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Time-delay interferometry (TDI) is the data processing technique that cancels the large laser phase
fluctuations affecting the one-way Doppler measurements made by unequal-arm space-based gravitational
wave interferometers. By taking finite linear combinations of properly time-shifted Doppler measurements,
laser phase fluctuations are removed at any time t and gravitational wave signals can be studied at a
requisite level of precision. In this article we show the delay operators used in TDI can be represented as
matrices acting on arrays associated with the laser noises and Doppler measurements. The matrix
formulation is nothing but the group theoretic representation (ring homomorphism) of the earlier approach
involving time-delay operators and so in principle is the same. It is shown that the homomorphism is valid
generally and we cover all situations of interest. To understand the potential advantages the matrix
representation brings, care must be taken by the data analyst to account for the light travel times when
linearly relating the one-way Doppler measurements to the laser noises. This is especially important in view
of the future gravitational wave projects envisaged. We show that the matrix formulation of TDI results in
the cancellation of the laser noises at an arbitrary time t by only linearly combining a finite number of
samples of the one-way Doppler data measured at and around time t.

DOI: 10.1103/PhysRevD.104.044033

I. INTRODUCTION

Interferometric detectors of gravitational waves with
frequency content 0 < f < f0 may be thought of as optical
configurations with one or more arms folding coherent
trains of electromagnetic waves (or beams) of nominal
frequency ν0 ≫ f0. At points where these intersect, relative
fluctuations of frequency or phase are monitored (homo-
dyne detection). Frequency fluctuations in a narrow Fourier
band can alternatively be described as fluctuating sideband
amplitudes. Interference of two or more beams, produced
and monitored by a (nonlinear) device such as a photo-
detector, exhibits these sidebands as a low frequency signal
again with frequency content 0 < f < f0. The observed
low frequency signal is due to frequency variations of the
sources of the beams about ν0, to relative motions of the
sources and any mirrors (or amplifying microwave or
optical transponders) that do any beam folding, to temporal
variations of the index of refraction along the beams, and,
according to general relativity, to any time-variable gravi-
tational fields present, such as the transverse traceless
metric curvature of a passing plane gravitational wave

train. To observe these gravitational fields in this way, it is
thus necessary to control, or monitor, the other sources of
relative frequency fluctuations, and, in the data analysis, to
optimally use algorithms based on the different character-
istic interferometer responses to gravitational waves (the
signal) and to the other sources (the noise).
By comparing phases of split beams propagated along

equal but nonparallel arms, frequency fluctuations from the
source of the beams are removed directly at the photo-
detector and gravitational wave signals at levels many
orders of magnitude lower can be detected. Especially for
interferometers that use light generated by presently avail-
able lasers, which display frequency stability roughly a few
parts in 10−13 in the millihertz band, it is essential to
remove these fluctuations when searching for gravitational
waves of dimensionless amplitude smaller than 10−21.
Space-based, two-arm interferometers [1–5] are pre-

vented from canceling the laser noise by directly interfering
the beams from the two unequal arms at a single photo-
detector because laser phase fluctuations experience differ-
ent delays. As a result, two Doppler data from the two arms
are measured at two different photodetectors and are then
digitally processed to compensate for the inequality of the
arms. This data processing technique, called time-delay
interferometry (TDI) [6], entails time-shifting and linearly
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combining the two Doppler measurements so as to achieve
the required sensitivity to gravitational radiation.
In a recent article [7], a data processing alternative to TDI

has been proposed for the two-arm configuration. This
technique, which has been named TDI-∞ (as it cancels the
laser noise at an arbitrary time t by linearly combining all
the Doppler measurements made up to time t), relies on an
identified linear relationship between the two Doppler
measurements made by an unequal-arm Michelson inter-
ferometer and the laser noise. Based on this formulation,
TDI-∞ cancels laser phase fluctuations by applying linear
algebra manipulations to the Doppler data. Through its
implementation, TDI-∞ is claimed to (i) simplify the data
processing for gravitational wave signal searches in the
laser-noise-free data over that of TDI, (ii) work for any
time-dependent light-time delays, and (iii) automatically
handle data gaps.
After briefly reviewing the TDI-∞ technique for the two

unequal-arm configuration, we show care must be taken to
account for the light-travel-times when linearly relating the
two-way Doppler measurements to the laser noise [7].
The two-way Doppler data at a time t is the result of the
interference between the returning beam and the outgoing
beam. As such it contains the difference between the value
of the laser noise at time t − liðtÞ affecting the returning
beam [with liðtÞ being the round-trip-light-time (RTLT)]
and the laser noise of the outgoing beam at time t when the
measurement is recorded. From the instant the laser is
switched on (let us say t ¼ 0) each two-way Doppler
measurement becomes different from zero only for
t ≥ liðtÞ, i.e., when the returning beam and the outgoing
beam start to interfere. By accounting for this observation
in the “boundary conditions” of the Doppler data, we show
that it is possible to introduce a matrix representation
of TDI.
We would like to briefly mention here another matrix

based approach. Romano andWoan [8] have used Bayesian
inference to set up a noise covariance matrix of the data
streams. Then by performing a principal component analy-
sis of the covariance matrix, they identify the principal
components with large eigenvalues with the laser noise and
so distinguish it from other ambient noises and signal
which correspond to small eigenvalues. We argue that this
approach is also a matrix representation of the original TDI.
Here we provide a summary of this article. In Sec. II we

present the key-points of TDI-∞ and correct the expression
of the matrix introduced in [7] relating the two arrays
associated with the two-way Doppler measurements to the
array of the laser noise. We then recast this linear relation-
ship in terms of two square-matrices, each relating the array
associated with one of the two-way Doppler measurement
to the array of the laser noise. As expected these matrices
are singular, reflecting the physical impossibility of recon-
structing the laser noise array from the arrays associated
with the two-way Doppler data. In the simple configuration

