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ABSTRACT

The rapid evolution of computational technology leads widespread use of
numerical simulations in projects. These simulations offer cost-effective
alternatives to extensive experimental work, using advanced mathematical
models to represent complex physical phenomena. The focus of this work is on
two-phase heat transfer devices, specifically heat pipes, whose performance
depends on thermo-physical properties taking water as a working fluid. In this
work it is proposed new-type approximations of 13 thermo-physical properties of
water needed for heat pipes complex mathematical models, which could be able
to simulate transient modes over the entire temperature range without
interruptions either in value or derivative, including start-up from freeze or super-
critical conditions. All property formats are unified to be dimensionless and to
have values 0 at the triple point and 1 at the critical point to all 13 properties. For
the first time, the approximations are presented not in the commonly used format
of closed-form empirical correlations, but in the form of pseudo-code, which can
be implemented in any programming language. Smoothing within the piecewise
functions and between matter states is performed by an interfacing algorithm with
application of the Heaviside functions. Optimal parameters of some
approximations are obtained with a developed random-search algorithm
completed with a feature of interactive bounds reduction. A criterion which
combines minimal average absolute deviation and minimal maximal deviation,
factored with dimensionless weights, was used. Despite the significance of this
topic for heat pipe numerical simulations, no prior publications have been found.
The work presented is groundbreaking, linking all three major states of matter
(freezing, saturation, and supercritical zones) and using water as working fluid for

heat pipe.

Keywords: Heat Pipes. Operating temperature limits. Working fluid properties.

Uninterrupted correlations. Thermo-physical properties of water.
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DESENVOLVIMENTO DE CORRELACOES CONTINUAS DE
PROPRIEDADES DO FLUIDO DE TRABALHO PARA DISPOSITIVOS
PASSIVOS DE TRANSFERENCIA DE CALOR BIFASICO DENTRO E FORA
DOS LIMITES DE TEMPERATURA DE OPERACAO

RESUMO

A rdpida evolugcdo da tecnologia computacional conduz ao amplo uso de
simulacfes numéricas em projetos. Essas simulacdes oferecem alternativas
economicamente viaveis para extenso trabalho experimental, utilizando modelos
matematicos avancados para representar fendmenos fisicos complexos. O foco
deste trabalho esta voltado para dispositivos de transferéncia de calor de duas
fases, especificamente tubos de calor, cujo desempenho depende de
propriedades termo fisicas considerando a agua como fluido de trabalho. Neste
trabalho, sdo propostas novas aproximacgfes de 13 propriedades termo fisicas
da 4gua necessarias para modelos matematicos complexos de tubos de calor,
que podem ser capazes de simular modos transitorios em toda a faixa de
temperatura sem interrupcdes, seja no valor ou na derivada, incluindo a
inicializacdo a partir de condi¢cdes de congelamento ou supercriticas. Todos 0s
formatos de propriedades sdo unificados para serem adimensionais e terem
valores 0 no ponto triplo e 1 no ponto critico para todas as 13 propriedades. Pela
primeira vez, as aproximacdes sdo apresentadas ndo no formato comumente
usados de correlacbes empiricas em forma fechada, mas na forma de
pseudocddigo, que pode ser implementado em qualquer linguagem de
programacao. O suavizamento dentro das funcdes e entre estados da matéria é
realizado por um algoritmo de interface com a aplicacdo de funcbes de
Heaviside. Parametros 6timos de algumas aproximagdes sdo obtidos com um
algoritmo de busca aleatoria desenvolvido com uma caracteristica de reducéo
interativa de limites. Um critério que combina desvio médio absoluto minimo e
desvio maximo minimo, ponderado com pesos adimensionais, foi utilizado.
Apesar da importancia desse topico para simulagdes numeéricas de tubos de

calor, nenhuma publicacdo anterior foi encontrada. O trabalho apresentado &
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inovador, vinculando os trés principais estados da matéria (sélido, saturacéo e
zonas supercriticas) e utilizando a agua como fluido de trabalho para tubos de

calor.

Palavras-chave: Tubos de calor. Limites de temperatura operacional.
Propriedades dos fluidos de trabalho. Correlagdes ininterruptas. Propriedades
termo fisicas d’agua.
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1 INTRODUCTION

Any electronic equipment produces heat while running. The satellite thermal
control subsystem manages the heat distribution in the satellite and the heat
pipes are widely applied for this purpose. Shukla (2015) explained the concept of
heat pipes: “A typical heat pipe comprises a sealed pipe or tube made of a
material that is compatible with the working fluid such as Copper for water heat
pipes, or Aluminum for ammonia heat pipes. It is a simple construction that makes
a heat pipe to allow high heat transfer rates over considerable distances, with

minimum temperature drops...”.

Figure 1.1 — Heat pipe schematic.
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Source: Shukla (2015).

The heat pipe keeps vapor-liquid equilibrium with the saturated liquid and its
vapor. The saturated liquid vaporizes and flows to the condenser part, where it is
cooled and turned back to the saturated liquid. In a standard heat pipe, the
condensate is returned to the evaporator by capillary force through a wick
structure. Good wettability of the liquid phase of the working fluid with the material

of the capillary structure is a main condition of such a capillary return.

The concept of heat pipes traces its roots back to the early 1960s when the
aerospace industry sought innovative ways to address thermal challenges in

spacecraft. In 1963, the idea of using a capillary-driven heat transfer device to



manage the extreme temperatures gradient experienced by a satellite in outer
space was proposed by George Grover (BRENNAN; KROLICZEK, 1979).

The first designs of heat pipes focused on space applications, aiming to dissipate
the heat generated by electronic components in spacecraft. The first functional
heat pipe was developed and proven in 1964 by Grover and his coworkers
(BRENNAN; KROLICZEK, 1979).

