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Thermal buckling transition in graphene: Static and dynamical critical exponents
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We study numerically the thermal buckling transition in graphene membranes under compressive strain and
clamped boundaries employing an atomistic quasiharmonic model. The numerical simulations combine three
different Monte Carlo methods, local moves, collective wave moves and parallel tempering. We determine the
static and the dynamical critical exponents by finite-size scaling, and the nonlinear response to a transverse
force near the transition. The correlation length exponent and the nonlinear response are in good agreement with
recent renormalization-group calculations of elastic membranes. Despite the applied strain, we find a dynamical
critical exponent and diffusion exponent of height fluctuations at the transition close to the value for freestanding
graphene, z = 2(1 4+ ¢) and @ = ¢ /(¢ + 1), where ¢ is the static roughening exponent, as obtained in a recent

study with a phase-field crystal model.
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I. INTRODUCTION

The effects of thermally induced fluctuations in two-
dimensional (2D) crystals, such as graphene, have attracted
great interest as they have strong influence on the mechan-
ical properties. The understanding of these phenomena can
contribute to the discovery of new universality classes in ma-
terial science and are particularly important for technological
applications in nanoelectromechanical devices [1-5]. They
allow for a thermally rippled phase observed experimentally
in free-standing graphene [6-8], with a bending rigidity and
elastic modulus strongly dependent on the length scale [9—-11].
They also determine the dynamical behavior, as shown exper-
imentally with scanning tunneling microscopy [12], leading
to an anomalous subdiffusive behavior of the height fluctu-
ations, which can be related to the length-scale dependence
of the bending rigidity [13]. An applied compression can
induce elastic instabilities in the form of a buckling phase
transition, which is also strongly affected by thermal fluc-
tuations [14-19]. Recently, a scaling theory of this buckling
transition in thermalized elastic membranes was presented by
Shankar and Nelson [15], using a continuum model of elastic
membranes and the renormalization-group (RG) method, ob-
taining static critical exponents in a new universality class and
length-dependent bending rigidity. For increasing compres-
sion or decreasing temperatures in membranes with clamped
boundaries, there is a second-order phase transition from a
flat phase, where the average height vanishes to a buckled
phase, where the up/down symmetry is spontaneously broken.
The membrane then develops a finite nonzero average height,
which acts as an order parameter for the transition. A partic-
ularly interesting consequence of this critical behavior is that,
near the transition in the flat phase, the nonlinear height re-
sponse for sufficiently small applied force displays power-law

2469-9950/2025/111(1)/014102(11)

014102-1

behavior with an exponent determined by the critical exponent
characterizing the buckling transition, which is significantly
different from mean-field theory. This behavior finds sup-
port in measurements on graphene membranes with clamped
boundaries [5] as argued in Ref. [15] and has also been
observed recently in numerical simulations of a phase-field
crystal model of graphene [18], which also adopts a contin-
uous description of the lattice system but retains structural
information at atomistic length scales. Since the scaling the-
ory assumes a continuum description of the material, it should
be of interest to find out to which extent it describes the critical
behavior of the thermal buckling transition in an atomistic
model of crystalline material, such as graphene. Furthermore,
as the main results of the renormalization-group approach for
freely suspended elastic membranes have been questioned in
very recent numerical calculations that show that the bend-
ing rigidity remains independent of length scale [20], despite
thermal fluctuations, testing the scaling theory for a graphene
membrane under compressive strain is of particularly
timeliness.

Although the scaling theory and the values of the static crit-
ical exponents [15] can fully describe the time-independent
phenomena related to the buckling transition, the dynamics
effects require knowledge of the dynamic critical exponent
z, which characterizes the divergence of the relaxation time.
However, currently its value is not available from scaling
theory. A very recent study of compressed nanoribbons at
finite temperature by Hanakata et al. [19], described by an
effective theory of a Brownian particle confined to a non-
linear potential, suggests a dynamic exponent given by the
scaling relation z = 4 — n, where n & 0.8 is the static critical
exponent describing the scale dependence of elastic constants.
Interestingly enough, this analytical expression for z is the
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same as for freestanding graphene, z = 2(1 4 ¢), where { =
1 —n/2 is the roughening exponent, as argued in a recent
study with a phase-field crystal model of graphene [13], ear-
lier in a model of polymerized membranes [21] and more
recently in a model of elastic membranes described by the
dynamic Foppl-von Karmin equation [22]. Moreover, the
anomalous diffusion exponent of height fluctuations observed
experimentally in graphene [12] can be related to this dynamic
exponent as [13] @ = ¢ /(¢ + 1). It thus appears that, right at
the buckling transition, the dynamics of a compressed mem-
brane with clamped boundaries might behave as that of an
unstrained one, characterized by the exponents ¢ and z satis-
fying the above scaling relation, a property that could also be
observable in other two-dimensional crystalline materials. So
far, this has not been demonstrated in numerical simulations
of atomistic models of compressed graphene.

