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ABSTRACT

Code annotation is a language feature that enables the introduction of custom meta-
data on programming elements. In Java, this feature was introduced on version 5,
and it is widely used by the leading enterprise application frameworks and APIs.
Although very popular to simplify metadata configuration, software engineering lack
research and experiments about them. Also, its abuse and misuse can reduce source
code readability, comprehension and complicate its maintenance. Our work proposes
an approach to assess code annotations usage and distribution in a software project
to overcome this. We begin defining a novel suite of software metrics dedicated
to code annotations. We analyzed their distribution in open-source projects by ex-
tracting their values from 24,947 java classes and obtaining threshold values. We also
provided a way to interpret these threshold values using a percentile rank analysis,
revealing outliers. Afterward, we proposed a novel polymetric view tailored specifi-
cally to visualize code annotations distribution and usage using our metrics as input.
We named it CADV - Code Annotations Distribution Visualization. To validate the
CADV, we conducted two experiments. The first was an interview with six profes-
sional developers from EMBRACE, and the second was conducted asynchronously
with 44 students through a form. As a target software, we used the SpaceWeather
system. Our results show that the proposed visualization approach can aid develop-
ers and students in comprehending the distribution of code annotations, packages
responsibilities and potentially detect misplaced ones. Furthermore, CADV provides
a much quicker approach to identify code annotations and schemas when compared
with manual code inspection.

Keywords: Code Annotations. Software Metric. Software Visualization. Polymetric
View. Metadata.
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AVALIANDO O USO DE ANOTAÇÕES DE CÓDIGO EM
PROJETOS DE SOFTWARE

RESUMO

Anotações de código são uma característica de linguagem que permitem a configu-
ração de metadados em elementos de programação. Na linguagem Java, essa carac-
terística foi introduzida na versão 5 e é utilizada por desenvolvedores de frameworks
e APIs corporativas amplamente utilizadas. Mesmo que as anotações sejam muito
populares para simplificar a configuração de metadados, a comunidade de engenha-
ria de software possui poucos trabalhos que as investigam. Adicionalmente, o seu
uso inadequado pode reduzir a legibilidade, compreensão e comprometer a manu-
tenção do sistema. Com isso, esse trabalho apresenta uma abordagem para avaliar
o uso e distribuição de anotações em projetos Java. O primeiro passo foi definir
um novo conjunto de métricas de código fonte capaz de extrair características das
anotações usadas. Para validar as métricas, fizemos uma coleta em 25 projetos de
código aberto e foi possível observar como elas se comportam. Em seguida, com as
métricas disponíveis, fizemos uma proposta de visualização polimétrica projetada
para visualizar anotações de código e como estão distribuídas. Para validar a visua-
lização conduzimos dois experimentos. O primeiro foi feito com seis desenvolvedores
que participaram da criação do sistema SpaceWeather do EMBRACE, e o segundo
foi conduzido com 44 alunos de graduação. Os resultados mostraram que a visuali-
zação permite compreender rapidamente a distribuição das anotações e identificar
as responsabilidades dos pacotes.

Palavras-chave: Anotações. Metadados. Métricas de Software. Visualização de Soft-
ware. Visão Polimétrica.
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1 INTRODUCTION

Code annotations, or simply annotations, are a feature available on the Java pro-
gramming language. They were introduced in version 5 to configure custom metadata
directly on programming elements, such as methods and classes. Tools or frameworks
usually consume these to gather additional information about the software, allowing
the execution of more specific behavior. Since annotations are inserted directly on
the source code, they are a convenient and quick alternative to configure metadata
(GUERRA, 2014).

Main enterprise Java APIs make extensive use of code annotations, making them a
relevant feature used daily by developers. Examples of APIs are the EJB1 (Enterprise
Java Beans) used to configure transactions and security restrictions, the JPA2 (Java
Persistence API) used to perform object-relational mapping and the JUnit3 used for
unit testing.

Although popular and increasingly used by developers, the software engineering
community lacks work and research dedicated to studying and analyzing code an-
notations and their impact on software development. For instance, current software
metrics only acknowledge annotations as being another line of code. They do not
consider them when calculating complexity or cohesion, which can lead to an incom-
plete code assessment (GUERRA et al., 2009). A domain class can be considered simple
using current complexity metrics. However, it can contain complex annotations for
object-relational mapping. For example, when a mapping is being overridden for an
entity relationship, several annotations may be used, and they can be nested.

Another example is that using a set of annotations couples the application to a
framework that can interpret them. Current coupling metrics do not explicitly handle
this situation, and therefore does not provide a precise coupling value considering
also code annotations.

When annotations are misused, it can harm the evolution and maintenance of soft-
ware. For instance, an excessive amount of annotations can reduce code readability,
and annotations duplicated through the project might be hard to refactor given the
repetitive work (LIMA et al., 2018).

Software evolution and maintenance is recognized as the most costly and challenging

1www.oracle.com/technetwork/java/index-jsp-140203.html
2www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-140049.html
3https://junit.org/junit5/
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activity in the software development life cycle (RAJLICH, 2014). Given the increas-
ing presence of code annotations, they also play their role in the cost and challenges
of software evolution. However, code that is easier to comprehend usually is eas-
ier to evolve. Therefore, developers spend most of their time comprehending the
software they are working on to be able to contribute and add/maintain features
(HASSELBRING et al., 2020).

To support developers to comprehend software better, the field of software visual-
ization has become increasingly used (FRANCESE et al., 2016; MERINO et al., 2018).
Some approaches aim to represent software as a known environment, such as a
city(WETTEL et al., 2011; ROMANO et al., 2019) or a forest (ERRA; SCANNIELLO,
2012). Another approach is to create what is known as a “polymetric view”, defined
as a lightweight visualization enriched with software metrics (LANZA; DUCASSE,
2003).

We combined software metrics and visualization to create an approach to assess and
comprehend code annotations within this context.

1.1 Goal

The goal of this work is:

To define an approach to measure and visualize code annotations to assess and
comprehend their usage and distribution in software systems

Given the increased presence of Java annotations and the lack of work dedicated
to studying them, in this work, we want to explore how to comprehend better the
usage, distribution, and presence of code annotations. It is not a primary goal of our
work to detect problems related to code annotations, such as misconfigurations or
misplacements. However, once the developer is familiar with the system it is working
on -our primary goal–it might also be easier to detect problems.

To reach our goal, in short, we first measure code annotations, and then we visualize
them using the metrics values as input.

1.2 Motivation and relevance

Code annotations are an extensively used feature of the Java language. Observing the
30-top rated Java projects on GitHub, the one with the least amount of annotations
has 22% of annotated classes. At the same time, the most annotated project has 97%
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of annotated classes. On average, 76% of classes are annotated(LIMA et al., 2018).
Also, a study performed by Rocha and Valente (2011) verified that from 106 projects
of the Qualitas Corpus project database (TEMPERO et al., 2010), 65 projects used
annotations, showing that it is a widely adopted feature in Java source code. With
extensive usage and lack of research in the software engineering community, code
annotations create a fertile ground for exploration. Furthermore, it is still unclear
how code annotations impact software development and how developers perceive
this feature. Hence we want to create means to aid in comprehending them through
measurement and visualization techniques.

Code annotations are not only present in Java. The C# language also features
a similar feature known as attributes4, available since the release of the language
(ECMA, 2017). Analyzing the top 30 ranked C# projects on GitHub, on average,
56% of the classes are using at least one attribute (BRAGA et al., 2019). Therefore,
proposing approaches to comprehend code annotations better has benefits not only
for Java programmers.

The National Institute of Space Research (INPE) has several research programs that
use web applications to cope with a vast amount of data, process it, and make it
publicly available. Some of these applications are developed using Java language,
and code annotations are used. As such, they can benefit from the findings and
tools presented by our work. For instance, we have the project LEONA5 and the
EMBRACE6 program.

The EMBRACE7 program, which stands for “Brazilian Studies and Monitoring of
Space Weather” is composed of several products that follow the same reference archi-
tecture (SANT’ANNA et al., 2014) based on Java Enterprise APIs. The web application
used to process and make data publicly available is divided into six modules span-
ning 94 components archived in independent deployment units. Furthermore, this
software system has 1314 classes, with 837 containing at least one annotation, i.e.,
64%.

As will be further detailed in future Chapters and Sections, the software systems
developed for the EMBRACE program were used in our experiments.

4Given the similarity of these features, in this work, we will refer to them as code annotations
as well

5http://www.dae.inpe.br/acatmos/
6http://www2.inpe.br/climaespacial/portal/pt/
7http://www2.inpe.br/climaespacial/portal/pt/
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1.3 Methodology

This work is divided into two studies. The first defines and validates a novel suite of
software metrics for code annotations. The second study uses the metrics values to
create a visualization for code annotations in the system. The evaluation is carried
out with a questionnaire-based experiment. For each study, we have a different
methodology, presented as follows. Figure 1.1 presents a diagram of the two studies
carried in this work. From this Figure, we see that parts we developed in the first
study (Study 1) are carried as input to Study 2, better described below.

Figure 1.1 - Diagram of the Conducted Studies.

Study 1 - Code Annotation Metrics

To propose the suite of metrics, we used a GQM (BASILI, 1992; BASILI et al., 1994)
(Goal Question Model) where we identified some code annotations characteristics
that we could measure. We were able to define 7 seven new metrics (LIMA et al.,
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2018).

Afterward, we selected 25 open-source Java projects following the guidelines of (NA-

GAPPAN et al., 2013). We extracted the seven metrics values and analyzed how they
behaved among these projects by performing a statistical analysis using the Per-
centile Rank Analysis (MEIRELLES, 2013). To automate the process of collecting the
metrics values, we developed an open-source tool called Annotation Sniffer (ASnif-
fer) (LIMA et al., 2020a). With the statistical analysis complete, we were to identify
threshold values as well as outliers.

In short, these were the steps carried out in the first study:

• Define a suite of annotation metrics

• Select real-world open-source projects

• Develop the ASniffer tool to perform the extraction

• Perform statistical analysis on the metrics values

• Define threshold values

• Identify common profiles and outliers

Study 2 - Code Annotation Visualization

We proceed to the second study of this work with the metrics defined and validated:
to visualize the code annotations using the metrics values as input.

According to (MERINO et al., 2018), when defining software visualization approaches,
the first step is to make the goals clear. Then, we design our approach consistent
with them. Our primary goal is to visualize how code annotations are distributed
in software systems, so we named it Code Annotations Distribution Visual-
ization (CADV). It is a 2D polymetric view, using a hierarchical circle packing to
represent the system. The innermost circles represent code annotations from source
code, and their size is a function of a chosen metric value.

The CADV comprises three different views: The System View, The Package View,
and The Class View. Each has its own goals, and they complement each other, pro-
viding different levels of visualization while also allowing the user to switch between
them.
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To implement CADV we created an open-source tool name Annotation Visualizer8

(AVisualzer). The tool consumes the report generated by the ASniffer and draws
our visualization approach. A demonstration is available as web application9

To evaluate our approach, we performed two experiments. The first, E1, was con-
ducted as an interview with six developers of the SpaceWeather web application.
The second experiment, E2, was conducted asynchronously with 44 students through
a form. The majority were undergraduate students in computer areas. One of the
goals of the experiment was to validate if the proposed visualization could easily
present how code annotations are distributed in the system.

As a target software used for the experiments, we selected a module from the
SpaceWeather, which is a web application developed for the EMBRACE divi-
sion of INPE. It made sense to choose this system and validate our approach as
applied research to INPE internal demands.

The SpaceWeather web application is composed of the following modules:

• SpaceWeatherGNSSReprocessor

• SpaceWeatherION

• SpaceWeatherSunGif

• SpaceWeatherSWD

• SpaceWeatherTEC

• SpaceWeatherTSI

From these modules, we selected the SpaceWeatherTSI to be our target soft-
ware, given that it uses many annotations from metadata-based frameworks. Which
matches the characteristics we would like to display with our CADV approach.

In short, these were the steps carried out in the second study:

• Identify the goals of the visualization

• Define the visualization approach according to the goals

8https://github.com/phillima/avisualizer
9https://avisualizer.herokuapp.com/
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• Develop the AVisualizer tool to implement the approach

• Select a target software and participants

• Train the participants how to use the tool

• Execute both experiments, E1 and E2.

• Analyze the results

From Figure 1.1, we see that the code annotations metrics and the ASniffer tool are
also used in Study 2. The CADV is a polymetric view that uses the metrics defined
in Study 1. Afterward, the AVisualizer tool requires metrics values extracted by
the ASniffer to render our visualization. Therefore, it makes sense that our work
begins with the proposal and definition of code annotation metrics. They will be
used throughout the remaining parts of this work and other parallel research that
our group is conducting.

1.4 Claimed contributions

The literature contains several works using code annotations to solve problems and
implement solutions for diverse domains. Some of these papers apply annotations
to support the implementation of design patterns (MEFFERT, 2006) or to enable
architectural refactoring (KRAHN; RUMPE, 2006). However, only a few works eval-
uated the use of code annotations itself, focusing on design practices for metadata
modeling or even performing studies to assess how annotations are currently being
used by developers (LIMA et al., 2018).

Our first contribution, (C1), is a novel suite of software metrics dedicated to
code annotations. They were designed to measure the size, complexity, and cou-
pling of code annotations. For our second contribution (C2), we provided threshold
values by extracting the metrics from open-source software and performing a sta-
tistical analysis. The third contribution (C3) is the open-source tool developed
to automate the metrics, called ASniffer. Our fourth contribution (C4) is our
Code Annotations Distribution Visualization CADV a novel polymetric view
explicitly designed for code annotations. It is based on a nested circle packing ap-
proach. Finally, our fifth contribution (C5) is the AVisualizer, an open-source
tool that implements the CADV. It was developed as a web application that
uses the ASniffer as a dependency. We made it available as a single deployed unit
to collect the metrics and draw the CADV.
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The contributions of this work can all be applied to software systems developed at
INPE. For systems using the Java programming language, such as the EMBRACE
projects, developers can use our metrics and visualization approach to monitoring
the growth and comprehend their system. As will be discussed in Chapter 5, one
participant involved in the development of the SpaceWeather software system
mentioned that “it was possible to remember the architecture and even comprehend
some interesting structures used during development that was hidden. It helps to
monitor our code.”. Furthermore, INPE is also developing mobile applications using
the Kotlin programming language. This language is compatible with the JVM10

(Java Virtual Machine) and also has a feature similar to code annotations. Therefore,
researchers can extend our work to measure and visualize code annotations in a
Kotlin system.

In short, our contributions are:

• An approach to measure code annotations characteristics
• An approach to visualize code annotations characteristics

1.5 Published papers in the area of code annotations

Throughout the development of this work, we published the following papers:

• A Metrics Suite for Code Annotations Assessment (LIMA et al., 2018): We
published this paper in the Journal of Systems and Software (JSS). We
present and discuss our suite of metrics dedicated to code annotations.
The contents presented in Chapter 3 was extracted from this paper.

• Annotation Sniffer: Open Source Tool to Extract Code Annotations Met-
rics (LIMA et al., 2020a). We published this paper in the Journal of Open
Source Software (JOSS). We present the Annotation Sniffer (ASniffer), a
tool we developed to support the extraction of code annotation metrics.
The contents presented in Chapter 3 was extracted from this paper.

• Towards Visualizing Code Annotations Distribution (LIMA et al., 2020b).
We published this paper in the Computer on the Beach (COTB). We
present the first step we took in the direction of visualizing code anno-
tations. From this paper, we were to obtain some feedback and improve
our visualization. The contents presented in Chapter 5 is our new and
unpublished visualization approach for code annotations.

10The virtual machine used to run Java applications
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• A Metadata Handling API for Framework Development: a Comparative
Study (GUERRA et al., 2020). We published this paper in the Brazilian
Symposium on Software Engineering (SBES). We conducted an experiment
to compare the Java Reflection API and a novel API, Esfinge Metadata, to
consume and process code annotations. The ASniffer was used to extract
code annotation metrics values to aid in the analysis and comparative
study.

• Definição de clusters para classificação do uso de anotações em código
Java (LIMA et al., 2017) (written in brazilian portuguese). We published
this paper in the Workshop on Software Visualization, Maintenance, and
Evolution (VEM). We presented an approach to classify Java classes based
on code annotations usage. To support the extraction of metrics, the AS-
niffer was used.

• An Annotation-Based API for Supporting Runtime Code Annotation
Reading (LIMA et al., 2017): We published this paper in the Workshop
on Meta-Programming Techniques and Reflection (META). We presented
an API to read, and process code annotations named the Esfinge Metadata
API. As a demonstration, we carried a refactoring process and used the
ASniffer tool to extract code annotations metrics used in the analysis.

• Does it make sense to have application-specific code conventions as a com-
plementary approach to code annotations? (TEIXEIRA et al., 2018): We
published this paper in the Workshop on Meta-Programming Techniques
and Reflection (META). We investigated the presence of code conventions
related to code annotations. To help extract code annotations information
from the source code, we used the ASniffer.

• Attribute Sniffer: Collecting Attribute Metrics for C# Code (BRAGA et al.,
2019): We published this paper in Tools Track of the Brazilian Conference
on Software: Practice and Theory. In this paper, we investigated if the code
annotations metrics designed for Java projects could be applied to C#
projects, given the similarities of these features. Out of the seven metrics,
we were able o directly apply five metrics to C# projects.

1.6 Organization

The background and related work is presented in Chapter 2. We discuss three topics
in the chapter. It begins by presenting the concept of metadata in the context of
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object-oriented programming, defines code annotations, and shows the work other
researchers have performed to assess code annotations. Then, we proceed to the
second topic, which is software metrics. We define them and discuss why it is essential
to analyze these metrics’ distribution to obtain threshold values. Finally, we present
what software visualization is and how other researchers presented and validated
their visualizations for software systems.

In Chapter 3, we present the ASniffer, an open-source tool developed to extract
code annotations metrics values. We divided this chapter into three parts. We be-
gin presenting the tool’s internal architecture and the source code responsible for
extracting one example metric. In the second part, we describe how the tool can
be used as a stand-alone application. Finally, in the third part, we briefly describe
other works carried by our research team that used the ASniffer as a support tool.
This final section is important because it reinforces that the ASniffer has become
an important tool, initially developed for this work, but evolved and contributed to
other research.

In Chapter 4, we present our novel suite of metrics. The chapter is divided into
three parts. First is the research design and steps taken to propose and validate our
metrics. Afterward, we present the definition of our novel suite of software metrics.
Finally, we carry out a data collection and statistical analysis to obtain threshold
values in the third part. This last part is important because just providing a metric
value is not very useful for developers. This chapter comprises our first study, and
the results were published on (LIMA et al., 2018).

In Chapter 5, we present the second part of our study, which is the definition and
validation of our visualization approach for code annotations. We named this ap-
proach Code Annotations Distribution Visualization (CADV). The input data that
builds the visualization are the values extracted using our novel metrics suite. This
chapter follows a similar structure used in Chapter 4, dividing it into three parts.
It begins with the research design for CADV. Then, in the second part, we proceed
to define the views that, together, form CADV. Finally, we present the results and
discussion of the conducted experiment to evaluate our visualization approach.

In Chapter 6, we conclude our work, analyzing the results, discuss the threats to
validity, and where we want to take this research in future works.
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2 BACKGROUND AND RELATED WORK

In this chapter, we present the theoretical foundation for our work. We also present
similar work done by other researchers and discuss how these solutions differ from
ours for each topic. The first topic discusses metadata configuration in object-
oriented programming and how code annotations are used for this purpose. To
further clarify, we present a simple example to enlighten how this feature works.
The second topic regards software metrics and the importance of analyzing the dis-
tribution of the values using an adequate approach. To complete our background
chapter, we present and discuss software visualization and how software metrics
values can be used as input for visualization approaches.

2.1 Metadata in object oriented programming

In this section, we present what metadata is in the context of computer science,
and more specifically, in the context of object-oriented programming. Afterward,
we define code annotations, which is a feature of some programming languages to
configure metadata.

The term “metadata” is used in a variety of contexts in the computer science field.
In all of them, it means data referring to the data itself. When discussing databases,
the data are the ones persisted, and the metadata is their description, i.e., the
table’s structure. In the object-oriented context, the data are the instances, and the
metadata is their description, i.e., information that describes the class. As such,
fields, methods, super-classes, and interfaces are all metadata of a class instance. A
class field, in turn, has its type, access modifiers, and name as its metadata. When
a developer uses reflection, it is manipulating the metadata of a program and using
it to work with previously unknown classes (GUERRA et al., 2010; GUERRA, 2014).

Some tools or frameworks can consume metadata and execute routines based on
class structure. For instance, it can be used for source code generation (DAMYANOV;

HOLMES, 2004), compile-time verification (ERNST, 2008; QUINONEZ et al., 2008),
class transformation (LOMBOK, ), and framework adaptation (GUERRA et al., 2010).
Often, the metadata contained in the class structure might not be enough to allow
a specific behavior or routine to be executed. Therefore additional metadata can be
configured on the programming elements.
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2.1.1 Metadata configuration

One approach to defining custom metadata is to use external storage, such as an
XML file or a database (FERNANDES et al., 2010). The drawback of this approach
is the distance between the metadata and the code element since the external file
needs some way to reference it. This adds some verbosity since a complete path
must be provided so that the framework may correctly consume the metadata.

Another alternative, which is used by some frameworks, like Ruby on Rails (RUBY

et al., 2009) and the CakePHP framework1, is to define additional information us-
ing code conventions (CHEN, 2006). These are specific guidelines that developers
use when creating code, such as naming pattern, return type, implementation of
an interface, etc. Some frameworks are capable of identifying these conventions and
execute specific behavior. A team of developers may also have their own code conven-
tions that best suit their needs. Following these recommendations improve software
maintenance, readability, and evolution. For instance, in the Java language, the Java
Beans standard defined getters and setters naming convention for methods that read
and write class attributes, respectively.

Although this choice can be very productive in some contexts, code conventions have
limited expressiveness and cannot define more complex metadata. For instance, a
code convention could be used to define a method as a test method as in JUnit 3.
However, it could not be used to define a valid range of a numeric property as done
by the Bean Validation API. Another drawback is that the metadata is implicit in
the source code, hidden behind the conventions. As such, an unwary developer might
alter a method’s name without knowing that this actually is part of a convention,
and some frameworks rely on this to execute a specific behavior properly.

2.1.2 Code annotations

Some programming languages provide features that allow custom metadata to be
defined and included directly on programming elements. This feature is supported
in languages such as Java, through the use of code annotations (JSR, 2004), and
in C#, by attributes (ECMA, 2017). A benefit is that the metadata definition is
closer to the programming element, and its definition is less verbose than external
approaches, such as using an XML file. Also, the metadata is being explicitly defined
in the source code as opposed to code convention approaches. Some authors call the
usage of code annotations as attribute-oriented programming since it is used to mark

1cakephp.org
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software elements (WADA; SUZUKI, 2005; SCHWARZ, 2004).

Code annotations (often referred to as “annotations”) are a feature of the Java
language, which became official on version 1.5 (JSR, 2004) spreading, even more, the
use of this technique in the development community. Some base APIs, starting in
Java EE 5, like EJB (Enterprise Java Beans) 3.0, JPA (Java Persistence API) (JSR,
2007), and CDI (Context and Dependency Injection), use metadata in the form of
annotations extensively. This native support to annotations encourages many Java
frameworks and API developers to adopt the metadata-based approach in their
solutions. They were also a response to the tendency of keeping the metadata files
inside the source code itself, instead of using separate files (CÓRDOBA-SÁNCHEZ;

LARA, 2016).

The Java language provides the Java Reflection API to allow developers to retrieve
code annotations at runtime. It is also used to retrieve other information about the
class structure, such as its fields, methods, and constructors. Additionally, developers
may invoke methods, instantiate classes, and manipulate field values.

Consider the code on Figure 2.1. It is a simple Java class representing a player from
a video game code. To map this class to a table in a database, to store the player’s
information, we need to pass in some “extra information” about these code elements.
In other words, we need to define an object-relational mapping and configure which
elements should be mapped to a column, table, primary key, and other mappings.
Code annotations are suitable for this scenario.

Figure 2.1 - Example class without annotations.
1 public class Player {
2
3 private int id;
4 private float health;
5 private String name;
6
7 private Date birthDate;
8
9 //getters and setters omitted
10
11 }

Using code annotations provided by the JPA API, this mapping is easily achieved.
Figure 2.2 shows the same Player class, but now using code annotations on ap-
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propriate elements. When this code gets executed, the framework consuming the
annotations knows how to perform the expected behavior, which occurs as described
below:

• The class Player is mapped as an Entity and to a table named Player

• The private member id is mapped into a primary key on the table.

• The members health, name, and birthDate are all mapped to columns.

Figure 2.2 - Example class with annotations.
1 @Entity
2 @Table(name="Players")
3 public class Player {
4
5 @Id
6 @GeneratedValue(strategy = GenerationType.IDENTITY)
7 private int id;
8 @Column(name = "health")
9 private float health;
10
11 @Column(name = "name")
12 private String name;
13
14 @Column(name = "birthdate")
15 private Date birthDate;
16
17 //getters and setters omitted
18
19 }

The example in Figure 2.2 also shows that annotations may have parameters/argu-
ments. For instance, @Column has a parameter, name, that receives a String. An-
other important aspect to observe is that these annotations - @Column @Table, and
so forth - were created by framework developers, which implemented their associate
behavior. The code annotations are exposed as part of the JPA public API, so that
application developers can insert them on the source code as needed.

The code in Figure 2.2 presents an application that is needed to perform object-
relational mapping, and it used a framework that offers this functionality through
annotations. These are also known as metadata-based frameworks, i.e., an appli-
cation developers’ primary interaction with it is through metadata configuration
instead of a method invocation or a class extension.
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When discussing annotation-based APIs or metadata-based frameworks such as the
JPA, JUnit, Spring, and others, an important definition is an “annotation schema”
or simply “schema”. When the developers of metadata-based frameworks or APIs
create new code annotations, their definition is placed in packages, just like any
other type (class, enum, interface). They usually group code annotations in the
same packages to better organize their responsibilities. These packages form what
we define as “annotation schema” or “schema”. A single metadata-based framework
may contain many schemas, and this decision is up to the framework developers. On
the other hand, developers of applications that use such APIs or frameworks will
import the packages containing the definition of the code annotations.

To better illustrate the definition of “schema”, consider the code on Figure 2.3. It is
a simple class responsible for executing unit tests. In Java, we usually use the well-
known JUnit framework. JUnit developers defined code annotations so that other
application developers can test their code simply by configuring a method as a “test
method” and other relevant features for testing.

Figure 2.3 - Example with org.junit schema.
1 import org.junit.After;
2 import org.junit.Before;
3 import org.junit.Test;
4
5 public class TestClass {
6
7 @Before
8 public void setUp(){
9 //initializations
10 }
11
12 @Test
13 public void testMethod(){
14 //Execute tests
15 }
16
17 @After
18 public void cleanTest(){
19 //clear resources allocated during initialiazation
20 }
21
22 }

Observe on line 12, that the method testMethod is being configured with the code
annotation @Test. However, to use this code annotation, we must import the pack-

15



age where it was defined. We see on line 3 the import of org.junit.Test, we
also see other imports for the two code annotations as org.junit.After (line 1)
and org.junit.Before (line 3). In other words, the developers of the JUnit de-
fined the code annotations @Test, @After, @Before and placed them in the package
org.junit along with other code annotations. The package org.junit is what we
define as a “schema”. Developers wishing to use these code annotations must import
this “schema”.

By this example, we see there is a strong relationship between a “schema” and code
responsibilities. Detecting their presence in software systems helps us understand
how developers organize packages’ responsibilities. Furthermore, it helps to measure
the coupling between applications to specific annotation-based APIs or metadata-
based frameworks.

2.1.3 Code annotations related work

Like any other language feature, code annotations can bring benefits to the appli-
cation if appropriately used, but they can also be misused (GUERRA; FERNANDES,
2013; LIMA et al., 2018). Extracting source code metrics might help analyze how
this resource is being used and understand its impact on software systems. Further-
more, obtaining threshold values can help understand the common profile of code
annotations usage.

The literature, however, lacks work that analyzed and studied code annotations.
Most authors have performed studies about how annotations can solve other software
engineering problems but not study the code annotation itself. To the best of our
knowledge, no previous research contributed to source code metrics and threshold
values dedicated to code annotations.

Several works in the literature describe the use of annotations to solve problems
and implement solutions for a diverse range of domains. In software engineering,
some of them apply annotations to support the implementation of design patterns
(MEFFERT, 2006) or to enable architectural refactoring (KRAHN; RUMPE, 2006).
However, only a few works evaluated the use of annotations itself, focusing on design
practices for metadata modeling or even performing studies to assess how developers
are currently using annotations.

The first empirical study about the use of code annotations found in the literature
was conducted in an application of fractal-based development (ROUVOY et al., 2006).
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The evaluation was based on comparing applications that used a metadata based-
framework called Fraclet and others that do not. As a result, there was a reduction
of about 50 percent of the hand-written code without losing application semantics.
Despite this study revealing some potential in using metadata-based solutions, the
result was restricted to the fractal-based development domain.

As mentioned in Section 2.1, it is becoming a recurrent practice that applications
interact with metadata-based frameworks through code annotations. To understand
these metadata-based frameworks’ internal structure, the work in (GUERRA et al.,
2013) presents a study to identify and document recurrent solutions used in the
development of such frameworks, focusing on how they read and process meta-
data. The authors analyzed the internal structure of many existing open-source
metadata-based frameworks. For instance, one documented pattern is the “Meta-
data Container”, which introduces a class role whose instance represents metadata
retrieved at runtime read from code annotations.

Guerra and Fernandes (2013) performed a more general experimental study about
the use of metadata-based frameworks. It considered the different architectural sce-
narios where a metadata-based framework can be applied. The experiment was con-
ducted using undergraduate students, which developed three distinct implementa-
tions of four different software components. Each implementation applied a different
approach: (i) with no frameworks, (ii) with an object-oriented framework and (iii)
metadata-based framework. Unit tests were used to ensure that all implementations
fulfilled the requirements correctly.

Guerra and Fernandes (2013) performed also a comparison between the implemen-
tations using object-oriented metrics (LANZA; MARINESCU, 2006), questionnaires,
observations, development time, and manual code analysis. The strongest conclu-
sion of this study indicates that metadata-based frameworks reduce the coupling
between the framework and the application. It also found evidence that a metadata-
based framework can reduce development time compared to traditional frameworks.
However, the experiment also revealed that when a problem happened, it is harder
to debug when a metadata-based framework is used since the behavior is defined
indirectly through metadata.