Grover baptized the name “heat pipe” and characterized it as a “synergetic
engineering structure which is equivalent to a material having a thermal
conductivity exceeding that of any known metal.” These early heat pipes used
water working fluid with copper mesh as a capillary structure and the case made
by cooper. Soon later he manufactured a high-temperature HP with a sodium as
a working fluid to operate above 1100K. The first cryogenic HP with nitrogen as
a working fluid was developed by Haskin Brennan and Kroliczek (1979) at Wright-
Patterson Air Force Base, USA. The success of this demonstrations paved the
way for further exploration of heat pipe technology in the aerospace sector. Figure
1.2 shows the effect of heat pipe typical application to reduce the temperature

gradients over a satellite honeycomb panel with installed electronic equipment.

Figure 1.2 — Comparative simulation analyzes: CBERS3 Satellite panel with and without
embedded heat pipe.
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As the benefits of heat pipes in space applications became clear, researchers
and engineers explored their potential in other industrial fields. By the 1970s, heat

pipes found applications in cooling systems for electronic devices, such as



computers and radar systems (BRENNAN; KROLICZEK, 1979). The versatility
of heat pipes in transferring heat efficiently with no external power sources
contributed to their widespread adoption in various thermal management
scenarios. Brennan and Kroliczek (1979) argued in his word “...the capability of
have a fixed and variable conductance heat pipes are being developed or

proposed for various shuttle mission, including thermal canister.”

The oil crisis of the 1970s (“Energy crisis”) spurred interest in energy-efficient
technologies, leading to increased research on heat pipes to improve energy
efficiency in heating and cooling systems. Heat pipes became integral
components in solar collectors, where they efficiently transferred heat from the
absorber plate to the working fluid, enhancing the overall performance of solar
thermal systems “...the demand for alternated energy sources had led to the
development of innovative intermediate and high temperature heat pipes for solar

collection and coal gasification.”

Heat pipes can be used in a wide variety of applications, besides satellites, solar
energy, and coal mining application. Those categories of uses can be since
satellites applications to medicine and human body temperature control,
“Depending on their intended use, heat pipes can in the temperature range from
4 to 3000K (FAGHRI, 2016). Furthermore, Faghri (2016) divided heat pipes into
three major categories, firstly separation of heat source and sink, due to its
efficiency of transport heat; followed by temperature equalization and
temperature control. The temperate equalization is linked to the high thermal
conductivity and the temperature control is linked to the capability of heat pipes
transport copious quantities of heat rapidly. Some applications were listed by

Faghri as following:

e Electronic and electrical equipment cooling — the heat density of electronic
and electrical equipment is rising by the miniaturization of components.
Because of their sensitive operating temperature, the design is choosing

to improve heat dissipation in its components by incorporating heat pipes.

e Energy systems — the use of heat pipes and thermosiphons draws more

attention of their efficiency of using energy conservation and cost.



According to Faghri (2016), a few systems have been used thermosiphons
as an implementation on building heating seeking thermal comfort.
Shortly, the system absorbs solar energy using a heat pipe and transports
that energy to a living space. That space is heated by air convection or
that energy is stored as hot water. And at night, those thermosiphons act
like a one-way valve to that heat that energy only can be transferred from

inside to outside by axial conduction through the pipe walls.

e Aerospace and Avionics — some characteristics such as weight,
maintenance, and reliability are decisive factors for the success or a
potential disaster of the project, and heat pipes are an incredibly attractive
choice because it has all those three characteristics. This occurs because
of the simplicity of the object, with no moving parts to transport the energy,

lightweight, and no maintenance, which enhances the reliability.

¢ Medicine and human body temperature control. Faghri (2016) suggested
that using of heat pipes relates to human physiology, the proposal is to
incorporate a cryogenic heat pipe to destroy tumors in human body, using
this technique, the tissue is freezing rather than irradiated, and as a result

the surrounding tissue sustains no damage.

Closed passive evaporation-condensation cycle and temperature-induced
capillary pumping principle have given an impulse for developing of similar like-
HP heat transfer devises; they belong to a class of passive two-phase heat

transfer devices.

These two-phase heat transfer devices are important components for thermal
control systems in the aerospace industry and terrestrial applications. It includes
not only heat pipes but also thermosiphons, capillary pumped loops, looped heat
pipes and advanced capillary pumped systems of complex networks. The
performance of such devices depends on fluid properties at saturation conditions.
Such devices cannot run out of temperature limits. When the temperature is
below the triple point, the working fluid freezes. When the temperature is above

the critical conditions, two phases cannot coexist anymore. However, for many



applications, such devices may temporarily be exposed to non-operational

conditions but may resume normal operation afterwards.

Experimental studies and tests are an important part of satellites development,
but they are usually expensive and time consuming. Because of that, numerical
simulations play a vital role. Numerical models can be very reality-representative
and simulate many phenomena and particular cases within a fraction of the

experiment’s cost and time.

As it was said, the performance and operation limits of heat pipes depend purely
on thermo-physical properties. Any mathematical model must have an adequate
treatment of such properties that critically depend on temperature. Applications
of heat pipes in satellites, as well as in other applications, may call to a very wide
operational temperature range, for example, start-up from super-critical states in
cryogenic HPs, or start-up of water HP from freezing state. Therefore, it is
particularly important to have correct correlations for the entire temperature two-
phase range at saturation conditions and out of the saturation range. Simulation
of HP transient modes needs smoothed property correlations without
interruptions of value and derivatives. Commonly used tables or peas-wise linear
interpolations between tabulated magnitudes are not acceptable. The most
difficult problems come up in simulation of specific transient HP modes, like start-
up from solid state (high-temperature and freezable HPs) and start-up from
super-critical states in cryogenic loop heat pipe (CLHP). Such the applications
demand all three states of matter to be simulated by mathematical model; any
interruptions in properties values may causes numerical instabilities and failures.
These smooth uninterrupted variations must pass through the freezing zone up
to the super critical zone (LEE et al., 2020).

