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Abstract

As is well known, pulsars are extremely stable rotators. However, although slowly, they spindown thanks to brake
mechanisms, which are in fact still a subject of intense investigation in the literature. Since pulsars are usually
modeled as highly magnetized neutron stars that emit beams of electromagnetic radiation out of their magnetic
poles, it is reasonable to consider that the spindown has to do with a magnetic brake. Although an interesting and
simple idea, a pure magnetic brake is not able to adequately account for the spindown rate. Thus, many alternative
spindown mechanisms appear in the literature, among them the pulsar wind model, where the wind of particles
coming from the pulsar itself can carry part of its rotational kinetic energy. Such a spindown mechanism depends
critically on three parameters, namely, the dipole magnetic field (B), the angle between the magnetic and rotation
axes (f), and the density of primary particles (ζ) of the pulsar’s magnetosphere. Differently from a series of articles
in this subject, we consider for the first time in the literature a statistical modeling that includes a combination of a
magnetic dipole and wind brakes. As a result, we are able to constrain the above referred parameters in particular
for Crab and Vela pulsars.

Unified Astronomy Thesaurus concepts: Pulsars (1306)

1. Introduction

As is well known, pulsars, which are usually associated with
rotating neutron stars (NSs), have extremely stable rotating periods.
In particular the so-called rotation-powered pulsars (RPPs) emit
radiation by means of their rotational kinetic energies, and as a
result their periods increase, i.e., they spindown (Ostriker & Gunn
1969; Gunn & Ostriker 1969). The electromagnetic energy emitted
by a pulsar, in this case, comes from its rotational kinetic
energy (see, e.g., Landau & Lifshitz 1975; Padmanabhan 2001).

It is very likely that pulsars, due to their dynamic nature,
should always present important temporal changes in some
astrophysical quantities. In particular, increases in the rotational
periods, for example, are usually quite small. The Crab pulsar
(PSR B0531+21), for example, which has a period of ∼33 ms,
has a period increase rate of ;4.2× 10−13 s s−1. While the
Vela pulsar (PSR J0835-4510 or PSR B0833-45) has a spin
period of ∼89 ms and a spindown rate of ;1.25× 10−13 s
s−1.3

A long standing issue the understanding of how exactly the
pulsars spindown. The magnetic dipole radiation model is a
simple and interesting proposal to explain the spindown.
However, such a model predicts that the brake index, a
dimensionless quantity that relates the period and its first and
second time derivatives, is exactly equal to three, which is not
observationally corroborated. In addition to that, the estimation
of the dipole magnetic field is subject to several uncertainties.
For instance, several analyses suggest that the possibility of a
multipolar magnetic field in highly magnetized stars should not
be disregarded (see, e.g., de Lima et al. 2020). Indeed, NASA’s
Neutron star Interior Composition Explorer (NICER) X-ray
data from PSR J0030+0451 has recently led to the first map of
the hot spots on the surface of a star (see Bogdanov et al. 2019;
Riley et al. 2019). The hot spots are far from antipodal,

meaning that the magnetic field structure of a pulsar is much
more complex.
The fact that no pulsar has a braking index equal to three

implies the need to consider more elaborate spindown models.
One such a model is the so-called pulsar wind model (see Xu &
Qiao 2001; Kou & Tong 2015; Tong & Kou 2017), which we
consider here. We shall see later in this paper that different
values of the braking index are naturally the case whenever a
pulsar wind mechanism is also featured in the energy loss
budget of pulsars, along with the classic magnetic dipole
radiation. In addition, observations of intermittent pulsars
showed explicitly the substantial role of particle wind in pulsar
spindown (see Kramer et al. 2006). Magnetohydrodynamic
simulations also found similar expressions to the wind braking
model (see, e.g., Spitkovsky 2006). In the next section, we
briefly review such a model.
It is worth mentioning that there are several scenarios that

challenge the classic magnetic dipole model, like the one
involving the accretion of fallback material via a circumstellar
disk (Chen & Li 2016), and modified canonical models to
explain the observed braking index ranges (see Allen &
Horvath 1997; Magalhaes et al. 2012; Ekşi et al. 2016; de
Araujo et al. 2016a, 2016b, 2016c, 2017; among others, and
references therein for further models). Another interesting
model for the brake is the quantum vacuum friction. We refer
the reader to Coelho et al. (2016) for details. Therefore, energy
loss mechanisms for pulsars are still under continuous debate.
As already mentioned we consider here the pulsar wind

model, but following a different approach than that usually
adopted in the literature. By means of a statistical model, we
analyze in particular three relevant parameters of the wind
model, namely, B, f, and ζ: the dipole magnetic field, the initial
angle between the rotation and magnetic axes, and the
parameter related to the density of the primary particles of
the magnetosphere, respectively.
This paper is organized as follows. In Section 2, we revise

the pulsar wind model and in Section 3 we present the
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3 For information about pulsars, we refer the reader to the Australia Telescope
National Facility catalog available at: https://www.atnf.csiro.au/research/
pulsar/psrcat/.
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statistical model to analyze the parameters B, f, and ζ for the
Crab and Vela pulsars. The results and discussions are
presented in Section 4. The main conclusions are summarized
in Section 5.

