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Abstract: Essential Climate Variables (ECVs) like ocean colour provide crucial information on
the Optically Active Constituents (OACs) of seawater, such as phytoplankton, non-algal particles,
and coloured dissolved organic matter (CDOM). The challenge in estimating these constituents
through remote sensing is in accurately distinguishing and quantifying optical and biogeochemical
properties, e.g., absorption coefficients and the concentration of chlorophyll a (Chla), especially in
complex waters. This study evaluated the temporal and spatial variability of bio-optical properties
in the coastal waters of the Western Iberian Coast (WIC), contributing to the assessment of satellite
retrievals. In situ data from three oceanographic cruises conducted in 2019–2020 across different
seasons were analyzed. Field-measured biogenic light absorption coefficients were compared to
satellite estimates from Ocean-Colour Climate Change Initiative (OC-CCI) reflectance data using semi-
analytical approaches (QAA, GSM, GIOP). Key findings indicate substantial variability in bio-optical
properties across different seasons and regions. New bio-optical coefficients improved satellite data
retrieval, reducing uncertainties and providing more reliable phytoplankton absorption estimates.
These results highlight the need for region-specific algorithms to accurately capture the unique optical
characteristics of coastal waters. Improved comprehension of bio-optical variability and retrieval
techniques offers valuable insights for future research and coastal environment monitoring using
satellite ocean colour data.

Keywords: absorption coefficients; coloured dissolved organic matter—CDOM; detritus; chlorophyll
a concentration; semi-analytical algorithms; Ocean-Colour Climate Change Initiative (OC-CCI)

1. Introduction

Ocean colour has been recognized as an Essential Climate Variable (ECV) by the Global
Climate Observing System (GCOS, [1,2]). The term “ocean colour” refers to the residual
spectrum of incident solar radiation that is constituted by the frequencies that emerge from
the upper layer of the ocean after the incident radiation has been scattered and absorbed [3].
Ocean colour is therefore the result of this dispersion and absorption, as light interacts with
the water and the materials in it, either particulates or dissolved, namely Optically Active
Constituents (OACs). Specifically, in the visible range, passive radiometric sensors provide
data on the Apparent Optical Properties (AOPs, e.g., surface reflectance) of the ocean to model
the Inherent Optical Properties (IOPs) that depend on the OACs present in a given body
of water [4]. The challenge in estimating these constituents through remote sensing is in
accurately distinguishing and quantifying their IOPs and biogeochemical properties, e.g.,
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the absorption coefficients of phytoplankton (aph), non-algal particles (NAPs or detritus, ad),
coloured dissolved organic matter (CDOM, ag), and the concentration of chlorophyll a (Chla).

After corrections for the atmospheric and unwanted surface effects (i.e., sun and sky
glint and whitecaps), the accuracy of the retrieved water properties will depends on the
proportion, interaction, type, and vertical distribution of the dissolved (fulvic and humic
CDOM) and suspended particulate materials (i.e., organic and inorganic detritus and
phytoplankton cells) [5]. Thus, before applying inversion ocean colour algorithms, it is
necessary to understand and characterize the IOPs and the physics of the environment,
which govern their distribution spatially and temporally. In coastal waters, IOPs and
physicochemical properties are more variable on small scales of time and space compared
to the open ocean. Freshwater inputs to the system are a source of particulate matter and
dissolved organics, often influencing coastal stratification and hydrodynamics. In addition,
there may be regions and seasons more subject to the action of wind and wave-induced
bottom resuspension and coastal upwelling, where productivity and biological diversity
are usually higher [6].

In waters where there is an optical dominance of phytoplankton absorption in the total
absorption and where the other constituents, i.e., non-algal particles and CDOM, covary
with Chla (i.e., the product of phytoplankton degradation), the estimates of their bio-optical
properties tend to be more precise. This is the case for predominantly oceanic waters, where
Chla is normally the dominant optical constituent, classified as Case 1 waters [7]. On the
other hand, when the optical properties are influenced by the presence of particulate and
dissolved materials that do not covary with phytoplankton, Case 2 waters, there is a greater
complexity in estimating each of the IOPs [8], and this is when ocean colour algorithms
tend to fail or present higher uncertainties.

Biogenic light absorption is a main optical property that can be used to identify
phytoplankton based on their spectral characteristics (e.g., [9–13]), which is extremely
valuable for addressing several issues like carbon cycling, fisheries management, and
climate change [14,15]. Therefore, the characterization of the OACs and IOPs in coastal
regions is an important step in determining the appropriate use of ocean-colour bio-optical
algorithms, as well as their uncertainties [16] and the need for regional parametrizations of
global models [17].

The Western Iberian Coast (WIC) is a highly dynamic region, seasonally influenced by
coastal upwelling [18,19], as well as by continental river runoff and occasional storms [20].
The WIC’s primary oceanographic features include the Iberian Poleward Current (IPC),
upwelling jet, associated filaments, eddies, and the Western Iberian Buoyant Plume (WIBP).
The upwelling system, shaped by the coast’s morphology and wind patterns, exhibits
high variability, particularly in the northern WIC (e.g., [19,21,22]). Nutrient inputs from
continental sources or intense upwelling support phytoplankton growth, mainly in the
northern region (between latitudes 39.5 and 42◦ N) [22,23]. In contrast, the southern WIC
experiences limited phytoplankton growth due to lower nutrient availability, except in the
cape of Sagres [24].

The challenge in estimating OACs through remote sensing is in accurately distinguish-
ing and quantifying their optical and biogeochemical properties, especially in complex
waters, such as the ones in the Western Iberian Coast (WIC). Thus, the main aim of this
study was to evaluate the temporal and spatial variability of bio-optical properties in the
coastal waters of Portugal, contributing to the assessment of the best approaches for satellite
retrievals. To achieve this, the following specific objectives were considered: (i) analyze
the bio-optical composition of the WIC’s coastal waters and classify them according to
the general case 1 and case 2 classification scheme; (ii) analyze the temporal and spatial
variation of absorption coefficients for phytoplankton, detritus, and CDOM in order to
understand their dynamics and sources within the WIC; (iii) investigate the relationships
between biogeochemical and bio-optical properties; and (iv) assess the best approaches
to deriving bio-optical and biogeochemical properties using ocean colour remote sensing.
This study contributes to a better understanding of the bio-optical variability of ocean
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colour in the coastal shelf off Portugal, providing valuable information for future research
and monitoring efforts.

2. Materials and Methods
2.1. Sampling Campaigns

Under the framework of the AQUIMAR project (https://aquimar.hidrografico.pt/,
accessed on 10 November 2023), four oceanographic campaigns (AQ1 to AQ4) were per-
formed (Table 1), covering five sampling areas (A, B, C, D, and E). See [22] for details of
the sampling campaigns. This study uses data from AQ2 to AQ4, as no bio-optical data
were collected during AQ1. The AQ2 campaign was carried out within the period between
April and May 2019 (spring), AQ3 in October 2019 (autumn), and AQ4 between February
and March 2020 (called early spring, given the phytoplankton growing season). A total of
125 bio-optical samples were obtained during these campaigns (Table 1; Figure 1).