To this end, in this work we numerically study the ther-
mal buckling transition in graphene membranes with clamped
boundaries employing an atomistic quasiharmonic model in-
troduced by Los ez al. [8]. The numerical simulations combine
three different Monte Carlo (MC) methods, standard local
moves, collective wave moves [8] and parallel tempering [23].
We determine the static and dynamical critical exponents by
finite-size scaling and the nonlinear response to a transverse
force near the transition. In particular, the correlation length
exponent and the nonlinear response near the transition are
in good agreement with the renormalization-group calcula-
tions for the continuum model of elastic membranes [15].
Surprisingly, despite the applied strain, the estimate of the
dynamical critical exponent and diffusion exponent of height
fluctuations at the transition are close to the value for the
unstrained system without clamped boundaries, z = 2(1 +
¢) and o = ¢ /(¢ + 1), depending only on the static critical
exponent ¢.

II. QUASTHARMONIC MODEL OF GRAPHENE
AND MONTE CARLO SIMULATION

We consider the simple quasiharmonic model of graphene
studied by Los er al. [8], which is convenient for the MC
simulations of the buckling phase transition since it involves
only nearest-neighbor interactions with a minimum number
of parameters. Inclusion of additional terms with different
parameters would provide a more detailed description [24,25].
However, despite its simplicity, the model has already been
shown to give results for the scaling behavior of height fluc-
tuations comparable to a more realistic model [8,26] and
therefore it is well suited for the study of the critical behavior
of the buckling transition. The Hamiltonian is given by [8]

1 2 2
H=3 Z; K (rij = req)” + K k;(c,-jk — Ceq)
i i LJ

—fY &7 (1

where the sums are over the nearest neighbors j and k of atom
i located at position 7;. In the second term, c;jx = cos(8; ;) and
Ceq = €08(6eq), Where 6;j; is the bond angle between ij and
ik. The third new term corresponds to the additional energy

contribution due to an external force f applied perpen-
dicularly to the membrane xy plane. For graphene, the
ground-state equilibrium distance is 7eq = 1.42 A and
bond angle 6. =2m /3. The coupling constants are set
to K, =22eV A2 and Ky =4 eV. These values were
determined by matching to the elastic moduli for isotropic
and uniaxial compression of a more realistic model of
graphene (long-range carbon bond order potential II) [8,26],
which gives a bulk modulus B = 12.52 eV A2 and shear
modulus 1 =9.95eV A2 As a result, the Young’s
modulus ¥ =22.18 eV A=2 and Poisson ratio 0.12. The
bending rigidity of the model was obtained in previous MC
simulations [8] as k = 0.4 eV.

To obtain equilibrium configurations near the transi-
tion, where critical slowing down dominates, the numerical
simulations were performed for different temperatures simul-
taneously, combining three different MC methods: (i) standard
random local moves of the particles; (ii) collective (wave)
moves [8] consisting of a random transverse wavelike dis-
placement of all atoms in the direction perpendicular to the
graphene plane and (iii) exchange of replicas at different
temperatures according to the parallel tempering method [23].
A combination of the first two methods was already used to
demonstrate that the MC simulations of the model of Eq. (1)
can reach equilibrium for unstrained graphene. Here, we find
that the additional method (iii) significantly decreases the
statistical error of average quantities. A single MC step cor-
responds to attempt to change the position of all the particles
according to the methods (i), (ii), and (iii), in succession.

For the study of equilibrium dynamics, the initial equi-
librium configurations were taken from those obtained with
the three combined MC methods described above. The sub-
sequent time dependence was then obtained from the first
method, standard random local moves of the particles, at a
fixed temperature, since the other two methods involves col-
lective moves. Since inertial effects are not included in the MC
simulation, it corresponds to an overdamped dynamics (model
A) [27] with the unit of time corresponding to one standard
MC step.

II1. SCALING THEORY OF THE THERMAL BUCKLING
TRANSITION OF ELASTIC MEMBRANES

A general scaling theory for the buckling transition of
elastic membranes has been developed by Shankar and
Nelson [15], with the static critical exponents obtained by
the renormalization-group method. Here, we briefly summa-
rize the main results for a system described by a height
field h(¥), where 7 is the two-dimensional in-plane coordi-
nate, under a fixed compressive strain € < €. < 0 and with
clamped boundaries, which will be used in the next sec-
tion for the interpretation of the numerical simulations. The
buckling instability threshold €. at zero temperature vanishes
with increasing system size L as €. o« —1/L?. For decreasing
temperatures, there is a second-order phase transition from
a flat phase with up/down symmetry to a buckled phase,
where this symmetry is spontaneously broken and the mem-
brane develops a finite nonzero average height (h), where h
denotes the spatially averaged height field, which acts as an
order parameter for the transition. Close to the transition, the
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correlation length & diverges as a function of the deviation
from the critical point AT =T — T.(¢) as

