )

p(x(tk)) . Since the sequence n(tk) is white,
p(y(tk)|Ytk−1 ,x(tk)) = p(y(tk)|x(tk)). Similarly, we can also substitute the marginal
density in the denominator, resulting in

p(x(tk)|Ytk) =
p(y(tk)|x(tk))p(x(tk)|Ytk−1)

p(y(tk)|Ytk−1)

=
p(y(tk)|x(tk))p(x(tk)|Ytk−1)∫

p(y(tk)|x(tk))p(x(tk)|Ytk−1)dx(tk)
.

(3.45)

The posterior density p(x(tk)|Ytk) is decomposed in three general terms: the
prior density p(x(tk)|Ytk−1), which defines the knowledge of the model; the like-
lihood p(y(tk)|x(tk)), which determines the observation model; and the evidence
p(y(tk)|Ytk−1) =

∫
p(y(tk)|x(tk))p(x(tk)|Ytk−1)dx(tk). These terms are the essence

of Bayesian filtering (CHEN, 2003). Once p(y(tk)|x(tk)) is determined, the equation
above will provide the difference equation for the conditional density at an observa-
tion. Since p(y(tk)|x(tk)) = p(y(tk) − h(x(tk), tk)) and n(tk) ∼ N (0,R(tk)), we get

40



for the likelihood (JAZWINSKI, 1970)

p(y(tk)|x(tk)) = 1
(2π)m/2 det(R(tk))1/2

e− 1
2 [y(tk)−h(x(tk),tk)]TR(tk)−1[y(tk)−h(x(tk),tk)]. (3.46)

For the scalar function γ(x(t)), twice continuously differentiable, we can define the
expectation

γ̂τ (x(t)) ≜ E[γ(x(t))|Yτ ] =
∫
γ(x(t))p(x(t)|Yτ )dx(t), (3.47)

where E[·] is the expectation operator, and t ≥ τ . Since p(x(t)|Yτ ) satisfy the
Kolmogorov’s forward equation, the evolution of γ̂τ (x(t)) can be obtained between
observations, at tk−1 ≤ t < tk, by (JAZWINSKI, 1970)

dγ̂tk−1(x(t)) = E[γT
x fc(x(t), t)|Ytk−1 ]dt+ 1

2Tr(E[GcQcGT
c γxx|Ytk−1 ])dt, (3.48)

where Tr(·) is the trace of a matrix, Gc = Gc(x(t), t), Qc = Qc(t), γx is the gradient
of the function and γxx is the Hessian matrix. At observations, using (3.45), we get
(JAZWINSKI, 1970)

γ̂tk(x(tk)) =
∫
γ(x(t))p(x(t)|Ytk)dx(t)

=
E[γ(x(tk))p(y(tk)|x(tk))|Ytk−1 ]

E[p(y(tk)|x(tk))|Ytk−1 ] ,
(3.49)

with y(tk) fixed, so the right-hand side is a function of y(tk). Equations (3.48) and
(3.49) allow the determination of the evolution of all the moments of the conditional
density. The conditional mean can be obtained by

x̂τ (t) = E[x(t)|Yτ ], (3.50)

and the conditional covariance matrix by

Pτ (t) = E[(x(t) − x̂τ (t))(x(t) − x̂τ (t))T|Yτ ]

= E[x(t)xT(t)|Yτ ] − x̂τ (t)x̂T
τ (t),

(3.51)

by setting, respectively, γ(x(t)) = xi and γ(x(t)) = xixj, since γ(·) was defined
as a scalar function. The generalization to vectors and matrices can be obtained,
therefore, by the composition with the application to their elements. Thus, between
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observations, at tk−1 ≤ t < tk, we get for the conditional mean and covariance
(JAZWINSKI, 1970)

dx̂tk−1(t)
dt

= f̂ctk−1
(x(t), t)

dPtk−1(t)
dt

= (E[x(t)fT
c (x(t), t)|Ytk−1 ] − x̂tk−1(t)f̂T

ctk−1
(x(t), t))

+ (E[fc(x(t), t)xT(t)|Ytk−1 ] − f̂ctk−1
(x(t), t)x̂T

tk−1
(t))

+ E[Gc(x(t), t)Qc(t)GT
c (x(t), t)|Ytk−1 ],

(3.52)

and at observation at tk we get (JAZWINSKI, 1970)

x̂tk(tk) =
E[x(tk)p(y(tk)|x(tk))|Ytk−1 ]
E[p(y(tk)|x(tk))|Ytk−1 ]

Ptk(tk) =
E[x(tk)xT(tk)p(y(tk)|x(tk))|Ytk−1 ]

E[p(y(tk)|x(tk))|Ytk−1 ] − x̂tk(tk)x̂T
tk

(tk).
(3.53)

The computation of the first two moments of the conditional density, by the two
equations above, depends on higher order moments in the general nonlinear Bayesian
filter, so approximations are necessary to obtain a realizable filter. In the case of the
linear Bayesian filter, the conditional density is Gaussian, and thus moments of
higher order are null and closed forms can be obtained.

Specializing to the system linear in relation to the state vector x(t), we consider the
set of Itô linear differential equations

dx(t) = Fc(t)x(t)dt+ Gc(t)dµ(t), (3.54)

with x(t) ∈ Rn×1, µ(t) ∈ Rr×1 is a vector Wiener process with incremental covari-
ance Qc(t)dt, Fc(t) ∈ Rn×n and Gc(t) ∈ Rn×r. And the discrete time observation
equation, linear in relation to x(t)

y(tk) = H(tk)x(tk) + n(tk), (3.55)

with y(tk) ∈ Rm×1, n(tk) ∈ Rm×1 is a vector Gaussian sequence n(tk) ∼ N (0,R(tk))
and H(tk) ∈ Rm×n. The initial condition distribution is assumed to be x(t0) ∼
N (x̂(t0),P(t0)), and x(t0), µ(t) and n(tk) are assumed independent.

Between observations, at tk−1 ≤ t < tk, the Kolmogorov’s forward equation (3.41)
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for the conditional density becomes (JAZWINSKI, 1970)

∂p(x(t)|Ytk−1)
∂t

= −p(x(t)|Ytk−1)Tr(Fc(t)) − pT
xFc(t)x(t) (3.56)

+ 1
2Tr(Gc(t)Qc(t)GT

c (t)pxx),

where px and pxx are, respectively, the gradient and the Hessian of p(x(t)|Ytk−1).
To obtain the evolution of the conditional mean x̂tk−1(t) and covariance Ptk−1(t)
between observations from (3.52), we notice that f̂ctk−1

(x(t), t) = F(t)x̂tk−1(t),
E[Gc(t)Qc(t)GT

c (t)|Ytk−1 ] = Gc(t)Qc(t)GT
c (t), and

E[x(t)fT
ctk−1

(x(t), t)|Ytk−1 ] − x̂tk−1(t)f̂T
ctk−1

(x(t), t)

= E[x(t)xT(t)FT
c (t)|Ytk−1 ] − x̂tk−1(t)x̂T

tk−1
(t)FT

c (t)

= (E[x(t)xT(t)|Ytk−1 ] − x̂tk−1(t)x̂T
tk−1

(t))FT
c (t)

= Ptk−1(t)FT
c (t),

(3.57)

so that the evolution of the conditional mean and covariance between observations
are

dx̂tk−1(t)
dt

= Fc(t)x̂tk−1(t)

dPtk−1(t)
dt

= Fc(t)Ptk−1(t) + Ptk−1(t)FT
c (t) + Gc(t)Qc(t)GT

c (t).
(3.58)

The evolution of the conditional mean and covariance at observations, at tk, can be
computed via (3.45), noticing that

p(x(tk)|Ytk−1) ∼ N (x̂tk−1(tk),Ptk−1(tk)), (3.59)

E[y(tk)|Y (tk−1)] = H(tk)x̂tk−1(tk), (3.60)

and

E[(y(tk) − E[y(tk)|Y (tk−1)])(y(tk) − E[y(tk)|Y (tk−1)])T|Y (tk−1)] =

H(tk)Ptk−1(tk)HT(tk) + R(tk), (3.61)

so that p(y(tk)|Y (tk−1)) ∼ N (H(tk)x̂tk−1(tk),H(tk)Ptk−1(tk)HT(tk) + R(tk)), and

43



from (3.46), that

p(y(tk)|x(tk)) = 1
(2π)m/2 det(R(tk))1/2

e−(1/2)[y(tk)−H(tk)x(tk)]TR(tk)−1[y(tk)−H(tk)x(tk)], (3.62)

after substitution in (3.45), considering also that

p(x(tk)|Ytk) ∼ N (x̂tk(tk),Ptk(tk)), (3.63)

and performing the matrix algebra involved (JAZWINSKI, 1970), we obtain the de-
sired relations

x̂tk(tk) = x̂tk−1(tk) + K(tk)(y(tk) − H(tk)x̂tk−1(tk))

Ptk(tk) = Ptk−1(tk) − K(tk)H(tk)Ptk−1(tk),
(3.64)

where
K(tk) ≜ Ptk−1(tk)HT(tk)[H(tk)Ptk−1(tk)HT(tk) + R(tk)]−1 (3.65)

is the Kalman gain. The set of Equations (3.58), (3.64) and (3.65), with the ini-
tial conditions x̂(t0) and P(t0) semi-positive definite, form the minimum variance
Kalman-Bucy filter (KALMAN; BUCY, 1961), for the continuous-discrete system.

To obtain the minimum variance linear filter for the discrete-discrete system, we use
the results presented in Section 3.1.3 to obtain difference equations for the condi-
tional mean and covariance between observations. Notice that, in Section 3.1.3, in
the discretization process, we preferred to incorporate the noise distribution matrix
in the the noise process vector in the resulting difference equation for the process
dynamics, resulting in a Gaussian process noise vector ν(tk) ∈ Rn×1 with covari-
ance E[ν(tk)νT(tk)] = Q(tk). The difference equation for the process dynamics is
re-written below

x(tk) = Φ(tk, tk−1)x(tk−1) + ν(tk−1). (3.66)

The conditional mean between observations is, therefore

x̂tk−1(tk) = E[x(tk)|Ytk−1 ] = Φ(tk, tk−1)x̂tk−1(tk−1), (3.67)
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and the conditional covariance between observations is

Ptk−1(tk) =E[(x(tk) − x̂tk−1(tk))(x(tk) − x̂tk−1(tk))T|Ytk−1 ] (3.68)

=E[(Φ(tk, tk−1)x(tk−1) + ν(tk−1) − Φ(tk, tk−1)x̂tk−1(tk−1))

(Φ(tk, tk−1)x(tk−1) + ν(tk−1) − Φ(tk, tk−1)x̂tk−1(tk−1))T|Ytk−1 ]

=E[Φ(tk, tk−1)(x(tk−1) − x̂tk−1(tk−1))(x(tk−1) − x̂tk−1(tk−1))TΦ(tk, tk−1)T

+ ν(tk−1)νT(tk−1)|Ytk−1 ]

=Φ(tk, tk−1)Ptk−1(tk−1)ΦT(tk, tk−1) + Q(tk−1).

The set of Equations (3.67), (3.68), (3.64) and (3.65), with the initial conditions
x̂(t0) and P(t0) semi-positive definite, form the minimum variance Kalman filter
(KALMAN, 1960).

The Kalman filter can be modified to be employed to systems with nonlinear process
and/or observation equations, providing a suboptimal solution. This is the case of
the extended Kalman filter, resulting from a linearization procedure of the nonlinear
equations of the system. In the more general case of the extended Kalman filter, the
state evolution and the measurement equations are formed by nonlinear functions
according to the discrete system equations

x[k] = f(x[k − 1]) + ν[k − 1]

y[k] = h(x[k]) + n[k],
(3.69)

where f(·) ∈ Rn×1 and h(·) ∈ Rm×1 are nonlinear functions of the state vector x[k] ∈
Rn×1, y[k] ∈ Rm×1 is the measurement vector, ν[k] ∈ Rn×1 and n[k] ∈ Rm×1 are
independent Gaussian process and measurement noises whose covariance matrices
are Q[k] ∈ Rn×n and R[k] ∈ Rm×m, respectively. The propagation step and the
update step of the Kalman filter can be given as

x̂[k|k − 1] = f(x̂[k − 1])

P[k|k − 1] = F[k − 1]P[k − 1]FT[k − 1] + Q[k − 1]
(3.70)

and
K[k] = P[k|k − 1]HT[k](H[k]P[k|k − 1]HT[k] + R[k])−1

P[k] = (I − K[k]H[k])P[k|k − 1]

x̂[k] = x̂[k|k − 1] + K[k]{y[k] − h(x̂[k|k − 1])}.

(3.71)

The measurement residual or innovation is ε[k] = y[k] − h(x̂[k|k− 1]), P[k] ∈ Rn×n

is the state covariance matrix and K[k] ∈ Rn×m is the Kalman gain. In the case
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of the Kalman filter, the process and measurement equations are linear functions
of the state vector, so that f(x[k − 1]) = F[k − 1]x[k − 1] with F[k − 1] ∈ Rn×n

and h(x[k]) = H[k]x[k] with H[k] ∈ Rm×n, respectively. In the case of the extended
Kalman filter, f(x[k−1]) and/or h(x[k]) are nonlinear functions of the states, whose
Jacobians

F[k − 1] = ∂f
∂x

∣∣∣∣∣
x=x̂[k−1]

, H[k] = ∂h
∂x

∣∣∣∣∣
x=x̂[k|k−1]

(3.72)

are employed in the prediction and update equations of the extended Kalman filter.

46



4 REAL-TIME SCINTILLATION MONITORING EXPLOITING LOS-
ONLY TRACKING LOOPS

Ionospheric scintillation monitoring contributes to the scientific research of the iono-
sphere, where networks of spatially distributed monitoring stations provide data to
support the study of the dynamics of the related physical processes. Monitoring
stations are deployed for other purposes also, such as for space weather research
in general (XU et al., 2015a), or as part of the infrastructure for aircraft instrument
landing systems (MAYER et al., 2009). They perform tasks such as forecast, broad-
cast, and correction of information related to ionospheric scintillation. Usually, in
a monitoring station, a static receiver with a known position and precise reference
oscillator provides estimates of the dynamics of the LOS to the tracked satellites
with additional accurate information, such as the clock biases and ephemerides of
the tracked satellites (LEE et al., 2017), (DIERENDONCK et al., 1993). Although other
factors such as multipath, related to the surrounding environment, can also affect
scintillation estimation, it is essential to have highly reliable receivers to isolate the
scintillation induced effects from the LOS dynamics tracked by the receivers. Also,
the occurrence of cycle slips, for example, impair scintillation amplitude and phase
estimation (BANVILLE; LANGLEY, 2013).

Originally, the traditional tracking loop structures implemented in monitoring re-
ceivers are composed of PLLs and/or FLLs, which are not directly providing es-
timates of amplitude or phase scintillation. Their design parameters are fixed and
adjusted for LOS-only tracking. Robustness to ionospheric scintillation in such struc-
tures can be improved via the tuning of parameters such as the noise bandwidth
(LEGRAND et al., 2000) of PLLs or employing an FLL-assisted PLL structure (XU

et al., 2015a), for example. The typical approach to obtain scintillation estimates
based on those structures consists of the analysis of stored receiver data, where
batch post-processing algorithms are employed to the I/Q outputs of the prompt
correlator and the tracked carrier phase. After detrending, filtering with Butterworth
filters, compensation of oscillator effects common to all processing receiver channels,
LOS dynamics and any possible multipath effect can be separated from scintillation
amplitude and phase, from which scintillation metrics such as the S4 index and phase
standard deviation can be computed (DIERENDONCK et al., 1993), (FREMOUW et al.,
1978), (ZHANG et al., 2010), (FORTE, 2007), (O’HANLON et al., 2011),(NIU et al., 2012).