Table 1. Details and number (N) of bio-optical (absorption) samples collected during the oceano-
graphic campaigns of AQUIMAR (AQ1 to AQ4) in five areas (A, B, C, D and E).

Autumn (AQ1)
October 2018

Spring (AQ2)
April/May 2019

Autumn (AQ3)
October 2019

Early Spring (AQ4)
February/March 2020

No absorption
data

Area Start
date

End
date N Area Start

date
End
date N Area Start

date
End
date N

E 18/04 22/04 11 E 10/10 13/10 11 C 24/02 25/02 6
D 29/04 30/04 9 B 21/10 23/10 9 D 27/02 28/02 9
B 02/05 05/05 9 A 24/10 26/10 9 E 29/02 02/03 10
A 05/05 06/05 6 C 28/10 29/10 7 B 10/03 15/03 7
C 11/05 12/05 6 D 30/10 31/10 9 A 17/03 19/03 7

Total 18/04 12/05 41 Total 10/10 31/10 45 Total 24/02 19/03 39
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Figure 1. Location of in situ sampling stations (black dots, N = 125) and their matches with OC-CCI 
data (red circle, N = 53) in the five regions (A, B, C, D, and E). The AQ2 campaign was carried out in 
Figure 1. Location of in situ sampling stations (black dots, N = 125) and their matches with OC-CCI
data (red circle, N = 53) in the five regions (A, B, C, D, and E). The AQ2 campaign was carried out in
April/May 2019 (spring), AQ3 in October 2019 (autumn), and AQ4 in February/March 2020 (early
spring). The main capes (Carvoeiro, Espichel, Sines, and São Vicente-Sagres; black lines) and the
main points of freshwater entrance (from north to south: Minho, Lima, Ave, Douro, Ria de Aveiro,
Mondego, Tagus, Sado, Mira, Odiáxere, Arade, Quarteira, Ria Formosa, Gilão, and Guadiana; blue
dots) are identified on the map. Isobaths of 100, 200, and 1000 m (m) were obtained from GEBCO [25].

https://aquimar.hidrografico.pt/
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Surface seawater was sampled between ~4 and 6 m using Niskin bottles coupled to a
rosette system and combined with a multiparametric probe (Ocean Seven 320 Plus WOCE-
CTD, IDRONAUT, Brugherio, Italy) equipped with temperature (◦C), pressure (dbar),
conductivity (mS cm−1), and turbidity (FTU, SEAPOINT OEM) sensors (SEAPOINT, Exeter,
NH, USA) (processing details are described in [26]). The dissolved inorganic nitrogen (DIN)
was computed as the sum of NO2

−, NO3
−, and NH4

+ (processing details are described
in [22]). The seawater samples for chlorophyll a concentration (and phaeopigments) and
light absorption coefficients analyses were kept refrigerated and in dark conditions until
further processing, as described below.

2.2. Laboratory Work
2.2.1. Chlorophyll a and Pheopigments

A known volume (±1–3 L) of seawater was filtered through 25 mm glass fibre filter
GF/F (0.7 µm pore size). The filter was then placed in aluminium foil, stored in liquid
nitrogen, and later transferred to a −80 ◦C ultra-freezer. The concentrations of chlorophyll
a (Chla, mg m−3) and pheopigments (Pheo, the sum of pheophorbide a and pheophytin a,
mg m−3) were determined by High-Performance Liquid Chromatography (HPLC), using
a Shimadzu Prominence-i LC-2030C 3D instrument (Shimadzu, Kyoto, Japan) with a C8
reversed phase column. Pigments were extracted with 3 mL of 95% cold buffered methanol
(2% ammonium acetate) with 0.005 mg L−1 of trans-beta-apo-8′-carotenal. The extracts
were filtered (Fluoropore PTFE filter membranes (Merck KGaA, Darmstadt, Germany),
nominal pore size 0.2 µm) into the flask with 0.4 mL of ultrapure water to avoid a distortion
of their early elution peaks [27] and immediately injected into the HPLC [28–31]. Chla was
defined by the sum of allomers and epimers of divinyl chlorophyll a, chlorophyllide a, and
chlorophyll a [32]. TChla includes Chla plus the sum of pheopigments (Pheo). The quality
control of the pigment data was performed following the first rule described by [33].

2.2.2. Light Absorption Coefficients

Seawater samples were also analyzed to obtain the light absorption coefficients of
coloured dissolved organic matter (CDOM, ag) and particulate matter (ap), which includes
phytoplankton (aph) and inorganic particles (detritus, ad).

For the absorption coefficient of the CDOM (ag, m−1), the seawater samples and a blank
reference (used to subtract the water’s absorption, using ultrapure water) were filtered
through polycarbonate filters with a pore size of 0.2 µm [34]. The residual water was stored
in sterile amber glass bottles at 4 ◦C until laboratory analysis [35]. The absorbance reading
of the reference (blank) and samples (in triplicates) was performed using 100 mm acid-
cleaned quartz cuvettes in a double-beam spectrophotometer (model Shimatzu 2600 series
(Shimadzu, Kyoto, Japan)), from 300 to 800 nm [34]. The ag (λ) (m−1) was determined from
the absorbance measurement multiplied by a conversion factor (natural logarithm, 2.303);
divided by the cuvette length (m), with an offset correction at 650 nm; and subtracting the
water absorption using the blank references of each measurement [34].

For the absorption coefficients of the particulate matter (ap, m−1), a known volume
(±1–3 L) of seawater was filtered through 25 mm glass fibre filter GF/F (0.7 µm pore size).
The filter was placed in a vial, immediately frozen in liquid nitrogen, and stored in an
−80 ◦C ultra-freezer. The spectral ap, ad, and aph (300–800 nm) were determined using
the Transmittance %–Reflectance % (T-R) method described by [36,37], with a dual-beam
spectrophotometer (Shimatzu model 2600 series) coupled to an integrating sphere. The
ad (λ) was measured after filter depigmentation with NaClO 1% [35]. The absorbance was
converted to absorbance in suspension using the pathlength amplification factor of [38]
for the T-R method. Finally, ad (λ) was subtracted from ap (λ) to obtain aph (λ). The
phytoplankton-specific absorption coefficient (a*ph, m2 mg−1) was obtained by normalizing
aph by Chla (N = 122). The sum of the biogenic absorption coefficients (aph, ad and ag)
corresponded to at-w, and at to the total absorption coefficient including pure water (aw) [39].
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The spectral slope absorption (S) for ag (Sg), ad (Sd), and the sum of these compo-
nents, namely adg (Sdg), was determined by fitting the absorption coefficients to a single-
exponential non-linear curve ([40], S(λ)= ax (λ reference) exp (–S [λ– λ reference]), between
wavelengths from 350 nm to 500 nm, with 443 nm as the reference [41–43].