§ o |AT]™, @)

characterized by the critical exponent v. Measurable quan-
tities then display power law scaling with different crit-
ical exponents. The average height increases below the
transition as

(hy < LIAT|P, 3)

and the height susceptibility x = (d(h)/9df)|s=o, which mea-
sures the response to an external force f applied transversely
to the membrane, diverges as

X o L*|AT|7, )

where L is the system size. The height response satisfy the
scaling form

(hy = LATPOE(Lf/ATPTY), 5)

where £ correspond to temperatures above and below T..
Right at the transition, the dependence of the average height
on the force is nonlinear,

(hy o< LF'°. (©6)

The explicit dependence on L in these expressions is different
from the conventional finite-size scaling form of critical phe-
nomena. The critical exponents satisfy the scaling relations
y=v(2—n), y =28 and § = (B + y)/B. The exponent
n characterizes the scaling at the transition of the height-
correlation function, (|h(g)|?) o 1/¢*~", with wave vector ¢
and local height fluctuations

(h*(r)) oc L*, 7

with system size, where ¢ = 1 — /2. The values of the
static critical exponents obtained by the renormalization-
group calculations are v = 1.218, 8 = 0.718, y = 1.436 and
8 =3, with n =0.821 from the self consistent screening
approximation [28].

A particularly interesting consequence of this critical be-
havior is that, above the transition temperature, the linear
response for sufficiently small applied force crosses over to
a nonlinear regime with two distinct contributions,

f=ermgp AW Lot @
The cubic contribution of the second term in the above equa-
tion is predicted by mean-field theory while the first is a
characteristic feature of the membrane under compression
with clamped boundaries as predicted by the scaling theory,
leading to a power-law behavior f oc (k)" in the interme-
diate nonlinear regime with a distinct exponent, based on the
value of B derived from the renormalization-group calcula-
tions. This behavior has been observed recently in numerical
simulations of a phase-field crystal model of graphene [18].
The numerical simulations of the quasiharmonic model de-
scribed in the next section provides additional support for this
nonlinear behavior.
Although the above scaling theory and the values of
the static critical exponents can fully describe the time-
independent phenomena related to the buckling transition,

100 150 200 250 300 350
T

FIG. 1. Temperature dependence of the order parameter (spatial
average of the height) 2 with maximum probability /., and the height
probability distribution P(h) (insets) for temperatures above the tran-
sition 7 = 272 (top) and below the transition 7 = 216 (bottom), for
asystem size L = 50 and € = —1.2%.

the dynamic effects require knowledge of the dynamic crit-
ical exponent z, which characterizes the divergence of the
relaxation time 7 o< £° measuring the exponential decay of
the height autocorrelation function with time C(t) o e™"/7. At
the transition it should increase as a power law, T o L?, with
system size L, according to finite-size scaling. A recent study
of compressed nanoribbons [19], suggests the scaling relation
z=4—n =2(1+¢), which is the same as for freestanding
graphene [13,21]. In the latter system, the diffusion exponent
of height fluctuations can be related to the dynamic exponent
as [13] « =¢/(¢ + 1) and appears consistent with experi-
mental measurements [12]. In the next section, we provide a
numerical estimate of this unknown dynamic critical exponent
and the static critical exponents, from numerical simulations
of the quasiharmonic model of graphene described in the
previous section.

IV. NUMERICAL RESULTS

The numerical simulations were performed in systems of
dimensionless linear size L ranging from 20 to 80 contain-
ing n = 2L atoms, corresponding to dimensions L, = (1 +
e)L(«/?)req in the x direction and L, = (1 + e)L(%)req in
the y direction, where € < 0 is the applied strain. Clamped
boundary conditions were implemented by fixing two atomic
rows or columns of atoms with zero height at the boundaries
of the graphene xy plane. The system was first equilibrated at a
given temperature with typically 5 x 107 MC steps with equal
number of steps to obtain averages. The buckling transition
was studied in terms of the height order parameter, defined as
the spatial average of the height of the particlesh = > _;_, z;/n
from the graphene xy plane, where z; is the z-component of the
position vector of the particles (x;, y;, z;). The units of length,
force and temperature are A, eV/A and K, respectively, while
time is measured in MC steps.

