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ABSTRACT

The satellite attitude and orbit control subsystem (AOCS) can be designed with
success by linear control theory if the satellite has slow angular motions. However,
for fast maneuvers, the linearized models are not able to represent all the pertur-
bations due to the effects of the nonlinear terms present in the dynamics which
compromises the system’s performance. Therefore, in such cases, it is expected that
nonlinear control techniques yield better performance than the linear control tech-
niques, improving the AOCS pointing accuracy without requiring a new set of sensors
and actuators. Nonetheless, these nonlinear control techniques can be more sensi-
tive to uncertainties. One candidate technique for the design of AOCS control law
under a fast maneuver is the State-Dependent Riccati Equation (SDRE). SDRE
provides an effective algorithm for synthesizing nonlinear feedback control by allow-
ing nonlinearities in the system states while offering great design flexibility through
state-dependent weighting matrices. The Brazilian National Institute for Space Re-
search (INPE, in Portuguese) was demanded by the Brazilian government to build
remote-sensing satellites, such as the Amazonia-1 and the CONASAT missions. In
the Amazonia-1 mission, the AOCS must stabilize the satellite in three-axes so that
the optical payload can point to the desired target. Currently, the control laws of
AOCS are designed and analyzed using linear control techniques in commercial soft-
ware. In this work, we present research focused on modeling and analysis, through
simulation using open-source software based on Java, of control laws, applying SDRE
and SDRE extended with H∞ techniques, for attitude control as nonlinear systems
tackling the regulator problem in the presence of hard nonlinearities and uncer-
tainties. Moreover, we present a methodology to evaluate a possible quantifiable
increment in the robustness of SDRE and SDRE extended with H∞ when compared
to linear techniques.

Keywords: Nonlinear control. SDRE. H∞.
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APLICAÇÃO DA TÉCNICA SDRE NOS SISTEMAS DE CONTROLE
DE ATITUDE E ÓRBITA DE SATÉLITES COM DINÂMICA NÃO

LINEAR

RESUMO

O subsistema de controle de atitude e órbita de um satélite (AOCS, do Inglês,
Attitude and Orbit Control subsystem) pode ser projetado com sucesso pela teoria
do controle linear se o satélite exibir movimentos angulares lentos. No entanto, para
manobras rápidas, os modelos linearizados não são capazes de representar todas as
perturbações devido aos efeitos dos termos não lineares presentes na dinâmica o
que compromete o desempenho do sistema. Portanto, nesses casos, espera-se que as
técnicas de controle não-lineares apresentem melhor desempenho do que as técnicas
de controle linear, melhorando a precisão de apontamento do AOCS sem exigir um
novo conjunto de sensores e atuadores. No entanto, essas técnicas de controle não
lineares podem ser mais sensíveis a incertezas. Uma técnica candidata para o projeto
da lei de controle do AOCS para manobras rápidas é a equação de Riccati dependente
do estado (SDRE, do Inglês, State-Dependent Riccati Equation). O SDRE fornece
um algoritmo eficaz para sintetizar o controle baseado em feedback, permitindo
não linearidades nos estados do sistema, oferecendo grande flexibilidade de projeto
por meio de matrizes peso dependentes do estado. O Instituto Nacional de Pesquisas
Espaciais (INPE) é demandado pelo governo brasileiro para a construção de satélites
de sensoriamento remoto, como a missão Amazônia-1 e a missão CONASAT. Na
missão Amazonia-1, o AOCS deve estabilizar o satélite em três eixos, para que a
carga óptica possa apontar para o alvo desejado. Atualmente, as leis de controle do
AOCS são projetadas e analisadas usando técnicas de controle linear em software
comercial. Neste trabalho, apresentamos uma pesquisa voltada para modelagem e
análise, por meio de simulação usando software livre baseado em Java, de leis de
controle, aplicando SDRE e SDRE estendido comH∞, para controle de atitude como
sistemas não lineares focada no problema do regulador na presença de incertezas e
não linearidades rígidas. Além disso, apresentamos uma metodologia para avaliar
um possível incremento quantificável na robustez do SDRE e do SDRE estendido
com H∞ quando comparado às técnicas lineares.

Palavras-chave: Controle Não Linear. SDRE. H∞.
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1 INTRODUCTION

“Dogmatism and skepticism are both, in a sense, absolute philoso-
phies; one is certain of knowing, the other of not knowing. What
philosophy should dissipate is certainty, whether of knowledge or
ignorance.” - Bertrand Russel

In this chapter, the motivation of the thesis is explored and the problem is stated.
Subsequently, the hypotheses and goals are described, which support the presenta-
tion of contributions. Finally, the outline of this thesis is presented.

1.1 Motivation

In the design of a satellite attitude and orbit control subsystem (AOCS), the one in
charge of the attitude control, which involves plant uncertainties, large angle ma-
neuvers, and fast attitude control following a stringent pointing, requires nonlinear
control methods in order to satisfy performance and robustness requirements. An
example is a typical mission of the Brazilian National Institute for Space Research
(INPE), in which the AOCS must stabilize a satellite in three-axes so that the optical
payload can point to the desired target with few arcsecs of pointing accuracy, e.g.,
Amazonia-1 (SILVA et al., 2014). Another example is the Nano-satellite Constellation
for Environmental Data Collection (CONASAT) (CARVALHO, 2010; MESQUITA et

al., 2017), a set of remote sensing CubeSats of the INPE, in which the AOCS must
stabilize the satellite in two-axes in order to maximize the receiving of environment
data sent by platforms in the Brazilian territory.

One candidate method for a nonlinear AOCS control law is the State-Dependent
Riccati Equation (SDRE) method, originally proposed by Pearson (1962) and then
explored in detail by Cloutier et al. (1996), Cloutier (1997), Çimen (2008), Çimen
(2010). SDRE provides an effective algorithm for synthesizing nonlinear feedback
control by allowing nonlinearities in the system states while offering great design
flexibility through state-dependent weighting matrices.

In this thesis, we present research focused on modeling and analysis, through simu-
lation using open-source software, of control laws, applying State-Dependent Riccati
Equation (SDRE) and SDRE extended with H∞, for attitude control in AOCSs as
nonlinear systems tackling the regulator problem.
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1.2 Problem, hypothesis, and goals

1.2.1 Problem

Statement of the problem
Brazilian National Institute for Space Research (INPE) has been demanded by the
Brazilian government to build satellites and CubeSats, such as Amazonia-1 and
CONASAT missions, respectively. Currently, the control laws of the attitude control
system are designed and analyzed using linear control techniques in commercial
software (CARVALHO, 2010; MESQUITA et al., 2017; SILVA et al., 2014). However, for
fast maneuvers, the linearized models are not able to represent all the perturbations
that can compromise the system’s performance. Additionally, the pressure to reduce
costs may force, or at least stimulate, the usage of open-source software for the
analysis through simulation.

Area
Control Engineering

Subject
Modeling and analysis, through simulation using open-source software, of control
laws, applying State-Dependent Riccati Equation (SDRE) and SDRE extended with
H∞, for attitude control systems as nonlinear systems tackling the regulator prob-
lem.

Main question
Do the modeling of attitude control systems as nonlinear systems and applying to
such models SDRE and SDRE extended with H∞ as controllers for the regulator
problem provide a quantifiable increment in the robustness when compared to linear
techniques?

Explained main question
Although linear control techniques have been applied with success to
the INPE’s satellites, it may be the case that there are opportunities
to increment the robustness of satellites built by INPE, such as Amazonia-1, by
modeling them as a nonlinear system and applying to such models the SDRE and
SDRE extended with H∞ techniques as the controller for the regulator problem.

In particular, for fast maneuvers, the linearized models, which rely on the key
assumption of small range operation, are not able to represent all the perturba-
tions due to the effects of the nonlinear terms present in the dynamics. Moreover,
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the uncertainties (structured and unstructured) can lead to significant performance
degradation or even instability, when not taken into account.

Furthermore, the stringent requirements for reduction of volume, mass, and power in
conjunction with pointing accuracy can pose challenges to the current techniques,
based on linear control. CONASAT is a well-known example of the former three
requirements since they determine a CubeSat for the space segment.

Problem rationale
Linear control techniques have been applied with success by INPE, therefore, it
is natural for one to wonder why to investigate a nonlinear control technique, in
particular, SDRE using open-source software.

There are many reasons for that investigation ranging from the demand to push the
science borders to opportunities for the improvement of robustness in the practi-
cal day-to-day. For this work, the main reasons to investigate a nonlinear control
technique can be summarized as:

• Improvement of existing systems - the linearized models, which rely
on the key assumption of small range operation, are not able to use the
potential from the system, in the sense that, the maneuvers in the attitude
control are neither optimal nor suboptimal for some to be defined cost
function, in such a way that there are wasting of energy and, consequently,
wasting of hardware equipment;

• Hard nonlinearities - another assumption of linear control is that the
dynamics is linearizable. However, there are nonlinearities whose discontin-
uous nature does not allow linear approximation, the “hard nonlinearities”,
e.g., the saturation of the reaction wheels;

• Uncertainties - linear controllers usually assume that the parameters
and the dynamics of the system are reasonably well known. However, the
attitude and orbit control of satellites involves uncertainties in the param-
eters (structured uncertainty) and in the model of the systems’ dynamics
(unstructured uncertainties).

• Potential new requirements - for example, for fast maneuvers, the lin-
earized models, which rely on the previously cited key assumption, are not
able to represent all the perturbations due to the effects of the nonlinear
terms;
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The next fundamental question is why to investigate SDRE but not another non-
linear control technique.

There is a plethora of nonlinear control techniques, these include any technique based
on some sort of linearization, e.g, feedback linearization (SLOTINE; LI, 1991); and
nonlinear techniques not based on linearization such as sliding control (SLOTINE; LI,
1991), adaptative control (SLOTINE; LI, 1991; KHALIL, 2002) and control-Lyapunov
function (BACCIOTTI A.; ROSIER, 2005; KHALIL, 2002).

Lesser-known nonlinear technique is SDRE (CLOUTIER, 1997), which was origi-
nally proposed by (PEARSON, 1962) and then explored, decades later, in detail
by (CLOUTIER et al., 1996; CLOUTIER, 1997; ÇIMEN, 2008; ÇIMEN, 2010). Pear-
son (PEARSON, 1962) observed that one of the difficulties of controlling a nonlinear
dynamic system is that optimal control policies are not generally easy to implement
so a lengthy preliminary computation is required which presents quite unwieldy
solutions for the controller to realize. In other words, in general, the embedded re-
quired computations are too expensive as well as their certification so the idea is
starting with a nonlinear control problem, a linear time and state varying model is
constructed. Such a model is treated as an instantaneously stationary linear system
and then optimized using the usual techniques.

The SDRE technique, as a suboptimal nonlinear control technique, has three major
advantages: (a) simplicity, (b) numerical tractability (for embedded computation),
and (c) flexibility for the designer (ÇIMEN, 2008).

Therefore, the reasons to investigate SDRE as the nonlinear control technique in
this work can be summarized as follows: (1) suboptimal results; (2) less known,
consequently, it exhibits more opportunities for extension; (3) numerical tractability
for embedded computation so it can be applied in the practical day to day; and (4)
flexibility for the designer.

There is a plethora of linear control techniques that could be used for the evaluation
proposed. The selection of LQR as the linear control technique is rooted in two rea-
sons: (1) LQR is the linear counterpart of SDRE (see Section 2); and, (2) this thesis
assumes that x(t) is known exactly (KALMAN, 1960a), consequently, the well-known
weakness of LQR regarding sensitivity to perturbation on the state acquisition is
not relevant.

The analysis through simulation is the current practice of control engineering, fur-
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thermore, it is based on commercial software usually. The usage of open-source
software is an alternative to reduce costs. Therefore, the selection of the program-
ming language that supports the open-source software for the investigation of SDRE
is the final topic in the present problem rationale.

One can argue that open-source software can be defined using a commercial program-
ming language, however, such argument remits to licensing costs readily. Therefore,
an “open-source” programming language shall be used to support the open-source
software. Figure 1.1 shows the most popular programming languages in the major
repository of open-source software available (GITHUT, 2020).

Figure 1.1 - Language popularity in the major open-source repository.

SOURCE: GitHut (2020).

The top three programming languages are Javascript, Python, and Java, respec-
tively. Those three programming languages can run in a variety of runtime envi-
ronments, in addition, the former two programming languages are dynamic-typed
languages while the latter is a static-typed language. It is well-known that static-
typed programming languages make sure that there were not any type violations
applying static analysis techniques, which are requirements for certification pro-
cesses generally. Moreover, taking into account the CubeSats, in particular, Phone-
Sats, it is public that the major open platform for phone development, Android
platform (GOOGLE, 2020), supports two static-typed languages, namely, Kotlin and
Java. Finally, there is research evaluating the embedding of Java software in avion-
ics (ARMBRUSTER et al., 2007) and in mission-critical large-scale embedded sys-
tems (SHARP et al., 2003).
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Therefore, the reasons to use Java as the programming language that supports the
open-source software can be summarized as follows: (1) static-typed language more
friendly to certification process; (2) a programming language for PhoneSats based on
Android platform; (3) popularity, which means, among other aspects, the availability
of professional resources; and (4) in theory, embeddable.

To the best of our knowledge the hypothesis, presented in the next section, is original,
general, and largely applicable.

1.2.2 Hypothesis

H0: There is no significant quantifiable increment of robustness between LQR, a
linear control technique, and SDRE control technique in the INPE’s missions.

H1: There is a significant quantifiable increment of robustness between LQR, a linear
control technique, and SDRE control technique in the INPE’s missions.

1.2.3 Goal

Investigate and compare the quantifiable results of the application of SDRE and
SDRE extended with H∞ techniques in the satellite attitude control system with
nonlinear dynamics. In particular, modeling and analysis, through simulation us-
ing open-source software based on Java, of control laws, applying State-Dependent
Riccati Equation (SDRE) and SDRE extended with H∞ techniques, for attitude
control as nonlinear systems tackling the regulator problem in the presence of hard
nonlinearities and uncertainties.

Specific goals

a) Mathematical modeling and evaluation of uncertainties using SDRE and
SDRE extended with H∞ in the presence of hard nonlinearities

b) Evaluation of the stability through the determination of the region of at-
traction of LQR, SDRE, and SDRE extended with H∞ in the presence of
hard nonlinearities and uncertainties

c) Compare the quantifiable results, using Monte Carlo perturbation models,
between a linear control technique (LQR) and its counterpart nonlinear
technique SDRE as well as SDRE extended with H∞ in the presence of
hard nonlinearities and uncertainties
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1.2.4 Delimitations

It is beyond the scope of the present thesis the following related topics: orbital
dynamics control and simulation (HUGHES, 1986; SIDI, 2006; OREKIT. . . , 2017), at-
titude estimation based on noisy sensor measurements (HUGHES, 1986; SIDI, 2006),
and real-time implementation concerns of an SDRE controller based on the Java
software (ARMBRUSTER et al., 2007; SHARP et al., 2003) or other software languages
as C (MENON et al., 2002).

1.3 Contribution

The major significance of the current work is centered on the engineering contribu-
tion presented in the next subsection.

1.3.1 Engineering contribution

The appropriately tackling of uncertainties for nonlinear systems in the context
of SDRE and SDRE extended with H∞ may be a significant contribution to the
research field of control engineering.

In addition, for INPE, such contribution may have direct results in cheaper and
longer space missions. In particular, replacing the linear models/control with non-
linear/suboptimal control maneuvers may save energy and, consequently, hardware
equipment, which in turn may increase the lifecycle of space missions reducing costs.
Moreover, the space missions may be more robust to imperfections in the building as
well as to perturbations in the space environment. Finally, more stringent require-
ments may be fulfilled using the same set of sensors and actuators.

The drawback of the suboptimal control using SDRE is that its implementation
requires more computing resources and tends to exhibit difficulties for verification.

1.3.2 Strategic contribution

Space agencies around the world are heavily working on open-source software. In-
deed, it is a trend for space agencies due to the generally perceived benefits ((ESA),
2020):

• increases software quality;

• reduces development and maintenance costs for the individual users;

• avoids vendor lock-in;

7



• facilitates rapid evolution of the software;

• encourages reuse of software;

• fosters industrial competitiveness;

• develops lucrative consulting, training, and support services offering.

Furthermore, space agencies have specific programs for open-source development,
e.g., NASA (AERONAUTICS; (NASA), 2020) and CNES (CNES, 2020). Indeed, the
library used in this work for flight-dynamics, Orekit (OREKIT. . . , 2017), is sponsored
by a relevant company in the aerospace market.

Therefore, the open-source software, based on an open programming language and
available at the major open-source repository, may have strategic significance for
INPE and can serve as one more step in the direction of following other space
agencies (a minor strategic contribution).

Finally, the open-source software, already available, can run on a variety of platforms
- including an Android operating system in a CubeSat - as well as it has lower costs.

1.4 Outline

This thesis draft is organized as follows. This Section 1, presents the problem, the
hypothesis, goals, delimitations, and contributions. In Section 2, a review of the
preliminaries is shared. In Section 3, the state of the art is presented. In Section 4, the
methodology is presented. The models are shared in Section 5 and the preliminary
results are presented in Section 6. Finally, the conclusions and future work are shared
in Section 7.
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2 PRELIMINARIES

This chapter presents the preliminaries that support this work. The first section
briefly reviews the attitude for a rigid-body, indeed, the satellites are treated as
rigid-bodies in this work. The last section shares the preliminaries related to attitude
control.

2.1 Rigid-body attitude

This section presents the preliminaries for the satellite attitude dynamics, indeed,
in this work, a rigid-body. Recall orbital dynamics is out of the scope of the present
work.

2.1.1 Kinematics

Given the Earth-centered inertial (ECI) reference frame (Fi) and the frame defined
in the satellite with origin in its centre of mass (the body-fixed frame, Fb), then a
rotation R ∈ SO(3) - SO(3) is the set of all attitudes of a rigid body described
by 3 × 3 orthogonal matrices whose determinant is one - represented by a unit
quaternion Q = [q1 q2 q3 | q4]T as well as a direction cosine matrix (DCM) Cbody_eci

can define the attitude of the satellite.

Defining the angular velocity ~ω = [ω1 ω2 ω3]T of Fb with respect to Fi measured in
the Fb, the kinematics can be described by Equation 2.1 (CARRARA, 2012; HUGHES,
1986).

ω×body_eci = −Ċbody_eciC
T
body_eci

Ċbody_eci = Cbody_eciω
×
body_eci

(2.1)

where ω× is the anti-symmetric matrix that represents the cross product.