2.3. Satellite Data and Derived Products

The approach implemented in this study follows the diagram presented in Figure 2.
Chla concentrations and bio-optical properties (absorption coefficients) were derived from
OC-CCI reflectance data, as explained below.
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Chla concentrations and bio-optical properties (aph and adg).

2.3.1. Reflectance Data

Daily remote sensing reflectances (Rrs, sr−1 at 412, 443, 510, 560, and 665 nm) elabo-
rated within the scope of the ESA Ocean Colour Climate Change Initiative project (OC-CCI,
version 5, level 3 and 1 km spatial resolution) were obtained from the OC-CCI webserver
(https://www.oceancolour.org/, accessed on 5 January 2022). This dataset integrates infor-
mation from several sensors—SeaWiFS, MODIS, MERIS, VIIRS, and OLCI-3—using the
unified processing chain described in [44].

2.3.2. Satellite-Derived Chlorophyll a

Chla concentrations were derived from OC-CCI v5, which uses the OC5CCI empir-
ical algorithm for case 1 and case 2 waters [45], developed by IFREMER and PML. The
OC5CCI algorithm (from CMEMS webserver https://data.marine.copernicus.eu, CMEMS-
OC-QUID-009-034-036-046-047-066 to 069-087 to 092, accessed on 5 January 2022) was
chosen based on a CMEMS calibration and sensitivity analysis, which evaluated several
algorithms (OC3, OC4ME, OCI, OC5CI, OC5, OC5CCI). This analysis includes an in situ
database of 191 samples from the coastal waters of Portugal [46] and has demonstrated its
superior performance, with R² values of 0.89 compared to, e.g., OC4Me 0.78, and outper-
formed the OC’s algorithms using the database from the AQUIMAR project, considering
its four oceanographic cruises. Additionally, the Chla concentrations, as one of the products
derived from the default semi-analytical GSM algorithm (Garver–Siegel–Maritorena, [47]),
presented below were obtained for comparison with the empirical results of the OC5CCI.

2.3.3. Satellite-Derived Absorption Coefficients

Absorption coefficients (at, aph and adg) were also derived from the Rrs of OC-CCI v5
using three semi-analytical approaches: (i) the QAA (Quasi-Analytical Algorithm, [48]) de-
rived from OC-CCI v5; (ii) the default version of the GSM (Garver–Siegel–Maritorena, [47])
algorithm; and (iii) the default version of the GIOP (Generalized Inherent Optical Property)
algorithm (from [49]). These approaches, based on radiative transfer equations, relate the
spectral distribution of Rrs to the inherent optical properties of water. Such algorithms
continue to be used in the provision of standard products by the main projects of space
agencies (e.g., the ESA and NASA).

https://www.oceancolour.org/
https://data.marine.copernicus.eu
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Both the GSM and GIOP approaches were parameterized with coefficients from [50]
to ensure consistency. In addition, GIOP was also parameterized with regional coefficients
(regional aph). New regional coefficients (named RG) for the relationship between in situ
Chla and absorption coefficients (aph) were derived for the coastal waters of Portugal
(N = 122). This was implemented following the approach described by [50,51], using the
power law function coefficients for the entire spectral range (λ = 400 to 700 nm). See
Section 3.3 for details on this regional parameterization.

A relevant difference between the default GIOP and the other approaches is that GIOP
needs Chla as an input component. In this case, OC5CCI Chla was used, given the best
performance of the algorithm (as presented in Section 3.4). Thus, the GIOP approach was
also implemented using two variants: (i) GIOP using OC5CCI-derived Chla as its input,
with coefficients from [50] (GIOP-OC5CCI); and (ii) GIOP using OC5CCI-derived Chla as
its input and parameterized with regional coefficients (regional aph, GIOP-OC5CCI-RG). In
total, 4 different results for satellite-derived absorption coefficients were obtained; three
using standard approaches and one using regional coefficients.

2.3.4. Matchup Analysis

The dataset was processed according to the provided quality index, leaving a total of
53 matchups (Figure 1, red circles). As the data acquisition of the sensors (SeaWiFS, MODIS,
MERIS, VIIRS and OLCI-3A) used in the OC-CCI product vary between ∼10:00 and ∼13:30
local solar time, the acceptable time window was initially set to ±6 h (following [52]),
however, subsequent tests showed a minimal significant effect in accepting in situ samples
(N = 7) at any time of the same day. Hence, the time window was set to the same day [9].
To ensure spatial homogeneity, the median of a 3 × 3 window box centred on the sampling
site was obtained based on Rrs (sr−1, between bands 412 and 665 nm), with at least
5 valid pixels, a coefficient of variation less than 0.20, and pixels that differ by less than
one standard deviation [9,53]. A comparative analysis of the Rrs between OC-CCI and
Sentinel-3A (OLCI, N = 22) demonstrated a consistent pattern, with a slope exceeding 0.91
and a coefficient of determination (R²) of 0.65 at 442 nm, 0.85 at 665–670 nm, and over
0.93 for other wavelengths (unpublished data). The 1 km spatial resolution dataset from
OC-CCI, utilizing 3 × 3 window values without pixel overlap, could yield more matches
and offer valuable insights into variability [44]. Despite Sentinel 3-A’s higher resolution
(300 m), OC-CCI’s broader temporal coverage is advantageous for future comprehensive
seasonal analyses.

To assess the agreement between in situ observations and the OC-CCI satellite’s ocean
colour products, a Type-2 regression least squares fit was applied (lsqfitma.m routine from
MBARI, http://www3.mbari.org, accessed on 10 January 2022). Concomitant results (or
matchups) were evaluated using regression parameters (coefficient of determination—R2

—and linear equation parameters are provided in Supplementary Materials) and error
estimations, including the bias (BIAS), mean squared error (RMSE), and mean absolute
error (MAE). The BIAS and MAE were applied following [54].

Inherent optical properties (absorption coefficients) were aggregated within ±3 nm of
the OC-CCI bands. The 443 nm wavelength was chosen to represent the main variability of
the biogenic absorption coefficients and is omitted hereinafter. Moreover, the at (443 nm)
was evaluated to minimize the additional uncertainty introduced by partitioning at (443 nm)
into its aw, aph, and adg contributions [55].

2.4. Statistics and Data Analysis

The Shapiro–Wilk test was used to confirm the non-normality of the bio-optical pa-
rameters, and a Tukey honest significant difference (HSD) was performed to verify if there
were mean significant differences between areas and campaigns (p-value < 0.05). Heatmaps
of Kendall correlation coefficients (τ, ±0 to 1, pairwise method) and their significance (‘*’,
p-value ≤ 0.05) were created using normalized in situ data. In addition, regression analyses
were used to describe the relationships between in situ biogeochemical components (e.g.,

http://www3.mbari.org
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turbidity, Chla concentrations) and absorption coefficients (at, aph, and adg). In order to
obtain regional coefficients for the semi-analytical approaches, power law functions were
fitted to the data, following [50] and [56]. These relations are presented with their R2,
number of samples (N), and the coefficients (“a” and “b”) from a power law fit (a.xb) or
polynomial fit (“Poly fit”, a.x + b, when specified).