In this chapter, we explore the linear approximation of the traditional FLL designed
to track the LOS dynamics, recovering complementary information in the frequency
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domain present in its sensitivity and complementary sensitivity transfer functions,
to design a real-time scintillation monitoring algorithm based on LTI filtering of
available internal observables of the traditional FLL. The algorithm provides es-
timates of the scintillation phase, from which the scintillation phase metrics can
be computed also in real-time. It can be either added to an already implemented
tracking loop in a receiver for real-time estimation or can be employed in data post-
processing if the observables are stored. We emphasize its real-time application,
which can be important for different applications that require ionospheric monitor-
ing, for example differential GNSS (D-GNSS). The parameters of the filters can be
adjusted to delimit the frequency band of interest, as is typically done in the batch
post-processing with Butterworth filters (NIU et al., 2012), (ZHANG et al., 2010). The
approach is extended to LOS-only Kalman FLLs by analogy of the Kalman filter
gains with the parameters of the linear approximation of the traditional FLL. Sim-
ilarly, a simple modification can be introduced in the algorithm to allow it to be
employed to LOS-only traditional and Kalman PLLs.

The performance of the algorithm is evaluated with numerical simulations using syn-
thetic scintillation data generated by the CSM (HUMPHREYS et al., 2010) and real
collected data by a COTS professional GNSS receiver, where we show that the moni-
toring performance of the scintillation phase estimation for subsequent computation
of its standard deviation is similar to the batch post-processing procedure perfor-
mance, with the advantage of its real-time capability and reduced complexity, since
it is based on LTI filtering, avoiding some operations of the batch post-processing,
such as the polynomial fitting in the phase detrending.

Initially, the structure of a FLL with a noncoherent DLL traditionally implemented
in GNSS receivers is presented. From this structure, we obtain a linear approxima-
tion of the traditional FLL, which is compared to the nonlinear implementation via
numeric simulations, in test cases representing slight errors in the initial conditions
provided by the acquisition stage of a satellite and sinusoidal phase disturbances
added to the input signals. The complementary frequency content of the sensitivity
and the complementary sensitivity transfer functions is highlighted, and the inter-
nal observables presenting such complementary characteristic are defined. Then, we
show how to derive the observables from the Kalman FLL by analogy with the linear
approximation of the traditional FLL. After that, we present the real-time moni-
toring algorithm implementation for the traditional and Kalman FLLs and how the
algorithm can be adapted to traditional and Kalman PLLs. Finally, we present the
results of the performance evaluation with synthetic and real scintillation data.
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4.1 Linear analysis of traditional carrier tracking loops

Traditionally, code and carrier synchronization in a GNSS receiver are performed
by, respectively, a DLL and a PLL or FLL. In the most general case, the code
and carrier loops are implemented as separate loops, although the synchronization
of one loop influences the synchronization of the other. In order to improve some
characteristics of the tracking loops, such as noise reduction, one loop can be aided
by observables from other loops or by augmentation signals, hence mixing code loop
with carrier loop or mixing phase and frequency loops in a carrier tracking loop, and
thus creating an additional coupling between them (KAPLAN; HEGARTY, 2017).

We consider a receiver composed of a traditional FLL with a noncoherent DLL,
without any augmentation signals. The traditional FLL is composed of elements such
as a linear loop filter, a numerically controlled oscillator (NCO), a carrier generator
and signal mixer, a prompt correlator, and a frequency discriminator. The tracking
loops not considered as "traditional" in this work are the ones based on the Kalman
filter, to be presented later. A traditional FLL with a noncoherent DLL receiver
is shown in Figure 4.1, where e[k] ∈ RN×1, l[k] ∈ RN×1, and p[k] ∈ RN×1 are
vectors formed by N samples of the kth integration period of the sampled early,
late, and prompt code replicas, respectively. Similarly, s[k] ∈ CN×1 is the vector of
the baseband GNSS input signal samples, as defined in (2.14), and the superscript
H denotes Hermitian (conjugate transpose).
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Figure 4.1 - Traditional FLL/DLL receiver.
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Each correlator branch includes an integrate and dump (I&D) block, and
[Ie[k], Qe[k]]T, [Il[k], Ql[k]]T, and [Ip[k], Qp[k]]T are, respectively, the early, late, and
prompt output I/Q samples. Frequency and code delay errors computed by fre-
quency and code discriminators are represented by δfD[k] and δτ [k], respectively.
The code and carrier replicas are generated with the estimated code delay τ̂ [k] and
the estimated Doppler shift f̂D[k] from the code and carrier NCOs, respectively. The
code delay rate ˆ̇τ [k] and the Doppler drift ˆ̇fD[k] are estimated by the DLL and FLL
loop filters, respectively.

Therefore, throughout this work, we consider that a "traditional" FLL, is the FLL
composed of elements such as loop filter, NCO, carrier generation, and the frequency
discriminator. Equivalently, we consider that a "traditional" PLL is composed of the
same elements, with the exception of the discriminator, where an arc-tangent phase
discriminator is employed in the PLLs.

Neglecting the coupling between the code and carrier loops, a linear approxima-
tion for the FLL in the discrete-time domain can be obtained by considering the
NCO block as an integrator, and the operations of mixing the input signal with the
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generated carrier replica, correlation, and frequency discriminator computation as
the difference fD[k] − f̂D[k] = δfD[k]. This is valid when synchronization errors in
code and carrier loops are relatively small. With these assumptions, we can estab-
lish the block diagram as shown in Figure 4.2 for the linear approximation of the
FLL in the z-domain. We prefer to present the analysis in discrete time, with the
z-transforms, to emphasize the real-time application of the monitoring algorithm to
GNSS hardware and software receivers. The detailed block diagram is presented in
Figure 4.2(a). The frequency discriminator provides the Doppler shift error signal
δfD(z), which, according to (2.28), is the derivative of the phase error δϕ(z), and
GFLL(z) encompasses the loop filter and the NCO. The remaining integrator rep-
resents the replica carrier generation from the Doppler frequency shift estimate, as
the loop is presented in terms of the phase. A simplified block diagram in terms of
Doppler frequency shift only can be obtained by removing the derivative and inte-
gration blocks, as shown in Figure 4.2(b). Integration is approximated by Euler’s
method (EULER, 1768), so that 1

s
= TI

1−z−1 , for the coherent integration period TI .
Euler’s method is chosen due to its simplicity, when compared to the bilinear trans-
form, and it provides a good approximation for the coherent integration period and
the dynamics considered.

Figure 4.2 - FLL linear approximation.
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The loop filter transfer function, including the NCO integrator, is typically of second
or third order (KAPLAN; HEGARTY, 2017), (BORRE et al., 2007). A second order loop
filter has the following z-transform

GFLL(z) = (T 2
I ω

2
n + 2ξωnTI) − 2ξωnTIz−1

1 − 2z−1 + z−2 , (4.1)

with damping ratio ξ and natural frequency ωn. Typically, ξ = 1/
√

2, and ωn is the
design parameter. A third order loop filter has the following z-transform

GFLL(z) =

(T 3
I ω

3
0 + a3T

2
I ω

2
0 + b3TIω0)

+ (−a3T 2
I ω

2
0 − 2b3TIω0)z−1 + TIb3ω0z−2

1 − 3z−1 + 3z−2 − z−3 , (4.2)

where typically a3 = 1.1 and b3 = 2.4, and ω0 is the design parameter (KAPLAN;

HEGARTY, 2017). Working with a second order loop filter, the closed loop has the
following z-transform for the Doppler frequency shift from the total input phase
ϕT (z) = ϕD(z) + ϕ(z)

f̂D(z)
ϕT (z) = (TIω2

n + 2ξωn) + (−TIω2
n − 4ξωn)z−1 + 2ξωnz−2

(T 2
I ω

2
n + 2ξωnTI + 1) + (−2ξωnTI − 2)z−1 + z−2 . (4.3)

The expanded block diagram of Figure 4.2(b) is shown in Figure 4.3, where the
internal states of the closed loop are depicted explicitly. The output of the upstream
integrator, the state ˆ̇fD1(z), is an estimate of the Doppler frequency drift, but the
zeros of its transfer function are different from the zeros of the transfer function to
ˆ̇fD(z), which is given by the integral of f̂D(z).

Figure 4.3 - Simplified FLL linear approximation expanded.
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Considering that ϕ̂D[k] can be obtained from the integration of f̂D[k], the error
signal in terms of phase in Figure 4.2(a) is

δϕ(z) = ϕT (z) − ϕ̂D(z) (4.4)

= ϕT (z) − TI
1 − z−1 f̂D(z) (4.5)

=
1 − TI

1 − z−1
f̂D(z)
ϕT (z)

ϕT (z). (4.6)

Therefore, for the second order loop filter, the transfer function for δϕ(z) is

δϕ(z)
ϕT (z) =

1 − TI
1 − z−1

f̂D(z)
ϕT (z)


= 1 − 2z−1 + z−2

(T 2
I ω

2
n + 2ξωnTI + 1) + (−2ξωnTI − 2)z−1 + z−2 .

(4.7)

This phase error has information content in the frequency domain that is comple-
mentary to the integral of the Doppler frequency shift estimate f̂D(z). This can be
verified by adding the integral of (4.3) to (4.7), yielding

f̂D(z)TI/(1 − z−1) + δϕ(z)
ϕT (z) = 1. (4.8)

This property also holds for the double integral of ˆ̇fD(z)

ˆ̇fD(z)T 2
I /(1 − z−1)2 + δϕ(z)

ϕT (z) = 1, (4.9)

but not for the double integral of ˆ̇fD1(z).

4.1.1 Numerical evaluations of the linear approximation of the tradi-
tional FLL

The frequency domain characteristic of (4.8) can be graphically displayed in a Bode
plot. For this, we consider the Laplace transform of (4.3) and (4.7) with the integrator
in discrete time represented by 1

s
⇔ TI

1−z−1 , yielding

f̂D(s)
ϕT (s) = 2ξωns2 + ω2

ns

s2 + 2ξωns+ ω2
n

, (4.10)
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and
δϕ(s)
ϕT (s) = s2

s2 + 2ξωns+ ω2
n

. (4.11)

Accordingly, 1
s
f̂D(s)
ϕT (s) + δϕ(s)

ϕT (s) = 1. The frequency responses of 1
s
f̂D(s)
ϕT (s) and δϕ(s)

ϕT (s) are
shown in the Bode plots of Figure 4.4, for ξ = 1/

√
2 and noise bandwidth Bn = 10

Hz, illustrating the low frequency content of 1
s
f̂D(s)
ϕT (s) and the complementary high

frequency content of δϕ(s)
ϕT (s) . The complementary characteristic can be verified by

the Bode plot of the sum of the transfer functions, as shown in 4.5, with zero dB
magnitude and zero degree phase at all frequencies, as expected.

Figure 4.4 - Bode plot of 1
s
f̂D(s)
ϕT (s) and δϕ(s)

ϕT (s) , for ξ = 1/
√

2 and noise bandwidth Bn = 10
Hz.
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Figure 4.5 - Bode plot of f̂D(s)/s+δϕ(s)
ϕT (s) , for ξ = 1/

√
2 and noise bandwidth Bn = 10 Hz.
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The quality of the linear approximation of the traditional FLL is evaluated by sim-
ulations of the nonlinear receiver tracking loop with FLL/DLL with baseband GPS
L1 C/A code input signal, introducing disturbances in this input signal, and com-
paring the dynamic response of the receiver to the dynamic response of the linear
approximation of the FLL. The intent is to reinforce via numerical simulations that
the linear approximation can represent the nonlinear receiver for the analysis and
design of the monitoring algorithm, which is one contribution of this work. The
linear approximation itself is not considered a contribution. Therefore, we present
the graphs of the dynamic responses to the disturbances for a qualitative evalua-
tion, showing that the response of the linear approximation is close to the nonlinear
receiver for the same disturbances applied, and thus the linear approximation is
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a good representation of the dynamics of the receiver carrier tracking loop. Initial
condition error and sinusoidal disturbances are considered.

The baseband input signal is composed of an initial Doppler shift of 1000 Hz, zero
initial phase, an initial code delay of 0.25 Tc, a Doppler drift of 0.94 Hz/s and PRN
1 code sequence with true code delay of 0.25 Tc. The second order FLL damping
ratio and noise bandwidth in all simulations regarding the evaluation of the linear
approximation are, respectively, ξFLL = 1/

√
2 and BnF LL

= 10 Hz (for 2nd order
loop filters with ξ = 1/

√
2, ωn in radians is equal to 1.8856Bn, with Bn in Hertz

(KAPLAN; HEGARTY, 2017)). The code loop employed is a traditional second order
DLL with ξDLL = 1/

√
2 and BnDLL

= 2 Hz.

The receiver processes baseband input signals composed of a carrier signal defined
by the carrier phase and Doppler frequency shift modulating the code sequence of
one of the GPS L1 C/A codes. A unitary amplitude is considered. The parameters of
the simulated receiver implementing a traditional FLL with a noncoherent DLL are
presented in Table 4.1. It integrates 4092 samples at each dump cycle. The receiver
bandwidth is twice the sampling frequency.

Table 4.1 - Parameters of the simulated receiver.

Sampling frequency (fS) 4.092 MHz
Pseudorandom noise (PRN) sequence 1
Early-late correlator spacing (∆Tc) 0.5 chip

Coherent integration time 1 ms

For the initial condition responses evaluation, a slight error in the initial condition
of the Doppler shift provided by the acquisition is introduced. For the the evaluation
of the responses to sinusoidal disturbances, sine waves of different amplitudes and
frequencies are added to the Doppler phase in the baseband input signal. Such
disturbances are phase variations of the form

ϕ(t) = Aϕ sin[2πfϕ max {(t− t0), 0}], (4.12)

for the amplitude Aϕ, frequency fϕ in Hertz, and applied at time t0. Thus, the total
phase is

ϕT (t) = ϕD(t) + ϕ(t). (4.13)

Four combinations of amplitudes and frequencies for the phase variations are con-
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sidered:

a) low frequency and low amplitude: fϕ = 1 Hz and Aϕ = 5 π
180 ;

b) high frequency and low amplitude: fϕ = 70 Hz and Aϕ = 5 π
180 ;

c) low frequency and high amplitude: fϕ = 1 Hz and Aϕ = 175 π
180 ;

d) high frequency and high amplitude: fϕ = 70 Hz and Aϕ = 175 π
180 .

The amplitude values are in terms of radians of phase variations, equivalent to 5
degrees and 175 degrees for, respectively, low amplitude and high amplitude. In
all cases the sinusoidal phase variations are applied at t0 = 0.5 s, and the initial
conditions of the linear model integrators and the receiver NCOs are set to the
acquisition values ϕDacq = 0 rad, fDacq = 1000 Hz and τacq = 0.25 Tc, observing that
the code delay τacq is not applicable to the FLL linear approximation.