Concerning annotation definition, Rocha and Valente (2011) investigated how an-
notations are used in open source Java systems. In this study, authors analyzed 106
open source projects from Qualitas Corpus project database (TEMPERO et al., 2010),
from which 65 projects used annotations. The only information considered was the
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number of annotations and their type. A high density of annotations was detected
in some of the evaluated systems, indicating a possible misuse. Some other data
extracted from this study also revealed that more than 90% of the annotations are
in methods, and framework annotations are the most used ones.

An initial survey about legibility on annotated code was conducted by (ALBA, 2011).
The author used a questionnaire to present two similar codes that represented differ-
ent approaches expressing the same semantics, where developers should choose the
most legible one. The questionnaire was answered by more than a hundred developers
and had 27 questions focusing on the usage of annotations and the implementation
of annotation idioms for different domains. The study pointed out that annotated
code is perceived as more legible than unannotated one. Besides that, the usage of
annotation idioms can improve annotation readability and the context where the
annotation was used influences the perception of legibility.

YU et al. (2019) performed a large-scale empirical study on code annotations us-
age, evolution and impact. The authors collected data from 1094 open-source Java
projects on GitHub and performed a historical analysis to assess code annotations.
The authors obtained ten interesting findings, of which seven are related to the
evolution of code annotations during software development. For instance, most an-
notation changes occur consistently with the code elements it is configuring, while
only 13% of the changes are independent. In code annotation deletion, 31% is be-
cause it is inconsistent, and 15% it is redundant. By “inconsistent”, the authors
refer to code annotations that describe facts on the code elements that are not true,
suggesting that the code element evolved, but the code annotation did not. The
most common case they found was the @SupressWarning(). It usually contained a
message such as “deprecated method”. However, the method changed for one that
was not deprecated, but the developers still left the annotation behind. Another in-
teresting finding is related to code annotations changes. The authors found that in
20% of the cases, only the schema was changed. In other words, the code annotation
had the same name but belonged to a different metadata-based framework.

The authors also performed some measurements using a metric that counts the
number of code annotations on code elements, very similar to the AED (Annotations
in Element Declaration) metric that we propose and define in Chapter 4. They found
that in 98.8% of the cases, AED is 1 or 2, and the largest is 41.

Comparing the work of YU et al. (2019) with our work being presented is that they
do not propose metrics exclusively for code annotations. Even they use a measure-
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ment very similar to the AED metric (defined in Chapter 4), they do not define it
as a metric. Their work is concerned with observing how code annotations evolve
and the relation between annotations and other code elements. Furthermore, in our
work, not only do we propose means to measure annotations, but we also propose
a polymetric view for their visualization (Discussed in Chapter 5). As such, we
can visualize and comprehend their presence and distribution in a software system.
However, we can benefit from their findings and try to visualize, for instance, in-
consistent annotations and annotations from wrong packages. In short, our work is
more focused on usage rather than evolution.

2.2 Source code metrics and threshold values

Source code metrics help summarize particular aspects of software elements, de-
tecting outliers in large amounts of code. They are valuable in software engineering
since they enable developers to control complexity, making them aware of abnormal
growth of specific system characteristics. They also aid in monitoring the quality of
the code (LANZA; MARINESCU, 2006).

There are several well-known source code metrics such as LOC (Lines of Code),
WMC (Weighted Methods per Class), CBO (Coupling Between Objects), NOM
(Number of Methods), and many others (CHIDAMBER; KEMERER, 1991). However,
to effectively take advantage of metrics, they should provide meaningful information
and not just numerical values (LANZA; MARINESCU, 2006).

In this context, some studies on the analysis of source code metrics are limited to
not assessing whether the average metrics values are statistically representative for
such analysis. Some related works on software metrics, including source code met-
rics, have shown that their data follow the power-law distribution (CLAUSET et al.,
2007), in particular, object-oriented metrics. It means that the source code metrics
follow statistical distributions that, in general, the average value is not meaning-
ful (CLAUSET et al., 2007).

For example, Wheeldon and Counsell (2003) evaluated 4 Java projects: JDK (Java
Development Kit), Apache HTTP Server, Ant, and Tomcat. They were able to
identify power-law distribution for metrics that measured the number of attributes
and methods.

The work of (BAXTER et al., 2006) collected metrics from 56 Java free software
projects. They showed that not all metrics follow a power-law distribution, such as
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fan-out, number of attributes, and public attributes.

Louridas et al. (2008) partially evaluated 11 projects (10 open sources and 1 restrict)
written in Java, C, Ruby, and Perl. They investigated the values of fan-in and fan-
out of modules and classes. Their results show that these metrics have distributions
belonging to a power-law family, regardless of the programming paradigm.

Based on these studies, we can argue that source code metrics do not necessarily
follow an exponential distribution (such as a power-law) or a normal distribution.
However, Lanza and Marinescu (2006) defined three threshold values for source code
metrics such as LOC (Lines of Code), NOM (Number of Methods), and CYCLO
(Cyclomatic complexity) based on statistical measurements. They used these three
threshold values on 37 projects developed in C++ and 45 developed in Java, some
open-source. They generalized the analysis and considered that the value of the
metrics follows a normal distribution. Using the average value and the standard
deviation, they created reference regions and used thresholds to be a delimiter.

As seen, the statistical distribution of source code metrics has been extensively
studied. On the one hand, metrics for object-oriented programs, written in Java,
seem to follow an exponential distribution (WHEELDON; COUNSELL, 2003; POTANIN

et al., 2005; CONCAS et al., 2007; FERREIRA et al., 2009; YAO et al., 2009). On the
other hand, there is evidence that not necessarily some metrics will follow such
distributions (BAXTER et al., 2006; LANZA; MARINESCU, 2006; HERRAIZ et al., 2011;
HERRAIZ et al., 2012).

Our work proposes a novel suite of software metrics (discussed in Chapter 4 to
measure code annotations. To understand their behavior and obtain threshold val-
ues, we extracted their values from 25 real-world open-source software. We worked
with the hypotheses that they would follow a power-law distribution, similar to some
object-oriented metrics, and therefore the average value would not be representative.
Although all seven metrics follow a power-law distribution, some have pretty small
values, as will present in our discussions. For these specific ones, a normal distribu-
tion could be used alongside the average value. However, our approach considering
a power-law distribution and percentile analysis was shown to be more accurate.
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2.3 Software visualization

Software systems are complex and, nowadays, can become very large. For instance,
the well-known Hibernate2, a metadata-based framework for object-relational map-
ping, has more than 40 thousand classes and more than 550 thousand lines of code.
This is a huge system and an example of an amount of information challenging to
manage and comprehend. According to Hasselbring et al. (2020), software compre-
hension is concerned with how software engineers maintain existing software, and
it is an essential process since developers spend most of their time understanding
existing software. Furthermore, when developers are newcomers to a project, they
are like explorers within an unfamiliar landscape, who will encounter many obstacles
before finally settling in (DAGENAIS et al., 2010).

Software comprehension is also related to software evolution, recognized as the most
costly and challenging activity in the software development life cycle. Software sys-
tems require constant evolution and changes triggered by new requirements. Pro-
grammers must comprehend the existing source code before adding new function-
alities or new properties (RAJLICH, 2014; SUN et al., 2015). Moreover, as stated in
(WETTEL; LANZA, 2007a), the more familiar a team is with a program, the easier it
becomes to understand the impact of any modification they may want to perform.
Therefore, given the time spent understanding software, challenges newcomers face,
and the need to evolve software systems, studying approaches that ease and speed
up software comprehension becomes necessary.

In this context, software visualization has been researched and used to analyze as-
pects of complex software systems, such as comprehension (FRANCESE et al., 2016;
ROMANO et al., 2019), and analyze version control repositories (GREENE et al., 2017).
Furthermore, according to Diehl (2007), 75% of all information from the real world is
perceived visually, which motivates researching strategy to display software systems.
However, Brooks (1987) mentions that software is complicated to visualize because
it is not inherently embedded in space, which means it has no ready geometric rep-
resentation. Therefore even though most information is perceived visually, software
systems have no natural shape for visualization. For this reason, researchers keep
investigating how software can be displayed so that humans can visualize it and
understand the underlying structure.

Following, we present two approaches for software visualization, as described by

2https://github.com/hibernate/hibernate-orm
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(FRANCESE et al., 2016). The first, synthetic natural environments, is mapping soft-
ware to familiar environments to humans, such as a city. The second is polymetric
views, in which geometric forms are used to represent software. Naturally, both these
approaches can and are combined into a single visualization, but for clarification and
following the guideline in (FRANCESE et al., 2016), we will discuss them separately.

The final section presents our first draft for code annotations visualization, a poly-
metric view that combined circles and rectangles shapes. We also discuss the lessons
learned from this first work that we used to improve the approach and present the
novel version in Chapter 5.

2.3.1 Synthetic natural environments

When it comes to SNE (Synthetic Natural Environments), we are interested in
creating familiar environments artificially (hence the term SNE). The strategy uses
metaphors, such as a city, town, forest, and even the solar system, and map software
characteristics to this ambient. According to (WETTEL; LANZA, 2007a), familiarity
has an important influence on program comprehension strategies, and familiarity
is strongly related to habitability. Therefore it makes sense that software engineers
researches try to use known environments to represent software.

Possibly the most well-known metaphor used for software visualization is the city
metaphor proposed first by (KNIGHT; MUNRO, 2000), further investigated and popu-
larized by (WETTEL; LANZA, 2007b), where the authors developed the tool CodeCity
to implement this metaphor.

A city is a familiar concept and has a natural sense of orientation. One of the
goals is to bring this sense of orientation to software during an analysis process.
Furthermore, a large city is a complex construct that is only explored incrementally,
just as developers do with software. They explore the system in a step-by-step
fashion, becoming familiar first with parts they are interested in (WETTEL; LANZA,
2007b).

The city metaphor represents types (classes, interfaces, enums) as buildings (par-
allelepipeds). In turn, these buildings are localized inside districts, which represent
packages. The visual properties of each parallelepiped represent software metrics of
the class:

• The height of the building reflects the value of the metric Number Of Meth-
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ods (NOM) —the taller the building, the higher the number of methods.

• The base size of the building corresponds to the value of the metric Num-
ber of Attributes (NOA) —the larger the base, the higher the number of
attributes (or class members).

• The color of the building is mapped to LOC the value. — dark blue means
few lines of code, while light blue means many lines of code.

• To represent the nesting level of packages, the color of district blocks ranges
from dark grey to light grey based on the nesting level of the packages.3.

Figure 2.4 presents an example of the project ArgoUML represented as a software
city through the CodeCity tool.

Figure 2.4 - Example of project ArgoUML represented by the city metaphor.

Source: Wettel and Lanza (2007b).

As reinforced by Wettel et al. (2011), classes and packages are the primary orienta-
tion points of developers. For this reason, the city metaphor was initially designed

3The colors used in CodeCity may be different in each version of the tool. However, the color
is still used to display the LOC value. We presented as it is implemented in the last version of the
tool, Code2City
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to show only these key elements and not class internals. For a largescale under-
standing, these finer-grained elements are not necessary. It would probably display
overplotting problems and does not represent how someone explores a large city for
the first time. When getting to know a city, we do not explore a specific house or
street right at the beginning.

Although software engineers’ researchers agree that displaying fine-grained details
might be troublesome and confuse the user of a software visualization tool, as said in
(WETTEL; LANZA, 2007a; WETTEL et al., 2011), they also mention that approaches
should be studied to display these details. In our visualization approach, CADV
(presented in Chapter 5), we also consider this aspect of preventing users from
being overwhelmed with code annotation metrics.

The city metaphor was further explored in (WETTEL et al., 2011). The authors con-
ducted experiments with 41 participants from industry and academia to empirically
evaluate the CodeCity tool. They added more features to the CodeCity tool and
allowed the visualization of design smells in the code. To reach this goal, they assign
vivid colors to design problems and color the affected artifacts accordingly. Figure
2.5 presents an example of CodeCity displaying potential smells in the JDK 1.5.

Figure 2.5 - CodeCity displaying design smells in JDK version 5

Source: Wettel et al. (2011).
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In (WETTEL et al., 2011) the authors performed an experiment to assess the CodeCity
and city metaphor. They elaborated nine questions that the participants should
answer using CodeCity. For instance, one question was to Locate all the unit test
classes, and another Find three classes with the highest number of methods (NOM).
As for the identification of design smells, one question was Identify the god class
containing the largest number of methods in the system. From the results, the authors
obtained an increase of (+24%) task correctness and completion time (-12%) when
comparing to traditional tools such as IDEs. Furthermore, the tasks that benefit
from an overview of the system, CodeCity constantly outperformed manual code
inspection. Quickly comparing these results with the ones from our experiments
(discussed in Chapter 5), we also observed this behavior when it comes to questions
related to a general view of the system.

The city metaphor also gained a Virtual Reality (VR) version (ROMANO et al., 2019),
and a new tool, Code2City, was developed to support both VR and flatscreen visu-
alization. The authors conducted experiments with 42 participants comparing three
different approaches. They used the Code2City displayed on a regular computer
screen (i) and the VR version (ii). They also used a plugin for the Eclipse IDE
named Metrics and Smells that collects metrics and detects bad smells (iii). The
authors concluded that the city metaphor increases software comprehension, and
users using the VR version concluded the experiment tasks more quickly and were
more satisfied. The tasks were the same as the ones used in the work of (WETTEL

et al., 2011). Figure 2.6 displays a software system as a city in the Code2City VR
version.

We mainly discussed the city metaphor in this section. However, there are other
synthetic natural environments proposed by other authors. For instance, the For-
est Metaphor (ERRA; SCANNIELLO, 2012) depicts software as a forest of trees, and
(GRAHAM et al., 2004) proposes a software where each sun represents a package
and planets are classes. Orbits represent the inheritance level of a class within its
package.

The visualization for code annotations that we propose and discuss in Chapter 5 is
not directly based on the city metaphor or other synthetic natural environments.
However, we take some important features presented in these works. For instance, we
also use colors to present relevant information to the user, we use metrics values to
determine the dimensions of geometric shapes, and we also carry experiments with
tasks similar to those used to validate the city metaphor. Our original contribution is
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that we are focused on displaying code annotations characteristics. Furthermore, our
visualization approach is an ongoing work that we will continue to evolve. Therefore,
one of the possible approaches is to adapt the city metaphor for code annotations
and validate it.

Figure 2.6 - Code2City displaying a software system through the Oculus Rift.

Source: Romano et al. (2019).

2.3.2 Polymetric view

Lanza and Ducasse (2003) introduces the concept of a polymetric view, a lightweight
software visualization enriched with software metrics. In other words, the visual-
izations are created based on metrics values. Consider the rectangle on Figure 2.7
representing two hypothetical classes, Class1 and Class2. The measures of this rect-
angle are extracted based on two metrics LOC (Lines of Code) and NOM (Number
of Methods).

Observing the rectangle that represents Class1, we can see that the class has 14
lines of code (LOC) and two methods (NOM). Moreover, observing the rectangle
that represents Class2, it has 23 lines of code (LOC) and five methods (NOM).
One interesting observation is that we can quickly spot that rectangle representing
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Class2 is wider than the rectangle representing Class1. This means Class2 has
more lines of code than Class1. This information was obtained purely visually,
and no code inspection was required. We assume that the user knows what metrics
were used to draw the rectangles, which can vary depending on the designers of the
polymetric views.

Figure 2.7 - Simple Polymetric View.

The original polymetric view proposed in (LANZA; DUCASSE, 2003) was designed to
support metrics and relationships between entities. Figure 2.8 displays the original
design for a polymetric view. Each entity is represented by its node with an edge
connecting them. This visualization can support five metrics on each node and two
metrics on edge representing the relationship.

Beginning with the width and height of the nodes, we have can have two metrics
values. The example we illustrated in Figure 2.7 uses exactly these two characteristics
to represent our entity, which was a class. Following the original polymetric view,
we can add color to the node representing the third metric. The convention is that
the higher the measurement, the darker the node. Finally, the X and Y coordinates
can also be used to represent two additional metrics values. However, this strategy
requires an absolute origin within a fixed coordinate system, which is not trivial for
all kinds of metrics.

The edge used to connect these entities may also provide information. First, the
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width of the edge can be used to represent any measurement. The convention is
that the wider the width of an edge, the higher the measurement. Secondly, we can
also use the color of the edge to display a measurement. Similarly, the convention is
that the higher the measurement, the darker the edge is. Therefore, the polymetric
view was initially designed to support seven metrics through colors, position, and
dimensions. The first tool developed to display polymetric views of a source code
was the CodeCrawler (LANZA, 2004).

Figure 2.8 - Original Polymetric View.

Source: Lanza (2004).

Designers do not need to completely adhere to the original polymetric view and
adapt to its needs. Furthermore, as we already discussed, some research finds that
this number of displayed metrics may be too high and can confuse users. Our poly-
metric view designed for code annotations (discussed in Chapter 5) uses code anno-
tation metrics values to enrich circles dimensions. However, we display few metrics
in a view to not overwhelm the user with too much information. We use colors to
identify what code annotation schema is being used. Therefore, we can say that the
color also provides relationship information since a class becomes coupled to every
code annotation it uses.
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Francese et al. (2016) propose a polymetric view for traditional and object-oriented
metrics. Their work aims to provide an overview of the observed software in terms of
size, complexity, and structure. In other words, their view aims to aid software com-
prehension. Not only static information but also identify how classes are exchanging
messages. Their view is created as a direct graph where each basic unit is a “type
definition” (class, interface, enum, etc.), and it will be the node of the generated
graph.

Each node is drawn as both an ellipsis and a rectangle. Their measures are directly
extracted from several source code metrics. Figure 2.9 presents the node proposed in
their work. From the Figure, we see that, for instance, the WMC denotes the ellipsis
width, and LOC determines the rectangle height of a class definition. They also use
colors to represent a metric value. For instance, the border’s color in the rectangle
is used for NM (Number of Methods). It ranges between light and dark red. Light
red represents a smaller metric measurement than dark red. This color pattern is
similar to the original definition of the polymetric view in (LANZA; DUCASSE, 2003),
i.e., the darker the color, the higher the measurement.

For clarification about the metrics used, we briefly present them here as defined in
(FRANCESE et al., 2016).

• Weighted Methods per Class (WMC). It is defined as being the number of
all member functions and operators defined in a class.
• Depth of Inheritance Tree (DIT). It measures the number of ancestors of

a class.
• Number Of Children (NOC). It gives the number of direct descendants for

a class.
• Coupling Between Object classes (CBO). It is the number of classes to

which a given class is coupled with.
• Response For a Class (RFC). It measures the number of methods that can

be potentially executed in response to a message received by an object of
that class.
• Number of Comments (NC). It represents the number of comments lines

of a class.
• Lines Of Code (LOC). It indicates the number of all non-empty and non-

comment lines of a class.
• Number of Message Sends (NMS). It measures the number of messages

from a method. This metric is conceived to be an unbiased measure of
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method size. The value for a class is achieved by summing the NMS values
of all the methods in a class.
• Number of Methods (NM). It represents the number of methods of a class.

Figure 2.9 - Polymetric View for Object Oriented Metrics.

Source: Francese et al. (2016).

The whole system will be drawn as a directed graph containing all the nodes
and their relationship, i.e., how the classes interact. This visualization was im-
plemented as an Eclipse Plugin called MetricAttitude(FRANCESE et al., 2014). To
evaluate how their approach aided in Java software comprehension, they conducted
a questionnaire-based experiment with 18 participants, being 10 undergraduate stu-
dents and eight professional developers. The target software used was the JLine4 Par-
ticipants filled a comprehension questionnaire with 16 open-ended questions about
the JLine software system. They had to use the MetricAttitude tool to answer these

4https://github.com/jline/jline3
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questions. Afterward, they filled a perception questionnaire about their impressions
and opinions of the visualization tool. According to the author’s report, the partici-
pants found the tool easy to understand and expressed an overall favorable judgment.
As for the comprehension, the average correctness of answers has values between 0.70
and 0.87.

In the work of (FRANCESE et al., 2016), the authors do not investigate how par-
ticipants find the MetricAttitude more useful than code inspection. Instead, they
investigate which metrics users find better in the visualization. They compare if
users prefer visualizing object-oriented metrics, traditional code-sized metrics, or
both combined. They found that users prefer to use them both together.

Comparing the experiments carried in the work of (FRANCESE et al., 2016), in our
visualization approach (discussed in Chapter 5), we also conduct a perception ques-
tionnaire to find the usefulness and ease of use. However, we also ask questions
comparing using our visualization approach and manual code inspection.

2.3.3 Previous work for code annotations visualization

Our research team designed a first draft for code annotations visualization, and we
were able to publish it in (LIMA et al., 2020b). This was our first step in investigating
how code annotations could be visualized. In this section we will present what was
our first draft, the very first demonstration of the AVisualizer tool, and the lessons
we learned from this work.

We used a polymetric approach based on rectangles and circles. We also used colors
to identify annotation schemas. Classes and packages are represented as rectangles,
and code annotations as circles. Figure 2.10 presents a detailed view of a hypothetical
class.

As seen in Figure 2.10, the dimensions of the rectangle representing a class are
proportional to the LOC and NEC values. The latter stands for Number of Elements
in Class (NEC), a metric used to determine the number of code elements in a class
that can be annotated. The rectangle length is determined by the NEC value, which
is five in the example Figure. It means the example class has five elements that can
be annotated. The rectangle’s width is proportional to the LOC value normalized by
CWN (Class Width Normalization). This factor is calculated to guarantee enough
space in the rectangle to render the circles on top, i.e., the code annotations inside
the class.
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Figure 2.10 - First Polymetric View for Code Annotations Visualization.

We chose an approach that displays code annotations in columns for each code
element they annotate. For instance, if a code element has three code annotations in
the source code, then we draw three circles vertically in the column that represents
that specific code element. In Figure 2.10, for example, the first column has three
code annotations, two red and one blue. In Figure 2.10 we see five columns, this
means we have five code elements. Moreover, since every column has at least one
circle rendered, there are no code elements without code annotations in the source
code.

Code annotations are represented as circles. The annotation schema specifies
their color. In this example, we used red for the JPA API, also known as the
javax.persistence schema. For Spring related schemas, we used the blue color.
The radius of the circle is calculated based on the AA (Arguments in Annotation)
value. We can also see the AED (Annotation in Element Declaration) metric value
in each column, which measures the number of code annotations configuring a code
element. Observing Figure 2.10, we see the second column has two arrows pointing
at AED = 2. This reinforces that the code element in the second column has two
code annotations. The metrics AED, AA, and others will be thoroughly discussed
in Chapter 4.

We also draw rectangles to represent packages that contain these classes rendered
as rectangles. In Figure 2.11 we present a hypothetical example with two packages.
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Figure 2.11 - Polymetric View displaying packages and classes.

Figure 2.12 - First version of the AVisualizer running as a Unity Application.

Both packages have three classes each. The first version of the AVisualizer was de-
veloped using the Unity Game Engine5, and in Figure 2.12 we present a visualization
generated by Unity.

We had much feedback from this previous work and used them to improve our
visualization approach for code annotations. For instance, using different geometric

5This is a game engine widely used to develop 2D and 3D games
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shapes can be confusing in the same visualization. We used rectangles for classes
and packages, while we used circles to represent code annotations. Also, this made
the approach problematic present nicely the hierarchy naturally present in Java
packages. Finally, our strategy posed several challenges in escalating to larger real-
world projects. In our new approach, we switched to a circle packing structure that
improved these points. Observing the city metaphor, in (WETTEL et al., 2011), they
only used parallelepiped shapes to draw the buildings and packages. Reinforcing the
idea of only using one geometric shape.

Furthermore, we tried to display several metrics in the same visualization, which
was confusing for users. We chose only one metric to display in our new approach
and instead created different views that individually displayed a metric.

Using the Unity Game Engine as a development environment for a static 2D vi-
sualization tool was not trivial. Much of Unity’s available functionality is suited
for Game Development, i.e., software based on the Game Loop Pattern (NYSTROM,
2014). Furthermore, we realized that using Unity to develop our tool consumes much
more resources (memory and CPU) than a standard software engineering tool. This
could be a significant drawback for potential researchers and developers adopting
our tool to monitor their source code. The tool should be lightweight and have min-
imal requirements to run. For this reason, the updated version of the AVisualizer
tool presents an entirely new approach based on the D36 JavaScript library.

As we presented in this section, and to the best of our knowledge, no previous
discussions or work was conducted by other researchers to investigate or propose
visualization approaches designed specifically to visualize and comprehend code an-
notations used in software systems (except for our own previous work published in
(LIMA et al., 2020b)). As discussed in 2.1, code annotations are increasingly used to
perform all kinds of different behaviors, such as source code generation (DAMYANOV;

HOLMES, 2004), compile-time verification (ERNST, 2008; QUINONEZ et al., 2008), class
transformation (LOMBOK, ), framework adaptation (GUERRA et al., 2010), and data
mapping. Therefore, we might be able to associate the responsibilities of classes and
packages to code annotations. Visualizing them might aid in understanding how a
specific software system is organized and structured.

In the following three chapters, we will present and discuss the novel contributions
from this work. Beginning in Chapter 3, we present the ASniffer, the tool we devel-

6d3js.org
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oped to extract code annotations metrics, and we also present how it was used to
contribute to other researches. In Chapter 4, we define our novel suite of software
metrics alongside a statistical analysis to obtain threshold values. Finally, in Chap-
ter 5, we present our novel software visualization approach, the redesigned version
of the AVisualizer tool, and experiments we conducted to validate the visualization
approach. Even though, we completely redesigned the visualization approach, the
work we published in (LIMA et al., 2020b) was essential to obtain new insights and
learn from experts how we could improve our work.
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3 ANNOTATION SNIFFER

In this chapter, we present the Annotation Sniffer (ASniffer) tool. Initially developed
to support the research in this work, it has grown and been used in other works and
researches for code annotations, reinforcing such a tool’s usefulness. The ASniffer
tool is open-source1, constantly updated, and was published in the Journal of Open
Source Software (LIMA et al., 2020a).

This chapter is divided into three sections. The first is strictly technical and presents
details of the architecture and source code of how the tool was built. The second
presents how to use the tool. The third section presents and briefly discusses other
works and research using the ASniffer tool to support data collection.

3.1 Annotation Sniffer architecture

Initially developed as a plugin for the Eclipse IDE2, it changed to be a component
that can be plugged into other applications. We focused on making it a standalone
tool executed through a command line. However, with this structure, it can easily
be used in other Java applications and, for instance, be part of a plugin for IDEs
such as Eclipse or IntelliJ.

The main goal of the ASniffer is to automate the process of extracting the novel
suite of software metrics for code annotations, published in (LIMA et al., 2018) and
further discussed in Chapter 4. The ASniffer receives a java source code, extracts the
metrics values, and outputs a JSON report. The first versions outputted an XML
report but were later discontinued in favor of the JSON.

Potential ASniffer users are software engineers or researchers interested in static
code analysis and mining software repositories. Additionally, given that it is an
extensible tool, other developers can implement their metrics and integrate them
into the extraction process.

The ASniffer tool uses the JDT3 (Java Development Tools) API to build the Abstract
Syntax Tree (AST) from a text file containing the source code. The ASniffer then
traverses this AST, visiting the nodes of interest and gathering information about
the code elements. After the processing is done, it generates a JSON report as
output. Figure 3.1 presents an overview diagram of the ASniffer tool.

1https://github.com/metaisbeta/asniffer
2https://www.eclipse.org/
3https://www.eclipse.org/jdt/
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Figure 3.1 - Annotation Sniffer Diagram.

To create the AST (Abstract Syntax Tree), we use the method
ASTParser.createASTs. This method is exposed by the JDT and receives an
array of strings containing the file path of each source code that we wish to
analyze. Another parameter for the method is an instance that will handle the
compilation units. Our class is the MetricsExecutor and this class must extend
the FileASTRequestor, provided by the JDT API. From inside MetricsExecutor
we call every class responsible for extracting the metrics and pass the compilation
unit (generated by the ASTParser).

Figure 3.2 - Construction of the AST.
1 //Code snippet with incomplete code
2 public AMReport calculate(String path, String projectName) {
3 String[] srcDirs = FileUtils.getAllDirs(path);
4 String[] javaFiles = FileUtils.getAllJavaFiles(path);
5
6 MetricsExecutor storage = new MetricsExecutor(
7 () -> includeClassMetrics(),
8 includeAnnotationMetrics(),
9 includeCodeElementMetrics() ,
10 projectName);
11
12 ASTParser parser = ASTParser.newParser(AST.JLS8);
13 parser.setEnvironment(srcDirs);
14 JavaCore.setComplianceOptions(JavaCore.VERSION_1_8, options);
15 parser.createASTs();
16
17 return storage.getReport();
18 }

The code in Figure 3.2 presents a snippet of how the ASniffer creates the AST. In
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lines 3 and 4, we search all files with the extension “.java”. In line 6, we prepare the
MetricsExecutor instance that will invoke all classes responsible for collecting the
metrics and will pass the compilation unit to them.

On lines 12-14, we prepare the AST to be built, and finally, on line 15, we create the
AST. After the extraction process is complete, we return, on line 17, an instance of
AMReport which is a class that holds in memory the report.

To exemplify the extraction process, we will use the code responsible for collecting
the Annotations in Class (AC) metric, presented in Figure 3.3. We further discuss
this and other metrics in Chapter 4, but for now, it is sufficient to know that the
AC counts the number of code annotations in a class. As will be further explained,
we have three types of metrics: Class Metric, Code Element Metric, and Annotation
Metric.

Any class that wishes to traverse the AST must extend the ASTVisitor super-
class. Furthermore, if it is a “Class Metric”, it must implement our custom interface
IClassMetricCollector. This custom interface provides two methods, the first one,
execute(), initializes the extraction process, while the second one, setResult(),
is where the result is stored. The superclass ASTVisitor provides methods that are
used to visit the nodes from the compilation unit. For instance, for the AC metric,
we visit every code annotation encountered.

As seen in the code on Figure 3.3, we have three different types of code annotations.
The “MarkerAnnotation” represents a code annotation that has no arguments/pa-
rameters, such as the widely known @Override. The “SingleMemberAnnotation”
represents code annotations with only one argument/parameter. Finally, the “Nor-
malAnnotation” represents the remaining code annotations found in the source code.

The code in Figure 3.3 has three methods to visit each of these types of code an-
notations. The method in line 7 visits “MarkerAnnotation”, line 13 visits “Nor-
malAnnotation” and the method on line 19 visits “SingleMemberAnnotation”. In
each method, we increment the value of the annotations class member. Afterward,
we store this value in the instance of the AMReport in line 32.