2. Pulsar Wind Model

In this section we briefly review the pulsar wind model as
originally put forward by Xu & Qiao (2001) in order to
elucidate the physical ideas involved.

Let us consider the pulsar as an oblique rotator that has two
components of magnetic dipole: one parallel and the other
perpendicular to the axis of rotation of the pulsar. The
perpendicular component is responsible for the energy loss by
the magnetic dipole radiation (see, e.g., Landau & Lifshitz 1975;
Padmanabhan 2001), whereas the parallel component is related
to the acceleration of the particles (see Li et al. 2014). Then, the
phenomenon of pulsar wind is basically an energy loss
mechanism due to the classic magnetic dipole radiation and
particle acceleration (see Kou & Tong 2015; Tong & Kou 2017).

The energy loss due to particle wind depends on the so-
called acceleration potential drop, Δv, given by (Xu & Qiao
2001)

( ) p r= DE r c v2 , 1p ewind
2

where rp= R(RΩ/c)1/2 is the polar gap radius, c is the speed
of light, ρe is the primary particle density, and Δv is the
corresponding acceleration potential in the acceleration gap.
The density of the primary particles is related to the Goldreich–
Julian charge density by ρe= ζρGJ (Goldreich & Julian 1969),
where ζ is a coefficient that can be constrained by the
observations. It is important to note that ζ is related to the
primary particles in the acceleration gap but not to the total
outflow particles.

Notice that the presence of the acceleration potential can
accelerate the primary particles. Secondary particles are
generated subsequently. Meanwhile, the density of the
secondary particles can be much higher than the Goldreich–
Julian density. In the wind braking model, all of the particles
injected into the magnetosphere from the acceleration region
are defined as primary particles.

If we assume that the maximum potential for a rotating
dipole is given by ΔV= μΩ2/c2, it can be shown that the
rotational energy loss rate reads as
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where μ= 1/2BR3 is the magnetic dipole moment (B is the
magnetic field strength at the magnetic pole of the star and R is

the neutron star radius), Ω is the rotational frequency, and f is
the inclination angle between the rotational and magnetic axes.
On the other hand, as it is well known, pulsars also lose

energy via classic magnetic dipole radiation (Padmanabhan
2001; Landau & Lifshitz 1975). The magnetic dipole radiation
and the outflow of the particle wind may contribute indepen-
dently. Then, the total rotational energy loss rate is given by Kou
& Tong (2015) and Tong & Kou (2017) as
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We note that if the acceleration potential Δv= 0, then there
are no particles accelerated in the gap, and the pulsar is just
braking down by magnetic dipole radiation. Here χ is a
dimensionless function that can be viewed as the dimensionless
spindown torque. The expressions of χ for different accelera-
tion models have been very well studied by Kou & Tong
(2015; see Table 2 therein for various acceleration models). In
fact, the χ parameter depends on the particle acceleration
model adopted. Here, we will use the vacuum gap (VG) model
with curvature radiation (CR; see Ruderman & Sutherland
1975).
We shall surmise in this work that the total energy of the star

is provided by its rotational counterpart, Erot= IΩ2/2, and its
change is attributed to both Ewind and magnetic dipole
radiation. Thus, from Equation (3), the evolution of the
rotational frequency of a star is given by
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where the term in parentheses accounts for the pulsar death,
and B12 is the surface magnetic field in units of 1012 G. Notice
that in the above equation, the term fcos2 , which appears in
Equation (2), is now omitted. In Tong & Kou (2017), the
authors argue that fcos2 may not appear, in accordance with
magnetospheric simulations performed by Li et al. (2012).
Consequently, the effect of pulsar death can be incorporated

in the rotational energy loss rate and must be considered in
modeling the long-term rotational evolution of the pulsar. Note
that when a pulsar is dead (Ω<Ωdeath), it is braked only by
magnetic dipole radiation, i.e., c f= sinVG

CR 2 . Then, following
the same procedure of Contopoulos & Spitkovsky (2006) and

Table 1
Period (P), its First Derivative ( P), Surface Magnetic Field (B), Braking Index (n), and Spindown (SD) Age for the Vela and Crab Pulsars

Pulsar P (s) ( -P 10 13 s s−1) B (1012G)a n Age (kyr)b Ref.