4.1.1.1 Initial condition error

A slight error in the Doppler shift initial condition is introduced in the receiver
and in the integrator relative to f̂D in the linear approximation, which is the last
integrator of GFLL(z) in Figure 4.2(a), simulating their responses to an error of 10
Hz in the Doppler shift from acquisition, so that fDacq = 990 Hz. The baseband input
signal is applied to the receiver and the equivalent total carrier frequency ϕT (t) is
applied to the linear model of Figure 4.2(a). The comparison of the Doppler shift
estimated by the receiver and by the linear approximation is presented in Figure
4.6, and the comparison of the arc tangent applied to the I/Q prompt correlator
in the receiver and the δϕ(t) from the linear approximation is presented in Figure
4.7. In Figure 4.6, we also show the true value of the Doppler shift. The linear
response is practically superimposed to the nonlinear response, and they track the
Doppler shift after the transient due to the initial condition error. Figure 4.7 shows
the phase errors practically superimposed as well. Therefore, this simulation shows a
good agreement between the receiver and its linear approximation, thus confirming
the validity of the linear approximation.
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Figure 4.6 - Comparison of f̂D(t) from the receiver and the FLL linear approximation, in
simulation of Doppler shift initial condition error.
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Figure 4.7 - Comparison of δϕ(t) from the receiver and the FLL linear approximation, in
simulation of Doppler shift initial condition error.
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4.1.1.2 Low frequency and low amplitude disturbances in phase

A low frequency and low amplitude sinusoidal disturbance is added to the Doppler
phase, with fϕ = 1 Hz and Aϕ = 5 π

180 . The comparison of the Doppler shift estimated
by the receiver and by the linear approximation is presented in Figure 4.8, and
the comparison of the arc tangent applied to the I/Q prompt correlator in the
receiver and the δϕ(t) from the linear approximation is presented in Figure 4.9,
showing a good agreement between the receiver and its linear approximation for
phase variations with low frequency and low amplitude, thus confirming the validity
of the linear approximation.
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Figure 4.8 - Comparison of f̂D(t) from the receiver and the FLL linear approximation, in
simulation of sinusoidal phase variations added to the baseband input signal
with low frequency and low amplitude.
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Figure 4.9 - Comparison of δϕ(t) from the receiver and the FLL linear approximation, in
simulation of sinusoidal phase variations added to the baseband input signal
with low frequency and low amplitude.
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4.1.1.3 High frequency and low amplitude disturbances in phase

A high frequency and low amplitude sinusoidal disturbance is added to the Doppler
phase, with fϕ = 70 Hz and Aϕ = 5 π

180 . The comparison of the Doppler shift
estimated by the receiver and by the linear approximation is presented in Figure
4.10, and the comparison of the arc tangent applied to the I/Q prompt correlator
in the receiver and the δϕ(t) from the linear approximation is presented in Figure
4.11, showing a good agreement between the receiver and its linear approximation
for phase variations with high frequency and low amplitude, thus confirming the
validity of the linear approximation.
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Figure 4.10 - Comparison of f̂D(t) from the receiver and the FLL linear approximation, in
simulation of sinusoidal phase variations added to the baseband input signal
with high frequency and low amplitude.
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Figure 4.11 - Comparison of δϕ(t) from the receiver and the FLL linear approximation, in
simulation of sinusoidal phase variations added to the baseband input signal
with high frequency and low amplitude.
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4.1.1.4 Low frequency and high amplitude disturbances in phase

A low frequency and high amplitude sinusoidal disturbance is added to the Doppler
phase, with fϕ = 1 Hz and Aϕ = 175 π

180 . The comparison of the Doppler shift
estimated by the receiver and by the linear approximation is presented in Figure
4.12, and the comparison of the arc tangent applied to the I/Q prompt correlator
in the receiver and the δϕ(t) from the linear approximation is presented in Figure
4.13, showing a good agreement between the receiver and its linear approximation
for phase variations with low frequency and high amplitude, thus confirming the
validity of the linear approximation.
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Figure 4.12 - Comparison of f̂D(t) from the receiver and the FLL linear approximation, in
simulation of sinusoidal phase variations added to the baseband input signal
with low frequency and high amplitude.
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Figure 4.13 - Comparison of δϕ(t) from the receiver and the FLL linear approximation, in
simulation of sinusoidal phase variations added to the baseband input signal
with low frequency and high amplitude.
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4.1.1.5 High frequency and high amplitude disturbances in phase

A high frequency and high amplitude sinusoidal disturbance is added to the Doppler
phase, with fϕ = 70 Hz and Aϕ = 175 π

180 . The comparison of the Doppler shift
estimated by the receiver and by the linear approximation is presented in Figure
4.14, and the comparison of the arc tangent applied to the I/Q prompt correlator
in the receiver and the δϕ(t) from the linear approximation is presented in Figure
4.15, showing a good agreement between the receiver and its linear approximation
for phase variations with high frequency and high amplitude, thus confirming the
validity of the linear approximation.
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Figure 4.14 - Comparison of f̂D(t) from the receiver and the FLL linear approximation, in
simulation of sinusoidal phase variations added to the baseband input signal
with high frequency and high amplitude.
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Figure 4.15 - Comparison of δϕ(t) from the receiver and the FLL linear approximation, in
simulation of sinusoidal phase variations added to the baseband input signal
with high frequency and high amplitude.
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4.2 Kalman FLL for LOS-only tracking

The proposed scintillation monitoring algorithm exploits the linear approximation
of FLLs, which is also applicable to the Kalman filter based FLL tracking only the
LOS dynamics. In this section, we present the modeling of a discriminator-based
Kalman FLL, the block diagram of this Kalman FLL with traditional noncoherent
DLL, and then we obtain the correspondence of the Kalman FLL with the linear
approximation of the traditional FLL. The linear approximation of the Kalman FLL
enables the application of the proposed monitoring algorithm to receivers employing
a Kalman FLL.
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In a discriminator-based Kalman filter working as the carrier tracking loop in a re-
ceiver, the LOS dynamics is modeled by the kinematic process model (BAR-SHALOM

et al., 2001) presented in Chapter 3. The carrier replica is generated based on Kalman
filter state estimates, and the residuals, or innovations, of the filter are taken from
the discriminator output (VILÁ-VALLS et al., 2017).

The Kalman FLL for LOS dynamics tracking is defined by the state vector

xD[k] =
[
fD[k] aD[k]

]T
, (4.14)

and the process equations are defined by the state transition and process noise
covariance matrices

FD =
1 TI

0 1

 ,QD = σ2
jD

T 3
I /3 T 2

I /2
T 2
I /2 TI

 , (4.15)

after truncation of (2.11) at the second order term and excluding the state relative to
Doppler phase, with Gaussian Doppler drift rate variance σ2

jD
, which is the control

parameter of the process model.

The innovation sequence is formed by the outputs of the frequency discriminator
(2.28). Since the frequency discriminator provides a Doppler shift error, we can write
the matrix of observations for the LOS-only FLL as

HD =
[
1 0

]
. (4.16)

The block diagram of a receiver with a discriminator-based Kalman filter FLL and
a traditional noncoherent DLL is shown in Figure 4.16.
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Figure 4.16 - Kalman FLL/traditional DLL receiver.
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A linear approximation for the Kalman FLL depicted in Figure 4.16 with the Kalman
gain

KD[k] =
[
KD,1[k] KD,2[k]

]T
, (4.17)

can be obtained in the same manner as for the traditional FLL, where KD,1[k] and
KD,2[k] are, respectively, the first and second elements of the Kalman gain vector
KD[k] ∈ R2×1. If we consider the continuous time representation of the traditional
FLL, with the corresponding Laplace transform of the second order loop filter (4.1),
the continuous time Kalman FLL would have the same block diagram as shown in
Figure 4.3, substituting 2ξωn by KD,1[k] and ω2

n by KD,2 [k]. The difference between
both second order filters is that the traditional FLL filter has fixed parameters while
the parameters of the Kalman FLL are time-varying and computed according to the
optimality premises of the Kalman filter. Equivalence of the Kalman filter with a LTI
filter of the same order, in continuous time representation, can be found in (BROWN;

HWANG, 1996) and (KALMAN; BUCY, 1961). The state estimates f̂D[k] = f̂D(kTI)
and âD[k] = âD(kTI) of the Kalman FLL are equivalent to f̂D(kTI) and ˆ̇fD1(kTI)
of the linear approximation, respectively. These variables are shown in the block
diagram of Figure 4.3. There is a slight dynamic difference between âD[k] and ˆ̇fD[k],
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for which the property (4.9) is valid.

Taking into account the continuous/discrete equivalence (BROWN; HWANG, 1996)
and correcting for the update rate TI , the estimate

ˆ̇fD[k] = âD[k] +KD,1[k]εD[k]/TI (4.18)

can be given, dependent on the Doppler drift âD[k] estimated by the Kalman FLL
and the Kalman filter residual εD[k], which is equivalent to the frequency discrimi-
nator output δfD[k].

4.3 Real-time ionospheric scintillation monitoring

Our proposed monitoring algorithm exploits the carrier tracking loops designed for
the LOS dynamics tracking, which do not include terms to directly address the es-
timation of amplitude and phase scintillation. This is the case for many receivers
employed in monitoring stations. Thus, the algorithm can be implemented as an
additional piece of code in a software receiver or the software part of a hardware
receiver, using internal observables computed by its carrier tracking loop to provide
scintillation phase estimates. Based on these estimates, and amplitude estimates
obtained as the norm of the phasor formed by I/Q prompt correlator outputs, scin-
tillation metrics such as the phase standard deviation σϕ and the S4 index (DIEREN-

DONCK et al., 1993) can be also computed in real-time. The algorithm can also be
used as alternative to standard post-processing methods if the needed receiver data
is stored.

From the linear approximations of the traditional and Kalman FLLs, we employ
the property (4.9) to observables that can be obtained from the FLLs, with com-
plementary frequency content, to retrieve low and high frequency contents of the
scintillation phase by a low and a high frequency LTI filtering branches and pro-
vide a scintillation phase estimate. Initially, we develop the proposed algorithm for
traditional and Kalman FLLs, once the needed observables are directly available in
the FLL structure. The signal processing of the proposed algorithm for scintillation
monitoring is based on the LOS-only tracking loops presented in Figures 4.1 and
4.16 for the traditional and Kalman FLL, respectively. Afterwards, we present a
simple modification to adapt the algorithm to traditional and Kalman PLLs.
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4.3.1 Traditional and Kalman FLLs for LOS-only tracking

The traditional FLL is tracking the Doppler shift, so that the linear approximation
(4.3) is a low pass filter with bandwidth defined by the noise bandwidth of the loop,
considering a second order loop filter with a fixed damping ratio ξ = 1/

√
2. The

linear approximation for the phase error (4.7) is a high pass filter, with frequency
content complementary to the integral of (4.3), according to (4.8). The raw total
phase could be recovered via the sum of the phase error, which is the integral of the
frequency error computed by the frequency discriminator, and the integral of the
Doppler shift computed by the FLL NCO. However, the raw total phase is the sum of
the Doppler phase, which is the integral of Doppler shift, and the scintillation phase.
To separate them, it is necessary to remove the secular low frequency component
related to the LOS dynamics from the raw total phase.

For a static receiver positioned on ground, the LOS acceleration is almost constant,
so that the Doppler drift ḟD[k] varies slowly in relation to the scintillation dynamics.
Therefore, high pass filtering with a low cutoff frequency can remove this bias related
to the LOS acceleration from the output of the loop filter ˆ̇fD[k] in the traditional
FLL, just prior the NCO, or can be derived according to (4.18) for the Kalman FLL.
In this case it is necessary to combine the bias removal with a double integration to
obtain a component in terms of phase.

Application of a phase discriminator on [IP [k], QP [k]]T provides a signal whose lin-
ear approximation is δϕ[k] in Figure 4.2(a), which is the integral of the frequency
error δfD[k] computed by the frequency discriminator of the FLL, as shown in Fig-
ure 4.2(a). Our proposed scintillation monitor takes the complementary frequency
information from δϕ[k] and ˆ̇fD[k] by adding the high frequency content in δϕ[k] to
the low frequency content in the double integral approximation of ˆ̇fD[k], handling
the biases built up and possible divergence in the double integration due to small
errors related to nonlinearities, noise, or other sources, by defining a lower frequency
limit. Therefore, for the low frequency content, the algorithm removes the Doppler
drift bias and approximates the double integration down to a lower frequency limit
to obtain the low frequency component in terms of the phase. This component is
combined with the high frequency component, where any initial constant phase error
is removed from δϕ[k] with a wash-out filter and an upper frequency limit is defined
by a downstream low pass filter.

The scintillation phase monitor combined with a traditional FLL is illustrated in
Figure 4.17. In Figure 4.17, the blocks with solid lines describe the traditional FLL

71



from Figure 4.1 while the blocks with dashed lines describe the scintillation monitor,
which uses [IP [k], QP [k]]T from the prompt correlator and ˆ̇fD[k] from the loop filter.
The filters in the dashed blocks are presented in their z-transform.

Figure 4.17 - Traditional FLL/DLL receiver with scintillation phase estimation.
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The FLL tracks the input signal up to its bandwidth, so δϕ[k] coming from the phase
discriminator has frequency content above the FLL bandwidth, added to a possible
bias resulting from initial FLL transient. The task of the first filter applied to δϕ[k]
in the high frequency branch is to wash-out the bias. The cutoff frequency of this
first order high pass filter is defined by 1/τH , such that the higher the time constant
τH , the lower the cutoff frequency for the bias removal. The second filter in the high
frequency branch is a roll-off filter with the task of limiting the higher frequency
content, by setting the cutoff frequency ωH of this first order low pass filter. Thus,
ωH defines the upper frequency of interest limit of the monitoring algorithm. A Bode
plot representative of the high frequency branch is shown in Figure 4.18, for τH = 10

72



s and ωH = 2π×25 rad/s, to illustrate its overall band pass characteristic, delimited
by 1/τH and ωH .

Figure 4.18 - Bode plots of the Laplace transforms relative to the wash-out and low pass
filters from the high frequency branch.

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

Frequency [rad/s]

-50

-40

-30

-20

-10

0

M
a
g
n
it
u
d
e
 [
d
B

]

(a) Magnitude.

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

Frequency [rad/s]

-100

-50

0

50

100

P
h
a
s
e
 [
d
e
g
]

(b) Phase.

SOURCE: Author’s production.

In the low frequency branch, the purpose of the filter FL(z) is to approximate the
second integral while filtering out the slowly varying bias caused by nonlinearities
and other sources. The filter FL(z) is a third order high pass filter in u(z) to y(z).
Its block diagram is presented in Figure 4.19. We can set a3 = 1.1 and b3 = 2.4, and
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ωL is the design parameter of the filter.

Figure 4.19 - Filter FL(z).

+
+

+

b3�L

a3�L
2

�L
3 +

+

-1

y(z)

u(z)

TI

1-z-1
TI

1-z-1
TI

1-z-1

SOURCE: Author’s production.

The purpose of the filter WL(z), downstream of FL(z), is to further reduce the gain
below the frequency of interest defined by ωL in FL(z). WL(z) is a high pass second
order filter with cutoff frequency ωW that should be equal to ωL or tuned around its
value. Typically, the lower limit of the scintillation frequency content is in the range
0.01-0.1 Hz (FREMOUW et al., 1978), (FORTE, 2007). The filter structure of WL(z) is
presented in Figure 4.20. The desired effect of this filter is presented in the Bode plot
of the respective continuous representations in Figure 4.21, for ωL = ωW = 4 × 10−6

rad/s, showing that FL(z) approximates a double integrator down to ωL, and the
application of WL(z) downstream FL(z) further reduce the gain below this frequency.
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Figure 4.20 - Filter WL(z).
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Figure 4.21 - Bode plots of a double integrator compared to the Laplace transforms relative
to FL(z) and FL(z) · WL(z).
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The monitoring algorithm control parameters are, therefore, τH , ωH , ωL and ωW .
Their values depend on the particular receiver, and should be adjusted after an
initial analysis of stored data, setting ωL and ωW to remove the integration bias,
possible low frequency nonlinearities and define a lower limit in frequency of interest,
τH to remove any phase error bias, and ωH to define an upper frequency limit.
The filters employed in the scintillation monitor with a Kalman FLL are the same
filters employed in the scintillation monitor with a traditional FLL. Naturally, the
tuning parameters may be adjusted to different values. The only difference in the
signal processing is that ˆ̇fD[k] must be derived by (4.18) in the Kalman FLL, so
that its frequency content is complementary to the frequency content in δϕ[k], since
âD[k] is not dynamically equivalent to ˆ̇fD[k]. The Kalman FLL with the scintillation
monitoring signal processing is shown in Figure 4.22.