The instance of AMReport is a general model that contains every information ex-
tracted by ASniffer from the source code. It is from this instance that the default
JSON report is generated.
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Figure 3.3 - Extraction of the AC Metric.
1 @ClassMetric
2 public class AC extends ASTVisitor implements IClassMetricCollector {
3
4 private int annotations = 0;
5
6 @Override
7 public boolean visit(MarkerAnnotation node) {
8 annotations++;
9 return super.visit(node);
10 }
11
12 @Override
13 public boolean visit(NormalAnnotation node) {
14 annotations++;
15 return super.visit(node);
16 }
17
18 @Override
19 public boolean visit(SingleMemberAnnotation node) {
20 annotations++;
21 return super.visit(node);
22 }
23
24 @Override
25 public void execute(CompilationUnit cu, ClassModel result, AMReport report) {
26 cu.accept(this);
27
28 }
29
30 @Override
31 public void setResult(ClassModel result) {
32 result.addClassMetric("AC",annotations);
33 }
34
35 }

3.2 Running the annotation sniffer

To use the ASniffer as a standalone tool, the user should run the following command:

java -jar asniffer.jar, with the following paramters:

• -p <path to project>

• -r <path to output report>

• -t <report type>

• -m <single/multi>
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The “path to project” is mandatory and should be the path to the java project to be
analyzed (i.e., contains the source code files). Considering that only one java project
is being analyzed, the directory should have the arrangement below:
.
|-- project #Directory containing the source file for the project.

In this case, the ASniffer will consider that every “.java” file inside the directory
“project” belongs to the same project.

The ASniffer can also analyze multiple projects at once. In this case, the user should
provide a directory with the arrangement described below.
.
|-- projects #Root directory for projects.

|-- project1 #Contains the source files for project1
|-- project2 #Contains the source files for project2
|-- ...

In this case, the directory “projects” is a root folder, and the sub-directories
“project1”, “project2”, and so forth are each different java projects. They can be
completely different projects. The user should manually arrange their projects di-
rectories to fit the arrangement described above to use this ASniffer feature.

The second parameter, “path to output report”, is optional. It tells the ASniffer
where to store the output report file. If no path is provided, the ASniffer will place
the report in the “path to project”. This parameter is a path to a directory and
should not include any file name or extension“.json” in its name. The output report
file will be generated by the ASniffer, with the project’s name being the name of
the report file, i.e., “projectsName.json”. The ASniffer assumes that the name of the
root directory is the name of the project. If several projects are being analyzed, the
ASniffer considers that each sub-directory (inside the provided root directory) is the
name of a separate project. Each project will have its output report file placed in
the “path to output report” (if provided, or in the “path to project" otherwise).

The third parameter determines the type of output report file. Currently, ASniffer
outputs a “.json” file. If no option is provided, ASniffer outputs a default JSON. The
output will be placed in a folder called “asniffer_results.”

The following parameters can be used for the type of output file:

• -t json #default output JSON
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• -t jsonAV #outputs three json files suitable to be used by the
Annotation Visualizer

In Chapter 5 we will perform a thorough discussion about the AVisualizer tool and
the polymetric view (CADV) associated with it.

The fourth parameter (single/multi) informs the ASniffer if the “path to project”
contains only one project or several projects. If not option is provided, ASniffer
assumes it is a single project.

3.3 Annotation Sniffer Usage

As previously mentioned, the ASniffer was used to collect data and aid other research
investigating code annotations and schemas. Following, we briefly discuss four works
that used the support of the ASniffer tool to collect code annotations related data.

In the work of (LIMA et al., 2017) we were aiming to classify and visualize groups
of classes according to code annotations. We created a self-organizing map (SOM),
which allows us to visualize groups of data with previously unknown patterns. There-
fore, we might be able to identify outliers in these groups. As input to the SOM, we
used code annotations metrics values extracted from 24,947 java classes using the
ASniffer. The SOM was created using the R language. As a result, we identified that
70% of the classes could be grouped, and the remaining classes can be clustered into
three groups. In total, we identified four groups (or clusters).

Cluster 1, which we named ‘frequent classes”, comprises 70% of the classes accord-
ing to code annotations usage. In these classes, code annotations are present in at
least 50% of the code elements. On the other end, Cluster 4, named “rare classes”,
represents an outlier group with less than 1% of the analyzed classes. They have
a high number of code elements, more than 1500, but very few are annotated. We
cannot conclude the existence of a bad smell since future studies are still needed to
address these issues.

The work of (LIMA et al., 2017) proposes an annotation-based API, called Esfinge
Metadata4, to retrieve metadata from code annotations and. In short, we proposed
an API to aid framework developers in consuming code annotations. By default, the
only way to retrieve code annotations is using the Java Reflection API, which can
be a complex code.

4https://github.com/EsfingeFramework/metadata
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To demonstrate the usage of the Esfinge Metadata, we refactored e metadata-based
framework, Esfinge Comparison 5 to use this new API, instead of the pure Java Re-
flection API. This framework provides developers with methods that ease the pro-
cess of comparing instances. After the refactoring, we compared using several code
assessment techniques, such as software metrics, including object-oriented metrics,
code annotation metrics, and bad smells detection, followed by a qualitative analysis
based on source code inspection. The ASniffer was used to collect code annotations
metrics values and measure the coupling to code annotation schemas.

As a result, we observed an increase in lines of code, but most were related to the
import of code annotations. We also had a reduction in the number of dependencies
in components that perform metadata reading. This was confirmed by the reduc-
tion in coupling metrics and the elimination of two coupling bad smells. On the
other hand, the new version of the Esfinge Comparison framework also increased its
number of code annotations, as expected and measured by the ASniffer.

The work of (TEIXEIRA et al., 2018) investigates the presence of code conventions
related to metadata configuration that uses code annotations. There is evidence
of open-source projects with classes using more than 700 code annotations, most
of them being repeated ones. Conventions might be used to avoid these kinds of
repetition. This is something used by frameworks that are based on “convention over
configuration”. The JPA API uses several code conventions, such as using the name
of the class and the fields, respectively, for the mapped tables and columns without
the need to configure a code annotation explicitly. However, several frameworks
avoid adopting code conventions because they might not suit all applications and
might be less flexible. In this work, the authors wanted to search if such conventions
exist naturally in real-world software and conducted a study that involved a set
of Java applications from the Brazilian EMBRACE Space Weather program. The
authors analyzed 1314 classes and 5206 code annotations and collected metadata
from several code elements. The ASniffer tool was used to extract information about
code annotations such as schema, name, and arguments. Afterward, the authors
verified if code annotations of the same type are used in code elements that share
similarities. They found that 17 conventions could replace 908 annotations (21.42%
of the total). In some cases, the same code annotation could be replaced by multiple
code conventions or a stronger convention that englobed them all.

In the work of (GUERRA et al., 2020), the authors performed an experiment to com-

5https://github.com/EsfingeFramework/comparison
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pare the Java Reflection API with the Esfinge Metadata API. The difference between
the work in (LIMA et al., 2017) is that this last one only demonstrated the Esfinge
Metadata API, and no proper experiment was carried out. To evaluate this API,
the authors performed a controlled experiment with two groups of developers. One
group used the Esfinge Metadata API, while the other used the Java Reflection
API. Both groups developed a metadata-based framework that maps application
parameters (command-line arguments) to an annotated class instance. Afterward, a
code inspection was carried in every participant’s repository. Furthermore, several
source code metrics values were extracted, including code annotation metrics using
the ASniffer. From the results, the authors observed that the usage of the Esfinge
Metadata API provides a more consistent behavior in the evolution of coupling and
complexity metrics.

As presented in this chapter, the ASniffer has become a tool basis for every research
we conduct about code annotations. For this reason, it is constantly improved and
updated to meet the demands we require. Furthermore, being open-source6, the
software engineering community can contribute to the evolution of the tool. The
metrics that the ASniffer can extract were published in (LIMA et al., 2018) and will
be detailed in Chapter 4. Finally, the ASniffer serves as a backend to our visualization
tool AVisualizer, discussed further in Chapter 5, where we present our visualization
approach, CADV.

6https://github.com/metaisbeta/asniffer
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4 CODE ANNOTATION METRICS AND THRESHOLD VALUES

This chapter presents the first part of our work, where we define the novel suite of
metrics dedicated to code annotations.

The chapter is organized into three parts: We begin presenting the research design
used to define and analyze the metrics using open-source projects. Then, in the
following section, we define the seven metrics that comprise our novel suite. The
third and final section presents the statistical analyses with threshold values and a
final discussion with the outlier values.

The contributions and findings from this chapter were published on (LIMA et al.,
2018).

4.1 Research design - metrics suite

In this section, we describe the research design used to propose the suite of metrics
to measure characteristics of code annotations.

We begin by describing four research questions about what characteristics we can
extract from code annotations. Following, we present the research method that we
used to analyze and validate these metrics in real-world open-source software, includ-
ing the process of projects selection and extracting the metrics values, and obtaining
threshold values.

4.1.1 Research questions

#RQ1 - What measurements could be performed in the source code to assess the
characteristics of its code annotations usage?

Code annotations and annotated code elements have several characteristics
that can be measured. For instance, a code annotation has attributes/ar-
guments values that can be defined. Code elements, such as classes and
methods, can receive several annotations. To answer this question, we iden-
tify essential characteristics and propose a suite of metrics that enables
their assessment. Moreover, to provide a means to generate and interpret
the proposed metrics, we will use the Goal-Question-Metric (GQM) ap-
proach(BASILI, 1992; BASILI et al., 1994).

#RQ2 - For each metric, is it possible to define reference thresholds that can be
used to classify its values?
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Code Annotation metrics might behave as object-oriented metrics, that in
general, might not have a meaningful average value. Our metrics will be
extracted from the source code of a set of selected projects, and statistical
analyses of the distribution of the values will be performed on them. An
analysis based on percentile rank (MEIRELLES, 2013) will also be carried
out to provide a first step in interpreting the metrics. Considering that
code annotations metrics might behave according to an exponential graph,
to answer this question, we also perform empirical analyses based on the
percentile rank approach and Lanza’s method (based on average and stan-
dard deviation values). Afterward, we determine which approach is the
most suitable for thresholds values calculation.

#RQ3 - What is the common profile of a class that uses code annotations in Java?
How large are the metrics outliers found?

The values obtained for each metric, their distribution, and the code in-
spection of outliers can help reach conclusions about how the projects use
code annotations and how the metrics can aid in detecting potential design
problems. It is important to detect huge outliers because they can become
a problem in code maintenance. Detecting common profiles in annotated
classes may help developers keep track of code quality.

#RQ4 - May the usage of code annotations create problems that can compromise
code maintenance?

Currently, the software engineering community lacks studies dedicated to
understanding how code annotations can impact software maintenance.
Having threshold values available and pointing out the presence of outlier
values might indicate if code annotations can indeed become troublesome
in maintaining the code. This question will leave much ground to be re-
searched in future studies.

4.1.2 Research method

This section describes the steps performed to answer the research questions.

Step 1 - Propose the metrics

Based on important characteristics of code annotations and annotated el-
ements, as well as using the GQM model(BASILI, 1992; BASILI et al., 1994),
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we propose a metrics suite composed of the metrics presented in Section
4.2.

Step 2 - Create a tool for the metrics extraction

To enable the metrics extraction in projects, we developed a tool named
Annotation Sniffer (ASniffer) that analyzes Java source code and collects
information about code annotations. The tool generates a JSON report
containing the metrics for all project classes, code annotations, and code
elements (LIMA et al., 2020a).

Step 3 - Select projects to be analyzed

A set of open source projects were selected to enable the analysis of metric
values in real-world projects. We chose projects that have a different num-
ber of annotated classes. For instance, some projects contain 80% of their
classes annotated, while others contain only 10% of annotated classes. The
selected projects are listed in Section 4.1.2.1.

Step 4 - Data extraction and processing

The metrics values were extracted from the selected 25 projects, providing
24,947 annotated Java classes as our actual sample data. The collected
values were submitted to a Python script1 to prepare the data. Afterward,
an R script2 performed the statistical calculations on the prepared data.
A distribution graph was generated for every metric of each project.

Step 5 - Statistical and qualitative analysis

It was analyzed the distribution of the metrics values among all real-world
projects and verified if the average value was meaningful. When the nor-
mal distribution could not fit the data, a percentile rank analysis was also
performed. In short, we compared normal distribution (Lanza’s approach)
and the percentile rank. Based on the data and code inspection on out-
liers, a qualitative analysis was performed to identify how the metrics can
characterize a typical usage of code annotations and how design problems
can be detected.

1https://gitlab.com/annotationmetrics/annotationmetrics/blob/master/data/
output_FromXMLtoCSV/glueMetrics.py

2https://gitlab.com/annotationmetrics/annotationmetrics/tree/master/data/R
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4.1.2.1 Data collection

The collected data came from 24,947 annotated Java classes extracted from 25 real-
world projects selected to participate in this analysis. Given that code annotations
are an optional language feature, projects were elected considering the presence of
code annotations and the domains of the project.

Table 4.1 - Selected Projects.

Project Repository Version
Agilefant github.com/Agilefant/agilefant 3.5.4
ANTLR github.com/antlr/antlr4 4.5.3
Apache Derby github.com/apache/derby 10.12.1.1
Apache Isis github.com/apache/isis 1.13
Apache Tapestry github.com/apache/tapestry-5 5.4.1
Apache Tomcat github.com/apache/tomcat 9.0.0
ArgoUML argouml.tigris.org/source/browse/argouml/trunk/src 0.34
Eclipse CheckStyle github.com/acanda/eclipse-cs 6.2.0
Dependometer github.com/dheraclio/dependometer 1.2.9
ElasticSearch github.com/elastic/elasticsearch 5.0.0-rc1
Hibernate Commons github.com/hibernate/hibernate-commons-annotations 4.0.5
Hibernate Core github.com/hibernate/hibernate-orm 5.2.0
JChemPaint github.com/JChemPaint/jchempaint 3.3-1210
Jenkins github.com/jenkinsci/jenkins 2.25
JGit github.com/eclipse/jgit 4.5.0
JMock github.com/jmock-developers/jmock-library 2.8.2
JUnit github.com/junit-team/junit5 5.0.0-M2
Lombok github.com/rzwitserloot/lombok 1.16.10
Megamek github.com/MegaMek/megamek 0.41.24
MetricMiner github.com/mauricioaniche/metricminer2 2.6
OpenCMS github.com/alkacon/opencms-core 10.0.1
OVal github.com/sebthom/oval 1.86
Spring Integration github.com/spring-projects/spring-integration 4.3.4
VRaptor github.com/caelum/vraptor4 4.2.0-RC4
VoltDB github.com/VoltDB/voltdb 6.5.1

To conduct our analysis, we needed a large set of annotated classes as our sample.
Selecting these 25 projects was not straightforward. Using random selection was
not an option since we needed projects that contained enough annotated classes
to provide meaningful data to us. For instance, selecting the top-rated projects on
GitHub3 did not provide the sample we expected since not all of these top projects
had enough annotated classes. Projects such as Hibernate, JUnit, and Apache Tom-
Cat are not listed in the top GitHub Java projects4, but they are well known Java

3By top GitHub projects, we mean the projects rated with top stars
4https://gitlab.com/annotationmetrics/annotationmetrics/blob/master/
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projects and are recognized for their high code annotation usage. Therefore, they
were fundamental in our analysis, in particular, to discuss the existing outliers. The
selected projects are shown in Table 4.1.

Table 4.2 - Project Dimensions.

Project Type PAC (%) PAC Category LOC LOC Category
Agilefant Application 10.50 Low Usage 43,539 Low
Dependometer Application 35.00 Low Usage 28,123 Low
ANTLR Application 10.60 Low Usage 101,600 High
ArgoUML Application 31.70 Low Usage 195,670 High
Apache Derby Application 18.80 Low Usage 689,869 High
Eclipse Checkstyle Application 44.70 Medium Usage 20,453 Low
JChemPaint Application 63.70 Medium Usage 27,371 Low
Jenkins Application 64.00 Medium Usage 124,576 High
Elastic Search Application 48.20 Medium Usage 615,637 High
Megamek Application 70.60 High Usage 306,210 High
OpenCMS Application 72.60 High Usage 476,074 High
VoltDB Application 80.80 High Usage 542,030 High
Apache Isis Framework 21.80 Low Usage 163,665 High
Apache Tapestry Framework 25.60 Low Usage 156,450 High
Apache Tomcat Framework 31.00 Low Usage 300,819 High
Hibernate Commons Framework 54.40 Medium Usage 2,812 Low
JGit Framework 64.80 Medium Usage 173,681 High
Hibernate Core Framework 54.70 Medium Usage 593,854 High
JMock Framework 66.40 High Usage 9,580 Low
Metric Miner Framework 71.00 High Usage 23,602 Low
OVal Framework 75.00 High Usage 17,381 Low
JUnit Framework 68.00 High Usage 25,935 Low
Lombok Framework 69.40 High Usage 50,324 Low
Spring Integration Framework 76.70 High Usage 208,750 High
VRaptor Framework 85.00 High Usage 26,660 Low

Based on (NAGAPPAN et al., 2013), we want to determine the similarity and diversity
among the selected projects. For this analysis, we propose three dimensions: Type,
Percentage of Annotated Classes (PAC), and LOC. Type can assume two values:
“framework” or “application”. This dimension is important because it allows captur-
ing two different approaches of code annotation usage. A framework has its own code
annotations from an overall perspective, and applications use code annotations pro-
vided by frameworks. PAC, the second dimension, exposes how many classes contain
code annotations. This allows us to fetch projects ranging from low code annotation
usage to heavily based ones. Since this analysis aims to show similarity and diver-
sity, capturing projects with different sizes aids in reaching this goal. Therefore, we

topStarsJavaProjects.txt
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include the well-known LOC metric to measure the project’s size. With this dimen-
sion, this paper can discuss how code annotations behave in projects with different
sizes. Table 4.2 associates each project with the proposed dimensions.

Table 4.3 - Pair Combination of Dimensions.

Combinations Number of Projects
Application - Low Annotation 5
Application - Medium Annotation 4
Application - High Annotation 3
Application - Low LOC 4
Application - High LOC 8
Framework - Low Annotation 3
Framework - Medium Annotation 3
Framework - High Annotation 7
Framework - Low LOC 7
Framework - High LOC 6
Low Annotation - Low LOC 2
Low Annotation - High LOC 6
Medium Annotation - Low LOC 3
Medium Annotation - High LOC 4
High Annotation - Low LOC 6
High Annotation - High LOC 4
Average 4.69

For the dimension PAC, we defined three categories: below 35% - “low usage”,
between 35% and 65% - “medium usage”, and greater than 65% - “high usage”.
For LOC, we defined two categories: below 100 thousand lines - “low” and above -
“high”. Among the projects, there are 12 frameworks and 13 applications, roughly
50% for each dimension. Considering projects with high annotations usage, we have
seven projects classified as “framework” and three classified as “application”. This
observation highlights the fact that framework projects are usually more annotation-
based. From an annotation perspective, the projects have a PAC ranging from 10%
up to 85%, which shows the diversity. For LOC, there are 11 projects considered
“low” and 14 considered “high”.

Combining the proposed dimensions in pairs, there are a total of 16 possibilities,
considering the categories that each dimension can assume. The combinations are
Type with PAC, Type with LOC, and PAC with LOC. For the pair Type-PAC, we
have “application” combined for each of the 3 PAC categories and “framework” for
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the same three categories. This pattern follows on to a total of 16 combinations. For
each pair combination, we count the number of projects that fulfill both dimensions
involved in it. Table 4.3 presents the pair combination between dimensions, with the
obtained values. There is an average of 4.7 projects per combination, with a minimum
value of 2 (“Low PAC - Low LOC”) and a maximum of 8 (“Application - High
LOC”). With this analysis, we show that, according to our proposed dimensions, we
have similar projects and also diverse projects among the chosen 25.

4.1.2.2 Data analysis

We are interested in analyzing the metrics distribution values among all projects
and verifying if the average value is representative. As already mentioned, some
object-oriented metrics follow an exponential distribution graph, which means that
the average value does not contribute to understanding the behavior. This paper
investigates if annotation metrics also fall into that same category.

In exploratory data analysis (Section 4.3), based on an approach proposed by
(MEIRELLES, 2013), it is verified if the normal distribution can fit the data and
make a percentile rank empirical analysis to find where the data seems to be mean-
ingful. We use Lanza’s approach (LANZA; MARINESCU, 2006) to calculate possible
thresholds values based on average and obtained the percentile rank (5%, 10%, 25%,
50%, 75%, 90%, 95%, 99%) of each metric to find the threshold where the average
is not representative. Afterward, we confront each method to conclude whether cal-
culating the average value correctly provides useful information.

On the one hand, Lanza’s approach is based on a calculation using the average and
standard deviation values used to define reference regions (Low, Medium, and High).
In this paper, we use the following nomenclature:

• Lanza-Low = average - standard deviation

• Lanza-Medium = average

• Lanza-High = average + standard deviation

The value of a metric is considered an outlier when it is 50% greater than the
maximum Lanza-High threshold. In summary, (LANZA; MARINESCU, 2006) assumes
that the average value is meaningful.

On the other hand, adapted from (MEIRELLES, 2013), our percentile ranking analysis
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considers a more realistic approach and yielded better threshold values. Percentile
analysis can be a more flexible way of obtaining the thresholds. As discussed in
Section 4.3, we use the percentile 90 as a reference point. For instance, (MEIRELLES,
2013) showed that for object-oriented metrics, the percentile reference is 75. In a
normal distribution, we observe that the median is the reference point because its
value is close to the average one. The percentile analyzed in this paper is divided
into three boundaries, explained below.

• Very Frequent = until percentile 90

• Frequent = between percentile 90 and 95

• Less Frequent = between 95 and 99

Using the average and standard deviation (Lanza’s approach) is a strict rule. So
it supposes that every metric will behave the same way, which is not true, as we
present in Section 4.3. Some metrics distributions have an abrupt growth in the
final percentiles, in general from the percentile 90. Hence, the percentiles analysis
provides better visualization of what is happening.

4.2 Suite of code annotations metrics

This section presents the definitions of the metrics suite used to assess the quality
and complexity of annotated codes, measuring how they are used to implement
software. The metrics are classified in this work according to the code element used
as a basis, which can be the annotation itself, an element (such as a class, method,
or member declaration), or an overall class perspective. All of the proposed metrics
are extracted directly from the source code by using the Annotation Sniffer tool.
For this reason, the suite proposed can be considered a set of primary metrics and
may allow future metrics to be derived from them (GRADY, 1987).

The source code defined in Figure 4.1 exemplifies how the metrics are extracted. The
annotations of such code exist in real-world software. However, their usage mixed in
the same class are only for illustrative purposes.

We designed a GQM model to guide the definition of the metrics suite. Our model
consists of four questions, which aim to understand how we can assess annotated
code. With these questions, we were able to propose seven metrics that, combined,
provide enough information to answer the proposed questions from our GQM model
presented in Table 4.4.

52



Figure 4.1 - Code used to exemplify the metrics values.
1 import javax.persistence.AssociationOverrides;
2 import javax.persistence.AssociationOverride;
3 import javax.persistence.JoinColumn;
4 import javax.persistence.NamedQuery;
5 import javax.persistence.DiscriminatorColumn;
6 import javax.ejb.Stateless;
7 import javax.ejb.TransactionAttribute;
8
9 @AssociationOverrides(value = {
10 @AssociationOverride(name="ex",
11 joinColumns = @JoinColumn(name="EX_ID")),
12 @AssociationOverride(name="other",
13 joinColumns = @JoinColumn(name="O_ID"))})
14 @NamedQuery(name="findByName",
15 query="SELECT c " +
16 "FROM Country c " +
17 "WHERE c.name = :name")
18 @Stateless
19 public class Example {...
20
21 @TransactionAttribute(SUPPORTS)
22 @DiscriminatorColumn(name = "type",
23 discriminatorType = STRING)
24 public String exampleMethodA(){...}
25
26 @TransactionAttribute(SUPPORTS)
27 public String exampleMethodB(){...}
28
29 @TransactionAttribute(SUPPORTS)
30 public String exampleMethodC(){...}
31
32 }

Alongside the GQM, we grouped the proposed metrics into three categories: i) Class
metrics, ii) Annotation Metrics, and iii) Code Element Metrics. A class metric mea-
sures the annotation from a class perspective. An annotation metric measures the
annotation declaration itself. A code element metric measures the annotation on a
declared element (a class declaration, a method, or a member).

The following subsections define the metrics, explain how each one can help to
answer the metrics elaborated in our GQM model, as well as, classifies them, and
uses Figure 4.1 to illustrate a simple extraction of each of them.
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Table 4.4 - GQM approach applied for our annotation metrics proposal.

Goal (Purpose) Assess
(Issue) the usage of
(Object) annotated code
(Viewpoint) from software developer viewpoint

(Question) Q1 What is the amount of information defined in an annotation?

(Metric 1) AA Arguments in Annotation
(Metric 2) LOCAD LOC in Annotation Declaration

(Question) Q2 How complex can an annotation be?

(Metric 1) AA Arguments in Annotation
(Metric 2) LOCAD LOC in Annotation Declaration
(Metric 3) ANL Annotation Nesting Level

(Question) Q3 What is the amount of metadata defined in a class by using annotations?

(Metric 4) AED Annotation in Element Declaration
(Metric 5) AC Annotations in Class
(Metric 6) UAC Unique Annotation in Class

(Question) Q4 How a class is coupled with annotation schemas?

(Metric 6) UAC Unique Annotation in Class
(Metric 7) ASC Annotation Schemas in Class

4.2.1 Arguments in Annotation - AA

Arguments5 inside code annotations are an important characteristic to be used to
provide additional information. A high number of arguments in the same code an-
notation can result in messy and hard-to-read code. The metric Arguments in An-
notation (AA) measures the number of arguments inside an annotation in a code
element.

It is possible to define an annotation or a list of annotations as the type of argu-
ments inside an annotation. In the case of nested annotations, each one is reported
separately with their respective argument number. AA is classified as an Annotation
Metric.

Considering the example of Figure 4.1, the value of AA for the annotation @Discrim-
inatorColumn is 2, since it has the arguments discriminatorType and name. Another
example is @AssociationOverrides, which contains some nested annotations. Its AA
value is 1, since there is only 1 argument (value), while both @AssociationOverride
contains 2 arguments each (value and joinColumns); therefore, their AA value is 2.

5Initially, we used the term attribute. However, to not conflict with the C# attribute, we opted
for the term arguments. The reason was to keep the metrics as generic as possible.
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Based on the GQM from Table 4.4, AA contributes to the answers of Q1 and Q2.
That can be justified because the number of arguments is directly related to the
amount of information present in the annotation, reflecting the number of param-
eters that should be defined, influencing code maintenance. The pseudocode in Al-
gorithm 1 formally defines the AA metric.

Algorithm 1 Arguments in Annotation Pseudocode
procedure AA(annotation)

Initialize aa = 0
for each argument in annotation do

aa← aa + 1
end for

end procedure

4.2.2 Lines of Code in Annotation Declaration - LOCAD

The annotation arguments are limited to primitive types, Strings, enums, instances
of a Class, other annotations, or an array of any of these. Due to such limitations,
sometimes the information of an argument can be defined using a large String.
Because of that, only the number of arguments defined in an annotation might not
be enough to reflect the amount of information defined in an annotation.

The metric LOC (Lines of Code) in Annotation Declaration (LOCAD) measures the
number of lines of code used in the source file to define an annotation. LOCAD is
classified as an Annotation Metric.

Looking at the code in Figure 4.1, it is possible to verify that the LOCAD for the
annotation @NamedQuery is 4, although the value of AA is only 2.

Similarly to AA, LOCAD aids in Q1 and Q2. Q1 is justified since there is a direct re-
lationship between the number of lines of code and the amount of information in an
annotation declaration. Also, the number of lines declared in annotation influences
its maintainability. It is similar to the LOC metric. The more lines a class(or any
other code element) contains, the harder it gets to maintain (OGHENEOVO, 2014).
The pseudocode in Algorithm 2 presents the extraction procedure for LOCAD. No-
tice the call toString, it returns the lines present in annotation declaration.
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Algorithm 2 LOC in Annotation Declaration
procedure LOCAD(annotation)

Initialize locad = 0
for each line in annotation.toString do

locad← locad + 1
end for

end procedure

4.2.3 Annotation Nesting Level - ANL

The definition of annotations as arguments of other annotations can help to define
a more organized data structure. However, its overuse can lead to annotation defi-
nitions that are hard to understand and maintain. The metric Annotation Nesting
Level (ANL) measures the maximum level of nesting reached inside an annotation.
ANL is classified as an Annotation Metric.

As an example, the annotation @AssociationOverrides in Figure 4.1 has an ANL value
of 0. It is easy to figure this out since this annotation is the declaration. Therefore,
it is not nested in any other annotation. However, the code annotation @Associa-
tionOverride has an ANL of 1, as it is defined inside @AssociationOverrides. Moreover,
the annotation @JoinColumn has ANL value of 2, considering it is defined inside @As-
sociationOverride which already is the first level of nesting. Notice this metric does
not measure the number of arguments in an annotation declaration, while AA does.
ANL measures the maximum nesting level of an annotation declaration, which in
this example is @JoinColumn, because it has a value of ANL = 2.

According to our GQM model, ANL contributes to the Q2. The higher an anno-
tation is nested, the more complexity is involved in its definition, complicating its
maintenance. This is similar to a conditional loop (if-else). The deeper a conditional
loop gets, the more complicated it gets to maintain it. The pseudocode in Algorithm
3 presents the ANL extraction procedure. The call previousCodeElement returns
the type of parent that contains the calling annotation. If it the parent type if an
annotation declaration, the call isAnnotation returns true.

4.2.4 Annotations in Element Declaration - AED

An element in the source code, such as attributes (class members), methods, and
classes, may need several annotations to inform some metadata. However, an ex-
cessive number of annotations in the same element can also reduce code legibil-
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Algorithm 3 Annotation Nesting Level
procedure ANL(annotation)

Initialize anl = 0
if annotation.previousCodeElement.isAnnotation then

anl← 1 + ANL(annotation.previousCodeElement)
else

anl← 0
end if

end procedure

ity, maintenance, and reusability. The metric Annotations in Element Declaration
(AED) focus on each code element individually and measures the number of anno-
tations defined in its context. This metric also counts nested annotations. AED is
a Code Element Metric since it focuses on a single element declaration and not the
whole class.

As an example, the value of AED for the method exampleMethodA() in Figure 4.1
is 2 since it has the annotations @TransactionAttribute and @DiscriminatorColumn. A
more complicated example is the value of AED for the class Example. Counting the
nested annotations the value for this element is 7.