3. Results
3.1. Case 1 vs. Case 2 Waters

The total non-water absorption coefficient at-w varied between 0.05 and 0.44 m−1

(Table S1; Figures 3 and S1), reaching higher values (>0.22 m−1) during the spring (AQ2)
and early spring (AQ4) campaigns. During the spring campaign (AQ2), at-w (average
0.16 m−1) demonstrated strong positive correlations (τ ≥ 0.6 *, Figure S2) with the phy-
toplankton components (Chla, Pheo, and aph, e.g., in areas A and E), detritus absorption
(ad), and turbidity. CDOM absorption (ag), became more strongly correlated to at-w in the
autumn campaign (AQ3, average 0.12 m−1), while during the early spring (AQ4, aver-
age 0.11 m−1), the detritus and phytoplankton absorption coefficients became again more
strongly correlated with at-w (Figure S2, except area D), but were not correlated with each
other in the northern areas. The early spring campaign, which occurred during the initial
phase of a strong upwelling event [22], was characterized by the highest turbidity (on
average up to 1.19 FTU), DIN (up to 2.17 µmol L−1 for areas A, B, and C), and ad (average
0.020 m−1), especially in the northern–central WIC (Figures 4 and S1; Table S1).
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Figure 3. Distribution map of the total in situ absorption coefficients (at-w m−1, without the sum of
water absorption, N = 125) at wavelength (λ) 443 nm and their respective spectra (λ = 350 to 700 nm)
by area (A to E) and oceanographic campaign (AQ2—spring, AQ3—autumn, and AQ4—early spring).

Following the [57] classification scheme, Case 1 waters (Figures 4 and S3), dominated
by aph (>70% of at-w), represented only 23.2% of the samples and were most frequent
in spring (during a phytoplankton bloom) (e.g., AQ2, area A and E) and early spring
(AQ4, areas B and D) and had the lowest ag contribution. Case 2 waters (Figure 4) were
much more frequent, representing 76.8% of the samples within the WIC; of that, 64%
were dominated by aph + ag, 8% by ag, 2.4% by aph + ad, and 2.4% by all three biogenic
absorption components. In approximately 58% of the samples, aph contributed between
50 and 70% of the biogenic absorption, mostly during the spring (AQ2) and early spring
(AQ4) campaigns. A greater dominance of the CDOM component (38% of samples) was
mainly observed during the autumn campaign (AQ3, e.g., area E). The detritus component
had a higher contribution (>50%) during the early spring campaign (AQ4), especially in
the northern–central WIC (areas B and C).
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Figure 4. Triangular diagram (I to V) representing the contribution of the in situ absorption coefficients
of phytoplankton (aph at 443 nm, m−1), non-algal particles (NAPs, at 443 nm, m−1), and coloured
dissolved organic matter (CDOM, ag at 443 nm, m−1) by sampled area (A to E) and oceanographic
campaign (AQ2—spring, AQ3—autumn, and AQ4—early spring). The bar graph (VI) shows the
percentage (%) number of samples by area and campaign for each type of water [57], named according
to the contribution of their components: aph + ag, aph, ag, aph + ad, and aph + ag + ad.

3.2. Temporal and Spatial Variation of Bio-Optical Properties

The phytoplankton absorption coefficient (aph 443 nm, Figure 5), phytoplankton-
specific absorption (a*ph, 443 nm, Figure S4), and Chla ranged from 0.01 to 0.35 m−1,
0.03 to 0.017 m2 mg−1, and 0.10 to 9.38 mg m−3, respectively (Table S1 and Figure S1),
within all campaigns. The spring campaign (AQ2), sampled during a weakening upwelling
event, was significantly different (p-value < 0.05) from the other campaigns regarding the
aph and Chla, associated with a phytoplankton bloom [22]. These differences in aph and
Chla were particularly pronounced in areas A, D (next to Cape Carvoeiro), and E, where
the highest values were registered (>0.19 m−1 and >4 mg m−3, respectively; Table S1,
Figures 5 and S1), concurring with the lowest a*ph values (<0.04 m2 mg−1, e.g., area E,
Figure S4). In this period (AQ2) and areas (A, D and E) characterized by enhanced pro-
ductivity, Pheo values were also higher (>0.4 mg m−3, Table S1), but still representing less
than 30% of TChla. In autumn (AQ3) and early spring (AQ4), the maximum of aph, a*ph,
Chla, and Pheo did not surpass 0.13 m−1, 0.14 m2 mg−1, 3.34 mg m−3, and 0.31 mg m−3, re-
spectively, excluding only one station in area E (AQ3), where Pheo registered 1.53 mg m−3

(Table S1). This area in the southern WIC (E) had, in contrast, the lowest values of Chla
(<1.36 mg m−3) and aph (<0.82 m−1), which were associated with a higher sea surface
temperature (AQ3) or higher salinity (AQ4) (Figures S2 and S5I,II). The proportion of Pheo
in relation to Chla was greater than ~30% in a few sample stations (N = 6), especially in
autumn (Figure S5IV, e.g., AQ3 area E), however, no significant differences were observed
between Chla and TChla when considering all sampling data (N = 122).

The detritus’ absorption (ad, m−1) varied between 0.0004 and 0.194 m−1 (Table 1;
Figures 5 and S1). The ad was higher near the coastline, displaying a positive correlation
(Figure S2) with several parameters related to the OACs during the spring (AQ2) and
autumn (AQ3) campaigns. However, during the early spring (AQ4), ad was significantly
different, with high values (0.194 and 0.124 m−1) in areas B and C. During this campaign in
particular (AQ4), the correlation between ad and turbidity became stronger. On the other
hand, a reduction in the correlation power between ad and phytoplankton was observed,
except for in area D.
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AQ4—early spring).

The absorption coefficient of the CDOM (ag m−1, Table 1; Figures 5 and S1) ranged
from 0.008 to 0.127 m−1. The average values of ag were similar between the spring (AQ2)
and autumn (AQ3) campaigns, with a higher ag (>0.09 m−1) in area E, especially during
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autumn. The ag (Figure 5) sampled during the strong upwelling in early spring (AQ4),
was significantly different from the other campaigns, which showed a much lower ag
(<0.04 m−1), especially in areas B, D, and E. This contrasts with the highest turbidity and
DIN values also recorded in this campaign (AQ4) (northern areas) and the lowest salinities
in area B, near the Mondego estuary (Figure S1 and Table S1).