PSR B0833-45 (Vela) 0.089 1.25 6.8 1.4 ± 0.2 11.3 Lyne et al. (1996); Espinoza et al. (2017)
PSR B0531+21 (Crab) 0.033 4.21 7.5 2.51 ± 0.01 0.967 Lyne et al. (1993, 2015)

Notes.
a = ´B PP6.4 10 G19 for canonical parameters of M, R, and I.
b For the Vela pulsar we use the spindown = P Page 2 . However, we have adopted the true age for Crab pulsar, which is known to be just 967 years because the
Crab supernova was observed in 1054 CE.
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Kou & Tong (2015), the death period (Pdeath= 2π/Ωdeath) is
defined as

⎛
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The inclination angle f is allowed to evolve over time, and
following Tong & Kou (2017), the evolution of f reads as

( )f f f= -
WB R

Ic6
sin cos . 7

2 6 2

3

As already mentioned, the energy carried away by the dipole
radiation and the relativistic particles originates from the
rotational kinetic energy, the loss rate of which is WWI .

Recall that the braking index is defined by

̈
( )


=

WW

W
n . 8

2

It is interesting to note that the braking index implicitly
depends on the magnetic field B, the inclination angle f, and
particle density ζ.

3. Statistical Models for Crab and Vela

In Kou & Tong (2015) and, in particular and mainly in Tong
& Kou (2017), one sees that the key parameters to appropriately
model the pulsar spindown when considering a combination of
magnetic dipole and particle wind brakes are B, f, and ζ.

In a modeling for the Crab pulsar, Kou & Tong (2015)
assume that B= 8.1× 1012 G, f= 55°, and ζ= 103. Later,
Tong & Kou (2017) adopt B∼ 1012 G, f= 60°, and ζ= 102.
The authors argue that the primary particle density, ρe, of
young pulsars is at least 80 times the ρGJ in the VG model. In
fact, the particle density in the accelerating region could be
∼103–104 times the Goldreich–Julian charge density (see also
Yue et al. 2007). A much larger particle density than the
Goldreich–Julian density in the pulsar magnetosphere is also
found in other models and observations (Kou & Tong 2015;
Tong & Kou 2017; and references therein).

Differently from these and other previous studies, we
consider for the first time in the literature a statistical modeling
that includes a combination of a magnetic dipole and wind
brakes. We argue that a robust way to adequately obtain and
constrain f, ζ, and B is by means of a statistical analysis.

According to the inferred observational range of the
inclination angles and the characteristic magnetic fields, we
are able to constraint the ranges of the values of f and ζ for a
particular pulsar. As a first application of our modeling we
consider the widely known Crab and Vela pulsars.

Here, we use the Markov Chain Monte Carlo (MCMC)
method to analyze the parameters θi= f, ζ, and B, building the
posterior probability distribution function

⎛
⎝

⎞
⎠

( ∣ ) ( )q cµ -p D exp
1

2
, 92

where

⎜ ⎟
⎛
⎝

⎞
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( )c
s

=
-n n

, 10
n
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2

where n, nth, and σn are the observed braking index (median
value), the theoretical braking index, and the uncertainties of
the observed braking index (see Table 1), respectively.

The goal of any MCMC approach is to draw M samples of θi
from the general posterior probability density

( ∣ ) ( ) ( ∣ ) ( )q a q a q a=p D
Z

p p D,
1

, , , 11i

where p(θ, α) and p(D|θ, α) are the prior distribution and the
likelihood function, respectively. Here, the quantities D and α

are the set of observations and the possible nuisance
parameters. The amount Z is a normalization term. In order
to constrain the baseline θi, let us assume estimates of the

Figure 1. The parametric space at 38% CL and 68% CL, under the prior
consideration f ä [45°, 70°] (Case I) and f ä [70°, 90°] (Case II). Upper panel:
Vela pulsar. Lower panel: Crab pulsar. The parameter B is in units of 1012 G.
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braking index parameters for the pulsars as follows:
n= 2.51± 0.01 for Crab and n= 1.4± 0.2 for Vela (see
Table 1).

We perform the statistical analysis based on the emcee
algorithm (see Foreman-Mackey et al. 2013), assuming the
theoretical model described in Section 2 and the following
priors on the parameters baseline: first, we analyze both Vela
and Crab with a uniform prior on the inclination angles of
f ä [45°, 70°], which are consistent with the observational
constraints (Lyne et al. 2013). As a second case, we consider a
uniform prior of f ä [70°, 90°]. In fact, the shape of the beam
of the Crab pulsar has been investigated over the past few
years, resulting in a range of estimates of fä [45°, 70°] (see,
e.g., Dyks & Rudak 2003; Harding et al. 2008; Watters et al.
2009; Du et al. 2012). Unfortunately, at present it is impossible
to accurately determine the inclination angles of the individual
pulsars. Therefore, these issues are still under continuous
debate (see, e.g., Lander & Jones 2018; Novoselov et al. 2020).