Equation 2.1 allows the prediction of the satellite’s attitude if it is available the
initial attitude and the history of the change in the angular velocity (θ̇ = F (ω, t)).

9



2.1.1.1 Euler angles

Using the Euler angles (non-classic Euler angles 3-2-1, indeed, Cardan angles), the
kinematics can also be defined by Equation 2.2 (HUGHES, 1986).

S =


− sin θ2 0 1

− cos θ2 sin θ3 cos θ3 0
cos θ2 cos θ3 − sin θ3 0



ω1

ω2

ω3

 = S


θ̇1

θ̇2

θ̇3


(2.2)

In order to model how the satellite attitude changes depending on angular velocity,
the matrix S is inverted as shown in Equation 2.3 (it has a discontinuity at 90◦ since
cos π

2 = 0).

S−1 =


0 sin θ3

cos θ2
cos θ3
cos θ2

0 cos θ3 − sin θ3

1 sin θ3 sin θ2
cos θ2

cos θ3 sin θ2
cos θ2



θ̇1

θ̇2

θ̇3

 = S−1


ω1

ω2

ω3


(2.3)

2.1.1.2 Quaternions

It is common to avoid the singularities that are inherent in the Euler angles using
quaternions (HUGHES, 1986; CARRARA, 2012). Equation 2.4 shows the kinematics
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represented using quaternions Q = [q1 q2 q3 | q4]T .

Q̇ = 1
2Ω(ω)Q = 1

2Ξ(Q)ω

Ω(ω) ,


0 ω3 −ω2 ω1

−ω3 0 ω1 ω2

ω2 −ω1 0 ω3

−ω1 −ω2 −ω3 0



Ξ(Q) ,


q4 −q3 q2

q3 q4 −q1

−q2 q1 q4

−q1 −q2 −q3

 ,

(2.4)

where the quaternion Q = [q1 q2 q3 q4]T satisfies the following identity:

q2
1 + q2

2 + q2
3 + q2

4 = 1 (2.5)

Nonetheless, it is worthy to mention that although the definition of the unit quater-
nion is global in the sense that it can represent all attitudes, each physical attitude
R ∈ SO(3) is represented by a pair of unit quaternions ±Q ∈ S3 (FORTESCUE; SWIN-

ERD, 2011). This characteristic can produce undesirable effects in control as unwind,
in which the trajectories of the closed-loop system start close to the desired attitude
and yet travel a large distance before returning to the desired attitude (FORTESCUE;

SWINERD, 2011).

2.1.1.3 Gibb’s vector

Equation 2.4 can be rewritten to separate terms with q4 (scalar term) from other
elements of the quaternion. Define a vector part of the first three components of
the quaternion (complex or vectorial terms) and denote this by g (Gibbs vector or
Rodrigues parameter) as Q = [gT |q4]T .

Q̇ = −1
2

ω×
ωT



q1

q2

q3

+ 1
2q4

I3×3

01×3

ω (2.6)
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Note the Gibbs vector is geometrically singular since it is not defined for 180◦ of
rotation (FORTESCUE; SWINERD, 2011), nonetheless, the Equation (2.6) is global.

2.1.2 Rotational dynamics

In order to know the history of the change in the angular velocity, it is necessary
to understand the history of the change in the angular acceleration (ω̇ = G(τ, t)) of
the satellite. According to the Euler-Newton formulation of the rotational motion,
angular acceleration is caused by torques, in other words, the change in the angular
momentum ~̇h is equal to the net torques ~g applied in the satellite, see Equation 2.7
(the present subsection is derived based on the centre of mass of the satellite, for
the general case, see Carrara (2012), Hughes (1986)).

~̇h = ~g (2.7)

The angular momentum is also known as the moment of momentum since it de-
fines the moment of a given momentum ~p (~p , m~v) about a given point Pcm. See
Equation 2.8, in which r locates a given point p with respect to Pcm.

~h = ~r × ~p (2.8)

Now, taking into account the motion of the body-fixed frame Fb with respect to the
ECI Fi and an angular velocity ω of Fb with respect to Fi measured in the Fb, the
derivative of the angular momentum in Fb is defined by Equation 2.9.

~̇h = ~g − ~ω × ~h (2.9)

Furthermore, ~̇h = ~I~̇ω and ~h = ~I~ω, which results in the Equation 2.10.

~I~̇ω = ~g − ~ω × (~I~ω) (2.10)

Recall the satellite has a set of 3 reaction wheels, each one aligned with its principal
axes of inertia, furthermore, such type of actuator, momentum exchange actuators,
does not change the angular momentum of the satellite. Consequently, it is manda-
tory to model their influence in the satellite, in particular, the angular momentum,
in the scalar form, of the satellite is defined by Equation 2.11.

~h = (I −
3∑

n=1
In,sana

T
n )~ω +

3∑
n=1

hw,n ~an (2.11)
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where In,s is the inertia moment of the reaction wheels in their symmetry axis an,
hw,n is the angular momentum of the n reaction wheel about its centre of mass
(hw,n = In,sa

T
nω + In,sωn) and ωn is the angular velocity of the n reaction wheel.

One can define Ib using the Equation 2.12.

Ib , I −
3∑

n=1
In,sana

T
n (2.12)

Using Ib, the motion of the satellite is described by Equation 2.13 (expanded until
the applied equation).

Ibω̇
b = gcm − ω×(Ibω +

3∑
n=1

hw,nan)−
3∑

n=1
gnan =⇒

ω̇b = I−1
b gcm − I−1

b ω×Ibω − I−1
b ω×

3∑
n=1

hw,nan − I−1
b

3∑
n=1

gnan

(2.13)

where gcm is the net external torque; and gn are the torques generated by the reac-
tions wheels ( ˙hw,n = gn).

2.2 Control

The classical control techniques developed up to the 1940s were concerned with the
regulator problem (in which a steady state is to be maintained) and tracking problem
(in which a defined trajectory is to be followed) of linear single input systems, which
can be described by linear differential equations with constant coefficients and have a
single control input. The design techniques were analytical and graphical since they
were limited by the computational tools and simulations facilities available (BEN-

NETT, 1979). One set of techniques, the frequency response techniques, based on the
use of Nyquist, Bode, or Nichols charts, evaluates performance in terms of band-
width, resonances, and gain and phase margins. A complementary set of techniques,
the time response techniques, are based on the use of the Laplace transform to ex-
press performance in terms of rise time, percentage overshoot, steady-state error,
and damping. Regarding damping and resonances, another technique is root lo-
cus, which provides a method of assessing performance based on frequency response
ideas (BENNETT, 1979).

Experience during Second World War showed that to obtain high performance -
fast response, high accuracy, good rejection of noise and external perturbations -
required more than linear analysis could provide (BENNETT, 1979).
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The recognition of the more general nature of the control problem arose from the
immediate post war work on aircraft and missile control systems. In these systems,
the motion can be modified by several different available controls, and hence the
systems are multivariable (BENNETT, 1979).

A second realization was that systems possess uncertainties, which were listed as
by Bennett (1979):

a) error in the parameters that appear in differential equations of motion;

b) errors inherent in modeling a physical system by means of mathematical
equations;

c) sensor errors and related noise in measurements;

d) exogenous stochastic perturbations that influence the time evolution of the
systems state variables in a random manner.

Such sources of uncertainty may be grouped into two main classes: (A) structured,
or parametric, in which the structure of the system is known, but some of the param-
eters are uncertain, therefore, uncertainty is modeled in a structured manner; (B)
unstructured in which the structure of the system is in error because of missing
dynamics either through deliberate neglect or because of a lack of understanding
of the physical system - any model of a real system contains this source of uncer-
tainty (SKOGESTAD; POSTLETHWAITE, 2005).

Taking into account the previous two realizations - the necessity for more than
analysis of linear single input systems and the uncertainty in the systems, Bennett
(1979) points out, the development of model control theory was strongly influenced
by two factors: first, the nature of the problem that society saw as important -
the launching, maneuvering, guidance, and tracking of missiles and space vehicles;
and secondly by the advent of the digital computer. The problem was essentially
one of the control of ballistic objects and hence detailed physical models could be
constructed in terms of differential equations. A consequence was to focus attention
once again on the differential equation approach to the analysis and design of control
systems.

To deal with the multivariate nature of the problem, engineers working in the
aerospace realm turned to formulating the general differential equations in terms
of a set of first order equations. This was a technique of which Poincaré was first

14



to see the significance and first to exploit. The whole approach became know as the
“state-space approach” (BENNETT, 1979).

Indeed, one can decompose an nth order time-invariant differential equation (ẋ =
f(x)) into an equivalent system of n first order differential equations (PARKS, 1966),
in the form:

ẋi(t) = fi(x1, x2, ..., xn) (i = 1, 2, 3, 4, ..., n)

x1(t) = x(t)

x2(t) = ẋ(t)

x...(t) = x(...)(t)

x(n)(t) = x(n)(t)

(2.14)

Such a system of differential equations is known as the state-space description and
the variables xi as state variables. They need not be physical quantities and to a large
extent can be chosen arbitrarily. Moreover, the state-space description is not unique,
in fact, all statespace vectors describing a particular system are interchangeable, i.e.,
through a similarity transformation spanning the same statespace (PARKS, 1966).
The state-space description is generally expressed in the form:

ẋ = Ax+Bu

y = Cx
(2.15)

where x ∈ Rn is the state vector, u ∈ Rm is the control vector, y ∈ Rl is the output
vector and A, B, C are real matrices having the appropriate dimensions.

The formulation of control problem in statespace led to extensive and deep studies
of mathematical problems of control. Furthermore, the growing availability of the
digital computer, during the late 1950s, made a recursive algorithm possible, as
opposed to the search for a closed form solution in the classical approach (BENNETT,
1979).

In fact, regarding the initial value problem, which one that uses the initial condition
to predict future states of a given system:

x0 = x(t0), compute x(t) ∀ t > t0 (2.16)

The closed form solution of non-linear time-invariant dynamic systems are in general
very difficult to find and for many problems no explicit solutions are known (PARKS,
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1966).

Therefore, it is of interest to know whether a particular non-linear time-invariant
dynamic system has solutions and whether these solutions are unique. Suppose that
fi(x) are defined in a given region Γ of the state-space, then: (1) if all fi ∈ C0

(continuous) then a solution exists, and (2) if all fi ∈ C1 (∂fi/∂xj are continuous)
then the solution is unique (PARKS, 1966).

The developments during the 1950s converge to the ground-breaking paper “On the
general theory of control systems” presented by Kalman (1960b), which established
the state-space approach as the basis for the following definitions:

a) Controllability: A state x of a system is said to be “controllable” if
there exists a control signal u(t) defined over a finite interval 0 < t < t1

such that f(x)t1 = O. In general, the time t1 will depend on x. If every
state is controllable (the pair(A,B)), the system is said to be “completely
controllable” (KALMAN, 1960b).

b) Observability: A costate x∗ (an element x∗ of the space of all functions
on X) is said to be “observable” if its exact value at any state x at time
0 can be determined from the measurements of the output signal y over
the finite interval 0 < t < t2. The time t2 will depend on x∗. If every
costate is observable (the pair(A,C)), the system is said to be “completely
observable” (KALMAN, 1960b).

c) Optimal Regulator Problem: to optimize a regulating system, it is
necessary to introduce a performance index. This is usually taken as
the integrated error along with the motions of the system. It is con-
venient to define the error as a positive definite quadratic form xTQx
(T meaning the transposed vector), where Q is positive definite matrix
(Q positive definite =⇒ xTQx > 0, ∀x ∈ Rp). Being Q positive-definite,
(xTQx) 1

2 is the generalized euclidean norm, furthermore, if Q = 1 it is the
L2-norm. Then the performance index is a function given by:

V (x) =
∫ ∞

0
xTQx dt (2.17)

and the optimal regulator problem is: find a control such that 2.17 is min-
imized for every initial state x. It was remarkable that: If Q in 2.17 is
positive definite, the solution of the optimal regulator problem exists if and
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only if the system is completely controllable. Moreover, the resulting control
systems has the following properties: the closed loop system is asymptoti-
cally stable, and V (x) is one of its Lyapunov functions (KALMAN, 1960b).

d) Principle of Duality: Considering the class of feedback system with lin-
ear control law, the dual plant defined in X∗ is obtained by the following
steps: (i) replace f by its dual f ∗, (ii) interchange input and output con-
straints, and (iii) reverse the direction of time (KALMAN, 1960b). There-
fore, the duality of the optimal regulator problem and optimal estimation
problem is well-established. In other words, a system with real matrices
(A,B,C) is controllable if and only if the system with the real matrices
(A∗, C,B∗) is observable.

The weaker definitions of controllability and observability are, respectively:

a) Stabilizability: A system is stabilizable if all states x that cannot be
controlled decay to zero;

b) Detectability: A system is detectable if all costates x∗ that cannot be
observable decay to zero.

Another ground-breaking paper is “Contributions to the Theory of Optimal Con-
trol” presented also by Kalman (1960a), which is the first paper to deal with
linear-quadratic feedback control setting the stage for what came to be known as
LQR (Linear-Quadratic-Regulator) control, which is explored after the next subsec-
tion that presents the linearization method.

2.2.1 Linear control

In order to apply the linear control techniques, linear models must be obtained
through the linearization method, which can be described by the following steps
given a nonlinear state-space model (SKOGESTAD; POSTLETHWAITE, 2005):

a) Determine the steady-state operating point (or trajectory) about which to
linearize.

b) Introduce the deviation variables and linearize the model. There are essen-
tially three parts to this step:
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Linearize the equations using a Taylor expansion where second- and
higher-order terms are omitted.

Introduce the deviation variables, e.g., δx(t) defined by δx(t) = x(t)−
x∗ where the superscript ∗ denotes a steady-state operating point or tra-
jectory along which the model is to be linearized.

Subtract the steady-state (or trajectory) to eliminate the terms involv-
ing only steady-state quantities.

These three parts are usually accomplished together. For example, for
a nonlinear state-space model of the form

ẋ = f(x, u) (2.18)

the linearized model in deviation variables (δx, δu) is

˙δx(t) = ∂f

∂x

∗
δx(t) + ∂f

∂u

∗
δu(t) (2.19)

where x and u are real vectors and then its first-order partial derivatives
are matrices (Jacobians).

Note the linearization method (which, today, is sometimes incorrectly referred to as
Lyapunov’s first method) is simply given as an example of application of the direct
(or second) method in Lyapunov’s original work. The first method in Lyapunov’s
original work was the so-called method of exponents, which is used today in the
analysis of chaos (SLOTINE; LI, 1991)

2.2.1.1 Linear quadratic regulator (LQR)

Once a linearized model for the application of the linear control techniques is avail-
able, it is time to come back to the second ground-breaking paper “Contributions
to the Theory of Optimal Control” presented by Kalman (1960a).

The term “linear” comes from the fact that the systems considered were assumed
linear, and the term “quadratic” comes from the use of performance indexes that
involve the square of an error signal. Therefore, regarding the regulator problem,
linear quadratic regulator (LQR). Kalman’s formulation in terms of finding the least
squares control that evolves from an arbitrary initial state is a precise formulation of
the least squares optimal control problem (KALMAN, 1960a). This problem can be
solved by the Hamilton-Jacobi theory (KALMAN, 1960b), by the minimum principle
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of Pontryagin (KUCERA, 1973), by the dynamic programming of Bellman (KALMAN,
1960b), or by the direct method of Lyapunov (KALMAN, 1960b; KUCERA, 1973) (see
Subsection 2.2.2.1).

The system model in Equation (2.15) is subject to the cost functional described in
Equation (2.20).

J(x0, u) = 1
2

∫ ∞
0

(xTQx+ uTRu)dt (2.20)

where Q ∈ Rn×n and R ∈ Rm×m.

According to LQR theory (KALMAN, 1960a) and Equation (2.15) and (2.20), the
state-feedback control law is u = −Kx and the gain K is obtained by Equa-
tion (2.21) (KALMAN, 1960a; ÇIMEN, 2010).

K = R−1BTP (2.21)

where P is the unique, symmetric, positive-definite solution of the algebraic Riccati
equation (ARE) given by Equation (2.22) (KALMAN, 1960a; ÇIMEN, 2010).

PA+ ATP − PBR−1BTP +Q = 0 (2.22)

Finally, the conditions for the application of the LQR technique in a given system
model are (ÇIMEN, 2010; KALMAN, 1960a):

a) A ∈ C1(Rw)

b) B,C,Q,R ∈ C0(Rw)

c) Q is positive definite and R is symmetric positive definite

d) Ax =⇒ A0 = 0, i.e., the origin is an equilibrium point

e) pair(A,B) is stabilizable (a sufficient test for stabilizability is to check the
rank of controllability matrix)

f) pair(A,Q 1
2 ) is detectable (a sufficient test for detectability is to check the

rank of observability matrix)

The LQR theory offered the following advantages over existing design tech-
niques (DORATO et al., 2000):
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a) It allowed for optimization over finite intervals;

b) It was applicable to time-varying systems;

c) It dealt in a relatively simple way with multivariable systems.

However, LQR did not deal with another central issue associated with the design of
feedback control systems: uncertainty either structured or unstructured.

2.2.1.2 H-infinity

Motivated by the previously mentioned shortcomings of linear-quadratic control,
there was a significant shift in the 1980s towards H∞ optimization for robust control.
In fact, the interest in H∞ optimization for robust control of linear plants is mostly
attributed to the influential work of Zames (1981), in which the problem of sensitivity
reduction by feedback is formulated as an optimization problem.

Indeed, as stated by Zames (1981), two opposing tendencies can be found in most
feedback systems. On the one hand, to the extent that feedback reduces sensitivity,
it reduces the need for plant identification. On the other hand, the less information
is available about the plant, the less possible it is to select a feedback to reduce
sensitivity. The balance between these tendencies establishes a maximum to the
amount of tolerable plant uncertainty and, equivalently, a minimum to the amount
of identification needed.

Regarding plant uncertainty, for a given nominal plant model (G), one can study the
behavior of a family of plants Gp = G+E, where plant uncertainty (E) is bounded,
but otherwise unknown. In such a study, the resulting controlled system may have
the following properties (SKOGESTAD; POSTLETHWAITE, 2005):

• Nominal Stability (NS) - The system is stable with no plant uncer-
tainty;

• Nominal Performance (NP) - The system satisfies the performance
specification with no plant uncertainty;

• Robust Stability (RS) - The system is stable about the nominal plant
up to the worst-case plant uncertainty;

• Robust Performance (RP) - The system satisfies the performance spec-
ifications about the nominal plant up to the worst-case plant uncertainty.
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Figure 2.1 - General control configuration.

SOURCE: Skogestad and Postlethwaite (2005).