Jaworske et al. (2008) highlights the difficulty to perform start-up on a water heat
pipe in space applications. This paper discusses the evaluation of panel
performance under a Moon illumination for radiator panels equipped with
titanium-water heat pipes. Authors study its behavior on the panel starts after
freezing the water in the heat pipes under heater power applied. The modeling

and investigation of lunar conditions confirmed that the heat pipes would be



freezing at lunar sunrise and would require more than one of sun illuminations to
resume operation. This shows the importance and difficulty of transient
simulation; part of this difficulty is placed in uninterrupted work fluid property
models that cover all ranges with smooth transitions between freezing and

saturation phases.

The study of Jouhara et al. (2017) concluded that heat pipes have a wide range
of applications but exists a gap in research for different temperature patterns.
Authors affirm that while the implementation of heat pipes in low-temperature
applications has been studied extensively, but there is still a backlog of research
to be conducted. The same applies to high temperature applications where heat
pipes are commonly used in waste heat recovery and solar power and other
energy sources. The author fell to the lack of the fluid properties approximations
available from literature. Jouhara et al. (2017) emphasized that the properties of
the working fluids, related to phase changes and heat transfer characteristics,
play a crucial role in the performance of heat pipes. However, there may be a
lack of available data and commercial models for certain fluids, which can hinder

the modeling and simulation of heat pipe systems.



2 MOTIVATION

The mathematical modeling of heat pipes plays a key role in simulations of
transient behavior and studies of operational failure risks as eventual dry-out and
dynamic conditions for successful operational recuperation. Complex
mathematical models include a complete system of fundamental differential
equations of momentum, energy, mass conservation, as well as interfacing
phenomena and multi-phase transitions (Bowman (1991), Faghri (2016),
Tournier; ElI-Genk (1994) and Vlassov (2005, 2008)). One can extract the
following thermo-physical properties from these fundamental equations; the list
includes 13 parameters, namely cCpl, Cpv, Ki, Kv, A, w, pv, Pr, Pry, Py, p1, pv and .
It is a well-known fact that the performance and operational limits of any HP
depends on temperature. The only reason for this dependence is that the values

of all properties depend on temperature, moreover, by different manner.

Any mathematical model must have an adequate treatment of such properties
that, as said, critically depends on temperature. Applications of heat pipes in
aerospace industry, as well as in other applications, may call to extremely wide
operational temperature range, for example, start-up from super-critical states in
cryogenics HPs, or start-up of water HPs from freeze state. Therefore, it is
especially important to have correct correlations for the entire temperature two-
phase range at saturation conditions as well as out of the saturation range.
Simulation of HP transient modes needs smoothed property correlations without
interruptions of value and derivatives; commonly used tables or peas-wise linear
interpolations between tabulated magnitudes are not acceptable. The most
difficult problems come up in simulation of specific transient HP modes, like start-
up from solid state (high-temperature and freezable HPs) and start-up from
super-critical states in cryogenic heat pipe. Such the applications demand all
three states of matter, if we put on a line this variation pass through freeze zone
up to the supercritical zone (LEE et al., 2020). For example, Jaworske et al.
(2008) highlights the difficulty of performing start-up on a water heat pipe in space

application.



In order to property approximations be able to be implemented on a mathematical
model, its behavior must be continuous and smooth, without sharp edges. Thus,
to comply with those rules is common to see in literature thermos-physical data
approximation in a strict range of temperature, mostly passing for only one state
of matter and that behavior is described by a high polynomial equation, like shown
in (2.1).

yT)~a, +aT +a,T2+aT> +.... | T, <T <T, (2.1)

Usually, this temperature range is narrower than the entire operating range even
in saturation zone, and the calculated values by the polynomial approximation
may run away from the physical sense and may get absurd magnitudes.

Using such a polynomial approximation, the iteration process in a numerical
algorithm may temporarily get out of the expected temperature range, leading to

numerical instability, false results and/or algorithm failure.

For example, a 5-order polynomial approximation for water vapor specific heat,
suggested by Faghri (2016) is valid from 20°C to 200°C. However, out of the

range, the approximation lost the physical sense, see Figure 2.1.



Figure 2.1 — cpv polynomial approximation behavior within and out of the specified range.
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Certainly, other functions but polynomials must be investigated for using in

approximations.

Another drawback of commonly used polynomial approximation is that they
usually depend on the system of units. The approximation coefficients will be
different for the same fluid for SI Units, Imperial Units, US customary Units, etc.
Moreover, the coefficients have dimensions. For example, a popular Faghri
(2016) approximation plotted in the graph on Figure 2.1 in many handbooks is

given exactly as follows in Equation (2.2).

Ln(c,,(T))=6.3198.10" +6.7903-10* - T —2.5923.10° . T? -

2.2)
4.4936-10°8 -T2 +2.2606-10° .T* —9.0694-10 2 . T5

Where T is expressed in °C and Cpv in kJ/kg/K. (By the way, neither SI system of

units is used here since kJ is used instead of J).

Let us examine the numerical coefficients. Their appearance may be

unconventional, but each coefficient owns individual dimensions:

e The coefficient 0.63198 is of dimension Ln(kJ/kg/K).



e The coefficient 6.7903:10* is of dimension Ln(kJ/kg/K)/K.

e The coefficient 2.5923:10¢ is of dimension Ln(kJ/kg/K)/K?.
e The coefficient 4.4936:102 is of dimension Ln(kJ/kg/K)/K3.
e The coefficient 2.2606:10° is of dimension Ln(kJ/kg/K)/K*.
e The coefficient 9.0694-10%2 is of dimension Ln(kJ/kg/K)/K5.

Mathematically, this is not correct: numerical coefficients should not have

dimensions.

To overcome this inconsistency, only dimensionless parameters should be used
in approximations for fluid thermo-physical properties as well as for temperature.
Literature research reveals that dimensionless approximations were never used
for passive two-phase heat transfer devise modeling. In conjugate areas like
properties of steam and super-critical gases, rarely, in semi-empirical
correlations, can be seen so named reduced parameters, like pressure and

temperature:

t=— (2.3)

(2.4)

Once again, in the expression of the reduced temperature, the components must

have the dimension either R or K, while °C or °F are prohibiting (due to 0/0 risk).