From the profile modeling, we can already get some
information about the inclination angle. In fact, the braking
index is not the only observational input, since preliminary
information on f is already known. Thus, we use this
information as a uniform prior in our analysis. We are fitting
the theoretical model under observational information quanti-
fied in terms of n, which represents in practical terms just one
data point, with already known information on f. Thus, we will
maintain a conservative statistical limit in our results, and we
will quantify all of our analyses at 38% (∼0.5σ) and 68%
(∼1σ) confidence levels (CL). In what follows, let us present a
summary of our main results.

4. Results and Discussions

In the following we explore the parameter space of f, ζ, and
B with our MCMC approach in order to constrain the
probability distribution of these parameters that characterize
the pulsar wind model. Then, we relax the value of B using a

Figure 2. Statistical reconstruction at a 1σ CL of the braking index n as a function of time for Vela and Crab, on the left and right panels, respectively (Case I). The
error bar in black represents the n measurements.

Figure 3. Statistical reconstruction at a 1σ CL of the braking index n as a function of time for Vela and Crab, on the left and right panels, respectively (Case II). The
error bar in black represents the n measurements.
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uniform prior with Bä [1, 100] in units of 1012 G. As a case
study, in Figure 1 we show the parametric space on the plan f-
ζ at 38% and 68% CL, assuming fä [45°, 70°] (Case I) and
f ä [70°, 90°] (Case II).

The age of a pulsar is a useful parameter, but it is difficult to
get the age from observations. Here, we have used the values
showed in Table 1. For the Vela pulsar we adopted the
spindown age. This age is in good agreement with independent
age estimators (e.g., proper motion and supernova remnant
age). It is worth mentioning that the different age estimates for
both pulsars do not practically influence our statistical
modeling.

For the Vela pulsar, we find z = -
+1280 630

350 and z = -
+990 570

320

at a 1σ CL from Cases I and II, respectively. For this inference,
we find = ´-

+B 6.5 10 G4.4
3.1 12 and = ´-

+B 6.8 10 G5.1
2.5 12 for

Cases I and II, respectively. Now, for the Crab pulsar, we find
z = -

+1002 76
83 and z = -

+600 100
160 at a 1σ CL from Cases I and II,

respectively, with = ´-
+B 6.6 10 G1.7

1.2 12 and = ´-
+B 7.3 4.3

2.1

10 G12 from Cases I and II, respectively. Note that the mean
value of the B parameter can present statistical fluctuations
along the MCMC analysis. But, as expected, these fluctuations
are completely compatible with the input value. As previously
mentioned, the characteristic (inferred) magnetic field from the
classical magnetic dipole radiation is subject to some
uncertainties. To take into account the magnetic field effects
in our results, we have relaxed B using a uniform prior with
B ä [1, 100] in units of 1012G. Nevertheless, it is worth
mentioning that up to now, attempts to estimate the magnetic
field strength in isolated pulsars through the measurement of
cyclotron resonance features, as successfully done for accreting
pulsars, have been inconclusive.

Figure 2 shows the reconstruction at a 1σ CL of the braking
index n as a function of time for Vela and Crab, on the left and
right panels, respectively. The reconstruction is done applying
the standard propagation of error in Equation (8) from the best-
fit values obtained in our analysis within the case fä [45°,
70°]. Figure 3 shows the reconstruction for the second case,
f ä [70°, 90°]. In all of our analyses, we discard the first 10%
of steps of the chain as burn-in. We follow the Gelman-Rubin
convergence criterion (Gelman & Rubin 1992), checking that
all parameters in our chains had good convergence.

5. Final Remarks

In the literature there are several alternatives to the magnetic
dipolar brake to explain the pulsar spindown, among them the
pulsar wind model, where the wind of particles coming from
the pulsar itself can carry part of its rotational kinetic energy.
We have seen that such a spindown mechanism depends
critically on three parameters, namely, the dipole magnetic
field, the angle between the magnetic and rotation axes, and the
density of the primary particles of the pulsar’s magnetosphere.

Differently from a series of previous articles in this subject,
we consider for the first time in the literature a statistical
modeling that includes a combination of a magnetic dipole and
particle wind brakes. Although in general there is a dependence
on all of the parameters on the pulsars, we used here, without
loss of generality and for the sake of exemplification, only the
VG model for the particle acceleration. We emphasize that this
same approach can be applied regardless of the choice of the
acceleration model. As a result, we are able to constrain the

three relevant parameters of this model, i.e., B, f, and ζ, in
particular for Crab and Vela pulsars. This study ought to lay the
groundwork for future research on the fundamental parameters
of pulsar wind models and also particle acceleration.
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