RS and RP are usually assessed using the general method of formulating control
problems introduced by Doyle (SKOGESTAD; POSTLETHWAITE, 2005) depicted in
Figure 2.1, in which P is the generalized plant for G, w is the exogenous input
signals, z is the exogenous output signals, u is the control signals and y is the sensed
output signals.

The statespace representation of the generalized plant P is (SKOGESTAD; POSTLETH-

WAITE, 2005):

ẋ = Ax+B1w +B2u

z = C1x+D11w +D12u

y = C2x+D21w +D22u

(2.23)

where x ∈ Rn is the state vector, u ∈ Rm is the control vector, w ∈ Rm is the input
vector of exogenous signals (e.g., perturbations) and z ∈ Rn is the output vector of
“error” signal which is to be minimized in some sense to meet control objectives.
Furthermore, D12 and D21 have full rank, the pair(A,B1), pair(A,B2), pair(A,C1)
and pair (A,C2) are stabilizable and detectable, respectively.

The block diagram in Figure 2.1 in terms of P may be transformed into the block
diagram in Figure 2.2 in terms of N (for analysis) by using K to close a lower
loop around P . If P is partitioned to be compatible with the controller K, then a
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Figure 2.2 - N∆ - structure.

SOURCE: Skogestad and Postlethwaite (2005).

lower linear fractional transformation (LFT, Fl) can be found for N = Fl(P,K) =
P11 + P12K(I − P22K)−1P21 (SKOGESTAD; POSTLETHWAITE, 2005).

To evaluate the uncertain closed-loop transfer function from external input w to
external output z, z = Fw, one can use ∆ to close the upper loop around N ,
resulting in an upper LFT (Fu) (SKOGESTAD; POSTLETHWAITE, 2005):

Fu(N,∆) = N22 +N21∆(I −N11∆)−1N12 (2.24)

In fact, the overall control objective is to minimize some norm of the transfer function
from w to z, e.g., the H∞ norm (SKOGESTAD; POSTLETHWAITE, 2005).

Assume (I) the system is NS (with ∆ = 0) in such a way that N is stable (which
means that the whole of N , and not only N22, must be stable); and, (II) ∆ is stable.
The only source of instability in Equation (2.24) is the term (I−N11∆)−1, therefore,
forRS in the presence of unstructured uncertainties, it is sufficient to analyze
the so-called “M∆-structure” depicted in Figure 2.3 where M = N11 is the transfer
function from the output to the input of the perturbations.

It is time to briefly review the small-gain theorem: assume two stable systems S1

and S2 are connected in a feedback loop, then the closed-loop system is stable if
||S1||∞||S2||∞ < 1.

Applying small-gain theorem to the “M∆-structure”, the theorem RS for un-
structured perturbations can be stated: assume that the nominal system
M is stable (NS) and that the perturbation ∆ is stable. Then the “M∆-
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Figure 2.3 - M∆ - structure.

SOURCE: Skogestad and Postlethwaite (2005).

system” is stable for all perturbations ∆ satisfying ||∆||∞ ≤ 1 if an only if
||M ||∞ < 1 (SKOGESTAD; POSTLETHWAITE, 2005).

There is research arguing that unstructured uncertainty has a substantial advantage
over structured uncertainty in the fact that not only changes in parameters can be
taken into consideration (MATU et al., 2011). Nonetheless, unstructured uncertainty is
well-known by its conservatism in description and, consequently, in the RS analysis.

Glover and McFarlane (1989) addressed the problem of RS of a family of plants
in the case where such family was characterized by H∞ bounded perturbations of
a normalized left coprime factorization of a nominal plant. In such a way that the
attention is moved to the size of error signals (in the same spirit of the performance
index studied by Kalman (1960b) focusing on state-space) and away from the size
and bandwidth of selected closed-loop transfer function (SKOGESTAD; POSTLETH-

WAITE, 2005). In fact, the coprime uncertainty description provides a good “generic”
uncertainty description for cases where one does not use any specific a priori uncer-
tainty information and is focused on maximizing the magnitude of the uncertainty
such that RS is maintained (SKOGESTAD; POSTLETHWAITE, 2005).

Now consider the stabilization of a nominal plant G which has a normalized left
coprime factorization (GLOVER; MCFARLANE, 1989; SKOGESTAD; POSTLETHWAITE,
2005):

G = M−1
l Nl (2.25)

then a perturbed plant model Gp can be written as (SKOGESTAD; POSTLETHWAITE,
2005):

Gp = (Ml + ∆M)−1(Nl + ∆N) (2.26)
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where ∆M , ∆N are stable unknown transfer functions which represent the uncer-
tainty for the nominal plant G.

The objective of robust stabilization H∞ is to stabilize not only the nominal plant
G, but a family of perturbed plants defined by (GLOVER; MCFARLANE, 1989; SKO-

GESTAD; POSTLETHWAITE, 2005):

Gp = {(Ml + ∆M)−1(Nl + ∆N) :: ||[∆N ∆M ]||∞ < ε} (2.27)

where ε > 0 is the stability margin, i.e., the maximum value while retaining stability
(RS). Hence, ε is a limitation on the size of perturbation that can exist without
destabilizing the closed-loop system of Figure 2.4 (GLOVER; MCFARLANE, 1989).

The condition for RS in such systems can be derived rearranging the block diagram
in Figure 2.4 to match the M∆-structure in Figure 2.3, which in turn is the transfer

function from θ to
u
y

, i.e., the transfer function from the output (∆u in Figure 2.3)

to the input (∆y in Figure 2.3) of the perturbations ∆, which results in:

u = KM−1
l

I −M−1
l NlK

θ1 = KM−1
l

I −GK
θ1 = K(I −GK)−1M−1

l θ1

y = M−1
l

I −M−1
l NlK

θ2 = M−1
l

I −GK
θ2 = (I −GK)−1M−1

l θ2

∆ = [∆N ∆M ]

M =
K
I

 (I −GK)−1M−1
l

(2.28)

Therefore, applying the theorem RS for unstructured perturbations (SKO-

GESTAD; POSTLETHWAITE, 2005), RS is satisfied for all ||∆N ∆M ||∞ ≤ ε if and only
if ||M ||∞ < ε−1.

To maximize this stability margin (ε) is the problem of H∞ robust stabilization of
normalized coprime factor plant descriptions (GLOVER; MCFARLANE, 1989). For the
positive feedback of Figure 2.4, the perturbed plant is RS if and only if the nominal
feedback is stable and:

∥∥∥∥∥
K
I

 (I −GK)−1M−1
∥∥∥∥∥
∞
≤ ε−1 (2.29)
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Figure 2.4 - H∞ robust stabilization problem with left coprime factorization.

SOURCE: Skogestad and Postlethwaite (2005).

The maximum stability margin ε and the corresponding minimum γ (the exogenous
signal w is locally attenuated by γ) are given by Glover and McFarlane (1989) as:

γmin = ε−1
max = (1 + ρ(XZ)) 1

2 (2.30)

where ρ denotes the spectral radius (maximum eigenvalue) and for the minimal
state-space realization (A,B,C,D) of G - a state-space realization (A,B,C,D) of
G is said to be a minimal realization of G if A has the smallest possible dimension,
i.e., the fewest number of states; therefore, a state-space is minimal if and only
if pair(A,B) is controllable and pair(A,C) is observable; moreover, being minimal
G(s) = C(sI − A)−1B + D - , Z and X are the solutions to the AREs (GLOVER;

MCFARLANE, 1989; SKOGESTAD; POSTLETHWAITE, 2005):

(A−BS−1DTC)Z + Z(A−BS−1DTC)T − ZCTR−1CZ +BS−1BT = 0

(A−BS−1DTC)TX +X(A−BS−1DTC)−XBS−1BTX + CTR−1C = 0

R = I +DDT

S = I +DTD

(2.31)

A controller (the “central” controller in Glover and McFarlane (1989)) which guar-
antees that: ∥∥∥∥∥

K
I

 (I −GK)−1M−1
∥∥∥∥∥
∞
≤ γ (2.32)
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for a specified γ > γmin, is given by:

KH∞ =
A+BF + γ2(LT )−1ZCT (C +DF ) γ2(LT )−1ZCT

BTX −DT


F = −S−1(DTC +BTX)

L = (1− γ2)I +XZ

(2.33)

2.2.2 Nonlinear control

Linear optimal control theory takes the assumption that the system dynamics is
indeed linearizable (as discussed in Subsection 2.2.1), furthermore, it relies on the
key assumption of small range operation.

Starting from these assumptions (linearizable and small range operation), if the
resulting linear time-invariant (LTI), in the form ẋ = Ax + Bu, has A nonsingu-
lar - i.e., one that has a matrix inverse, then the system has a unique equilibrium
point and such equilibrium point is stable if all eigenvalues of A have negative real
parts, regardless of initial conditions (SLOTINE; LI, 1991). Nonetheless, nonlinear
systems can have much richer and more complex behaviors, e.g., multiple equilib-
rium points (nonlinear systems frequently have more than one equilibrium point),
limit cycles (nonlinear systems can display oscillations of fixed amplitude and fixed
period without external excitation), bifurcations (as the parameters of nonlinear
dynamic systems are changed, the stability of the equilibrium points can change
and so can the number of equilibrium points) and chaos (which may mean that the
nonlinear system is extremely sensitive to initial conditions so the system output is
unpredictable (TABOR, 1989)) (SLOTINE; LI, 1991; KHALIL, 2002).

Facing such richness of the nonlinear dynamical systems, the qualitative theory of dif-
ferential equations studies the behavior of differential equations by means other than
finding their closed form solutions. It originated from the works of Henri Poincaré
and Aleksandr Lyapunov (LEIPHOLZ, 1970). An approach is to study the qualitative
behavior of the system under perturbations of the initial conditions (initial value
problem): (A) what happens if x0 → x0 + ∆x0, (B) how close is the perturbed evo-
lution to the nominal evolution, and, (C) under which conditions the two solutions
tend to coincide for t→∞.

In the qualitative theory of differential equations, one is frequently interested in
the domain of attraction (also called region of attraction (ROA) or basin of at-
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traction), i.e., the region of the statespace in which the initial conditions of the
trajectories lie in order to attain stable behavior (PARKS, 1966).

Equilibrium points, if exist, must lie in the domains of attraction, indeed, a state
xe ∈ Rn is an equilibrium point of a nonlinear dynamical system ẋ = f(x) if
x0 = xe =⇒ x(t) = xe,∀ t > 0 so f(xe) = 0. A nonlinear system can have
an infinite number of equilibrium points, and, each one can be stable or unstable.
Therefore, stability is a property of equilibrium points (PARKS, 1966). Additionally,
to investigate the stability of a particular equilibrium point x0 it is convenient to
transform the equilibrium point to the origin x∗ = 0 through the transformation
x∗ = x− x0 (PARKS, 1966).

Such equilibrium points, if exist, lie in the domains of attraction, which are defined
by their attractors. An attractor is a subset A ∈ Rn of the statespace characterized
by the following three conditions: (i) a ∈ A =⇒ f(a, t) ∈ A,∀ t > 0; (ii) there exists
a vicinity of A (basin of attraction) which consists of all trajectories that enter A
for t → ∞; and, (iii) there is no proper (non-empty) subset of A having the first
two properties. The attractors can be classified in: (I) Fixed point - the final state
that a dynamic system evolves towards corresponds to an attracting fixed point,
i.e., stable equilibrium point; (II) Limit cycle - a periodic orbit; (III) Quasiperiodic
- it exhibits irregular periodicity; (IV) Strange attractor - when such sets cannot be
easily described.

Regarding the fixed point attractor, it can be defined by the following equa-
tion (BACCIOTTI A.; ROSIER, 2005).

A = {x0 ∈ Rn : lim
t→+∞

x(t, x0) = 0} (2.34)

It is important for practical reasons to have information about the size and/or the
shape of A. Indeed, the stability properties could be of scarce utility if the domain
of attraction is very small, or if the equilibrium point is very close to its boundary.
There is a wide literature about theoretical methods for the determination of A, and
about numerical methods for its approximate estimation (ERDEM; ALLEYNE, 2002;
BACCIOTTI A.; ROSIER, 2005; BRACCI et al., 2006).

One can assess the existence of fixed point attractors in a given system, applying the
qualitative theory of differential equations, in particular, the Lyapunov’s direct
method. The basic philosophy of Lyapunov’s direct method is the mathematical
extension of a fundamental physical observation: if the total energy of a mechanical
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(or electrical) system is continuously dissipated, then the system, whether linear
or nonlinear, must eventually settle down to an equilibrium point. Thus, one can
conclude the stability of an equilibrium point, and, consequently, the existence of a
fixed point attractor, by examining the variation of a single scalar funcion (SLOTINE;

LI, 1991). If one consider x = 0 to be an equilibrium point of Equation (2.14),
then it may prove possible to investigate the stability of such equilibrium point by
examining a scalar positive-definite function V = V (x), surrounding x = 0 with a
nest of closed surfaces defined by V (x) = c (c > 0; V positive definite). The rate
of change with respect to time of V following a trajectory of Equation (2.14) is
calculated as (PARKS, 1992):

V̇ =
n∑
i=1

∂V

∂xi

dxi
dt

=
n∑
i=1

∂V

∂xi
fi(x) (2.35)

If V̇ is always negative (except at x = 0, where V = 0; V̇ negative semi-definite), then
it follows that the trajectories must cross the surface V in an inwards directions,
and, consequently, tend to the point x = 0 as time t → ∞. Thus asymptotic
stability may be proven using a Lyapunov function V without any need to find
explicit solutions of the nonlinear differential equations (PARKS, 1992).

2.2.2.1 Applying Lyapunov’s direct method and obtaining the algebraic
Riccati equation (ARE)

The problem of asymptotic stability verification of LQR can be performed apply-
ing qualitative theory of differential equation, in particular, the Lyapunov’s direct
method (KALMAN, 1960b; KUCERA, 1973) by means of certain auxiliary quadratic
functions, i.e., Lyapunov candidate functions of the form in Equation (2.36).

V (x) = xTPx

V̇ (x) = ẋTPx+ xTPẋ
(2.36)

where P is a symmetric positive definite matrix.

If the function V (x) is positive definite (as assumed) and has continuous partial
derivatives, and if its time derivative along any state trajectory of system is negative
semi-definite, i.e., V̇ (x) ≤ 0 then V (x) is said to be a Lyapunov function for the
system (SLOTINE; LI, 1991).

Regarding the linear system described in Equation (2.15), if such a system admits
a linear controller u = Kx, then ẋ = Ax + BKx can be tested by the Lyapunov’s
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direct method.

It is reasonable to make the inspired guess K = −1
2R
−1BTP , which leads to the

following equation:

ẋ = (A+BK)x

= (A− 1
2BR

−1BTP )x
(2.37)

where R is a symmetric positive definite matrix and P is the unknown symmetric
positive definite matrix.

Substituting Equation (2.37) in Equation (2.36) gives Equation (2.38).

V̇ (x) = ((A− 1
2BR

−1BTP )x)TPx+ xTP ((A− 1
2BR

−1BTP )x)

= (Ax− 1
2BR

−1BTPx)TPx+ xTP (Ax− 1
2BR

−1BTPx)

= (Ax)TPx− 1
2(BR−1BTPx)TPx+ xTPAx− 1

2x
TPBR−1BTPx

= xTATPx− 1
2x

TPBR−1BTPx+ xTPAx− 1
2x

TPBR−1BTPx

= xTATPx+ xTPAx− xTPBR−1BTPx

= xT (ATP + PA− PBR−1BTP )x

(2.38)

using the following properties of matrices operations: (I) (HI)T = ITHT ; and (II)
if M is any symmetric matrix, then MT = M .

As V̇ (x) must be negative semi-definite function for a Lyapunov function, then
V̇ (x) = xT (−Q)x for a fixed positive definite matrix Q. Using Q in Equation (2.38)
gives Equation (2.39).

−Q = ATP + PA− PBR−1BTP =⇒

ATP + PA− PBR−1BTP +Q = 0
(2.39)

Consequently, through Lyapunov’s direct method, the asymptotic stability is guar-
anteed if a unique symmetric positive definite matrix P is the solution for the alge-
braic Riccati equation (ARE) (2.39). The requirements for the existence of such a P
are described in Subsection 2.2.1.1. Furthermore, if asymptotic stability is verified
by Lyapunov’s direct method, then it is guaranteed the existence of a fixed point
attractor for the linear system described in Equation (2.15).
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2.2.2.2 State-dependent Riccati equation (SDRE)

Still, in the 1960s, Pearson (PEARSON, 1962) observed that one of the difficulties
of controlling a nonlinear dynamic system (one in which the assumptions of lin-
earization do not hold) is that optimal control policies are not generally easy to
implement so a lengthy preliminary computation is required which presents quite
unwieldy solutions for the controller to realize. In other words, in general, the em-
bedded required computations are too expensive as well as their certification so the
idea is starting with a nonlinear control problem, a linear time and state varying
model is constructed. Such a model is treated as an instantaneously stationary linear
system and then optimized using the usual linear techniques. This approach later
was called State-Dependent Riccati Equation (SDRE) since it leads towards one or
more algebraic Riccati equations (ARE) (AUB A. J.; BITTANTI, 1991) of the state
varying model (CLOUTIER et al., 1996; CLOUTIER, 1997).

Decades later, SDRE is explored in detail by (CLOUTIER et al., 1996; CLOUTIER,
1997). A good survey of the SDRE method can be found in (ÇIMEN, 2008) and its
systematic application to deal with a nonlinear plant in (ÇIMEN, 2010).

The SDRE technique entails factorization (that is, parametrization) of the nonlinear
dynamics into the state vector and the product of a matrix-valued function that
depends on the state itself. In doing so, SDRE brings the nonlinear system to a
(nonunique) linear structure having SDC matrices given by Equation (2.40).

~̇x = A(~x)~x+B(~x)~u

~y = C~x (2.40)

where ~x ∈ Rn is the state vector and ~u ∈ Rm is the control vector. Notice that the
state-dependent coefficient form (SDC) has the same structure as a linear system,
but with the system matrices, A and B, being functions of the state vector. The
nonuniqueness of the SDC matrices creates extra degrees of freedom, which can be
used to enhance controller performance, however, it poses challenges since not all
SDC matrices fulfill the SDRE requirements, e.g., the pair (A,B) must be pointwise
stabilizable.

The system model in Equation (2.40) is subject to the cost functional described in
Equation (2.41).