Figure 4.22 - Kalman FLL/traditional DLL receiver with scintillation phase estimation.
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Typically, the phase discriminator employed in phase tracking loops of the moni-
toring stations is the two-quadrant arc tangent (Costas loop), that would generate
δϕ[k] = arctan(QP [k]/IP [k]) in the interval [−π/2, π/2]. Instead, in our monitoring
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algorithm, we consider the total scintillation phase in the full circle [−π, π], by em-
ploying the four quadrant phase discriminator δϕ[k] = arctan2(QP [k], IP [k]), which
is sensitive to navigation bit transitions. Therefore, we consider the existence of a
navigation bit transition detector (KAPLAN; HEGARTY, 2017) in our monitoring al-
gorithm to avoid half cycle spurious transitions in δϕ[k], whenever we apply a phase
discriminator. The advantage of using the arctan2(·) phase discriminator is that we
can cope with higher levels of rapid scintillation phase excursions, in the full interval
[−π, π], that can be present in severe scintillation events. However, the monitoring
algorithm can also be applied to receivers with Costas PLL, limited to the rapid
scintillation phase excursions in the interval [−π/2, π/2].

The proposed scintillation monitoring algorithm does not interfere in the existing
traditional FLL or Kalman FLL designed for LOS tracking in a receiver, regardless
of their design parameters. Surely, there are differences between traditional and
Kalman filter tracking loops in terms of robustness to scintillation (HUMPHREYS et

al., 2005), (ZHANG; MORTON, 2009), but regardless of these differences, our proposed
algorithm for scintillation monitoring exploits both loops equivalently to provide
estimates of the scintillation phase.

4.3.2 Adaptation to the traditional PLL and Kalman PLL for LOS-only
tracking

The monitoring algorithm can be adapted to second order traditional PLLs and to
Kalman PLLs tracking LOS-only dynamics. It is inspired by the traditional FLL
structure, where the estimate of Doppler drift ˆ̇fD[k], used in the low frequency
branch of the monitoring algorithm, is naturally provided to the NCO by the loop
filter despite the loop filter order. In the case of the traditional PLL, the loop filter
provides the estimate of Doppler shift f̂D[k] to the NCO, and then the estimate
ˆ̇fD[k] used by the monitoring algorithm must be derived from the PLL loop filter.
This would be only advisable for second order loop filters, because for third order
loop filters the computation would involve an open loop integration, which can lead
to divergence even in the case of small errors being integrated. The block diagram
of the linear approximation of a second order PLL, with the loop filter expanded, is
shown in Figure 4.23.
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Figure 4.23 - Linear approximation of a second order PLL.
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The linear approximation of the second order PLL can be represented analogously
to the second order FLL, substituting fD(z) by ϕD(z), f̂D(z) by ϕ̂D(z), ˆ̇fD(z) by
f̂D(z), and ˆ̇fD1(z) by f̂D1(z). Also, the error signal in the PLL is δϕ(z), instead of
δfD(z) as for the FLL. Thus, taking the time derivative of ϕ̂D[k] in the second order
PLL, we get

ˆ̇ϕ[k] = f̂D[k] = f̂D1 [k] + 2ξωnδϕ[k], (4.19)

and taking the time derivative of the expression above leads to

ˆ̈ϕ[k] = ˆ̇fD[k] = ˆ̇fD1 [k] + 2ξωn ˙δϕ[k] = ω2
nδϕ[k] + 2ξωnδfD[k], (4.20)

which provides the estimate ˆ̇fD[k], necessary in the monitoring algorithm. As the
PLL does not have a frequency discriminator, it is also required to add a frequency
discriminator to compute δfD[k] based on IP [k] and QP [k] in order to employ the
monitoring algorithm to traditional PLLs. It is interesting to note that in the case
of a third order loop filter, the third integrator of the loop would appear in the
expression above, requiring an extra term with integration to obtain ˆ̇fD[k].

In the case of the Kalman PLL, the Doppler phase is introduced to the state vector,
which reads

xD[k] =
[
ϕD[k] fD[k] aD[k]

]T
, (4.21)

with state transition matrix

FD =


1 TI T 2

I /2
0 1 TI

0 0 1

 , (4.22)
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process noise covariance matrix

QD = σ2
jD


T 5
I /20 T 4

I /8 T 3
I /6

T 4
I /8 T 3

I /3 T 2
I /2

T 3
I /6 T 2

I /2 TI

 , (4.23)

and matrix of observations
HD =

[
1 0 0

]
. (4.24)

Similarly to the Kalman FLL, the state âD[k] estimated by the Kalman PLL is not
dynamically equivalent to the double derivative of ϕ̂D[k]. The equivalent continuous
time block diagram for the Kalman PLL in Figure 4.24 shows the dynamic relations
between the variables. From this block diagram, we get for the derivative of ϕ̂D

ˆ̇ϕD = f̂D1 +KD,1δϕ. (4.25)

Taking the double derivative, we get

ˆ̈ϕD = ˆ̇fD = ˆ̇fD1 +KD,1δϕ̇ = ˆ̇fD1 +KD,1δfD, (4.26)

with ˆ̇fD1 = âD +KD,2δϕ. Substituting into the expression above leads to the expres-
sion for ˆ̇fD in continuous time

ˆ̇fD = âD +KD,1δfD +KD,2δϕ, (4.27)

and, in analogy with the ˆ̇fD[k] derivation for the Kalman FLL, correcting for the
update rate TI in continuous/discrete equivalence, we get for the Kalman PLL

ˆ̇fD[k] = âD[k] +KD,1[k]εD[k]/TI +KD,2[k]εP [k]/TI , (4.28)

where now the Kalman filter residual is εP [k], which is equivalent to the arctan2(·)
phase discriminator output δϕ[k], and εD[k] can be obtained by a frequency dis-
criminator applied to IP [k] and QP [k], which is equivalent to δfD[k]. It should be
noticed that, if we would not have âD[k] available from the Kalman PLL, we would
need to integrate δϕ[k], which is the case of a third order PLL, as mentioned above.
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Figure 4.24 - Equivalent continuous time block diagram for the Kalman PLL.
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4.4 Performance evaluation of the monitoring algorithm

The proposed monitoring algorithm is firstly evaluated by numerical simulations con-
sidering synthetic scintillation input data generated by the CSM (HUMPHREYS et al.,
2010) in severe scintillation scenarios defined by amplitude strength index S4 = 0.8
and decorrelation time τ0 = 0.1 s. Rapidity of scintillation is inversely proportional
to decorrelation time. The performance of the monitoring algorithm applied to tra-
ditional and Kalman FLLs is evaluated with 300 Monte Carlo simulations with 150
s time window of severe scintillation realizations generated by CSM and receiver
thermal noise realizations. Then, the algorithm is evaluated with real data collected
by a COTS professional GNSS receiver, where the phase standard deviation is com-
puted with the scintillation phase estimated by the algorithm and compared to the
phase standard deviation computed by the standard post-processing procedure.

4.4.1 Synthetic scintillation data

We consider the simplified signal model (2.25) of synthetic GPS L1 C/A code base-
band input signals, with carrier generated with a Doppler shift of 1000 Hz and
Doppler drift of 0.94 Hz/s, which is approximately the maximum value that an on-
ground static receiver would experience based on the orbital dynamics of the GPS
satellites, added to the CSM scintillation data. No navigation bit transitions are
considered and the carrier amplitude is unitary. Gaussian receiver noise is added to
the sampled I/Q signal components in all simulations, generated with variance such
that the nominal carrier-to-noise density ratio C/N0 is 45 dB-Hz. The samples of the
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scintillation data are generated by CSM each 10 ms, and the coherent integration
time is TI = 10 ms.

In the Monte Carlo simulations, the severe scintillation realizations generated by
CSM are added to the input signal carrier, and applied to traditional and Kalman
FLLs with the monitoring algorithm added, as presented in Figures 4.17 and 4.22,
respectively. The traditional FLL is configured with a second order loop filter with
ξ = 1/

√
2 and noise bandwidth Bn = 1 Hz. The Kalman FLL process noise covari-

ance matrix is defined by σ2
jD

= 0.2, as typically employed in the LOS dynamics
tracking (FOHLMEISTER et al., 2018b). The approximate expression (2.29) gives the
frequency discriminator noise variance as a function of C/N0 (LUO et al., 2017), which
fluctuates according to the scintillation excursions, since the receiver noise variance
is fixed for the nominal C/N0. We define the measurement noise covariance of the
Kalman filter with the value computed by this expression for a conservative value
of C/N0 = 35 dB-Hz. The monitoring algorithm parameters are tuned to τH = 10
s, ωH = 2π× 25 rad/s, and ωL = ωW = 2π× 10−2 rad/s with a3 = 1.1 and b3 = 2.4,
for both traditional and Kalman FLLs.

The results are presented in terms of the root mean square error

RMSEx[k] =

√√√√ 1
M

M∑
m=1

1
k

k∑
i=1

(xm[i] − x̂m[i])2, (4.29)

with x being substituted by the variable of interest, for the time index k, the Monte
Carlo iteration index m and the number of Monte Carlo simulations M . In the
following, we label the monitoring algorithm applied to traditional FLLs as TFLL-
REC and the monitoring algorithm applied to Kalman FLLs as KFLL-REC. From
the 300 runs, 45 presented cycle slips for the traditional FLL, while no cycle slip
was observed for the Kalman FLL. The Kalman filter in general is more robust to
cycle slips and loss of lock (VILÁ-VALLS et al., 2018).

Considering all Monte Carlo runs, the performance of the monitoring algorithm and
the Doppler tracking using a traditional FLL is significantly worse than using a
Kalman FLL, due to the greater number of cycle slips occurrences. The cycle slips
contribute to a significant increase in the Doppler phase errors, and, as a conse-
quence, to a significant increase in the scintillation phase estimated by the monitor-
ing algorithm due to the induced disturbance. Figure 4.25 presents the RMSE of the
scintillation phase ϕ estimated by the algorithm applied to the FLLs, and Figure
4.26 presents the RMSE of the Doppler phase ϕD resulting from the FLLs, which is
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not influenced by the monitoring algorithm. Occurring cycle slips are discarded in
the results presented in Figures 4.25 and 4.26.

Figure 4.25 - Scintillation phase estimation RMSEϕ, considering only the Monte-Carlo
runs not presenting cycle slips in the traditional FLL computation.
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Figure 4.26 - Doppler phase estimation RMSEϕD
, considering only the Monte-Carlo runs

not presenting cycle slips in the traditional FLL computation.
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Discarding the traditional FLL runs with cycle slips, the scintillation phase estima-
tion performance is similar, comparing the results of the monitoring algorithm using
the traditional (TFLL-REC) and the Kalman (KFLL-REC) FLL. This is consistent
with the algorithm design, since the monitoring algorithm for the Kalman FLL was
derived from the algorithm for the traditional FLL. Regarding the Doppler tracking,
the Kalman FLL presents superior performance. It is interesting to note that the
difference in Doppler tracking performance did not imply significant differences in
the monitoring algorithm performance, in the absence of cycle slips. This indicates
a good robustness of the monitoring algorithm with respect to FLL structure and
parameters.
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One sample time-series from the Monte Carlo runs with cycle slip occurring with
the traditional FLL is presented in Figure 4.27 to illustrate the level of disturbance
induced by severe scintillation. In the top graph, after the occurrence of the cycle
slip at around 50 s, the Doppler phase error departs from a stable equilibrium point
around zero to a next equilibrium point around −2π. In the bottom graph, the
estimated scintillation phase starts to diverge from the true scintillation phase due
to the cycle slip disturbance, slowly returning to track the true phase following the
transient of the monitoring filters. Figure 4.28 shows the respective increase in the
RMSEs after the cycle slip. The RMSE of the Doppler phase estimate ϕ̂D stabilizes
at a higher level, while the RMSE of the scintillation phase decreases as the transient
of the filters vanishes, after the initial increase due to the cycle slip.

Figure 4.27 - One sample time-series presenting a cycle slip, occurring at around 50 s.
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Figure 4.28 - Scintillation phase and Doppler phase RMSEs for the sample time-series
presenting a cycle slip.
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4.4.2 Real scintillation data

The performance of the monitoring algorithm is also assessed with real data collected
by a JAVAD Delta 3 receiver connected to a Leica AR25 choke-ring antenna (GNSS,
2018), installed at the rooftop of the building of the Department of Teleinformatics
Engineering of the Federal University of Ceará (UFC) in Fortaleza, Brazil, which is
part of a scintillation monitoring station operated by the German Aerospace Center
(DLR) and UFC. The data presenting ionospheric scintillation was recorded on April
7, 2016, just after the sunset, from 19:00 to 20:00 local time, corresponding to 22:00
UTC to 23:00 UTC (FOHLMEISTER et al., 2018a), on October 27, 2017, from 22:00
UTC to 23:00 UTC and from 23:00 UTC to 00:00 UTC, and on November 16,
2017, from 22:00 UTC to 23:00 UTC. In the following, we label the data recorded
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on April 7, 2016, as dataset 1, the data recorded on October 27, 2017, from 22:00
UTC to 23:00 UTC and from 23:00 UTC to 00:00 UTC, as dataset 2 and dataset 3,
respectively, and the data recorded on November 16, 2017, as dataset 4.

The JAVAD receiver can provide I/Q, Doppler shift, and Doppler phase samples
among other GPS and Galileo signals at L1/E1 and L5/E5a frequency bands. The
samples are provided at a rate of 50 Hz, and the coherent integration time used for
the receiver tracking loops is TI = 20 ms. We consider the GPS L1 C/A signals from
satellites PRN 04 of dataset 1, PRN 24 of dataset 2, PRN 15 of dataset 3, and PRN
21 of dataset 4, for the analysis of the monitoring algorithm. The S4 indices computed
for these satellites are shown in Figure 4.29, with minute 0 corresponding to the
beginning of the hourly time windows used in the analysis. Amplitude scintillation
activity is considered weak if S4 ≤ 0.4, moderate if 0.4 < S4 ≤ 0.6 and severe if
S4 > 0.6, following (HUMPHREYS et al., 2009).
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Figure 4.29 - S4 index for scintillating channels.
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The receiver is configured to the default settings. The L1 C/A carrier tracking loop
is composed of a third order PLL with noise bandwidth of 25 Hz, according to the re-
ceiver documentation. Implementation details are not provided by the manufacturer,
once it is a COTS receiver. Therefore, there is some degree of uncertainty regarding
any kind of correction, augmentation, performed in the receiver tracking loops. As
the monitoring algorithm is dependent on the receiver tracking loop structure and
parameters, we tentatively evaluate the monitoring algorithm with the information
available.

We use the monitoring algorithm version adapted to a PLL. As the receiver carrier
tracking loop is a third order PLL, we avoid to estimate ˆ̇fD[k] from the I/Q samples
since it would involve a term with open loop integration, according to Section 4.3.2.
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Instead, we obtain this estimate by simple differencing of the recorded Doppler shift
estimate f̂D[k], so ˆ̇fD[k] = (f̂D[k]− f̂D[k−1])/TI . The phase discriminator is applied
to the I/Q samples to obtain δϕ[k], used in the complementary high frequency branch
of the algorithm.

The monitoring algorithm computes the residual phase estimates of scintillating
channels, including scintillation and clock induced phase variations common to all
processing channels. To remove the receiver clock phase effect, we selected a non-
scintillating channel from each dataset to be used as the reference channel, and then
we subtracted the residual phase estimate computed by the monitoring algorithm
for this channel from the residual phase estimates of the scintillating channels. The
C/N0 of the channels considered are above the level of 40 dB-Hz, which is typically
employed as a mask for scintillation analysis (CURRAN et al., 2015). Surely, due
to the deep signal fades, the C/N0 dropped below 40 dB-Hz in the scintillating
channels during the scintillation activity. We did not consider an elevation mask in
the analysis.

The σϕ is computed recursively for a sliding time window of 60 s. The σϕ computed
with the estimates from the monitoring algorithm was compared to the σϕ computed
by the standard procedure employed in post-processing data analysis, as described
in (DIERENDONCK et al., 1993), (ZHANG et al., 2010), where a fourth order polynomial
is fitted to the Doppler phase with least squares in batch processing using a sliding
time window of 100 s to detrend the phase (ZHANG et al., 2010). The common phase
variation induced by the receiver clock is removed from the resulting detrended
phase by subtracting the detrended phase from the reference channel, and the result
is filtered by three high pass Butterworth filters, which have the same lower limit
frequency defined by ωL and ωW , as defined for the monitoring algorithm.

