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ABSTRACT: The World Meteorological Organization (WMO) is a specialized agency of the United 
Nations (UN) system, with an intergovernmental mandate for coordinating the generation and 
exchange of weather, climate, and water information across its members. WMO has played a vital 
role in coordinating production and dissemination of weather forecasts from short to medium 
range whereby global weather forecasts from large operational centers are made available to all 
WMO members to serve needs of stakeholders at the local level. In recent decades, there has also 
been an increasing demand for similar forecasts on longer lead times that include prediction on 
subseasonal, seasonal, and annual to decadal leads. To address the increasing requirements for 
forecast services by members, WMO has been actively accrediting and coordinating the essential 
forecast infrastructure that includes provision of forecasts from WMO designated Global Producing 
Centers and collection of forecasts by Lead Centers to facilitate the dissemination of information 
and products to WMO members and relevant nongovernmental organizations. Although the basic 
ingredients of the infrastructure are now in place, the uptake of the forecast information has been 
suboptimal. To engage the community in developing solutions to enhance the utilization of available 
information, this paper summarizes the WMO infrastructure for long-range forecasts, particularly 
for seasonal time scale, and follows with a discussion of current issues that are hindering their 
uptake. Finally, a set of proposals to advance the utilization of the available information from the 
WMO long-lead forecast infrastructure are discussed.

SIGNIFICANCE STATEMENT: Because of ongoing changes in climate, the frequency of weather 
and climate hazards has been increasing and so is the demand to anticipate climate variations with 
longer lead times. To meet the demand for relevant climate information to manage climate risks 
for its members, the World Meteorological Organization (WMO) has been proactive in developing 
and coordinating the required infrastructure based on the latest scientific advances, with cascad-
ing of forecast information from global to regional to national scales. The uptake of the forecast 
information, however, has lagged mainly due to lack of awareness and technical capacities. In 
this paper, with the intent of engaging the community, the current impediments and solutions to 
improve the utilization of long-range forecasts are discussed.
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1. Introduction
Climate variability on subseasonal to decadal time scales influences various extreme phe-
nomena including prolonged droughts; cold spells, flooding, and tropical storm activity; and 
intense fire seasons. These phenomena have consequences for various aspects of societal 
well-being. Understanding and anticipating climate variability on subseasonal to decadal time 
scales (hereafter referred to as S2D) can help mitigate adverse effects of climate variability 
or take advantage of favorable conditions. Toward this goal, in recent decades, advances in 
observing systems, climate models, and computing have resulted in the implementation of 
operational predictions to anticipate S2D climate variability (Graham et al. 2011; Kirtman 
et al. 2014; Vitart et al. 2017; Kushnir et al. 2019; Pegion et al. 2019; Merryfield et al. 2020; 
Hermanson et al. 2022).

One of the primary tools for anticipating S2D climate variability is dynamical climate 
prediction models initialized from the current state of various components of the Earth 
system. An ensemble of forecasts is generated to estimate the associated uncertainties that 
are inherent in climate predictions. Individual forecast members in the ensemble are initial-
ized with minor differences in the initial conditions and/or small perturbations to the model 
parameters. As the forecast lead time increases, these differences evolve to sample future 
states of the Earth system and thereby provide a probabilistic estimate for plausible future 
climate.

Although complex and requiring substantial infrastructural and computing resources, 
dynamical prediction methods have advantages that include an ability to represent the entire 
climate system and interlinkages between its components; an ability to handle unprecedented 
forecast situations; incorporating nonlinearities in responses to external forcings; realizing 
prediction skill from a combination of initial and boundary conditions; and quantification 
of uncertainty, among others. Given the advantages of dynamical predictions, such methods 
are now the preferred approach for S2D prediction (see references above).

Prediction of climate variability based on dynamical methods, particularly on the global 
scale, requires a large outlay of resources and thus is only within the wherewithal of advanced 
operational centers. As forecasts themselves are global, information available from these large 
operational centers can be used at regional and national levels by National Meteorological 
and Hydrological Services (NMHSs). A point to note is that by supporting an infrastructure of 
observations that are critical for initializing dynamical prediction systems, all NMHSs make 
valuable contribution to the WMO forecasting infrastructure.

A robust global weather and climate enterprise, however, requires efficient coordina-
tion mechanisms for the exchange and flow of data and information among NMHSs and 
other relevant stakeholders and is underpinned by mutually agreed standards and protocols. 
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Such coordination in support of making weather and climate prediction information as a 
public good is one of the primary goals of the WMO.

In this paper, the current operational infrastructure of S2D predictions using dynamical 
models within the purview of WMO is discussed. For the readers not familiar with the work-
ing structure of the WMO, an overview is first provided (section 2). In section 3, the current 
infrastructure for S2D predictions, and how the global forecast information, following a  
cascading forecast paradigm, is utilized at the regional and national level is discussed.  
Section 4 reviews the current shortcomings and impediments in the use of global S2D  
forecasts at the local level and provides a segue to section 5 where the WMO Operational 
Climate Prediction (OCP) workshop series is highlighted. The paper concludes with a  
summary and the outcomes of the most recent (third) OCP workshop held in September 2022. 
The appendix contains a list of acronyms used in this paper.