J( ~x0, ~u) = 1
2

∫ ∞
0

(~xTQ(~x)~x+ ~uTR(~x)~u)dt (2.41)
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where Q(~x) ∈ Rn×n and R(~x) ∈ Rm×m are the state-dependent weighting matrices.
In order to ensure local stability, Q(~x) is required to be positive semi-definite for all
~x and R(~x) is required to be positive for all ~x (MENON et al., 2002).

The SDRE controller linearizes the plant about the current operating point and
creates constant statespace matrices so that the LQR method can be used. This
process is repeated in all samplings steps, resulting in a pointwise linear model from
a non-linear model, so that an ARE is solved and a control law is computed also
in each step. Therefore, according to LQR theory and Equation (2.40) and (2.41),
the state-feedback control law in each sampling step is ~u = −K(~x)~x and the state-
dependent gain K(~x) is obtained by Equation (2.42) (ÇIMEN, 2010).

K(~x) = R−1(~x)BT (~x)P (~x) (2.42)

where P (~x) is the unique, symmetric, positive-definite solution of the algebraic state-
dependent Riccati equation (SDRE) given by Equation (2.43) (ÇIMEN, 2010).

P (~x)A(~x) + AT (~x)P (~x)− P (~x)B(~x)R−1(~x)BT (~x)P (~x) +Q(~x) = 0 (2.43)

Considering that Equation (2.43) is solved in each sampling step, it is reduced to an
ARE. Finally, the conditions for the application of the SDRE technique in a given
system model are (ÇIMEN, 2010):

a) A(~x) ∈ C1(Rw)

b) B(~x), C(~x), Q(~x), R(~x) ∈ C0(Rw)

c) Q(~x) is positive semi-definite and R(~x) is symmetric positive definite

d) A(~x)x =⇒ A(0)0 = 0, i.e., the origin is an equilibrium point

e) pair(A,B) is pointwise stabilizable (a sufficient test for stabilizability is to
check the rank of controllability matrix)

f) pair(A,Q 1
2 ) is pointwise detectable (a sufficient test for detectability is to

check the rank of observability matrix)

According to (CLOUTIER et al., 1996), since the cost functional described in Equa-
tion (2.41) is convex, any stationary point is at least a local optimum. In general
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(multivariable case), SDRE is not optimal but it is suboptimal. Indeed, the subop-
timality property gives rise to the phenomenon that is observed in applications of
the SDRE, that the control trajectories converge to the optimal control trajectories
as the state is driven towards zero (CLOUTIER et al., 1996).

Finally, Çimen (2008) advocated that in the presence of hard nonlinearities, integral
control can bring the system to the required structure given by Equation (2.40).

2.2.2.3 SDRE and H-infinity

Taking into account the general linear statespace dynamics defined by Equa-
tion (2.23), SDRE method can be readily extended to nonlinear H∞ through the
γ-iteration in each step in order to solve the general H∞ problem (CLOUTIER et al.,
1996).

It is known that if an SDRE controller can be found using H∞, the exogenous signal
(w) is locally attenuated by γ in each step (CLOUTIER et al., 1996).
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3 RELATED WORKS

This chapter shares the selected research related to the current work.

3.1 Linear control

In the domain of attitude kinematics, it is well-known that quaternions represen-
tation has several advantages over the Euler angles representation, in particular,
(i) it does not have any singular point at any attitude, (ii) it does not depend on
any rotational sequence. However, the linearized attitude systems with all quater-
nion components are not fully controllable (detailed discussion available in Sec-
tion 5.3). Therefore, the linear control theory including LQR and H∞ cannot be
directly applied to the attitude problem if a full quaternion-based linearized model
is used (YANG, 2012).

3.1.1 LQR

In order to overcome the previously mentioned fundamental limitation, researches
applied Euler angles for the designing of a linear controller based on LQR (GONZA-

LES; SOUZA, 2009).

Nonetheless, as pointed out by Yang (2010), Yang (2012), Equation (2.5) defines a
direct method to find q4 (the scalar component of the quaternion), therefore, one
option is to model the statespace without such component of the quaternion using
sole the vectorial components of the quaternion. Furthermore, under mild assump-
tions (see Section 2.2.1.1 and disregarding hard nonlinearities), Yang (2012) argued
using Lyapunov’s direct method that the linearized model that involves three vecto-
rial components of the quaternion globally stabilizes the nonlinear system (in other
words, the region of attraction of the system is characterized by a fixed point attrac-
tor for the whole space spanned by x), whereas it locally optimizes the performance.

To support the argumentation, Yang (2012) shared Figure 3.1 showing the simula-
tion result for a Monte Carlo perturbation model, described as follows: (1) in inertia
tensor, the off-diagonal elements were randomly selected between [0, 310], (2) the
initial Euler angle errors (converted into quaternions) of the system are randomly se-
lected between [0, 90] degrees, and (3) the initial angular rates are randomly selected
between [0, 0.00174] radians per second.
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Figure 3.1 - 300 Monte Carlo runs of quaternion response of the system with nondiagonal
inertia tensor.

SOURCE: Yang (2012).

3.2 Nonlinear control

Recalling the reasons to investigate SDRE as the nonlinear control technique can
be summarized as follows: (1) suboptimal results; (2) less known, consequently, it
exhibits more opportunities for extension; (3) numerical tractability for embedded
computation so it can be applied in the practical day to day; and (4) flexibility for
the designer, being comparable to the flexibility in the LQR (DIMAURO et al., 2015).

3.2.1 SDRE

The application of the SDRE technique, and, consequently, the ARE problem that
arises, have already been studied in the available literature, e.g., Menon et al. (2002)
investigated the approaches for the ARE solving as well as the resource requirements
for such online solving. DiMauro et al. (2015) proposed the usage of differential
algebra to reduce the resource requirements for the real-time implementation of
SDRE controllers. In fact, the intensive resource requirements for the online ARE
solving is the major drawback of SDRE.
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The SDRE technique was applied by research (GONZALES; SOUZA, 2009; DI-

MAURO et al., 2015; ROMERO et al., 2018; ROMERO; SOUZA, 2018; ROMERO; SOUZA,
2019c; ROMERO; SOUZA, 2019a; ROMERO; SOUZA, 2019b; ROMERO; SOUZA, 2019d;
ROMERO, 2020a; ROMERO; SOUZA, 2020; ROMERO; SOUZA, 2021b; ROMERO; SOUZA,
2021a; YAO et al., 2021) for controlling a nonlinear system similar to the six-degree of
freedom satellite model considered in this thesis. Gonzales and Souza (2009) defined
a simulator using Euler angles based on commercial software, whereas, DiMauro et
al. (2015) applied quaternions on commercial software. Romero et al. (2018), Romero
and Souza (2018) showed, through simulation applying opensource software, using
a Monte Carlo perturbation model, SDRE based on quaternions provides better
performance than the PID controller.

3.2.1.1 State-dependent coefficients (SDC)

The nonuniqueness of the SDC matrices creates extra degrees of freedom, which can
be used to enhance controller performance, however, it poses challenges since not
all SDC matrices fulfill the SDRE requirements. Research is focused on the latter
challenges.

Liang and Lin (2013) addressed the general problem of the lack of guidelines on
the construction of the SDC matrix when the SDRE solvability conditions are vio-
lated, which may result in the SDRE scheme being terminated. Indeed, the authors
highlighted that SDRE can be unsolvable when the state is at origin (Cx = 0).

Romero and Souza (2019a), Romero and Souza (2019b), Romero and Souza (2021a)
tackled the SDC construction for the attitude control, in fact, regarding the at-
titude kinematics, there is a plethora of options, e.g., Euler angles, Gibbs vector,
modified Rodrigues parameters (MRPs), quaternions, etc. The SDCs were evaluated
according to Çimen (2010), in which is advocated that an effective approach for se-
lecting the optimal state-space model for the SDRE is to attempt to maximize the
pointwise stabilizability of the possible models since pointwise control effort can be
directly linked with controllability. The controllability criterion requires the value
of the determinant of the controllability matrix to be different from zero, therefore,
a graphical comparison of the absolute value of the determinant of controllabil-
ity matrix can be used to reveal when pointwise controllability is maximized. For
multi-input systems, as the one studied in such research, the controllability matrix
is nonsquare, then the controllability matrix multiplied by its transpose is used to
evaluate the determinant.
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Yao et al. (2021) proposed an SDC parametrization for the attitude control, in which
the previously referred guideline from (ÇIMEN, 2010) is improved. Subsequently, at
the region in which the derived SDC parametrization fails to operate, a complemen-
tary SDC parametrization is proposed.

3.2.1.2 Domain of attraction

The origin of an SDRE controlled system is a locally asymptotically stable equi-
librium point (CLOUTIER et al., 1996). Furthermore, the knowledge of its region of
attraction is fundamental due to the local stability even more in the presence of
hard nonlinearities or uncertainties.

Indeed, much criticism has been leveled against SDRE technique because it does
not provide assurance of global asymptotic stability. However, empirical experience
shows that in many cases the fixed point attractor (or the region of attraction, ROA)
may be as large as the domain of interest. Moreover, there are situations in which
global asymptotic stability cannot be achieved (for example, systems with multi-
ple equilibrium points). Therefore, especially in aerospace, estimating the region of
attraction is fundamental (ÇIMEN, 2008).

Obtaining a good estimate of such a ROA, especially of higher order, is a challenging
task in itself. In fact, Yao et al. (2021) states that analytical ROA for nonlinear sys-
tems with dimensions greater than two is usually unavailable. Such a task becomes
even more difficult since the closed-loop matrix of SDRE is usually not available in
the closed form (ERDEM; ALLEYNE, 2002).

The well-known Lyapunov approaches to estimate the region of attraction cannot
be used for SDRE since the closed-loop system equations are usually not known
explicitly. Erdem and Alleyne (2002), Bracci et al. (2006) proposed procedures to
reduce the effort of ROA’s computation focusing on the maximum and the minimum
values of feedback gains over a chosen region of the statespace. The other alternative
is to make time-domain simulations of the closed loop system, which is cumbersome
and costly (ERDEM; ALLEYNE, 2002; BRACCI et al., 2006).

Yao et al. (2021) showed a domain of attraction based on time-domain simulations
(464373 runs) of the closed loop system for the proposed SDC parametrizations.
The initial conditions were (3-2-1 Cardan angles were converted into quaternions):

• Z - angles [−90, 90] degrees and angular velocity [−0.1, 0.1] radians per
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Figure 3.2 - Region of attraction (ROA) for 50 simulation sets selected randomly among
all runs.

SOURCE: Yao et al. (2021).

second;

• Y - angles [−90, 90] degrees and angular velocity [−0.1, 0.1] radians per
second;

• Z - angles [0, 360] degrees and angular velocity [−0.1, 0.1] radians per sec-
ond;

and a part of the results was shown in Figure 3.2. The simulation results revealed
that the proposed SDCs were able to guarantee the system stability in the interest
ROA.

3.2.2 SDRE and H-infinity

In order to model uncertainties, Cloutier et al. (1996) proposed the extension of
SDRE to nonlinear H∞ through the γ-iteration and, subsequently, stated if a con-
troller can be found using H∞, the exogenous signal (w) is locally attenuated by γ
in each step (CLOUTIER et al., 1996).

Nonetheless, it can be found in the literature propositions without an explicit ratio-
nale that sole SDRE can be robust to uncertainties, e.g., Çimen (2010) (pg. 43) “...
It is also worth mentioning that all three SDRE designs carried out above are robust
to 5% variations in the cart-pendulum parameters, as well as unmodeled dynamics
of friction and inertia, and attenuate external disturbances on the cart-pendulum
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system...”.

Finally, as the extension of SDRE to H∞ is done step-by-step, all the literature
of H∞ is available. For example, Wang et al. (2017) concluded that the subopti-
mal control solution achieves mixed performance objectives guaranteeing nonlinear
quadratic optimality with inherent stability property in combination with H∞ type
of disturbance reduction; moreover, the SDRE extended with H∞ showed a better
capability of disturbance rejection, but slower response rate.
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4 METHODOLOGY

“One unerring mark of the love of truth is not entertaining any
proposition with greater assurance than the proofs it is built upon
will warrant.” - John Locke

4.1 Toward the goals

Back in 2017, in the discipline CMC-202-4 (Movement of a Solid Body), the first
prototype of the open-source software based on Java was defined. It was based
on Orekit (OREKIT. . . , 2017) and Hipparchus (HIPPARCHUS. . . , 2018) open-source
projects. The former for flight dynamics and the latter for mathematics, in partic-
ular, linear algebra. The dynamics was linearized enabling the application of LQR
(linear-quadratic regulator), in which the matrix P was computed using commercial
software.

In the sequel, such dependence on commercial software was removed from the pre-
viously mentioned prototype through the contribution for the open-source project
Hipparchus (ROMERO, 2017). Such contribution enables the users of the Hipparchus
project to solve the ARE easily (for details about the algorithm for solving AREs
in Hipparchus, see Romero (2020a)).

In 2018, Romero and Souza (2019c) compared the performance of a PID controller
and an SDRE controller applying a kinematic based on Euler Angles using the
Amazonia-1 characteristics (SILVA et al., 2014). Applying a Monte Carlo perturbation
model, the results showed that SDRE has better performance. Afterwards, Romero
et al. (2018), Romero and Souza (2021a) extended the dynamics of the prototype to
be based on quaternions and then compared the performance of a PID controller,
an LQR controller, and an SDRE controller. Once again applying a Monte Carlo
perturbation model, the results showed that SDRE had better performance and the
LQR did not exhibit asymptotic stability.

Turning to CubeSats Romero and Souza (2019c), Romero and Souza (2019d), com-
pared the performance of a PID controller and an SDRE controller, resulting in a
better performance of the SDRE controller.

The next endeavor was to evaluate different SDCs since the nonuniqueness of the
SDC matrices creates extra degrees of freedom, which can be used to enhance con-
troller performance, however, it poses challenges since not all SDC matrices fulfill
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the SDRE requirements. Moreover, regarding the satellite’s kinematics, there are a
plethora of options, e.g., Euler angles, Gibbs vector, modified Rodrigues parame-
ters (MRPs), quaternions, etc. Therefore, Romero and Souza (2019a), Romero and
Souza (2019b), Romero and Souza (2021a) evaluated which of these kinematic op-
tions resulted in better factorizations of the SDRE technique for the attitude control
applying a given Monte Carlo perturbation model based on a set of parameters, ini-
tial conditions, and references for the controller. The results showed that different
SDCs can produce extremely different results ranging from non-applicability of the
SDRE technique to huge differences in the controllability and, consequently, in the
robustness and performance of the system.

In 2020, the next fundamental problem was tackled: robustness (ROMERO; SOUZA,
2020; ROMERO; SOUZA, 2021b; ROMERO; SOUZA, 2021c). The robustness was eval-
uated using two perspectives: (1) structured (parametric) uncertainty of the iner-
tia tensor and (2) a Monte Carlo perturbation model based on a uniform attitude
probability distribution. Through the combination of these two perspectives, the
robustness properties of the SDRE were grasped. In order to handle the uncertainty
appropriately, SDRE was extended with H∞, in such a way that a family of systems
characterized by H∞ bounded perturbations of a normalized left coprime factoriza-
tion of a nominal system was computed for each step. Therefore, the attention was
moved to the size of error signals and away from the size and bandwidth of selected
closed-loop transfer function (GLOVER; MCFARLANE, 1989; SKOGESTAD; POSTLETH-

WAITE, 2005). To the best of our knowledge, the usage of exactly three AREs to
find the sub-optimal controller was original since the SDRE’s literature suggests the
γ-iteration in each step to solve the general H∞ problem (CLOUTIER et al., 1996).

The achievements up to the ending of 2019 were published as open-source software,
under the license GPL v3.0, and are available at Romero (2020b). Moreover, a
developer guide, to enable public extension, is available at Romero (2020a). The
continuous development is publicly available, under the same license, at Romero
(2021a).

4.2 Methodology

Firstly, the control laws, independent of the applied technique being linear or non-
linear, are modeled and too many time-domains simulations are available for their
analysis. Furthermore, as explored in Section 2, in the presence of hard nonlinearities
or uncertainties even the techniques that guarantee global asymptotically stability
can lose such property. Therefore, the first major task is to assess the presence of a

40



fixed point attractor as well as its size and shape.

Nonetheless, it is somewhat difficult to depict the ROA for statespace systems with
dimensions higher than three. Facing such difficulty, (YAO et al., 2021) chose to list
the domain of interest and to plot a small subset of simulations in Figure 3.2. Such
an approach offers restricted support for the comparison of different ROAs.

Inspired by the works of Henri Poincaré, in particular, Poincaré maps (LEIPHOLZ,
1970) which defines a lower-dimensional subspace for qualitative analysis. The
present work applied two euclidean norms, namely L2-norm of Euler angles (three
components) and L2-norm of angular velocities (three angular velocities), to define
a two-dimensional space for quantitative analysis. In such a way that the area of the
ROA (dimensionless) can be analytically computed and compared; and, the plot of
the ROA can allow straightforward analysis.

Besides, as the current work pursues the evaluation of robustness, the definition of
the fixed point attractor presented in Equation (2.34) is restricted by the definition of
an explicit final time tf and a numerical error ε, according to the following equation:

A = {x0 ∈ Rn : lim
t→tf
||x(t, x0)||2 < ε} (4.1)

Equipped with these two tools, namely (A) the two-dimensional space for quanti-
tative analysis of the up to seven-dimensional statespace and (B) Equation (4.1),
simple polygons - they do not intersect themselves and have no holes - of ROAs
are defined in the two-dimensional space for the initial conditions x0. The area of
such polygons is the primary measure for the quantifiable comparison of
different control laws.

Secondly, inspired by the cost functionals defined by Equations (2.20) and (2.41),
the secondary and final measure applied for the quantifiable comparison
of different control laws is Jm defined by Equation (4.2):

Jm = 1
2

∫ tf

0
xTQx+ uTRu dt (4.2)

where Q = R = I.

Jm is an approach for quantifying time domain performance in terms of the
integral of the generalized norm of state (for regulator problem in which it is driven
to zero) combined with the generalized norm of control. In this way, the various
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objectives related to both speed and quality of response are combined into one
measure (SKOGESTAD; POSTLETHWAITE, 2005).

Focusing on these two measures, area of ROAs A and Jm, one defines a Monte Carlo
perturbation model for the interested initial conditions, performs the time-domain
simulation until the predefined tf , and, finally, computes the measures.

The last topic in the methodology of the evaluation of control laws is how to define
the interest initial conditions.