of a stationary interferometer whose RTLTs are integer-
multiples of the sampling time, we show that the linear
combination of the two-way Doppler arrays canceling the
laser noise is equal to the sampled unequal-arm Michelson
TDI combination X. In Sec. III we then turn to the problem
of a stationary three-arm array with three laser noises and
six one-way Doppler measurements. After deriving the
expressions of the matrices relating the laser noises to the
one-way Doppler measurements, we show that the gen-
erators of the space of the combinations canceling the
laser noises are equal to the sampled TDI-combinations
(α, β, γ, ζ) [6] in which the delay operators have been
replaced by our derived matrices. This is rigorously
established in section IV by showing that the matrix
formulation is just a ring representation of the first module
of syzygies—a ring homomorphism. We cover all cases of
interest. We first start with delays that are integer multiples
of the sampling interval, then the continuum case when the
sampling is continuous and the sampling interval tends to
zero and finally when fractional-delay filtering based on
Lagrange polynomials is used for reconstructing the samples
at any required time. For fractional delays we show that
homomorphism is valid (i) when all delays lie in the same
interpolation interval, (ii) for each delay lying in different
interpolation intervals and also (iii) for time-dependent arm-
lengths. In all these cases we show that there is a ring
homomorphism. Thus the matrix formulation is in principle
the same as the original formulation of TDI, although it
might offer some advantages when implemented numeri-
cally. Finally, in Sec. V we present our concluding remarks
and summarize our thoughts about potential advantages in
processing the TDI measurements cast in matrix form when
searching for gravitational wave signals.

II. MATRIX REPRESENTATION OF THE
TWO-WAY DOPPLER MEASUREMENTS

Equal-arm interferometer detectors of gravitationalwaves
can observe gravitational radiation by canceling the laser
frequency fluctuations affecting the light injected into their
arms. This is done by comparing phases of split beams
propagated along the equal (but nonparallel) arms of the
detector. The laser frequency fluctuations affecting the two
beams experience the same delay within the two equal-
length arms and cancel out at the photodetector where
relative phases are measured. This way gravitational-wave
signals of dimensionless amplitude less than 10−22 can be
observedwhen using laserswhose frequency stability can be
as large as roughly a few parts in 10−18 in the kilohertz band.
If the arms of the interferometer have different lengths,

however, the exact cancellation of the laser frequency
fluctuations, say CðtÞ, will no longer take place at the
photodetector. In fact, the larger the difference between the
two arms, the larger will be the magnitude of the laser
frequency fluctuations affecting the detector response. If l1
and l2 are the RTLTs of the laser beams within the two
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arms, it is easy to see that the amount of laser relative
frequency fluctuations remaining in the response are
equal to:

ΔCðtÞ ¼ Cðt − l1Þ − Cðt − l2Þ: ð2:1Þ
In the case of a space-based interferometer such as LISA
for instance, whose lasers are expected to display relative
frequency fluctuations equal to about 10−13=

ffiffiffiffiffiffi
Hz

p
in the

mHz band and RTLTs will differ by a few percent [1],
Eq. (2.1) implies uncanceled fluctuations from the laser as
large as ≈10−16=

ffiffiffiffiffiffi
Hz

p
at a millihertz frequency [6]. Since

the LISA sensitivity goal is about 10−20=
ffiffiffiffiffiffi
Hz

p
in this part of

the frequency band, it is clear that an alternative exper-
imental approach for canceling the laser frequency fluctu-
ations is needed.
An elegant method entirely implemented in the time

domain was first suggested in [9] and then generalized in
a series of related publications (see [6] and references
therein). Such a method, named time-delay interferometry
(or TDI) as it requires time-shifting and linearly combining
the recorded data, carefully accounts for the time-signature of
the laser noise in the two-wayDoppler data. TDI relies on the
optical configuration exemplified by Fig. 1 [10–13]. In this
idealized model the two beams exiting the two arms are not
made to interfere at a common photodetector. Rather, each is
made to interfere with the incoming light from the laser at a
photodetector, decoupling in this way the laser phase
fluctuations experienced by the two beams in the two arms.
In the case of a stationary array, cancellation of the laser noise
at an arbitrary time t requires only four samples of the
measurementsmade at and around t. Contrary to a previously
proposed technique [10–13], which required processing in
the Fourier domain a large (∼ six months) amount of data to
sufficiently suppress the laser noise at a time t [6,9], TDI can
be regarded as a “local” method.

In a recent publication [7], a new “global” technique for
canceling the laser noise has been proposed. This tech-
nique, which has been named TDI-∞, establishes a linear
relationship between the sampled Doppler measurements
and the laser noise arrays. It is claimed to work for any
time-dependent delays and to cancel the laser noise at an
arbitrary time t by taking linear combinations of the two-
way Doppler measurements sampled at all times before t.
To understand the formulation of TDI-∞, let us consider

again the simplified (and stationary) two-arm optical con-
figuration shown in Fig. 1. In it the laser noise, CðtÞ, folds
into the two two-way Doppler data, y1ðtÞ, y2ðtÞ, in the
followingway (wherewe disregard the contributions fromall
other physical effects affecting the two-way Doppler data):

y1ðtÞ ¼ Cðt − l1ðtÞÞ − CðtÞ;
y2ðtÞ ¼ Cðt − l2ðtÞÞ − CðtÞ; ð2:2Þ

where l1, l2 are the two RTLTs, in general also functions of
time t.
Operationally, Eq. (2.2) says that each sample of the two-

way Doppler data at time t contains the difference between
the laser noise C generated at a RTLT earlier, t − liðtÞ,
i ¼ 1, 2 and that generated at time t. Figure 2 displays
graphically what we have just described. The important
point to note here is what happens during the first li seconds
from the instant t ¼ 0 when the laser is switched on. Since
the yi measurements are the result of interfering the
returned beam with the outgoing one, during the first li
seconds (i.e., from the moment the laser has been turned
on) the yi measurements are identically equal to zero
because no interference measurements can be performed
during this time. In other words, during the first li seconds
there is not yet a returning beam with which the local light
is made to interfere with. In [7], however, only the first
terms on the right-hand sides of Eq. (2.2) were disregarded