2. The World Meteorological Organization
The WMO is a specialized agency of the United Nations (UN) system, with an intergov-
ernmental mandate for coordinating the generation and exchange of weather, climate, 
and water information across its members and partners. It is the UN’s authoritative voice 
on weather, climate, and water. The WMO is currently comprised of 193 member states 
and territories.

The latest WMO Strategic Plan 2024–27 (WMO 2023b)  
adopted by the 19th World Meteorological Congress, in 
May–June 2023, defined the directions and priorities to advance 
the WMO activities and enable all members to improve their 
products and services. Recently, the Early Warnings for All 
(EW4All) Executive Action Plan (WMO 2022a), developed by 
the UN Secretary General, assigned the key role to WMO and 
its partners1 and was unveiled at COP27.

To meet its goal of delivering weather and climate services to all, WMO fosters collab-
orative mechanisms to enhance the exchange of necessary information among members. 
To achieve this, WMO relies on three infrastructural components, WMO Integrated Global  
Observing System (WIGOS),2 WMO Information System (WIS),3 and WMO Integrated  
Processing and Prediction System (WIPPS).4 For the exchange of observational information, 
the WIGOS coordinates development of technical standards for observation networks for 
Earth system measurements. The WIGOS also develops data formats to ensure collected 
data are quality retained, comparable, interoperable, and interchangeable. The WIPPS  
enables all members to make use of and benefit from the advances in operational prediction  
systems extending from nowcasting to annual-to-decadal climate predictions. The observa-
tional data and forecast products are made available to all members and relevant operational 
organizations through WIS (Fig. 1).

The forecast and analysis component of the WMO infrastructure, under the WIPPS, is 
a three-category system comprised of the World Meteorological Centers (WMCs), Regional 
Specialized Meteorological Centers (RSMCs), and National Meteorological Centers (NMCs), 
referred to a WIPPS designated centers. The three-level system ensures that global scale 
prediction products are available to regional and national scale prediction, and as the in-
formation cascades to regional and national level, value is added at each level. All WIPPS 
activities are defined in the manual on the WMO Integrated Processing and Prediction  
System (WMO 2023a), hereafter referred to as the manual on the WIPPS. For each activity, 
the designation criteria and the minimum set of mandatory products are explicitly defined 
in the manual on the WIPPS, which an operational center is required to fulfil when the 
center wishes to seek WMO designation and become part of the WIPPS infrastructure.

1	https://www.un.org/en/climatechange/early-warnings- 
for-all.

2	https://community.wmo.int/en/activity-areas/WIGOS.
3	https://community.wmo.int/en/activity-areas/wis.
4	https://community.wmo.int/en/activity-areas/wmo- 

integrated-processing-and-prediction-system-wipps.
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3. WMO infrastructure for climate predictions
a. WMO structure for S2D predictions. The current operational infrastructure within WMO 
related to S2D predictions addresses three distinct time scales: subseasonal (2–5 weeks), 
seasonal (month to a year), and annual-to-decadal (year to a decade). For each forecast 
time scale, included in the manual on the WIPPS, are the mandatory functions that the 
WIPPS designated centers (referred to as Global Producing Centers) shall perform in accor-
dance with the specified criteria. Historically, the development of the WIPPS operational 
climate prediction infrastructure proceeded from seasonal, then to annual-to-decadal, 
and most recently, to include subseasonal predictions. The chronological order of matur-
ing of operational systems followed the scientific advances in the understanding of climate 
variability and predictability on the respective time scales. The WMO functional structure 
for all three time scales is similar, and for the sake of brevity, only the infrastructure for 
seasonal predictions, with the longest history of operational implementation, is described 
below to illustrate the approach. To complement, the unique aspects of issues associated 
with the infrastructure on different time scales are also noted.

The seasonal prediction infrastructure is comprised of several Global Producing Centers  
(GPCs) and a Lead Center (LC). GPCs provide global seasonal forecasts while the LC is 

Fig. 1.  Three major components of WMO operational infrastrucuture that include collection and 
dissemination of observations (WIGOS), operational analysis and predictions (WIPPS), and a framework 
for sharing data (WIS). WMO members set mutually agreed standards and protocols that underpin the 
exchange of information.
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responsible for collecting seasonal forecasts from all GPCs and 
developing products based on the multimodel approach, along 
with harmonizing the GPC products in terms of data specifica-
tion and formats. At present, there are 15 designated WIPPS 
GPCs for seasonal prediction,5 formally referred to as WMO Global Producing Centers for 
Seasonal Prediction (GPCs-SP). All GPCs-SP are required to produce seasonal forecasts at 
least once a month for the coming season.