This metric is not concerned with the annotation definition itself but rather the
number of annotations declared in a code element. With our GQM model, it con-
tributes to Q3 since it reports the number of metadata configured in a class or
code element. The pseudocode in Algorithm 4 exposes the AED extraction pro-
cedure. Notice there are two procedures involved. The first one counts how many
annotations a code element contains in its declaration. For each annotation, nested
annotations must be fetched and account for the total AED in a code element, hence
the procedure ANNOTATIONS_IN_ARGUMENTS.

4.2.5 Annotations in Class - AC

The total number of annotations of a given class can also be important information
for the assessment of how annotations are used in its context. The metric Anno-
tations in Class (AC) counts the number of annotations in all elements of a given
class, including nested annotations. AC is a Class Metric since it being measuring
from a class perspective and not from a single element.

Although it can be directly obtained by counting all class annotations, it can also be
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Algorithm 4 Annotation in Element Declaration
procedure AED(code_element)

Initialize aed = 0
for each annotation in code_element do

aed← 1 + ANNOTATIONS_IN_ARGUMENTS(annotation)
end for

end procedure
procedure ANNOTATIONS_IN_ARGUMENTS(annotation)

Initialize aiA = 0 . Arguments in Annotation
for each argument in annotation do

if argument.value.isAnnotation then
aiA← 1 + ANNOTATIONS_IN_ARGUMENTS(argument.value)

end if
end for

end procedure

calculated from the value of AED from all the class elements. The following equation
can be used to calculate this metric:

AC =
∑

each class element

AED (4.1)

As an example, the class Example in Figure 4.1 has the value of 11 for the AC metric.
All annotations, including the nested ones, are counted. As seen on our GQM model,
Q3 is concerned with measuring the number of metadata configured in a class, and
the AC metric provides a notion for this. The pseudocode in Algorithm 5 formally
defines the AC metric.

Algorithm 5 Annotation in Class
procedure AC(class)

Initialize ac = 0
for each code_element in class do

ac← ac + AED(code_element)
end for

end procedure
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4.2.6 Unique Annotations in Class - UAC

This metric is similar to AC, but it measures the distinct number of annotations in
a class. For an annotation to be considered similar to another, it should have the
same annotation type and the same value for all of its arguments, which means that
at least two code elements are configured with the same metadata. For instance,
if two different code elements contain the annotation, such as @Annotation1(arg1
= “This is an example"), they will be counted only once. They contain the same
name (@Annotation1), and their arguments have the same value (arg1 = “This is an
example"). If, for example, the argument “arg1” had different values, they would not
be a unique annotation since they are configuring different metadata. In short, this
metric aims to register the number of distinct metadata configurations that used
annotations in the class. Therefore, UAC is a Class Metric.

Based on the metric values of AC and UAC, it is possible to obtain the number
of annotations that are similar to other ones in the same class. A high number of
similar annotations can reveal repetition in configurations. A high number of distinct
annotations means that several particular metadata configurations are performed in
the given class. Therefore, if we have a high AC value and a low UAC value for the
same class, it means several repeated metadata configurations. Maybe this excessive
repetition could be refactored by some code convention related to code annotations.
Having available the AC and UAC metric, we can identify these cases.

The UAC value for the class Example (Figure 4.1) is 9. The annotations @Transac-
tionAttribute are considered similar as they have the same argument values, but it
is counted only once. However, annotations @AssociationOverride and @JoinColumn
are not similar because they have different values for their arguments. Thus, each
one is counted separately. The pseudocode in Algorithm 6 formally defines the UAC
metric.

4.2.7 Annotation Schemas in Class - ASC

As stated before, annotation schema can be defined as a set of related annota-
tions that belong to the same API. For example, the JPA API has an annotation
schema with a set of annotations that applications can use to define object-relational
mapping. The code may become tightly coupled with their domains when using an-
notations from different schemas, raising reusability problems. Also, it may prevent
software evolution as well as compromise its readability and maintenance. The met-
ric ASC (Annotation Schemas in Class) measures the number of annotation schemas
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Algorithm 6 Unique Annotations in Class
define ANNOTATIONS_LIST
procedure UAC(class)

Initialize uac = 0
for each code_element in class do

for each annotation in code_element do
if !ANNOTATIONS_LIST.contains(annotation) then

uac← 1+ UNIQUE_ANNOTATIONS_COUNT(annotation)
ANNOTATIONS_LIST.add(annotation)

end if
end for

end for
end procedure
procedure UNIQUE_ANNOTATIONS_COUNT(annotation)

Initialize uaC = 0 . Unique Annotations Counter
for each argument in annotation do

if argument.value.isAnnotation AND
!ANNOTATIONS_LIST.contains(argument.value) then

uaC ← 1 + UNIQUE_ANNOTATIONS_COUNT(annotation)
end if

end for
end procedure

used by a class. For implementing this metric, we considered that annotations from
the same annotation schema belong to the same package. Therefore, the extraction
is simply done by counting the number of distinct annotation packages imported.
ASC is a Class Metric. On our code example illustrated in Figure 4.1 the ASC is
2. The class is using the EJB schema as well as the JPA schema. Both of these
were obtained by directly observing the imported package and identifying the pack-
ages javax.ejb and javax.persistence. The pseudocode in Algorithm 7 formally
defines the ASC metric.

4.2.8 Measurements classification

The intent of the proposed metrics is to measure certain characteristics about code
annotations usage. (BRIAND et al., 1996) proposed a generic mathematical framework
that defines several concepts, such as size, length, complexity, cohesion, and coupling,
used to classify the metrics. The goal of this section is to classify the proposed
metrics according to the concepts proposed by (BRIAND et al., 1996), reasoning how
they fulfill their required properties.
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Algorithm 7 Annotation Schemas in Class
define SCHEMAS_LIST
procedure ASC(class)

Initialize asc = 0
for each code_element in class do

for each annotation in code_element do
if !SCHEMAS_LIST.contains(annotation.schema) then

asc← asc + 1
SCHEMAS_LIST.add(annotation.schema)

end if
end for

end for
end procedure

AA and LOCAD metrics reflect the size properties of an annotation definition: its
number of arguments and its lines of code, respectively. These two metrics can be
considered similar to measurements for other code elements using traditional object-
oriented metrics. For instance, it is also possible to measure the number of lines of
code and the number of fields from a class. AED and AC metrics use the same
measurement strategy for the number of annotations for a single code element and
the class as a whole, respectively. These four metrics fulfill all the requirements of
size metrics since they cannot be negative (Non-negativity), are null or zero in the
absence of annotations (Null value), and can be summed to reflect the size of two
elements (Module Additivity).

ANL reflects a length property of an annotation. This classification is justified
because the nesting level of a group of annotations is the greatest nesting level
among them, which relates to the Disjoint Modules property. In other words, since
the ANL is measured individually for each annotation, introducing a new annotation
does not increase the overall ANL value. Annotation definitions are static and can
always be considered disjoint to each other. The fact that it is not possible to add
relationships between them makes this metric fulfil the properties of Non-Decreasing
Monotonicity for Non-Connected Components and Non-Increasing Monotonicity for
Connected Components.

UAC performs a measurement that counts the number of unique annotations. It
captures the number of distinct metadata definitions and according to (BRIAND et

al., 1996) properties can be considered a complexitymetric. The unique annotations
from a group of classes cannot be less than the UAC from a single class and cannot be
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greater than the sum of their values, fulfilling the properties of Module Monotonicity
and Disjoint Module Additivity.

Finally, ASC reflects a coupling property that characterizes the relationship of a
class with annotation schemas. Making an analogy with Afferent Coupling, which
count the number of external classes accessed, ASC considers the annotations con-
figured instead of method invocation. It fulfills the properties of coupling metrics
since adding new annotations will never decrease its number (Monotonicity), merg-
ing two annotation schemas or two classes can only decrease its value (Merging of
Modules) and merging unrelated classes will result in a sum of their ASC (Disjoint
Module Additivity).

4.2.9 Metrics summary

We summarize the proposed metrics suite in Table 4.5, which has the metric name,
its acronym, its reference for measurement, its type based on Briand et al. (1996)
concepts as well as a brief summary of the metrics definition.

Table 4.5 - Metrics Summary.

Name Acronym Reference Type Summary

Arguments in Annotation AA Annotation Size
Measures the number of
arguments in an annotation
definition

LOC in Annotation Declaration LOCAD Annotation Size
Measures the number
of lines in an annotation
declaration

Annotation Nesting Level ANL Annotation Length Measures the nesting
level of an annotation

Annotation in Element Declaration AED Code Element Size
Measures the number
of annotations declared
on a code element

Annotations in Class AC Class Size
Measures the total
number of annotations
in a class

Unique Annotation in Class UAC Class Complexity
Measures the number
of distinct annotations in
a class

Annotation Schemas in Class ASC Class Coupling
Measures the number of
different annotations
schemas in a class

The metrics in Table 4.5 refers to 3 different types of code element. The first type,
called Annotation, measures information about the code annotation definition itself,
such as the number of arguments. The second type, Code Element, deals with mea-
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suring code annotations on specific code elements. Finally, the Class type measures
the definition of code annotations from a whole class perspective, such as the total
number of annotations in a class.

These metrics will guide this study that aims to understand how annotations are
used among projects. It is desired to understand how the metrics distribution will
behave, hoping that it will be possible to define some threshold values that might
enable the identification of scenarios when annotations are being misused.

4.3 Code annotation metrics analysis

This section presents the analysis of the metrics values extracted from the projects
listed in Section 4.1.2.1. We worked with a hypothesis that the majority of the pro-
posed code annotation metrics do not follow a normal distribution, possibly indicat-
ing that the average value is not meaningful. The average value can be considered
the best approach to analyze data when no other information is provided. Thus it
is considered that the data being analyzed follows a normal distribution.

All seven metrics values were collected from 24,947 Java classes from real-world
projects, which provides enough data for our assessment. With the metrics values
collected, the distribution can be analyzed to determine if the average value is mean-
ingful for the metrics.

Values for all metrics were individually analyzed, providing a complete report. Based
on that, it was defined the most suitable approach to find thresholds values for each
metric. Having thresholds values allows the detection of outliers from these metrics,
possibly finding misused annotations on projects. It can also help developers to
monitor code annotations usage. For instance, a developer might notice that the
number of annotations in a class is way beyond a typical value found in most projects.
Thresholds values are not an absolute truth that developers should blindly follow.
However, evaluating the metrics based on threshold values helps detect outliers,
revealing a possible design problem. Our analysis considered two approaches to
determine the thresholds, i.e., Lanza’s approach and Percentile Rank Analysis, as
discussed in Section 4.1.

We reinforce that our work is not primarily investigating the negative impacts of
outliers in software projects, nor are we establishing rules using these thresholds to
detect bad smells related to code annotations. These threshold values provide means
to interpret the metrics values. Developers should use them to complement their own
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design decisions, which may vary greatly depending on the systems requirements and
domain.

To avoid displaying large tables for each project and each metric, in this section, we
chose only one metric, AC (Annotations in Class), to present how the threshold was
calculated and discuss the results. The table contains the percentile rank values,
ranging from percentile 5 up to 99, for each project. This table also presents the
average and standard deviation values obtained from the metrics values per project.
Appendix A presents the complete table with the percentile rank values for all
projects and metrics.

We also present a second table containing threshold values obtained from Lanza’s
approach and the Percentile Rank Analysis.

We are proposing three threshold values from the percentile rank analysis:

• Very Frequent
• Frequent
• Less Frequent

The “very frequent” value is the average obtained from the values in the column
“percentile 90” for all projects. The “frequent” value refers to the average obtained
from the percentile 95 column. Lastly, the “less frequent” value comprises the average
obtained from the percentile 99 column.

Finally, we also present the percentile rank chart for one selected project. To present
all projects’ percentiles rank charts in a single diagram would make the figure unclear
and unreadable since the curves are somewhat close to each other. The result is a
lot of overlapping curves. Therefore, we chose to select a single project and display
its percentile rank. The criteria used to select a project is the one that represents
the highest outlier value for that specific metric. For the AC metric, the project was
Hibernate Core.

Appendix B, however, presents the percentile rank charts in a single diagram for
each metric with all projects.

4.3.1 Calculating threshold values

We chose the AC as a target metric to obtain the threshold values, which measure
the number of code annotations in a class. We believe this metric is suited to serve
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as an example because it has higher values making it easy and more comfortable to
visualize. The other metrics are overloaded with “zero” values, possibly generating
discomfort to read a large table full of zeros. However, as mentioned, Appendix A
presents the complete table for every metric.

Since code annotations can be considered an optional feature, not all classes contain
it. However, we notice that some classes may contain many annotations, reaching
more than 500. Table 4.7 contains the thresholds values determined for the AC
metrics.

Table 4.6 - Percentiles from AC metric in all projects.

Projects X5. X10. X25. X50. X75. X90. X95. X99. X100. mean std
Agilefant 1.00 1.00 3.00 5.00 11.00 22.10 34.05 62.41 128.00 9.67 13.47
ANTLR 1.00 1.00 2.00 4.00 12.00 26.00 33.00 97.68 98.00 10.15 15.25
Apache_Derby 1.00 1.00 1.00 2.00 5.00 10.00 12.50 28.90 53.00 4.27 5.91
Apache_Isis 1.00 1.00 1.00 2.00 5.00 9.00 15.00 33.00 151.00 4.70 7.82
Apache_Tapestry 1.00 1.00 1.00 2.00 4.00 9.00 15.00 35.26 161.00 4.43 7.87
Apache_Tomcat 1.00 1.00 1.00 3.00 8.00 20.00 34.00 82.70 265.00 8.72 19.45
ArgoUML 1.00 1.00 1.00 2.00 4.00 7.00 13.00 19.00 51.00 3.52 4.33
Checkstyle 1.00 1.00 1.00 1.00 1.00 2.00 2.45 3.00 3.00 1.21 0.54
Dependometer 1.00 1.00 1.00 1.00 2.00 2.80 3.00 7.74 9.00 1.65 1.48
ElasticSearch 1.00 1.00 2.00 3.00 5.00 10.00 14.00 30.00 269.00 4.70 9.00
Hibernate_commons 1.00 1.00 1.00 1.50 2.00 3.20 5.00 5.00 5.00 1.85 1.23
Hibernate_core 1.00 1.00 2.00 4.00 7.00 12.00 19.00 46.60 729.00 6.67 14.37
JChemPaint 1.00 1.00 1.00 1.00 2.00 4.40 9.80 19.72 27.00 2.47 4.25
Jenkins 1.00 1.00 2.00 4.00 7.00 14.00 22.00 53.52 131.00 6.85 10.21
JGit 1.00 1.00 2.00 4.00 8.00 16.00 21.00 53.58 169.00 7.28 12.23
JMock 1.00 1.00 1.00 2.00 3.00 4.20 7.20 14.00 14.00 2.52 2.60
Junit 1.00 1.00 2.00 3.00 5.00 12.00 21.00 50.68 228.00 6.11 15.47
Lombok 1.00 1.00 2.00 3.00 5.00 12.00 21.00 50.68 228.00 6.11 15.47
Megamek 1.00 1.00 1.00 1.00 3.00 8.00 14.25 64.20 121.00 4.39 10.41
Metric_Miner 1.00 1.00 1.00 1.00 3.00 11.80 85.60 596.64 723.00 28.94 119.68
OpenCMS 1.00 1.00 1.00 2.00 4.00 8.00 11.00 27.88 63.00 3.82 5.37
Oval 1.00 1.00 2.00 3.00 8.00 8.00 8.00 11.02 22.00 4.44 3.12
Spring 1.00 1.00 2.00 4.00 10.00 17.00 24.75 47.00 281.00 7.66 11.19
VoltDB 1.00 1.00 1.00 3.00 8.00 18.00 27.00 59.92 316.00 7.90 18.78
VRaptor 1.00 2.00 3.00 4.00 8.00 13.00 17.80 40.24 76.00 6.46 7.80

Table 4.7 - Threshold Values for AC metric.

Metric Percentile Reference Very Frequent Frequent Less Frequent Outlier Value Lanza-Low Lanza-Medium Lanza-High
AC 90 11.00 20.00 62.00 729.00 -7.24 6.26 19.76

As shown in Table 4.6, the metric values start to become meaningful after percentile
90, showing that only 10% of the analyzed classes has relevant information about its
number of annotations. The obtained Lanza-Low value is negative, which indicates
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Figure 4.2 - Percentile of AC metric: Hibernate Core.
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a high standard deviation value. The AC distribution graph has an abrupt growth
after percentile 90, which concludes that the average value of this metric is not
meaningful.

For example, projects like MetricMiner and Hibernate Core may reach high values,
but most classes have low values. Thus, the average of 28.94 for the MetricMiner
project is not representative. More than 90% of the classes have values lower than
12, shown by observing the percentiles.

Using our percentile analysis for the AC metric, considering all 24,947 Java classes,
the value chosen as a starting point was percentile 90. The “very frequent” value
obtained was 11, “frequent” was 20, and 62 the “less frequent” value. For code anno-
tations, it cannot be stated that a class has a very low number of annotations since
it is an optional feature. However, it makes sense to assume that a class has a high
number of annotations. Based on this analysis, the frequent region was determined
to be between 11 and 20 annotations per class, while values greater than 62 denote
outliers.

The higher number found for AC was the CoreHibernateLogger class from Hibernate
project with 729 annotations, as presented in Figure 4.2. These annotations configure
logging information for all interface methods. For each method, a code annotation is
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configured the logging level and its respective message. In this case, the high number
of methods is probably more problematic than their annotations.

As seen, the percentile rank analysis (MEIRELLES, 2013) is not only based on calcula-
tions but also observations. On the other hand, Lanza’s approach applies a formula
and assumes that the average value is meaningful, possibly resulting in unrealis-
tic values. Therefore, we believe the Percentile Rank Analysis yields more realistic
results.

The threshold calculations for the other six metrics follow the same pattern and are
presented in Appendix A.

4.3.2 Annotation metrics results summary

This section presented how to analyze and calculate threshold values of the metrics
collected from 24,947 Java classes. As an example, we used the AC metric. We used
the percentile rank analysis to analyze the distribution of those values and obtain
the threshold values. We believed that the distribution would follow an exponential
graph. Therefore, the average value would not represent the data.

From the metrics values extracted from 25 real-world projects and with the empiri-
cal percentile rank analysis, we were able to reach some thresholds values presented
on Table 4.8. Table 4.9 displays threshold values collected using Lanza’s approach.
These values were approximated to reflect feasible numbers, as no Java class can
contain 1.2 annotations. Both these tables summarize the individual thresholds ta-
bles obtained for each metric, using our and Lanza’s approaches. Notice that we only
displayed the individual table for the AC metric in the previous subsection, with
the remaining presented in Appendix A. As discussed in the previous subsections,
we concluded that the threshold values presented in Table 4.8 are more realistic and
might better represent code annotations on real-world projects.

Of the seven analyzed metrics, AA, LOCAD, and ANL have low values even after
percentile 90, except for the outliers. Since the values are not very sparse, the average
value can be used as a good first guess to represent the data. The other four metrics
using the percentile analysis yields better results in representing the data. When
the distribution graph has an abrupt growth, such as the AC metric, the Lanza-Low
margin yields a negative result because the standard deviation is high. In practical
usage, this negative number should be considered 0, but it shows that this calculation
is not indicated for every metric, and its distribution should be analyzed first.
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Table 4.8 - Percentile Rank Threshold.

Metric Very Frequent Frequent Less Frequent
AA 1.00 1.00 2.00

LOCAD 1.00 1.00 2.00
ANL 0.00 0.00 0.08
AED 1.00 1.00 2.00
AC 11.00 20.00 62.00
UAC 3.00 4.00 9.00
ASC 1.50 1.80 2.40

Table 4.9 - Lanza’s Threshold Values: approximated and without negative numbers.

Metric Lanza-Low Lanza-Medium Lanza-High
AA 0.00 0.00 1.00

LOCAD 1.00 1.00 1.00
ANL 0.00 0.00 0.04
AED 0.00 0.00 1.00
AC 0.00 6.00 20.0
UAC 0.00 2.00 4.00
ASC 0.00 0.60 1.30

Our percentile analysis considered a more realistic approach and yielded better
threshold values. For instance, the metric AED has a Lanza-High value of 1, while
our analysis concluded the number to be 2. Having 2 annotations declared on an
element can be considered a “frequent” value. Above this, we consider it a high
value or a “less frequent” one. Percentile rank analysis can be a more flexible way
of obtaining the thresholds.

To conclude our analysis, the research questions on Section 4.1 are answered in
the following paragraphs. Through these questions, we formulated what steps were
necessary to take, and by the end, we managed to obtain the needed results and
observations to provide to measure code annotations characteristics.

#RQ1 - What measurements could be performed in the source code to assess the
characteristics of its code annotations usage?

To assess the characteristics of annotated code elements, we proposed a
suite of metrics. A total of 7 metrics were proposed, each measuring a
particular characteristic of annotations in the source code. We extracted
information such as the number, the arguments, and the nesting level of
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annotations. With that suite of metrics, we gathered all needed data from
24,947 Java classes to perform our empirical analysis. The extracted values
and the qualitative and quantitative analysis demonstrated the usefulness
of this suite. We consider the proposed metrics to be an important contri-
bution to the Software Engineering community.

#RQ2 - For each metric, is it possible to define reference thresholds that can be
used to classify its values?

We were expecting that the average value would not be meaningful since
it is known that object-oriented metrics follow an exponential distribution
graph. It is no different for annotation metrics; we showed that all seven
metrics behave exponentially. The values extracted for the metrics AA,
LOCAD, and ANL are low, and therefore, the average could be consid-
ered a medium point. However, it fails to find an appropriate high margin
threshold, while the percentile rank analysis yields a more realistic value.
The average value does not bring much information for the remaining four
metrics due to the abrupt growth after percentile 90. Overall, using the
percentile rank analysis yields better results due to its flexible nature.
Therefore, knowing the distribution of the metrics, we can propose a more
realistic threshold value for them.

Threshold values determine boundaries to classify data that falls within a
specific region. If thresholds values are obtained, they can help developers
maintain control and quality of their source code. For our proposed metrics,
the obtained threshold values are intended to be a guide for developers.
However, every project has its design criteria, and therefore it is up to
the developer to check whether the threshold values make sense for that
specific project.

#RQ3 - What is the common profile of a class that uses code annotations in Java?
How large are the metrics outliers found?

Since code annotations are optional information added on classes, in gen-
eral, annotation metrics present low values. Usually, an annotation has 0
or 1 argument. It is defined in 1 line of code. Also, it is not nested on other
annotations and is the only annotation in the element where it is defined.
A class using around 20 annotations can be considered normal. However,
usually, there are many repetitive definitions since the common number of
unique annotations is 4. Considering the number of different annotations
schemas present, a class usually has configurations of 1 or 2.
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Although most cases have low values, we found some outliers with really
high values for the metrics in our analysis. We found classes with more
than 700 annotations and with 13 different annotation schemas. We also
found a single annotation containing 9 arguments and another defined
through 58 lines of code. There was an element with 27 annotations, and
the nesting level reached the value of 4 (i.e., an annotation in the fourth
level of nesting). Having found these outlier opens room for additional
investigation on future works.

#RQ4 - May the usage of annotations create problems that can compromise code
maintenance?

Code metric considered outlier values are usually related to problems in
code maintenance. Some examples are documented code smells, such as
Brain Method and Good Class (FOWLER, 1999). The detection strategies
for these code smells have rules that consider threshold values for a group
of metrics (LANZA; MARINESCU, 2006).

Analyzing the impact of code annotations in code maintenance, the con-
tribution of this study is to reveal the existence of these outliers. These
extreme cases illustrate well that abuses in the usage of annotations can
happen in the development of real-world projects. For instance, an anno-
tation with 58 lines of code, classes with more than 700 annotations, and a
class with 13 different annotation schemas are a clear abuse of annotation
usage. As a large class and a large method can compromise code main-
tenance, the same applies to an annotated element or class with a high
number of configurations. Based on that, this finding is evidence that it is
important to monitor and evaluate the usage of annotations to avoid such
situations.

Each metric captures a particular characteristic. Although we should pay
attention to outliers, it is important to combine the metrics for a more
precise analysis to verify the problem of how code annotations are used. For
instance, the Java8Parser class from the MetricMiner project has more
than 700 annotations, but the UAC value is only 3, and the number of
annotations on each element is only 1 or 2. Observing the class, we notice
that the problem is the high number of methods with few annotations.
Consequently, due to the repetition of annotations, a general change in
the annotations on these methods would be hard to perform. However, the
classification and detection of design problems in annotations are out of
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the scope of this work.

Even though the presence of these outliers reveals possible maintenance
problems, we consider this result the first step in this direction. A further
study should investigate the relation of issues and bugs with code changes
in annotations. This question, RQ4, remains open and leaves a lot of ground
work for future research.

The metrics discussed and presented in this chapter have also been used in other
research on code annotations since they allowed us to extract code annotation infor-
mation from the source code and carry out these works. Section 3.3 discussed further
other works that used these metrics to support the research. As mentioned at the
beginning of this chapter, the metrics definition and statistical analysis results have
been published in (LIMA et al., 2018).

Now that we have presented our approach to measure code annotations, we conclude
the first part of our work. With this novel suite of metrics, we can take the next
step and propose an approach to visualize code annotations. With this, we begin
the next chapter of this work.
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5 VISUALIZING CODE ANNOTATIONS DISTRIBUTION

This thesis is divided into two parts. The first one was concerned with proposing the
novel suite of software metrics and finding threshold values, discussed in Chapter
4. Now we are interested in visualizing code annotations distributions using these
metrics values as input in this second part. We follow the same organization used
in Chapter 4 but adapted to a software visualization approach proposal.

The first section presents the research design used to develop and assess our vi-
sualization approach. Then, in the following section, we define our visualization
approach. We named it Code Annotations Distribution Visualization (CADV) ap-
proach. In the third section, we present the conducted experiments, results, and
discussion with our findings.

5.1 Research design - Code Annotations Distribution Visualization

Before we present our research design for the CADV, let us revisit the goal of this
thesis:

To define an approach to measure and visualize code annotations to assess and
comprehend their usage and distribution in software systems

As seen, we have to define an approach to measure and visualize code annotations.
In Chapter 4, we defined our novel suite of software to measure code annotations. In
this current Chapter, we are focused on presenting our approach to visualize code
annotations, i.e., the CADV.

We built our research design following best practices and guidelines in previous works
for software visualization approaches (FRANCESE et al., 2016; MERINO et al., 2018;
ROMANO et al., 2019). We begin discussing the goals for CADV, the steps to reach
these goals, and our experiment design. When we defined our novel suite of software
metrics, presented in Chapter 4, we performed a statistical analysis to assess our
metrics. To assess our CADV approach, however, we conducted experiments with
software developers and software engineering students.

5.1.1 Visualization goals

When we defined our suite of software metrics in Section 4.1, we used research ques-
tions to guide the work. However, for CADV, we will present in terms of visualization
goals. The work from (FRANCESE et al., 2016; MERINO et al., 2018) reinforces that
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software visualizations approaches should make the goals clear at the very beginning.

The primary goal is to aid in the comprehension and provide an overview of how
code annotations are distributed in the analyzed software system. The visualiza-
tion can assist in comprehending responsibilities, size(large annotations), and cou-
pling (classes coupled to several frameworks). Following the guidelines proposed on
(FRANCESE et al., 2016), these are the primary goals of the visualization:

(#G1) -Detect annotations schemas and how they are distributed in the
packages: At first (not a general rule), code annotations belonging to the
same schema should be grouped in packages since they are usually related
to a specific behavior or responsibility. For instance, annotations from the
javax.persistence schema, are concerned with object-relational map-
ping. Therefore, one might expect that packages with these annotations
have a well-defined responsibility. With our CADV approach, we want the
user to spot all schemas and where they are being used quickly. Suppose
code annotations from the same schema are present in several different
packages. In that case, it may suggest that classes responsibilities are not
very clear, which imposes challenges in evolving and maintaining the soft-
ware. To reach this goal, we need a view to present the whole system and
not overwhelm potential users with details closer to the source code. In
short, we want to visualize packages and annotation schemas for the entire
system.

(#G2) - Detect how annotations are distributed per class in packages:
After a general view of the system is provided, the user might want to
investigate specific packages to obtain more information about code an-
notations. For instance, (i) how are schemas distributed inside classes, (ii)
are there classes coupled to several schemas, and (iii) is there a class with
a large number of annotations. All these aspects help developers compre-
hend the responsibilities of existing classes and their profiles. We must
also decide what metric to use when drawing annotations. They have sev-
eral characteristics such as the number of arguments (AA), nesting level
(ANL), Lines of Code (LOCAD), and others already measured by the pro-
posed metrics described in Chapter 4. However, trying to display several
metrics values in a two-dimension visualization can be troublesome and
become a mess to interpret the data. Therefore we will only display one
metric per view. To reach this goal, we need a view that can present more
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code annotations and classes inside packages. In short, we want to visualize
a single package and annotations grouped in classes.

(#G3) - Detect how annotations are distributed and grouped per code
elements inside the classes: Code annotations are placed on code ele-
ments, such as methods, members, and type definitions. Several annota-
tions can configure the same code element. The user may be interested
in observing how the annotations are grouped inside these code elements
and detect if (i) a specific code element is overloaded with annotations, (ii)
several code elements contain repeated annotations, (iii) a specific code
element is coupled to several schemas, and so forth. We again face the
challenge of choosing what annotation metric to use to generate the vi-
sualization. Our first approach is to use a different metric than the one
used for reach Goal #G2 so that we can present different metrics but from
a different perspective of the visualization. To reach this goal, we need a
view that can present code elements and code annotations inside classes.
In short, we want to visualize a single class and how code annotations are
grouped in classes.

(#G4) - Provide a navigation system between views with different gran-
ularity: For each goal presented previously, #G1, #G2, and #G3, we are
proposing a different view consistent with each of these three goals. There-
fore, our visualization approach should provide some mechanism to allow
the navigation between these different views.

(#G5) - Detect misconfigurations: As seen, our goals are concerned with the
distribution of code annotations in the system rather than detect prob-
lems related to code annotations. However, if we can visualize code anno-
tations, we might also detect potential problems. According to (YU et al.,
2019), code annotations are deleted because they are redundant (15.4%)
or are wrong (24.5%). For instance, if a developer spots that in the same
class there are annotations for unit testing (org.junit) and persistence
(javax.persistence), it may be considered for a refactoring or a closer
look at the source code.

5.1.2 Research method

This section describes the steps performed to reach our visualization goals.