FIG. 1. Light from a laser is split into two beams, each injected
into an arm formed by pairs of free-falling mirrors. Since the
RTLTs, l1 and l2, are different, now the light beams from the two
arms are not recombined at one photodetector. Instead each is
separately made to interfere with the light that is injected into the
arms. Two distinct photodetectors are now used, and phase (or
frequency) fluctuations are then monitored and recorded there.
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FIG. 2. The laser noise random process (blue color), CðtÞ,
together with the corresponding two-way Doppler measurement
(red color), yi. The laser is switched on at time t ¼ 0. Since it
takes li seconds for the beam to return to the transmitting
spacecraft, yi is identically equal to zero since no Doppler
measurements can be performed during this time interval.
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during these time intervals. Although the TDI-∞ technique
is mathematically correct, by using these nonphysical
“boundary conditions” results in solutions that do not
cancel the laser noise when applied to the Doppler data
measured by future space-based interferometers. We veri-
fied this analytically (by implementing the TDI-∞ algo-
rithm with the help of the programMathematica [14]) when
the two light-times are constant and equal to integer
multiples of the sampling time. We found the resulting
solutions to be linear combinations of the TDI unequal-arm
Michelson combination X defined at each of the sampled
times, plus an additional term that would not cancel the
laser noise in the measured data. This additional term is a
function of y1 and y2 defined at times t < l1; l2 and thus, is
a manifestation of the nonphysical boundary conditions. In
the attempt of avoiding this problem one might consider
start processing the Doppler data at any time t after the first
RTLT has past. However, one would still be confronted by
the fact that the Doppler measurement yi at time t contains
laser noise generated at time t and at time t − li. In other
words, there exists a time-mismatch between the array of
the Doppler measurement and that of the laser noise and
physical boundary conditions have to be accounted for in a
realistic simulation.
TDI-∞ is a “global” data processing algorithm, i.e., its

solutions at time t require use of all samples of the Doppler
measurements recorded up to time t. Our computations for
assessing the effects of the nonphysical boundary con-
ditions were carried out only for time intervals relatively
short, namely, for stretches of data containing about 200
samples. Although they indicate the dependence of the
solutions on the boundary conditions, it is possible that for
year-long stretches of data the effects of the selected
boundary conditions might not be significant. This, how-
ever, needs to be mathematically proved. A detailed
mathematical investigation of this point should be carried
out in the future and may require extensive work.
In TDI-∞ the sampled two two-way Doppler data are

packaged in a single array in an alternating fashion starting
from time t ¼ t0 when the laser is switched on. Assuming a
stationary array configuration in which the RTLTs l1, l2 are
equal to twice and three times the sampling time Δt, (as
exemplified in [7]), the measurements array is linearly

related to the array associated with the samples of the laser
noise C through a rectangular 2N × N matrix M (N being
the number of considered samples) in the following way:

0
BBBBBBBBBBBBBBBBBBBBBB@

y1ðt0Þ
y2ðt0Þ
y1ðt1Þ
y2ðt1Þ
y1ðt2Þ
y2ðt2Þ
y1ðt3Þ
y2ðt3Þ
y1ðt4Þ
y2ðt4Þ

..

.

1
CCCCCCCCCCCCCCCCCCCCCCA

¼

0
BBBBBBBBBBBBBBBBBBBBBB@

−1 0 0 0 0 � � �
−1 0 0 0 0 � � �
0 −1 0 0 0 � � �
0 −1 0 0 0 � � �
1 0 −1 0 0 � � �
0 0 −1 0 0 � � �
0 1 0 −1 0 � � �
1 0 0 −1 0 � � �
0 0 1 0 −1 � � �
0 1 0 0 −1 � � �
..
. ..

. ..
. ..

. ..
. . .

.

1
CCCCCCCCCCCCCCCCCCCCCCA

·

0
BBBBBBBBB@

cðt0Þ
cðt1Þ
cðt2Þ
cðt3Þ
cðt4Þ
..
.

1
CCCCCCCCCA
:

ð2:3Þ

As shown by Eq. (2.3), rows 1 through 4 and row 6 of
matrix M reflect the assumption made in [7] of the two
Doppler measurements to contain the laser noise C only at
time t during the time intervals t0 ≤ t < t0 þ li. If, on the
other hand, we correctly assume rows 1 through 4 and row
6 to be identically equal to zero, the null-space associated to
the matrix M will clearly be different.
To better understand and quantify this difference, we

split the above measurement’s array in two arrays, (Y1, Y2),
(one per measurement) and introduce two corresponding
(N × N) square-matrices relating the measurement arrays
to the array of the laser noise. We assume again a stationary
configuration with RTLTs (l1, l2) equal to twice and three-
times the sampling time respectively. The two vectors, Y1,
Y2, are related to the laser noise vector C through the
following expressions:

Y1 ¼ A1:C; Y2 ¼ A2:C; ð2:4Þ

where the symbol : denotes matrix multiplication, and A1,
A2 are equal to the following square-matrices:

A1 ¼

0
BBBBBBBBBBBBB@

0 0 0 0 0 0 � � �
0 0 0 0 0 0 � � �
1 0 −1 0 0 0 � � �
0 1 0 −1 0 0 � � �
0 0 1 0 −1 0 � � �
0 0 0 1 0 −1 � � �
..
. ..

. ..
. ..

. ..
. . .

. . .
.

1
CCCCCCCCCCCCCA

; A2 ¼

0
BBBBBBBBBBBBB@

0 0 0 0 0 0 � � �
0 0 0 0 0 0 � � �
0 0 0 0 0 0 � � �
1 0 0 −1 0 0 � � �
0 1 0 0 −1 0 � � �
0 0 1 0 0 −1 � � �
..
. ..

. ..
. ..

. ..
. . .

. . .
.

1
CCCCCCCCCCCCCA

: ð2:5Þ
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Note the above matrices incorporate the correct “boundary
conditions” as their first few rows are null (the number of
null rows depends on the magnitude of the RTLT). It is
evident that the rank of the matrices A1, A2 is less than the
number of samplesN and therefore they cannot be inverted.
Physically this means that, although the laser noise cannot
be known/measured at any time t, one can still cancel it by
taking suitable linear combinations of the two-way Doppler
data. Let us consider the following linear combination of
the two-way Doppler measurements:

X ≡ A2:Y1 − A1:Y2 ¼ ðA2:A1 − A1:A2Þ:C: ð2:6Þ

We have verified that the commutator ½A1; A2� starts to
become zero from row 6 onward. If we write the vectors Y1,
Y2 in terms of their components, the linear combination X
becomes equal to:

X ¼

0
BBBBBBBBBBBBBBB@

0

0

0

y1ðt3Þ − y2ðt3Þ
y1ðt4Þ − y2ðt4Þ

−y1ðt2Þ þ y1ðt5Þ þ y2ðt3Þ − y2ðt5Þ
−y1ðt3Þ þ y1ðt6Þ þ y2ðt4Þ − y2ðt6Þ

..