In the utilization of these seasonal forecasts, it is immediately apparent that individual 
NMHSs face an uphill task in accessing the seasonal forecast data from multiple operational 
centers and, subsequently, perform necessary postprocessing to develop products for their 
stakeholders. A more efficient data sharing structure would be for a single center to gather 
seasonal forecasts from all GPCs-SP and develop products based on postprocessing of the 
multimodel ensemble used by NMHSs, Regional Climate Centers (RCCs), and Regional Climate 
Outlook Forums (RCOFs). Indeed, this is the rationale for a separate WIPPS activity for an  
LC for coordination of Seasonal Prediction Multi-Model Ensemble (LC-SPMME6). Follow-
ing this strategy, the overall structure of GPCs-SP and LC-SPMMF, representing a hub and 
spoke paradigm, is a more efficient approach for the delivery of seasonal forecast informa-
tion than a point-to-point paradigm for dissemination and uptake of the forecasts from each 
GPC-SP (Fig. 2).

b.  WMO Mechanisms for supporting climate services.  For delivering information to  
support climate services effectively, it is imperative that appropriate operational mech-
anisms are in place to generate, exchange, and disseminate information globally, re-
gionally, and nationally. Within the Global Framework for Climate Services (GFCS),  

Fig. 2.  A schematic of the current operational infrastructure for seasonal forecasts of WMO. Seasonal 
forecasts are generated by multiple GPCs that provide data to the LC for seasonal forecast. The re-
sponsibility of the LC is to postprocess seasonal forecasts and develop products based on multimodel 
approach. Multimodel forecasts are provided to all WMO members and various WMO-accredited op-
erational entities such as RCCs and RCOFs. We note that although all designated GPC’s are forecast 
providers, they can also be users of products from the LC and, thereby, can benefit from the multimodel 
ensemble approach.

5	For WIPPS designated centers for seasonal pre-
diction see WMO (2023a).

6	https://wmolc.org/.
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the Climate Service Information System (CSIS) is the principal mechanism defined to 
routinely collate, store, and process information about past, present, and future climate 
(WMO 2011; Allis et al. 2019; Hewitt et al. 2020).

The implementation strategy of the CSIS is by the design closely tied to the WIPPS in-
frastructure and is based on a three-tiered structure of collaborating institutions (global, 
regional, and national) to ensure that climate information and products are generated, 
exchanged, and disseminated in an authentic and efficient manner. One of the primary 
functions of CSIS entails climate prediction undertaken through a global–regional–national 
system of interlinked producers and providers (Fig. 3).

As mentioned in section 3a, WMO has also established WIPPS activities for subseasonal 
and annual-to-decadal predictions, along with their respective LCs, constituting the backbone 
for operational climate prediction infrastructure for those time ranges on the global scale. 
For each S2D time scale, the main direction of global prediction information flow is from the 
GPCs to the Lead Centre, to the regional entities such as the RCCs and RCOFs, and onward to 
NMHSs, which serve the national end users. Value addition, for example, through applica-
tion of forecast calibration/downscaling/verification and regional/local knowledge, occurs 
at each stage (Graham et al. 2011).

Fig. 3.  A schematic of the three-tiered approach to implementing the CSIS, illustrating the cascading 
forecast process. Forecast information at the global scale is utilized by regional entities such as RCCs 
and RCOFs, which communicate regional scale information to the NMHSs. Value addition occurs at each 
stage of the cascading forecast process through methods like forecast calibration, downscaling, and 
regional/national expert assessments. The horizontal axis represents the continuum of data extend-
ing from historical observations to current conditions to predictions and projections for different time 
scales. Ideally, forecast information for different time scales should blend seamlessly; however, this 
remains a challenging goal.
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There has been a surge over the last decade in the use of GPC products on regional as 
well as national scales, particularly in the case of seasonal prediction. However, the vast 
inventory of global climate prediction data is still considered underutilized, primarily due 
to lack of awareness and the required technical competencies at the regional and national 
levels. Recognizing this, WMO is developing a series of guidance documents that describe 
the technical aspects of the cascading forecast process. WMO recently published a detailed 
guidance on operational practices for objective seasonal forecasting (WMO 2020), which 
outlined a recommended procedure for developing seasonal forecasts at the regional and 
national levels (Fig. 4).

Although within the purview of WMO, the overall strategy for developing regional and 
national climate predictions is in place; as discussed next, gaps in the global forecast infra-
structure and in the cascading forecast process remain and need to be addressed.