Step 1 - Propose the visualization
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Based on the polymetric view concepts(LANZA; DUCASSE, 2003; FRANCESE

et al., 2016), the guidelines presented on (MERINO et al., 2018), the GQM
model(BASILI, 1992; BASILI et al., 1994) and the characteristics of annota-
tions measured by our suite of metrics(LIMA et al., 2018) we propose our
own polymetric view for code annotations metrics. We named our approach
CADV (Code Annotations Distribution Visualization)

Step 2 - Create a tool to implement the CADV

To implement the CADV, we developed a tool called AVisualizer. This
tool works as a front-end to the ASniffer(LIMA et al., 2020a). While the
latter is a tool that scans Java software systems and extracts the metrics,
the first can draw the CADV using these metrics values as input. Just
as the ASniffer, the AVisualizer is open-source and available at https:
//github.com/phillima/avisualizer. A working demo that was used
for the experiment can be accessed at https://avisualizer.herokuapp.
com/

Step 3 - Design Evaluation Approach

To assess our visualization approach, which we named CADV, we per-
formed two different experiments. The first one was an interview with
developers that worked on the SpaceWeatherTSI module, part of the
SpaceWeather web application developed for the EMBRACE division in-
side INPE. The second experiment was a survey with students. In both
experiments, the participants used the AVisualizer tool and answered/dis-
cussed some questions about the SpaceWeatherTSI software. To gather
opinions and impressions of the AVisualizer tool, in the second experi-
ment, we used a questionnaire based on the TAM (Technology Acceptance
Model) (DAVIS, 1989)

To ease the writing process, we will refer to the first experiment as E1
(interview with EMBRACE developers) and the second experiment as E2
(survey with the students).

Step 4 - Data Analysis

For experiment E1, we manually transcribed each recorded interview and
performed the qualitative analysis. For each question, present in Table 5.3,
we thoroughly discussed the interviewee’s answers and commentaries to
validate our novel CADV.
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For experiment E2, we first analyzed the overall success rate of the close-
ended questions to measure the student’s performance. Then we discuss
how these numbers and how the AVisualizer tool aided in comprehending
the analyzed software. To verify the student’s impressions and opinions,
we analyzed the answers from the questions that measured how “easy” and
“useful ” the students found the AVisualizer tool. With these answers, we
could determine the strong points and the required improvements.

Finally, we perform a discussion comparing E1 and E2 to understand how
the CADV approach can reach its goals, i.e., allow the visualization of code
annotations distribution and usage to aid the comprehension.

5.1.3 Target audience

Another crucial aspect of any software visualization approach is to clearly define the
target audience, which should be consistent with the goals, as mentioned by Merino
et al. (2018), Romano et al. (2019). Following, we describe our target audience in
relevant order.

• Newcomer Developer1: According to DAGENAIS et al. (2010), whenever
a developer approaches a new software system, it feels like explorers who
must orient themselves within an unfamiliar landscape. Even for senior
developers, this might happen. Even though there can be a mentor, new-
comers still face challenges, and every resource available can be useful to
ease the path. Furthermore, developers spend most of their time compre-
hending software (HASSELBRING et al., 2020). Our Goal 1 (#G1) deals
directly with providing a general overview of the system that might aid
newcomers.

• Student: Given that students are in a constant learning process, they are
also potential users of our software visualization approach. They could use
the visualization like newcomer developers and better understand some
concepts related to code annotations and metadata-based frameworks us-
age. They can also identify aspects of the software system and further
study them using other methods.

• Software Architect: Already have a firm grasp of the whole system. They
analyze it focusing on aspects such as: how to make this system better

1We define a newcomer developer as someone who has just joined a team. It does not necessarily
mean that it has no software experience. Even a senior software developer can be a newcomer
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adhere to the proposed software architecture? Is the system growing out
of control? Are packages responsibilities clearly defined? For this audience,
the visualization can be used to investigate and potentially find: misplaced
or misconfigured code annotations, redundant code annotations, several
repeated annotations, outliers (like code annotations with huge numbers
of arguments or large lines of code), packages overloaded with different
annotation schemas and to have means to generate a general view of the
system quickly

The target audience, however, does not need to adhere strictly to this definition. A
newcomer can use the visualization to detect outliers, just as a seasoned developer
can also gain new insight about the system software it did not know.

5.1.4 Experimental design

The work of (MERINO et al., 2018) mentions that several software visualizations
work has failed in its evaluations, with lack of rigorous experiments. Therefore,
they provide little evidence of the effectiveness of their approach. They mention
that 62% of proposed approaches do not include any evaluation or a weak one,
such as anecdotal evidence of simple usage scenarios. They conclude that software
visualizations research should use more surveys with the target audience (to extract
helpful information) and perform a thorough experiment using real-world open-
source software systems and a controlled system with practical tasks.

To evaluate the CADV, we performed two experiments that we named E1 and E2.
E1 was a recorded interview with six members involved in the development of the
SpaceWeatherTSI software system. In this experiment, the interviewees used the
AVisualizer tool to analyze the SpaceWeatherTSI. To guide our interview, we for-
mulated 15 questions, present in Table 5.3. The conversation was very informal, and
the participants could freely discuss the topics. They also provided valuable feedback
on how we could improve our CADV approach and how to make the AVisualizer tool
better. We also collected some demographics information about these participants.
The interview was conducted with the Google Meet2 web application, and we used
the OBS3 desktop application to record the interview.

The second experiment, abbreviated as E2, was conducted with students using a sur-
vey. In the experiment, the students had to answers ten objective questions about

2https://meet.google.com/
3https://obsproject.com/
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the SpaceWeatherTSI software system using the AVisualizer tool. To assess their
opinions and impressions about the tool, we used the TAM (Technology Acceptance
Model) (DAVIS, 1989) as a basis. In this model, there are two variables that we are
interested in. The first is the “Perceived Ease of Use”, in other words, how users
find the technology easy to use. The second variable is “Perceived Usefulness”, which
measures how users find the technology helpful. These two variables feed other parts
of the model that will eventually output a “Actual System Usage”. For our evalu-
ation, we created 19 questions based on the two mentioned variables to guide us
in understanding how easy and useful the students perceived our CADV (imple-
mented through the AVisualizer). These questions used the Likert scale, ranging
from strongly disagree to strongly agree, and were elaborated similar to the work
of (CHOMA et al., 2019). The experiment was carried out through Google Forms in
both English and Portuguese4. Finally, using students to carry out experiments is a
viable option to advance software engineering, as shown by Falessi et al. (2018) and
HÖst et al. (2000).

Participants Selections

The participants for E1 were personally invited to join the experiment. It was im-
portant to assess our CADV approach in a software system that was developed for
INPE. As mentioned, we used the SpaceWeatherTSI web application as a target
system. Hence, we invited the members that were involved in the construction of
this project. Given that they know the system, they could assess if the AVisualizer
tool could display a coherent general view of the project under analysis. They could
also analyze if the AVisualizer brought new insights and valuable information for a
system they were already familiar with. They are all familiar with Java and code
annotations and provided valuable feedback to our wok. In short, one of the goals
of E1 was to also validate this work as applied research for INPE internal solution.

As for our second experiment, E2, we invited students from INATEL5 (Instituto Na-
cional de Telecomunicações), UniBz6 (University of Bolzano) and IPT7 (Instituto de
Pesquisas Tecnológicas). The majority of the students were undergraduates in Com-
puter Science/Engineering courses, and only six were master students. We managed
to obtain 36 students to participate voluntarily in our study. None of these students

4Experiment in Portuguese https://forms.gle/rFEoNHaBuW8RKVaf7 and English https://
forms.gle/zK1UddR2mQMLQ7zp7

5https://inatel.br/home/
6https://www.unibz.it/
7https://www.ipt.br/
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were involved in the development of the SpaceWeatherTSI software and provided us
a complementary perspective alongside E1.

Procedure

To conduct the E1 experiment, we first provided a link with a recorded video as a
tutorial on how to use the AVIsualizer tool. We sent it via e-mail to each participant
1 week before the interview. We also sent a Google Form link to collect some personal
data and their consent to participate in the experiment. Following is a list of the
contents in the form 8.

a) Clarified Consent Term: We explained the experiment they were invited
to, the goals and requested their consent to participate. The developers
could choose not to participate

b) Personal Information: We asked what their role was during the develop-
ment of the SpaceWeatherTSI software and their familiarity with code
annotations.

The interview occurred according to the following list:

a) Video call: Using Google Meet, we initiated the call.

b) AVisualizer Demo: We provided the link of the deployed demo of the AVi-
sualizer tool to the interviewee

c) Recording: Initiated the recording using the OBS desktop application.

d) Training Session: The interviewer shared the screen with the interviewee
and provided another 15-minute training. Therefore, the participants were
submitted to two training sessions of the AVisualizer tool. One was a video
link previously sent. The second was live training right before the interview
properly began.

e) AVisualizer Execution: The interviewees could use the tool themselves (on
their computer), but they preferred to have the interviewer manipulate
it for them (in the interviewer’s computer, with the screen shared). The
interviewees were issuing all the commands while answering and discussing
the questions. The interviewer merely clicked on the desired location. In

8Only available in Portuguese: https://forms.gle/RYn4XEK2Dnyy61aH7
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parts of the interview, the interviewees also played and experimented with
the tool on their computer.

f) Questions: The interviewer started asking questions presented in Table
5.3 to guide the interview. However, the conversation was informal so the
interviewees could freely answer and discuss these questions/topics.

On average, the interviews lasted 60 minutes in total, i.e., 15 minutes of training
with 45 minutes of questions/discussions.

For E2, the experiment was carried through a survey using Google Forms. The only
external link they had to access was the AVisualizer tool. Following is a list of events
of how the experiment unfolded as soon as the students accessed the form.

a) Clarified Consent Term: We explained the experiment they were invited
to, the goals and requested their consent to participate. The students could
choose not to be involved.

b) Personal Information: We gathered demographic information, experience
with code annotations, current role, and primary programming language

c) Code Annotations: We briefly explained code annotations and our novel
metrics (defined in Chapter 4 and published in (LIMA et al., 2018)).

d) AVisualizer Tutorial: We provided a textual explanation of the AVisualizer
tool and a video (the link was also provided if the participant preferred to
watch directly on YouTube. This was the same link sent to participants of
E1), which was the training section. The participants were free to watch
the video during the whole experiment.

e) Using the AVisualizer: We provided the link where the demo of the AVi-
sualizer is deployed and presented ten close-ended questions about the
SpaceWeatherTSI system. The demo version of the AVisualizer tool is al-
ready generating the visualization for this system.

f) Impressions of the AVisualizer: In this final section, we provided 19 ques-
tions using the Likert Scale to measure the usefulness and ease of use
based on the TAM model. Also, we left a final last question to students to
describe their overall opinion and impressions.
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In both experiments, E1 and E2, we used different software for the training session
to not generate any bias and potentially compromise our results. The chosen system
was the Guj9 web application. The code is publicly available at https://github.
com/caelum/guj.com.br. This is a well-known Brazilian Q&A forum for software
development, and the source code has several different annotation schemas and was
suited for the training.

5.2 Code Annotations Distribution Visualization - CADV

This section presents the definition of our visualization approach, which we named
CADV - Code Annotations Distribution Visualization. As previously mentioned,
our approach is composed of three different polymetric views enriched with code
annotation metrics values. The metrics was proposed and discussed in Chapter 4.

Even though we are focused on displaying code annotations, they are part of the
source code. So our approach needs to display classes and packages since these two
will contain the code annotations. The source code is a hierarchical structure where
packages contain classes that contain code elements that contain code annotations.
Therefore, we chose a circle pack approach to serve as a basis for CADV.

We had previous experience using a combination of squares and circles to draw the
visualization. We felt this approach was problematic to represent the hierarchy as
well as scale with larger software systems. It made it challenging to observe the code
annotations distribution. However, we were able to detect the shortcomings of this
approach and published these results in (LIMA et al., 2020b).

For the CADV, we display everything as a circle. In other words, packages are circles,
and classes are circles. Code elements and code annotations are also circles. We use
strategies like a different color, outline, and some elements that are only visible in
specific views to differentiate them. The radius of the leaf circles will be calculated
based on values of code annotation metrics that we discussed in Chapter 4.

A circle packing, in its simplest form, is a collection of circles in the plane or 2-sphere
such that each gap between circles is triangular, abutting three pair-wise tangent
circles (STEPHENSON et al., 2007). The area of each leaf circle in a circle-packing
diagram is proportional to its value (here, code annotation metrics value). Although
nested circles do not use space as efficiently as a treemap, the “wasted” space better
reveals the hierarchical structure (BOSTOCK, 2017). Since we wanted to provide a

9https://www.guj.com.br/

82

https://github.com/caelum/guj.com.br
https://github.com/caelum/guj.com.br
https://www.guj.com.br/


visualization approach that displayed the hierarchical structure of the source code,
the circle packing is well suited.

Figure 5.1 - Basic Circle Packing

Source: Stephenson et al. (2007)

When defining the metrics in Chapter 4, we first proposed four research questions,
and then we designed a GQM model to guide the definition of the metrics. For the
CADV approach, we first proposed five goals (Section 5.1.1). From them, we will
design a GQM model to guide the definition of the polymetric views that compose
our visualization approach.

As seen from our goals, we want to provide a visualization that can capture and
display different characteristics of the source code. We also require different granu-
larity levels. One single view would not be enough to reach these goals. We need,
therefore, different views and also a navigation system between them.

From the five goals proposed on 5.1.1 we obtained four questions for our GQM
model. With these, we were able to propose three polymetric views that, combined,
form our Code Annotations Distribution Visualization - CADV. Table 5.1 presents
the GQM model.

We deliberately left #G4 - Provide a navigation system between views with
different granularity - out of the GQM model since it is a goal concerned with
the navigation system. This has to be dealt with during the development of the tool
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that implements the CADV.

Table 5.1 - GQM applied for the CADV Approach.

Goal (Purpose) Visualize
(Issue) the usage and distribution of
(Object) annotated code
(Viewpoint) from software developer viewpoint

(Question) Q1 How are annotations schemas distributed
by packages? (Extracted from G1)

(View 1) System View Provides a polymetric view that displays annota-
tion schemas being used by packages

(Question) Q2 How are annotations schemas distributed
inside packages? (Extracted from G2)

(View 2) Package View Provides a polymetric view that displays annota-
tions being used in classes of a package

(Question) Q3 How are annotations schemas distributed
inside classes? (Extracted from G3)

(View 3) Class View Provides a polymetric view that displays annota-
tions, and how they are grouped, inside a class.

(Question) Q4 How to detect potential misplaced code an-
notations? (Extracted from G5)

(View 1) System View –
(View 2) Package View –
(View 3) Class View –

Notice from #G5 -Detect misconfigurations- that every view can aid in detecting
misconfigurations or misplacement. Each one will contribute differently and within
their scope. For instance, to detect an extensive annotation (considering high LO-
CAD), the Package View seems suited, while the System View does not help much.
On the other hand, an annotation schema potentially misplaced might be quickly
spotted in the System View. The Class View may contribute to detecting a spe-
cific code element overloaded with code annotations. As previously said, we are not
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focusing on detecting these potential issues, so the views were not designed consid-
ering these aspects. However, during experiments, we can still explore how the views
handle such topics.

In the upcoming subsections, we will define the three views that compose the CADV.
Since this is a software visualization approach, we will heavily use figures to ease
comprehension. These images are being generated by the AVisualizer tool with the
SpaceWeatherTSI project under analysis. The CADV and the AVisualizer are firmly
related, and we believe it would be unnecessary to discuss the CADV as a completely
separate concept.

Before we discuss the views themselves, we first present the basic layout provided
by the AVisualizer. Just as done by other software visualization authors, such as
(LANZA; DUCASSE, 2003), to better comprehend this section and our CADV ap-
proach, we recommend reading on a colored screen monitor. The tool is heavily
based on colors.

The demonstration of the AVisualizer is available at https://avisualizer.
herokuapp.com/

5.2.1 AVisualizer layout

As soon as the AVisualizer tool is executed, the user is presented with three areas,
as shown in Figure 5.2.

These three areas are The Header, The View, and the Schema Table. Following, we
detail each of these areas.

The Header contains four parts, described below:

• Project Under Analysis: It displays the name of the software being
analyzed. For our experiments, we used the SpaceWeatherTSI software.
• View: Since the CADV is composed of three views, the user must be aware

of which one is currently rendered. The three possible options are: System
View, Package View, and Class View
• Annotation Metric: We need to inform the user what metric is being

used to generate the size of the leaf circles. These colored ones may repre-
sent individual code annotations or annotation schemas. As an example,
the System View uses the metric Number of Annotations, which means the
colored circle size is calculated based on the number of code annotations
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that belong to a particular annotation schema.
• Class or Package: Informs the user what package or class it is cur-

rently inspecting. For instance, the package being inspected on Figure
5.2 is the br.inpe.climaespacial.tsi, which is the root package of the
SpaceWeatherTSI software.

Figure 5.2 - Annotation Visualizer.

The Schema Table, contains four parts, described below:

• Annotation Schemas: A list of every annotation schema found in the project
under analysis.
• Color: Display what color was assigned to a given annotation schema.

For instance, Figure 5.2 shows that a pink tone was assigned to the
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javax.persistence schema.
• Total Annotations: The total number of annotations that belong to a given

schema being used in the whole project. It includes repeated annotations.
For instance, Figure 5.2 shows that the project SpaceWeatherTSI uses 169
annotations from the javax.persistence. It could even be 169 identical
annotations, for example, the @Entity annotation.
• Check Box: The user can filter out some annotations schemas to better

explore the project using the check box on the final column.

The View is the area that displays the actual polymetric view. There are three
different views: The System View, The Package View, and the Class View. For
instance, Figure 5.2 is displaying the System View for the SpaceWeatherTSI

The View is the constantly changing and modifying to display one of the proposed
view. Only one of the three is visible at a time. The Header also changes to inform
what current view is displayed, and The Schema Table is mostly fixed. These last
two are available for all three different views all the time.

5.2.2 System View

The System View is the default view displayed to the user. It presents the whole
project in a single view, allowing users to grasp the project under analysis quickly.
The System View displays only packages and annotation schemas, and both are
rendered as circles. We chose a light gray background color to remain as neutral as
possible. The following list presents the characteristics of these circles:

• Packages: Every circle that represents a package has a dashed outline. The
outermost dashed circle represents the root package of the project. In the
source code, this package contains every other package. We present this hi-
erarchical information by displaying packages inside packages, as “dashed
outline circles contained in other dashed outline circles”. The circle’s size
depends on the number of code annotations used inside the package, re-
gardless of the number of classes. Therefore, we are counting code anno-
tations in all classes, but we are not counting the classes. The background
used in these circles is gray.
• Annotation Schemas: These are colored filled circles rendered inside

“dashed outline circles”. They represent annotation schemas being used
inside a specific package. Each annotation schema has its unique colors,
which are reflected in the filled circles. The size of these circles is propor-
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tional to the number of code annotations of a particular schema. The colors
white and gray are not used to represent schemas since they already have
other meanings in the CADV approach.

To further clarify the System View, consider the following hypothetical project
“Example” with four classes and two packages. Figures 5.3 - 5.4 presents the source
code of these classes.

Figure 5.3 - Example package “example.pk1” with classes: Class1 and Class2.
1 package example.pk1;
2
3 import javax.schema1.Annotation1;
4 import javax.schema2.Annotation2;
5 import javax.schema2.Annotation3;
6
7 public class Class1 {
8
9 @Annotation1 // belongs to javax.schema1
10 @Annotation2 // belongs to javax.schema2
11 @Annotation3 // belongs to javax.schema2
12 private int member1;
13 }
14 //Separate File
15 package example.pk1;
16 import javax.schema2.Annotation4;
17 import javax.schema2.Annotation5;
18
19 public class Class2 {
20
21 @Annotation4 //belongs to javax.schema2
22 @Annotation5 //belongs to javax.schema2
23 private int member2;
24 }

Figure 5.5 presents the System View for this project. To make it clearer, we
removed the caption for the Header , View and Schema Table, but kept the
red-dotted frame to highlight each area. We added some arrows and numbers on the
figure, that we will use to guide our explanation.

Analyzing the Schema Table on Figure 5.5, we have three schemas:
javax.schema1, javax.schema2, and javax.schema3. In the source code they are
the imports. Since this is a hypothetical example, we assigned random colors for
the schemas (with the exception of gray and white). In the View area, which is
displaying the System View, we have three dashed outlined circles with gray back-
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ground, that represents the three packages in the project: example, example.pk1,
and example.pk2. From Figures 5.3 - 5.4 we know this project has four classes, but
we cannot see them in the System View.

Figure 5.4 - Example package “example.pk2” with classes: Class3 and Class4.
1 package example.pk2;
2
3 import javax.schema2.Annotation6;
4 import javax.schema2.Annotation7;
5
6 public class Class3 {
7
8 @Annotation6
9 @Annotation7
10 private int member3;
11 }
12 //Separate File
13 package example.pk2;
14 import javax.schema3.Annotation8;
15
16 public class Class4 {
17
18 @Annotation8
19 private int member4;
20
21 }

The circle marked with (1) is slightly larger than the circle marked with (2), meaning
the package represented by the circle (1) has classes with more code annotations
than the package represented by the circle (2). Inspecting the Figure, we cannot tell
which package these circles represent, but hovering the mouse on top will reveal a
label with that information, which is package example.pk1. By elimination, circle
(2) represents package example.pk2. We deliberately chose this approach to avoid
polluting the visualization with textual information. By looking at the visualization,
we can quickly extract the following information:

• Circle (1) has code annotations from two schemas -javax.schema1 and
javax.schema2- and has more code annotations than the package repre-
sented by the circle (2).
• Circle (2) has code annotations from two schemas, i.e., javax.schema2

and javax.schema3.
• The schema javax.schema2 is present in both packages represented by the
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circle (1) and circle (2). We highlight this by drawing two arrows marked
with (3) on Figure 5.5. Notice that the two circles pointed by the arrows
share the same color, which means they represent the same schema. Fur-
thermore, the circle on the left is larger than the one on the right. It means
the package represented by the circle (1) has more code annotations from
javax.schema2 than the package represented by the circle (2).
• Circle (1) represents a package with more code annotations from schema

javax.schema2 than schema javax.schema1. We can see the “green” circle
is smaller.
• Circle (2) represents a package with more code annotations from schema

javax.schema1 than schema javax.schema3. In other words, the “pink”
circle is smaller.
• Circle (1) represents a package without code annotations from schema

javax.schema3. In other words, there are no “pink” circles. ]
• Circle (2) represents a package without code annotations from schema

javax.schema1. In other words, there are no “green” circles.

The previous information was mainly obtained visually, with the support from the
Schema Table. To obtain further information, the user can hover the mouse over
the circles. Labels will reveal more information such as package name, schema name,
and the number of code annotations occurrences of that schema. We believe this ap-
proach is interesting because it leaves the visualization clean and draws attention to
the size and color of the circles. In other words, it draws attention to code annota-
tions and schemas.

To confirm this, let us manually inspect the source code. Figure 5.3 represent
two classes from package example.pk1. Class Class1 has three annotations and
class Class2 has two annotations, i.e., a total of five annotations. Figure 5.4
show two classes from package example.pk2. Class Class3 has two annotations and
class Class4 has one annotation, a total of three. In other other words, package
example.pk1 has more annotations than package example.pk2. It is now clear why,
in Figure 5.5, the circle (1) is larger than circle (2). We reinforce that the visual-
ization had already revealed this information much quicker, and without having to
manually inspect the source.

We can also zoom in on packages. For instance, let us zoom on the circle marked
with (1). To do this we must simply perform a click action on the desired circle
representing the package. Figure 5.6 shows the result.
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Figure 5.5 - System View for Hypothetical Example Project.

The Header was updated to inform that we are now in package example.pk1 but
still using the System View. As known, the Schema Table remains fixed since
we want to keep a reference to the whole system still, even if the user is inspecting
a small part.

To further clarify, there are two possible outcomes when we perform a click action.

• If we click on a circle that does not represent a schema or individual code
annotation, a zoom happens.
• If we click on a circle representing a schema or individual annotation, we

change the type of view being rendered. These circles are, always, the
colored ones, except for the colors gray and white. The change of views
happens in the following order System View toPackage View toClass
View.
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Figure 5.6 - System View for Hypothetical Example Project With Zoom.

From the presented description, there is no class information in the System View,
which is what we wanted to achieve in Goal 1 (Detect annotations schemas and
how they are distributed in the packages). We only wish to see schemas and
packages. At this point, we are not interested in visualizing how annotations are
configured inside classes. Therefore, we do not display characteristics of individual
annotations, only their schema (or annotation schema). These last two pieces of
information are left to other views to handle, i.e., display classes and individual
annotations.

To finish presenting the System View let us now return to the real-world software
SpaceWeatherTSI presented on Figure 5.7. This Figure is displaying the System
View for the SpaceWeatherTSI software. We marked a package with (1), to zoom
in.
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Figure 5.7 - The System View of project SpaceWeatherTSI.

Figure 5.8 displays the System View but with a zoom on package
br.inpe.climaespacial.tsi.entity of project SpaceWeatherTSI. The Schema
Table remains unchanged. The only change in the Header is the name of the
package, which was updated to reflect the package represented by the outer-
most dashed-line circle. From Figure 5.8 we can see this package has annota-
tions from the javax.persistence schema (pink circle) and also it has one inner
package (inner circle with dashed-line). This inner package has annotations from
the javax.persistence (large pink circle), javax.persistence.metamodel (small,
slightly lighter pink circle) and java.lang (blue circle) schemas.

We can further zoom in on this package. Figure 5.9 displays this zoom. Notice that
the Header updates to reflect the outermost dashed-line circle. In other words, the
package zoomed in.

To further inspect this package and annotations, we need to switch to the following
the Package View.

5.2.3 Package View

The Package View can display classes and individual code annotations inside a
given observed package. Differently from the System View designed to visualize
the whole system, in the Package View we are interested in a specific package.
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Figure 5.8 - The System View with a zoom.

Figure 5.9 - The System View with a second level zoom.

The circles are rendered with the following characteristics.

• Package: The same characteristics from the System View, i.e., a circle
with a dashed line and gray-colored background. Usually in the Package
View, this circle is the outermost one, working as a frame for the View
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area. Every other inner circle represents elements inside this package.

• Classes: Rendered as white-filled circles. Their size depends on the number
of code annotations used inside the class and the metric used to draw the
annotations. The default metric used is the LOCAD. If a white circle ap-
pears larger than others, it represents a class with more code annotations.

• Code Annotations: These are colored (any color besides white and gray)
filled circles rendered on top of white circles. They represent code anno-
tations being used inside a specific class. Their color matches the color of
their schema, present on the Schema Table. The size of these circles is
proportional to their LOCAD value,i.e., the default metric used.

Figure 5.10 - The Package View.

To exemplify the Package View, we will use the package
br.inpe.climaespacial.tsi.entity.model. We already displayed this package
on Figure 5.9, but in the System View. Figure 5.10 displays this same package
but now in the Package View. To access the Package View simply click on any
schema (colored circle) in the desired package. To revisi the result of a click action:
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• If we click on a circle that does not represent a schema or individual code
annotation, a zoom happens.
• If we click on a circle representing a schema or individual annotation, we

change the type of view being rendered. These circles are, always, the
colored ones, except for the colors gray and white.

Since Figure 5.9 is displaying a System View, after the click action we will tran-
sition to the Package View

From Figure 5.10 we see the Schema Table is exactly the same. The Header has
changed to inform that we are now in the Package View and also informs the new
metric being used to draw individual annotations, i.e, LOCAD - Lines of Code in
Annotation Declaration. Revisiting this metric, presented in Chapter 4, it measures
the number of lines of code used to write the code annotation. Consider the code
on Figure 5.11. The annotation @Id (line 3) has LOCAD = 1, while the annotation
@GeneratedValue (line 4) has LOCAD = 3.

Figure 5.11 - Example Class to revisit LOCAD.
1 public class Player {
2
3 @Id
4 @GeneratedValue(
5 strategy = GenerationType.IDENTITY
6 )
7 private int id;
8 }

We could also switch the LOCADmetric for another that belongs to our suite defined
in Chapter 4, such as AA(Arguments in Annotations) or ANL (Annotation Nesting
Level). The CADV was designed to display only one code annotation metric value
in the same view. We chose to display fewer metrics values as possible to avoid any
confusion and end with a visualization that overwhelms the user. The reason we
used the LOCAD metric in the Package View is that the traditional LOC metric
has been traditionally used to represent the size, and it is well-known to developers.

Just as with the System View we do not have textual information being displayed
to create a clean visualization. However, the user can hover the mouse over so that
labels are revealed with more information.
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To further inspect the Package View, consider the Figure 5.12. It shows the same
package presented on Figure 5.10, but with we marked two white circles (classes)
with the numbers (1) and (2) for further explanation.

Figure 5.12 - The Package View with markings.

By inspecting Figure 5.12 we can, visually, obtain the following information:

• There are 14 classes with code annotations in this package. In other words,
there are 14 white circles.
• The Header displays the name of the package, the used metric and the

type of the View
• Class marked with (1) appears larger than the others. That means it has

more code annotations than the other classes inside this package.
• Class marked with (1) has one large dark-pink circle. It means this code

annotation has a high value of LOCAD.
• Class marked with (1) also has code annotations from the schema

java.lang
• Class marked with (2) seems to have all code annotations with the same

LOCAD value, i.e., all circles have the same size.
• Class marked with (2) has no blue circle, which means no code annotation

from the schema java.lang.
• Class marked with (2) has no code annotations from schema
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javax.persistence.metamodel. It is not, however, easily observed since
the color (pink tone) is close to the javax.persistence. As already men-
tioned, this was a design decision to keep schemas from similar fam-
ilies with a similar color. Since they are related, it does make sense
to have similar colors. The same occurs with the schemas related to
org.springframework, where we used an orange tone.

The information listed above can also be obtained from source code inspection, but
not as quickly as our visualization enables.

Figure 5.13 - The Package View with Zoom on Class TsiHDU.

Just as with the System View, we can also zoom in a class on the Package View.
We will choose the class TsiHDU because it has the highest number of annotations.
Figure 5.13 displays this class with a zoom. We can see several pink-toned circles
and two blue-toned. From the Schema Table we see the blue ones belong to the
java.lang schema, and the remaining pink-toned are from javax.persistence. We can
also see a large pink-toned circle that contrasts with all the other colored circles.
We can extract some information just by look at this view:

• This class is coupled to two annotation schemas: java.lang and
javax.persistence.
• This class has one annotation that used more lines of code (LOCAD) than

98



any other. Visually, we do not know which annotation it is. By hovering
the mouse on the code annotation, a label appears and gives more details:
name of the code annotation, LOCAD value, and schema. If we hover the
mouse over this annotation is the @Table and the LOCAD value is 6.
• The Header changed to display

In the Package View we cannot see, however, how these annotations are configur-
ing a specific element inside the class. For instance, we do not know what methods
have more code annotations.

Comparing with the System View, more information is now available to the user
since the visualization seems a little more crowded with circles.