Rather than investigating the specific effects on the phase due to equatorial scintil-
lation activity present in the datasets, we explore the characteristics of the real-time
monitoring algorithm to provide phase estimates for the computation of σϕ con-
sistent with the batch standard post-processing procedure. The parameters of the
filters are adjusted based on the analysis of the data. Two cases are evaluated, for
two different lower limit frequencies defined by the cutoff frequency ωBF of the three
high pass Butterworth filters in the standard post-processing procedure and by ωL
and ωW in our monitoring algorithm. In case 1, ωBF = ωL = ωW = 2π×0.0175 rad/s
and, in case 2, ωBF = ωL = ωW = 2π × 0.05 rad/s. In both cases, the remaining
parameters of the monitoring algorithm are τH = 200 s, ωH = 2π×5 rad/s, a3 = 1.1,
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b3 = 2.4 and ξ = 1/
√

2. The Butterworth filtering in the standard post-processing
procedure introduces phase changes in the filtered signal, according to its frequency
response. This reflects in a time mismatch between the scintillation phase estimated
by this procedure and the scintillation phase estimated by our monitoring algo-
rithm. Thus, the detrended scintillation phase from the post-processing algorithm
is compensated by a time shift computed from the mean time shift introduced by
the Butterworth filter prior to the σϕ computation, to achieve a better comparison
with our monitoring algorithm.

The comparison between the proposed monitoring algorithm and the post-processing
algorithm described in (DIERENDONCK et al., 1993), (ZHANG et al., 2010) is illustrated
in Figures 4.30, 4.31, 4.32, and 4.33, for datasets 1, 2, 3, and 4, respectively, for the
first case, and in Figures 4.34, 4.35, 4.36, and 4.37, for datasets 1, 2, 3, and 4,
respectively, for the second case.

Figure 4.30 - Phase standard deviation comparison for GPS PRN 04 (G04), dataset 1, and
case 1.
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Figure 4.31 - Phase standard deviation comparison for GPS PRN 24 (G24), dataset 2, and
case 1.
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Figure 4.32 - Phase standard deviation comparison for GPS PRN 15 (G15), dataset 3, and
case 1.
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Figure 4.33 - Phase standard deviation comparison for GPS PRN 21 (G21), dataset 4, and
case 1.
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Figure 4.34 - Phase standard deviation comparison for GPS PRN 04 (G04), dataset 1, and
case 2.
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Figure 4.35 - Phase standard deviation comparison for GPS PRN 24 (G24), dataset 2, and
case 2.
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Figure 4.36 - Phase standard deviation comparison for GPS PRN 15 (G15), dataset 3, and
case 2.
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Figure 4.37 - Phase standard deviation comparison for GPS PRN 21 (G21), dataset 4, and
case 2.
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In general, the phase standard deviation computed based on the phase estimates
from the monitoring algorithm is consistent with the phase standard deviation com-
puted by the post-processing procedure. The only exception is the more significant
difference observed in the last 2 minutes of dataset 1, for 0.05 Hz, as shown in Fig-
ure 4.34, but returning to show good agreement after the transient. We consider
the thresholds of 0.1 rad for detectable scintillation activity in phase, 0.25 rad for
moderate scintillation activity, and 0.5 rad for severe scintillation activity, following
(VILÁ-VALLS et al., 2020). The purpose of the lower frequency limit is to filter out
spurious low frequency content induced by other sources, e.g., multipath. A more
detailed investigation is necessary to define the suitable lower limit to be used when
studying scintillation effects, taking into account factors such as the specific receiver
tracking loop structure, the receiver mounting and surrounding area, complementary
information related to the physics of the ionosphere and the scintillation effects for
the time period and location where the data was collected. As we increase the lower
limit frequency from 0.0175 Hz to 0.05 Hz, more frequency content is removed, thus
decreasing the phase standard deviation, as can be observed comparing Figures 4.30
- 4.33 to Figures 4.34 - 4.37. In this work, our objective is to show that the real-time
monitoring algorithm can be adjusted accordingly, after a comprehensive analysis,
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and it can provide results in real-time consistent with the post-processing procedure.
Even though the receiver manufacturer provides a lot of information about the im-
plemented signal processing of the COTS receiver, we do not have all necessary
information on its exact PLL structure, which directly affects the monitoring algo-
rithm. However, despite of this, the phases estimated by the monitoring algorithm
are displaying standard deviation in a level close to the post-processing algorithm.
Typically, in the post-processing data analysis, the phase standard deviation is com-
puted at multiples of a predefined time internal, where the most common is the 60
s time interval. Hence, we present the results also in a sliding time window of 60 s
to show the possibility of having a real-time phase scintillation metric computation
downstream the real-time phase estimation in our monitoring algorithm.
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5 SCINTILLATION MITIGATION WITH KALMAN PLLS

The signal processing channels in a GNSS receiver perform carrier and code delay
tracking of GNSS satellite signals. Regarding the received signal carrier, ionospheric
irregularities are one source of amplitude and phase scintillation adding up to the
LOS dynamics, introducing disturbances to GNSS tracking algorithms in the re-
ceiver that in many cases cause a reduction of precision in the positioning and
eventually the loss of lock of GNSS signals. Scintillation is more frequently observed
at equatorial and high-latitude regions, with most critical effects induced by severe
scintillation activity at the equatorial region, resulting in rapid amplitude and phase
scintillation with deep amplitude fades for short periods. The mitigation of the scin-
tillation effects, in addition to the detection and monitoring, is challenging from the
signal processing perspective (VILÁ-VALLS et al., 2020).

High accuracy carrier tracking is vital for positioning accuracy improvement in mod-
ern receivers applying carrier-based positioning such as RTK and PPP (JACOBSEN;

ANDALSVIK, 2016), (BANVILLE; LANGLEY, 2013). Once the scintillation effects are
more pronounced in the carrier tracking, robust carrier synchronization structures
contemplating the induced phase and amplitude scintillation can significantly im-
prove carrier tracking. Originally, the traditional tracking loop structures imple-
mented with PLLs and/or FLLs are not directly taking into account amplitude or
phase scintillation. Their parameters are fixed and adjusted for LOS-only tracking.
Robustness can be improved via the tuning of parameters such as noise bandwidth
(LEGRAND et al., 2000) in PLLs or employing an FLL-assisted PLL structure (XU et

al., 2015b), for example.

The Kalman filter has been successfully employed in GNSS carrier tracking loops
with this intent. Early applications involved suboptimal computation of the Kalman
gains by solving only the steady-state Riccati equation, as in (STATMAN; HURD,
1990). Typically, a constant gain Kalman filter structure is chosen in the case the
simplicity of the suboptimal solution is more suitable for the application than in-
troducing the computational load to perform the real-time update of the gains. A
Kalman filter PLL was employed in (HUMPHREYS et al., 2005) with LOS and clock
error state variables, and measurement noise adjusted as a function of the carrier-to-
noise density ratio C/N0, allowing better phase tracking during the power fades and
phase dynamics induced by scintillation when compared to a constant bandwidth
loop.

The introduction of models representing the scintillation dynamics in the received
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signal into the Kalman filter formulation enabled decoupling both scintillation and
LOS contributions to overcome the limitations of techniques that only adjust the
level of uncertainty in models accounting for states related to the LOS dynamics,
e.g., based on an estimate of C/N0 (VILÁ-VALLS et al., 2020). Ionospheric scintilla-
tion is typically modeled as an autoregressive process. In (VILÁ-VALLS et al., 2015),
the parameters of the AR model are identified a priori in an offline procedure, the
measurement noise covariance is online adapted based on an C/N0 estimator and a
discriminator-based Kalman filter PLL structure estimating the scintillation phase
is employed. In (VILÁ-VALLS et al., 2018), an extended Kalman filter PLL structure
using the prompt correlator in-phase/quadrature outputs as measurements is used
for scintillation mitigation, providing estimates of both scintillation amplitude and
phase, with the parameters of their AR models identified offline and adaptive mea-
surement noise covariance update. This concept is generalized in (VILÁ-VALLS et al.,
2018) with an extended Kalman filter with increased complexity including an online
batch identification of the AR models parameters and online updating of the process
noise covariance matrix based on the identification statistics. Other techniques also
consider adaptive Kalman filtering with online adaptive estimation of the AR scin-
tillation model parameters, as in (FOHLMEISTER et al., 2018b), where a dual Kalman
filter was applied. In this approach the scintillation phase and amplitude are esti-
mated by a first Kalman filter. They are then used as measurements in the second
Kalman filter to estimate the parameters of the respective AR process. Afterwards,
the LOS and scintillation phase error estimates are then fed back into the carrier
signal replica generator by a linear quadratic Gaussian control approach.

In this chapter, we present two Kalman PLL structures for ionospheric scintilla-
tion mitigation employing radial basis function networks instead of the AR models
representing scintillation phase and amplitude dynamics. In the first structure, the
innovations of the Kalman filter are taken from the phase discriminator output and
the carrier replica is generated in the NCO with the Kalman filter estimates, such
as the discriminator-based Kalman PLL structure of (VILÁ-VALLS et al., 2015). In
the second structure, the Kalman filter takes the prompt correlator I/Q outputs as
measurements, such as in (VILÁ-VALLS et al., 2018). In this case, a state feedback
controller operating on the error states estimated by the Kalman filter is designed
to provide a control signal to the NCO for the carrier replica generation, following a
pole placement procedure to compute the gain matrix to drive the closed loop error
dynamics to zero. In both structures we have nonlinear process equations due to
the RBF networks, so that both Kalman PLL structures implement the extended
Kalman filter. We propose to employ the RBF networks to model scintillation due to
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the capability of their nonlinear radial basis functions to capture eventual nonlinear
dynamics, possibly evolving with time, induced by the ionospheric scintillation in
the receiver, unlike the AR models. The RBF networks allow greater flexibility in
scintillation induced effects modeling, and we can include pure AR terms in their
structure, in addition to the nonlinear radial basis functions. Also, we can use recur-
sive least squares to estimate the weights of the networks, since they have a linear
structure with respect to their weights. The results of the least squares identification
are used to update the process equations and process noise covariance matrices of
the Kalman filters, as in (VILÁ-VALLS et al., 2018). The measurement noise covari-
ance matrices are also adaptively computed, as in (VILÁ-VALLS et al., 2018), based
on an C/N0 estimator.

Next, we present both adaptive Kalman PLL structures using AR models represent-
ing scintillation phase and amplitude dynamics. Then, we replace the AR scintilla-
tion models by the RBF networks to present the proposed Kalman PLL structures
employing the RBF networks. Finally, we asses the performances of the proposed
adaptive Kalman PLLs employing the RBF networks for scintillation mitigation via
numerical simulations by adding synthetic severe scintillation data generated by the
CSM (HUMPHREYS et al., 2010) to simulated baseband GPS L1 C/A code signal
input data, comparing their results regarding robust LOS tracking and estimation
of scintillation induced effects to the results of the corresponding state-of-the-art
adaptive Kalman PLLs employing pure AR scintillation models (VILÁ-VALLS et al.,
2018). The performance of the proposed Kalman PLLs employing the RBF networks
is also assessed with real scintillation data collected by a commercial receiver, and
compared to the structures employing the AR models.

5.1 Kalman PLLs with AR scintillation models

Let the LOS dynamics and the scintillation phase and amplitude be considered in-
dependent processes. Then, the scintillation process model can be added to the LOS
process model, so that LOS robust tracking and scintillation phase and amplitude
estimation are accomplished by a Kalman PLL. Substituting h in the equations pre-
sented in Section 3.1.5 by the coherent integration period TI , the LOS dynamics is
represented by the kinematic process model (BAR-SHALOM et al., 2001)


ϕD[k]
fD[k]
aD[k]


︸ ︷︷ ︸

=xD[k]

=


1 TI T 2

I /2
0 1 TI

0 0 1


︸ ︷︷ ︸

=FD


ϕD[k − 1]
fD[k − 1]
aD[k − 1]


︸ ︷︷ ︸

=xD[k−1]

+νD[k − 1], (5.1)
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after truncation of (2.11) at the second order term. The LOS state vector xD[k] con-
sists of the Doppler phase ϕD[k], frequency shift fD[k], and frequency drift aD[k].
The kinematic model truncated at the second order term represents the LOS dy-
namics with zero-mean Gaussian jerk with power σ2

jD
, so the process noise νD[k] is

defined by the covariance matrix

QD = σ2
jD


T 5
I /20 T 4

I /8 T 3
I /6

T 4
I /8 T 3

I /3 T 2
I /2

T 3
I /6 T 2

I /2 TI

 . (5.2)

Scintillation phase and amplitude are typically modeled by AR processes in Kalman
PLLs for scintillation mitigation (VILÁ-VALLS et al., 2015), (VILÁ-VALLS et al., 2018),
(VILÁ-VALLS et al., 2018), (LOCUBICHE-SERRA et al., 2016). The AR model for the
scintillation phase can be written as

ϕ[k] =
nϕ∑
i=1

θϕi
ϕ[k − i] + ηϕ[k − 1] = θT

ϕxϕ[k − 1] + ηϕ[k − 1], (5.3)

and the AR model for the scintillation amplitude as

ρ[k] = θρ0 +
nρ∑
i=1

θρi
ρ[k − i] + ηρ[k − 1] = θρ0 + θT

ρ xρ[k − 1] + ηρ[k − 1], (5.4)

where nϕ and nρ are the orders of the phase and amplitude models, respectively,
θϕi

and θρi
are the parameters of the phase and amplitude models, respectively, and

ηϕ[k] with variance σ2
ηϕ

and ηρ[k] with variance σ2
ηρ

are the errors of the phase and
amplitude models, respectively. The bias term θρ0 is introduced in the amplitude
model due to the nonzero mean of the amplitude variations. From the AR models,
we can write the process equations for the scintillation phase as

xϕ[k] =
 θT

ϕ[
Inϕ−1 0nϕ−1

]
︸ ︷︷ ︸

=FϕAR

xϕ[k − 1] + νϕ[k − 1], (5.5)

and for the scintillation amplitude as

xρ[k] =
 θT

ρ[
Inρ−1 0nρ−1

]
︸ ︷︷ ︸

=FρAR

xρ[k − 1] +
 θρ0

0nρ−1


︸ ︷︷ ︸

=bρAR

+νρ[k − 1], (5.6)
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with the scintillation phase state vector

xϕ[k] =
[
ϕ[k] · · · ϕ[k − nϕ + 1]

]T
, (5.7)

and the scintillation amplitude state vector

xρ[k] =
[
ρ[k] · · · ρ[k − nϕ + 1]

]T
. (5.8)

The scintillation phase process noise vector is

νϕ[k] =
 ηϕ[k]
0nϕ−1

 , (5.9)

and the scintillation amplitude process noise vector is

νρ[k] =
 ηρ[k]
0nρ−1

 , (5.10)

where Iz and 0z are the identity matrix of size z and a vector including only zeroes
of size z, respectively. The process noise covariance matrix of the scintillation phase
is

QϕAR = diag
([
σ2
ηϕ
,0T

nϕ−1

]T)
(5.11)

and the process noise covariance matrix of the scintillation amplitude is

QρAR = diag
([
σ2
ηρ
,0T

nρ−1

]T)
, (5.12)

where diag(v) denotes a diagonal matrix formed by the elements of the vector v.

Different Kalman PLL structures can be implemented for carrier synchronization,
working either with direct states or with error states (WON et al., 2010), (YANG et al.,
2017). In the first case, the Kalman filter provides estimates of LOS and scintillation
states, the carrier replica is directly generated with the Kalman filter estimates in
the NCO, and the phase discriminator outputs are taken as the filter innovations.
In the second case, in general, the Kalman filter provides estimates of the error in
LOS and scintillation phase states, used in the carrier synchronization feedback.
The filter observations can be taken from the phase discriminator outputs or from
the prompt correlator I/Q outputs. Additionally, a controller taking the phase error
state as input is necessary to provide a control signal to the NCO for the replica
generation. Other Kalman PLLs employing direct or error states are possible, e.g.,
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as shown in (WON et al., 2010).