3.3. Relationships between Biogeochemical Components and Bio-Optical Properties

The aph coefficients tended to increase (and the a*ph coefficients tended to decrease,
Figure S5V–VIII) with increasing Chla (or TChla) in a power law function. For wavelengths
from λ = 400 to 700 nm, new regional coefficients (named RG) were calculated using the
relationship between in situ Chla and aph (λ) for the coastal waters of Portugal (N = 122). As an
example, Figure 6 presents the relationship between Chla and aph for the specific wavelength
of 443 nm. The relationship obtained herein was closer to that reported in B04 [58] and L10 [56]
than in B98 [50] and B10 [42] (Figures 6 and S6). This could be related to an overestimation
of the Chla by the fluorimetric measurements included in the B98 and [51] global fits, as
discussed by [42]. Inverting the relation, the aph (443 nm) vs. Chla derived from our dataset
(Figure 6II, Table S2) was closer to the relation used in the Algal 2 (A2) algorithm for the North
Sea [59,60] than the regional relation obtained by S15 [52] for the WIC. Both relations, that
between Chla vs. aph (443 nm) and vice versa (Table S2), show a better agreement in the spring
(AQ2) and autumn campaigns (AQ3) compared to the early spring campaign (AQ4). The
highest errors were, in general, related to stations with a higher a*ph (e.g., area D in AQ2) and
a higher proportion of Pheo in relation to Chla (>30%).
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Figure 6. (I) Relationships between the in situ Chla (mg m−3) and phytoplankton absorption
coefficient (aph at 443 nm, m−1) obtained by fitting a power law function (“Fit”, with coefficients
“a” and “b”, r-squared: R2, and the number of samples: N). The relationship between Chla and aph

was compared to the results obtained by Bricaud et al. [42,50,58] (B98, B04, and B10, respectively)
and Loisel et al. [56] (L10). (II) aph versus Chla, which was compared to the results obtained by
Sá et al. [52] (S15) and the Algal 2 (A2) algorithm [60]. The symbols correspond to different sampled
areas (A to E), with different colours representing each oceanographic campaign (AQ2—spring,
AQ3—autumn, and AQ4—early spring).

Despite the slightly stronger correlation between ad and Chla during spring (AQ2)
(R2 = 0.42, Table S3), most samples were scattered and, in general, positioned below the
fit obtained by B10 for oceanic waters (Figure 7I and Table S3, except some samples in
AQ4). The relationship between ad and turbidity (FTU) was described through a power law
equation (Figure 7II) which showed a high covariation (R2 = 0.92), with higher deviations
related to lower ad values, especially in the autumn (AQ3) campaign (Table S3). Figure S7
shows a negative relationship between ad and temperature, as well as a more scattered
pattern with salinity. The spectral slope Sd (nm−1) had a relatively strong negative relation
with ad (Figure 7IV), with higher deviations in some stations with lower ad (<~0.005 m−1).
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firmed by its weak (τ < 0.3) and non-significant correlations with most parameters (Figure 
S2). Each campaign showed a different behaviour concerning ag variability. The ag was 
significantly correlated (Figure S2) with Chla, turbidity, and DC in spring (AQ2); with 
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Figure 7. Relationships between (I) in situ absorption coefficient of non-algal particles (ad, m−1)
and in situ Chla (mg m−3); (II) in situ absorption coefficient of non-algal particles (ad, m−1) and
turbidity (Turb, FTU); (III) in situ absorption coefficient of coloured dissolved organic matter or
gelbstoff (ag, m−1) and in situ Chla (mg m−3); (IV) spectral slope of detritus (Sd, nm−1) and the
absorption coefficient of non-algal particles (ad, m−1); (V) spectral slope of CDOM (Sg, nm−1) and the
absorption coefficient of CDOM (ag, m−1); and (VI) spectral slope of detritus + CDOM (Sdg, nm−1)
and the absorption coefficient of detritus + CDOM (adg, m−1). The fit curve was obtained by a
power law function (“Fit”, with coefficients “a” and “b”, r-squared: R2, and number of samples: N).
Comparisons with the curves obtained by B10 [42] are also presented. The symbols correspond to
different sampled areas (A to E), with different colours representing each oceanographic campaign
(AQ2—spring, AQ3—autumn, and AQ4—early spring).

In general, CDOM’s relationships with the other parameters were very scattered
(Figures 7 and S8; Table S4), suggesting great variability in its origin and state, which is
confirmed by its weak (τ < 0.3) and non-significant correlations with most parameters
(Figure S2). Each campaign showed a different behaviour concerning ag variability. The ag
was significantly correlated (Figure S2) with Chla, turbidity, and DC in spring (AQ2); with
salinity, detritus, turbidity, Pheo, and DC in autumn (AQ3); and with only DIN in the early
spring (AQ4). The Sg (nm−1) and Sdg (nm−1) had a strong negative relation with ag and
adg, respectively (Figure 7V,VI).

3.4. Evaluation of Semi-Analytical Approaches to Deriving Bio-Optical Properties from
Ocean Colour

The Chla retrievals with OC5CCI and GSM algorithms were evaluated to determine the
optimal input for the GIOP algorithm. In this study, the Chla retrieved with the empirical
OC5CCI algorithm (Figure 8I, N = 53) yielded good statistical results (R2 = 0.77) which
were superior to those obtained by the standard GSM (R2 = 0.50, Figure 8II), but still with
some degree of underestimation for most cases (BIAS 0.87; Figure 8I). According to [54], a
BIAS < 1.0 indicates underestimations.
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Figure 8. Comparison between in situ Chla (mg m−3) and its corresponding retrievals using the
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The comparison between the in situ absorption coefficients (at, aph, and adg, N = 53) and
their corresponding retrievals obtained by the standard semi-analytical algorithms QAA, GSM,
and GIOP (with Chla OC5CCI as input) are presented in Figure 9. All standard semi-analytical
algorithms underestimated the total absorption retrievals (at, BIAS ~ 0.69 to 0.75) and exhibited
a mean absolute error (MAE) ranging from 1.45 to 1.53 (Figure 9I,IV,VII; Table S5).
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Figure 9. Comparison between in situ absorption coefficients (at, aph, and adg at 443 nm, m−1) and
their corresponding retrievals, obtained by default algorithms—the QAA from OC-CCI v5 ((I)–(III)),
GSM ((IV)–(VI)), and GIOP—using Chla OC5CCI retrievals as their input (GIOP-OC5CCI; VII–IX).
The symbols correspond to different sampled areas (A to E), with different colours representing each
oceanographic campaign (AQ2—spring, AQ3—autumn, and AQ4—early spring).

The aph retrievals were even more underestimated (BIAS 0.41 to 0.66), especially for three
cases in spring with highly underestimated values (AQ2, Figure 9II,V,VIII, green diamond—area D;
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Table S5). The GIOP algorithm, utilizing Chla retrievals from OC5CCI as its input, achieved the
smallest underestimation in aph retrievals, yielding the best statistical outcomes (MAE = 1.63,
R2 = 0.47, and S = 0.66). In contrast, the QAA and GSM’s (using B98 coefficients) retrievals
exhibited substantial underestimations, with BIAS values of 0.41 and 0.52, respectively.