To observe how code annotations are configuring specific code elements, we must
transition to the Class View

5.2.4 Class View

The Class View can display classes and individual code annotations inside the
observed class. It allows users to visualize how code annotations are configuring a
specific programming element, such as a method, class member, or the class itself.
The circles are rendered with the following rules.

• Classes: Just as in the Package View, they are rendered as a white circle.
There is only one white circle at a time since we are analyzing a specific
class.
• Annotations: Colored circles representing individual annotations. The color

is related to their schema present on the Schema Table. The size of the
circle is obtained by some code annotation metrics such as AA, ANL, or
LOCAD. The default metric is the AA - Arguments in Annotations.
• Gray-Circles: This color is also used to represent packages, but in theClass
View they represent code elements, such as method and class members.
The code annotations (colored circles) are rendered on top of these gray
circles. Colored circles rendered directly on top of a white circle represent
code annotations configuring the class itself. The number of colored circles
rendered on top of the same gray circle is the number of code annotations
configuring that code element.

Therefore, we have two reserved colors. White represents classes, and gray represent
code elements. It is the same gray used to represent the color of a package (dashed
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outlined circle), but it will not affect our Class View analysis since we are focused
on a single class. The gray color provides a suitable color to be used as background.
Therefore, we reused it in the Class View to represent the background color of
circles representing code elements. Every other color represents a schema.

When we see a gray circle, we cannot tell if it is a method, enum, or other code
elements. We did this as a design decision to avoid confusing users by showing more
information and more colors. We were focused on displaying the grouping of code
annotations by code elements, which is seen based on the size of gray circles. Figure
5.14 displays the Class View for class TsiHDU.

Figure 5.14 - The Class View displaying the class TsiHDU.

From Figure 5.14 we see the Schema Table is the same. The Header, however,
has changed to inform that we are now in the Class View and also informs the new
metric being used to draw code annotations, i.e, AA - Arguments in Annotations.
Revisiting this metric, presented in Chapter 4, it measures the number of arguments
passed to the annotations. Consider the code on Figure 5.15. The annotation @Id
(line 3) has AA = 0, while the annotation @GeneratedValue (line 4) has AA = 1.
We are unable to draw a circle with diameter value of zero, therefore we normalize
the value by adding one. This is just to allow the correct rendering, but the labels
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displays correctly that the AA value is zero.

Figure 5.15 - Example Class to revisit AA.
1 public class Player {
2
3 @Id
4 @GeneratedValue(strategy = GenerationType.IDENTITY)
5 private int id;
6 }

To further clarify the Class View, Figure 5.16 displays a more detailed version
with some markings we will use to guide the explanation. We removed the Schema
Table and the Header to focus on explaining details of the view itself. We added
some text to the Figure, and also we numbered the arrows to discuss them further
here.

Figure 5.16 - A detailed Class View displaying the class TsiHDU.

Arrow (1) points to the white circle, which is already known to be a class. The
second arrow (2) points to the gray circle, which may seem like just a border. This
circle is a code element. Just by looking at it, we cannot tell what element, or type,
it is. However, if the user hovers the mouse over, a label appears with extra infor-
mation about this code element. The arrow (3) points to a pink circle, representing
an annotation from the javax.persistence schema. This last information can be
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obtained by the Schema Table (not shown in this Figure). In other words, the
code element pointed by arrow (2) has one code annotation, pointed by arrow (3),
configuring it.

Arrow (4) points to a pink circle, which is a javax.persistence annotation, being
rendered directly on the white circle (class). This means that this code annotation
configures the class directly. One example of such annotation would be the @Table
or @Entity. Finally, the arrow (5) points to a large gray circle, with four pink circles
inside (or being rendered on top). It means it is a code element with four code
annotations. In short, the size of the gray circles (code elements) is proportional to
the number of annotations configuring them.

This strategy aimed to quickly identify code elements with more code annotations
and how they are grouped per code elements. A label appears with more information
by hovering the mouse over this specific code element or the code annotations inside.
We do not pollute the visualization and let the user explore only code elements or
code annotations it is interested in.

5.2.5 Code Annotations Distribution Visualization summary

We summarize the proposed visualization, CADV - Code Annotations Distribution
Visualization, suite in Table 5.2, which has the name of the view, its acronym, the
goal is meant to achieve, as well as a summary of the metrics definition.

Table 5.2 - CADV Summary.

Name Acronym Goal Summary

System View SV G1 and G5

Displays packages and schemas used.
Each schema is assigned a color,
and packages are gray circles
with dashed outline

Package View PV G2 and G5

Displays a package, classes and code annotations
used in the classes. Classes are white circles.
Code annotations are assigned the schema color
and are rendered on top of the white circles.
Packages are gray circles with dashed outline

Class View CV G3 and G5

Displays a class, code elements and code annotations
grouped by code elements. Classes are white circles.
Code elements are gray color.
Code annotations are assigned the schema color
and are rendered on top of either the white circles
, or gray circles.
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The CADV is a polymetric view, using circle packing designed to aid in the visual-
ization of code annotations used in software systems. We developed three different
views to display information at a different granularity level. This strategy allows
users to switch between these views and analyze the parts of the software with the
desired granularity.

The CADV allows the visualization of the following characteristics:

• What schemas are used in the system?
• What schemas are concentrated? What schema is spread between several

packages?
• What classes contain more code annotations?
• How coupled is a class to a schema?
• Is a code element overloaded with code annotations?
• Are there potentially misplaced code annotations?

5.3 Code Annotations Distribution Visualization assessment

This section presents the discussion and results of both experiments, E1 and E2, that
we conducted to assess our novel software visualization approach for code annota-
tions distributions - CADV. The first experiment, E1, was conducted by interviewing
six former members of the EMBRACE software project. For the second experiment,
E2, we managed to survey 44 students. We begin discussing the results for E1, fol-
lowed by E2. In the end, we present a summary with a final discussion highlighting
our findings.

Ultimately we are assessing our CADV approach that is implemented in the AVi-
sualizer. We clarified to the participants that the tool, AVisualizer, is an ongoing
work and still requires tuning, especially in the UI design. We also collected opinions
and impressions of the tool and investigated the students’ perceived ease of use and
perceived usefulness.

5.3.1 Experiment E1 analysis

To guide our interview, we elaborated 15 questions presented in Table 5.3. We sepa-
rated these questions into four categories using our goals (discussed in Section 5.1.1
as guidelines. Following, we present these categories:

• General Organization and Distribution: Assess how the AVisualizer tool
can quickly provide useful information on how code annotations are dis-
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tributed in the system under analysis.
• Code Responsibilities: Code annotations configure code elements so that

a specific behavior can be executed. It is usually tied to responsibilities
delegated to classes or packages. We wanted to find out if the participant
could quickly detect the responsibilities of packages.
• Misusage: If the AVisualizer can display code annotations usage and dis-

tributions, can the AVisualizer also display potentially problematic and
misplaced annotations?
• Tool Assessment: These questions were designed to obtain feedback from

the participants about the AVisualizer tool and make it a better product
to help software developers in their activities.

Table 5.3 also links the questions with the goals on the third column. The last four
questions (Q12-Q15) deal directly with the tool’s opinions and impressions (not only
the CADV approach), so we feel they help every goal at once.

We now present a thorough discussion and analysis for each answer to every question
we asked the participants. To enrich this section, we also provide our analysis and
opinions. Some selected quotes of the participants are also presented.

As mentioned, the system under analysis was the SpaceWeatherTSI and the AVisu-
alizer demo used to conduct this experiment is available online.10

5.3.1.1 Category A - general organization and distribution analysis

With these first five questions, Q1 - Q5, we were interested in validating how the
interviewees were able to navigate between the three views, associate the colors
displayed on the Schema Table with each view, and identify in what package or
class it was currently inspecting.

Q1-What annotation schemas are concentrated in fewer packages?

We wanted to see if the interviewees could quickly spot schemas being used, or
present, in fewer packages of the SpaceWeatherTSI project. We agreed that schemas
such as the org.junit, javax.persistence and org.springframework were ac-
ceptable answers, since they are the ones used in less packages. The org.junit,
for instance, is present in only one package. Since this was the first question, the
AVisualizer displayed the System View which is the default view of the tool.

10https://avisualizer.herokuapp.com/
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Table 5.3 - Code Annotations Comprehension Interview.

Question ID Question Goal
Category A - General Organization and Distribution

Q1 What annotation schemas are concentrated in fewer
packages?

G1

Q2 What annotations schemas are present in more packages? G1
Q3 Is the circle packing able to represent the hierarchical

structure of packages adequately?
G1

Q4 When changing to the Package View (any package), can
you tell which class(es) contain the largest number of code
annotations?

G2/G4

Q5 When changing to the Class View (any class), can you tell
which code elements contain the largest number of
annotations ?

G3/G4

Category B - Code Annotations Schema Responsibilities
Q6 Which package(s) contain model classes mapped to

databases?
G2

Q7 Which package(s) contain web controllers classes? G2
Q8 Which package(s) contain unit testing classes? Is there

enough unit testing code?
G2

Q9 Is it possible to identify packages with specific
responsibilities by visualizing schemas?

G2

Category C - Misusage
Q10 Is it possible to detect potentially misplaced code

annotations? Describe the steps
G5

Q11 Is it possible to detect code annotations potentially being
used excessively?

G5

Category D - Tool Impressions/Assessment
Q12 Out of the three views, System, Package, and Class, which

one did you prefer?
G1-G5

Q13 Do you believe the tool eased the process of seeing how the
code annotations are distributed in the system? Without
the tool, would you say there would be more or less effort?

G1-G5

Q14 Do you believe a newcomer developer could benefit from
such a tool? (Consider that the developer already knows
code annotations)

G1-G5

Q15 What role in a software team do you think can better use
the AVisualizer tool?

G1-G5

We got very similar answers from all interviewees, but some took a different ap-
proach. Except for participant P5, all others were able to identify the schemas
quickly. As seen on Table 5.4, most participants pointed both org.springframework
and javax.persistence, with the latter being the most picked one. Even though
participant P5 took more time exploring the visualization, it was the only one that
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Table 5.4 - Answers for Q1 - Schemas Present in Less Packages.

Participant javax.persistence org.junit org.springframework
P1 X
P2 X
P3 X
P4 X X
P5 X X X
P6 X

also pointed the org.junit schema.

Participant P2 stated: “The javax.persistence draws much attention since it has
the highest number of annotations (169) in the project and the vast majority is
concentrated in a single package”.

In the System View, the rendered circle was much larger than any other circle.
Furthermore, since “pink circles” (that represents the javax.persistence schema)
were available in fewer places, it drew even more attention. Participants P3, P4, and
P5 had the same impression.

We also had participants that favored other schemas, still correct, for the answer.
Participant P6 stated: “Looking at the schema table, the org.springframework

does not contain large amounts of annotations being used, so I would say that this
schema is present in fewer packages”

After this answer, it was clear that P6 searched for schemas with fewer code anno-
tations instead of schemas used in fewer packages. P1 also had the same impression
as P6.

Although there is a correlation, they are different things. For instance, consider
a hypothetical schema, schema1, with ten annotations being used in the system.
Suppose now they are spread between ten packages, i.e., each package contains one
annotation from schema1. The AVisualizer tool would show ten circles of the same
color in ten different packages. If the participant focused on the Schema Table, it
would see ten annotations. It could wrongly conclude that this schema is present in
fewer packages while, in reality, it is present in 10 different packages.

Consider now another hypothetical schema, schema2, that has 200 code annotations
being used, but all of them are concentrated in the same package. Using only the
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Schema Table the participant would see the number 200 and wrongly conclude
that this schema is present in several packages, while it is used in only one package.

We reinforce that the provided answer by P1 and P6 was adequate, but the approach
used could have lead to wrong conclusions of the system being analyzed.

As for participants P2-P5, they all “searched for colors grouped or present in fewer
packages”. Moreover, the tool was able to display such information. We believe that
the reason only participant P5 identified the org.junit schema, was because the
package with said schema was rendered a little further from packages with the
javax.persistence and org.springframework. Given that P5 spent more time
observing the visualization, it was also able to spot org.junit.

Q2 - What annotations schemas are present in more packages?

This question is the opposite of Q1. We wanted to spot schemas present in several
packages. We agreed that both java.lang and javax.ejb were good answers. Table
5.5 presents the schemas answered by the participants.

Table 5.5 - Answers for Q2 - Schemas Present in More Packages.

Participant java.lang javax.ejb javax.persistence
P1 x x
P2 x x
P3 x x
P4 x x
P5 x x
P6 x x x

For this second question, the interviewees answered faster than Q1. Half of the
participants already answered Q2 while answering Q1. Participant P3, stated:“I
can clearly see that the javax.persistence is present in less packages, while the
java.lang and javax.ejb is present in almost all packages”

Participant P4 stated something similar, but was more confident that the java.lang
is present in more packages:“I can quickly see that green (javax.ejb) and blue
(java.lang) circles are everywhere. But I can also spot packages with blue circles
and no green circles. Therefore, I believe that the java.lang schema is present in
more packages ”
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Participant P6 also pointed the javax.persistence as being present in more
packages. Which we marked as a wrong answer (we colored it red in Table 5.5)
since it is the opposite, i.e., the javax.persistence is present in fewer pack-
ages. P6 stated:“Looking at the schema table, I can quickly see that the javax.ejb,
java.lang and javax.persistence are the schemas with more code annotations
being used on the system under analysis. So I believe these are the schemas more
present in several packages.”

Participant P6 used the same strategy as done for Q1, i.e., count the number of
code annotations using the Schema Table. We already discussed, in Q1, that this
strategy could lead to a wrong analysis, which came true now. P1, however, analyzed
differently now (instead of only using the Schema Table) and correctly identified
the schemas.

We considered that the question might have been formulated inadequately, but since
all other 5 participants quickly reached the correct answer, we discarded this. The
other option was perhaps our visualization approach, CADV, was not clear enough
or missing details. Further questions clarified this for us.

In short, from the answers of participants P1-P5, the proposed approach showed
how annotation schemas were distributed in the system.

Q3 - Is the circle packing able to represent the hierarchical structure of
packages adequately?

We wanted to see if our approach using circle packing and the dashed-outlined circles
could provide the hierarchical structure of packages in Java systems.

Except for participant P6, all others could perceive the Java packages being dis-
played. P6 stated that:“For me, it is not evident that these nested circles (with
dashed outlines) are representing the same Java package structure found in the sys-
tem under analysis. The tool should provide more labels to aid.”

This answer was essential because it made sense why P6 struggled with the previous
two questions. The core problem was that the visualization was not providing suffi-
cient information about circles represented packages and how they were distributed.
So P6 was relying more on the Schema Table to provide answers.

The other 5 participants thought that the used strategy was apparent to display
packages and their nesting structure. Participant P3 stated:“I can identify the Java
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packages looking at the provided view. I can also identify circles that represent inner
packages. It is clear. Of course, the training session was helpful and the familiarity
with Java packages. Programmers of other languages might not feel the same way”

Given that five participants felt that the circle packing did indeed represent the
Java packages, we believe some minor improvements on the UI could make it more
transparent for all potential users of the tool. The requirement is that the user must
be familiar with the Java package system.

Q4 - When changing to the Package View (any package), can you tell
which class(es) contain the largest number of code annotations?

In this question, we wanted to see if the Package View could display code anno-
tations, their schemas, and their size in classes. It is essential to remind that in this
view (Package View), we are unable to see how code annotations are distributed
inside the class, i.e., if they are configuring a specific method or field. The metric
used to determine the size of the circle representing code annotation was LOCAD
(Lines of Code in Annotation Declaration).

The participants were free to choose any package they wanted to inspect. Depending
on their choice, the answers could greatly vary and still be correct. At this point
in the interview, the tool was displaying the System View. Table 5.6 shows the
packages the participants chose to inspect and the class they pointed as being the
“one with more code annotations”.

Table 5.6 - Answers for Q4 - Classes with More Annotations.

Participant entity.model business.msg collector.scheduler.missing
P1 TsiHUD
P2 PropertiesBusiness
P3 TsiHUD
P4 TsiHUD
P5 TsiHUD
P6 JsocPeriodServiceTest

As observed, three participants chose the entity.model package (which contains
code annotations from the javax.persistence schema). When asked why they
mentioned the familiarity with the schema and the size of the circle. P3 stated:“ The
pink circle (with the javax.persistence) is very large and draws attention, which
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means there are many code annotations in that package. It might make it easier
to answer the question. Packages with fewer code annotations might be harder to
inspect.”

Even though the tool should be able to provide enough information for the partici-
pants to answer this question regardless of the chosen package, it is no surprise that
they would choose to inspect packages with familiar annotation schemas (such as
javax.persistence).

After the tool switched to the Package View. All participants were able to detect
the class with the highest amount of annotations quickly. Participant P2 stated:“I
know that white circles are classes, and the class PropertiesBusiness (the label
showed the name) has the highest number of colored circles (which are code annota-
tions). So this surely is the class with the highest number of code annotations”

Participant P4 also mentioned that:“I can easily see that the class TsiHDU has the
highest number of annotations. However, this does not mean an excessive use or
design fault. Some classes require more code annotations”.

This was an interesting observation, even though this question was not addressing
concerns about misusage or potential problems. Another aspect was the LOCAD
metric used to determine the size of the code annotations in the Package View.
Since code annotations usually take up 1 line of code (LIMA et al., 2018), most colored
circles (code annotations) were the same size. What drew the participants attention
was the color (that represents the schema) and the number of colored circles inside
a class (nested colored circles rendered on top of the white circle)

With these answers, we believe the tool could ease the process of “identifying code
annotations on classes, their schemas and what class has more annotations”.

Q5 - When changing to the Class View (any class), can you tell which
code elements contain the largest number of annotations ?

In this question, we wanted the participants to explore theClass View. In this view,
we can see how code annotations are distributed inside any class being inspected.
We can see their schema (colors), their grouping by code elements (methods, fields),
and a chosen metric value to display their size. For the experiment, we are using
the AA metric (Arguments in Annotations). In short, code annotations with more
arguments are rendered as larger circles. Notice that we change the metric from the
Package View, which was LOCAD. We did this on purpose since we wanted to
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display more metrics values but not on the same view. It is known that displaying
several metrics at once can confuse the user. We used the change of views (Package
View to Class View) to change the metrics and analyze the results.

Just as with Q4, the participants were free to choose any class to inspect and de-
termine which code elements contained more code annotations. Since this question
was immediately after Q4, the participants were already on their chosen package
(in the Package View), and the majority of them almost immediately picked the
class with the highest amount of code annotations.

After switching to the Class View, the users were at first a little uncomfortable
and spent some time analyzing the view, even though they were already trained.
They issued different commands to explore the labels and better understand what
was being displayed to them. Table 5.7 shows the class and the code elements they
chose as having the highest number of annotations.

Table 5.7 - Answers for Q5 - Code Elements with More Annotations.

Participant TsiHUD PropertiesBusiness TsiRingsArea
P1 Field - Id
P2 PropertiesBusiness - class
P3 Field - Id
P4 Field - Id
P5 Field - Id
P6 Field - Id

The participants that chose the TsiHDU class were able to identify that “there is a
code element with four code annotations”. By hovering the mouse over the circle,
the label revealed that it is a field called Id. In other words, the class TsiHDU has a
field named Id that has four code annotations.

Participant P2 chose the class PropertiesBusiness and was also able to detect
“four code elements configuring the class itself”. It means that four annotations
were together but had no circle frame grouping them. In other words, these are
class-level annotations and P2 correctly identified.

Participant P6, however, was having trouble because the class
JsocPeriodServiceTest had the same amount of annotations configuring all
the elements. It is a unit testing class, with the @Test annotation on all methods.

111



The participant could not conclude that all code elements had the same amount of
code annotations.

Another participant, P3, predicted something like this could happen: “Packages and
classes with fewer annotations might be harder to inspect and draw conclusions be-
cause nothing will stand out.”. Therefore, we suggested to P6 to choose another class
or package for the analysis. The participant started to navigate the packages and
chose to inspect entity.model. This package contained classes with code annota-
tions from the javax.persistence schema, and the majority of the participants
were already using it as a “default” package to answer questions.

After P6 switched packages and chose the class TsiHDU, it was able to spot an
element with four code annotations:“I can see a code element with four colored
circles grouped. However, I do not know what type of code element it is.”

We explained that was the correct answer and gave more details about the Class
View. We returned to the JsocPeriodServiceTest and asked the same question
to P6. Now the participant was able to see that all code elements had the same
amount of code annotations and could comprehend the Class View.

When comparing to the System View and Package View, the Class View was more
confusing for the participants. Given that this view displays more details of code
elements, we expected this behavior. Furthermore, the participants felt that it was
troublesome to comprehend the change of metrics (LOCAD to AA) when switching
views.

As P1 stated:“When we were in the Package View, the code annotations (colored
circles) size was derived from the lines of code (LOCAD metric), when we switched
to the Class View, the size of the code annotations is derived from the number
of arguments. This can be very confusing, and it made analyzing the Class View
worse”

We did this change on purpose to experiment if this approach would be interesting to
display different metrics. P2 also stated:“I do not see how using the LOCAD metric
was helpful in the Package View. Perhaps using the AA metric (or at least the
same metric) in both Package View and Class View would be more interesting.
Even better would be to offer means to customize the desired metric, but without
losing reference to the annotations being analyzed”

In general, the participants said that improvements in labels would suffice. After
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answering Q5, participants felt more comfortable with the tool and started to grasp
what was being displayed.

5.3.1.2 Category B - schemas responsibilities

Questions Q6 - Q9 are more technical about code annotation usage. We wanted to
measure how the tool can aid in detecting packages with specific responsibilities
based on annotations schemas. They all have a similar analysis, but we will discuss
each question separately.

Q6 - Which package(s) contain model classes mapped to databases?

All participants took the same approach to answer this question. They first looked at
the Schema Table and searched for words like hibernate or persistence. Then
they saw what colors were assigned to these schemas and scanned the visualization
with packages that contained circles with those colors. This particular schema was
easy due to the high number of annotations present. In other words, it was easy to
spot a “big pink circle”. With this, they quickly detected what packages contained
“classes being mapped to databases”.

P2 stated that:“This was pretty straightforward. Just search the schema table,
find the color for javax.persistence and look in the view. It is quick to find
the packages with pink circles. However, the user must be familiar with the
javax.persistence”

Q7 - Which package(s) contain web controllers classes?

This question was also quick to answer, but not as much as Q6. This is because
the Spring Framework contains several different schemas11. The Java Persistence
API, on the other hand, has few schemas, for instance, the javax.persistence.
Nevertheless, they were able to find the package concerned with web controllers.
Participant P4 stated:“I know that the Spring Framework deals with web controllers,
so I will just search the table to see what are the schema colors for spring. ”

Participant P6 was not so sure that it was related to the Spring Framework. So the
approach was a little different:“I will search the schema table for the words web or
controllers. Then I’ll see the schemas with these words and search the package with
these colors (orange for the Spring framework). However, If I were unable to detect

11Revisiting, we define an annotation schema (or simply schema) as the package that created
the code annotation. This decision is made by the developer of the framework annotation
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through the schema, I would have to manually navigate each package, switch to the
Package View and search labels with the words web or controllers. In this case, I
would be searching by code annotations, instead of the schema”

The schema does indeed contain the word “web”, which helped P6 conclude that
the schema is org.springframework.web only using the Schema Table.

Q8 - Which package(s) contain unit testing classes? Is there enough
unit testing code?

Given the popularity of the JUnit framework, this was the most obvious one. Even
Java developers not familiar with web development are familiar with the JUnit.

Participant P1 stated:“I will follow the same strategy I did for the other two ques-
tions. No difference. Look at the Schema Table to see the color, then go to the
visualization searching for circles of the assigned color”

We also wanted to see if the developers could conclude if the number of unit testing
classes were enough.

Only participant P3 believed that there was insufficient unit testing classes:“Looking
at the System View, it is pretty clear that there is only one package with JUnit
classes. This could lead to the conclusion that there might not be enough unit tests
in this project.”

All other participants felt the available information was insufficient to conclude
whether there are enough unit testing classes.

As the developers of the AVisualizer tool, since there is only one package with unit
testing classes, we believe that there is not enough code coverage in the system being
analyzed.

Q9 - Is it possible to identify packages with specific responsibilities by
visualizing schemas?

This question summarizes the previous three (Q6, Q7, and Q8). We wanted to know
if our CADV approach allows the user to detect packages responsibilities based on
code annotations or schemas quickly.

P4 had a very interesting observation:“ There are annotation schemas, such as
org.junit or javax.persistence, in which their role is very clear in Java soft-
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ware system. For these schemas, it is straightforward to point out the responsibility
of a package. However, some schemas, like java.lang and javax.ejb is not very
clear. Packages that only contain code annotations from these schemas only, I am
unsure what they are doing. A closer look (changing to Package View, Class View
or even inspecting the code itself might be necessary.”

P2 stated:“ Yes, definitely it is very easy. However, the system under analysis must
use code annotations to execute behaviors. Although they are very popular, some
Java systems simply do not use them as much as web applications, for instance. ”

The other participants reinforced that it is easy to detect packages responsibilities
using the AVisualizer tool. However, there are two basic requirements.

• The system must use code annotations to execute behaviors

• The user must be familiar with code annotations

5.3.1.3 Category C - misusage

We are now interested in observing how the tool can help detect potential errors or
misusage of code annotations. It is not the primary goal of the CADV approach,
and we did not conduct any specific study related to code annotations bad smell,
or design flaws. However, we still wanted to see how the participants could use it to
detect potential problems.

Q10 - Is it possible to detect potentially misplaced code annotations?
Describe the steps

If a code annotation was potentially misplaced, we believe the quickest way find
detect it would be to “spot a circle of a given color, far away from all circles of that
same color”. Another approach would be to “spot a tiny circle of a given color in
a package with no other circles of the same color”. As an example, consider Figure
5.17, showing the System View for the SpaceWeatherTSI project.

Arrow (1) points to a large pink circle, which means this package contains many code
annotations from the javax.persistence schema. However, the arrow (2) points
to a tiny pink circle, meaning that the package also contains code annotations from
the javax.persistence schema. However, that code annotation is isolated from
other javax.persistence, in another entirely different package. This, however, does
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not mean it is potentially misplaced, but it may indicate that further inspecting is
required.

Figure 5.17 - Example of Potentially Misplaced Annotation.

During the interview, we did not point or suggested anything to the participants.
We wanted them to speak freely about this topic. Most participants manifested that
they were able to use the tool to detect potentially misplaced code annotations.
Nevertheless, some reinforced that knowledge of annotation schemas improves this
analysis.

P1 stated: “Yes, it is very simple to detect potentially misplaced codet annotations.
If I spot a pink circle in a package with only orange circles, I would say something
is wrong. Why is a javax.persistence code annotation alone in a package with
only org.springframework code annotations?”

Other participants had a very similar analysis. P3 stated: “The colors help a lot
in detecting these potentially misplaced annotations. However, I argue that whoever
is analyzing the system should also be familiar with code annotations and schemas.
This way, a better decision is made to determine if the package or class requires
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further investigation or code inspection.”

Moreover, P6 stated: “Yes, it is possible. I can even detect frameworks not present
in the software being analyzed. I think the colors are very useful, but I also feel
the Schema Table helps a lot. For instance, if I inspect the table and do not see
the org.junit schema, I know this project does not contain unit tests. Using the
Schema Table, developers familiar with metadata-based frameworks can easily spot
schemas they believe would improve the project.

Even though we did not consider finding errors a primary goal, we have collected
evidence that the CADV approach can also be used for such analysis.

Q11 - Is it possible to detect code annotations potentially being used
excessively? Or very large?

From what we presented in Chapter 4, we have evidence of extensive code annota-
tions, using several lines of code and a high number of arguments. We wanted to see
if the tool could easily show these cases and how participants would use it.

Most participants agree it is easy to use the tool for such purpose, meaning basically
to inspect “huge circles”. However, the participants could not see actual values or
usefulness in searching “large code annotations”, unless they were huge (which we
meant by outlier). Seeking code annotations that are potentially misplaced seemed
more exciting and brought more benefits to the code quality from the participants’
point of view.

P2 stated: “With the current CADV approach, I would seek the size of the circles.
However, it is very vague to declare if this size is a problem. Also, the CADV does
not show classes or code elements without code annotations, so I feel it is even harder
to determine if a code annotation is problematically large.”

P3 reinforces that it is tough to determine anything just by using the size, stating:
“At first, I would use the diameter of the circle. However, I feel the tool is not
adequate for this type of analysis. Many design decisions may include using several
extensive code annotations, with many arguments.”

As we mentioned, we have evidence of huge code annotations present in open-source
software. However, we were not interested in investigating these aspects in this
experiment, and we did not present software with such problems to the interviewees.
If, for instance, we presented to the user a code annotation that takes 53 lines of
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code, the answers might have been different. Future experiments focused on bad
smells will address this.

5.3.1.4 Category D - tool impressions/assessment

In this category of questions, we are interested in general opinions of the tool and
usage scenarios.

Q12 - Out of the three views, System, Package, and Class, which one
did you prefer?

We designed each view of the CADV with its own goals. They were meant to com-
plement each other. However, during our exploration, we used the System View
far more often than the other views.

As we expected, five participants quickly answered that they preferred the System
View. The exception was P5 that preferred the Class View, stating:“I enjoyed
being able to see how code annotations were grouped inside the classes.”

While P6 also preferred the System View, it was not as direct as the other:“I had
only very brief contact with the tool, and it is difficult to tell which view I enjoyed
most or found more useful. As a first answer, I will say the System View because it
is a lot cleaner, and I can see the whole system. But to give a better answer, I would
have to experiment a little more with the tool.”

Participant P3 explained why the System View was the preferred one:“I would
say the System View is more useful and less confusing. It has less information being
presented, but I can see the whole system and have an excellent understanding of
how code annotations are distributed in the whole software under analysis.”

As other software visualizations work mentioned, users tend to prefer views with less
information but simultaneously allows helpful information to be obtained. That is
what the System View provides. Although this is not an original contribution, we
have provided new evidence to support previous results about users preferring views
with less information. Our original contribution was to provide a view specifically
tailored for code annotations that is both simple and useful.