Figure 1 shows the temperature dependence of the or-
der parameter with maximum probability A, and the height
probability distribution (inset) for simulations at tempera-
tures well above and below the buckling transition, where
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FIG. 2. Phase diagram as function temperature 7' and compres-
sion € < 0 for a system size L = 50 and local height configurations
h(x) in the x direction aty = Ly/2 and € = —1.2% (insets) in the flat
phase for T = 281 (top) and in buckled phase for T = 159 (bottom).

h, becomes nonzero. The double-peaked probability distribu-
tion with up/down symmetry (h — —h) below the transition
demonstrates that the MC simulations properly sample the
phase space near the transition. Figure 2 shows the phase
diagram as a function of temperature and compression € < 0
for a system size L = 50 and the insets illustrate two local
height configurations in the x direction, in the flat and buck-
led phases. The corresponding configurations are shown in
Fig. 3. To determine the critical exponents, we performed
extensive MC simulations for a fixed value of the compres-
sion, € = —1.2%, as a function of temperature and different
system sizes. Additional calculations for a different value of
the compression, € = —1.8%, are presented in Appendix A,
giving the same results within the estimated error bars. This
is expected since the buckling transition line in the phase
diagram of Fig. 2 is controlled by a single fixed point [15].The
critical temperature, critical exponents and nonlinear response
were obtained from a finite-size scaling analysis as detailed in
the following.

A. Static critical exponents

To estimate the critical temperature 7. and correlation
length exponent v, we study the temperature and size

FIG. 3. Height configurations in the flat phase for 7 = 281
(a) and buckled phase for T = 159 (b), corresponding to the height
profiles in the insets of Fig. 2.
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FIG. 4. Temperature dependence of the susceptibility x (a) and
cumulant U; (b) near the transition for € = —1.2% for different
system sizes L. Error bars were obtained from three independent
runs. When not visible, they are smaller than the symbol sizes.

dependence of the Binder cumulant [29] U, shown in Fig. 4,
defined as

U(T) = (3 — (h*)/(h"))/2, ©)

where (- - - ) are obtained by averaging over different configu-
rations obtained during the MC simulations, after the system
has been equilibrated. Since this quantity is dimensionless, it
should satisfy the finite-size scaling form

U(T) =0T — T.)L'™), (10)

in terms of a single critical exponent, where U (x) is a scaling
function with U (0) a constant. This scaling form implies that
at the transition, 7 = T, curves of U, versus temperature
for different system sizes L should cross at a common point
corresponding to the critical temperature and the splay out of
the curves near T; allows a determination of the critical ex-
ponent v. Since the temperature derivative S = (0UL/dT)|r,
increases with system size as

Soc L', (11)

an estimate of v can be obtained from a log-log plot of
this quantity against L. Figure 5 shows that the behavior of
U, obtained by numerical simulations without the parallel
tempering method leads to an increase of the statistical er-
rors, where data for large systems scatter significantly from a
smooth curve with larger error bars, making the determination
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FIG. 5. Cumulant U; near the transition for € = —1.2%, ob-
tained by MC simulations without the parallel tempering method.

of the critical temperature from the crossing point and
exponent v less accurate by this method. Therefore, the com-
bination of the three MC methods, local moves, collective
wave moves and parallel tempering, described in Sec. II was
essential to obtain the results described in the following.

In Fig. 4(b), the curves for Uy versus temperature do not
cross precisely at the same point. This is due to statistical er-
rors and corrections to finite-size scaling. The statistical errors
arise from the uncertainty of the computed averages, although
they are significantly reduced by the present MC method as
shown above. Corrections to finite-size scaling arise from the
effects of small system sizes, leading to a size dependence of
the critical temperature in Eq. (10) and so even data without
statistical errors for successive systems would not cross at the
same point. However, for L > 20 the curves approximately
intersect at a common 7;.. From the crossing points of pairs of
successive system sizes, we obtain slightly different estimates
of the critical point. From the average of these values and
the mean-square deviations, we obtain a critical temperature
and error bar, T, = 245(5), where it is understood that the
number in parentheses is the estimated error in the last digit,
T. = 245 £+ 5. Figure 6(a) shows a log-log plot of S evaluated
at one of these estimates 7, against L, which gives v = 1.20
according to Eq. (11). From different estimates of 7., we
obtain v = 1.26(5). Sufficiently close to the transition, the
data for different temperatures and system sizes should also
satisfy the scaling form of Eq. (10). In Fig. 6(b), we show a
scaling plot of Uy, obtained by adjusting the parameters T
and v to obtain the best data collapse. The scaling function
U (x) in Eq. (10) is approximated by a Taylor series expansion
for small x to fit the data, truncated to low order (fourth to
sixth order), which is used as a smooth interpolation function
and provide a measure of the data collapse as the least-square
residuals [30]. The optimum value is obtained by minimizing
the sum of the residuals, leading to the estimates 7, = 243.5
and v = 1.275, which are consistent with the above estimates
from the crossing point of U (T") and scaling of S.

For the susceptibility critical exponent y, we explore the
temperature and size dependence of the susceptibility shown
in Fig. 4, obtained from the height fluctuations as

x = n({|h*) = (|h])*)/ksT. (12)

0.018f
(a) -
0.015f P
0.012f o
0.010f ’
S 0.008} = ]
ﬂ,.”
ooosf
e
20 40 60 @& 1w
L
= . . .
osf *w (k) ]
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0.6 N‘K&.
6F e L=30 .
&,
Ui gqf =% ey ]
’ ¢ L=50 sl‘*{
-
0.2F A L=60 *_
v L=80
0.0k : . . ]
~500 0 500
(T-To) L

FIG. 6. (a) S = 0U./0T at T = 244.5 as a function of the sys-
tem size L. The dotted line is a fit to L'/¥ for L > 20 with v =
1.19(4). (b) Scaling plot according to Eq. (10) with T, = 243.5 and
v =1.275.

