1. Identificação | |
Tipo de Referência | Artigo em Revista Científica (Journal Article) |
Site | mtc-m21d.sid.inpe.br |
Código do Detentor | isadg {BR SPINPE} ibi 8JMKD3MGPCW/3DT298S |
Identificador | 8JMKD3MGP3W34T/4BSCDB5 |
Repositório | sid.inpe.br/mtc-m21d/2024/08.20.17.47 |
Última Atualização | 2024:08.20.17.47.32 (UTC) simone |
Repositório de Metadados | sid.inpe.br/mtc-m21d/2024/08.20.17.47.32 |
Última Atualização dos Metadados | 2024:08.22.05.07.43 (UTC) administrator |
DOI | 10.3390/rs16152686 |
ISSN | 2072-4292 |
Chave de Citação | BreunigDGBLBGLS:2024:MoCoCr |
Título | Monitoring Cover Crop Biomass in Southern Brazil Using Combined PlanetScope and Sentinel-1 SAR Data  |
Ano | 2024 |
Mês | Aug. |
Data de Acesso | 09 maio 2025 |
Tipo de Trabalho | journal article |
Tipo Secundário | PRE PI |
Número de Arquivos | 1 |
Tamanho | 14551 KiB |
|
2. Contextualização | |
Autor | 1 Breunig, Fábio Marcelo 2 Dalagnol, Ricardo 3 Galvão, Lênio Soares 4 Bispo, Polyanna da Conceição 5 Liu, Qing 6 Berra, Elias Fernando 7 Gaida, William 8 Liesenberg, Veraldo 9 Sampaio, Tony Vinicius Moreira |
Identificador de Curriculo | 1 2 3 8JMKD3MGP5W/3C9JHLF |
ORCID | 1 0000-0002-0405-9603 2 0000-0002-7151-8697 3 0000-0002-8313-0497 4 0000-0003-0247-8449 5 6 7 8 0000-0003-0564-7818 |
Grupo | 1 2 3 DIOTG-CGCT-INPE-MCTI-GOV-BR |
Afiliação | 1 Universidade Federal do Paraná (UFPR) 2 University of California 3 Instituto Nacional de Pesquisas Espaciais (INPE) 4 University of Manchester 5 University of Manchester 6 Universidade Federal do Paraná (UFPR) 7 Universidade Federal de Santa Maria (UFSM) 8 Universidade do Estado de Santa Catarina (UDESC) 9 Universidade Federal do Paraná (UFPR) |
Endereço de e-Mail do Autor | 1 fabiobreunig@ufpr.br 2 dalagnol@ucla.edu 3 lenio.galvao@inpe.br 4 polyanna.bispo@manchester.ac.uk 5 qing.liu-8@postgrad.manchester.ac.uk 6 eliasberra@ufpr.br 7 ufsm.william@gmail.com 8 veraldo.liesenberg@udesc.br 9 tonysampaio@ufpr.br |
Revista | Remote Sensing |
Volume | 16 |
Número | 15 |
Páginas | e2686 |
Nota Secundária | B3_GEOGRAFIA B3_ENGENHARIAS_I B4_GEOCIÊNCIAS B4_CIÊNCIAS_AMBIENTAIS B5_CIÊNCIAS_AGRÁRIAS_I |
Histórico (UTC) | 2024-08-20 17:47:32 :: simone -> administrator :: 2024-08-20 17:47:38 :: administrator -> simone :: 2024 2024-08-20 17:49:05 :: simone -> administrator :: 2024 2024-08-22 05:07:43 :: administrator -> simone :: 2024 |
|
3. Conteúdo e estrutura | |
É a matriz ou uma cópia? | é a matriz |
Estágio do Conteúdo | concluido |
Transferível | 1 |
Tipo do Conteúdo | External Contribution |
Tipo de Versão | publisher |
Palavras-Chave | AGB agriculture multi sensors regression remote sensing |
Resumo | Precision agriculture integrates multiple sensors and data types to support farmers with informed decision-making tools throughout crop cycles. This study evaluated Aboveground Biomass (AGB) estimates of Rye using attributes derived from PlanetScope (PS) optical, Sentinel-1 Synthetic Aperture Radar (SAR), and hybrid (optical plus SAR) datasets. Optical attributes encompassed surface reflectance from PSs blue, green, red, and near-infrared (NIR) bands, alongside the Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI). Sentinel-1 SAR attributes included the C-band Synthetic Aperture Radar Ground Range Detected, VV and HH polarizations, and both Ratio and Polarization (Pol) indices. Ground reference AGB data for Rye (Secale cereal L.) were collected from 50 samples and four dates at a farm located in southern Brazil, aligning with image acquisition dates. Multiple linear regression models were trained and validated. AGB was estimated based on individual (optical PS or Sentinel-1 SAR) and combined datasets (optical plus SAR). This process was repeated 100 times, and variable importance was extracted. Results revealed improved Rye AGB estimates with integrated optical and SAR data. Optical vegetation indices displayed higher correlation coefficients (r) for AGB estimation (r = +0.67 for both EVI and NDVI) compared to SAR attributes like VV, Ratio, and polarization (r ranging from −0.52 to −0.58). However, the hybrid regression model enhanced AGB estimation (R2 = 0.62, p < 0.01), reducing RMSE to 579 kg·ha−1. Using only optical or SAR data yielded R2 values of 0.51 and 0.42, respectively (p < 0.01). In the hybrid model, the most important predictors were VV, NIR, blue, and EVI. Spatial distribution analysis of predicted Rye AGB unveiled agricultural zones associated with varying biomass throughout the cover crop development. Our findings underscored the complementarity of optical with SAR data to enhance AGB estimates of cover crops, offering valuable insights for agricultural zoning to support soil and cash crop management. |
Área | SRE |
Arranjo | urlib.net > BDMCI > Fonds > Produção a partir de 2021 > CGCT > Monitoring Cover Crop... |
Conteúdo da Pasta doc | acessar |
Conteúdo da Pasta source | não têm arquivos |
Conteúdo da Pasta agreement | |
|
4. Condições de acesso e uso | |
URL dos dados | http://urlib.net/ibi/8JMKD3MGP3W34T/4BSCDB5 |
URL dos dados zipados | http://urlib.net/zip/8JMKD3MGP3W34T/4BSCDB5 |
Idioma | en |
Arquivo Alvo | remotesensing-16-02686.pdf |
Grupo de Usuários | simone |
Grupo de Leitores | administrator simone |
Visibilidade | shown |
Política de Arquivamento | allowpublisher allowfinaldraft |
Permissão de Atualização | não transferida |
|
5. Fontes relacionadas | |
Repositório Espelho | urlib.net/www/2021/06.04.03.40.25 |
Unidades Imediatamente Superiores | 8JMKD3MGPCW/46KUATE |
Divulgação | WEBSCI; PORTALCAPES; MGA; COMPENDEX; SCOPUS. |
Acervo Hospedeiro | urlib.net/www/2021/06.04.03.40 |
|
6. Notas | |
Campos Vazios | alternatejournal archivist callnumber copyholder copyright creatorhistory descriptionlevel e-mailaddress format isbn label lineage mark nextedition notes parameterlist parentrepositories previousedition previouslowerunit progress project readpermission rightsholder schedulinginformation secondarydate secondarykey session shorttitle sponsor subject tertiarymark tertiarytype url |
|
7. Controle da descrição | |
e-Mail (login) | simone |
atualizar | |
|