.

1
CCCCCCCCCCCCCCCA

ð2:7Þ

The above vector X is no other than the unequal-arm
Michelson TDI combination sampled at successive sam-
pling times. Note that X starts to cancel the laser noise after
l1 þ l2 ¼ 5Δt time-samples have past.
If we would incorporate in the matrices A1, A2 non-

physical boundary conditions, they now would be of rank
N and therefore invertible. As each Doppler data could be
used to reconstruct the laser noise, one could then derive
a laser-noise-free combination sensitive to gravitational

radiation by taking the difference of the two reconstruc-
tions. Since each reconstruction of the laser noise at time t
would be a linear combination of samples taken at times
determined only by the RTLT of the time-series used, any
time-dependence of the RTLT could be accommodated. In
other words, since each time-series would not be delayed
by the RTLT associated with the other time series, issues
related to the noncommutativity of the delay operators
would not be present.

III. MATRIX FORMULATION OF TDI

In the general case of three arms, we have six one-way
Doppler measurements and three independent laser noises.
The analysis below will also assume a stationary array and
the one-way-light-times to be equal to L1 ¼ Δt, L2 ¼ 2Δt,
L3 ¼ 3Δt respectively. Although these RTLTs do not
reflect the array’s triangular shape, we adopt them so that
we can minimize the size of the matrices introduced for
explaining our method without loss of generality.
By generalizing what was described in the previous

section for the X combination, we may write the one-way
Doppler data in terms of the laser noises in the following
form (using the notation introduced in [6]):

y1 ¼ D3:C2 − I3:C1; y10 ¼ D2:C3 − I2:C1

y2 ¼ D1:C3 − I1:C2; y20 ¼ D3:C1 − I3:C2

y3 ¼ D2:C1 − I2:C3; y30 ¼ D1:C2 − I1:C3 ð3:1Þ

In Eq. (3.1) we index the one-way Doppler data as follows:
the beam arriving at spacecraft i has subscript i and is
primed or unprimed depending on whether the beam is
traveling clockwise or counterclockwise around the inter-
ferometer array, with the sense defined by a chosen
orientation of the array; the matrices Di correspond to
the delay operators of TDI and there are only three of them
because the array is stationary [6]. The expressions for Di
and Ii are equal to:

D3 ¼

0
BBBBBBBBBBBBBBB@

0 0 0 0 0 0 0 � � �
0 0 0 0 0 0 0 � � �
0 0 0 0 0 0 0 � � �
1 0 0 0 0 0 0 � � �
0 1 0 0 0 0 0 � � �
0 0 1 0 0 0 0 � � �
0 0 0 1 0 0 0 � � �
..
. ..

. ..
. ..

. ..
. ..

. ..
. . .

.

1
CCCCCCCCCCCCCCCA

; I3 ¼

0
BBBBBBBBBBBBBBB@

0 0 0 0 0 0 0 � � �
0 0 0 0 0 0 0 � � �
0 0 0 0 0 0 0 � � �
0 0 0 1 0 0 0 � � �
0 0 0 0 1 0 0 � � �
0 0 0 0 0 1 0 � � �
0 0 0 0 0 0 1 � � �
..
. ..

. ..
. ..

. ..
. ..

. ..
. . .

.

1
CCCCCCCCCCCCCCCA

; ð3:2Þ

MATRIX REPRESENTATION OF TIME-DELAY … PHYS. REV. D 104, 044033 (2021)

044033-5



D2 ¼

0
BBBBBBBBBBBBBBB@

0 0 0 0 0 0 0 � � �
0 0 0 0 0 0 0 � � �
1 0 0 0 0 0 0 � � �
0 1 0 0 0 0 0 � � �
0 0 1 0 0 0 0 � � �
0 0 0 1 0 0 0 � � �
0 0 0 0 1 0 0 � � �
..
. ..

. ..
. ..

. ..
. ..

. ..
. . .

.

1
CCCCCCCCCCCCCCCA

; I2 ¼

0
BBBBBBBBBBBBBBB@

0 0 0 0 0 0 0 � � �
0 0 0 0 0 0 0 � � �
0 0 1 0 0 0 0 � � �
0 0 0 1 0 0 0 � � �
0 0 0 0 1 0 0 � � �
0 0 0 0 0 1 0 � � �
0 0 0 0 0 0 1 � � �
..
. ..

. ..
. ..

. ..
. ..

. ..
. . .

.

1
CCCCCCCCCCCCCCCA

; ð3:3Þ

D1 ¼

0
BBBBBBBBBBBBBBB@

0 0 0 0 0 0 0 � � �
1 0 0 0 0 0 0 � � �
0 1 0 0 0 0 0 � � �
0 0 1 0 0 0 0 � � �
0 0 0 1 0 0 0 � � �
0 0 0 0 1 0 0 � � �
0 0 0 0 0 1 0 � � �
..
. ..

. ..
. ..

. ..
. ..

. ..
. . .

.

1
CCCCCCCCCCCCCCCA

; I1 ¼

0
BBBBBBBBBBBBBBB@

0 0 0 0 0 0 0 � � �
0 1 0 0 0 0 0 � � �
0 0 1 0 0 0 0 � � �
0 0 0 1 0 0 0 � � �
0 0 0 0 1 0 0 � � �
0 0 0 0 0 1 0 � � �
0 0 0 0 0 0 1 � � �
..
. ..

. ..
. ..

. ..
. ..

. ..
. . .

.