Regarding initial attitudes defined by 3-2-1 Euler angles (Z-Y-X, nonclassical Euler
angles), it is well-known that representing Y beyond ±90 degrees (that means ±180
degrees) would give two Euler angles solution for every rotation, so Y is limited to
±90 degrees. X and Z are limited to ±180 degrees. Therefore, independent distri-
butions are applied for each Euler angle respecting the limits previously discussed in
order to define the initial attitudes (3-2-1, Z-Y-X, nonclassical Euler angles, which
are converted in quaternions) in a given Monte Carlo perturbation model.

Regarding initial angular velocities, they are defined by independent distributions
based on the maximum angular velocity of satellite that is controllable by the reac-
tion wheels (see Section 6.1).

In summary, the methodology for the evaluation of the robustness through the deter-
mination of the region of attraction as well as the quantifiable results of the control
laws can be summarized as:

• Compute initial conditions for the Monte Carlo perturbation model

Using independent distributions, compute the 3-2-1 Euler angles (Z-
Y-X, nonclassical Euler angles) in the range (±180, ±90, ±180)

Using independent distributions, compute the angular velocities based
on the maximum angular velocity of satellite that is controllable by the
reaction wheels

• Perform the time-domain simulation until the predefined tf

• Computes the primary and secondary measures

• Compare such measures

Finally, such a procedure can be extended to introduce structured uncertainty in
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the simulation (typically, imprecision in the inertia tensor) as well as unstructured
uncertainty (e.g., external torques).

4.3 Limitations

As the conclusions are based on analysis through simulations, they are neither valid
for general cases nor for scenarios out of the range of the Monte Carlo perturbation
models due to the underlining nonlinear dynamics.

43





5 MODELS

This chapter presents the models developed in the current work.

5.1 Satellite as rigid-bodies

In this work, satellites are defined to be three-axes stabilized attitude-maneuvering
rigid-bodies, therefore, it is a zero-bias-momentum system. In the sense that, a ma-
jor control requirement is to remove the unwanted accumulated angular momentum.
Therefore, an active control system is needed. Note the existence of angular momen-
tum in the satellite would cause control difficulties when attitude maneuvers in space
would be executed since this superfluous momentum would provide the spacecraft
with unwanted gyroscopic stability (SIDI, 2006).

Since an active control system is required, it is worthwhile to explore the techniques
available to produce torques for attitude control. There are two types of actuators:
(1) the inertial actuators - they change the overall inertial angular momentum of the
satellite, in other words, they generate external torques; (2) the momentum exchange
actuators - they do not change the inertial angular momentum; or, a symmetrical
rotating body produces torque when accelerated about its axis of rotation since such
change in the momentum is internal to the satellite, it transfers the momentum
change to the satellite with a negative sign (angular momentum is a conservative
quantity) (SIDI, 2006).

At least, three different ways of producing torque for the attitude control of the
satellite are available:

a) Inertial actuators

Earth’s magnetic field - magnetorques provide continuous and smooth
control, albeit, the low level of the control torques achieved, and, conse-
quently, slow attitude maneuvers (SIDI, 2006)

Reaction force produced by a thruster - no smooth control can be
achieved owing to the inherent impulsive nature of the thrusters (SIDI,
2006), furthermore, there is no straightforward way to refuel such actuators

b) Momentum exchange actuators

Reaction wheels - for very accurate control and for moderately fast
maneuvers, the reaction wheels are preferred since they allow continuous
and smooth control with the lowest possible disturbing torques (SIDI, 2006)
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Focusing on the sensors, there are two principal types of attitude determination
hardware: attitude sensors and angular velocity sensors (SIDI, 2006).

Figure 5.1 shows the decomposition of the satellite considered in the present work.

Figure 5.1 - Satellite hierarchical decomposition.

SOURCE: Author.

5.1.1 Sensors

In the Satellite Simulation, there are three types of sensors: (1) a set of attitude sen-
sors, the set of sun sensors (quite-common on earth-orbiting satellites (SIDI, 2006));
and (2) an angular velocity sensor, a gyroscope. The sensors, available in the simula-
tor, are ideal and simplified, in the sense that, they can read the physical quantities
at any moment with perfect accuracy and no noise. In other words, it is always as-
sumed that x(t) is known exactly (KALMAN, 1960a). Additionally, the set of sun
sensors provides through the entire simulation the same measure of the sun versor
ŝb (ŝb = [0.323116 0.868285 0.376401]T ) so there is no eclipse, the sun is not moving
in the ECI reference frame and the sun is always visible by each individual sensor.
Indeed, ECI is a quasi-inertial reference frame generally used in AOCS (HUGHES,
1986; SIDI, 2006).
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5.1.2 Actuators

One type of actuator is applied, which is a set of reaction wheels. In this thesis, there
is no unloading of the angular momentum of the reaction wheels perhaps through
magnetorques.

Reaction wheels
Since an active control system is required, the simulator uses momentum exchange
actuators - they do not change the inertial angular momentum; or, a symmetrical
rotating body produces torque when accelerated about its axis of rotation since such
change in the momentum is internal to the satellite, it transfers the momentum
change to the satellite with a negative sign (angular momentum is a conservative
quantity) (SIDI, 2006).

The type of the momentum exchange actuator used is reaction wheel, a rotating
machine that is commonly applied for very accurate control and for moderately fast
maneuvers since it allows continuous and smooth control with the lowest possible
disturbing torques (SIDI, 2006). In particular, reaction wheels are often used in
satellites that carry optical payloads, as in the previously discussed typical mission
of the INPE. For example, a camera-pointing error creates a signal which increases
the speed of the wheel, initially at zero. This torque corrects the satellite and leaves
the wheel spinning at low speed until another pointing error speeds the wheel further
or decreases its speed. If the error is cyclic during each orbit, the wheel may not
approach saturation speed for several orbits.

Figure 5.2 - Three reactions wheels mounted in a satellite.

SOURCE: Adapted from Futek. . . (2018).
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Reaction wheels are essentially torque motors with high-inertia rotors. They can spin
in either direction and provide one axis of control for each wheel. The basic technical
features of a reaction wheel are: maximum achievable torque, maximum momentum
capacity (or maximum speed), low torque noise, and low coulomb friction (SIDI,
2006).

Reaction wheels and hard nonlinearities
The reaction wheel models: maximum achievable torque (Mt ∈ R) and maximum
speed (Ms ∈ R). These two characteristics are physically defined for each reaction
wheel apparatus and are described in their supplier’s datasheet usually.

According to the Euler-Newton formulation of the rotational motion, angular accel-
eration is caused by torques, in other words, the change in the angular momentum
~̇h is equal to the net torques, see Equation 2.7. Moreover, the reaction wheel has
constant inertia moment (I), therefore, in the scalar form, the control torque u gen-
erated by a reaction wheel is Iω̇ = ḣ = u. Assuming the reaction wheel has a control
mode driven by speed (e.g., the reaction wheel from Futek. . . (2018), which is com-
manded by rotational speed), the equation is ω̇ = uI−1, which leads to ω =

∫
uI−1.

A controller computes the commanded control torque (uc ∈ R) to be generated
by a reaction wheel, which is constrained by Mt due to its physical limitations, in
other words, hard constraints. In order to model such hard constraints, discrete
behavior must be introduced.

Discrete behaviors are modeled using conditional functions, which may be activated
at certain points or during some interval of points. These conditional functions may
change instantaneously the state when a predicate holds, e.g., a variable x (current
value) assumes a new value x’(next value). The ODEs augmented with conditional
functions are called hybrid ODEs.

The following hybrid ODE models the maximum achievable torque:

ω(t, uc) :=


∫
ucI
−1, if −Mt ≤

∫
ucI
−1 ≤Mt∫

(Mt sign(uc))I−1, otherwise
(5.1)

where sign returns the signal of a given real number.

Note ω(t, uc) is continuous because for any given pair (t, uc) ∈ R2 the limit exists
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and converges.

Going further, in order to model the maximum speed of a given reaction wheel the
model (5.1) must be stacked with the following one:

ωc(t, uc) :=

ω(t, uc), if −Ms ≤ ω(t, uc) ≤Ms

Ms sign(ω(t, uc)), otherwise
(5.2)

Note ωc(t, uc) is still continuous because for any given pair (t, uc) ∈ R2 the limit
exists and converges. Nevertheless, such a model (5.2) is nonlinear since some
changes in uc do not produce the linear expected effect (due to the constraints), i.e.,
it does not exhibit the superposition principle, the net response caused by two or
more stimuli is not always the sum of the responses that would have been caused
by each stimulus individually.

In conclusion, hybrid ODE (5.2) states that the commanded control torque (uc)
is not always achievable so for any given step the actual control torque generated
by the reaction wheel can be different from the commanded (smaller). Moreover,
hybrid ODE (5.2) is also known as hard nonlinear since it is bounded by hard
constraints which then lead to nonlinearities (SLOTINE; LI, 1991). Finally, continuity
is maintained in such hybrid ODEs, therefore, the conditions for the existence and
uniqueness of a solution are maintained; however, global stability properties of linear
controllers are easily missed due to such hard nonlinearities.

5.2 Satellite’s attitude control

In a zero-bias-momentum system, two dynamics states must be controlled: (1) the
attitude (perhaps described by Euler angles θ or unit quaternions Q) and (2) its
stability (θ̇, in other words, the angular velocity ω of the satellite). Taking into
account Satellite Simulation, the following high-level requirements are: (1) is refined
in "REQ01 - the attitude must be stabilized and must follow the sun according
to a given sun vector in the satellite" and (2) is refined in "REQ02 - the angular
momentum must be as close as possible of 0". An additional third (3) requirement
would be the unloading of the angular momentum of the reaction wheels, which is
not explored in the current work. These high-level requirements lead to a possible
control loop described in Figure5.3. Note the main control loop is exclusively based
on the set of reaction wheels as actuators, and an additional control-loop could
be defined to unload the angular momentum of the reaction wheels. Consequently,
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Figure 5.3 - Satellite’s attitude control.

SOURCE: Author.

the state and the control vectors, for the main control loop, can be defined by
Equation 5.3. x1

x2

 =
Q
ω


[
u1

]
=
[
Tc = ∑3

n=1 gnan
]

(5.3)

The control regulator problem requires that errors in the attitude and angular ve-
locity must be obtained. The error in the angular velocity is directly obtained from
the gyroscope readings, nonetheless, the error in the attitude must be computed.
The applied approach for the computation of the error in the attitude is: (I) in the
initial iteration of the simulation, given two versors, namely (a) the actual sun ver-
sor ŝb in the satellite coordinate frame (constant during the simulation) and (b) the
reference versor in the satellite coordinate frame, to compute a rotation (there are
many) from the actual sun versor to the reference versor (this computed rotation
can be described by the unit quaternion Qt); afterwards, (II) the usual quaternion
error is applied as defined by Equation 5.4 (WERTZ; LARSON, 1999).

Q−1
o Qt ≡ Qe =


Qt4 Qt3 −Qt2 Qt1

−Qt3 Qt4 Qt1 Qt2

Qt2 −Qt1 Qt4 Qt3

−Qt1 −Qt2 −Qt3 Qt4




−Qo1

−Qo2

−Qo3

Qo4

 (5.4)

where Qo is the quaternion that describes the observed attitude (propagated during
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Table 5.1 - Satellite characteristics of Amazonia-1.

Name Value
Characteristics

inertia tensor (kg.m2)

310.0 1.11 1.01
1.11 360.0 −0.35
1.01 −0.35 530.7


Actuators Characteristics - Reaction Wheels

inertia (kg.m2) 0.01911

inertia tensor of 3 reaction wheels (kg.m2)

0.01911 0 0
0 0.01911 0
0 0 0.01911


maximum achievable torque (N.m) 0.075

maximum speed (RPM) 6000
References for the controller

solar vector in the body (XYZ)
[
1 0 0

]T
angular velocity (radians/second, XYZ)

[
0 0 0

]T
SOURCE: Adapted from Silva et al. (2014).

the simulation), Qt is the quaternion that describes the target attitude (as described
above) and Qe is the quaternion error (the actual state for the regulator problem).

5.2.1 Satellite characteristics

Table 5.1 shows the satellite characteristics of Amazonia-1 (SILVA et al., 2014).

5.3 Linear control

The following subsections share the models for linear control.

5.3.1 LQR based on full quaternions

Equation 2.4 and Equation 2.5 can be used to linearize the system around the
stationary point (ω = 0 and Q = [0 0 0 − 1]T ), assuming also that there are no net
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external torques (gcm = 0) lead to Equation 5.5.
x1

x2

 =
Q
ω



ẋ1

ẋ2

 =


0 −1

2I3x3

0 0
0 0


x1

x2

+
 0
−I−1

b

 [u1

]

[
y
]

= I

x1

x2



(5.5)

The expansion of the Equation 5.5 generates the Equation 5.6, which defines the
constant matrixes A, B e C (taking into account Amazonia-1).


q̇1

q̇2

q̇3

q̇4

ω̇1

ω̇2

ω̇3


=



0 0 0 0 −1
2 0 0

0 0 0 0 0 −1
2 0

0 0 0 0 0 0 −1
2

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0





q1

q2

q3

q4

ω1

ω2

ω3


+



0 0 0
0 0 0
0 0 0
0 0 0

−0.0032 0 0
0 −0.0028 0
0 0 −0.0019



[
u1

]

[
y
]

= I



q1

q2

q3

q4

ω1

ω2

ω3


(5.6)

However, the constant matrices A and B are not stabilizable since the controllability
matrix of the pair(A,B) has no full rank. Indeed, (YANG, 2012) shown that this
linearized model with all quaternion components is not stabilizable, meaning that
LQR is not applicable.
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5.3.2 LQR based on partial quaternions

Since Equation 2.5 defines a direct method to find q4, therefore, one option is to
model the state of the system without such component of the quaternion (YANG,
2012), which leads to the following equation:

x3

x2

 =


q1

q2

q3

ω


ẋ3

ẋ2

 =
0 −1

2I3x3

0 0

 x3

x2

+
 0
−I−1

b

 [u1

]
[
y
]

= I

x3

x2



(5.7)

The expansion of the Equation 5.7 generates the Equation 5.8, which defines the
constant matrixes A, B e C (taking into account Amazonia-1).



q̇1

q̇2

q̇3

ω̇1

ω̇2

ω̇3


=



0 0 0 −1
2 0 0

0 0 0 0 −1
2 0

0 0 0 0 0 −1
2

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0





q1

q2

q3

ω1

ω2

ω3


+



0 0 0
0 0 0
0 0 0

−0.0032 0 0
0 −0.0028 0
0 0 −0.0019


[
u1

]

[
y
]

= I



q1

q2

q3

ω1

ω2

ω3


(5.8)

In such statespace, the constant matrices A and B, defined by Equation 5.8, are
stabilizable.
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5.4 Nonlinear control

For small maneuvers a linear controller can be used, however, for large maneuvers,
the linearized equations do not hold and discontinuities compromise the system
(e.g., saturation of the actuators) (SIDI, 2006). In order to avoid linearization, the
nonlinear control technique SDRE is applied.

Assuming that there are no net external torques (gcm = 0), kinetics defined by
Equation 2.13 can be rearranged as defined by Equation 5.9 using the property
v×w = −w×v.

ω̇ = −I−1
b ω×Ibω − I−1

b ω×
3∑

n=1
hw,nan − I−1

b

3∑
n=1

gnan

= (−I−1
b ω×Ib + I−1

b (
3∑

n=1
hw,nan)×)ω − I−1

b

3∑
n=1

gnan

(5.9)

5.4.1 SDRE based on quaternions

Taking into account the state and control vectors defined in Equation 5.3, the state
space model can be defined using Equation 2.4 (Ω) and Equation 5.9 in Equa-
tion 5.10.

x0

x2

 =
Q
ω


ẋ0

ẋ2

 =
1

2Ω 0
0 −I−1

b ω×Ib + I−1
b (∑3

n=1 hw,nan)×

 x0

x2

+
 0
−I−1

b

 [u1

]
[
y
]

= I

x0

x2



(5.10)

However, the SDC matrices (in Equation 5.10) do not fulfill the SDRE requirements,
in particular, the pair (A,B) is not pointwise stabilizable. Another option for the
definition of the SDC matrices is to use Equation 2.4 based on Ξ, which leads to
Equation 5.11.
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x0

x2

 =
Q
ω


ẋ0

ẋ2

 =
0 1

2Ξ
0 −I−1

b ω×Ib + I−1
b (∑3

n=1 hw,nan)×

x0

x2

+
 0
−I−1

b

 [u1

]
[
y
]

= I

x0

x2



(5.11)

Nonetheless, the SDC matrices (in Equation 5.11) do not fulfill the SDRE require-
ments, in particular, the pair (A,B) is not pointwise stabilizable.

5.4.2 SDRE based on Gibb’s vector

An alternative option for the definition of the SDC matrices is to use Equation 2.6,
which leads to Equation 5.12.

x0

x2

 =
Q
ω



ẋ0

ẋ2

 =

−
1
2

ω×
ωT

 0
1

2q4I3×3

01×3


0 0 −I−1

b ω×Ib + I−1
b (∑3

n=1 hw,nan)×


x0

x2

+
 0
−I−1

b

 [u1

]

[
y
]

= I

x0

x2


(5.12)

Equation 5.12 has been shown to satisfy SDRE conditions in the majority of states-
pace with exception of the region on which the angular velocity is close to 0 (the
pair(A,B) loses rank in such region). In practical problems, regarding such a region,
one approach is to switch to another SDC parametrization (YAO et al., 2021) or to
resort to LQR. Note such the known limitation of this particular parametrization
of SDRE imposes laxity as the REQ01 is not satisfied. Nonetheless, as the goal of
this thesis is to evaluate the control laws in the presence of hard nonlinearities and
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uncertainties such a limitation is accepted.

Finally, equation 5.12 can be factored to produce infinity parametrizations. More-
over, other kinematic equations (e.g., MRPs) can result in statespace models with
different properties.

5.4.3 SDRE and H-infinity based on Gibb’s vector

In the same spirit of the performance index studied by (KALMAN, 1960b) for LQR
in the early 1960s, the current work chooses to focus on the size of error signals z in
the statespace described by Equation (2.23) but not on the size and bandwidth of
transfer functions (frequency response techniques; (SKOGESTAD; POSTLETHWAITE,
2005)).

The SDRE extended with H∞ uses Equation (5.12) and the following procedure to
compute the controller that maximizes the stability margin for the perturbed plants
in each step, which is:

a) Reconstruct the matrices using the SDC form;

b) Solve the two ARES of Equation (2.31) computing X and Z;

c) Compute γmin using Equation (2.30);

d) Define a state-space model (A,B,C,D) using X, Z and a γ > γmin by
Equation (2.33);

e) Solve the third ARE that results from state-space model described by
Equation (2.33), which leads to PKH∞

as the unique, symmetric, positive-
definite solution of such ARE;

f) Compute the controller K for the original system using K(~x) =
R−1(~x)B2(~x)PKH∞

(~x).