For the adg retrievals, on the other hand, the QAA yielded better results (R2 = 0.22
and slope of 0.94), especially due to its improved estimate of the highest adg value in early
spring (AQ4, Figure 9III, blue cross—in area B, where only one station exhibited the highest
ad values; Table S5). For all algorithm retrievals, including that of the QAA, significant
underestimations were observed in cases with a higher ag contribution in autumn (AQ3,
Figure 9III,VI,IX, the yellow ones mostly in area E). The adg statistical results for the GSM
and GIOP algorithms (MAE = 1.7 and 1.66, BIAS = 0.86 and 0.83, R2 = 0.09 and 0.13, and
both S = 0.46) were not significantly different.

Considering the results obtained with the standard GIOP algorithm for at and aph, the
subsequent phase involved the use of the regional parameterization (RG) obtained for the
power law relation between the in situ Chla and aph (λ) instead of the B98 coefficients for
the aph estimation [49] (Figure S6).

As expected, the results obtained with the regional coefficients (GIOP-OC5CCI-RG,
Figure 10) were better than the standard GIOP version in terms of the at and aph coeffi-
cients. This was mainly related to a significant improvement in the aph retrievals, which
consequently led to an improvement mostly in the slope results for at (0.78). The adg
retrievals from the GIOP’s regional version (Figure 10) were close to its standard results
(Figure 9). The stations with the highest biases (3 for aph and 7 for adg) remained with high
underestimations, even for the GIOP-RG.
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Figure 10. Comparison between in situ absorption coefficients (at, aph, and adg at 443 nm, m−1) (I–III)
and the GIOP, with Chla OC5CCI retrievals as the input and using the RG coefficients (regional,
Figure S5), namely the GIOP-OC5CCI-RG. The symbols correspond to different sampled ar-
eas (A to E), with different colours representing each oceanographic campaign (AQ2—spring,
AQ3—autumn, and AQ4—early spring).

4. Discussion
4.1. Case 1 vs. Case 2 Waters

The Western Iberian Coast (WIC), located in an Eastern Boundary Upwelling System
(EBUS), is characterized by dynamic coastal upwelling, with interactions between oceano-
graphic features (e.g., capes and canyons) and continental river runoff. The interaction of
the oceanic water masses with freshwater inputs governs the spatial distributions of the
temperature, salinity, and nutrients, which in turn influence the optical properties of the
surface waters. In the WIC, salinity shows a clear north–south gradient, with the lowest
values (<35) in the northern region (e.g., areas A, B, and C) more influenced by continental
runoff compared to the southern region (this study, [19,26,61]). Sea surface salinity, temper-
ature, and the distance from the coastlines had weak but significant correlations (<0.4) with
the OACs, denoting the high variability in the OACs’ distribution at each coastal site and
between different seasons.
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The spring (AQ2) and early spring (AQ4) campaigns occurred during coastal up-
welling events, but at different stages; the first at the end of this event, with a phytoplankton
bloom on course, and the second in the initial phase, with a lower phytoplankton biomass
but high nutrients [22], and a significant increase in turbidity and detritus, especially in
the northern region of the WIC. Both the spring and early spring campaigns thus had the
highest at-w values recorded, but with different contributions from OACs. For the spring
campaign, aph (and Chla) had a high correlation with ad, denoting the main autochthonous
source of the detritus, which was tightly linked to the phytoplankton bloom. The early
spring campaign, on the other hand, had a lower aph contribution and higher ad contribu-
tion to at-w, which covariates with turbidity but was not significant with Chla. Hence, the
non-algal particles in this case were not only regulated by the phytoplankton community
(its growth and decay) but also associated with external sources linked to other coastal
processes, such as seasonal sedimentary dynamics. This is similar to the observations made
by [62] for coastal waters in the Eastern English Channel. Higher coastal water turbidity in
the WIC was also observed by [63] in the winter and early spring months, associated with
more intense wave action, resuspending bottom sediments, especially across the wider
northern shelf (during winter) added to initiating coastal upwelling events in the early
spring, as sampled during AQ4. Moreover, [64] has previously reported the importance
of internal waves in the resuspension of sediments and bottom currents near the Nazaré
Canyon (next to area C). Winter is also the rainy season in Portugal [19], and river runoff
was also likely a source of the higher ad and turbidity values observed, especially at the
coastal stations nearest to Porto city (area A), the Mondego River (area B), and Cape Car-
voeiro (area C), during the following early spring season (AQ4). In fact, [65] identified
seasonal variations in water type classification using satellite imagery. During winter and
spring, the waters of the WIC were predominantly classified as Case 2 waters (complex
waters), which exhibited higher CDOM per Chla ratios compared to typical Case 1 waters.
Case 1 waters were primarily observed in the southern and offshore regions during the
autumn and summer seasons. In our case, due to the phytoplankton bloom, most Case 1
waters were found in the spring campaign. Sá [65] attributed the higher CDOM in Case 2
waters to biogenic material resulting from the degradation of phytoplankton blooms in
spring and from riverine inputs in winter.

The autumn campaign had lower surface water turbidity, but similar at-w values
compared to the early spring, in most stations. In this case, CDOM together with phyto-
plankton were the dominant optical constituents contributing to at-w. CDOM, however,
had no correlation with Chla, especially during the autumn and early spring campaigns.
Only the spring campaign showed some correlation between CDOM and Chla (0.3), which
coincided with a phytoplankton bloom. Sá [65] reported a higher dominance of CDOM
during the spring season in the Nazaré Canyon area, though the mean phytoplankton
absorption value was lower than that observed in our study for the same period (0.033 m−1

and 0.098 m−1, respectively). In our case, we also found a higher CDOM contribution
in the southern WIC (area E), which is characterized by a lower contribution of river
runoff and a narrower shelf [19]. Besides the contribution of continental runoff to the
coastal waters of the WIC, another possible source that may explain the higher CDOM
absorption and its relative contribution to at-w during the autumn campaign may be the
degradation products released during the decay of phytoplankton blooms associated with
coastal upwelling events. Hence, even if they are produced by autochthonous sources, the
possible lag between phytoplankton growth and CDOM production, especially during and
post-bloom decay phase, could maybe explain the temporal disconnection between CDOM
and Chla in highly dynamic coastal areas such as the WIC. In fact, the stations with the
highest CDOM absorption contributions had also higher contributions of Chla degradation
products, i.e., Pheo. Less CDOM photobleaching processes, associated with the lower
incident solar irradiance during the autumn months, may also partly contribute to the
higher CDOM contribution in this season. Unfortunately, in this study, it was not possible
to further investigate the possible sources of CDOM due to limited spectral ag information



Remote Sens. 2024, 16, 3440 15 of 23

and auxiliary data. Further studies using more spectrally resolved ag (220–700 nm) [66]
and carbon pool measurements are encouraged to verify the sources of CDOM in the WIC,
as well as their spatial and temporal variability.