Moreover, the reduced temperature t; has a limited association with the state of
fluid. For water, the two-phase zone started from a temperature of 0.42, while
below the 0.42 is a freezing zone. Why do not create a much more informing
dimensionless temperature which value varies from 0 to 1 over saturation zone,
be negative in the freezing zone, and be >1 for supercritical zone? We sughest
this form where this can be naturally achieved, as shown in Equation (2.5) for the

dimensionless temperature.
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(2.5)

where T3 - triple point temperature (temperature of freezing), and Tcr - critical
temperature. This proposed temperature t does not depend on the system of
unity used for components. We did not find publications for the fluid properties
with the use of such convenient dimensionless temperature in approximations.
Therefore, we are going to use this temperature and the same type of all

dimensionless fluid properties in our study.

Another example usual correlation of limited temperature range is the saturation
pressure, for which the widely used Clausius-Clapeyron integrated equation is
employed:

P_(T) = poei?[Tlo_Tl] (2.6)

The Clausius—Clapeyron of Equation (2.6) derives from entropy maximization,
which determines the equilibrium between two phases of a substance.
“Mathematically, it is expressed as the relationship between temperature, T, and
pressure, P, at the equilibrium.” (KOUTSOYIANNIS, 2012).

However, the application of this equation directly causes a significant deviation
from the table points far from the reference point 0. For example, for the reference
point of To=20 °C, the C-C curve and the table points have visible deviations for

elevated temperatures:
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Figure 2.2 — Difference between tabled saturation pressure and Clausius-Clapeyron
equation.
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The possible approach to improve the approximation over the entire two-phase
zone is trying to implement piecewise function for different intervals of the zone.
In this case the crucial point is to assure smooth transitions over connection
points; additional conditions shall be applied to approximation correlations at the
edges of each function. They include the continuity of values and derivatives to

fit the requirement of smooth uninterrupted conjunctions.

Through our literature review, we did not find such type of approximations for fluid

properties used in heat pipes.

For many applications, heat pipes (HP) shall start from the non-operation
temperature range. For example, high-temperature HP at the beginning may stay
at normal ambient temperature such as sodium working fluid is solid in these
conditions and when heated, the HP gradually enters its working regime. Another
example — freezable water HP or freezable water thermal switch (KISEEV, et al,
2010), which may have a periodic operation with thawing-freeze cycles. Also,
working fluids in cryogenic HPs (for example, nitrogen) are under over-critical
conditions at normal ambient temperature; when cooled down, the HP gradually

gets its nominal operation.

Numerical transient models shall simulate such start-up behavior from non-

operational conditions. In this case the approximation of thermo-physical

12



properties shall include near-triple point region and near-critical region. For such
a wide-range approximation, three temperature intervals shall be proved, and
different correlations shall be used for each interval. Then, it is important to have

smooth transitions between the intervals.

Detailed literature investigation did not reveal any type of uninterrupted
approximations for fluid properties over the expanded full temperature range.
Such the correlations should include both piecewise approximations with smooth
conjunctions and representations of fluid state transitions with seamless
interfacing. It should be noted that it is a difficult or even impossible task when
thinking in a traditional manner - an approximation must look like a correlation.
Let us doubt this postulate; our main question is: Does an approximation must
look like a correlation? What about trying a novel approach: an approximation

may be a pseudo-code. So, let us take a new way that no one has walked before.
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3 OBJECTIVES

This work has the following main objectives:

1) to prospect available all 13 thermo-physical properties of water, published in
diverse sources and formats: tables, polynomials, empirical correlations, and

transform all tables to dimensionless format;

2) to develop an adequate format of correlations of the properties for the entire
two-phase zone and develop best dimensionless approximations following

piecewise approach with smooth transition in conjunction points;

3) to develop approximations for freezing and super-critical zones and to develop
a method of uninterrupted correlations on inter-zone interfacings, smooth

approximations for values and the respective derivatives;

4) to develop uninterrupted approximations for all three phase zones for water,
also revealing the errors of approximations for the entire temperature range

typical for heat pipes of several types;

5) to present the results in the format of pseudo codes, being able to implement

in any programming language, as universal dimensionless correlations;

6) to develop an optimization algorithm based on random parameters in a
determinate range chosen by the User, to minimize approximation deviation; to
develop a functional tool within EXCEL Visual Basic features, and to apply this
tool to find optimal parameters and coefficients in pre-selected correlations for

the approximations.
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4 LITERATURE REVIEW

4.1 Fluid properties for heat pipes

In his study, Gakal et al. (2022) ranked the most common fluids, applicable to
heat pipes, in strategic indicators, including the working fluid safety, working fluid
melting temperature and working fluid critical temperature. They performed an

evaluation in many indicators and plotted the result diagram shown in Figure 4.1.

Figure 4.1 — Working fluids grading results.
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Source: Gakal et al. (2022).

In Figure 4.1 we have the higher scores fluids on 782 substances evaluated by
Gakal et al. (2022), where [llwta is the sum of each fluid grade in each

classification.

To make an efficient heat pipe project, the fluid choice is an important part of the
process. As presented by Gakal et al. (2022), some fluid properties have more
impact on the final design than others. As the heat pipe principle of function
consists in liquid evaporation and condensation, naturally, melting point, boiling
temperate, critical temperature, and critical pressure are variables that drive the

main choice of the working for heat pipes.
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Polasek and Stulc (1976), Ochterbeck and Mishkinis (2003) and Anderson et al.
(2004) presented these main parameters for many fluids for intermediate

temperatures, typical for aerospace applications (Table 4.1).

Table 4.1 — Intermediate Temperature Fluids.