1
CCCCCCCCCCCCCCCA

: ð3:4Þ

The problem of identifying all possible TDI combina-
tions associated with the six one-way Doppler measure-
ments becomes one of determining six matrices, qi, qi0 such
that the following equation holds:

X3
i¼1

qi:yi þ
X3
i0¼1

qi0 :yi0 ¼ 0; ð3:5Þ

where the above equality means “zero laser noises.” Before
proceeding, note that the matrices Di and Ii satisfy the
following identities which may be useful later on:

Ii:Dk ¼ Dk; i ≤ k

≠ Dk; i > k

Ii:Ik ¼ Ik:Ii ¼ Ik; i ≤ k: ð3:6Þ

The above identities in particular state that I2k ¼ Ik, that
is, Ik are idempotent, or in other words they are projection
operators.
By redefining the matrices qi, qi0 in the following way:

q1:I3 → q1; q2:I1 → q2; q3:I2 → q3;

q10 :I2 → q10 ; q20 :I3 → q20 ; q30 :I1 → q30 ; ð3:7Þ

Eq. (3.5) assumes the following form:

ð−q1 − q10 þ q3:D2 þ q20 :D3Þ:C1

þ ð−q2 − q20 þ q1:D3 þ q30 :D1Þ:C2

þ ð−q3 − q30 þ q2:D1 þ q10 :D2Þ:C3 ¼ 0: ð3:8Þ

Since the three random processes Ci, i ¼ 1, 2, 3 are
independent, the above equation can be satisfied iff the
three matrices multiplying the three random processes are
identically equal to zero, i.e.:

−q1 − q10 þ q3:D2 þ q20 :D3 ¼ 0;

−q2 − q20 þ q1:D3 þ q30 :D1 ¼ 0;

−q3 − q30 þ q2:D1 þ q10 :D2 ¼ 0: ð3:9Þ

Since the system of Eqs. (3.9) is identical in form to the
corresponding equations derived in [6] (see Sec. 4.3 of [6] and
equations therein), the solutions will assume the same forms.
It should be noticed, however, that the “matrix” expressions
of thegeneratorsα,β, γ, ζ canbeobtained from theusualTDI-
expressions by taking into account that the qs had been
redefined [see Eq. (3.7)]. This means that the Sagnac
combination α, for instance, assumes the following form:

α ¼ ðy1 þD3y2 þD1D3y3Þ
− ðy10 þD2y30 þD1D2y20 Þ; ð3:10Þ

where we have accounted for the identities given by
Eqs. (3.6). When considering seven time-samples of the
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six one-way measurements, the above expression for α
reduces to the following vector:

α¼

0
BBBBBBBBBBBBBBB@

0

0

−y10 ðt2Þ− y30 ðt0Þ
y1ðt3Þ− y10 ðt3Þþ y2ðt0Þ− y20 ðt0Þ− y30 ðt1Þ

y1ðt4Þ− y10 ðt4Þþ y2ðt1Þ− y20 ðt1Þþ y3ðt0Þ− y30 ðt2Þ
y1ðt5Þ− y10 ðt5Þþ y2ðt2Þ− y20 ðt2Þþ y3ðt1Þ− y30 ðt3Þ
y1ðt6Þ− y10 ðt6Þþ y2ðt3Þ− y20 ðt3Þþ y3ðt2Þ− y30 ðt4Þ

..

.

1
CCCCCCCCCCCCCCCA

ð3:11Þ

As in the case of the combinationX presented in the previous
section, here also the first few entries of the vector cannot
cancel the laser noises. This is because some of the mea-
surements at those time stamps are equal to zero. However, it
is easy toverify that allmeasurements at row seven andhigher
are different from zero and reproduce the usual TDI combi-
nation α that cancels the laser noise.

IV. TDI AND MATRIX REPRESENTATIONS
OF DELAY OPERATORS

In this section we start with the general discussion of the
algebraic structure of time-delay operators and then go on
to discuss the homomorphism between the rings of time-
delay operators and matrices. We consider various cases of
(i) time-delays which are integer multiples of the sampling
interval, (ii) the continuum case, (iii) fractional time-delays
with Lagrange interpolation and further argue how the
homomorphism could be extended to the situation of time-
dependent arm-lengths in which case the ring of delay
operators becomes noncommutative.
We remark that the homomorphism concept is funda-

mental and should hold in every situation of time delays;
whether they are integer multiples of the sampling interval,
or fractional or time dependent. We argue in this section
that this is indeed so.

A. General discussion of group and ring structures
of time-delay operators

Let us consider the data yjðtÞ as above. For the purpose
of this section we will drop the subscript from yj and call it
just yðtÞ. Also in the beginning of this section for purposes
of argument, we consider −∞ < t < ∞, that is t ∈ R, the
set of real numbers. Later we will consider the realistic
situation of finite length data segment. A time delay
operator D with delay l acts on the y as follows:

D∶R → R

yðtÞ → yðt − lÞ: ð4:1Þ

After having defined the delay operator D, we may
analogously define several delay operators D1;D2;… with
time delays l1; l2;… respectively. The D operators are
translations in one dimension. The group operation here is
then defined as the successive application of the operators:

D1D2yðtÞ ¼ D1yðt − l2Þ ¼ yðt − l1 − l2Þ:

With the operation so defined the Ds form an uncountable
infinite group. When the l1, l2 are constants, the group is
Abelian and coincides with the usual translation group in
one dimension.
Now consider the case of time-dependent arm-lengths.

Then l1 and l2 are functions of time themselves, and the
product operation becomes:

D1D2yðtÞ ¼ D1yðt − l2ðtÞÞ ¼ y½t − l1 − l2ðt − l1Þ�; ð4:2Þ

which is in general noncommutative and the group is non-
Abelian. Then this is not the usual translation group, but
nevertheless it is a group, when the time rate of change of
arm-lengths respects relativity, that is, _l < 1. Then any D
defines a bijective map from R to R, so that the inverse
exists.
When we consider several data streams yj as in two arm

or three arm interferometers, the D operators in fact form a
polynomial ring instead of only a group with the different
Dj operators as indeterminates [15]. The ring could be
commutative or noncommutative according as the arm-
lengths are time independent [15–17] or time dependent
[6,18–21]. The TDI data combinations constitute a module
over the polynomial ring of delay operators known as the
first module of syzygies. See [6,15] for details. The ring
operations in general are defined in the obvious way on a
data stream yðtÞ. Given two operators D1 and D2:

ðD1þD2ÞyðtÞ¼D1yðtÞþD2yðtÞ¼yðt−l1Þþyðt−l2Þ
D1D2y¼D1yðt−l2ðtÞÞ¼y½t−l1−l2ðt−l1Þ�: ð4:3Þ

These operations can be extended to the whole ring by
linearity. In the examples in this paper, we consider the arm
lengths to be constant in time and soD1D2 ¼ D2D1 and the
polynomial ring is commutative.