Following [57]’s optical classification scheme, the majority (74%) of the samples collected
during this study in the coastal waters of Portugal were classified as Case 2 waters (Case 1
corresponded to 23.2%), and most of the samples were dominated by aph + ag. The autumn
and early spring seasons, under non-bloom conditions, are especially characterized by more
complex Case 2 optical water types, with higher detritus and CDOM contributions to the at-w.
The present results are consistent with the findings obtained by [65] for similar areas of the
Portuguese coast and those of [67] in the Sagres region (the west area, E), which identified
a majority of aph optically dominated waters, but also with an important contribution of ag,
varying between 33 and 60% of at-w during bloom and non-bloom conditions, respectively.

4.2. Temporal and Spatial Variation of Bio-Optical Properties

As discussed in the previous section, the WIC presents high temporal and spatial
bio-optical variability, regulated by highly dynamic coastal processes and some regional
site-specific characteristics. Chla and aph had high spatial variability, especially during the
spring campaign (AQ2), which occurred during the end of a strong upwelling event [22].
Phytoplankton blooms (e.g., Chla > ~5 mg m−3, see [22]), dominated by microphytoplank-
ton groups (diatoms and dinoflagellates, [68]), in response to coastal upwelling events (e.g.,
AQ2) are a common feature in the spring and summer months (April to September), along
the west coast of Portugal, especially in the northern region [19,67–71], as well as around
the Carvoeiro and Sagres capes (areas D and E, respectively), as shown in the present
study. The a*ph spectra were mostly flattened during the spring and had lower values,
especially at the stations with the highest Chla (areas A and E). These areas also had high
concentrations of fucoxanthin and peridinin (unpublished data), suggesting the dominance
of phytoplankton groups with larger cells (e.g., diatoms and dinoflagellates), with a higher
packaging effect [72]. The overall power law relation between aph (443) and Chla, and the
negative relation between a*ph (443) and Chla, denotes the effects of intracellular pigment
self-shading and the increase in accessory pigments observed in other studies [58].

Moita [69] examined the temporal and spatial variations of phytoplankton assemblages
in the WIC and observed that phytoplankton’s biomass and diversity varied seasonally
and spatially in response to the dominant oceanographic processes, with diatoms being the
dominant group during spring and early summer, when northerly winds and upwelling
conditions were prevalent, followed by dinoflagellates during late summer and autumn,
when more stratified conditions in the water column developed. The study reported high
concentrations of Chla during the upwelling season in the WIC, with Chla concentrations
reaching up to 6 mg m−3. Goela et al. [67] also investigated the contribution of phytoplank-
ton to the optical properties of the southwest coast of Portugal and found that the a*ph
varied according to the taxonomic composition of the phytoplankton assemblages, with
diatoms having a lower a*ph than other phytoplankton groups. The authors also reported a
negative correlation between a*ph and Chla, with the highest values of Chla seen during
the upwelling season in the WIC, as observed in this study.

Brito et al. [17], on the other hand, reported a high specific absorption coefficient (an
a*ph up to 0.17 m2 mg−1) associated with pico/nanophytoplankton cells during the summer
months (August–September) in the western and southern coastal waters of Portugal (e.g.,
areas B, D, and E). A high a*ph (up to 0.17 m2 mg−1) was also observed in the present study
in some offshore stations during the spring campaign (AQ2, at areas B and D), which may
indicate a low packing effect associated with the dominance of smaller picophytoplankton
cells [42]. This is supported by the higher presence of photoprotective pigments such as
alloxanthin and zeaxanthin in these areas (unpublished data), suggesting the presence of
cryptophytes (offshore of area D) and cyanobacteria (offshore of area B). In general, the
a*ph values obtained in our study (except the highest values in areas B and D in AQ2) are
close to the range of coefficients reported by [16] (0.02 to 0.12 m2 mg−1 at 440 nm) for the
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Sagres cape (area E). Further analysis of a*ph variability and phytoplankton composition
will be part of future work.

The early spring season was characterized by lower phytoplankton absorption and
Chla and higher detritus absorption, which was correlated to turbidity, suggesting the
contribution of other sources rather than just phytoplankton degradation products, such
as continental runoff, the bottom resuspension of sediments, and strong upwelling, as
discussed in the previous section. CDOM absorption was higher in the autumn season
along most of the inner shore stations within the WIC, which is probably attributed to
post-bloom degradation products, in addition to continental runoff and resuspension, as
previously discussed.

4.3. Relationships between Biogeochemical Components and Bio-Optical Properties

The relationship between aph (443 nm) and Chla (and TChla) obtained in the present
study (N = 122) was similar to that found by [58] and [56] for global oceanic and coastal
waters. Some minor deviations are likely attributed to local and regional phytoplank-
ton species and ecophysiological conditions, with different proportions of photosynthetic
and photoprotective pigments and packaging effects. The global relation proposed by
Bricaud et al. [50,51] was somewhat offset, as also noticed by Bricaud et al. [42,58], who
discussed the major differences as being related to the fluorimetric Chla measurements
which composed most of the previous global datasets, instead using only HPLC. This has
important implications for ocean colour retrievals since standard default versions of the
GIOP semi-analytical model are still presented with Bricaud et al.’s [50,51] global fit to
derive the aph* eigenvectors. Our results contrast with the findings obtained by [41] using a
dataset from the Atlantic Ocean and the Mediterranean Sea, where a better agreement was
obtained with [51]. In addition to the regional variability of the phytoplankton communi-
ties in coastal waters, regional departures from the average global parameterization are
expected even for Case 1 waters, as discussed by [50,51], but they may occur more often in
coastal waters [41].

The relationship between the aph (443 nm) and Chla derived from our dataset was
also close to the relation used in the Algal 2 algorithm derived from the MERMAID
dataset (Meris Matchup in situ Database [60]). The regional relation found by [52,65]
for the coastal waters of Portugal, sampled during the beginning of the spring season
(30 March to 12 April 2011), was closer to the relation found in the autumn (AQ3) campaign
in our study, probably due to the lower aph (443 nm, <0.1 m−1) and Chla (<2 mg m−3) of
both datasets. Higher deviations in the aph (443) and Chla (and TChla) relationships were
observed for the early spring campaign (AQ4), likely due to changes in the phytoplankton
assemblage [41,42].