4. Current shortcomings in the WMO infrastructure for climate predictions
a. Inconsistencies in the forecast system configurations. One of the foremost shortcom-
ings of the current seasonal forecast infrastructure is the disparity in the ways operational 
forecast systems are configured. Differences include the scheduling for forecast genera-
tion, length, and period of the hindcasts (retrospective predictions used for verification, 
calibration, and value addition), consistency between hindcast and real-time forecasts, 
and ensemble size. This disparity in forecast configurations is in contrast with the homo-
geneity in the operational systems for numerical weather prediction (NWP); for example, 
scheduling NWP systems at different operational centers tends to follow the same timing.

For operational seasonal predictions, the scheduling of forecasts varies widely, from “burst” 
mode where the full ensemble is generated from a single start date, to “lagged” mode, where 
ensemble members are produced each day or at some other higher frequency prior to the target 
forecast period. Burst mode forecasts are more skillful just after they are produced, but lagged 

Fig. 4.  A schematic of the recommended objective procedure for generating seasonal forecasts at the 
regional and national levels starting from the forecasts from GPCs. The first step in the approach is to 
choose GPCs for which skillful forecasts will be available in a consistent manner and further, if war-
ranted, select a subset of models for multimodel ensemble (see discussion in section 4b on challenges 
related to selection of models). Next, model forecasts need to be bias corrected, calibrated, and com-
bined using the multimodel approach, leading to seasonal forecasts at the regional level. The forecasts 
at the regional level can be downscaled to the local level using statistical techniques. The forecast 
development process highlights the basic concept of the cascading forecast process from the global to 
the regional to the national level (WMO 2020).
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ensembles are more flexible in that they can provide more frequent forecast updates and they 
could be more skillful for longer lead times when forecasts pooled from various start dates can 
provide a larger ensemble. An important benefit of frequent initialization from different dates 
is that processes, which can affect long lead times but can quickly evolve, such as sudden 
stratospheric warmings (Scaife et al. 2022) and the Madden–Julian Oscillation (Vitart 2017) 
can be better captured. Currently, the two approaches to initialization are roughly equally 
represented across current subseasonal and seasonal operational prediction systems.

Hindcast periods are similarly diverse and range from around 20 years to several decades. 
In deciding on the length of the hindcasts, there is a dependence on the processes being 
predicted: attempting to capture longer time-scale variations requires longer hindcasts to 
assess the prediction skill of underlying variability. However, lengthening of the hindcast 
period is limited by practical consideration of the availability of computing resources and 
from degradation in forecast processing due to inconsistencies arising from historical 
changes to the observing system, in particular, the advent of the satellite record since the 
late 1970s.

Another important consideration in the length of the hindcast period is its primary focus. 
If the main goal is for mean bias correction, often by subtracting the mean of hindcasts as 
a function of lead time and start date, then meeting this goal requires shorter hindcast pe-
riods and smaller ensemble sizes. On the other hand, if hindcasts are to provide accurate 
estimates of expected forecast skill, then longer hindcast periods are called for to increase 
the size of the historical sample. However, longer hindcast poses an added complexity if the 
climate is nonstationary. In such instances, proper estimates of forecast skill and removing 
nonstationary trends could be problematic. Last, if the hindcast period differs across seasonal 
prediction systems, then the unification of forecasts using multimodel ensemble approaches 
proves difficult.

There is also a range of current approaches for generating hindcasts, for example, generat-
ing hindcasts in real time, slightly ahead of the forecast, or in a single exercise prior to when a 
forecast system is updated. Having a mix of two approaches adds complexities to combining 
forecasts from multiple systems.

Ensemble sizes vary between prediction systems, which makes quantitative comparison 
difficult as there are clear increases in skill with ensemble size for both deterministic and 
probabilistic skill measures (Kumar and Hoerling 2000; Kumar et al. 2001; DelSole et al. 
2014). Furthermore, some regions of the globe require fewer ensemble members before skill 
saturates than others. While an ensemble size of around 15–20 is adequate to capture much 
of seasonal prediction skill in the tropics (Kumar et al. 2013), much larger ensemble sizes are 
required for a similar purpose in the extratropics (Scaife et al. 2014). This also means that 
differences in ensemble size between hindcasts and forecasts hinder straightforward assess-
ment of prediction skill (Ferro et al. 2008) and prevent optimal recalibration and combination 
of multimodel forecasts.

Model resolution also varies across operational forecast systems. Until recently, most 
operational forecast systems employed typically around 1° ocean resolution and ∼100-km 
atmosphere resolution, but this has now increased in some cases to fractions of a degree 
in the ocean and a few tens of kilometer in the atmosphere. Again, although there is no 
absolute consensus on the requirements on the resolution for longer range forecasts, some 
centers report reduction in bias and gains in skill from the use of higher resolution (e.g., 
MacLachlan et al. 2015). Nonetheless, it is not clear whether additional, and affordable, 
increases in atmospheric resolution are likely to lead to further skill, and some centers are 
now focusing on larger ensemble sizes (Doi et al. 2019; Scaife et al. 2019) given the clear 
benefits to forecast skill from increasing ensemble size for equivalent costs. It is important 
to note that while users often demand high spatial resolution, this does not imply that the 
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best strategy is to run forecasts at high resolution. Indeed, forecasts of seasonal anomalies 
are often on broad scales in space and time and so skillful forecasts can often result from 
100-km atmospheric resolution models representing insightful large-scale predictors that 
correlate well with local conditions (e.g., Liu et al. 2018; Svensson et al. 2015).