Q13 - Do you believe the tool eased the process of seeing how the code
annotations are distributed in the system? Without the tool, would you
say there would be more or less effort?
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Most participants agreed that the tool is handy to visualize code annotations distri-
bution and much faster than manual code inspection. P6 stated:“Once, I had to check
the pom file (configuration file for maven dependency) to see what metadata-based
frameworks the project was using. If I had access to a tool such as the AVisualizer,
I would have immediately identified these frameworks, at least the metadata-based
ones”

P2 stated: “The AVisualizer tool does a great job in showing the code annotations
and schemas used. If comparing with a find option (ctrl+f) in a text editor or IDE,
the amount of effort spent is much greater than using the AVisualizer tool”

An interesting observation made by participants was to implement the CADV as
a plugin for an IDE. In other words, port the AVisualizer to a plugin. This way,
they would benefit the most. While coding in their IDE, they could quickly inspect
code annotations by executing the “AVisualizer plugin”. It would not be necessary
to switch environments, and the AVisualizer could also link back to the code. P6
stated: “If I was using the plugin to see code annotations, and if I double-clicked the
circle (that represents the code annotations), it would be handy if the IDE highlighted
or jumped to the code”

P6 also reinforced that: “The AVisualizer is much faster than other IDE resources
to find code annotations. However, having to open an external tool or browser is not
very much appealing.”

Participants also suggested integrating the AVisualizer with a CI/CD pipeline such
as SonarQube12.

With this information, we will still keep the AVisualizer as a web application since
it is easy to maintain and releases developers from installing applications. However,
we will begin porting it as a plugin for the IntelliJ IDE13.

Q14 - Do you believe a newcomer developer could benefit from such a
tool? (Consider that the developer already knows code annotations)

Given that a newcomer developer is part of the target audience of our tool, we
wanted to see how participants felt about it.

Except for participant P5, the others felt that it could indeed be helpful to a new-

12https://www.sonarqube.org/
13https://www.jetbrains.com/idea/
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comer developer. Moreover, they should have access to such tools right from the
start.

P5 stated: “I do not feel that a developer should start the comprehension process from
code annotations point of view. A much better approach would be first to understand
what design patterns are being used in the project. Only after that, the developer
should seek annotation schemas, or the metadata-based framework”

As mentioned, the other participants felt differently. P2, for instance, stated:
“That was an excellent question. For instance, a newcomer developer that needs
to add features related to persistence can use the tool and see all packages using
javax.persistence schema. The new feature should likely be added to those pack-
ages. This eliminates a manual process of code inspection using IDE shortcuts. The
AVisualizer tool is much quicker.”

P1 also feels the tool is helpful for a newcomer, but there are some considerations.
“Maybe it can be helpful. However, the developer must be very familiar with an-
notation schemas. This way, the tool can be used to check where, in the code, the
developer should go next”

Q15 - What role do you think can better use the AVisualizer tool

In general, the participants believe the tool can be used by every member that
belongs to a software team. Nevertheless, some participants feel that the software
architect can take advantage of the tool during the whole development life cycle. It
is beneficial to see the organization and distribution of code annotations.

P1 stated: “Usually developers are interested in quickly starting to code and adding
new features. On the other hand, the architect is much more concerned with the
structure and the organization. And also, a QA can quickly detect packages that are
not being unit tested”

And also, P4 stated: “The architect can use this tool to control the growth of the
system, checking if the responsibilities are being placed correctly in packages”

P6 believes every member can benefit and stated: “Every one that touches source
code can benefit from this tool”
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5.3.2 Experiment E2 analysis

As we presented in Section 5.1.4, we also conducted an experiment with 44 students
that we named E2 experiment. This section discusses the results of this experiment.
We first discuss the student’s technical background. Then we analyze the results from
the ten close-ended questions. The students used the AVisualizer tool to identify code
annotations information in the analyzed system to answer these questions. Just as for
E1, the SpaceWeatherTSI was the used software. Finally, we analyzed the opinions
and impressions of the students about the AVisualizer tool. The procedures and
design of the experiment were discussed in Section 5.1.4.

Highlights for the E2 Analysis:

• Questions that required using the System View and Package View the
students performed very well. More than 80% of the students answered
these questions correctly.
• Questions that required using the Class View the students performed rea-

sonably. Between 50% and 75% of the students answered these questions
correctly.
• Students were not eager to use the AVisualizer to detect misconfigurations,

but rather identify what code annotations are being used and further study
them in other sources.
• Students do not see a big difference if the tool is an embedded plugin in

the IDE or an external tool.
• Students find that the AVisualizer quickly helps to identify code annota-

tions being used in the system. Much faster than manual code inspection.
• Students find that the AVisualizer requires improvements in the UI to

understand better the metrics being presented.

5.3.2.1 Students technical background

The first part of the experiment was to obtain the technical background of the stu-
dents. We asked about their familiarity with code annotations and what program-
ming language they used primarily. They should have also considered experiences
with C# attributes and Python decorators since they are very similar to Java code
annotations. Figures 5.18 and 5.19 presents, respectively, the familiarity and primary
language in a column chart.
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Figure 5.18 - Students Familiarity with Code Annotations.

Figure 5.19 - Students Primary Language.

Roughly half of the students considered themselves familiar with code annotations,
and less than 5% considered an expert or unfamiliar. We understand this is be-
cause the software engineering course taught in the involved schools is a Java-based
curriculum. Therefore, students are constantly exposed to the org.junit code an-
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notations such as @Test and @Before when studying unit testing. However, to be
considered an expert would probably require skills such as creating their own code
annotations and using reflection to retrieve and process them at runtime. Usually,
students and even most developers are less exposed to such topics. Since the CADV
is focused on visualizing code annotations being used and not creating annotations,
we consider the target audience adequate for the experiment. As for the student’s
primary language, we can see the top two languages are Java and Python. This can
also be explained given the nature of the software engineering curriculum used in
the schools. As for Python, the courses that deal with machine learning use Python
as the primary language. Therefore, it was expected that Java and Python would
be highly present.

Table 5.8 - Code Annotations Students Questionnaire.

Question ID Question Goal

Q1 What annotation schema is located in a single package? G1
Q2 What annotation schema is located in more packages ?

(more distributed)
G1

Q3 Which annotation schema contains the largest amount of
annotations being used?

G1

Q4 What class contains the highest number of
javax.persistence annotations?

G2/G4

Q5 What package contains classes being mapped to databases
(usage of javax.persistence)?

G3/G4

Q6 What package is mostly concerned with web controllers
(usage of org.springframework.web.bind.annotation)?

G2

Q7 How many packages contains unit testing class(es)? G2
Q8 What javax.persistence annotation has the highest

LOCAD (lines of code per annotation) value?
G2

Q9 In the class
br.inpe.climaespacial.tsi.entity.model.TsiHDU
(fully-qualified name), what code element has more
annotations configuring it?

G2

Q10 What annotation from the
org.springframework.web.bind.annotation schema contains
more attributes/arguments (Annotation Attribute metric -
AA)?

G3
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5.3.2.2 Technical questionnaire analysis

Since experiment E2 was conducted asynchronously, we did not use the same ques-
tions used in E1. Roughly half of those questions were very open-ended and, there-
fore, suited for an interview (like E1). For E2, we elaborated ten close-ended ques-
tions with five alternatives each. These questions aimed to detect if the students
could identify code annotations characteristics from a target project using the AVi-
sualizer tool. Just as E1, the target software used for E2 was the SpaceWeatherTSI.
Table 5.8 presents the questions.

To prepare these questions, we used the goals proposed and discussed in Section
5.1.1. The relation between the goals and the questions is available in the last column
in Table 5.8. Our Goal #G5 is concerned with detecting misconfigurations, and since
this is not a primary goal of the CADV, we chose not to insert questions related to
this topic in these ten questions. Since E1 was an interview, it was easier to discuss
other topics.

To analyze and discuss the student’s performance, we have two Figures to guide us.
First, on Figure 5.20 shows the success rate of each question. For instance, roughly
82% of the students got question Q1 correct. And Figure 5.21 shows the students
performance considering all ten questions. For instance, we see that 23% of the
students got all tens questions correct, and 27% answered nine questions correctly.

Figure 5.20 - Individual Question Success Rate.
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We begin analyzing the success rate of each question presented in Figure 5.20. As
seen, questions Q2 and Q4-Q6 had the highest hit rate, with more than 90% of the
students answering correctly. Question Q9, on the other hand, 55% of the students
got it correctly. The success rate of questions Q1 through Q6, and Q10, were con-
sidered very good, above 82%. However, it dropped considerably from Q7 (75%) till
Q9 (55%). The first questions could be answered quickly using the System View
or Package view, while Q9, for instance, required manipulating the Class View.
This result has some correlation to the ones obtained in the E1 experiment analysis.
Participants had more trouble dealing with the Class View in both experiments
while performing better on the System View.

Figure 5.21 - Students Performance Considering all Questions.

Our research group considered that the first three questions were the easiest because
they practically required no manipulation of the AVisualizer tool,i.e., navigating the
views and checking the labels. On the other hand, we pointed the last three questions,
Q8-Q10, as the hardest ones. To answer these final questions required manipulating
the tool and minimal knowledge of code annotations metrics from our novel suite
(discussed in Chapter 4).

To answer questions Q1-Q3 required a quick look at the System View or the
Schema Table. It should have been enough to obtain the correct answer.

From questions Q4 through Q6, it required a little more effort and navigation of
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the tool, but at most to the Package View, which means only one level of zoom.
These questions asked about a specific schema, and the students needed to identify
the correct package and change it to the Package View. In short, it required
medium manipulation of the AVisualizer tool.

For instance, for Q5-What class contains the highest number of
javax.persistence annotations?- the students needed to identify a package with
the schema javax.persistence, and change to the Package View. In this view, it is
possible to identify the class with the highest number of annotations.

In general, the students did very well with these previous discussed questions (Q1-
Q6).

Analyzing Question Q7, we observed the first decline of the success rate, with 73% of
the students getting it correct. Our team assumed the students would have reached
a similar success rate as the previous questions but was slightly lower. This question
asked How many packages contains unit testing class(es)?. The correct
answer is “only one”.

To answer the question, the students needed to know that the schema responsible
for unit testing is the org.junit. In other words, Q7 also deals with the relation-
ship between responsibilities and schemas. In questions Q5 and Q6, we made this
explicit. To answer the question, the students needed to search how many packages
contained code annotations of the schema org.junit. It was also very visual and
color-dependent since they had to search for “circles with the matching color of
org.junit (with is a dark purple tone)”. The Schema Table also has a check box
for each schema that helps to find the location of these schemas (or colored circles).

Since the success rate dropped, we can assume that there is a need to reinforce
the concept of “annotation schema”. Furthermore, improvements in the UI of the
tool and better filtering could have helped more students reach the correct answer.
The idea of reinforcing the “annotation schema” concept was also obtained from
the E1 results. Some participants mentioned that even though most Java developers
are familiar with the annotation “@Test”, most of them are not familiar with the
concept that this annotation belongs to the “org.junit” schema.

Therefore, we can assume that the success rate of questions Q5 and Q6 could have
dropped to 73% if we had not explicitly mentioned the schema required to answer
the question.
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For the final three questions, Q8-Q10, they required the students to manipulate the
tool altogether, use the labels, and understand what some code annotation metrics,
such as LOCAD and AA, were measuring. As observed in Figure 5.20 the success
rate also dropped for these questions, especially Q9, where 56% of the students got
it correct. Let us observe what the crucial points analyzed in each question was

• Q8 - Involved using the LOCAD (Lines of Code in Annotation Declaration)
metric. The success rate was 63%

• Q9 - Involved observing the Class View and identifying the code element
with more annotations. The success rate was 56%

• Q10 - Involved using the AA (Arguments in Annotation) metric. The suc-
cess rate was 80%.

To answer question Q9, no metric was required, only detecting a “grey circle with
the largest amount of colored circles”. Questions Q8 and Q10 required using the
labels and would help detect a “big circle”, but the numerical information on the
label would have been enough. We can assume that using the metric was not a big
problem since the labels were helping. However, for Q9, it required understanding
the Class View, the meaning of the rendered circles, and how they are grouped.
The Class View was also a problem for the participants in E1. The problem with
this view is that it shows more information and details for a single class which
seemed to confuse the users. Even though we learned from previous works and tried
to display only the utmost important information, it proved not as efficient as the
System View and the Package View. Therefore, using our evidence for E1 and
E2, we need to improve the Class View or redesign how we intend to display class
details on a polymetric view.

As for the overall student’s performance, showing in Figure 5.21, 23% of the students
got all of the questions correct. Few students performed poorly, with 2% getting two
correct answers, and 3% got five answers correct. We believe this is a good result,
considering the students are not very familiar with code annotations and not familiar
with using software engineering tools to visualize source code.

5.3.2.3 Perceived ease of use

As we mentioned in Section 5.1.4, we based on the TAM model to understand how
easy and useful the students found the AVisualizer tool.
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To measure the “perceived ease of use”, we elaborated eight statements that mea-
sured if the students felt it was easy to use the tool, navigate between the views, and
identify packages and classes. We used the label “General Navigation and Usage”
to classify this group of statements.

These statements used the Likert Scale, ranging from strongly disagree to strongly
agree. Table 5.9 presents the complete statements and an ID with used to identify
them. Figure 5.23 present a diverging bar chart with the short versions of these
statements, their ID, and the results based on the student’s answers.

Table 5.9 - General Navigation and Usage Statements.

Statement ID Statement

S1 I can easily identify java packages with different responsibilities
using the AVisualizer tool

S2 I can easily see how code annotations are distributed in the system
under analysis using the AVisualizer tool

S3 Learning how to use the AVisualizer was easy to me
S4 I can easily see how many annotation schemas are being used inside

a java class using the AVisualizer
S5 I can easily see how many annotation schemas are being used inside

a java package using the AVisualizer
S6 I can easily identify what java package I am currently inspecting

using the AVisualizer
S7 I can easily identify the class I’m inspecting in the AVisualizer tool
S8 I can easily navigate to and from the packages and classes being

analyzed with the AVisualizer tool

As seen, no student strongly disagreed with any statements. In fact, most of the
students agreed or strongly agreed that, in general, using the AVisualizer tool is easy.
We also had disagree, and the two most disagreed statements (S7 and S8) are dealing
with navigating between all views and identifying classes, which is strongly related
to the Class View, which has already been found to require improvements. This
is yet another evidence that visualizations that require further inspection or display
multiple information may be troublesome to interpret what is being displayed.

5.3.2.4 Perceived usefulness

To measure the “perceived usefulness”, we created three different categories of ques-
tions:
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• Code Inspection versus AVisualizer: We asked the students to perceive the
effort to perform the same task with and without the AVisualizer tool.
These were a total of eight questions.

• IDE Plugin versus External Tool: Developers prefer to use tools as a plugin
for an IDE. Do students also feel that way?

• Primary Usage for the Tool: We created three possible scenarios for the
students to use the tool and measure their primary usage.

Figure 5.22 - AVisualizer Versus Code Inspection.

For Code Inspection versus AVisualizer we wanted to measure how students per-
ceived using our tool to find code annotations related characteristics would compare
to find the same information but only inspecting the source code with regular IDE
shortcuts. Figure 5.22 shows our results using a diverging bar chart. We divided it
into two regions. The top region, With the AVisualizer, presents the results consider-
ing the student was using the tool. The lower region, Code Inspection, has the same
statements, but considering the students could only use source code inspection.

Most of the students found that using the AVisualizer to detect code annotations-
related information is far easier when compared to manual code inspection. The
statement that had the higher difference was S4 I would easily detect all annotation
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schemas that are being used in a Java system. Most students strongly agreed it would
be easy using the AVisualizer, and strongly disagreed it would be easy without the
AVisualizer, using only code inspection.

Figure 5.23 - General Navigation and Usage Results.

These results also correlate with how most participants from E1 felt. P6, from E1,
stated: “I once had to find every metadata-based framework reading the pom file. If
I had access to something like AVisualizer, it would have been much easier”.

Furthermore, this result also correlates with our primary goals, presented in Section
5.1.1. Finding annotation schemas is strongly related to understanding how code
annotations are distributed in the whole system, not just a specific class or pack-
age. Our primary goal, G1, is precisely concerned with this general distribution.
Furthermore, is another evidence that the System View can reach that goal.

For the second category of questions, Plugin IDE versus External Tool, we wanted
to know how the students feel about plugins embedded in IDEs (like IntelliJ and
Eclipse). We made two statements, one considering that the AVisualizer tool was a
finished product and available as a web application, which is actually how the stu-
dents conducted the experiments. The second statement considered the AVisualizer
tool a finished product available as a plugin for any IDE. Figure 5.24 presents the
results using a diverging bar chart.
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Figure 5.24 - Web Application versus IDE Plugin.

The results differ from what we obtained interviewing the developers in experiment
E1. Although developers from E1 did recognize the advantages that our visualization
tool/approach brings to analyzing code annotations, they are not very eager to access
an external tool to analyze their source code. However, if a plugin were embedded
in their IDE, they would feel much more interested in using it. As for the students,
we conclude they did not feel that using an external tool is a problem. Furthermore,
turning into a plugin for an IDE does not make much of a difference. Observing
Figure 5.24 there are only slightly more strongly agree considering the tool as an
IDE plugin a better option.

Finally, in our third category of questions, Primary Usage, we gave the students four
possible scenarios and asked them in which one they would use the tool. Figure 5.25
display a pizza chart with the results.

As seen, 50% of the students would prefer to use the tool to detect what annotation
schemas are present in the system. And then, they would seek other sources to
learn what these annotation schemas are used for. They are not very interested in
detecting misplaced annotations or analyzing the architecture of the system. From
this result, we can assume that:

• The AVisualizer tool does not teach code annotations. If it did, the students
could use the tool itself to learn about annotations.
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• The AVisualizer helps detect what annotations (or annotations schemas)
are being used in the system. Even though the students cannot use the
tool to learn annotations, they can use the tool to guide what annotations
they need to learn, i.e., the ones being used in the system they are working
on

Figure 5.25 - Potential Scenario Usage.

Finally, we present some quotes from students answered in the final question about
their overall opinions and impressions of the CADV and the AVisualizer tool. In
this work, we did not perform a statistical analysis to describe how the AVisual-
izer tool impacted students with different code annotations familiarity or different
primary programming languages. This analysis will be performed in future works.
However, we did a simple sampling when selecting these students’ quotes to obtain
some variability in their familiarity with code annotations and the success rate of
their answers in the closed-ended questions. Table 5.10 presents the demographics
information of these selected students.
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• (S1) “The tool is easy to navigate e quite direct, and intuitive, something I
thought was positive. However, suppose the user is not familiar with Java
packages and schemas (for instance, the org.junit deals with unit tests).
In that case, the idea of detecting the responsibilities of packages is not
very useful. Perhaps further explanation of schemas would be nice inside
the tool. A tooltip can help.” Very familiar, undergrad, typescript, a 10/10

• (S2) “I thought it was a wonderful tool. I have just started developing pro-
fessional Java systems and found the AVisualizer extremely intuitive to use.
I find code annotations a very complex subject, and having a visualizer tool
helps the overall learning process.”

• (S3) “As a person with little experience in developing software projects,
I was able to understand it quickly and found it very intuitive for anyone
who needs such an application. The idea of combining different colors, cap-
tions, and geometric shapes with different sizes helped me to visualize code
annotations and packages.”

• (S4) “The tool itself makes it very easy to understand what class or pack-
age uses what annotations. Furthermore, it is straightforward to see where
the largest annotations are and identify the classes which use them. For
example, it was very easy for me to find which class is used for testing and
which package is contained. The only problem I see is that it could become
difficult for larger projects, which have many packages and classes, to nav-
igate through them as these would be highly nested. With a high amount of
elements, it becomes more difficult to analyze.”

• (S5) “Neat idea. Extremely useful if your system heavily uses code anno-
tations. However, I have noticed that it is still is very buggy. Traversing
the project sometimes resulted in the graph multiplying and becoming unre-
sponsive. Also, changing the view often resulted in an unusable application
state. I often had to refresh the page to use the tool again.”

• (S6) “The tool is easy to use, but sometimes I got confused if I was still in
the same package when switching views. I had to check the Header to make
sure where I was. Maybe animations would help. Also, a toggle option to
hide annotation schemas that are not relevant in the current zoom level
would be a nice feature since it is a bit confusing if you are zoomed in
and have to search for the wanted annotation schema again. Otherwise,
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a great tool to get quick impressions about the project (assuming it uses
annotations”

• (S7) “I would definitely use the tool in case I have to work on a system that
heavily depends/uses annotations in order to get a better understanding of
it and view the systems structure and its annotation usage”

• (S8) “The tool was easy-to-use, user-friendly, and intuitive. After watching
the clear video tutorial, I managed to understand how it worked. I would
use it to analyze a system, especially if I plan to add new code annotations”

• (S9) “I feel the tool is nice, but would be even better if it was able to give
more details about the packages we are navigating and classify the code
annotations (for instance, if it is for testing, or persistence).”

Table 5.10 - Demographics Data For Selected Students.

Students Familiarity with Annotations
(1-5) Primary Language Questions Answered

Correctly (%)
S1 4 TypeScript 100%
S2 2 Java 70%
S3 1 Python 70%
S4 2 Java 70%
S5 1 Java 70%
S6 2 Java 100%
S7 2 Java 100%
S8 1 Java 90%
S9 3 AdvPL 50%

Notice that even though most students in Table 5.10 did not consider themselves
“very familiar” (4) or “expert” (5) with code annotations, they still managed to
get 70% of the questions answered correctly, with only one student S9, getting
50% success rate. However, this student S9 is familiar with the AdvPL (Advanced
Protheus Language), a language not widely popular as Python or Java.

As seen in the quotes, the students thought the AVisualzer tool was nice and could
comprehend how code annotations were distributed. However, as with every software
tool, there is always room for improvement.
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5.3.3 Experiments summary and highlights

This section summarizes the results obtained from both E1 and E2 experiments and
a discussion of our goals. While E1 was a recorded interview with six professional
developers involved in the construction of the SpaceWeatherTSI software, E2 was
conducted with 44 students asynchronously using a survey. In both experiments, the
participants had to use the AVisualizer tool and answer some questions about code
annotations distribution and usage of the SpaceWeatherTSI software.

To conduct the experiment E1, We prepared 15 questions to guide us. Afterward,
we carried out a qualitative analysis of these interviews with the following findings:

• The interviewees found the System View very useful because they could
quickly obtain knowledge about the general organization and code anno-
tations distribution of the software being analyzed. The System View
was the most used view by the interviewees, which demonstrates they felt
more comfortable with it.

• The interviewees found the Class View more confusing because it is very
close to code elements and it shows more details of a smaller part of the
software being analyzed. They avoided exploring this view and were not
confident in answering questions.

• Although the interviewees agree the tool is far superior to detect and in-
spect code annotations than code inspection, they would much rather have
it as a plugin for their IDE or integrated into a CI/CD pipeline.

• Generally speaking, the interviewees enjoyed the CADV approach and the
nested circle packing approach to represent the software system. However,
the Class View should be redesigned to be more intuitive and less over-
whelming.

• Concerning the AVisualizer tool, they pointed out several UI improvements
that the tool needs to address. Moreover, more customization, such as
configure the metric, choose the color for annotation schemas, and group
annotation schemas.

The second experiment, E2, was carried with 44 students asynchronously. First, they
had to use the AVisualizer tool and answer ten close-ended questions about code
annotations usage and distribution of the SpaceWeatherTSI software. Afterward,
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they answered a total of 20 questions about their opinions and impressions of the
AVisualizer tool as well as potential usage scenarios. They aimed to measure the
“perceived ease of use” and “perceived usefulness”. The first 19 questions used the
Likert scale ranging from “strongly disagree” to “strongly agree”. Finally, the last
question was open to the students to describe their overall impression of the tool.
In short, throughout experiment E2, the students answered 30 questions.

Findings from the ten close-ended questions with the students in E2:

• Questions with the highest success rates were related to the System View.
In other words, questions about the general view and code annotations
distributions in packages were easier to answer.

• Questions with the lowest success rates were related to the Class View. In
other words, questions about code annotations inside a class or in specific
code elements were harder to answer.

These findings are highly correlated to what we obtained in experiment E1, where
interviewees felt much more comfortable answering questions that required using
the System View.

Findings from the impressions and opinions of the students about the AVisualizer
tool:

• Using the AVisualizer to detect code annotations is easier than purely
inspecting the code.

• Students prefer to use the tool to search code annotations being used to
learn about annotations and metadata-based frameworks.

• Students do not find that using IDE Plugins is a huge advance in using
web applications or external tools.

• Students are not eager to use the tool to detect bad smells, errors, or
misconfigurations.

• Students enjoyed the circle packing approach but suggested improvements
on the tool UI.

We have evidence that the CADV could provide a software visualization that al-
lowed developers to quickly detect annotation schemas and how they are grouped in
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the packages. Developers found it helpful to detect package responsibilities, poten-
tially misplaced annotations, and general architecture being used. Students, on the
other, found it very useful to detect annotation schemas being used on projects they
are working on and further improve their knowledge of annotations and metadata
configuration.

We have extensively discussed our goals throughout this section, but let us revisit
them and present a brief final discussion.

(#G1) - Detect annotations schemas and how they are distributed in
the packages: To reach this goal, we proposed the System View. The
results of our experiments show that both students and developers enjoyed
this view and were able to get a general view of how code annotations were
distributed in the system.

(#G2) - Detect how annotations are distributed per class in packages:
To reach this goal, we proposed the Package View. The results of our
experiments show similar results when compared to the System View.
Both students and developers were able to visualize code annotations usage
and distribution inside a specific package.

(#G3) - Detect how annotations are distributed and grouped per code
elements inside the classes: To reach this goal, we proposed the Class
View. The results of our experiments show this view was not as effective
compared to the System View or Package View. However, in the worst
scenario, 56% of the students were able to inspect a class and detect code
annotations characteristics. Although not as successful as 90% when com-
pared to the System View, it can be improved with further training and
UI labels and tooltips.

(#G4) - Provide a navigation system between views with different gran-
ularity: The AVisualizer tool was developed with this feature, enabling
users to navigate between all three views. From the results, after proper
training, the users were able to navigate between views.

(#G5) - Detect misconfigurations: Although this was not a primary goal, dur-
ing experiment E1, we asked participants about two specific problems: Mis-
placed and extensive code annotations. For the first, the System View was
shown to be very useful, and our color-based strategy to identify schemas
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was handy to spot potentially misplaced code annotations. Concerning ex-
tensive annotations, although the interviewees saw this as simply detecting
“large circles”, they were not particularly worried about this problem. We
argue that future experiments and a proper study should be carried to
investigate code annotations bad smells.
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6 CONCLUSION

Code annotations is a Java language feature used by several frameworks and tools.
Its usage is widespread, especially in web and enterprise applications. Despite this,
there are only superficial studies in the literature about design problems and the
assessment of annotated code. Before our work, to the best of our knowledge, there
was no suite of software metrics and no visualization approach dedicated to code
annotations.

We began this work according to the goal to define an approach to measure and
visualize code annotations to assess and comprehend their usage and distribu-
tion in software systems. From this goal, we divided the work into two parts. The
first focused on measuring code annotations, where we proposed our novel suite of
software metrics. The second part focused on visualizing code annotations, where
we defined our CADV approach, a polymetric view based on circle packing.

Software developers, researchers, and practitioners at INPE can use our open-source
tool ASniffer to measure code annotations, monitor these metrics values in their
systems, and be aware of any abnormal growth. They can also use our visualiza-
tion tool AVisualizer to comprehend the system’s architecture, internal structure
and even detect potential misplaced or misconfigured code annotations. To rein-
force the application of our approach to internal demands for INPE, we used the
SpaceWeather software system as a target for both of our experiments E1 and E2.
Furthermore, we conducted interviews with developers from this system to highlight
the importance of developing software engineering tools and approaches to support
the evolution and maintenance of software systems developed by INPE.

6.1 Code annotations measurement concluding remarks

To define and evaluate the novel suite of metrics, we proposed four research ques-
tions. From them, we elaborated on the five steps required to answer these questions.
Initially, a suite of candidate metrics was proposed based on a GQM approach. These
metrics provide values that measure how annotations are present in the source code
and their characteristics. They are a new group of metrics used exclusively for an-
notations in the source code. A sample of 24,947 Java classes extracted from 25
real-world projects was analyzed. These projects contain a wide range of annotated
classes to provide diversity in our analysis. We generated a percentile rank for all
metric values to understand their behavior and identify possible threshold values. It
was pointed out that all metrics have an exponential distribution, which indicates

139



that the average and standard deviation might not be a good representation of the
data. Some metrics, such as ANL, have small overall values, and the average value
could be considered a reference point, but metrics such as AC have an abrupt growth
at percentile 90. Thus, the average value is not a good middle point.

To determine threshold values, we used the Percentile Rank Analysis based on
Meirelles’ findings (MEIRELLES, 2013) and compared it to Lanza’s approach (LANZA;

MARINESCU, 2006), which defines three threshold values: low, medium, and high.
We also defined three threshold values: very frequent, frequent, and less frequent.
Lanza’s thresholds are obtained through the average value, which directly yields the
medium point. Our “very frequent” was obtained by analyzing the percentile rank,
and for some metrics, the medium point and “very frequent” values are close to each
other. However, when determining the “high value” (Lanza’s) and “less frequent”
value (our approach), the percentile rank analysis provides a more realistic value,
usually higher than Lanza’s “high value”. That is to say, the percentile rank analysis
considers a broader range of values, and they can still be considered common values.
These values might help to indicate a potential misleading in annotations usage.

Our analysis showed that most of the classes have low values for all of the metrics.
However, we have found some outliers with really high values for some candidate
metrics. These extreme cases reinforce the need to evaluate and further improve
the techniques to study code annotations. Before the proposed metrics suite, there
was no suitable way to measure code annotations, and therefore we would not have
identified these extreme cases. Our work was not focused on further investigating
outliers or bad smells, but with the metrics and threshold values available, future
work can be used for such goals.

6.2 Code annotations visualization concluding remarks

To propose the CADV approach, we defined five goals that we wanted to reach with
our visualization. From these goals, we elaborated a GQM model that led to three
views that compose the CADV. They are the System View, Package View, and
Class View. All three are a polymetric view that uses a nested circle packing strategy
to represent the analyzed software. The System View displays packages and annota-
tion schemas used in them. The Package View displays classes and annotations used
inside the package being analyzed. Finally, the Class View displays code elements
and how code annotations are grouped. The size of the circles is determined by code
annotation metrics values that we extract from the software that we wish to analyze.
These metrics belong to our novel suite previously discussed.
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To demonstrate our CADV approach, we developed an open-source tool named AVi-
sualizer. This tool implements the three views of the CADV and a navigation system
that allows the user to switch between them. The AVisualizer uses the ASniffer as a
dependency to generate the metrics values of the project the user wishes to analyze.
We did not want potential users to manually generate the metrics and use the report
as input to the AVisualizer. Hence, we distribute it as a single package. The use of
the ASniffer in the background is entirely transparent to the user.