Although the scaling form of Eq. (4) already contains
the system size explicitly, it does not account for the size
dependence of the data. To take into account the additional
finite-size effects in Eq. (4), we assume that it appears as a
scaling function of the dimensionless ratio L/& as in conven-
tional finite-size scaling,

x(T,L)y=L*"""3((T — T.)L'"), (13)

where j (x) is another scaling function and j (0) is a constant.
Since at the critical temperature, x (T, L) o< L**7/", the ratio
y /v can be obtained from a log-log plot of this quantity
against L. This is shown in Fig. 7(a) at a critical temperature
obtained from the crossing point of two successive system
sizes in Fig. 4(b). From the slightly different locations of
the crossing point, we obtain y /v = 1.40(7). Using the esti-
mate of v described above leads to y = 1.76(9). In Fig. 7(b),
we show a scaling plot of x (7, L), obtained by adjusting the
parameters T, v and y to obtain the best data collapse. The
optimal values of 7. =247, v = 1.2 and y = 1.7 are again
consistent with the above estimates.

Our estimate of v = 1.26(5) is in good agreement with the
results obtained by the RG calculations [15], v = 1.218 and
y = 1.436, however our estimate of y = 1.76(9) is signifi-
cantly higher. This discrepancy could be due to corrections
to the finite-size scaling form, which unfortunately cannot

014102-5



GRANATO, ELDER, YING, AND ALA-NISSILA

PHYSICAL REVIEW B 111, 014102 (2025)

(a)
1x10%} -
5x 104} K
4.”
1x 104} et
5000} o
1000} - ®”
20 40 60 80 100
L
0.04} Ry (b)
v?” = o
P ‘.\ N
0.03 e o
: . o L=30 -
3 N oy
~ 0.02 | L=40 ‘\&\
> + L=50 hoo
\4
0.01f A L=60 1
v L=80
0.00k, . A , \ :
-9000 -1500 -1000 -500 @ 500 1000
ain

FIG. 7. (a) Susceptibility x at T = 244.5 as a function of sys-
tem size L. The dotted line is a fit to L>*/V for L > 20 with
y /v = 1.45(4). (b) Scaling plot according to Eq. (13) with T, = 247,
v=12andy =1.7.

be estimated from the present data because of the statistical
errors. It is also possible that the systems considered are not
sufficiently large for the results of the RG calculations to
apply, which is expected to occur when they are much larger
than the thermal length [9,15] Ly, = /1673«2/3kgTY . For
the quasiharmonic model at the estimated critical tempera-
ture, Ly, ~ 7 A. Although the system sizes used in the present
calculations are actually larger than this length scale, this
additional correction to scaling could be another reason for
the discrepancies in the exponents. Since v was obtained from
the Binder cumulant, which does not have a size dependence
outside the scaling form [Eq. (10)], it turns out to be less
affected by such systematic errors.

B. Nonlinear response

To study the nonlinear response, we consider the effect of
the external force f applied perpendicularly to the graphene
xy plane in Eq. (1). Figure 8(a) shows the height response as
function of f and temperature for a large system with L = 60
and Fig. 8(b) shows the corresponding scaling plot according
to Eq. (5), obtained by adjusting the parameters 8 and y using
the above estimate of T;. The optimal values of § = 0.55(5)
and y = 1.55(5) are comparable to the values obtained from
the RG calculations [15], 8 = 0.718 and y = 1.436, although
the deviations are outside the estimated error bars. This could

(a)

-8~ T=200]

T=230)
- T=260
- T=280)
¥ T=300

, , ) -©- T=330Q
0.1 0.5 1 5 10

0.5
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0.50f L

0.20f -&- v’

<h>/[T-T;|#

.
p
4

_|
||

N
w
o

©
o
o
g
A Y

0.05p ¥

1078 1077 1076 1075
THIE LT

FIG. 8. (a) Height response (k) as function of the applied force f
for different temperatures 7', for e = —1.2% and system size L = 60.
(b) Scaling plot according to Eq. (5) with 7. =245, § = 0.55 and
y = 1.5.

be due to finite-size effects, which were neglected to obtain
the data collapse.