In this work, we propose a Kalman PLL structure for scintillation mitigation hence-
forth called discriminator-based Kalman PLL, which includes the scintillation phase
dynamics in the Kalman filter model with discriminator outputs taken as filter inno-
vations, and a Kalman PLL structure with prompt correlator I/Q outputs taken as
observations including both scintillation phase and amplitude estimation, henceforth
called correlator-based Kalman PLL. Next, we describe the Kalman PLL formula-
tion for both structures using the AR scintillation models.

5.1.1 Discriminator-based Kalman PLL

In the direct state discriminator-based Kalman PLL, the scintillation amplitude is
not part of the state vector, which is formed by the LOS states and the scintilla-
tion phase states. The state vector x1[k] of the discriminator-based Kalman PLL is
defined as

x1[k] =
[
xT
D[k] xT

ϕ [k]
]T
. (5.13)

When using the AR model for the scintillation phase, the process equations are
linear with respect to x1[k], and the state transition matrix is

F1 = blkdiag (FD,FϕAR) , (5.14)

where blkdiag(M1, · · · ,Mo) denotes a block-diagonal matrix formed by the matrices
M1, · · · ,Mo on its main diagonal. The process noise covariance matrix is

Q1 = blkdiag (QD,QϕAR) . (5.15)

The process equations, then, are

x1[k] = F1x1[k − 1] + ν1[k − 1], (5.16)

where ν1[k] =
[
νT
D[k] νT

ϕ [k]
]T

.

The carrier replica is generated in the NCO directly with the states estimated by the
Kalman filter, but now including the scintillation phase estimate. The signal model
for the carrier replica is obtained from the carrier phase model (2.18), including the
scintillation phase estimate along the Doppler phase and frequency shift estimates.
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Thus, the carrier replica is

d1[k; f̂D[k]; ϕ̂[k]] =
[
ej(ϕ̂D[k]+ϕ̂[k]), . . . , ej(f̂D[k](N−1)Ts+ϕ̂D[k]+ϕ̂[k])

]T
, (5.17)

and now, accordingly, the phase discriminator (2.26) is

εP [k] = δϕ[k] + δϕD[k] + ηA[k], (5.18)

with δϕ[k] = ϕ[k] − ϕ̂[k]. The Kalman filter innovations sequence is directly formed
by the outputs of the phase discriminator above (5.18). The innovation is the sum
of the Doppler and the scintillation phase errors. Hence, the matrix of observations
is

H1 =
[
1 0 0 1 0T

nϕ−1

]
, (5.19)

with measurement noise covariance defined by the arctangent discriminator noise
approximation (2.27)

R1 = 1
2c/n0TI

(
1 + 1

2c/n0TI

)
. (5.20)

The parameters of the scintillation phase AR model can be estimated by recur-
sive least squares (SÖDERSTRÖM; STOICA, 1989). We implement the recursive least
squares algorithm with rectangular sliding window as proposed in (YOUNG, 2011) to
estimate the AR model parameters and the model error variance in real-time. Then,
we adaptively update Fϕ and Qϕ in the Kalman filter with θ̂ϕ[k − 1] and σ̂2

ϕ[k − 1],
respectively. In addition, we also adaptively update R1 using ĉ/n0[k − 1] at each
iteration. There are many algorithms available for c/n0 estimation (FALLETTI et al.,
2011).

5.1.2 Correlator-based Kalman PLL

In the correlator-based Kalman PLL structure employing the AR scintillation mod-
els, the Kalman filter estimates the scintillation amplitude in addition to the phase
error state vector including LOS and scintillation phase states which is used in the
carrier synchronization feedback loop. We can write the phase error state vector as

δx1[k] = x1[k] −

xDNCO [k]
xϕNCO [k]

 = x1[k] − xNCO[k], (5.21)

with x1[k] defined by (5.13), and xDNCO [k] ∈ R3×1 and xϕNCO [k] ∈ Rnϕ×1 are the
LOS and the scintillation phase state vectors of the NCO state vector xNCO[k] =
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[
xT
DNCO

[k] xT
ϕNCO

[k]
]T

, with

xDNCO [k] =
[
ϕDNCO [k] fDNCO [k] aDNCO [k]

]T
, (5.22)

and
xϕNCO [k] =

[
ϕNCO[k] . . . ϕNCO[k − nϕ + 1]

]T
. (5.23)

Then, Kalman filter state vector is

x2[k] =
δx1[k]

xρ[k]

 , (5.24)

and the state transition matrix is

F2 = blkdiag (F1,FρAR) , (5.25)

with process noise covariance matrix

Q2 = blkdiag (Q1,QρAR) . (5.26)

The NCO process equations are

xNCO[k] = FNCOxNCO[k − 1] + GNCOuNCO[k − 1], (5.27)

with FNCO = F1 and GNCO = I3+nϕ
.

From (5.16), (5.21), (5.24) and (5.27), and considering FNCO = F1, we get the
Kalman filter process equations

x2[k] =
x1[k] − xNCO[k]

xρ[k]


=
F1x1[k − 1] + ν1[k − 1] − FNCOxNCO[k − 1] − GNCOuNCO[k − 1]

FρARxρ[k − 1] + bρAR + νρ[k − 1]


=
F1δx1[k − 1] − GNCOuNCO[k − 1] + ν1[k − 1]

FρARxρ[k − 1] + bρAR + νρ[k − 1]


=F2x2[k − 1] + G2

uNCO[k − 1]
bρAR

+ ν2[k − 1], (5.28)

where G2 = blkdiag(−GNCO, Inρ) = blkdiag(−I3+nϕ
, Inρ) and ν2[k] = [νT

1 [k]
νT
ρ [k]]T.
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The Kalman filter provides estimates x̂2[k] =
[
δx̂T

1 [k] x̂T
ρ [k]

]T
using the prompt

correlator outputs as observations. In (2.25), the scintillation phase was not con-
sidered in the carrier replica generation. For scintillation mitigation, the NCO uses
its scintillation phase estimate along with its LOS estimates to generate the carrier
replica. The carrier replica generated by the NCO is

d2[k; fDNCO [k];ϕNCO[k]] =
[
ej(ϕDNCO [k]+ϕNCO[k]),

. . . , ej(fDNCO [k](N−1)Ts+ϕDNCO [k]+ϕNCO[k])
]T
. (5.29)

Calling ϕT [k] = ϕD[k] + ϕ[k] and ϕTNCO [k] = ϕDNCO [k] + ϕNCO[k], so that δϕT [k] =
ϕT [k] − ϕTNCO [k], we can modify (2.25) to obtain the observation equations of the
correlator-based Kalman filter from the I/Q prompt correlators outputs, as

y2[k] =
ρ[k] cos (ϕT [k] − ϕTNCO [k])
ρ[k] sin (ϕT [k] − ϕTNCO [k])

+
ηDI

[k]
ηDQ

[k]

 =
ρ[k] cos (δϕT [k])
ρ[k] sin (δϕT [k])

+
ηDI

[k]
ηDQ

[k]

 ,
(5.30)

whose noise covariance matrix is

R2 = (σ2
ηD
/2)I2, (5.31)

with σ2
ηDI

= σ2
ηDQ

= σ2
ηD
/2, as described in Section 2.1. The matrix of observations

employed in the extended Kalman filter equations is obtained by linearization of the
observation equations, leading to

H2 =

 ρ sin δϕT 0T
2 ρ sin δϕT 0T

nϕ−1 cos δϕT 0T
nρ−1

-ρ cos δϕT 0T
2 -ρ cos δϕT 0T

nϕ−1 sin δϕT 0T
nρ−1

 , (5.32)

where ρ = ρ̂[k|k− 1] and δϕT = δϕ̂D[k|k− 1] + δϕ̂[k|k− 1], from the prediction step
of the Kalman filter.

We use a state feedback control law to provide the control signal uNCO[k] to the
NCO, such that

uNCO[k] = Lδx̂1[k], (5.33)

where L ∈ R(3+nϕ)×(3+nϕ) is a fixed feedback gain matrix, which is computed to drive
the phase error dynamics to zero fast. Assuming that the Kalman filter provides
accurate estimation of δx1[k], relying on the separation principle (CURRY, 1969),
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the error dynamics are

δx1[k] = x1[k] − xNCO[k] = F1δx1[k − 1] − GNCOuNCO[k − 1] + ν1[k − 1]

= F1δx1[k − 1] − GNCOLδx̂1[k − 1] + ν1[k − 1]

≈ (F1 − L) δx1[k − 1] + ν1[k − 1], (5.34)

and we can compute the gain matrix L to place the eigenvalues of (F1 − L) at the
chosen target poles p1.

Doppler phase, Doppler shift, and scintillation phase estimates can be obtained by
ϕ̂D[k] = ϕDNCO [k] + δϕ̂D[k], f̂D[k] = fDNCO [k] + δf̂D[k] and ϕ̂[k] = ϕNCO[k] + δϕ̂[k],
respectively.

Similarly to the discriminator-based Kalman PLL, we adaptively update FϕAR , FρAR ,
bρAR , QϕAR , and QρAR in the Kalman filter with, respectively, θ̂ϕ[k − 1], θ̂ρ[k − 1],
θ̂ρ0 [k − 1], σ̂2

ϕ[k − 1], and σ̂2
ρ[k − 1] from the recursive sliding window least squares

parameter estimation. We also adaptively update R2 with σ̂2
ηD

[k−1] = 1/(TI ĉ/n0[k−
1]).

5.2 Kalman PLLs for scintillation mitigation with RBF networks mod-
eling scintillation

RBFs have been firstly employed in multidimensional interpolation problems (POW-

ELL, 1985), (HARDY, 1971). They are typically associated with neural networks due
to their interpolation structure, which can be considered as a special case of a neural
network with one hidden layer formed by the nonlinear RBFs taking the role of the
activation functions and one output layer formed by the weighted sum of the output
of the functions, with guaranteed learning rule (BROOMHEAD; LOWE, 1988).

The radial basis function ψ(·) is a nonlinear mapping ψ(·) : R+ → R on a d-
dimensional space. The RBF network takes the form (AGUIRRE et al., 2004)

g(x) = ω0 +
nr∑
i=1

ωiψ(∥x − ci∥2), (5.35)

where x ∈ Rd×1 is the input, ∥ · ∥2 is the Euclidean norm, ci ∈ Rd×1 are fixed points
called centers, nr is the number of centers, and ωi, i = 0, . . . , nr are the weights.
The function arguments are the distances in the d-dimensional space from x to the
centers, which can be chosen in several ways. They can be chosen randomly from
the dataset, or can be uniformly distributed in the region of the space covered by
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the data (SMITH, 1992). Once the centers are defined, the network structure is linear
with respect to the weights, and thus we can use standard least squares to estimate
the weights (AGUIRRE, 2000), with regressors formed by the nonlinear RBFs.

Considering the RBF network in the modeling of autonomous dynamic systems, x is
composed of autoregressive terms, and linear AR terms can be added to the network
(AGUIRRE et al., 2004), taking the form

α[k] =ω0 +
nr∑
i=1

ωiψ(∥α[k − 1] − cαi
∥2)+

nα∑
i=1

ωnr+iα[k − i] + ηα[k − 1], (5.36)

where α[k − 1] ∈ Rnα×1 is composed of the nα AR terms of the variable of interest
α[k], so that α[k − 1] =

[
α[k − 1] . . . α[k − nα]

]T
, and ηα[k] is the RBF network

error with variance σ2
ηα

. We have additional nα weights relative to the linear terms,
and nr + nα + 1 weights in total. The centers cαi

can be similarly formed by AR
terms taken from the modeling dataset, or can be distributed in a region of the
phase space covered by the modeling dataset, for example. The choice to include the
linear AR terms and the bias ω0 depends on the dynamics to be modeled.

The RBFs can be divided into global (SCHAGEN, 1979) and local functions (WEND-

LAND, 2006). In this work we consider the Thin Plate Spline, which is a global
function of the form

ψ(ri) = r2
i ln(ri), (5.37)

where ri = ∥α[k − 1] − ci∥2. For the scintillation phase, α[k] is substituted by
ϕ[k], and for the scintillation amplitude, α[k] is substituted by ρ[k] in the RBF
model (5.36). Also, α[k− 1] is substituted by xϕ[k− 1] ∈ Rnϕ×1 for the scintillation
phase, and by xρ[k − 1] ∈ Rnρ×1 for the scintillation amplitude, so that we have
xϕ[k − 1] = [ϕ[k − 1], . . . , ϕ[k − nϕ]]T and xρ[k − 1] = [ρ[k − 1], . . . , ρ[k − nρ]]T.
Using the RBF network as process model for both scintillation phase and amplitude
in the Kalman PLLs requires the computation of the gradient of α[k] with respect
to α[k − 1] to form the first line of the Jacobian matrix of the process equations
employed in the extended Kalman filter. The gradient can be written as

∇α[k] =
[

∂α[k]
∂α[k − 1] , . . . ,

∂α[k]
∂α[k − nα]

]T

(5.38)

=
nr∑
i=1

ωi
∂ψ

∂ri
∇ri + [ωnr+1, . . . , ωnr+nα ]T ,
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with
∂ψ

∂ri
= ri(1 + 2 ln(ri)), (5.39)

and
∇ri = 1

ri
(α[k − 1] − cαi

). (5.40)

Substituting (5.39) and (5.40) into (5.38), we get the expression for the gradient of
α[k]

∇α[k] =
nr∑
i=1

ωi∂ψ/∂ri
ri

(α[k − 1] − cαi
) (5.41)

+ [ωnr+1, . . . , ωnr+nα ]T .

Therefore, we can write the Jacobian matrix Fα[k − 1] for the process equations of
the RBF network α[k] = fα(α[k − 1]) as

Fα[k − 1] = ∂fα
∂α

∣∣∣∣∣
α=α̂[k−1]

=
 ∇Tα[k][

Inα−1 0nα−1

] . (5.42)

Substituting α by ϕ and ρ, we get the Jacobians of the process equations for the
scintillation phase and amplitude dynamics, respectively. The scintillation phase
varies around 0, while the scintillation amplitude varies around 1, according to the
signal model normalized by the undisturbed amplitude, presented in Section 2.1.
Therefore, we drop the bias term from the scintillation phase RBF network, and we
keep the linear AR terms in both phase and amplitude RBF networks for now, for
the sake of generality. The scintillation phase RBF network, already discarding the
bias term, can be compactly written as

ϕ[k] = ωT
ϕRBF

ψ(xϕ[k − 1]) + ωT
ϕLIN

xϕ[k − 1] + ηϕ[k − 1], (5.43)

and the scintillation amplitude RBF network as

ρ[k] = ω0ρ + ωT
ρRBF

ψ(xρ[k − 1]) + ωT
ρLIN

xρ[k − 1] + ηρ[k − 1], (5.44)

where ωϕRBF = [ωϕ1 , . . . , ωϕnr
]T, ψ(xϕ[k−1]) = [ψ(∥xϕ[k−1]−cϕ1∥2), . . . , ψ(∥xϕ[k−

1] − cϕnr
∥2)]T, ωϕLIN = [ωϕnr+1 , . . . , ωϕnr+nϕ

]T, ωρRBF = [ωρ1 , . . . , ωρnr
]T, ψ(xρ[k −

1]) = [ψ(∥xρ[k − 1] − cρ1∥2), . . . , ψ(∥xρ[k − 1] − cρnr
∥2)]T and ωρLIN = [ωρnr+1 , . . . ,

ωρnr+nρ
]T.