B. Matrix representations of time-delay operators:
Integer valued time-delays

We treat this case first as it is the easiest to understand
intuitively. We consider the more realistic situation where
the data segment is of finite duration ½0; T�. We will also
assume that the data are sampled uniformly with sampling
time interval Δt. Now there are finite number of samples N
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labeled by the times tk ¼ kΔt, k ¼ 0; 1; 2;…; N − 1 and
also we have NΔt ¼ T. See [22] for more details. Here
typically N could be a large number, but the point is that it
is finite. So the measurements y or the laser noise C can be
represented by N dimensional vectors in RN . Because
noise is a random process these are random vectors.
The operators D now take the form of linear trans-

formations from RN → RN and hence in our formulation
can be represented by N × N matrices which now for this
case we will represent by just D. With the arm-lengths
taken as in Sec. III, the operators D1, D2, D3 are
represented by the matrices given by Eqs. (3.2), (3.3),
(3.4). We have essentially discretized the previous situation
of the continuum. In the matrix representation we have
represented the abstract TDI operatorsD by the matricesD.
The operations which were valid in the abstract case map
faithfully to the discretized version. The sum and product of
the D operators maps to the sum and product of the D
matrices—the ring operations are preserved. This is in fact
known as a representation of a group or a ring in the
literature. We now formally define a representation [23]:
Definition 1. Let G be a group and V be a finite

dimensional vector space. For every g ∈ G there is asso-
ciated Tg∶V → V a linear map. Then the map:

φ∶G → HomðV; VÞ
g → Tg ð4:4Þ

is called a representation if φ is a group homomorphism,
i.e., for every g1; g2 ∈ G, Tg1g2 ¼ Tg1Tg2 and the group
identity e ∈ Gmaps to Te ¼ I, the unit matrix.HomðV; VÞ
is the space of linear transformations from V → V—the
endomorphisms of V.
This definition easily extends to that of rings with

identity, where now the homomorphism must be a ring
homomorphism; both operations of the ring must be
preserved under the homomorphism [24]. V is called the
carrier space. In our situation, φ maps D → D or
φðDÞ ¼ D; the delay operator D is mapped to the matrix
D. It is easy to verify that this is indeed a ring homomor-
phism. V ¼ RN , the space of the vectors y or C, plays the
role of the carrier space.
We now elucidate the above discussion with an example

of a TDI observable for LISA. Considering a simple model
of LISA with just three time-delay operators D1, D2, D3

and constant arm-lengths, any TDI observable is six
component polynomial vector in the delay operators. Let
us consider the simplest of the TDI observables, namely, ζ.
In the operator picture, it is an element of the module of
syzygies:

ζ ¼ ð−D1;−D2;−D3;D1;D2;D3Þ: ð4:5Þ

In the matrix formulation, under the ring homomor-
phism, the matrix form of ζ is

ζ¼−D1y1−D2y2−D3y3þD1y10 þD2y20 þD3y30 ; ð4:6Þ

where now the Dk are N × N matrices and the yj, yj0 are N
dimensional column vectors. ζ is now a N × 1 column
vector which is devoid of laser frequency noise. Let us now
check whether ζ as defined here cancels the laser frequency
noise. We may write ζ in terms of the laser noises C1, C2,
C3 from Eq. (3.1):

ζ¼D1ðI3−I2ÞC1þD2ðI1−I3ÞC2þD3ðI2−I1ÞC3: ð4:7Þ

At the time tk, we then have,

ζðkÞ ¼ ðI3 − I2ÞC1ðk − 1Þ þ ðI1 − I3ÞC2ðk − 2Þ
þ ðI2 − I1ÞC3ðk − 3Þ; ð4:8Þ

where in order to avoid clutter we have written k for the
sampling time tk. From the above equation we deduce that
ζðkÞ ¼ 0 for k ≥ 5 and also ζð0Þ ¼ ζð1Þ ¼ ζð2Þ ¼ 0.
However, ζð3Þ ¼ C2ð1Þ − C1ð2Þ ≠ 0 and ζð4Þ ¼ C3ð1Þ −
C2ð2Þ ≠ 0 and so at these sampling times the laser noise
does not cancel.
In the algebraic approach [6,15], any TDI observable is a

6-tuple polynomial vector in the operatorsDk. In the matrix
formulation, since the operators Dk map to the matrices Dk
under the ring homomorphism, an operator polynomial
maps also to a matrix. Thus in the matrix formulation any
TDI observable is expressed in terms of 6 matrices qi, qi0 ;
the polynomials qi, qi0 in the operators Dk are now
interpreted as matrices. In the two arm configuration
discussed in Sec. II only two matrices are required A1

and A2. In terms of the Dk matrices defined, A1 ¼ D1 − I1
and A2 ¼ D2 − I2. In a recent work [7] the two N × N
matrices are juxtaposed in the form of a 2N × N matrixM,
called the design matrix, and in which the y1, y2 measure-
ments are interleaved together in rows as in Eq. (2.3). Note
that the TDI combinations presented in matrix form can be
repackaged in a format T:y [7], which might turn out to be
more advantageous for numerical manipulations and data
analysis.
A Bayesian inference approach has been adopted by

Romano and Woan [8]. They set up a noise covariance
matrix of the data streams yj, yj0 and perform a principal
component analysis. From the principal components they
identify large eigenvalues with laser noise and so distin-
guish it from the signal. We remark that this is also a matrix
representation of the original TDI, although a little more
complex—it is a tensor representation or product repre-
sentation [23]. The covariance matrix is a second rank
tensor. Any entry of the covariance matrix Cik is an
ensemble average of outer products of the form
yαðiÞyTβ ðkÞ, yα0 ðiÞyTβ ðkÞ or yα0 ðiÞyTβ0 ðkÞ. We use Greek
indices α; β ¼ 1, 2, 3 to label data streams and operators
to distinguish them from time samples which are tensor
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indices. At each ði; kÞ, the products in y contain tensor
products—for example, y1ðiÞyT10 ðkÞ contains products of
the D matrices, namely, D3ijD2mkC2jC3m. The outer
product of the vectors C2 and C3, namely, C2 ⊗ C3 ∈
RN ⊗ RN is a tensor of second rank and the product of the
Ds acts on this tensor. These products of Ds define the
tensor representation. RN ⊗ RN acts as the carrier space
for this representation.