Finally, we note two additional impediments with the use of long-range forecasts. The 
first is related to model output data availability. While some single and multimodel data 
portals allow access to data (e.g., Buontempo et al. 2022), this serves those well trained in 
the complex process of bias correction and ensemble combination, while most users may 
simply prefer processed output or regular diagnostic feeds to inform decision-making. 
The second impediment is how to connect these time scales with shorter range weather 
forecasts and longer-term climate projections. Again, this requires expertise and there 
is unlikely to be a single best approach. However, provision of at least some comparable 
forecast diagnostics to inform decisions transitioning across time scales appears to offer 
benefits worth pursuing.

To summarize, in setting up the operational infrastructure for long-range forecasts within 
the available computational resources, many choices need to be made regarding hindcast 
period and their length, ensemble size, burst versus lagged ensemble, on-the-fly versus 
static hindcasts, consistency between hindcasts, real-time forecasts, etc. In the absence of 
a consensus, different operational centers have adopted different forecast configurations, 
hampering the cascading forecast process and contributing to inadequate utilization of the 
available forecast infrastructure.

b.  Need for guidance for implementing various procedures in the cascading forecast  
process. In addition to the diversity in the operational forecast configuration for long-range 
prediction systems, there is a need for awareness of, and guidance on, aspects of the cascad-
ing forecast process from global dynamical model outputs to regional and local forecasts 
serving stakeholders.

Approaches for model selection and multimodel ensembles are one such aspect in the 
cascading process. Although combining multiple model outputs often provides better skill 
than individual models and improves reliability (Weigel et al. 2009; Kirtman et al. 2014), 
large skill differences between models may exist regionally, in which case careful model 
selection can be preferable to combining all available models (e.g., Endris et al. 2021).  
Although research is underway to determine whether it is advantageous to apply weightings 
to multimodel combinations (Hemri et al. 2020; Wei et al. 2022), based on the current state 
of understanding, a set of recommendations, together with corresponding tools that could 
be used at the regional and local levels, remains a gap.

Raw model outputs have systematic errors that must be corrected through postprocess-
ing. Most fundamentally, the mean systematic error, or bias, is removed by subtracting 
corresponding mean values from the hindcasts over the chosen climatological base period. 
However, this basic procedure does not correct for errors in higher-order moments such as the 
variance, for which an additional correction is sometimes applied, for example, in producing 
El Niño–Southern Oscillation (ENSO) forecasts (e.g., Merryfield and Lee 2023). In addition, 
model systematic errors can vary over time, particularly when long hindcast periods are 
employed such as for annual-to-decadal forecasts (Kharin et al. 2012). Reducing nonstation-
ary systematic errors is another area where ongoing research efforts and practical guidance 
(Kumar et al. 2012; Meehl et al. 2022) are required.

Forecast uncertainty and associated probabilities are determined from the spread of the 
bias-corrected forecast ensemble. Improvements in probabilistic skill and reliability can be 
achieved by fitting those values to an appropriate distribution and then adjusting the param-
eters of that distribution through a calibration procedure. This processing chain is illustrated 
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in Fig. 5. Various calibration methods have been devised, though as yet little practical guid-
ance is available regarding their relative advantages and shortcomings.

Downscaling from the coarse spatial resolution of global models to finer regional and local 
scales that are subject to topographic and other influences is an important need. It is not yet 
clear how much additional prediction skill comes from regional dynamical downscaling (e.g., 
Robertson et al. 2012; Freire et al. 2022). Because of this and the substantial computational 
effort and data sharing that dynamical downscaling requires, downscaling has primarily 
employed statistical methods, for example, via the widely used Climate Predictability Tool 
(CPT) (Mason 2011; Mason and Tippett 2017). Nonetheless, needs for dynamical downscal-
ing capabilities have been expressed by RCCs, and community efforts to explore the benefits 
of developing such capabilities could be considered if sufficient resources and supporting 
infrastructure are available.