Using the SpaceWeatherTSI as the target software, we organized two different
experiments to validate the CADV approach. This software is a module of the
SpaceWeather web application that belongs to the EMBRACE division of INPE. We
chose the SpaceWeatherTSI module because it uses several metadata-based frame-
works, and therefore, many annotations are available to be visualized.

The first experiment, E1, was carried out by interviewing six developers of
SpaceWeatherTSI. We prepared 15 questions to guide us, but the interview was
carried informally, and the participants were free to explore the AVisualizer tool
providing as much information as possible to use. The second experiment, E2, was
carried with 44 students asynchronously using a survey. They had to use the AVi-
sualizer tool and answer ten close-ended questions about code annotations usage
and distribution of the SpaceWeatherTSI software. Afterward, they answered 20
questions about their opinions and impressions of the AVisualizer tool and potential
usage scenarios. We performed a qualitative and quantitative analysis using these
two experiments, interviews (E1) and surveys (E2). Furthermore, we could assess
the CADV from the point of view of two different target audiences, i.e., professional
developers and students.

From our findings, in both E1 and E2, participants felt the CADV approach was
handy to quickly detect annotation schemas and how they are distributed in pack-
ages. In other words, they felt more comfortable using the System View. On the
other hand, the CADV did not reach the same success rate in E1 and E2. The issue
was related to the amount of information being displayed to the user. We also found
that students prefer to use the tool to detect and learn about annotations.

6.3 Threats to validity

To keep our threats analysis clean and following the same pattern we have been
using to write this work, we will also separate the threats into two subsections.
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6.3.1 Code annotation metrics threats

As a threat to the obtained results, the ASniffer accuracy was done manually, check-
ing if some obtained metric values were correct since no other similar tool was found
to compare the results. Therefore, this can potentially compromise the ASniffer ac-
curacy. Since it is open-source, other researchers and practitioners can also improve
the tool, further minimizing these threats.

The idea behind the selected 25 real-world Java projects was to combine different
domains and different annotation usage. To validate our sample data, we used the
concept of diversity and similarity, using dimensions. We defined three dimensions:
Type, LOC, and Percentage of Annotated Classes (PAC). We combined these three
dimensions in a pairwise fashion, and for each combination, we had at least two
projects and a maximum of 8. So, we guarantee diversity and similarity among
our chosen projects. However, the list of projects is not easily reproduced, bringing
variability in future research and threshold values. One of the reasons for this is
that the defined dimensions were used to validate the chosen projects. Instead, they
could have been used to choose the projects from a more expansive universe.

6.3.2 Code annotation visualization threats

A significant threat to the CADV approach is the heavy use of colors, severely
impacting its usage by colorblind users. Currently, the approach revolves around
colors to identify annotation schemas, being a core of the CADV approach. Our
research team has not developed a road map to address this issue. However, we are
considering using different shapes or symbols to differentiate annotation schemas.
Furthermore, the hardware being used to display the CADV can also vary from user
to user. Different types of displays and GPUs can cause the color tones to become
different, impacting the use of a color-based visualization. We tried to minimize this
using labels. As mentioned, when users hover the mouse over annotations (colored
circles), a label appears and displays textual information. It is not as direct as the
color approach, but it does minimize this threat.

For software visualization, we argue that this written thesis is also a threat to the in-
terpretation and complete comprehension of the CADV. Our approach is visual and
interactive, and it is not trivial to represent this complex system in a static medium,
such as this written text one. We minimize this threat by also complementing this
text with a recorded video.
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The AVisualizer tool, the first implementation of the CADV approach, is ongoing
work and requires several improvements in the UI and labels. This could have im-
pacted and compromised our experiments because participants might incorrectly
answer a question due to a lack of better-designed labels to guide the usage.

Both experiments, E1 and E2, were conducted remotely due to the COVID-19 Pan-
demic, which could have also compromised our results. For instance, the training
session was conducted asynchronously through a previously recorded video, and
the participants might come across potential doubts. For experiment E1, this was
mitigated during the interview itself, but for participants in E2, this was not ap-
propriately addressed. Also, participants from E1 were part of the SpaceWeather
development team, so they were already familiar with the system. In contrast, par-
ticipants from E2 were students, and it was their first contact with any software from
the SpaceWeather project. Hence, this represents an advantage that E1 participants
had.

The project SpaceWeatherTSI was chosen due to the variety of metadata-based
frameworks being used, but also to validate our work as applied research to INPE
internal demands. A careful project selection should be used to validate the CADV in
other systems, especially open-source ones, from a software engineering perspective.

Finally, we had to choose metrics from our suite that we thought would best represent
the system. For the System View this is less critical since we are not interested in
the size or number of arguments for a specific annotation. However, depending on
the chosen metrics and the target software, the Package View and Class View can
change completely.

6.4 Future work

Future studies can use this work as the foundation to enable assessment and evolu-
tion of annotation usage through the annotation metrics suite and threshold values
calculated in Chapter 4. For instance, frameworks can be improved by searching for
bad smells related to their annotations in applications using them. The proposed
techniques and the ASniffer tool can be used on real case studies, analyzing the
impact of an improved annotation structure on application maintenance. Since the
ASniffer is an open-source tool, other developers can improve it in several ways:
adding new metrics, implementing bad smell detection, and adding visualization
techniques.
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When calculating threshold values for the metrics, we found that classes with very
high values for annotation metrics exist in real projects. We consider the detection
of these outliers as evidence that a deeper investigation of this issue is essential.

As for the CADV approach and the AVisualizer tool, there is much we can explore.
The CADV was the first visualization technique proposed for the metrics, and as we
already mentioned, other techniques can also be proposed. As for our CADV, the
first step is to redesign the Class View in a way that is not confusing and does not
overwhelm potential users. Furthermore, we will improve the UI, add labels, and
create a version of the AVisualizer as a plugin for the IntelliJ IDE. We chose this
last one as it has become increasingly popular with Java developers.

We have also done a small work with C# attributes. However, we would like to
perform a deeper investigation of the metrics and CADV approach for the C# and
Kotlin, which also use code annotations and are languages very similar to Java.
Currently, the EMBRACE project is also developing solutions for mobile devices
using the Kotlin programming language. Therefore, it makes sense to take our work
and span to this environment from an applied research perspective.
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APPENDIX A - THRESHOLD VALUES FOR CODE ANNOTATION
METRICS

In this appendix, we present the obtained threshold values, with a complete table
and figure for the remaining six metrics that were not presented in Chapter 4. In
other words, we present the calculations for the metrics: AA, LOCAD, ANL, AED,
UAC, and ASC.

A.1 Arguments in Annotations (AA)

The Arguments in Annotations (AA) metric measures how many arguments are
present in a specific annotation declaration. Table A.1 shows the AA percentile
values for all projects analyzed.

Analyzing Table A.1, we notice that below the percentile 90, for most projects, the
metric has a value of 0. From the percentile 90, it starts to manifest and may reach
the value 4. This result shows that only 10% of the data is useful for analysis, but
the overall values are still low. Therefore, the average value may bring information
to characterize the data. Table A.2 shows our threshold values compared to the
thresholds obtained by using Lanza’s approach.

Our analysis shows that having 1 argument declared in an annotation can be con-
sidered a reliable average value and not 0 (as obtained by Lanza’s approach). An-
notations containing more than 2 arguments are “less frequent”, and values greater
than this might reveal uncommon scenarios.

Figure A.1 presents an example of an outlier and illustrates an AA metric percentile
rank chart. From our sample, the greatest value found was 9 for project Apache
Tomcat. The ParamServlet class has the annotation @WebServlet with all possible
arguments configured. The annotation is even more complicated because 1 of its
arguments contains 2 other nested annotations.
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Table A.1 - Percentiles from AA metric in all projects.

Projects X5. X10. X25. X50. X75. X90. X95. X99. X100. mean std
Agilefant 0.00 0.00 0.00 0.00 1.00 1.00 1.00 2.00 4.00 0.31 0.53
ANTLR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 4.00 0.03 0.20
Apache_Derby 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 0.04 0.20
Apache_Isis 0.00 0.00 0.00 0.00 0.00 1.00 1.00 2.00 8.00 0.15 0.45
Apache_Tapestry 0.00 0.00 0.00 0.00 1.00 1.00 1.00 2.00 4.00 0.28 0.53
Apache_Tomcat 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 9.00 0.04 0.23
ArgoUML 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 0.03 0.18
Checkstyle 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 0.27 0.45
Dependometer 0.00 0.00 0.00 0.00 1.00 1.00 1.00 3.00 3.00 0.42 0.65
ElasticSearch 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 5.00 0.06 0.31
Hibernate_commons 0.00 0.00 0.00 0.00 1.00 1.00 1.20 2.00 2.00 0.49 0.61
Hibernate_core 0.00 0.00 0.00 0.00 1.00 1.00 2.00 3.00 6.00 0.35 0.65
JChemPaint 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.06 0.23
Jenkins 0.00 0.00 0.00 0.00 0.00 1.00 1.00 2.00 4.00 0.21 0.48
JGit 0.00 0.00 0.00 0.00 0.00 0.00 1.00 3.00 5.00 0.16 0.59
JMock 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 0.25 0.43
Junit 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 2.00 0.22 0.42
Lombok 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 2.00 0.22 0.42
Megamek 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 2.00 0.08 0.27
Metric_Miner 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.06
OpenCMS 0.00 0.00 0.00 0.00 0.00 1.00 1.00 3.00 4.00 0.20 0.51
Oval 0.00 0.00 0.00 1.00 1.00 2.00 3.00 4.00 4.00 0.84 0.97
Spring 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 9.00 0.18 0.44
VoltDB 0.00 0.00 0.00 0.00 0.00 1.00 1.00 2.00 2.00 0.16 0.40
VRaptor 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 4.00 0.10 0.31

Figure A.1 - Percentile of AA metric: Apache Tomcat.
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Table A.2 - Threshold Values for AA metric.

Metric Percentile Reference Very Frequent Frequent Less Frequent Outlier Value Lanza-Low Lanza-Medium Lanza-High
AA 90 1.00 1.00 2.00 9.00 -0.21 0.21 0.63

A.2 LOC in Annotation Declaration (LOCAD)

The LOCAD metric measures how many lines are used to declare the annotation
fully. Annotations that take too many lines to be declared can compromise its read-
ability, maintenance, and evolution. Usually, annotations with high LOCAD also
have a high number of arguments (measured by AA). However, it is not a one-to-
one relation since a single line of annotation can have multiple arguments. On the
other hand, 1 argument that receives a long string or a list of values might be defined
using several lines of code.

Table A.3 - Percentiles from LOCAD metric in all projects.

Projects X5. X10. X25. X50. X75. X90. X95. X99. X100. mean std
Agilefant 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 6.00 1.01 0.20
ANTLR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 5.00 1.00 0.07
Apache_Derby 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00
Apache_Isis 1.00 1.00 1.00 1.00 1.00 1.00 1.00 4.00 13.00 1.08 0.52
Apache_Tapestry 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2.00 9.00 1.02 0.21
Apache_Tomcat 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 8.00 1.00 0.12
ArgoUML 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00
Checkstyle 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00
Dependometer 1.00 1.00 1.00 1.00 1.00 1.00 1.00 4.00 4.00 1.08 0.50
ElasticSearch 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 44.00 1.00 0.34
Hibernate_commons 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00
Hibernate_core 1.00 1.00 1.00 1.00 1.00 1.00 1.00 4.00 58.00 1.08 0.91
JChemPaint 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 29.00 1.20 2.36
Jenkins 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 4.00 1.00 0.06
JGit 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 6.00 1.00 0.08
JMock 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00
Junit 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2.00 1.00 0.04
Lombok 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2.00 1.00 0.04
Megamek 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00
Metric_Miner 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00
OpenCMS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 4.00 1.00 0.07
Oval 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.05
Spring 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 8.00 1.01 0.14
VoltDB 1.00 1.00 1.00 1.00 1.00 1.00 1.00 4.00 7.00 1.05 0.37
VRaptor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.03
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Figure A.2 - Percentile of LOCAD metric: Hibernate Core.
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Table A.4 - Threshold Values for LOCAD metric.

Metric Percentile Reference Very Frequent Frequent Less Frequent Outlier Value Lanza-Low Lanza-Medium Lanza-High
LOCAD 90 1.00 1.00 2.00 58.00 0.78 1.02 1.27

Table A.3 shows that even though LOCAD gains some values higher than 1 in
the percentile 99, the majority of the values are still 1, so the average value is
meaningful for this metric. Table A.4 presents the comparison between thresholds
values calculated using percentiles and the values based on average and standard
deviation values. They are not very different from each other. We conclude that
values greater than 2 are a “less frequent” value instead of the Lanza-High value of
1.

Although this metric has low values on average, it is possible to find some anno-
tations with a high number of lines of code. As an example, the highest number
found for the LOCAD metric was 58 in a class from Hibernate Core as presented
in Figure A.2. This annotation is used for query definition and has both a high
number of nested annotations and arguments values containing large strings that
spread through several lines.
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A.3 Annotation Nesting Level (ANL)

Annotation Nesting Level measures how deep an annotation is nested. As expected,
nesting levels are usually very low since there are a few annotation types that use
other annotations as attributes. The values only slightly increase from percentile
99, and the majority of the values are zero. Hence, the average value is a good
approximation compared to our approach based on the percentile rank.

Table A.5 - Percentiles from ANL metric in all projects.

Projects X5. X10. X25. X50. X75. X90. X95. X99. X100. mean std
Agilefant 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 2.00 0.02 0.16
ANTLR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Apache_Derby 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Apache_Isis 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.03
Apache_Tapestry 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.02
Apache_Tomcat 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.00 0.00 0.05
ArgoUML 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Checkstyle 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Dependometer 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ElasticSearch 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Hibernate_commons 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Hibernate_core 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 4.00 0.03 0.23
JChemPaint 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Jenkins 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
JGit 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
JMock 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Junit 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.01 0.08
Lombok 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.01 0.08
Megamek 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Metric_Miner 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
OpenCMS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.03
Oval 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.01 0.09
Spring 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.05
VoltDB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
VRaptor 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table A.5 presents the percentile values. Table A.6 shows the thresholds values. As
showed in Figure A.3, the outlier value found was 4 for the project Hibernate Core
which can be considered an extremely high value since it is common for the ANL to
be 0. Using the percentile rank, we obtained the value 0.08 to be a “less frequent”
boundary, considering that Lanza’s approach was 0.04.
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Figure A.3 - Percentile of ANL metric: Hibernate Core.
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Table A.6 - Threshold Values for ANL metric.

Metric Percentile Reference Very Frequent Frequent Less Frequent Outlier Value Lanza-Low Lanza-Medium Lanza-High
ANL 90 0.00 0.00 0.08 4.00 -0.03 0.00 0.04

A.4 Annotations in Element Declaration (AED)

Source code elements such as methods, members, and classes can be annotated. AED
measures how many annotations are declared for a specific element, and counting
also nested annotations. A high number of annotations in the same element might
reveal a code that is hard to maintain. An element that has an excessive amount of
annotations might prevent the code from evolving without breaking other parts.

Table A.7 shows the values of percentiles for AED. Before percentile 90, several
projects present value 0, meaning no annotation is declared on these elements. As
annotations are not mandatory, this value is perfectly acceptable.

From percentile 90, the value stabilizes at 1 until percentile 99, when the value
reaches 2. We can then create a region with the number 1 being the delimiter of
“Very Frequent” values. Between 1 and 2 we have a “Frequent” value, and above 2
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Table A.7 - Percentiles from AED metric in all projects.

Projects X5. X10. X25. X50. X75. X90. X95. X99. X100. mean std
Agilefant 0.00 0.00 0.00 0.00 1.00 2.00 2.00 4.00 8.00 0.59 0.85
ANTLR 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 3.00 0.54 0.50
Apache_Derby 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 2.00 0.12 0.33
Apache_Isis 0.00 0.00 0.00 0.00 1.00 1.00 1.00 3.00 7.00 0.45 0.65
Apache_Tapestry 0.00 0.00 0.00 0.00 1.00 1.00 1.00 3.00 5.00 0.44 0.65
Apache_Tomcat 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 5.00 0.38 0.50
ArgoUML 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 3.00 0.18 0.39
Checkstyle 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 0.12 0.32
Dependometer 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 3.00 0.19 0.42
ElasticSearch 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 18.00 0.27 0.46
Hibernate_commons 0.00 0.00 0.00 0.00 0.00 1.00 1.00 2.00 2.00 0.18 0.45
Hibernate_core 0.00 0.00 0.00 0.00 1.00 1.00 2.00 3.00 27.00 0.54 0.79
JChemPaint 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 2.00 0.24 0.43
Jenkins 0.00 0.00 0.00 0.00 1.00 1.00 1.00 2.00 4.00 0.43 0.61
JGit 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 3.00 0.38 0.50
JMock 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 2.00 0.21 0.43
Junit 0.00 0.00 0.00 1.00 1.00 1.00 1.00 3.00 6.00 0.58 0.69
Lombok 0.00 0.00 0.00 1.00 1.00 1.00 1.00 3.00 6.00 0.58 0.69
Megamek 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 3.00 0.15 0.36
Metric_Miner 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 2.00 0.41 0.50
OpenCMS 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 3.00 0.17 0.41
Oval 0.00 0.00 0.00 0.00 0.00 1.00 2.75 4.00 4.00 0.39 0.91
Spring 0.00 0.00 0.00 1.00 1.00 1.00 2.00 3.00 7.00 0.59 0.68
VoltDB 0.00 0.00 0.00 0.00 1.00 1.00 1.00 2.00 24.00 0.30 0.51
VRaptor 0.00 0.00 0.00 1.00 1.00 1.00 1.00 3.00 5.00 0.59 0.64

Table A.8 - Threshold Values for AED metric.

Metric Percentile Reference Very Frequent Frequent Less Frequent Outlier Value Lanza-Low Lanza-Medium Lanza-High
AED 90 1.00 1.00 2.00 27.00 -0.19 0.36 0.91

the value can be considered “Less Frequent”.

Using Lanza’s approach, we obtain an average value of 0 and high margin of 1. This
can be seen as an AED value greater than 1 being considered high. In our analysis,
we conclude that this number can be pushed up to 2. The comparison between the
2 kinds of thresholds is presented in Table A.8.

Although the statistical threshold shows that values of AED are higher than 2, which
can be considered high, it is common to find elements with 3 or 4 annotations that
are not overloaded with metadata. Therefore, this metric should be interpreted with
others, such as AA and LOCAD, to find annotation declarations that can cause
maintenance problems.

Figure A.4 presents the distribution graph from the project Hibernate Core that
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Figure A.4 - Percentile of AED metric: Hibernate Core.
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have the highest value for LOCAD. The highest number found for AED was 27 in
the same class. In this case, most of the annotations are nested inside a single one.

A.5 Unique Annotations in Class (UAC)

Unlike the AC metric, which counts equivalent annotations, the UAC metric is
focused on the number of different annotations in a class. An annotation is considered
equivalent to another when it has the same type and the same argument values. By
definition, the UAC value is never greater than the AC value for a class.

Table A.10 presents the obtained threshold values and Table A.9 shows the percentile
values for all projects. In our analysis, the percentile 75 could have been used as a
reference point to determine the threshold values. However, this would lead to a
smaller “Very Frequent” region. Since the goal is to make the threshold values as
flexible as possible, the reference point was pushed to the percentile 90 to allow a
broader “Very Frequent” region. Moreover, the UAC metric never assumes values
below 1 since our analyzed classes contain at least 1 annotation.

Therefore, we obtained 3 as the “Very Frequent” value, 4 as “Frequent” and 9 as
“Less Frequent”. In Lanza’s approach, the “Lanza-Medium" is 2, the “Lanza-Low” is
0, and the “Lanza-High” is 4. Hence, our analysis covers a broader range of values,
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Table A.9 - Percentiles from UAC metric in all projects.

Projects X5. X10. X25. X50. X75. X90. X95. X99. X100. mean std
Agilefant 1.00 1.00 2.00 3.00 5.00 7.00 9.05 29.87 40.00 4.22 4.70
ANTLR 1.00 1.00 1.00 1.00 2.00 2.00 2.00 4.00 14.00 1.38 0.93
Apache_Derby 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2.00 3.00 1.05 0.25
Apache_Isis 1.00 1.00 1.00 1.00 2.00 4.00 5.00 9.00 29.00 1.92 1.95
Apache_Tapestry 1.00 1.00 1.00 1.00 3.00 4.00 6.00 11.26 36.00 2.19 2.35
Apache_Tomcat 1.00 1.00 1.00 1.00 1.00 2.00 3.00 5.00 15.00 1.40 0.97
ArgoUML 1.00 1.00 1.00 1.00 1.00 2.00 2.00 3.00 4.00 1.14 0.44
Checkstyle 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.49 2.00 1.02 0.14
Dependometer 1.00 1.00 1.00 1.00 1.00 2.00 2.90 4.74 6.00 1.30 0.89
ElasticSearch 1.00 1.00 1.00 1.00 2.00 2.00 3.00 5.00 13.00 1.36 0.78
Hibernate_commons 1.00 1.00 1.00 1.00 1.25 2.00 2.15 4.43 5.00 1.40 0.94
Hibernate_core 1.00 1.00 1.00 2.00 4.00 7.00 10.00 16.00 375.00 3.41 5.87
JChemPaint 1.00 1.00 1.00 1.00 1.00 1.00 1.20 2.00 2.00 1.05 0.23
Jenkins 1.00 1.00 1.00 3.00 4.00 6.00 7.60 14.52 27.00 3.15 2.55
JGit 1.00 1.00 1.00 1.00 2.00 3.00 4.90 11.58 22.00 1.88 2.04
JMock 1.00 1.00 1.00 1.00 2.00 3.00 3.10 5.00 5.00 1.61 0.97
Junit 1.00 1.00 1.00 2.00 2.00 4.00 5.00 12.28 36.00 2.24 2.58
Lombok 1.00 1.00 1.00 2.00 2.00 4.00 5.00 12.28 36.00 2.24 2.58
Megamek 1.00 1.00 1.00 1.00 1.00 1.00 2.00 5.00 80.00 1.31 3.59
Metric_Miner 1.00 1.00 1.00 1.00 2.00 2.80 3.00 3.48 4.00 1.43 0.75
OpenCMS 1.00 1.00 1.00 1.00 1.00 2.00 3.00 12.00 59.00 1.58 3.22
Oval 1.00 1.00 1.00 3.00 5.00 5.70 6.00 9.17 13.00 3.13 2.17
Spring 1.00 1.00 1.00 2.00 4.00 7.00 8.00 15.15 102.00 3.06 3.95
VoltDB 1.00 1.00 1.00 1.00 2.00 4.00 7.00 14.00 25.00 2.08 2.51
VRaptor 1.00 1.00 2.00 3.00 4.00 5.00 6.00 8.56 29.00 3.08 2.00

Table A.10 - Threshold Values for UAC metric.

Metric Percentile Reference Very Frequent Frequent Less Frequent Outlier Value Lanza-Low Lanza-Medium Lanza-High
UAC 90 3.00 4.00 9.00 375.00 0.01 1.98 3.95

and the obtained results share some balanced growth with the AC percentile rank.
Accordingly, the obtained values are coherent.

Some Lanza-low values are negative for the same reasons explained in the AC section.
Since the UAC value is never greater than the AC value, as expected, the standard
deviation is not as high as for the AC. Therefore, the average value can still be
useful. However, using our analysis based on percentiles, a more precise threshold
value can be obtained.

The highest value found for UAC was 729 in the same class on Hibernate Core that
has the highest value of AC (CoreHibernateLogger), as seen in Figure A.5. Although
it has 729 annotations, only 375 are unique. This class has several annotations of
the type @Message, but their argument values are different.
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Figure A.5 - Percentile of UAC metric: Hibernate Core.
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A.6 Annotations Schemas in Class (ASC)

When a developer creates a new code annotation, they are grouped in a set represent-
ing metadata for a given domain, which is called schema. Usually, code annotations
are created by framework developers. When application developers use a metadata-
based framework, it uses the code annotations to configure the necessary metadata.
An application may use as many schemas from the metadata-based framework as
needed.

Stricly speaking, we define the annotation schema (or simply “schema”) as a package
where the code annotation was created. For instance, a well-known schema is the
org.junit that comprises code annotations such as @Test, @Before, and @After.
The ASC metric represents the number of schemas that a class is using. It can be
identified by the different number of annotation packages being imported.

Table A.11 shows the percentile values for the ASC metric. We observe that before
percentile 90, the majority of the projects have a maximum value of 1 ASC per class.
Based on that, we conclude that a “very frequent” value for ASC is 1, which means
that when annotations are used in a class, most of the time, all of them belong to
a single schema. From percentile 90 to 99, we have 2 as a “frequent" value for the
ASC metric. Beyond that, the value can be considered high. From Lanza’s point of
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view, the higher value is 1, while the average is 0. Once again, our approach has
proved to be flexible, yielding a wider range of values for the thresholds, which better
accommodates real-world projects.

Table A.11 - Percentiles from ASC metric in all projects.

Projects X5. X10. X25. X50. X75. X90. X95. X99. X100. mean std
Agilefant 0.00 0.00 1.00 2.00 3.00 5.00 5.00 5.41 6.00 2.29 1.62
ANTLR 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 0.38 0.49
Apache_Derby 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Apache_Isis 0.00 0.00 0.00 0.00 1.00 1.00 2.00 3.00 4.00 0.49 0.73
Apache_Tapestry 0.00 0.00 0.00 1.00 1.00 2.00 2.00 3.00 5.00 0.84 0.77
Apache_Tomcat 0.00 0.00 0.00 0.00 1.00 1.00 1.00 2.00 3.00 0.32 0.52
ArgoUML 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 0.04 0.20
Checkstyle 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Dependometer 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 0.19 0.39
ElasticSearch 0.00 0.00 0.00 0.00 0.00 1.00 1.00 2.00 3.00 0.26 0.48
Hibernate_commons 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 0.15 0.37
Hibernate_core 0.00 0.00 0.00 1.00 2.00 2.00 3.00 3.00 5.00 0.95 0.93
JChemPaint 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.44 2.00 0.58 0.53
Jenkins 0.00 0.00 1.00 1.00 2.00 3.00 4.00 5.52 10.00 1.51 1.30
JGit 0.00 0.00 0.00 1.00 1.00 1.00 1.00 3.00 3.00 0.57 0.60
JMock 0.00 0.00 0.00 0.00 1.00 2.00 2.00 2.00 2.00 0.51 0.75
Junit 0.00 0.00 1.00 1.00 1.00 2.00 2.00 2.00 3.00 1.00 0.62
Lombok 0.00 0.00 1.00 1.00 1.00 2.00 2.00 2.00 3.00 1.00 0.62
Megamek 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 2.00 0.04 0.22
Metric_Miner 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 0.30 0.46
OpenCMS 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 2.00 0.10 0.31
Oval 0.00 0.00 0.00 1.00 2.00 2.00 2.00 3.00 4.00 1.00 0.91
Spring 0.00 0.00 0.00 1.00 2.00 5.00 5.00 8.00 13.00 1.44 1.98
VoltDB 0.00 0.00 0.00 0.00 1.00 1.00 2.00 2.92 4.00 0.52 0.70
VRaptor 1.00 1.00 1.00 2.00 2.00 3.00 4.00 4.00 5.00 1.74 0.94

Table A.12 - Threshold Values for ASC metric.

Metric Percentile Reference Very Frequent Frequent Less Frequent Outlier Value Lanza-Low Lanza-Medium Lanza-High
ASC 90 1.50 1.80 2.40 13.00 -0.01 0.65 1.30

Figure A.6 presents the Spring project distribution graphs as an example of an
outlier. This project has a class, StompIntegrationTest, with the value of 13 for
ASC. Even though most of the classes have low values, we found classes coupled with
several annotations schemas. Table A.12 presents the Thresholds value obtained for
ASC.
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Figure A.6 - Percentile of ASC metric: Spring.
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APPENDIX B - PERCENTILE RANK CHARTS

This appendix intends to bring additional material regarding the metrics distribution
graph presented on Chapter 4. We present a total of seven figures. Each one of them
contain the distribution graph for every project in a single graph. Each metric has
its own graph.

Figure B.1 - AA Distribution Graph.
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Figure B.2 - AC Distribution Graph.
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Figure B.3 - AED Distribution Graph.
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Figure B.4 - ANL Distribution Graph.
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Figure B.5 - ASC Distribution Graph.
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Figure B.6 - LOCAD Distribution Graph.

0

20

40

60

25 50 75 100

Percentiles(%)

M
et

ric
s 

V
al

ue
s

Legend

Agilefant

ANTLR

Apache_Derby

Apache_Isis

Apache_Tapestry

Apache_Tomcat

ArgoUML

Checkstyle

Dependometer

ElasticSearch

Hibernate_commons

Hibernate_core

JChemPaint

Jenkins

JGit

JMock

Junit

Lombok

Megamek

Metric_Miner

OpenCMS

Oval

Spring

VoltDB

VRaptor

Metric LOCAD

172



Figure B.7 - UAC Distribution Graph.
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PUBLICAÇÕES TÉCNICO-CIENTÍFICAS EDITADAS PELO INPE

Teses e Dissertações (TDI) Manuais Técnicos (MAN)

Teses e Dissertações apresentadas nos
Cursos de Pós-Graduação do INPE.

São publicações de caráter técnico que
incluem normas, procedimentos, in-
struções e orientações.

Notas Técnico-Científicas (NTC) Relatórios de Pesquisa (RPQ)

Incluem resultados preliminares de
pesquisa, descrição de equipamentos,
descrição e ou documentação de progra-
mas de computador, descrição de sis-
temas e experimentos, apresentação de
testes, dados, atlas, e documentação de
projetos de engenharia.

Reportam resultados ou progressos de
pesquisas tanto de natureza técnica
quanto científica, cujo nível seja com-
patível com o de uma publicação em
periódico nacional ou internacional.

Propostas e Relatórios de Projetos
(PRP)

Publicações Didáticas (PUD)

São propostas de projetos técnico-
científicos e relatórios de acompan-
hamento de projetos, atividades e con-
vênios.

Incluem apostilas, notas de aula e man-
uais didáticos.

Publicações Seriadas Programas de Computador (PDC)

São os seriados técnico-científicos: bo-
letins, periódicos, anuários e anais de
eventos (simpósios e congressos). Con-
stam destas publicações o Internacional
Standard Serial Number (ISSN), que é
um código único e definitivo para iden-
tificação de títulos de seriados.

São a seqüência de instruções ou códi-
gos, expressos em uma linguagem de
programação compilada ou interpre-
tada, a ser executada por um computa-
dor para alcançar um determinado obje-
tivo. Aceitam-se tanto programas fonte
quanto os executáveis.

Pré-publicações (PRE)

Todos os artigos publicados em periódi-
cos, anais e como capítulos de livros.
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