Melting Boiling Critical Critical
Fluid Point, K Temp., K Temp., K Pressure, MPa
Water H.0 273 373 647 2212
Dowtherm A Diphenyl/Diphenyl Oxide 285 530 770 3.135
Sulfur S 386 718 1314 207
Sulfur/10% lodine S/10%I -390 — — —
lodine I 387 458 785 11.6
Naphthalene CioHs 354 491 748 4.05
Phenol CeHsO 314 455 694 6.13
Toluene CeHzCH3 178 384 592 4.1
Hydrazine NaHs 275 387 653 14.7
Aniline CgH7N 267 458 699 53
Titanium Tetrachloride TiCls 298 410 638 4.7
Titanium Tetrabromide TiBrs 312 503 796 —
Titanium Tetraiodide Tils 423 650 1040 —

Source: Anderson et al. (2004).

Ochterbeck and Mishkinis (2003) developed some criteria (Figures of Merit Fm)
to expose in the best way possible efficiency of using the working fluid in heat
pipes, see Figure 4.2 and Figure 4.3.

Figure 4.2 shows well-known Liquid Transport Factor criterion; the more its
magnitude, the maximum theoretical heat transport capability the heat pipe may
achieve.

One can see, water is the best working fluid to work in the temperature range

above 20 °C for heat pipes.

Additionally, they developed other figures of merits, such as presented in Figure
4.3 to characterize the vapor phase. Ammonia and water are the best working

fluid according to this criterion.
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Figure 4.2 — Figure of merit (liquid based) for different fluids.
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Figure 4.3 — Figure of merit (vapor based) for different fluids.
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Figure 4.4 — Vapor Pressure as a Function of Temperature, Potential Heat Pipe or LHP
Working Fluids.
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Many studies were performed to develop best approximations for different
properties of working fluids. In many studies dimensionless parameters were

used, for example Patek et al. (2009) in equation below.

r=—, a= , B= (4.1)

where T is absolute temperature in K, Tr=10 K, Ta=593 K and Tp=232 K.

In the subsections 4.2 through 4.14, we show the review of typical approximations

used in technical literature separately for each thermodynamic property.

4.2 Vapor pressure

Even though this work has a focus on heat pipe applications, the theme of vapor
pressure approximations has a wide range of applications. We divide the review
of water vapor pressure in three regions: sublimated vapor pressure above ice in
freezing region below the triple point (0°C for water); saturated vapor pressure in
two-phase region (between triple pointe and critical point) and super-critical

region (temperatures above the critical point).
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In their paper, Wagner and Pruss (1993) highlighted the importance of merging
the experimental data collected for the freezing zone up to now. At that time, the

work was the main reference in experimental data below 205K.

The authors in Murphy and Koop (2005) highlighted the importance of an effective
technique to maintain the equation continuity: “The functional form was chosen
to satisfy experimental constraints at the triple point as well as to have well-
behaved vapor that simultaneously satisfy experimental data not only for vapor
pressure and latent heat but also for other properties”. The authors also present
several equations for the vapor pressure above ice (4.2) which depends on

temperature (K) and pressure (Pa).

b
I:)v,ice ~ exp[aA - ?A) (42)

Table 4.2 — Equation (4.2) coefficients value.

aa= 2.89074E1 [In(Pa)] ba =-6.1437E03 [K In(Pa )]
Source: Murphy and Koop (2005).

Once expressed the equation in the limited range, the authors tried to expand
this range from 273K down to 111K, Equation (4.3). In this case the final
expression was obtained through numerical solution provided by fourth order
Runge-Kutta solver. It is possible to check the result in Figure 4.5.

P e :exp(aA+t_)|_—A+cAln(T)+dATj (4.3)

Table 4.3 — Equation (4.2) coefficients values.

aa=9.550426E00 [In(Pa)] ca =3.53068E00 [In(Pa)/In(K)]
ba =-5.723265E03 [K In(Pa)] da =-7.28332E-3 [In(Pa)/K]
Source: Murphy and Koop (2005).
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Through Figure 4.5, Jancso et al. (1970) expressed the formulation at

temperature range from 195K to 273.16 K, pressure is in [Torr].

! a
INp,e = ?A +b, (4.4)
d :
Pv,ice = CA(_AJ pv,ice (45)
eA

Table 4.4 — Equation (4.4) & (4.5) coefficients value.

aa=-2.668726E03 [K exp(Torr)] da =6.11657E02
ba =1.043112E00 [exp(Torr)/K] ea=6.11283E02
ca =1.3332E02

Source: Jancso et al. (1970).

Also, Bryson et al. (1974), shared their approximation to vapor pressure,
expressed in Torr. The temperature range for this approximation ranges from 153
to 183 K.

a
NP, = ﬁijA (4.6)

Table 4.5 — Equation (4.9) coefficients value.
aa= 1.2E01 [In(Torr) kg/J] ba =2.4E02 [exp(Torr)]

Source: Bryson et al. (1974).

Where, R is the specific gas constant of sublimated wapor, and T is the absolute
temperature in Kelvin. In lower temperature ranges, starting from 132 up to 153K,

Bryson et al. (1974) suggested different coefficients.

The plotted curve available in Figure 4.5, Marti and Mauersberger (1993), ranges
from 169K to 273K.

vaice = exp(a A +t_)|_—Aj 4.7)
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Table 4.6 — Equation (4.7) coefficients value.

aa=2.8868E01 [In(Pa)] ba =-6.1329E03 [K In(Pa)]
Source: Marti and Mauersberger (1993).