C. The continuum case

From a logical point of view, this case could have been
addressed immediately after Sec. IVA, but for concreteness
sake, we felt that we should first deal with the easier case of
constant time-delays which are integer multiples of the
sampling interval.
We have already shown that homomorphism holds for

the case of integer multiples of sampling interval. As a
matter of principle, one may argue that if the Doppler data
could be sampled at a rate as high as required by TDI
(corresponding to a sampling time of about (10 m=c) sec)
then we may approach the previous case of integer valued
time-delays and the equality ϕðD1D2Þ ¼ ϕðD1ÞϕðD2Þ
would seem to hold. So this motivates us, on a theoretical
basis (also it is instructive), to examine this question by
taking the continuum limit of the sampling intervalΔt → 0.
Then the matrix representation of a delay operator D1 with
delay l1ðtÞ tends to a delta function δ½t0 − ðt − l1ðtÞÞ�≡
D1ðt; t0Þ. Here the matrix D1ðt; t0Þ—a function of 2
variables—acts on the continuous data stream yðtÞ as
follows:

D1yðtÞ ¼
Z

dt0D1ðt; t0Þyðt0Þ ¼
Z

dt0δ½t0 − ðt− l1ðtÞÞ�yðt0Þ

¼ yðt− l1ðtÞÞ; ð4:9Þ
which is consistent with the usual definition of the operator
D1. Here the homomorphism ϕ is ϕðD1Þ ¼ D1ðt; t0Þ. If one
takes two such operators even with time-dependent delays
l1ðtÞ and l2ðtÞ, and applies the two operators successively
then the result is again a delta function with a delay l1ðtÞ þ
l2ðt − l1ðtÞÞ as shown below:

ϕðD1Þ ⋆ ϕðD2Þ ¼ ðD1 ⋆D2Þðt; t00Þ;

¼
Z

dt0D1ðt; t0ÞD2ðt0; t00Þ;

¼
Z

dt0δ½t0 − ðt− l1ðtÞÞ�δ½t00 − ðt0− l2ðt0ÞÞ�;

ð4:10Þ
¼ δ½t00 − ft − l1ðtÞ − l2ðt − l1ðtÞÞg�
≡ ϕðD1D2Þ: ð4:11Þ

This proves that the matrix representation in the continuum
case is also a homomorphism. In general,

ϕðD1Þ ⋆ ϕðD2Þ ¼ D1 ⋆ D2 ≠ D2 ⋆ D1

¼ ϕðD2Þ ⋆ ϕðD1Þ: ð4:12Þ

The operators do not commute in general when the arm
lengths are time dependent. The operators then form a
noncommutative polynomial ring. When the delays are
constants, the operators D1 and D2 commute and the
operators form a commutative polynomial ring. So far
we have shown that the homomorphism holds in the
continuum limit in addition to the case of delays being
integer multiples of the sampling interval (constant time-
delays)—the opposite end, so to speak.

D. Fractional time-delays and time-dependent
arm-lengths

In practice one has nonzero sampling intervals Δt > 0.
But for LISA, because of practical limitations, this sam-
pling would be too coarse to be used in the TDI algorithms
to cancel the laser frequency noise. For this purpose one
would require data at points between the sample points.
One then applies appropriate fractional delay filters to the
Doppler measurements to achieve this goal digitally.
Fractional delays may be implemented using an interpo-
lation scheme. Here we employ Lagrange interpolation as
in [7]. We consider three cases:
(1) Single interval for all delays,
(2) Different intervals for each delay,
(3) Time-dependent delays.

1. Single interval for all delays (time-independent)

Without loss of generality, we consider m sample points
t ¼ 0; 1;…; m − 1 with Δt ¼ 1. We denote this interval by
I0 ¼ f0; 1; 2;…; m − 1g which accommodates all delays.
The interpolation operation can be cast in a matrix form
with a matrix acting on the data. More specifically, one can
envisage a m ×m matrix of Lagrange polynomials DðαÞ,
where α is the delay, acting on the data y. We write the
delays as α; β;… in order to not confuse with the Lagrange
polynomials which are also denoted by li. We consider two
delays α and β with the corresponding m ×m matrices
DðαÞ and DðβÞ. To establish the homomorphism, we show
thatDðαþ βÞ ¼ DðαÞDðβÞ. This result easily follows from
the properties of Lagrange polynomials, namely, the
addition theorem for Lagrange polynomials. We give the
proof of the addition theorem in the Appendix.
For concreteness, consider justm¼3 points at t¼0, 1, 2.

Then the matrix DðαÞ is:

DðαÞ¼

��������

l0ðαÞ l1ðαÞ l2ðαÞ
l0ðαþ1Þ l1ðαþ1Þ l2ðαþ1Þ
l0ðαþ2Þ l1ðαþ2Þ l2ðαþ2Þ

��������
≡DjkðαÞ; ð4:13Þ
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where DjkðαÞ ¼ lkðαþ jÞ. Taking two such matrices
corresponding to α and β and multiplying them together,
we have,

X
k

DjkðαÞDknðβÞ ¼
X
k

lkðαþ jÞlnðβ þ kÞ

≡ lnðαþ β þ jÞ ¼ Djnðαþ βÞ; ð4:14Þ

where we have used the addition theorem in the Appendix.
Although we have just used 3 time stamps the results are
generally true form points. Also one might think, that since
the product of Lagrange polynomials appears as entries in
the product of the matrices, it might lead to polynomials of
degree 2m − 2. But this does not happen, as the addition
theorem shows; the terms of degree greater than m − 1
cancel out, leaving behind a m − 1 degree polynomial.