The behavior of f as a function (&) at temperatures above
and near the bucking transition is shown in Fig. 9. Above
the transition, when the susceptibility is finite and f = (h)/x
for sufficiently small f, there is a crossover from this linear
behavior to two different nonlinear behaviors for increasing
(h). In the intermediate regime, it behaves as a power law,
f o (h)¢, with the exponent a & 1.6, followed by another
crossover to a &~ 3. Since the range of the linear and inter-
mediate regimes decrease with 7' — T, they disappear at the
transition and the exponent a corresponds to the critical ex-
ponent § = 3 from Eq. (6). The nonlinear behavior is in good
agreement with Eq. (8) predicted by the scaling theory [15]
and has also been observed previously in numerical simu-
lations of a phase-crystal model of graphene [18], although
using a much smaller systems size.

C. Dynamical exponent

The relaxation time t relevant for the dynamical behavior
can be estimated from the exponential decay at long times ¢ of
the height autocorrelation function C(¢) = (h(¢)h(0))/ (h?)
e /T, for T > T,, obtained after the system has reached
equilibrium. However, rather than using this time correlation
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FIG. 9. Applied force f as function of average height (h) for
different temperatures 7' near the the buckling transition, for € =
—1.2% and system size L = 60. The dashed lines correspond to
power-law behavior o (h)“. Above the transition, a = 1.07(4) in
the range of small f and a = 1.64(3) in the intermediate range, for
increasing f. Close to the transition at 7 = 250, a = 3.1(1).

directly, we find it more convenient to obtain T as a time
integral

1 ! / /
T ) /(‘) dt (h(t")h(0)), 14)
which is formally equivalent to the expression for the diffu-
sion constant of a fictitious particle with coordinate R(¢) and
velocity dR(t)/dt = h(t). The upper limit of integration in
Eq. (14) should be much larger than the relaxation time 7 to
measure the exponential decay of the autocorrelation function.
As in the numerical calculation of diffusion constants [31], it
is more accurate to obtain T from the long time behavior of
the mean-squared displacement of R(?) as

1 2

U= ((R(t) — R(0))7). 5)

To study the time dependence and estimate the dynamic
exponent, the initial equilibrium configurations were taken
from those obtained with the three combined MC methods de-
scribed in Sec. II. The subsequent time dependence was then
obtained from the first method, standard random local moves
of the particles, at a fixed temperature, since the other two
methods involves collective moves. Since inertial effects are
not included in the MC simulation, it corresponds to an over-
damped dynamics. Figure 10 shows the time dependence of
((R(t) — R(0))?)/(h?) for different system sizes at the critical
temperature and the corresponding autocorrelation functions
C(t) in the inset. The linear behavior at long times above a
crossover time 7. of the mean-squared displacement of R(z)
demonstrates that the simulation time is sufficiently long and
Eq. (15) applies. The estimates of T obtained from the slopes
of the linear fits at long times larger than 7. are shown in
Fig. 11 at the critical temperature and at a higher temperature
T = 300. The relaxation time increases with system sizes near
the transition as expected for a continuous phase transition.
Away from the critical temperature in the flat phase, it will
eventually reach a finite value, as can be seen from the ten-
dency to saturation at large system sizes for 7 = 300. On

12x 107 i
1.0x107f 2 08
© o3 -
8.0x 108 7
a 0 7
@ 6.0x10} 0 1500 3000 # — L=26
= - - L=40
4.0x 108} ~
2.0x 108} /
Okc 2 s A N 2
0 2000 4000 6000 8000 10000
t

FIG. 10. Normalized mean-squared displacement of R(z),
MSD = ((R(t) — R(0))*)/(h?), as a function of MC time ¢ (in
units of 2 x 10* MC steps) for different systems sizes at the
critical temperature 7. = 245 for € = —1.2% and corresponding
autocorrelation functions (inset). Dashed line indicates linear
behavior.

the other hand, at the transition it should increase as a power
law, T o L*?, according to finite-size scaling, with the dynamic
critical exponent z. From a fit to this power law, we then obtain
the estimate of z = 3.64(4).

It is interesting to compare our numerical estimate of z
from MC simulations with the scaling relation z = 2(1 + ¢),
where ¢ =1—n/2 is the roughening exponent, obtained
from other studies. For freestanding graphene, this scaling re-
lation was obtained in a recent study of the dynamical scaling
of the mean-squared displacement of the local height (Ah(t)?)
with a phase-field crystal model [13] and earlier in a model of
polymerized membranes [21]. This quantity displays a subdif-
fusive behavior determined by the value of z as (Ah(t)?) o %,
with &« = ¢ /(1 4 ¢), and has been observed experimentally
with scanning tunneling microscopy [12]. In the Appendixes,
we show results for freestanding graphene, described by the
same quasiharmonic model of Eq. (1), which is also well
described by the same scaling relation for z. For the buckling
transition, using our estimate of y /v = 1.40(7) from Sec. IV

1000}
500f
T
100}
sof
I T=300
20 30 40 50

L

FIG. 11. Relaxation time 7 (in units of 2 x 10* MC steps) as a
function of system size at and above the critical temperature, 7. =
245 and T = 300, respectively. Dashed line is a power-law fit to 7 o
L* for L > 26, with z = 3.64(4).
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FIG. 12. Mean-squared height displacement (Ah(z)*) of a tagged
particle near the center of the graphene membrane as a function of
MC time ¢ for different system sizes L at the buckling transition 7, =
245 for € = —1.2%. The dashed line indicates power-law behavior
(Ah(t)?) o t* in the intermediate time regime with « = 0.371(1) for
L = 50.

and the scaling relation y /v = 2 — n = 2¢ (Sec. III) leads to
z=2(1+ ¢) = 3.40(7), which is very close to the numerical
estimate from Fig. 11 at the buckling transition, considering
the error bar. It should be noted, however, that using the
theoretical value n = 0.821 from the self-consistent screening
approximation [28], gives a larger difference.