Figure 4.5 — Vapor pressure of ice versus inverse temperature for selected experimental
data.
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Each experimental strategy shows strengths and weaknesses (Figure 4.6). Also,
this image is good to see the equation behavior when the temperature range is
increased. For comparison, dimensionless pressure was represented by the ratio
to nominal vapor pressure; this dimensionless property is a ratio by the result
achieved by the approximation and tabled data. Figure 4.6 “shows a more
detailed comparison of some experimental data on the vapor pressure of ice.
Although the experimental data confirm the thermodynamic predictions, it is
apparent that they do little to narrow the uncertainty compared to integrating the
Clapeyron equation” (MURPHY; KOOP, 2005)

Their strategy was to validate their approximation tendency and quantify their
advance in approximation rating their result by tabled data, the closer the
tolerance, the better the result. Figure 4.6 has the main approximations
considered in the study. Figure 4.7 presents the performance of such approach,

including different references, data and equations.
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Figure 4.6 — The ratio of selected ice vapor pressure data.
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Murphy and Koop (2005) correlations are expressed in a common functional

form:
bA
In(P, ... )=a, +?+cAln(T)+ d,T (4.8)
Table 4.7 — Equation (4.8) coefficients value.
aa=9.550426E00 [In(Pa)] ca =-3.53068E00 [In(Pa)/In(K)]
ba =-5.723265E03 [K In(Pa)] da =-7.28332E-03 [In(Pa)/K]

Source: Murphy and Koop (2005).

Where P is vapor pressure in Pa and T is absolute temperature in Kelvin.
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Figure 4.7 — Ratios of various parametrizations of the vapor pressure of ice to the
nominal thermodynamic solution proposed by (MURPHY; KOOP, 2005).
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Below we show a group of more equations that describes de vapor pressure in

the freezing zone.

Correlation of Goff and Gratch (1946), valid within 184 K<T<273.16K:

@, . )zaAKbAj’l} ic, |n(bAj +d {1{ L
’ T T b,

ﬂ + In(e,)
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Table 4.8 — Coefficient values of Equation (4.9).

aa=-9.09718EOQQ0 [In(Pa)] da =8.76793E-01 [In(Pa)]?
ba =2.7316E02 [K In(Pa)] ea =6.1071E02 (Pa)
ca =-3.56654E00
Source: Goff and Gratch (1946).

In other hand Goff (1957) expressed another correlation, valid within 180K<T<
273.16 K,

IN(P, ) =1In(a,)+ b,{%} + cAlnGj + dA(l;Tj (4.10)

t

Table 4.9 — Coefficient values of Equation (4.10).

aa = 6.1114E02 [Pa] ca =-3.566506E00 [In(Pa)]

ba =-9.096853E00 [In(Pa)] da =8.76812E-01 [In(Pa)]
Source: Goff (1957).

Hyland and Wexler (1983) presented the following correlation, valid within
173.16K <T<273.16K,

In(PV,ice)=%+bA+cAT +d, T +e T+ fT+g,InT (4.11)

Table 4.10 — Coefficient values of Equation (4.11).

aa = -5.6745359E03 [K In(Pa)] ea =2.0747825E-09 [In(Pa)/K3]
ba =6.3925247E00 [In(Pa)] fa = -9.484024E-13 [In(Pa))/K*]
ca =-9.677843E-03 [In(Pa)/K] ga =4.1635019E00 [In(Pa)]/ In(K)]

da =6.2215701E-07 [In(Pa)]/K?]
Source: Hyland and Wexler (1983).

Mauersberger (2003) developed exponential correlation for pressure [Pa], valid
within 164.5 K <T<169 K:
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bA
Puice =OP 8 + @12

Table 4.11 — Coefficient values of Equation (4.12).

aa=3.4262E01 [In(Pa)] ba =-7.044E03 [K In(Pa)]
Source: Mauersberger (2003).

Jancso et al. (1970), presented a mix correlation for the range
173K <T<273.16K:

IR, e = "f‘r—A+bA|nT+cAT +d,T?+e, (4.13)
g, )
_i | ZA
Pv,ice B fA[ hy Jpv,ice (4.14)

Table 4.12 — Coefficient values of Equations (4.13) and (4.14).

aa = -2.481604E03 [K In(Pa)] ea =1.901973E00 [In(Pa)]
ba =3.572198E00 [In(Pa)/In(K)]] fa = 1.3332E02

ca =3.097203E-03 [In(Pa)/K] ga =6.11657E02

da =-1.7649E-07 [In(Pa)/K?] ha = 6.11283E02

Source: Jancso et al. (1970).

Sonntag (1990) presented exponential correlation for iced vapor pressure [Pa]
for 173.15K < T < 273.16K:

c
_ A 2
Pv,ice = aAexp{bA + = +dAT +eAT fAIn( I )J (4.15)
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Table 4.13 — Coefficient values of Equation (4.15).

aa= 1E02 [Pa] da =1.0613868E-2 [In(Pa)/K]
ba =2.47219E01 [In(Pa)] ea = -1.3198825E-05 [In(Pa)/T2]
ca =-6.0245282E03 [K In(Pa)] fa =-4.9382577E-01 [In(Pa)/In(K)]

Source: Sonntag (1990).

Wagner et al. (1994) developed the following correlation, valid within
190K<T<273.16K:

In(Pv,ice)zIn(nﬂb{l—[%) | }c{l—@—tj | J (4.16)

Table 4.14 — Coefficient values of Equation (4.16).

aa= 6.11657E02 [Pa] ca =3.47078238E01 [In(Pa)]

ba =-1.3928169E01 [In(Pa)]
Source: Wagner et al. (1994).

Murphy and Koop (2005) extended upward from triple point using Wagner and
Pruss (1993) results as a base and making this equation fitted from
123K<T<322K. It means the correlation becomes valid for two zones - freeze and

two-phase one:

In(P,iq)z a, +t;—E‘+(:B In(T)+d,T +
h (4.17)
tanh{e, (T + f,)}(g, +?B+ ig IN(T)+ j,T)

In this correlation a hyperbolic tangent function first time was used.
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Table 4.15 — Coefficient values of Equation (4.17).

ae = 5.4842763E01 [In(Pa)] fg =-2.188E02 [K]
be =-6.76322E03 [K In(Pa)] ge =5.3878E01 [In(Pa)]
cs =-4.21E00 [In(Pa)/In(K)] he =-1.33122E03 [In(Pa)/K]
de =-3.6E-04 [In(Pa)/K] is =-9.44523E00 [In(Pa)/In(K)]
es =-4.15E-02 [1/K] js =1.4025E-02 [In(Pa)/K]

Source: Murphy and Koop (2005).