Such a procedure requires the solving of three AREs in each step, instead of one
ARE as usual in the SDRE controller. Nonetheless, it avoids the λ-iteration in each
step.

Concluding, the limitations and reflections discussed in the previous subsection apply
to this control law since it is based on the same Equation (5.12).
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6 RESULTS

This section shares the evaluation of four scenarios of the control laws under analysis:

• Primary and secondary measures for a Monte Carlo perturbation model
as described by Section 4.2 without the hard nonlinearities in the reaction
wheels as modeled in Equation 5.2, see Section 6.2;

• Primary and secondary measures for a Monte Carlo perturbation model as
described by Section 4.2 with the hard nonlinearities in the reaction wheels
as modeled in Equation 5.2, see Section 6.3;

• Primary measure for a Monte Carlo perturbation model as described by
Section 4.2 with the hard nonlinearities in the reaction wheels as modeled
in Equation 5.2 extended by structured uncertainties modeled as variations
in the inertia tensor, see Section 6.4;

• Primary measure for a Monte Carlo perturbation model as described by
Section 4.2 with the hard nonlinearities in the reaction wheels as modeled
in Equation 5.2 extended by unstructured uncertainties modeled as a net
external torque, see Section 6.5;

6.1 Preliminaries

Taking into account the limitations of the control laws previously stated in Sec-
tion 5, the definition of the fixed point attractor presented in Equation (4.1) is once
restricted by the selection of sole angular velocities (x2 in Equation (5.5)), ω-stability
in Hughes (1986), according to the following equation:

A = {x0 ∈ Rn : lim
t→tf
||x2(t, x0)||2 < ε} (6.1)

All the results are based on the satellite Amazonia-1, which is characterized by
Table 5.1, furthermore, the simulations were conducted with the full Monte Carlo
perturbation model (see Section 4.2) tuned with the parameters shared in Table 6.1.

The parameters are self-evident with except of the angular velocities. Using Sec-
tion 2.1.2, the maximum angular momentum of the set of reactions wheels was
computed ( ~hwmax = ~Iw. ~ωwmax) and then the corresponding maximum angular veloc-
ity of the satellite was found solving a matrix equation ( ~hwmax = ~I. ~ωmax). The result
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Table 6.1 - Monte Carlo perturbation model parameters.

Name Value
3-2-1 Euler angles (degrees) Z : U(−180, 180)

Y : U(−90, 90)
X : U(−180, 180)

angular velocities (rad/s) X : U(−0.0385, 0.0385)
Y : U(−0.0385, 0.0385)
Z : U(−0.0385, 0.0385)

Q I
R I

ε (rad/s) 0.0001
samples 150

tf (seconds) 3600
fixed step size (seconds) 0.05

SOURCE: Author.

in radians per second was ~ωmax = {0.0385, 0.0332, 0.0225}, the norm (L2) is 0.0556,
and the infinity norm was 0.0385, which is the value used as parameter.

The initial conditions uniformly distributed computed using such parameters by
the Monte Carlo perturbation model are depicted in the next sections using a two-
dimensional space, in which the norm of Euler angles is along the X axis and the
norm of angular velocities is along the Y axis for each initial condition. This space has
its bounds constrained by the norm of Euler Angles ranging from 0 to 270 degrees
and the norm of angular velocities ranging from 0 to 0.066 radians per second,
following the parameters presented in Table 6.1. However, as there is no mechanism
to desaturate the reactions wheels, the limit expected for the norm of the angular
velocities of the initial conditions inside any ROA is the previously shared 0.0556
radians per second (in the presence of the hard nonlinearities). From here on NS is
used in the sense that such a predicted upper bound for the norm of the angular
velocities is achieved; furthermore, NP is used in the sense of the convergence in the
defined tf .

The same two-dimensional space is applied in the next sections to depict ROA (pri-
mary measure). In the same spirit, the secondary measure defined by Equation (4.2)
is shown using another two dimensional space, in which the integral of the general-
ized norm of statespace is along the X axis and the integral of the generalized norm
of control is along the Y axis for each sample; furthermore, the statistics for the
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measure, as defined by Equation (4.2) and computed using the samples, are shared.

Additionally, Appendix B shares the simulations of the control laws for two relevant
maneuvers, a Y and a Z “pure-spins”, which provide complementary engineering
insights.

Finally, the data, as generated by the simulator, are completely available at Romero
(2021b).

6.2 Primary and secondary measures evaluated without hard nonlinear-
ities

This section evaluates the satellite (modeled as a nonlinear system) and the control
laws (LQR, SDRE based on Gibb’s vector, and SDRE and H-infinity based on Gibb’s
vector) without hard nonlinearities in the reaction wheels. Therefore, the reaction
wheels are linear and can achieve any torque as well as any speed as opposed to
Equation 5.2.

Figure 6.1 shows the initial conditions uniformly distributed by such a Monte Carlo
perturbation model execution (450 simulations, three different control laws for each
initial condition).
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Figure 6.1 - Initial conditions without hard nonlinearities.

SOURCE: Author.

Figure 6.2 shows the ROA of LQR (in blue, legend ProportionalLinearQuatuernion-
PartialLQRController), SDRE based on Gibb’s vector (in green, legend Proportion-
alNonLinearQuaternionSDREController_GIBBS), and SDRE and H-infinity based
on Gibb’s vector (in red, legend ProportionalNonLinearQuaternionFullSDREHin-
finityController), which were identical. In particular, all the 150 initial conditions
converged in tf according to Equation (6.1); consequently, the area of the three
polygons was the same (primary measure). Note the upper bound for angular ve-
locities (in the presence of hard nonlinearities) established as a criterion for NS was
overpassed since the hard nonlinearities were turned off.
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Figure 6.2 - ROA without hard nonlinearities.

SOURCE: Author.

Figure 6.3 depicts the secondary measure. Recall LQR, in blue, legend Proportion-
alLinearQuatuernionPartialLQRController; SDRE based on Gibb’s vector, in green,
legend ProportionalNonLinearQuaternionSDREController_GIBBS; and, SDRE and
H-infinity based on Gibb’s vector, in red, legend ProportionalNonLinearQuaternion-
FullSDREHinfinityController.
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Figure 6.3 - Statistics of Optimality without hard nonlinearities.

SOURCE: Author.

Without hard nonlinearities, LQR exhibited the best compromise regarding Equa-
tion (4.2). In fact, it had the smallest mean and standard deviation.

SDRE based on Gibb’s vector had the second best mean and the worst standard
deviation, in the sense that, it demanded more control from the actuators. On the
other hand, SDRE and H-infinity based on Gibb’s vector demanded less control from
the actuators with the expenditure of the largest amplitude in the statespace.

Concluding this section, Figure 6.4 plots the integral of the generalized norm of
computed control along the X axis and along the Y axis for the actual control applied
for each control law and sample. Note, without hard nonlinearities, the computed
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and actual control were the same for all samples.

Figure 6.4 - Actual versus computed control without hard nonlinearities.

SOURCE: Author.

In summary, taking into account the Amazonia-1 modeled as a nonlinear system
but without hard nonlinearities and the full Monte Carlo perturbation model pre-
viously shared, the linear control law, LQR, exhibited NS and NP (highlighted by
the primary measure) and the best performance (highlighted by the secondary mea-
sure). Furthermore, the nonlinear control laws (SDRE based on Gibb’s vector, and
SDRE and H-infinity based on Gibb’s vector) exhibited NS and NP (highlighted
by the primary measure) and the worst performance (highlighted by the secondary
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measure).

6.3 Primary and secondary measures evaluated with hard nonlinearities

As opposed to the previous section, this section evaluates the satellite (modeled
as a nonlinear system) and the control laws (LQR, SDRE based on Gibb’s vector,
and SDRE and H-infinity based on Gibb’s vector) with hard nonlinearities in the
reaction wheels (see Equation 5.2).

Figure 6.5 shows the initial conditions uniformly distributed by such a Monte Carlo
perturbation model execution (450 simulations, three different control laws for each
initial condition).

Figure 6.5 - Initial conditions with hard nonlinearities.

SOURCE: Author.
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The applied hard nonlinearities are those described by Equation (5.2) and so for any
step of a given maneuver the actual control torque generated by the reaction wheels
could be smaller than the computed control. Indeed, with hard nonlinearities, the
actual control was smaller than the computed control in the simulations as shown
in Figure 6.6. Note points are close to the X axis in the sense that actual control
was much smaller than the bisectrix (where actual equals computed control).

Figure 6.6 - Actual versus computed control with hard nonlinearities.

SOURCE: Author.

The result of such a “lack of control” is depicted in Figure 6.7 that shows the ROA
of LQR (in blue, legend ProportionalLinearQuatuernionPartialLQRController),
SDRE based on Gibb’s vector (in green, legend ProportionalNonLinearQuaternionS-
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DREController_GIBBS), and SDRE and H-infinity based on Gibb’s vector (in red,
legend ProportionalNonLinearQuaternionFullSDREHinfinityController).

Figure 6.7 - ROA with hard nonlinearities.

SOURCE: Author.

Firstly, the number of samples that converged, as modeled by Equation (6.1), are
less than one-half, even for the better control law, regarding the 150 initial condi-
tions shown in Figure 6.5. Hence, the NS of the three control laws was lost
by the introduction of the hard nonlinearities modeled by Equation (5.2).
Moreover, the three control laws are able to control the whole range of Euler an-
gles, henceforth, the angular velocities are the critical aspects to be constrained
in the initial conditions perhaps through requirements for the launch vehicle. Such
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a fact corroborates asymptotic ω-stability (HUGHES, 1986) as the major concern
in accordance with Equation (6.1). Furthermore, it confirms the common sense the
controlling of angular velocities is constrained by hard nonlinearities in the actuators
(reaction wheels, see Table 5.1) leading to phenomena as saturation.

In a quantitative analysis, using the primary measure (see Equation (6.1)) shown
in Figure 6.7, the ROA of LQR had the smallest area in the sense that some extra
initial conditions did not respect Equation (6.1) in the specified tf . Moreover, SDRE
based on Gibb’s vector had the largest ROA (35 more samples converged). Finally,
SDRE and H-infinity based on Gibb’s vector had the intermediary ROA.

Figure 6.8 depicts the secondary measure using the previously presented two di-
mensional space. Recall LQR, in blue, legend ProportionalLinearQuatuernionPar-
tialLQRController; SDRE based on Gibb’s vector, in green, legend Proportional-
NonLinearQuaternionSDREController_GIBBS; and, SDRE and H-infinity based on
Gibb’s vector, in red, legend ProportionalNonLinearQuaternionFullSDREHinfinity-
Controller.
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Figure 6.8 - Statistics of Optimality with hard nonlinearities.

SOURCE: Author.

The first fact to be highlighted is that the statistics were computed with differ-
ent sample sizes, which demands caution in the further analysis since the control
laws based on SDRE were able to control initial conditions with the largest angu-
lar velocities. In addition, the previously discussed limitations of control laws have
as consequence possible penalties for the control laws based on SDRE due to the
arbitrary final quaternions.

The smallest mean and standard deviation was exhibited by LQR (in blue) in the
sense that it was the optimal regulator for the smallest subset of the initial condi-
tions. SDRE based on Gibb’s vector (in green) had the largest mean and standard
deviation, i.e., in the presence of hard nonlinearities SDRE was suboptimal. The
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SDRE and H-infinity based on Gibb’s vector (in red) showed the intermediary val-
ues for mean and standard deviation, which was an indication of a compromise
between state and control.

In fact, in the realm of H-infinity, Equation (2.30) predicts the maximum stability
margin (εmax) for a given minimum gamma (γmin). Therefore, Figure 6.9 plots a
point (X: minimum gamma, Y: maximum gamma) for each sample that converged
with SDRE and H-infinity based on Gibb’s vector (in red, the sole control law that
defines gamma). Additionally, Figure 6.9 shows the overall minimum and maximum
gamma in the legend.

Figure 6.9 - Min-Max Gamma with hard nonlinearities.

SOURCE: Author.
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It was remarkable that the lower bound was close to 2.5 for all samples; whereas,
the upper bound was close to 6.9 with a larger variation. Henceforth, for the approx-
imation of a maximum stability margin (εmax), the upper bound of the minimum
gamma for all simulations could be used so the predicted maximum stability margin
(εmax) is approximately 0.14 (εmax ≈ 0.14).

In summary, taking into account the Amazonia-1 modeled as a nonlinear system with
hard nonlinearities and the full Monte Carlo perturbation model previously shared,
the linear control law (LQR) lost its NS (highlighted by the primary measure) with
the worst ROA. In fact, the nonlinear control laws (SDRE based on Gibb’s vector,
and SDRE and H-infinity based on Gibb’s vector) also lost their NS (highlighted by
the primary measure) but they exhibited the largest ROAs. Regarding performance,
the three control laws lost NP with the secondary measure compromised by such a
difference in the sample sizes.

6.4 Primary measure evaluated with structured uncertainties

This section assesses structured uncertainty into the model evaluated in the last
section. The structured uncertainty is assessed by varying the inertia tensor of the
satellite (assumed as time-invariant), in particular, an additive percentage is applied
in each entry of the inertia tensor.

There is a plethora of valid goals regarding the definition of the additive percentage
to be evaluated, e.g., what is the percentage that maintains NS (recall NS was lost in
the previous section), what is the control law that provides better ROA for a wider
range of percentage, what is the control law that provides better ROA for a relevant
range of percentage, what is a relevant range of percentage, etc... This section chose
to evaluate “what is the control law that provides better ROA for a wider range of
percentage” in the sense that the range applied was at most 150%.

Taking into account the satellite Amazonia-1, which is characterized by Table 5.1,
the simulations were conducted with the full Monte Carlo perturbation model (see
Section 4.2) tuned with the parameters shared in Table 6.1. Such a Monte Carlo
perturbation model was executed five times (2250 simulations, five times three dif-
ferent control laws for each initial condition), each one using the same set of initial
conditions with a varying additive percentage (p,%) applied to the inertia tensor in
the range p = {−1.5,−0.75, 0.0, 0.75, 1.5}, in which 0.0 is the nominal case.

Figure 6.10 shows the initial conditions uniformly distributed by such a Monte Carlo
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perturbation model execution in the two-dimensional space described in the previous
sections.

Figure 6.10 - Initial conditions with hard nonlinearities and structured uncertainties.

SOURCE: Author.

As previously discussed, focusing on ROA only primary measure matters (area of
ROA). Moreover, varying the additive percentage applied to the nominal inertia
tensor (p = 0), a set of ROAs is obtained. The natural way to visualize such a set
of ROAs is to stack them perhaps with a proper computational power a polytope
could be obtained and its area calculated. With restricted computational power as
the range previously defined, the ROAs can be stacked and the area of each one
can be summed up. Therefore, Figure 6.11 shows the stacked ROAs for each p and
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control law.

Figure 6.11 - Stacked ROAs with hard nonlinearities and structured uncertainties (p, %).

The first graph shows the stacked ROA for LQR (sum of areas=19.29), the second graph
shows the stacked ROA for SDRE based on Gibb’s vector (sum of areas=24.99), and the
thrid graph shows the stacked ROA for SDRE and H-Infinity based on Gibb’s vector (sum
of areas=20.76) (X: norm of Euler angles - degrees, Y: norm of angular velocities - rad/s,
Z: p - %).

SOURCE: Author.

The lowest p = −1.5 prevented the convergence of the three control laws. When
p = −0.75, the control laws had an additional gain due to the smaller inertia tensor
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so all the samples converged (as in Section 6.2). At the nominal case (p = 0), the
control laws exhibited the same pattern discussed in Section 6.3. Beyond the nominal
case, the norm of angular velocities was decreasing as p increased.

In conclusion, evaluating the “sum of areas of ROAs” (primary measure), SDRE
based on Gibb’s vector provided the largest ROA followed by SDRE and H-Infinity
based on Gibb’s vector. LQR provided the smallest ROA. Figure 6.12 shares the
ROA for each p.

Figure 6.12 - ROA with hard nonlinearities and structured uncertainties (p, %).

SOURCE: Author.
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6.5 Primary measure evaluated with unstructured uncertainties

This section evaluates unstructured uncertainty into the model presented in Sec-
tion 6.3. The unstructured uncertainty is introduced as an additive white Gaussian
noise (AWGN) net external torque applied to the center of mass of the satellite.

Recall Section 6.3 shared εmax ≈ 0.14 for the SDRE and H-infinity based on Gibb’s
vector, therefore, it is reasonable to assess such a net external torque as upper
bound. Moreover, the AWGN is computed for each axis so the infinity norm of such
net external torque should have an upper bound close to the εmax.

Taking into account the satellite Amazonia-1, which is characterized by Ta-
ble 5.1, the simulations were conducted with the full Monte Carlo perturba-
tion model (see Section 4.2) tuned with the parameters shared in Table 6.1.
Such a Monte Carlo perturbation model was executed five times (2250 simu-
lations, five times three different control laws for each initial condition), each
one using the same set of initial conditions with the AWGN (p, N.m) ap-
plied as net external torque (gcm, see Equation (2.13)) in the range p =
{0.0, N(0, 0.0375/7), N(0, 0.075/7), N(0, 0.1125/7), N(0, 0.15/7)} for each axis, in
which 0.0 is the nominal case. Once computed, the same set of AWGN was ap-
plied for each initial condition in a given execution, in a way that there was no
difference between the AWGN applied for the three control laws during the simu-
lations. The σ was computed using a division by seven so it was unlikely to have a
net external torque out of the predefined upper bound.

Figure 6.13 shows the initial conditions uniformly distributed by such a Monte Carlo
perturbation model execution in the two-dimensional space described in the previous
sections.
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Figure 6.13 - Initial conditions with hard nonlinearities and unstructured uncertainties.

SOURCE: Author.

As previously discussed, focusing on ROA only primary measure matters (area of
ROA). Moreover, varying the AWGN a set of ROAs is obtained. With restricted
computational power as the range previously defined, the ROAs can be stacked and
the area of each one can be summed up. Therefore, Figure 6.14 shows the stacked
ROAs for each p and control law.
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Figure 6.14 - Stacked ROAs with hard nonlinearities and unstructured uncertainties (p,
N.m).

The first graph shows the stacked ROA for LQR (sum of areas=20.71), the second graph
shows the stacked ROA for SDRE based on Gibb’s vector (sum of areas=22.42), and the
thrid graph shows the stacked ROA for SDRE and H-Infinity based on Gibb’s vector (sum
of areas=16.24) (X: norm of Euler angles - degrees, Y: norm of angular velocities - rad/s,
Z: p - N.m).