It may appear somewhat surprising that the dynamic expo-
nent would be the same as for the freestanding system, since
at the buckling transition the system is under compression
and with clamped boundaries. However, from the scaling the-
ory of the buckling transition (Sec. III), the average height
vanishes and the local height fluctuations scale with system
size as (h%(r)) oc L* at the critical point, which is the same
behavior as for an unstrained membrane without boundary
constraints [9,27]. Moreover, the mean-squared height dis-
placement, right at buckling transition, also shows similar
subdiffusive behavior as for an unstrained membrane. This is
shown in Fig. 12, where the time dependence of (Ah(t)?) =
((zi(to + 1) — zi(ty))?) for a tagged particle i located near cen-
ter of the membrane is plotted for different system sizes. For
larger systems, at intermediate times it behaves as (AA(t)?) o
t* with @ = 0.37, which is consistent with the exponent « =
¢ /(1 4 ¢) for freestanding graphene. The main difference is
the saturation regime for long times seen for a small system,
which is due to the constraint of clamped boundaries, while
for the freestanding case it increases linearly with time as
shown in the Appendixes. For large systems, the crossover to
this regime is beyond the available measurement time.

In a very recent study of the dynamics of the average
height in double clamped naroribbons under compression by
Hanakata et al. [19], the same scaling relation for z was
obtained analytically. In the buckled phase, the dynamical
transition between opposite buckled states is described by an
effective theory of a Brownian particle with damping con-
fined to a double-well potential. The escape time from one
the potentials is a measure of the relaxation time of height
fluctuations. It was found that it increases with system size as
T ~ L*7", corresponding to a dynamic exponent z =2(1 +¢).

This relation should be valid in the overdamped limit, which
is the case for the dynamics near a continuous buckling transi-
tion due to critical fluctuations and in particular for the present
MC simulations.

V. SUMMARY AND CONCLUSIONS

In this work, we have studied the thermal buckling tran-
sition in graphene membranes with clamped boundaries
employing an atomistic quasiharmonic model and MC sim-
ulation. We found that the correlation length exponent and the
nonlinear response near the transition are in good agreement
with the recent RG calculations for the continuum model
of elastic membranes [15]. Although the system is under
compression and with clamped boundaries, the dynamical
critical exponent and the diffusion exponent of height fluctu-
ations at the transition are close to the values for freestanding
graphene, z = 2(1 4+ ¢) and o« = ¢ /(¢ + 1). The scaling re-
lation for z has also been obtained in a recent study of
compressed nanoribbons [19], described by an effective the-
ory of a Brownian particle confined to a nonlinear potential,
in the overdamped limit. The buckling transition can also be
induced by an applied stress while the boundary displace-
ments are free to fluctuate. Interestingly, the same scaling
theory predicts different critical exponents [15], which could
in principle, also be determined by the methods described
in this work. Since the critical exponents and the nonlinear
response studied here are properties related to the critical point
of the buckling transition, it should also be observable in other
two-dimensional crystalline materials, besides graphene.
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APPENDIX A: SCALING ANALYSIS
FOR € = —1.8% COMPRESSION

Here we briefly describe the results for the static criti-
cal exponents obtained at a different value of compression,
€ = —1.8%. Figures 13(a) and 13(b) show the behavior of
the height susceptibility and Binder cumulant as a function
of temperature and system sizes. From the crossing points
of pairs of successive system sizes, we obtain a critical
temperature 7, = 543(8). Figure 14(a) shows a log-log plot
of § =0UL/dT evaluated at this estimate of 7; against L,
which gives v = 1.20(9) according to Eq. (11). From different

014102-8



THERMAL BUCKLING TRANSITION IN GRAPHENE: ...

PHYSICAL REVIEW B 111, 014102 (2025)

r =
80000F (@) - 1
. L=30
60000} -0~ L=40 |
- L=50
X 40000} - L=60

450 500 550 600 650

700

T

FIG. 13. Temperature dependence of the susceptibility x (a) and
cumulant U; (b) near the transition for ¢ = —1.8% for different
system sizes L.

estimates of T;, we obtain v = 1.31(6). Sufficiently close to
the transition, the data for different temperatures and system
sizes should also satisfy the scaling form of Eq. (10). In
Fig. 14(b), we show a scaling plot of Uy, obtained by adjusting
the parameters 7. and v to obtain the best data collapse, with
optimal values T, = 536.4 and v = 1.275, which are consis-
tent with the above estimates from the crossing point of U (T)
and scaling of S.