2. Different intervals for each delay (time-independent)

In practice, choosing the same set of sample points may
not be feasible for delays much greater than the sampling
interval and so different sets of sample points must be
chosen for different delays but then the matrices may
appear different, because the Lagrange polynomials are
translated. But then care must be taken to translate the
matrices to a common reference in order to compare them.
Then the closure property of the polynomials can be
explicitly seen to hold. We may see this as follows:
Let Ir ¼ fr; rþ 1;…; rþm − 1g be the interpolation

interval containing m points around α and a corresponding
interval Is ¼ fs; sþ 1;…; sþm − 1g around β. Let ljðtÞ,
j ¼ 0; 1;…; m − 1 be the Lagrange polynomials for the
reference interval I0 ¼ f0; 1; 2;…; m − 1g. We will call
these the basic Lagrange polynomials referred to t ¼ 0.
Then the Lagrange polynomials for the interval Ir are just the
translated versions of ljðtÞ, namely, ljðt − rÞ and similarly
ljðt − sÞ for Is. In this case the translated matrix representa-

tion is DðrÞ
jk ðαÞ ¼ lkðα − rþ jÞ for delay α and DðsÞ

jk ðβÞ ¼
lkðβ − sþ jÞ for β. Now the total delay αþ β in general will
lie between rþ s and rþ sþ 2m − 2.Wemay choose r and
s so that αþ β ≤ rþ sþm − 1 so that the relevant interval
is Irþs ¼ frþ s; rþ sþ 1;…; rþ sþm − 1g. The homo-
morphism is given by:

X
k

DðrÞ
jk ðαÞDðsÞ

kn ðβÞ ¼
X
k

lkðα − rþ jÞlnðβ − sþ kÞ

≡ lnðαþ β − ðrþ sÞ þ jÞ
¼ DðrþsÞ

jn ðαþ βÞ: ð4:15Þ

This establishes the homomorphism for this case. We have
again appealed to the addition theorem of Lagrange poly-
nomials proved in Appendix. We could have perhaps argued
that here, since we are concerned about matters of principle,
we may have chosenm sufficiently large to cover all delays.

But we preferred to explicitly establish the homomorphism
for the case of each delay with different interpolating
intervals.

3. Time-dependent delays

We further add that Eq. (4.14) is valid for time dependent
delays also. Now both α and β become functions of time.
If one applies the delay β first and then α, the combined
delay is αþ βðαÞ≡ α ⊕ β and in the reverse case it is
β þ αðβÞ ¼ β ⊕ α which are in general unequal. Then we
have the situation:

Dðα ⊕ βÞ ¼ D½αþ βðαÞ� ¼ DðαÞD½βðαÞ� ≠ DðβÞD½αðβÞ�
¼ D½β þ αðβÞ� ¼ Dðβ ⊕ αÞ: ð4:16Þ

Equation (4.16) shows that the homomorphism also holds
for time-dependent fractional delays for which the oper-
ators do not commute in general.
In summary, we emphasize here that the matrix formu-

lation is a ring representation of the original TDI formu-
lation. In principle it is no different. However, in practice,
there may be advantages to this approach, because repre-
sentations using matrices lend themselves to easy analytical
and numerical manipulations.

V. CONCLUSIONS

The main result of our article has been the demonstration
that the delay operators characterizing TDI may be repre-
sented as matrices. Through this approach we recovered the
well known result characterizing TDI: the cancellation of
the laser noise in an unequal-arm interferometer is a “local
operation” as it is achieved at any time t by linearly
combining only a few neighboring measurement-samples.
Our conclusion is the consequence of correctly accounting
for the time mismatch between the arrays of the Doppler
measurements and that of the laser noise.
In mathematical terms, we have shown that the cancella-

tion of the laser noises using matrices is just the ring
representation of the original TDI formulation and it is not
different from it. We mathematically prove the homomor-
phism between the delay operators and their matrix repre-
sentation holds in general. We have covered all cases of
interest: (i) time-delays that are constant integer multiples of
the sampling interval, (ii) the continuum limit Δt → 0
including time-dependent arm-lengths and (iii) fractional
time-delays when arm-lengths are time-independent (same
interval and different intervals of interpolation) or time-
dependent. For the fractional delay filters, Lagrange inter-
polation has been used to establish the homomorphism.
It should be said, however, that the matrix approach we

have introduced might offer some advantages to the data
processing and analysis tasks of currently planned gravi-
tational wave missions [1–3] as it is more flexible, allows
for easier numerical implementation and manipulation and
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also adapts to time-dependent arm-lengths in a natural way.
Further on another front, it might in fact be possible to
extend to our matrix formulation of TDI the data processing
algorithm discussed in [7] to handle data gaps. We have just
started to analyze this problem and might report about its
solution in a forthcoming article.
We remark that regardless of the approachwe follow, both

the original as well as the matrix approaches look for null
spaces whose vectors describe the TDI observables. In the
original TDI approach, the first module of syzygies is in fact
a null space—the kernel of a homomorphism; the kernel is
important because it contains elements, namely, those TDI
observables that map the laser noise to zero.
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APPENDIX: ADDITION THEOREM FOR
LAGRANGE POLYNOMIALS

First, consider just m ¼ 3 points at t ¼ 0, 1, 2 and let
ljðtÞ, j ¼ 0, 1, 2 be the Lagrange polynomials. We do not
need them explicitly. Let pðtÞ be the interpolating

polynomial which is required to pass through the points
y0, y1, y2 at t ¼ 0, 1, 2 respectively. Then we have,

pðtÞ ¼ l0ðtÞy0 þ l1ðtÞy1 þ l2ðtÞy2: ðA1Þ
We just need to use the property of Lagrange polynomials:

ljðt ¼ kÞ ¼ δjk ðA2Þ
From this we have pðkÞ ¼ yk and so:

pðtÞ ¼ l0ðtÞpð0Þ þ l1ðtÞpð1Þ þ l2ðtÞpð2Þ: ðA3Þ
Consider the first term of the product matrix, namely,
l0ðαþ βÞ and set it equal to pðαÞ, where now β plays the
role of a constant. Then at each value of α ¼ 0, 1, 2 we have
pðkÞ ¼ l0ðβ þ kÞ. Thus from Eq. (A3) we obtain:

l0ðαþ βÞ ¼
X2
k¼0

lkðαÞl0ðβ þ kÞ: ðA4Þ

In general for m time samples and the nth Lagrange
polynomial ln we have:

lnðαþ βÞ ¼
Xm−1

k¼0

lkðαÞlnðβ þ kÞ: ðA5Þ

This is the addition theorem for Lagrange polynomials for
integer valued nodes at k ¼ 0; 1;…; m.
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