Although not specifically problematic for the uptake of long-range forecasts, one further 
issue faced by regional forecasters is consistency across national and regional borders, as 
illustrated by the example in Fig. 6. This coordination and communication issue could be 
overcome straight away by cooperation among global and regional forecast producers.

c. Issues in product development and communication. Climate predictions are often com-
municated as probabilistic forecasts that quantify chances of different outcomes being real-
ized. A standard format is to display probabilities for mean conditions during the forecast 
period in three categories separated by terciles of the climatological distribution, often  

Fig. 5.  Schematic depiction of a chain of postprocessing steps leading from raw model output to a calibrated probabilistic fore-
cast. Model output from an ensemble forecast (first column) at a particular location is bias corrected to provide a sample of raw 
forecast anomalies (second column), where blue, yellow, and red denote anomalies in the below-, near-, and above-normal 
terciles of the climatological distribution indicated by the gray curve. This sample is fit to a parametric distribution (third column), 
the parameters of which are adjusted systematically through a calibration procedure to maximize probabilistic performance and 
improve reliability (fourth column) (from WMO 2020).
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labeled as below-, near-, and above-normal. While this framework is easily interpretable 
and, further, has been a useful standard, it is not especially well suited for decision-making 
because the tercile thresholds are often not directly relevant for users. A complementary ap-
proach is to provide a mean and uncertainty range or to provide exceedance probabilities for 
percentile or absolute thresholds that users can select to address specific applications and 
needs, including vulnerabilities to extremes. This capability exists, although it has not yet 
been implemented within the WMO infrastructure.

Similar considerations apply to the communication of predictive information as graphics 
or text. Probabilistic information needs to be conveyed in an understandable but not over-
simplified manner. Addressing forecast communication issues needs to connect with, and 
leverage, research initiatives exploring presentation of forecast information in various formats 
(Christel et al. 2018; Manrique-Suñén et al. 2023).

It is essential to also convey how much trust should be placed in the forecast, based both 
on past performance (deduced from comparison of hindcasts with observations) and inferred 
conditional skill specific to a particular forecast being made (e.g., Dunstone et al. 2023). 
Ideally, every forecast should be accompanied by information on the associated uncertainty 
reflecting its conditional skill rather than just skill measures based on the complete set 
of hindcasts which convey only average performance for conditions during the hindcast 
period (Kumar 2007). Formulating such information represents another challenge for the 
research and operational communities.

A further constraint on product development and communication is that currently 
model output data are often exchanged only as monthly means (particularly for seasonal 
forecasts). This limits the types of products that can be formulated, whereas availability 
of higher-frequency daily or subdaily fields would enable predictions for sector-relevant 
climate indices that depend on daily values, such as growing degree days, the number of 
days exceeding specified rainfall thresholds, and rainy season onset and cessation dates. 
Of course, such predictions are useful only if they are skillful and reliable (Coelho et al. 
2017; MacLeod 2018; Gbangou et al. 2019; Dirkson et al. 2021). Work needs to be done to 
establish if temporal downscaling from monthly means can yield skill for higher frequency 

Fig. 6.  Official seasonal temperature outlooks for March–April–May 2023 (left) for the United States from NOAA and (right)  
for Canada from ECCC, illustrating inconsistencies in lead time, display format, and forecast probabilities across national borders.
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variability. Greater availability of high-frequency data will doubtless accelerate research 
and development supporting such applications.

5. The WMO operational climate prediction workshop series
Given various issues faced in the uptake and better utilization of long-range forecast infra-
structure within WMO discussed in the previous section, a WMO OCP workshop series was 
established.

Leading to the OCP workshop series, in 2013, WMO organized the Workshop on “Op-
erational Long-Range Forecasting: GPCs and RCCs, in support of NMHSs and RCOFs.” This 
workshop was hosted by the Brazilian Meteorological Service (INMET) in Brasília, Brazil, 
on 25–27 November 2013, and brought together the operational seasonal prediction com-
munity to review practices, share experiences, and strengthen collaboration among global, 
regional, and national producers of seasonal climate prediction. The workshop identified 
the need to integrate the research community into future workshops. In 2015, the WMO 
initiated a workshop series on operational climate prediction, generalizing its scope to 
include S2D time scales and revising the layout to bring together both the operational and 
research communities.

The overarching aim of the WMO OCP workshops is to bring together representatives of 
operational, research, and services communities to advance communication and coordination 
and to have a better understanding of the gaps, needs, and approaches enabling improved 
coordination and collaboration among them. The OCP workshop is therefore a platform to  
i) review progress in the understanding of climate prediction and its implementation in  
operations, ii) communicate research needs from the operational community, for example, 
the ones discussed in the previous section, and iii) communicate user needs from the climate 
services to the climate prediction community to stimulate the development of new operational 
forecast products.

As such, the OCP workshops provide an opportunity to assess the efficacy of the existing 
WMO infrastructure for delivering climate predictions at global, regional, and national levels 
and to identify gaps for future improvements. Additionally, the OCP series is considered to 
be a mechanism to raise awareness and facilitate operational use, by all WMO members, of 
the WMO infrastructure for climate prediction for climate risk 
management. Most recently, the OCP-3 workshop was organized 
in 2022 along thematic sessions addressing these aims.7 The 
scope of the workshop was intentional in that it focused on 
forecasts on all three—subseasonal, seasonal, and annual-to-
decadal—time scales.