For the susceptibility critical exponent y, we explore the
temperature and size dependence of the susceptibility shown
in Fig. 13. Since at the critical temperature, x(7¢, L) o
L**v/7 the ratio y /v can be obtained from a log-log plot
of this quantity against L. This is shown in Fig. 15(a) at
the estimated critical temperature. From the slightly different
locations of the crossing point, we obtain y /v = 1.33(7).
Using the estimate of v described above leads to y = 1.75(8).
In Fig. 7(b), we show a scaling plot of x(7, L), obtained
by adjusting the parameters T;, v and y to obtain the best
data collapse. The optimal values of 7, = 540, v = 1.175 and
y = 1.7 are consistent with the above estimates.

The estimates of v = 1.31(6) and y = 1.75(8) at this value
of compression, € = —1.8%, agrees with the corresponding
results for the different value of compression, € = —1.2%,
discussed in the main text. This is expected since the buckling
transition line in the phase diagram of Fig. 2 is controlled by
a single fixed point, according the RG calculations [15].
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FIG. 14. (a) S = 0U, /0T at T = 543 as a function of the sys-
tem size L. The dotted line is a fit to L'/Y for L > 20 with v =
1.19(8). (b) Scaling plot according to Eq. (10) with 7. = 243.5 and
v =1.275.

APPENDIX B: MEAN-SQUARED HEIGHT
DISPLACEMENT FOR FREE-STANDING GRAPHENE

Here we obtain the dynamic exponent z for freestanding
graphene, described by the quasiharmonic model of Eq. (1),
from the dynamic scaling behavior of the mean-squared
height displacement of a tagged particle (AA(t)?) = ((z(to +
t) — z(tp))?), where z(t) is the z component of position vector
of the tagged particle (x(¢), y(¢), z(¢)). The MC simulations
were performed without applied compression and with pe-
riodic boundary conditions, allowing for fluctuations of the
system size in the xy plane. Initial equilibrium configurations
were obtained from the first two MC methods described in
Sec. II. The subsequent time dependence was then obtained
from the first method at a fixed temperature.

Figure 16(a) shows the time dependence of (Ah(t)?) for
different systems sizes. For smaller systems, it displays inter-
mediate and long time regimes characterized by a power-law
behavior as a function of time. At long times it behaves
linearly, which is the conventional diffusive behavior due to
the center-of-mass contribution to the height fluctuations. For
larger systems, at intermediate times it behaves as (Ah(t )2}
t* with o < 1, depending very weakly on system size. For
the largest system, the linear behavior is beyond the available
measurement time. The crossover from subdiffusive dynamics
to normal diffusion at long times and the size dependence can
be described by a dynamical scaling theory of equilibrium
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FIG. 15. (a) Susceptibility x at T = 543 as a function of sys-
tem size L. The dotted line is a fit to L>*/V for L > 20 with
y /v = 1.43(5). (b) Scaling plot according to Eq. (13) with 7, = 247,
v=12andy =1.7.

fluctuations [13,21], which assumes the scaling form
(Ah(1)?) = L* (1/L7), (B1)
where ¢ is the roughening exponent [9,27] and
z=2(1+7¢), (B2)
from the requirement that the contribution from the center-
of-mass diffusion in the long-time limit scales as (Ah(t)?) ~
t/L?. In the intermediate-time regime, the scaling function

should behave as ®(x) ~ x*/%, which implies that (Ah(t)?) o
1 with o = £ /(1 + 7).

100§
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0.100}

0.010}

0.001}
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FIG. 16. (a) Mean-squared height displacement (Ah(t)?) for
freestanding graphene as a function of MC time ¢ for different system
sizes L at a temperature 7 = 300. The black dashed line indicates
power-law behavior (Ah(¢)?) o t* in the intermediate time regime,
with o = 0.371(4). The red dashed line indicates the expected linear
behavior at long times. (b) Scaling plot for the intermediate and
long-time regimes according to Egs. (B1) and (B2) with ¢ = 0.6.

In Fig. 16(b) we show a scaling plot of (Ah(t)%) vs
t/L20+9 according to Eq. (B1), adjusting the single parame-
ter ¢. The best data collapse is obtained with the roughening
exponent { = 0.6. From the scaling relation of Eq. (B2), we
then obtain z = 3.2, which is comparable to the value for
the buckling transition in the same model as described in
Sec. IV C. This value of z leads to a mean-squared displace-
ment (Ah(t)?) o t* with exponent @ = 0.375, consistent with
the subdiffusive behavior observed experimentally in free-
standing graphene with scanning tunneling microscopy [12].
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