The large variability observed around the ag (443) versus Chla relationships is a com-
mon feature [73,74]. Even in the open ocean, the part of the variance in ag explained by algal
biomass is generally rather low (e.g., [40,75]). CDOM exhibits significant variability due to
biological processes (e.g., microbial and planktonic), photobleaching, inputs of CDOM, and
nutrients from deep waters through vertical mixing, upwelling, or terrestrial sources. Re-
garding biological processes, this can also be attributed to the temporal decoupling between
CDOM production and algal biomass growth [74], as previously discussed. Therefore, the
CDOM’s quantity may be reflecting the biological productivity of a previous bloom event,
since CDOM tends to be a long-lived product of phytoplankton degradation. When the
origin of CDOM is not local, for example, from the degradation of phytoplankton cells and
other organic particles [76], it can be used as an indicator of the freshwater input into the
system and riverine/estuarine discharge [77], as well as indicating sediment resuspension
events in coastal waters. However, due to the non-significant (AQ2 and AQ4) or non-strong
(AQ3) correlation between CDOM and salinity, this may not be the most of case for the WIC.

Regarding the relationship between ad and Chla, despite its scattered pattern, a better
correlation (R2 = 0.42) was achieved only during the period of higher phytoplankton
biomass (AQ2), which closely resembled the relationship found by [42]. Nonetheless,
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regardless of the sampled period, turbidity displayed a strong correlation with detritus,
suggesting its potential utility for the satellite-based estimation of detritus from turbidity
data for the coastal waters of Portugal.

4.4. Semi-Analytical Approaches to Deriving Bio-Optical Properties from Ocean Colour

The Chla concentration estimated through the empirical OC5CCI algorithm [9] from
OC-CCI data yielded better results than semi-analytical algorithms (GSM) for the WIC
in the North Atlantic. The OC5CCI is an empirical approach adapted specifically to
retrieving Chla in coastal waters under the influence of suspended sediments from different
sources [78], such as the WIC, and it proved to be a reasonable approach, at least for most
cases. Sá et al. [52] also found that empirical algorithms adapted to coastal waters perform
better than standard global approaches (e.g., OC4, [79]) within the WIC.

Nonetheless, the retrieval of a bulk set of IOPs using semi-analytical algorithms
remains a challenge. The new regional coefficients (RG) from the in situ relation of Chla and
aph, used in the GIOP algorithm (GIOP-OC5CCI-RG) instead of the B98 coefficients, helped
to improve the aph and at retrievals. Further improved results for phytoplankton absorption
could be achieved using empirical relationships by directly applying the RG coefficients
over Chla OC5CCI (aph RG-OC5CCI, Figure 11), compared to the semi-analytical algorithms,
due to the additional uncertainty introduced by partitioning at (443 nm) into its aw, aph,
and adg contributions [55]. Nevertheless, empirical algorithms still do not resolve complex
cases, such as variations in the average aph vs. Chla relation, with higher aph* values seen
for three stations in AQ2 (area D), which caused aph to have a higher underestimation
for all approaches tested. Such variations may be linked to site-specific changes in the
phytoplankton assemblage, as well as photoadaptation processes. Other factors that depart
from average behaviours, such as one case in area B during spring (AQ2), which had a high
overestimation, may be associated with higher turbidity, as empirical approaches tend to
fail even with the OC5, which aims to determine the Chla and suspended sediment in more
complex coastal waters.
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The QAA exhibited good results for higher ad values, as expected in optically complex
waters [80,81]. However, this algorithm, as well as the others tested, was not able to
improve its estimates in the presence of high concentrations of CDOM. In the case of the
GIOP, the default Sdg used to estimate the adg is a fixed value of 0.018 m−1, higher than the
average 0.014 m−1 found in the present study. Nonetheless, recent works have shown that
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the uncertainties in this algorithm have been more closely linked to the low performance
in estimating the bbp slope (η) [55]. Despite the fact that the GIOP algorithm uses the
QAA method to estimate the bbp spectral slope (band ratio Rrs 443 nm/Rrs 560 nm, step 4,
as described in [48]), a low correlation (R2 = 0.12) between this band ratio and turbidity
(commonly related to bbp and η) was observed in this study. While GIOP and GSM are
more suitable for Case 1 waters, they could eventually yield better results with regionalized
parametrizations [82]. Considering the greater flexibility of the GIOP in applying different
parameterization methods, it could be a strong candidate for regional parameterizations to
improve algorithm performance in coastal environments. However, a robust database for
coastal waters is still necessary to support these modifications [49,83].

Another source of uncertainty that was not analyzed in the present work due to the
absence of in situ radiometric data, but which also affects the performance of bio-optical
retrievals, is the accuracy of the satellite’s CCI Rrs product. This product aggregates the Rrs
from different sensors, including OLCI, VIIRS, and MODIS, for our study period, using the
Polymer (v4.12) atmospheric correction. It is, however, known that atmospheric correction
is challenging, especially in coastal environments, which have continental aerosols, optically
complex waters, and continental adjacency effects. Several works have been dedicated to
evaluating the accuracy of satellite Rrs products, including the CCI project [9], but this is
an ongoing and continuous effort which needs to be included in future works within the
WIC and elsewhere.

It is evident that the continuous adaptation and validation of these algorithms are
necessary to ensure accuracy in coastal waters [49]. The development of regional param-
eterizations and the improvement of calibration and atmospheric correction procedures
are fundamental steps to enhancing the accuracy of the inherent optical property (IOP)
estimates for coastal waters provided by the QAA, GSM, and GIOP algorithms [84–88].

5. Conclusions

This study provided a comprehensive overview of the optical component variability
in the WIC, representing an unprecedented investigation for this region, covering the entire
coast and different seasons, including partitioned biogenic absorption coefficients and
biogeochemical properties. Significant seasonal variability in bio-optical properties i.e.,
phytoplankton (Chla), detritus, and CDOM absorption, was found due to factors associated
with the changes in environmental conditions (e.g., upwelling and bottom resuspension) at
each site. Furthermore, based on this robust in situ dataset, empirical relationships were
established and are provided herein. This is a valuable contribution to the development of
ocean colour algorithms. An overall validation was conducted using multi-sensor OC-CCI
products for the estimation of absorption coefficients and Chla in the WIC, involving a
direct comparison between in situ reference measurements and retrievals from standard
and regionally parametrized semi-analytical algorithms. A set of relevant outcomes and
conclusions were obtained:

• A strong power law relation between turbidity and detritus suggests the potential for
using satellite-based turbidity data to estimate detritus in coastal waters.

• In terms of the performance and limitations of algorithms, semi-analytical algorithms
(QAA, GSM, GIOP) tended to underestimate the absorption coefficients, a common
issue in coastal waters.

• The WIC regional coefficients (RG), derived from the relationship between in situ
Chla and aph, improved the results of the semi-analytical algorithm GIOP for aph (λ).
Additionally, the RG coefficients improved the empirical results when applied directly
to Chla values obtained from the OC5CCI algorithm.

• These observations highlight the importance of regional-specific studies and the de-
velopment of tailored algorithms to improve the accuracy of ocean colour remote
sensing in diverse and dynamic coastal environments, especially for the analysis of
the phytoplankton community’s composition.
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