Also, Murphy and Koop (2005) expressed his concerns about continuity; it is not
necessarily those two equations will start or end in the same value, and this can
be a numerical problem for the equation of continuity, translating in a problem to
transient simulations. To build a bridge between vapor pressure below triple point
and vapor pressure in saturation zone Murphy and Koop (2005) expressed their

solution condensed in Figure 4.8.

Figure 4.8 — Discontinuity in the changing phase.
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Source: Murphy and Koop (2005).

Kalova and Mares (2010) in their introduction mentioned the preferences of using
water properties equation instead the using of experimental data due to the lack

of quality in that range. In their work, they expressed the equation created by Saul
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and Wagner (1987) and wrote below, valid from 123K to 332 K. They also
highlighted the deviations associated.

In(P,)= |n(PC)+(TT—Cj.(aBT o, T 4C, T3 +d T +e, T4+ f,T7°) (4.18)

Table 4.16 — Equation (4.18) coefficients value.

as =-7.85951783E00 [In(Pa)/K] ds =2.26807411E01 [In(Pa)/K39]
be =1.84408259E00 [In(Pa)/K9] es =-1.59618718E01 [In(Pa)/K*]
cs =-1.18766497E01 [In(Pa)/K3] fs =1.80122502E00 [In(Pa)/K’-]

Source: Saul and Wagner (1987).

Figure 4.9 — Result deviation by comparation between Equation (4.17) and (4.18).
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Source: Kalova and Mares (2010).

In work Kalova and Mares (2010) shows the equation valid in the range of 120K
to 270K.

Next a potpourri of equations designed to describe the vapor pressure of the
saturated phase are shown. Popiel and Wojtkowiak (1998) exposed in their work
a good approximation results to vapor pressure of water in temperatures from O
to 150°C, reached by (SAUL; WAGNER, 1987).
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Pv = Pcr eXp{|:2731#:|(aBT + bBT 15 + CBT3 + dBT 35 + eBT4 + fBT 75 )} (419)

Where Pc is water critical pressure (220.64 bar), Tc is water critical temperature
(647.096K), and T is temperature in °C. The coefficients are the same as
presented in

Table 4.16.

Goff and Gratch (1946), 273.15<T <373.15 K:

— |(be ). by
In(PV)—aBK?j 1}+ Cq In(_l_ j

(4.20)
. [l-T] gB[b—B)
dB[ ®\ b J-l .1 10 7Y -1 In(hy)
Table 4.17 — Coefficient values of Equation (4.20).
as =-7.90298E00[In(Pa)] es =1.011344E03
bs =3.7316E02 [K] fs = 8.1328E-03 [In(Pa)]
cs =5.02808E00 [In(Pa)/In(K)] gs =-3.49149E00
ds =-1.3816E-07 hs = 1.01325E05 [Pa]
Source: Goff and Gratch (1946).
Goff (1957), 273.15< T<373.15K:
1-T T
In(P,) =In(a; )+b, T tj+cB In(fJ
(4.21)

T Tt
+dB{1 i 1063[“lj +fB[1ogB[1TTJ i 1}
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Table 4.18 — Coefficient values of Equation (4.21).

as = 6.1114E02 [Pa] es =-8.2969E00
be =1.079574E01 [In(Pa)] fs = 4.2873E-04 [In(Pa)]
cs =-5.028E00 [In(Pa)] ge =4.76955E00

ds =1.50475E-04 [In(Pa)]
Source: Goff (1957).

Goff (1965), 180K<T<273.16K:

In(P,) = In(a, )*+b, 1:I_TtJ+CB |n£%j

t

(4.22)
{3 g 10°)
+dg[1-10 VY pfgl10 VT2
Table 4.19 — Coefficient values of Equation (4.22).
as=6.1114E02 [Pa] es =-8.2969E00
bs =1.079574E01 [In(Pa)] fs = 4.2873E-04 [In(Pa)]
cs =-5.028E00 [In(Pa)] gs =4.76955E00
ds =1.50475E-04 [In(Pa)]
Source: Goff (1965).
Hyland and Wexler (1983), 173.16 <T<273.16K:
|n(PV):ff‘r—B +b, +C,T+d T2 +e, T2+ f, In(T) (4.23)
Table 4.20 — Coefficient values of Equation (4.23).
as =-5.8002206E03 [K In(Pa)] ds =4.1764768E-05 [In(Pa)/K?]
bs =1.3914993E00 [In(Pa)] es =-1.4452093E-08 [In(Pa)/K?]
cs =-4.8640239E-02 [In(Pa)/K] fs =6.5459673E00 [In(Pa)/In(K)]

Source: Hyland and Wexler (1983).

Koop et al. (2000), 150 <T <273 K:
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C In(T
P, ~P e exp(aB +hT +?B +d, #j (4.24)

Table 4.21 — Coefficient values of Equation (4.24).

as =-2.10368E05 cs =-3.32373E06 [K]
bs =1.31438E02 [1/K] ds =-4.17291E04[J/kg/In(K)]
Source: Koop et al. (2000).

Sonntag (1990), 173.15K <T< 373.15K:

P, = exp[aB + bT—B +CpT +dpT" +e, In(T)j (4.25)

Table 4.22 — Coefficient values of Equation (4.25).

as =1.6635764E01 [In(Pa)] ds =1.673952E-02 [In(Pa)/K?]
bs =-6.0969385E03 [K In(Pa)] es =2.433502E00 [In(Pa)/In(K)]
cs =-2.711193E-02 [In(Pa)/K]
Source: Sonntag (1990).

Wagner et al. (1994), 273.16K<T<647 K:

P

In(a—"] = (Trlj (bBT et +dgrt ++ et + fort + gBr7'5) (4.26)
B

Table 4.23 — Coefficient values of Equation (4.26).

as =2.2064E07 [Pa] es =2.26807411E01
be =-7.85951783E00 fs =-1.59618719E01
cs =1.84408259E00 gs =1.80122502E00
ds =-1.17866497E01

Source: Wagner et al. (1994).

r=1-T

where T

o and Ter = 647.096K.