Unlike the scintillation phase and amplitude process models using the pure AR
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models, the process models using the RBF networks are nonlinear with respect to
scintillation phase and amplitude state vectors. For the scintillation phase RBF
network, the process equations can be written as

xϕ[k] =
ωT

ϕRBF
ψ(xϕ[k − 1]) + ωT

ϕLIN
xϕ[k − 1][

Inϕ−1 0nϕ−1

]
xϕ[k − 1]


︸ ︷︷ ︸

=fϕRBF (xϕ[k−1])

+νϕ[k − 1], (5.45)

and for the scintillation amplitude, as

xρ[k] =
ωT

ρRBF
ψ(xρ[k − 1]) + ωT

ρLIN
xρ[k − 1][

Inρ−1 0nρ−1

]
xρ[k − 1]


︸ ︷︷ ︸

=fρRBF (xρ[k−1])

+
 ωρ0

0nρ−1


︸ ︷︷ ︸
=bρRBF

+νρ[k − 1], (5.46)

with the RBF process noise vectors

νϕ[k] =
[
ηϕ[k] 0T

nϕ−1

]T
(5.47)

and
νρ[k] =

[
ηρ[k] 0T

nρ−1

]T
, (5.48)

whose covariance matrices are

QϕRBF = diag
([
σ2
ηϕ
,0T

nϕ−1

]T)
(5.49)

and
QρRBF = diag

([
σ2
ηρ
,0T

nρ−1

]T)
, (5.50)

respectively.

The Jacobian matrix of the scintillation phase process equations is

FϕRBF [k − 1] =∂fϕRBF

∂xϕ

∣∣∣∣∣
xϕ=x̂ϕ[k−1]

=
∑nrϕ

i=1
ωϕi

∂ψ/∂rϕi

rϕi
(x̂ϕ[k − 1] − cϕi

)T + ωT
ϕLIN[

Inϕ−1 0nϕ−1

]
 , (5.51)
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and the Jacobian matrix of the scintillation amplitude process equations is

FρRBF [k − 1] =∂fρRBF

∂xρ

∣∣∣∣∣
xρ=x̂ρ[k−1]

=
∑nrρ

i=1
ωρi∂ψ/∂rρi

rρi
(x̂ρ[k − 1] − cρi

)T + ωT
ρLIN[

Inρ−1 0nρ−1

]
 . (5.52)

The proposed discriminator-based and correlator-based Kalman PLLs with the RBF
networks modeling scintillation phase and amplitude dynamics are based on the
formulation of the Kalman PLLs employing the AR scintillation models presented
in the previous section, with some modifications to adjust the Kalman PLLs to the
inclusion of the RBF networks as process models of the scintillation dynamics.

5.2.1 Discriminator-based Kalman PLL with RBF networks

In the discriminator-based Kalman PLL, now we have nonlinear process equations
with respect to the state vector x1[k] =

[
xT
D[k] xT

ϕ [k]
]T

. The process equations,
used for the state propagation in the Kalman filter, can be written as

x1[k] =
 FDxD[k − 1]
fϕRBF(xϕ[k − 1])

+ ν1[k − 1], (5.53)

with fϕRBF(xϕ[k−1]) defined in (5.45) and with ν1[k] =
[
νT
D[k] νT

ϕ [k]
]T

, where now
νϕ[k] is formed by the RBF network error, as defined in (5.47). The Jacobian matrix
of the process equations, used in the state covariance propagation in the Kalman
filter, is

F1 = blkdiag(FD,FϕRBF [k − 1]), (5.54)

the process noise covariance matrix is

Q1 = blkdiag(QD,QϕRBF), (5.55)

and the matrix of observations is

H1 =
[
1 0 0 1 0T

nϕ−1

]
. (5.56)

Due to the nature of the scintillation phase dynamics in severe scintillation, that
may present rapid variations and discontinuities with half cycle jumps, the Jacobian
computation near such discontinuities may lead to filter divergence. We compute
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the Jacobian around zero for the scintillation phase, which is a point of symmetry
of the phase variations. Thus, the Jacobian is computed as

FϕRBF = ∂fϕRBF

∂xϕ

∣∣∣∣∣
xϕ=xϕ

, (5.57)

with xϕ = 0T
nϕ

, and we substitute FϕRBF [k− 1] by FϕRBF in the above expression for
F1 computation.

The RBF network weights and the network error variance are also estimated by
the recursive sliding window least squares algorithm from (YOUNG, 2011), since the
network structure is linear with respect to the weights, and the filter adaptation
with the least squares results is performed in the same way. We adaptively update
fϕRBF(xϕ[k − 1]) and FϕRBF with ω̂ϕRBF [k − 1] and ω̂ϕLIN [k − 1], and QϕRBF with
σ̂2
ϕ[k − 1] in the Kalman filter. The measurement noise covariance R1 is defined in

the same way as in the discriminator-based structure using the AR models, and is
adaptively updated with ĉ/n0[k − 1].

5.2.2 Correlator-based Kalman PLL with RBF networks

In the correlator-based structure, we cannot work with the phase error states in the
Kalman filter, since we have nonlinear process equations. Instead, the Kalman filter
estimates the direct phase states, and then we compute the difference between the
estimated phase states and the NCO phase states from the previous iteration to
obtain the phase error state vector estimate used by the state feedback controller of
the phase loop. The carrier replica is generated with the NCO states in the same way
as in the correlator-based structure using the AR models. The model is the same.
The Jacobian of the scintillation phase dynamics, used for the NCO state feedback
gain computation via pole placement and for the state covariance propagation in
the Kalman filter is computed according to (5.57).

The state vector of the Kalman filter is now

x2[k] =
x1[k]
xρ[k]

 , (5.58)

with x1[k] =
[
xT
D[k] xT

ϕ [k]
]T

. The control signal to the NCO is computed by

uNCO[k] = Lδx̂1[k], (5.59)
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with δx̂1[k] = x̂1[k] − xNCO[k − 1]. The process equations, used for the state propa-
gation in the Kalman filter, can be written as

x2[k] =


FDxD[k − 1]

fϕRBF(xϕ[k − 1])
fρRBF(xρ[k − 1])

+
03+nϕ

bρRBF

+ ν2[k − 1], (5.60)

with fϕRBF(xϕ[k − 1]) defined in (5.45), fρRBF(xρ[k − 1]) defined in (5.46) and with
ν2[k] =

[
νT
D[k] νT

ϕ [k] νT
ρ [k]

]T
, where now νϕ[k] and νρ[k] are formed by the RBF

network error, as defined in (5.47) and (5.48). The Jacobian matrix of the process
equations, used in the state covariance propagation in the Kalman filter, is

F2 = blkdiag(FD,FϕRBF [k − 1],FρRBF [k − 1]), (5.61)

the process noise covariance matrix is

Q2 = blkdiag(QD,QϕRBF ,QρRBF), (5.62)

and the matrix of observations is

H2 =

 ρ sin δϕT 0T
2 ρ sin δϕT 0T

nϕ−1 cos δϕT 0T
nρ−1

-ρ cos δϕT 0T
2 -ρ cos δϕT 0T

nϕ−1 sin δϕT 0T
nρ−1

 , (5.63)

where, now, as the Kalman filter is estimating the direct states instead of the error
states, we have δϕT = ϕ̂D[k|k− 1] + ϕ̂[k|k− 1] −ϕDNCO [k− 1] −ϕNCO[k− 1]. For the
amplitude, we have ρ = ρ̂[k|k − 1].

The Jacobian of the scintillation phase dynamics is computed according to (5.57),
so FϕRBF [k − 1] = FϕRBF , and the Jacobian of the scintillation amplitude dynamics
is

FρRBF [k − 1] = ∂fρRBF

∂x ρ

∣∣∣∣∣
xρ=x̂ρ[k−1]

. (5.64)

The RBF network weights and the network error variance are also estimated by the
recursive sliding window least squares algorithm from (YOUNG, 2011). Similarly, we
adaptively update fϕRBF(xϕ[k−1]), FϕRBF , fρRBF(xρ[k−1]), FρRBF [k−1], bρRBF , QϕRBF

and QρRBF in the Kalman filter with ω̂ϕRBF [k − 1] and ω̂ϕLIN [k − 1], ω̂ρRBF [k − 1],
ω̂ρLIN [k− 1] and ωρ0 [k− 1], σ̂2

ϕ[k− 1] and σ̂2
ρ[k− 1], from the recursive least squares

estimation. We also adaptively update R2 with σ̂2
ηD

[k − 1] = 1/(TI ĉ/n0[k − 1]).
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5.3 Evaluation of the proposed Kalman PLLs with RBF networks mod-
eling scintillation

The proposed Kalman PLL structures for scintillation mitigation employing RBF
networks to model scintillation are firstly evaluated by Monte Carlo simulations
considering synthetic scintillation input data generated by the CSM (HUMPHREYS

et al., 2010) in severe scintillation scenarios. Then, the Kalman PLLs are evaluated
with real data collected by a COTS GNSS receiver.

5.3.1 Synthetic scintillation data

The proposed adaptive Kalman PLL algorithms for scintillation mitigation employ-
ing the RBF networks to model scintillation phase and amplitude dynamics are
evaluated by numerical simulations considering synthetic scintillation realizations
generated by the CSM (HUMPHREYS et al., 2010) in severe scintillation scenarios
defined by amplitude strength index S4 = 0.8 and decorrelation time τ0 = 0.1 s.
The carrier input signal has the same configuration of the previous chapter, with
a Doppler frequency shift of 1000 Hz and a Doppler frequency drift of 0.94 Hz/s.
The carrier signal is added to the scintillation data generated by the CSM to form
the complete input signal. Perfect code delay synchronization is assumed in the BB
GNSS input signals, no navigation bit transitions are considered and the carrier
amplitude is unitary. Gaussian receiver thermal noise is added to the sampled I/Q
signal components in all simulations, generated with variance such that the nominal
C/N0 is 45 dB-Hz. The samples of the scintillation data are generated by CSM each
10 ms, and the coherent integration period TI is 10 ms. The overall parameters of
the Monte Carlo simulations are the same as those used to evaluate the monitoring
algorithm in the previous chapter.

The performance of the proposed Kalman PLLs employing the RBF networks is
evaluated with 300 Monte Carlo simulations with the severe scintillation and receiver
noise realizations, each with a 150 s time window, and compared to the performance
of the Kalman PLLs employing the pure AR models. The performance measure is
the root mean square error

RMSEx[k] =

√√√√ 1
M

M∑
m=1

1
k

k∑
i=1

(xm[i] − x̂m[i])2, (5.65)

with x being substituted by the variable of interest, for the time index k, the Monte
Carlo iteration index m and the number of Monte Carlo simulations M . We also
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compute the root mean of the trace of the state covariance matrix P[k] from the
Kalman filter, as an indicator of the reliability of the Kalman filters. Since the
diagonal elements represent variances of the components of the state vector, if their
sum converges, no single element is diverging, then it is an indicator of convergence
of the filter (GAMSE et al., 2010). Thus, we define

RMSSTr(P)[k] =

√√√√ 1
M

M∑
m=1

1
k

k∑
i=1

Tr(Pm[i]), (5.66)

where Tr(·) represents the trace of a matrix, and we call the index RMSS by root
mean of sum of squares, since the variances are squares of standard deviations, so
the index is defined in terms of standard deviations, as the RMSE. In the following,
we label the adaptive discriminator-based and correlator-based Kalman PLLs em-
ploying the RBF networks as DKPLL-RBF and CKPLL-RBF, respectively, and the
adaptive discriminator-based and correlator-based Kalman PLLs employing pure
AR models as DKPLL-AR and CKPLL-AR, respectively.

The block of the process noise covariance matrix related to the LOS dynamics is
defined by σ2

jD
, which is the control parameter to adjust the expected level of jerk,

or the Doppler drift rate in our case. We consider the maximum Doppler drift
rate observed by a static receiver positioned on ground of 2π × 1.35 × 10−4 rad/s3,
according to the results from Section 2.2, so that any absolute value below the
maximum Doppler drift rate jDmax = 2π × 1.35 × 10−4 rad/s3 is considered equally
probable, to obtain an approximate value for σ2

jD
. 1

Similar argument is used to define the initial state covariance matrix of the Kalman
filters in all simulations. We consider the maximum initial errors of Doppler
phase ϕDmax [0] = π rad, Doppler shift fDmax [0] = 2π × 10 rad/s, Doppler drift
aDmax [0] = 2π × 0.45 rad/s2, scintillation phase ϕmax[0] = π rad and scintillation
amplitude ρmax[0] = 0.5, to approximate the respective variances by the uniform
distribution variance computed for each maximum initial error, and define the ini-
tial state covariance matrix. Regarding the state vector initialization, we consider
that the tracking loops receive a correct Doppler shift initial value of 2π × 1000
rad/s from the acquisition, and we consider unitary initial scintillation amplitude.
The initial value of all the other state vector elements is 0.

There are many methods available for C/N0 estimation in GNSS receivers (FALLETTI

1The uniform distribution variance is σ2
UD = (2lmax)2/12, where lmax is the maximum absolute

value.
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et al., 2011), (MUTHURAMAN; BORIO, 2010) that can be employed to adaptively
update the measurement noise covariance matrices R1 and R2 in the discriminator-
based and correlator-based Kalman PLLs, respectively. Here, we estimate the C/N0

according to
ĉ/n0[k] = (ρ̂[k])2c/n0, (5.67)

for ĉ/n0[k] in Hz, and c/n0 = 1045/10 Hz, which is the nominal c/n0 equivalent to
45 dB-Hz. In the case of the correlator-based Kalman PLLs, ρ̂[k] is the scintillation
amplitude estimated by the Kalman filters, and, in the case of the discriminator-
based Kalman PLLs, we use ρ̂[k] =

√
I2
P [k] +Q2

P [k], where IP [k] and QP [k] are the
I/Q prompt correlator outputs, respectively.

We used one severe scintillation realization to perform the system identification of
the AR models and the RBF networks representing scintillation phase and amplitude
dynamics, thus obtaining the AR models parameters θϕi

and θρi
, and the AR model

error variances, the weights of the RBF networks ωϕi
and ωρi

, and the network
error variances, to define a nominal set of parameters/weights employed as initial
conditions for the recursive least squares and to define the initial covariance matrices
related to the scintillation processes.

The order of the models can be defined using an information criterion, such as the
Akaike Information Criterion (AIC) or the Bayesian Information Criterion (BIC),
applied to candidate regressors, that can be ordered according to the Error Reduc-
tion Ratio (ERR) criterion, for example (AGUIRRE, 2000). In this work, we use the
partial autocorrelation function (PAF) to define the order of the models, as typ-
ically found in the literature (VILÁ-VALLS et al., 2018), (VILÁ-VALLS et al., 2015),
(VILÁ-VALLS et al., 2018), (FOHLMEISTER et al., 2018b), including the regressors in
the ascending order of the lags until the PAF value falls within the confidence in-
terval. From this procedure, performed offline, the AR and RBF models order for
the scintillation phase is nϕ = 2 and for the scintillation amplitude is nρ = 5, ac-
cording to the partial autocorrelation functions of the phase and amplitude samples
presented in Figures 5.1 and 5.2, respectively.
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Figure 5.1 - Scintillation phase models order.
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Figure 5.2 - Scintillation amplitude models order.
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In the system identification of the RBF networks, the centers are taken from the
identification data, equally spaced in time. The number of centers is nrϕ

= 38 for
the scintillation phase network and nrρ = 20 for the scintillation amplitude network.
In the amplitude network we included the linear autoregressive terms.

The online parameter estimation in the simulations employed the recursive least
squares algorithm of (YOUNG, 2011), for 1500 points rectangular sliding window.
This approach significantly reduces the parameter estimation complexity, when com-
pared to the approach of (VILÁ-VALLS et al., 2018) employing batch least squares in
the sliding window. The controller gains for CKPLL-AR and CKPLL-RBF were
computed to place the respective phase error closed loop dynamics at the same tar-
get eigenvalues. The results of the Monte Carlo simulations comparing DKPLL-AR
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and DKPLL-RBF, discarding the cases presenting cycle slips from the RMSE com-
putation, are presented in Figures 5.3 and 5.4, for, respectively, Doppler phase ϕD[k]
and scintillation phase ϕ[k], and in Figure 5.5 for the RMSS of the trace of the state
covariance matrix Tr(P[k]).