A targeted outcome of the OCP-3 workshop was to develop recommendations that could 
be addressed collaboratively by the operational, research, and service communities. The 
following recommendations, which further corroborate various issues raised in section 4, 
were synthesized:

•	 Perform an assessment of the efficacy of the cascading forecast process from global to 
regional and national level products.

•	 Focus on advancing understanding of mechanisms and drivers of climate predictability.
•	 Establish commonly agreed regional domains to subset GPC products across all time  

scales.
•	 Make sure that RCCs and NMHSs have easy access to WMO Lead Center’s real time as well 

as hindcast data archives.
•	 Identify reliable methods of a priori identification of windows of forecast opportunity.

7	https://community.wmo.int/en/meetings/third-wmo-
workshop-operational-climate-prediction-ocp-3-20- 
22-september-2022.
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•	 Implement WMO Unified Data Policy (WMO 2022b) in support of free access to 
operational climate prediction.

•	 Address the need to go beyond the provision of time averages of standard meteorological 
variables to get closer to users’ needs, typically more specific information than is usually 
provided.

•	 Address the need for forecast calibration considering the existence of conditional skill 
(specific to certain conditions) and unconditional skill (overall forecast system perfor-
mance estimated using all available hindcasts).

6. Summary and future steps
Spurred on by advances in observing systems, modeling and computing, improvements in 
scientific understanding for climate variability, and a desire to anticipate climate variations 
beyond weather time scales, a robust infrastructure for S2D predictions is now in place as 
part of the WMO. These global forecast systems, which are maintained by large operational 
centers, have the requisite information necessary to benefit all. It has also been recognized 
that the uptake of the forecast information has been slow, and discussions in various forums 
have led to the identification of gaps that need to be addressed. A summary of these gaps 
together with steps forward to address them are discussed next.

a. Addressing infrastructure gaps. An outstanding issue facing the WMO climate predic-
tion infrastructure is the inhomogeneity in the configuration of forecast systems at differ-
ent operational centers. In contrast to weather predictions, climate predictions have an 
added challenge that real-time forecasts must be accompanied by a set of hindcasts. The 
combination of real-time forecasts and the need for hindcasts creates a large trade space 
of competing demands between model resolution, ensemble size, hindcast period, burst 
versus lagged ensemble, and static versus on-the-fly hindcasts, decisions which must be 
made at each operational center to fit the selected forecast configuration within the con-
straints of available computing resources. We note that within the WMO long-range fore-
cast infrastructure, issues themselves are time scale dependent. For example, start dates 
for seasonal predictions have wider array of choices across operational centers compared 
to that for subseasonal or decadal predictions.

It is also known that certain decisions have implications for prediction skill; for example, 
increase in ensemble size relates to an increase in skill (Kumar and Hoerling 2000; Kumar 
et al. 2001; DelSole et al. 2014). Similarly, decisions on the length of hindcast period have 
implications for the estimation of skill, bias correction, and calibration of real-time forecasts 
(Kumar 2009). Without appropriate guidance on the relative influence of various decisions 
on the forecast skill, each operational center is left to make its own decisions on forecast 
configurations for different time scales, leading to the current state of diversity in forecast 
configurations for climate predictions that continues to befuddle advances in the use of S2D 
predictions.

It is also well established that the efficacy of multimodel ensemble techniques, for example, 
which underpin the concept of LCs, is undermined by the diversity in forecast configurations. 
To overcome this impediment, in collaboration with the research community, developing 
recommendations on forecast system configuration design would go a long way in enhancing 
the uptake and utility of climate predictions.

b. Addressing gaps in practical guidelines for steps in the cascading forecast process.  
The efficacy of the cascading forecast process is crucial in the utilization of global forecasts 
at the regional and national level. Although appropriate guidance for seasonal forecasts 
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has been developed by the WMO on good practices that should be followed in the cascad-
ing forecasting process (WMO 2020), and further, for the delivery of information to stake-
holders, the high-level guidance itself is not sufficient. This is because there are a baffling 
number of approaches available for practical implementation of steps in the cascading fore-
cast process, for example, model selection, bias correction and calibration, multimodel en-
semble, downscaling, verification, and forecast format and communication. To advance the 
operational climate prediction efforts within WMO, it is necessary that high-level guidance 
for cascading forecast process be complemented with recommended tools for implement-
ing various steps. These recommendations for different time scales should also be provided 
with a library of necessary software that could be used for easier implementation, such as 
through the “Climate Services Toolkit” being developed as an enabling mechanism of the 
CSIS implementation.