SOURCE: Author.
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The highest p = 0.15 prevented the convergence of the three control laws. At the
nominal case (p = 0), the control laws exhibited the similar pattern discussed in
Section 6.3. LQR exhibited the same ROA for all p that converged. Beyond the
nominal case, the norm of angular velocities was decreasing as p increased for the
control laws based on SDRE. In particular, the ROA of SDRE and H-infinity based
on Gibb’s vector vanished at p = 0.1125.

In conclusion, evaluating the “sum of areas of ROAs” (primary measure), SDRE
based on Gibb’s vector provided the largest ROA followed by LQR. SDRE and H-
Infinity based on Gibb’s vector provided the smallest ROA failing to satisfy the
εmax ≈ 0.14 shared in Section 6.3. Figure 6.15 shares the ROA for each p.
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Figure 6.15 - ROA with hard nonlinearities and unstructured uncertainties (p, N/.m).

SOURCE: Author.

6.6 Discussion

Firstly, the comparison of ROAs between the current work and Yao et al. (2021) is
not applicable (see Subsection 3.2.1.2) since the ROA is consequence of the satellite
and control models, which includes hard nonlinearities in the present work, and the
SDC parametrizations which are different.

Table 6.2 collects the primary and secondary (if applicable) measures for each sce-
nario assessed in this chapter.
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Table 6.2 - Measures collected for each scenario.

Hard nonlinearities Uncertainty Control Primary Secondary
without uncertainty

No - LQR 8.96 µ = 0.12 , σ = 0.05
No - SDRE 8.96 µ = 0.14 , σ = 0.07
No - SDRE+H∞ 8.96 µ = 0.15 , σ = 0.05
Yes - LQR 5.06 µ = 0.23 , σ = 0.14
Yes - SDRE 6.10 µ = 0.43 , σ = 0.37
Yes - SDRE+H∞ 5.36 µ = 0.34 , σ = 0.19

with uncertainty
Yes Structured LQR 19.29 -
Yes Structured SDRE 24.99 -
Yes Structured SDRE+H∞ 20.76 -
Yes Unstructured LQR 20.71 -
Yes Unstructured SDRE 22.42 -
Yes Unstructured SDRE+H∞ 16.24 -

SOURCE: Author.

Note the difference presented in the scale of the primary measure between the group
“without uncertainty” and the group “with uncertainty” highlights that such a mea-
sure is a sum of areas in the latter group.

Focusing on the group “without uncertainty”, with the infinity norm of angular
velocities in the range analyzed and without hard nonlinearities, the linear con-
trol technique (LQR) was able to control the nonlinear system (linear technique
controlling a nonlinear system) exhibiting the same primary measure (ROA) of the
nonlinear control techniques based on SDRE. Moreover, since the secondary measure
is defined by Equation (4.2) (the same cost functional of LQR in Equation (2.41)),
LQR is the optimal control law in such a scenario.

Once introduced the hard nonlinearities defined by Equation 5.2, SDRE based on
Gibb’s vector exhibited the largest primary measure (ROA, 6.10) whereas LQR
exhibited the smallest one (5.06). Henceforth, the applicability of a linear control
technique is conditioned to the degree of nonlinearity of the system in control. In-
deed, there is research investigating how to quantify the degree of nonlinearity of a
nonlinear system as well as how adequate is a linear model for the representation of a
nonlinear system (NIKOLAOU; HANAGANDI, 1998). Although such an issue is beyond
the scope of the current thesis, such a degree of nonlinearity played a role once the
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hard nonlinearities, as well as the uncertainties, were introduced in the models since
the linear control technique (LQR) exhibited the worst ROAs consistently, which
turned out the analysis of the second measure innocuous.

Moving to the group “with uncertainty”, SDRE based on Gibb’s vector exhibited
the largest primary measure (ROA) consistently. Therefore, it provided better ro-
bustness to the structured (perturbations in the inertia tensor) and the unstructured
(net external torques) uncertainties. It was remarkable the control laws based on
SDRE (SDRE based on Gibb’s, and SDRE and H-infinity based on Gibb’s vector)
had a bigger advantage in the presence of structured uncertainty regarding ROA.
In fact, SDRE and H-infinity based on Gibb’s vector showed the worst ROA for un-
structured uncertainty due to the complete lack of control in the presence of AWGN
of p = 0.1125 (see Figure 6.15).

6.6.1 Main result

The comparison of the primary measure (ROA) rejected the null hypothesis
H0 since there was empirical quantitative data about a significant quantifiable incre-
ment of robustness comparing the linear control technique (LQR) and the nonlinear
control technique (SDRE based on Gibb’s) in the Amazonia-1 INPE’s mission. In
particular, with hard nonlinearities and without uncertainty the increment was from
5.06 (LQR) to 6.10 (SDRE based on Gibb’s) approximately 20%; with hard non-
linearities and with structured uncertainty the increment was from 19.29 (LQR) to
24.99 (SDRE based on Gibb’s) approximately 29%; and, finally, with hard nonlin-
earities and with unstructured uncertainty the increment was from 20.71 (LQR) to
22.42 (SDRE based on Gibb’s) approximately 8% (see Table 6.2).

The alternative hypothesis H1 and the null hypothesis H0 were mutually exclusive,
which means that only one of the two hypotheses could be true. Therefore, H1 was
accepted.
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7 CONCLUSIONS

In accordance with Subsection 6.6.1, the results provided a sufficient condition to
the rejection of the null hypothesis (H0) and, consequently, the acceptance of the
alternative hypothesis (H1).

The specific goals - namely (I) mathematical modeling and evaluation of uncertain-
ties using SDRE and SDRE extended with H∞ in the presence of hard nonlinear-
ities); (II) evaluation of the stability through the determination of the region of
attraction of LQR, SDRE and SDRE extended with H∞ in the presence of hard
nonlinearities and uncertainties; and (III) compare the quantifiable results, using
Monte Carlo perturbation models, between a linear control technique (LQR) and
its counterpart nonlinear technique SDRE as well as SDRE extended with H∞ in
the presence of hard nonlinearities and uncertainties - were completely achieved,
documented in the present work and publicly available under the license GPL v3.0
at (ROMERO, 2021a).

Although the H0 and H1 were focused on the INPE’s missions, the following contri-
butions are original, general, and widely applicable.

The modeling of hard nonlinearities, as applied in Equation 5.2, using hybrid ODEs
is per se a contribution in the context of robustness and performance of nonlin-
ear control techniques, in particular, for SDRE. In addition, the evidence that such
hard-nonlinearities can compromise theoretical properties - e.g, the global asymp-
totic stability of LQR as shown in Section 6.3 - emphasizes the importance of the
estimation of ROAs. Indeed, from the engineering perspective, it is crucial to have in-
formation about the size and/or the shape of ROA since the local stability properties
could be of scarce utility if the domain of attraction is very small, or if the equilib-
rium point is very close to its boundary. Furthermore, such estimation of ROAs can
confirm valuable insights for engineering, e.g., angular velocities were the critical
aspects to be constrained in the initial conditions perhaps through requirements for
the launch vehicle of the satellite.

The appropriately tackling of uncertainties for nonlinear systems in the context
of SDRE and SDRE extended with H∞ as applied by this thesis is a significant
contribution to the research field of control engineering. In fact, this thesis provides
the missing rationale for the propositions of Çimen (2010) about the robustness of
SDRE.
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The approach for SDRE extended with H∞ based on left coprime factorizations is
also a control engineering contribution in the realm of SDRE since the attention
was moved to the size of error signals and away from the size and bandwidth of
selected closed-loop transfer function (ROMERO; SOUZA, 2020; ROMERO; SOUZA,
2021b; ROMERO; SOUZA, 2021c). Additionally, left coprime factorizations enable the
finding of the suboptimal controller solving exactly three AREs whereas the SDRE’s
literature suggests the γ-iteration (CLOUTIER et al., 1996).

Another contribution to the field of control engineering is the evaluation of differ-
ent kinematic options of SDRE technique for the attitude control since the results
showed that different SDCs can produce extremely different results ranging from
non-applicability of the SDRE technique to huge differences in the controllability
and, consequently, in the robustness and the performance of the system (ROMERO;

SOUZA, 2019a; ROMERO; SOUZA, 2019b; ROMERO; SOUZA, 2021a).

Finally, the methodology (Section 4.2) applied in this work also presents itself as
a contribution since it applies experimental mathematics, in which computation is
used to investigate mathematical objects and identify properties and patterns (BAI-

LEY; BORWEIN, 2005). In particular, the abstraction of the statespace from the six
dimensions (three Euler angles plus three angular velocities) to the two-dimensional
space based on L2 norms of Euler angles and angular velocities allowed quantifiable
comparison and visualization of ROAs (compared with Section 3).

7.1 Future works

Focusing on the engineering perspective, an envisioned future work is to evaluate
different step sizes for the simulation itself and the control loop. Such enhancement
would definitely turn the system under analysis (plant plus controller) into a hybrid
system.

Regarding the hard nonlinearities, a relevant question for further analysis is how
the degree of nonlinearity of a given system is impacted by the introduction of
hard-nonlinearities (NIKOLAOU; HANAGANDI, 1998).

Another relevant aspect that would require further investigation is why SDRE ex-
tended with H∞ based on left coprime factorization exhibited a lack of control in
the presence of AWGN p = 0.1125 (see Figure 6.15) while the other control laws
were able to control some initial conditions with the same AWGN. Although it is
well-known SDRE extended with H∞ exhibits a slower response (WANG et al., 2017)
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due to its capability of disturbance rejection, it remains as a future work such an
issue.

Indeed, a related issue that would require further investigation is the sensitivity of
the control laws faced with a state observer (state estimator), which would provide
an estimate of the internal state of a given system. Recall this work assumed that the
state is always available (see Subsection 5.1.1). It is notorious LQR when faced with
uncertainties may have arbitrarily small stability margins (DORATO et al., 2000).

Finally, as advocated by Çimen (2008), integral control could be evaluated to bring
the system to the required structure given by Equation (2.40) and then to appro-
priately handle hard nonlinearities.
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APPENDIX A - LIST OF PUBLICATIONS

A.1 Space engineering

A.1.1 2020

Satellite Simulation Developer’s Guide - Attitude Dynamics and Control
of Nonlinear Satellite Simulations (ROMERO, 2020a)
Abstract: The satellite attitude and orbit control subsystem (AOCS), that one in
charge of the attitude control, can be designed with success by linear control the-
ory if the satellite has slow angular motions and small attitude maneuver. However,
for large and fast maneuvers, the linearized models are not able to represent all
the perturbations due to the effects of the nonlinear terms present in the dynamics
and in the actuators (e.g., saturation) which can damage the system’s performance.
Therefore, in such cases, it is expected that nonlinear control techniques yield bet-
ter performance than the linear control techniques, improving the AOCS pointing
accuracy without requiring a new set of sensors and actuators. One candidate tech-
nique for the design of AOCS control law under a large and fast maneuver is the
State-Dependent Riccati Equation (SDRE). SDRE provides an effective algorithm
for synthesizing nonlinear feedback control by allowing nonlinearities in the system
states while offering great design flexibility through state-dependent weighting ma-
trices. The Brazilian National Institute for Space Research (INPE, in Portuguese)
was demanded by the Brazilian government to build remote-sensing satellites, such
as the Amazonia-1 and CONASAT mission. In such missions, the AOCS must sta-
bilize the satellite in three-axes so that the optical payload can point to the desired
target. Currently, the control laws of AOCS are designed and analyzed using linear
control techniques in commercial software. In this work, we report an open-source
nonlinear satellite simulator built to analyze control laws and their stability and
robustness. This satellite simulator is implemented in Java using Hipparchus (lin-
ear algebra library; which was extended in order to support the SDRE technique)
and Orekit (flight dynamics framework). The initial results ratify that SDRE yields
better performance in the INPE’s missions.

A.1.2 2019

State-dependent Riccati equation controller using Java in remote sensing
CubeSats (ROMERO; SOUZA, 2019d)
Qualis: B1 (Engineering III, Quadrennium 2013-2016)
Abstract: STRaND and PhoneSat programs have attracted the attention of the
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aerospace community by applying, in CubeSats, commercial off-the-shelf smart-
phones based on Google’s Android. In Android, the development commonly applies
Java hence this language is a natural candidate for the attitude and orbit control
subsystem (AOCS). Moreover, such AOCS can be designed with success by linear
control theory; however, the linearized models are not able to represent all the effects
of the nonlinear terms present in the dynamics. Therefore, nonlinear control tech-
niques can yield better performance. An example is the Nano-Satellite Constellation
for Environmental Data Collection, used as the reference in this work, a set of remote
sensing CubeSats from the Brazilian National Institute for Space Research, in which
the AOCS must stabilize the satellite in three-axes. We present the investigation of
a state-dependent Riccati equation (SDRE) controller, a nonlinear controller, based
on attitude errors given by quaternions. The investigation uses Java, accordingly, it
can run on an Android operating system in a CubeSat, and it has low cost. Two con-
trollers (linear and SDRE) were evaluated using a Monte Carlo perturbation model.
The initial results show that the SDRE controller provides better performance.

A.1.3 2018

Application of the SDRE technique based on Java in a Cubesat Attitude
and Orbit Control Subsystem (ROMERO; SOUZA, 2018)
Abstract: In 2013, the STRaND (University of Surrey and Surrey Satellite Technol-
ogy Ltd) and the PhoneSat (NASA) programs attracted attention of the aerospace
community applying commercial off-the-shelf smartphones in CubeSats. Both pro-
grams deployed CubeSats using smartphones based on Google’s Android, in which
application development is mainly based on Java programming language. Some of
these CubeSats had actuators, e.g., STRaND-1 had three reaction wheels mounted
in an orthogonal configuration to provide three-axis control, whereas PhoneSat 2.0
beta had magnetorquers to de-tumble the spacecraft. Taking into account a Cube-
Sat that runs Android operating system (based on a smartphone), it is natural to
evaluate the attitude and orbit control subsystem (AOCS) based on Java. Moreover,
such AOCS can be designed with success by linear control theory, if the satellite has
slow angular motions and small attitude maneuver. However, the linearized models
are not able to represent all the perturbations due to the effects of th e nonlinear
terms present in the dynamics and in the actuators (e.g., saturation) which can
damage the system’s performance. Therefore, it is expected that nonlinear control
techniques yield better performance than the linear control techniques, improving
the AOCS pointing accuracy. One nonlinear candidate technique for the design of
AOCS control law is the State-Dependent Riccati Equation (SDRE). SDRE pro-
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vides an effective algorithm for synthesizing nonlinear feedback control by allowing
nonlinearities in the system states while offering great design flexibility through
statedependent weighting matrices. In this paper, we present a simulator and the
investigation of a SDRE control law based on attitude errors given by quaternion
error. The simulator is based on Java and related open-source software libraries
(Hipparchus - linear algebra library, and Orekit - flight dynamics library), therefore,
it can run on a variety of platforms - including an Android operating system in a
CubeSat - and it has low cost. The Java open-source libraries were extended in or-
der to solve the optimization problem that is the cornerstone of the SDRE method.
Two control laws (a linear and a SDRE based) were simulated using a Monte Carlo
perturbation model. The Nano satellite Constellation for Environmental Data Col-
lection (CONASAT), a CubeSat from the Brazilian National Institute for Space
Research (INPE), provided the parameters for the simulations. The initial results of
the simulations shown that the SDRE-based controller provides better performance.

Application of the SDRE Technique in the Satellite Attitude and Orbit
Control System with Nonlinear Dynamics (ROMERO et al., 2018)
Abstract: The satellite attitude and orbit control subsystem (AOCS) can be de-
signed with success by linear control theory if the satellite has slow angular motions
and small attitude maneuver. However, for large and fast maneuvers, the linearized
models are not able to represent all the perturbations due to the effects of the
nonlinear terms present in the dynamics and in the actuators (e.g., saturation)
which can damage the system’s performance. Therefore, in such cases, it is expected
that nonlinear control techniques yield better performance than the linear control
techniques, improving the AOCS pointing accuracy without requiring a new set of
sensors and actuators. One candidate technique for the design of AOCS control law
under a large and fast maneuver is the State-Dependent Riccati Equation (SDRE).
SDRE provides an effective algorithm for synthesizing nonlinear feedback control
by allowing nonlinearities in the system states while offering great design flexibility
through state-dependent weighting matrices. The Brazilian National Institute for
Space Research (INPE, in Portuguese) was demanded by the Brazilian government
to build remote-sensing satellites, such as the Amazonia-1 mission. In such missions,
the AOCS must stabilize the satellite in three-axes so that the optical payload can
point to the desired target. Currently, the control laws of AOCS are designed and
analyzed using linear control techniques in commercial software. In this paper, we
discuss whether the application of the SDRE technique in the AOCS design can yield
gains in the missions developed by INPE. Moreover, we report a proof of concept of
an open-source satellite simulator built to analyze control laws based on SDRE. This
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satellite simulator is implemented in Java using Hipparchus (linear algebra library;
which was extended in order to support the SDRE technique) and Orekit (flight
dynamics framework).