Figure 5.3 - Doppler phase estimation RMSEϕD
for DKPLL-AR and DKPLL-RBF.
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Figure 5.4 - Scintillation phase estimation RMSEϕ for DKPLL-AR and DKPLL-RBF.
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Figure 5.5 - State covariance RMSSTr(P) for DKPLL-AR and DKPLL-RBF.
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The results of the Monte Carlo simulations comparing CKPLL-AR and CKPLL-
RBF, discarding the cases presenting cycle slips from the RMSE computation, are
presented in Figures 5.6, 5.7, and 5.8, for, respectively, Doppler phase ϕD[k], scintil-
lation phase ϕ[k], scintillation amplitude ρ[k], for, respectively, Doppler phase ϕD[k],
scintillation phase ϕ[k], scintillation amplitude ρ[k], and in Figure 5.9 for the RMSS
of the trace of the state covariance matrix Tr(P[k]).
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Figure 5.6 - Doppler phase estimation RMSEϕD
for CKPLL-AR and CKPLL-RBF.
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Figure 5.7 - Scintillation phase estimation RMSEϕ for CKPLL-AR and CKPLL-RBF.
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Figure 5.8 - Scintillation amplitude estimation RMSEρ for CKPLL-AR and CKPLL-RBF.
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Figure 5.9 - State covariance RMSSTr(P) for CKPLL-AR and CKPLL-RBF.
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All the Kalman PLLs present good convergence characteristics. We can note that,
in general, the results of the proposed adaptive Kalman PLL structures with RBF
networks modeling the scintillation dynamics are comparable to those of the corre-
sponding structures with the AR scintillation models, with a slight advantage to the
RBF in the case of the correlator-based structures. Comparing the discriminator-
based structures, DKPLL-RBF and DKPLL-AR, we can observe in Figure 5.3 that
DKPLL-AR presented a slightly smaller carrier synchronization error, but almost
equivalent, while DKPLL-RBF presented a smaller scintillation phase estimation
error, according to Figure 5.4. The scintillation amplitude is not estimated in the
discriminator-based Kalman PLLs.

Regarding the correlator-based structures, CKPLL-RBF and CKPLL-AR, we can
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observe a bigger difference in the carrier synchronization error, with advantage to the
RBF, as shown in Figure 5.6. We credit this to a higher sensitivity of the CKPLL-
AR to errors in the initial conditions. The results of CKPLL-RBF are comparable
to the results presented in Figure 5.3. The scintillation estimation errors of both
CKPLL-RBF and CKPLL-AR are very close, as shown in Figures 5.7 and 5.8, for
the scintillation phase and the scintillation amplitude, respectively. The larger errors
observed in scintillation phase estimation of the correlator-based structures, when
compared to the errors presented in Figure 5.4 of the discriminator-based structures,
are related to the dynamics introduced in the loop by the NCO controller. This is
highlighted by the half-cycle phase discontinuities induced by severe scintillation,
where the correlator-based structures are less responsive to follow such discontinu-
ities, resulting in the increase of the RMSE values. Despite of this, they are able to
improve robustness to the scintillation effects in the carrier synchronization. In the
absence of half-cycle phase discontinuities, the scintillation phase estimation in the
carrier-based structures is equivalent to the estimation in the discriminator-based
structures, as presented next in the results with real scintillation data. However, ac-
cording to (VILÁ-VALLS et al., 2018), the discriminator-based approach is considered
to be a less robust architecture, with the nonlinearities of the discriminator and
possible saturation at low C/N0.

The results of the Monte Carlo simulations suggest that the proposed Kalman PLLs
employing the RBF networks are capable to provide similar performance, with a
slight advantage, when compared to the state-of-the-art Kalman PLL structures
employing AR models (VILÁ-VALLS et al., 2018). In general, the RBF networks will
allow more flexibility in scintillation induced effects modeling due to the nonlinear
radial basis functions, at the expense of a more complex structure when compared
to the AR models. Possibly, the degree of nonlinearity present in the scintillation
data generated by the CSM was not able to clearly highlight the advantage of using
the RBF networks, but they may be useful to capture possible nonlinear dynamics
present in real scintillation induced effects, helping to improve the robustness of
GNSS receivers to such effects.

5.3.2 Real scintillation data

The performances of the Kalman PLLs are also assessed with real data collected
by the JAVAD Delta 3 receiver. The receiver configuration and the data presenting
scintillation were described in the previous chapter. Part of GPS L1 C/A signal
from satellite PRN 24, recorded on October 27, 2017, from 22:00 UTC to 23:00

123



UTC, is used to the evaluation of the Kalman PLLs. Scintillation phase, scintilla-
tion amplitude and carrier time series are obtained from the data using a standard
post-processing procedure, as described in (DIERENDONCK et al., 1993), (ZHANG et

al., 2010). A fourth order polynomial is fitted to the carrier phase estimate of the
scintillating channel tracking GPS PRN 24 with least squares using a 100 s sliding
window to obtain the carrier phase (ZHANG et al., 2010). The scintillation phase is
obtained from the least squares residual, after removing the common phase induced
by the receiver clock, taken from the residual of the least squares fitting of a refer-
ence channel tracking a non-scintillating satellite signal, and filtering by 3 cascaded
high pass Butterworth filters with cutoff frequency of 0.0175 Hz to remove possi-
ble low frequency effects, such as multipath. The scintillation amplitude is taken
from the norm of prompt I/Q, and normalized by its filtered value from 0.01 Hz
low pass cascaded Butterworth filters, so that we have unitary amplitude when no
scintillation effect is present.

We adjusted both AR and RBF network models to the scintillation phase and am-
plitude samples obtained from the real data. In general, the AR model order is
chosen from 1 to 3, depending on the observed scintillation characteristics (VILÁ-

VALLS et al., 2018). The chosen model order, or the number of lags, was the minimum
value that provided the best fitting to the data, for both the AR and RBF network
models. Despite the detrending employed in the the data post-processing procedure,
residual effects can be expected to still be present in the samples. Also, the scintil-
lation characteristics can evolve along the relatively large selected time-window of
approximately 1400 s, changing its pattern, or even presenting nonlinear behavior.
This is especially observed in the scintillation phase samples of the recorded data,
so that the resulting model order of the AR model was 10, while the model order
of the RBF network was 1, for the scintillation phase. The model order of both the
AR and RBF models was 1, for the scintillation amplitude. The number of centers
of the RBF networks was 40 for the scintillation phase and 20 for the scintillation
amplitude. No linear AR terms were added to both networks.

The parameters of the kinematic process model of the LOS dynamics employed
in the Kalman PLLs were defined with the same values used in the Monte Carlo
simulations with the synthetic scintillation data. In the first simulation with the
real data, we compare the results of the proposed Kalman PLLs with the results
of the Kalman PLLs with the AR scintillation models with the online parameter
estimation disabled in both structures. The comparison of the RMSE of ϕD[k] and
ϕ[k] is presented, respectively, in Figures 5.10 and 5.11, for DKPLL-AR, DKPLL-
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RBF, CKPLL-AR, and CKPLL-RBF. The RMSE of ρ[k] is presented in Figure 5.12,
for CKPLL-AR, and CKPLL-RBF.

Figure 5.10 - RMSEϕD
, with online parameter estimation disabled.
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Figure 5.11 - RMSEϕ, with online parameter estimation disabled.
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Figure 5.12 - RMSEρ, with online parameter estimation disabled.
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In the second simulation, we compare the results of the proposed Kalman PLLs with
the results of the Kalman PLLs with the AR scintillation models with the online
parameter estimation enabled in both structures, with 1500 points sliding window.
The comparison of the RMSE of ϕD[k] and ϕ[k] is presented, respectively, in Figures
5.13 and 5.14, for DKPLL-AR, DKPLL-RBF, CKPLL-AR, and CKPLL-RBF. The
RMSE of ρ[k] is presented in Figure 5.15, for CKPLL-AR, and CKPLL-RBF.
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Figure 5.13 - RMSEϕD
, with online parameter estimation enabled.
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Figure 5.14 - RMSEϕ, with online parameter estimation enabled.
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Figure 5.15 - RMSEρ, with online parameter estimation enabled.
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The results of the two simulations highlight the approximation capability of the
RBFs in the learning process, which is performed by least squares estimation of
the weights of the RBF network, since the network has a linear structure with
respect to its weights. The simulations also highlight the generalization capability
of the network to different scintillation patterns. Regarding scintillation phase and
carrier phase estimation, the RMSE values of the Kalman PLLs employing the RBF
network of order 1 is approximately the same in both simulations. The RBF was
able to capture the scintillation phase dynamics in the learning process, and thus the
online parameter estimation did not improve the results. Otherwise, the results of
the Kalman PLLs employing the AR model of order 10 improved significantly when
the online parameter estimation was enabled, with both scintillation and carrier
phases presenting RMSE values close to the RMSE values of the Kalman PLLs

130



employing the RBF network. An overparameterized linear AR model was required
to fit to the data, and online parameter estimation was required to adjust this model
to the evolving scintillation effects. Regarding the scintillation amplitude, both the
AR and RBF models of order 1 were able to provide reduced RMSE values in the
Kalman PLL structures, with or without the online parameter estimation.

131





6 CONCLUSION

This work focused on two problems related to the ionospheric scintillation of the
radio waves emitted by the GNSS satellites: the monitoring and the mitigation
of scintillation induced effects on GNSS receivers. In the monitoring problem, the
interest is to obtain estimations of phase and amplitude scintillation on the carrier
tracking loops designed for LOS-only tracking, to compute the scintillation indices
S4 and σϕ, respectively. And, in the mitigation problem, the interest is to increase
the carrier tracking loops robustness to those scintillation induced effects in order
to keep tracking of the GNSS satellites.

The approach to the monitoring problem involved the study of the linearization of
a traditional FLL, where the linear approximation showed good agreement with the
original nonlinear FLL. This linear approximation is valid once the tracking error
is small so the arctangent function employed in the discriminators is approximately
linear. From the sensitivity and complementary sensitivity functions of the loop,
we could extract information to retrieve the scintillation phase. The approach to
the mitigation problem involved the study of the Bayesian approach to estimation,
the study of relevant stochastic processes and the study of the RBF networks, to
propose the so called discriminator-based and correlator-based Kalman PLLs using
RBF networks to model the scintillation dynamics.

The monitoring problem was addressed in Chapter 4, where we proposed a scintil-
lation phase estimation algorithm based on linear filtering of observables from the
traditional and Kalman FLLs presenting complementary frequency content, that
can be implemented to run in real-time exploiting the LOS-only tracking loops to
compute the σϕ for monitoring purposes. The algorithm was evaluated by numeric
computer simulations with synthetic ionospheric scintillation data representing se-
vere scintillation. The results of 300 Monte Carlo simulations for both traditional
and Kalman FLLs, with different scintillation and receiver noise realizations, showed
the capability of the monitoring algorithm to provide scintillation phase estimates
with low RMSEs, allowing a statistical meaningful evaluation of the performance of
the monitoring algorithm. Despite the different carrier synchronization capabilities
of traditional and Kalman FLLs, the scintillation phase estimation performance,
discarding cycle slips, of the monitoring algorithm applied to both loops are signifi-
cantly close, indicating that the algorithm is robust concerning the carrier tracking
loop structure and parameters. Once there is a loss-of-lock in the tracking loop or
a major disturbance such as cycle slips, induced by ionospheric scintillation, the
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algorithm produces permanent or temporary spurious results, respectively, since it
is composed of stable linear filters running in an open-loop structure.

The monitoring algorithm was also adapted to run with traditional and Kalman
PLLs tracking LOS-only dynamics, since it was originally developed for FLLs. With
this adaptation, we could also test the monitoring algorithm with real data present-
ing scintillation, collected by a JAVAD receiver installed in a monitoring station. The
standard deviation was computed for the scintillation phase estimates for both the
proposed real-time algorithm and the standard post-processing procedure described
in (DIERENDONCK et al., 1993), (ZHANG et al., 2010), showing good agreement be-
tween them despite some uncertainty related to the PLL structure of the receiver,
which directly affects the monitoring algorithm. We presented the standard devia-
tion computation for a sliding window of 60 s to highlight the possibility of having a
real-time phase scintillation metric computation downstream of the real-time phase
estimation based on our monitoring algorithm. Its performance is similar to the
post-processing procedure, with the additional advantage of avoiding some intricate
operations of the batch procedure, such as phase detrending, since the monitoring
algorithm is composed of reduced order LTI filtering.

The mitigation problem was addressed in Chapter 5. We proposed two adaptive
Kalman PLL structures for mitigation of ionospheric scintillation induced effects
on GNSS receivers, where such effects are modeled by RBF networks. In the first
structure, the innovations of the Kalman filter are computed by the arctangent
phase discriminator. In the second structure, the Kalman filter measurements are
taken form the I/Q prompt correlator outputs, and the scintillation amplitude is
also estimated. The error state feedback controller provides the control signal for
carrier replica generation in the NCO. In both structures, the weights of the RBF
networks are estimated by recursive sliding window least squares.

The proposed algorithms were evaluated via Monte Carlo simulations with synthetic
ionospheric scintillation data and real ionospheric scintillation data collected by the
JAVAD receiver. Regarding the synthetic scintillation data, the results showed the
capability of the Kalman PLL structures employing the RBF networks to perform
robust carrier synchronization with performance similar to the corresponding state-
of-the-art structures employing AR scintillation phase and amplitude models, with
a slight advantage to the structures with the RBF networks. The RBF networks
allow to capture eventual nonlinear dynamics induced in the receiver by the iono-
spheric scintillation, an advantage in relation to the linear AR models, at the expense
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of a more complex structure. However, possibly the synthetic data considered did
not present significant nonlinearities to clearly highlight this advantage of the RBF
networks.

Regarding the real ionospheric scintillation data, other residual effects and evolv-
ing scintillation characteristics, possibly nonlinear, are present in the data, unlike
the simulations with synthetic scintillation data generated by a specific model, the
CSM, with fixed characteristics, added to the carrier to form the input signals. This
highlighted the learning and generalization capabilities of the RBF networks to cope
with such effects, where the Kalman PLL structures employing the RBF networks
presented reduced errors with regard to the scintillation and carrier phases estima-
tion when compared to the Kalman PLL structures employing the AR scintillation
models, when the online parameter estimation was disabled. It was necessary to en-
able the online parameter estimation so that the AR model could be adjusted to the
evolving receiver and scintillation characteristics over time to present errors close to
the structures employing the RBF networks.

The Kalman PLL structures employing the AR scintillation models and the RBF
networks were not compared in terms of computational complexity metrics. However,
in principle, we expect the algorithm employing the RBF networks with online
parameter estimation performed by recursive sliding window least squares to be less
complex when compared to the algorithm employing the AR models with online
parameter estimation performed by batch sliding window least squares, since there
is no matrix inversions in the recursive implementation. Otherwise, in the case of
online parameter estimation disabled in both cases or performed by recursive least
squares in the algorithm employing the AR models, the algorithm employing the
RBF network will be more complex due to the RBFs.

Therefore, there is a trade-off to be taken into account, depending on the size of
the RBF network, which is a relatively simple neural network whose learning can be
performed by recursive least squares, to provide the required approximation capabil-
ity, and the computational power available to implement the algorithm in real-time.
The evaluation of the computational performance of the proposed algorithms for
scintillation mitigation is suggested as a future work, as well as the implementation
of the algorithms in a software GNSS receiver. The implementation of the moni-
toring algorithm in a software GNSS receiver is also suggested as future work. In
addition, we also suggest the exploration of other Kalman filter structures for the
scintillation mitigation problem that avoid the direct evaluation of the Jacobians,
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as the variants of sigma-point Kalman filters, such as the unscented and the central
difference Kalman filters.
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