In implementing this recommendation, coordination with the research community will be 
necessary. Based on current scientific understanding, the research community could provide 
a set of recommendations on the tools that could be used in the cascading forecasting pro-
cess. Having such recommendations, and associated software, will facilitate the utilization of 
global forecasts to meet global, regional, national, and local needs. It is noted that as research 
advances evolve, the recommendations could be updated, as necessary.

c. Addressing data availability gaps.  As was discussed earlier, at present, sharing of 
data by global centers, and further, collection of data from GPCs by the LCs, focuses on 
the time-averaged quantities, particularly for seasonal forecasts. Many user-oriented ap-
plications of climate predictions, however, can benefit from the availability of higher fre-
quency data. Although such data from forecast systems are available, because of their 
volume, their sharing with WMO members in real time is a challenging task. Given the 
technological advances, however, sharing of data is not insurmountable and for subsea-
sonal forecasts is already in place. Once again, appropriate dialogues between forecast 
providers and user requirements resulting in workable solutions are needed to show the 
benefit of using high temporal resolution data in place of temporal mean data. Beyond 
provision for sharing high temporal resolution data, providing adequate guidance on how 
forecast data should be used is also necessary to avoid misinterpretation and misuse, and 
further, to be cognizant of the limitations in the use of long-range forecasts.

d. Research gaps. Substantial efforts are devoted at operational centers toward improve-
ments in data assimilation techniques and models to improve global prediction systems 
on all time scales, and such advances also translate into improving the quality of S2D 
predictions. There are additional research gaps, however, that are specific to advancing 
climate prediction efforts. Examples include the following:

•	 Advancing our understanding of sources of predictability: Understanding of the sources 
of predictability, including teleconnection pathways that link climate variability across 
various parts of the globe, underpins the scientific basis of S2D predictions. This un-
derstanding also helps communicate the physical basis behind the climate forecasts 
and thereby helps improve the credibility of forecast providers. Such knowledge also 
facilitates identification of instances of forecasts of opportunity when added confidence 
in climate predictions can be placed. Although tremendous advances in understanding 
climate predictability have been made, continued efforts to advance this understanding 
are still required to understand low-frequency variability and the associated coupling 
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processes. Understanding of causes of model biases for simulating teleconnection pat-
terns is also a key area for continued research, model improvement, and recalibration 
of forecasts.

•	 Relative importance of various choices in deciding S2D forecast system configuration 
on realizing predictability: In deciding on the forecast configuration, decisions must 
be made to fit the forecast system within available computing resources. These deci-
sions have implications for converting predictability into realizable skill. Answers to 
such questions are important in providing practical guidance to operational centers on 
forecast configuration and to improve homogenization across forecasts issued by differ-
ent centers.

•	 Forecast communication: An important aspect of climate prediction is the communica-
tion of forecast skills to users. The expected skill of the forecast system can be estimated 
based on the hindcasts, but this skill estimate is unconditional to individual forecasts. 
Because of sampling issues, estimating conditional skill is a challenging problem but is 
essential not only for communicating forecasts to the users but also to assign confidence 
to the forecasts. For a reliable forecast system, the assigned forecast probabilities also 
reflect the chance of its success. Consequently, forecast communication also connects 
with methods to calibrate real-time forecasts. Continued effort is needed to advance 
current issues related to linking conditional and unconditional skill, forecast reliability 
and calibration, hindcast length, etc.

	⚪ For seasonal forecasts, another aspect is the potential to communicate a broader range 
of information beyond anomalies of 3-month means. The scope of information could 
cover the probability of occurrence of climate indices relevant to different sectors like 
the number of stormy days, heating days, blocking days, season onsets, or the prob-
ability of extreme events. Again, skill and multimodel approach plays an essential part 
along with the development of appropriate post processing tools. Further, different re-
gions undergo different seasonal cycles which need to be acknowledged in the dissemi-
nation of outlook bulletins.

In this paper, we highlighted the current WMO infrastructure for S2D predictions. Along 
with the advances in developing the operational S2D prediction systems, we also highlighted 
various issues that continue to hinder its uptake. To resolve some of the issues, communica-
tion and collaboration between forecast providers, research community, and users would be 
important. Toward that, the operational climate prediction workshop series would play an 
important role in bringing three communities together.
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APPENDIX
List of Acronyms
CSIS	 Climate Services Information System
ENSO	 El Niño–Southern Oscillation
EW4All	 Early Warnings for All
GFCS	 Global Framework for Climate Services
GPC	 Global Producing Center
GPC-SP	 Global Producing Center for Seasonal Prediction
LC	 Lead Center
NMHS	 National Meteorological and Hydrological Service
NMC	 National Meteorological Center
NWP	 Numerical weather prediction
OCP	 Operational Climate Prediction
RCC	 Regional Climate Center
RCOF	 Regional Climate Outlook Forum
RSMC	 Regional Specialized Meteorological Center
S2D	 Subseasonal to decadal
WIGOS	 WMO Integrated Global Observing System
WIS	 WMO Information System
WIPPS	 WMO Integrated Processing and Predictions System
WMC	 World Meteorological Center
WMO	 World Meteorological Organization
UN	 United Nations
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