A.2 Control engineering

A.2.1 2021

Optimal Factorization of the State-Dependent Riccati Equation Tech-
nique in a Satellite Attitude and Orbit Control System (ROMERO;

SOUZA, 2021a)
Qualis: C (Engineering III, Quadrennium 2013-2016)
Abstract: The satellite attitude and orbit control system (AOCS) can be designed
with success by linear control theory if the satellite has slow angular motions and
small attitude maneuver. However, for large and fast maneu- vers, the linearized
models are not able to represent all the perturbations due to the effects of the
nonlinear terms present in the dynamics and in the actuators (e.g., saturation).
Therefore, in such cases, it is expected that nonlin- ear control techniques yield
better performance than the linear control techniques. One candidate technique for
the design of AOCS control law under a large maneuver is the State-Dependent
Riccati Equation (SDRE). SDRE entails factorization (that is, parameterization)
of the nonlinear dynamics into the state vector and the product of a matrix-valued
function that depends on the state itself. In doing so, SDRE brings the nonlin-
ear system to a (nonunique) linear structure having state-dependent coefficient
(SDC) matrices and then it minimizes a nonlinear performance index having a
quadratic-like structure. The nonuniqueness of the SDC matrices creates extra de-
grees of freedom, which can be used to enhance controller performance, however,
it poses challenges since not all SDC matrices fulfill the SDRE requirements.
Moreover, regarding the satellite’s kinematics, there is a plethora of options, e.g.,
Euler angles, Gibbs vector, modified Rodrigues parameters (MRPs), quaternions,
etc. Once again, some kinematics formulation of the AOCS do not fulfill the SDRE
requirements. In this paper, we evaluate the factorization options (SDC matrices)
for the AOCS exploring the requirements of the SDRE technique. Consid- ering a
Brazilian National Institute for Space Research (INPE) typical mission, in which
the AOCS must stabilize a satellite in three-axis, the application of the SDRE
technique equipped with the optimal SDC matrices can yield gains in the missions.
The initial results show that MRPs for kinematics provides an optimal SDC matrix.
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Stability Evaluation of the SDRE Technique based on Java in a CubeSat
Attitude and Orbit Control Subsystem (ROMERO; SOUZA, 2021b)
Qualis: C (Engineering III, Quadrennium 2013-2016)
Abstract: In 2013, the STRaND (University of Surrey and Surrey Satellite Tech-
nology Ltd) and the PhoneSat (NASA) programs attracted the attention of the
aerospace community applying commercial off-the-shelf smartphones in CubeSats.
Both programs deployed CubeSats using smartphones based on Google’s Android,
in which application development is mainly based on Java programming language.
Some of these CubeSats had actuators, e.g., STRaND-1 had three reaction wheels
mounted in an orthogonal configuration to provide three-axis control, whereas
PhoneSat 2.0 beta had magnetorquers to de-tumble the spacecraft. Taking into
account a CubeSat that runs Android operating system (based on a smartphone),
it is natural to evaluate the attitude and orbit control subsystem (AOCS) based on
Java. Elsewhere, we shown State-Dependent Riccati Equation (SDRE) is a feasi-
ble non-linear control technique that can be applied in such CubeSats using Java.
Moreover, we shown, through simulation using a Monte Carlo perturbation model,
SDRE provides better performance than the PID controller, a linear control tech-
nique. In this paper, we tackle the next fundamental problem: stability. We evaluate
stability from two perspectives: (1) parametric uncertainty of the inertia tensor
and (2) a Monte Carlo perturbation model based on a uniform attitude probabil-
ity distribution. Through the combination of these two perspectives, we grasp the
stability properties of SDRE in a broader sense. In order to handle the uncertainty
appropriately, we combine SDRE with H-infinity. The Nanosatellite Constellation
for Environmental Data Collection (CONASAT), a CubeSat from the Brazilian Na-
tional Institute for Space Research (INPE), provided the nominal parameters for the
simulations. The initial results of the simulations shown that the SDRE controller is
stable to ± 20% uncertainty in the inertia tensor for attitudes uniformly distributed
and angular velocity up to 0.15 radians/second.

A.2.2 2020

Suboptimal Control on Nonlinear Satellite Simulations using SDRE and
H-infinity (ROMERO; SOUZA, 2020)
Abstract: The control of a satellite can be designed with success by linear control
theory if the satellite has slow angular motions. However, for fast maneuvers, the
linearized models are not able to represent all the perturbations due to the effects
of the nonlinear terms present in the dynamics which compromises the system’s
performance. Therefore, a nonlinear control technique yields better performance.

97



Nonetheless, these nonlinear control techniques can be more sensitive to uncertain-
ties. One candidate technique for the design of the satellite’s control law under a
fast maneuver is the State-Dependent Riccati Equation (SDRE). SDRE provides an
effective algorithm for synthesizing nonlinear feedback control by allowing nonlin-
earities in the system states. The Brazilian National Institute for Space Research
(INPE, in Portuguese) was demanded by the Brazilian government to build remote-
sensing satellites, such as the Amazonia-1 mission. In such missions, the satellite
must be stabilized in three-axes so that the optical payload can point to the desired
target. Although elsewhere the application of the SDRE technique has shown to
yield better performance for the missions developed by INPE, a subsequent impor-
tant question is whether such better performance is robust to uncertainties. In this
paper, we investigate whether the application of the SDRE technique in the AOCS is
robust stable to uncertainties in the missions developed by INPE. Moreover, in order
to handle such uncertainty appropriately, we propose a combination of SDRE with
H-infinity based on a left coprime factorization. In such a way that the attention
is moved to the size of error signals and away from the size and bandwidth of se-
lected closed-loop transfer function. The initial results showed that SDRE controller
is robust to 5%, at least, variations in the inertia tensor of the satellite.

A.2.3 2019

Optimal Factorization of the State-Dependent Riccati Equation Tech-
nique in a Satellite Attitude and Orbit Control System (ROMERO; SOUZA,
2019b)
Abstract: The satellite attitude and orbit control system (AOCS) can be designed
with success by linear control theory if the satellite has slow angular motions and
small attitude maneuver. However, for large and fast maneuvers, the linearized mod-
els are not able to represent all the perturbations due to the effects of the nonlinear
terms present in the dynamics and in the actuators (e.g., saturation). Therefore,
in such cases, it is expected that nonlinear control techniques yield better perfor-
mance than the linear control techniques. One candidate technique for the design of
AOCS control law under a large maneuver is the State-Dependent Riccati Equation
(SDRE). SDRE entails factorization (that is, parameterization) of the nonlinear
dynamics into the state vector and the product of a matrix-valued function that
depends on the state itself. In doing so, SDRE brings the nonlinear system to a
(nonunique) linear structure having state-dependent coefficient (SDC) matrices and
then it minimizes a nonlinear performance index having a quadratic-like structure.
The nonuniqueness of the SDC matrices creates extra degrees of freedom, which can
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be used to enhance controller performance, however, it poses challenges since not
all SDC matrices fulfill the SDRE requirements. Moreover, regarding the satellite’s
kinematics, there is a plethora of options, e.g., Euler angles, Gibbs vector, modi-
fied Rodrigues parameters (MRPs), quaternions, etc. Once again, some kinematics
formulation of the AOCS do not fulfill the SDRE requirements. In this paper, we
evaluate the factorization options (SDC matrices) for the AOCS exploring the re-
quirements of the SDRE technique. Considering a Brazilian National Institute for
Space Research (INPE) typical mission, in which the AOCS must stabilize a satel-
lite in three-axis, the application of the SDRE technique equipped with the optimal
SDC matrices can yield gains in the missions. The initial results show that MRPs
for kinematics provides an optimal SDC matrix.

Application of a New Optimal Factorization of the SDRE Method in the
Satellite Attitude and Orbit Control System Design with Nonlinear Dy-
namics (ROMERO; SOUZA, 2019a)
Abstract: The satellite Attitude and Orbit Control System (AOCS) can be de-
signed with success by linear control theory if the satellite has slow angular motions
and small attitude maneuver. However, for large and fast maneuvers, the linearized
models are not able to represent all the perturbations due to the effects of the nonlin-
ear terms present in the dynamics and in the actuators. Therefore, in such cases, it
is expected that nonlinear control techniques yield better performance than the lin-
ear control techniques. One candidate technique for the design of AOCS control law
under a large maneuver is the State-Dependent Riccati Equation (SDRE). SDRE
entails factorization (that is, parameterization) of the nonlinear dynamics into the
state vector and the product of a matrix-valued function that depends on the state
itself. In doing so, SDRE brings the nonlinear system to a (not unique) linear struc-
ture having State-Dependent Coefficient (SDC) matrices and then it minimizes a
nonlinear performance index having a quadratic-like structure. The non uniqueness
of the SDC matrices creates extra degrees of freedom, which can be used to enhance
controller performance; however, it poses challenges since not all SDC matrices fulfill
the SDRE requirements. Moreover, regarding the satellite’s kinematics, there is a
plethora of options, e.g., Euler angles, Gibbs vector, Modified Rodrigues Parameters
(MRPs), quaternions, etc. Once again, some kinematics formulations of the AOCS
do not fulfill the SDRE requirements. In this paper, we evaluate the factorization
options of SDC matrices for the AOCS exploring the requirements of the SDRE
technique. Considering a Brazilian National Institute for Space Research (INPE)
typical mission, in which the AOCS must stabilize a satellite in three-axis, the ap-
plication of the SDRE technique equipped with the optimal SDC matrices can yield

99



gains in the missions. The initial results show that MRPs for kinematics provides
an optimal SDC matrix.

Satellite Controller System Based on Reaction Wheels Using the State-
Dependent Riccati Equation (SDRE) on Java: Vol. 2 (ROMERO; SOUZA,
2019c)
Abstract: Complex space missions involving large angle maneuvers and fast at-
titude control require nonlinear control methods to design the Satellite Controller
System (SCS) in order to satisfy robustness and performance requirements. One
candidate method for a nonlinear SCS control law is the State-Dependent Riccati
Equation (SDRE). SDRE provides an effective algorithm for synthesizing nonlin-
ear feedback control by allowing nonlinearities in the system states while offering
great design flexibility through state-dependent weighting matrices. In that context,
analysis by simulation of nonlinear control methods can save money and time. Al-
though, commercial 3D simulators exist that can accommodate various satellites
components including the controllers, in this paper, we present a 3D simulator and
the investigation of a SDRE control law performance by simulations. The simulator
is implemented based on Java and related open-source software libraries (Hipparchus
- linear algebra library, and Orekit - flight dynamics library), therefore, it can run
in a variety of platforms and it has low cost. These open-source libraries were ex-
tended in order to solve the optimization problem that is the cornerstone of the
SDRE method, a major contribution of the simulator. The simulator is evaluated
taking into account a typical mission of the Brazilian National Institute for Space
Research (INPE), in which the SCS must stabilize a satellite in three-axis using re-
action wheels so that the optical payload can point to the desired target. Two SCS
control laws (a linear and a SDRE based) were simulated for an attitude maneuver
in the launch and early orbit phase (LEOP), the upside-down maneuver. The results
of simulations shown that SDRE-based controller provides better performance.

A.3 Computer engineering

A.3.1 2021

Suboptimal Control on Nonlinear Satellite Simulations using SDRE and
H-Infinity (ROMERO; SOUZA, 2021c)
Abstract: The control of a satellite can be designed with success by linear control
theory if the satellite has slow angular motions. However, for fast maneuvers, the
linearized models are not able to represent all the perturbations due to the effects
of the nonlinear terms present in the dynamics which compromises the system’s
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performance. Therefore, a nonlinear control technique yields better performance.
Nonetheless, these nonlinear control techniques can be more sensitive to uncertain-
ties. One candidate technique for the design of the satellite’s control law under a
fast maneuver is the State-Dependent Riccati Equation (SDRE). SDRE provides an
effective algorithm for synthesizing nonlinear feedback control by allowing nonlin-
earities in the system states. The Brazilian National Institute for Space Research
(INPE, in Portuguese) was demanded by the Brazilian government to build remote-
sensing satellites, such as the Amazonia-1 mission. In such missions, the satellite
must be stabilized in three-axes so that the optical payload can point to the desired
target. Although elsewhere the application of the SDRE technique has shown to
yield better performance for the missions developed by INPE, a subsequent impor-
tant question is whether such better performance is robust to uncertainties. In this
paper, we investigate whether the application of the SDRE technique in the AOCS is
robust stable to uncertainties in the missions developed by INPE. Moreover, in order
to handle such uncertainty appropriately, we propose a combination of SDRE with
H-infinity based on a left coprime factorization. In such a way that the attention
is moved to the size of error signals and away from the size and bandwidth of se-
lected closed-loop transfer function. The initial results showed that SDRE controller
is robust to 5%, at least, variations in the inertia tensor of the satellite.
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APPENDIX B - PURE-SPIN MANEUVERS

This appendix reports the results of simulations for two particular maneuvers (with-
out any source of perturbation) that provide complementary engineering insights.
The data, as generated by the simulator, are completely available at Romero (2021b).

Firstly, the classical results, e.g., Hughes (1986), define ω-stability(sub-statespace
covering only ω, angular velocities) regarding the so called “pure-spins” of a rigid-
body. These results are based on the magnitude of the inertia component of each
axis in the inertia tensor. Taking into account three axes, (1) the major-axis is the
one that has the greatest component in the diagonal of the inertia tensor, (2) the
minor-axis is the one that has the lesser component in the diagonal of the inertia
tensor, and (3) the intermediary-axis spin is the other.

Taking into account the “pure-spins” and ω-stability: (1) the major-axis spin is Lya-
punov stable, (2) the minor-axis spin is Lyapunov stable, and (3) the intermediary-
axis spin is not Lyapunov stable (HUGHES, 1986).

Therefore, a maneuver that poses an additional challenge for the control laws studied
is a “pure-spin” around the intermediary-axis - in other words, initial angular veloc-
ity presents sole on the intermediary-axis - since such a state is unstable. Regarding
Amazonia-1, which is characterized by Table 5.1, the intermediary-axis is Y. Con-
sequently, an initial condition, in which a pure-spin around Y at the norm (L2) of
maximum controllable velocity (according to Section 6.1, the upper bound expected
for the norm of the angular velocities of the initial conditions inside any ROA is
the previously shared 0.0556 rad/s - in the presence of the hard-nonlinearities), is
a particular maneuver that provides complementary engineering insights, see Sec-
tion B.1.

A maneuver that poses also a challenge for the control laws studied is a “pure-spin”
around the major-axis since such a state is stable but offers the greater “resistance”
to movement. Regarding the satellite Amazonia-1, which is characterized by Ta-
ble 5.1, the major-axis is Z. Consequently, an initial condition, in which a pure-spin
around Z at the norm (L2) of maximum controllable velocity (0.0556 rad/s, ac-
cording to Section 6.1) would be a maneuver that could provide complementary
engineering insights. Nonetheless, the three control laws did not provide ω-stability
for such maneuver as would be expected since this axis has the greater “resistance”
to movement. The next maneuver evaluated was one with pure-spin around Z at
the angular velocity defined by the infinity norm of maximum controllable velocity
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(0.0385 rad/s, according to Section 6.1). For such a maneuver a control law provided
asymptotic ω-stability, see Section B.2.

Finally, the “pure-spin” around the final minor-axis does not pose a challenge once
the satellite could be stabilized around the other axes.

B.1 Y pure-spin

One simulation ran for each control law using the following parameters: initial Euler
Angles (ZYX, degrees) {0, 0, 0} and initial angular velocities (rad/s) {0, 0.0556, 0}.Q
and R equals to identity, tf = 3600s, fixed step size 0.05s and the hard-nonlinearities
in accordance with Equation (5.2).

Figure B.1 shows the results for LQR control law. It turned out that the control law
was not able to provide ω-stability for the satellite, moreover, the reaction wheels
exhibited saturation with their maximum velocity (±628 rad/s) due to the hard-
nonlinearities.
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Figure B.1 - Y “pure-spin” controlled by LQR.

The first graph shows the angular velocities (rad/s), the second one the error of the solar
vector (degrees) and the last one the reaction wheels angular velocities (rad/s).

SOURCE: Author.

Figure B.2 shows the results for SDRE based on Gibb’s vector control law. It turned
out that the control law was able to provide asymptotic ω-stability for the satel-
lite. Furthermore, using the nonlinearity, the saturation of reaction wheels did not
prevent from the control law to extract torques that lead to ω-stability.
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Figure B.2 - Y “pure-spin” controlled by SDRE based on Gibb’s vector.

The first graph shows the angular velocities (rad/s), the second one the error of the solar
vector (degrees) and the last one the reaction wheels angular velocities (rad/s).

SOURCE: Author.

Although asymptotic ω-stability was achieved, as discussed in Subsection 5.4.2, the
region on which the angular velocity is close to 0 rad/s poses challenges to SDRE
based on Gibb’s vector. Therefore, the error of the solar vector exhibited a pointing
error.

Figure B.3 shows the results for SDRE and H-infinity based on Gibb’s vector con-
trol law. It turned out that the control law was not able to provide ω-stability for
the satellite, moreover, using the nonlinearity, in the presence of the saturation of
reaction wheels the control law was able to extract torques but they did not lead to
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ω-stability.

Figure B.3 - Y “pure-spin” controlled by SDRE and H-infinity based on Gibb’s vector.

The first graph shows the angular velocities (rad/s), the second one the error of the solar
vector (degrees) and the last one the reaction wheels angular velocities (rad/s).

SOURCE: Author.

In conclusion, SDRE based on Gibb’s vector was the only control law that provided
asymptotic ω-stability. Clearly, the Y “pure-spin” was outside of the ROA of the
SDRE and H-infinity based on Gibb’s vector control law. Due to the linearity in
LQR explicitly, once the saturation was in place the control law was ineffective.
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B.2 Z pure-spin

One simulation ran for each control law using the following parameters: initial Euler
Angles (ZYX, degrees) {0, 0, 0} and initial angular velocities (rad/s) {0, 0, 0.0385}.Q
and R equals to identity, tf = 3600s, fixed step size 0.05s and the hard-nonlinearities
in accordance with Equation (5.2).

Figure B.4 shows the results for LQR control law. It turned out that the control law
was not able to provide ω-stability for the satellite, moreover, the reaction wheels
exhibited saturation with their maximum velocity (±628 rad/s) due to the hard-
nonlinearities.
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Figure B.4 - Z “pure-spin” controlled by LQR.

The first graph shows the angular velocities (rad/s), the second one the error of the solar
vector (degrees) and the last one the reaction wheels angular velocities (rad/s).

SOURCE: Author.

Figure B.5 shows the results for SDRE based on Gibb’s vector control law. It turned
out that the control law was able to provide asymptotic ω-stability for the satel-
lite. Furthermore, using the nonlinearity, the saturation of reaction wheels did not
prevent from the control law to extract torques that lead to ω-stability.
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Figure B.5 - Z “pure-spin” controlled by SDRE based on Gibb’s vector.

The first graph shows the angular velocities (rad/s), the second one the error of the solar
vector (degrees) and the last one the reaction wheels angular velocities (rad/s).

SOURCE: Author.

Although asymptotic ω-stability was achieved, as discussed in Subsection 5.4.2, the
region on which the angular velocity is close to 0 rad/s poses challenges to SDRE
based on Gibb’s vector. Therefore, the error of the solar vector exhibited a pointing
error.

Figure B.6 shows the results for SDRE and H-infinity based on Gibb’s vector control
law. It turned out that the control law was not able to provide ω-stability for the
satellite.
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Figure B.6 - Z “pure-spin” controlled by SDRE and H-infinity based on Gibb’s vector.

The first graph shows the angular velocities (rad/s), the second one the error of the solar
vector (degrees) and the last one the reaction wheels angular velocities (rad/s).

SOURCE: Author.

In conclusion, SDRE based on Gibb’s vector was the only control law that provided
asymptotic ω-stability. Clearly, the Z “pure-spin” was outside of the ROA of the
SDRE and H-infinity based on Gibb’s vector control law. Due to the linearity in
LQR, once the saturation was in place the control law was ineffective.
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