For temperatures above the critical point, Van der Waals pressure equation

usually can be applied:
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~RT a
- %cr b ,\%crz (4.27)

27-R*.T,° R-T,
= b= ; (4.28)
64P 8P

cr cr

Where Pcr and Ter are pressure and temperature at critical point, respectively, T
Is absolute temperature in Kelvin, M is the molar mass and R is the universal gas

constant.

Redlich and Kwong (1949) have improved the Van der Waals (4.27) Equation:

p_ RT B a
I\%cr_b I\%cr('\%chrb)T% (4.29)

RZ'Tcr% b R'Tcr
©2.3393P, ' 11.5420P,

(4.30)

Soave (1972) proposed a modification of equation presented Redlich and Kwong
(1949) work, achieving a new concept of fluid characterization. At that time, the
focus was on the improved temperature dependency of the attractive parameter
“a”. Currently, the component “a” depends on the saturated vapor pressure (Pvp)

in a reduced temperature characterized by Tr=0.7/Tcr.

p_ RT a
'\%cr—b I\% (I\% +b) (4.31)
23393p 6 ﬁ Tr ))2 11§4;0P ' (4.32)

m = 0.480+1.574w—0.176w° (4.33)
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P
W= Iogm[ P” J—l
VP

4.3 Vapor density

(4.34)

Saul and Wagner (1987) present a dimensionless density correlation based on

data based on the thermal-physical properties on the saturation line of ordinary

water substance. (273K<T<647.2K):
Ln[&} = acr% +bcr% +Ccr% +dcrl% +ecr3% + fcr%
Por

T
wheret=1——.

cr

Table 4.24 — Coefficient values of Equation (4.35).

ac=-2.02957 dc=-17.3151
bc=-2.68781 ec=-44.6384
cc=-5.38107 fc=-64.3486

Source: Saul and Wagner (1987).
Wagner et al. (1994) have slightly refined these coefficients:

Table 4.25 — Coefficient values of Equation (4.35).

ac=-2.03150240 dc=-17.2991605
bc=-2.68302940 ec=-44.7586581
Cc=-5.38626492 fc=-63.9201063

Source: Wagner et al. (1994).

(4.35)

Faghri (2016) in his book also used a polynomial approximation 5" order instead.

In(p,)=ag +b, T+, T2 +d T3 +e, T+ f,T°

where T is temperature in Celsius degree, from 20°C to 200°C.
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Table 4.26 — Coefficient values of Equation (4.36).

as =-5.3225E+00 [In(kg/m3)] ds =8.4522E-07 [In(kg/m3)/C3]
be =6.8366E-02 [In(kg/m?)/C] es =-1.6558E-09 [In(kg/m?3)/C4]
cs =-2.7243E-04 [In(kg/m?)/C?] fs =1.5514E-12 [In(kg/m?3)/C3]

Source: Faghri (2016).

4.4 Vapor dynamic viscosity

Xin et al. (2023) developed a polynomial approximation of 4" order for this
property of water for heat pipe numerical models. This equation is valid for the

temperature range from 20°C to 200°C.
4, =ag +b,T+c,T>+d,T%+e,T* (4.37)

where T is temperature in Celsius degree and p in N'sm

Table 4.27 — Coefficient values of Equation (4.37).

as =2.37687E-05 [N'sm?] ds =-1.24876E-12 [N-sm?/C?]
be =-1.94073E-07 [N'sm2/C] eB =7.2752E-16 [N'sm2/C4
cs =8.02182E-10 [N'sm2/C?]
Source: Xin et al. (2023).

Faghri (2016) in his book also used a polynomial approximation of 5" order.

Ln(z, )=ag +bgT +C, T2 +d T2 +e,T* + f,T° (4.38)

where T is temperature in Celsius degree, from 20°C to 200°C.
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Table 4.28 — Coefficient values of Equation (4.38).

as =-1.1596E+00 [In(N-sm2)] ds =-6.1035E-08 [In(N'sm2)/C?]
be =2.6382E-03 [In(N'sm2)/C] ee =1.6844E-10 [In(N-sm2)/C*]
cs =6.9205E-06 [In(N'sm2)/C?] fg =-1.5910E-13 [In(N'sm2)/C5]

Source: Faghri (2016).

4.5 Vapor thermal conductivity

Qian et al. (2022) also achieved an approximation to water thermal conductivity;

the result can be seen in graph below.
k, =ag +bg T+ T? +d T°+e,T" (4.39)
where T is temperature in Celsius degree.

Table 4.29 — Coefficient values of Equation (4.39).

ae =5.650285E-01 [W/mK] ds =-1.515492E-06 [(W/m-K)/C?]
be =2.6363895E-03 [(W/mK)/C] es =9.412945E-04 [(W/mK)/C¥]

cs =-1.2516934E-04 [(W/mK)/C?]
Source: Qian et al. (2022).

Figure 4.10 — Correlation between thermal conductivity and temperature.
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In a higher temperature range, Polasek and Stulc (1976), Saaski (1977) and
Mishkinis et al. (2009) have reached a linear equation which presents a good

property accuracy.

ksat,v =dg t bBT (4.40)

where T is temperature in Celsius degree.

Table 4.30 — Coefficient values of Equation (4.40).
as =-6.99E+00 [W/mK] bs =-6.2E-02 [(W/mK)/C]

Source: Polasek and Stulc (1976), Saaski (1977) and Mishkinis et al. (2009).

Also, Xin et al. (2023) developed a polynomial approximation of 4" degree for this
water property with the intention to use in heat pipe numerical model. This

eqguation is valid in a temperature range of 20 to 200 °C.

k, =ag +bgT +c,T? +d T°+e,T" (4.41)
where T is temperature in Celsius degree and k in W-m1K-t

Table 4.31 — Coefficient values of Equation (4.41).
as =-3.46E-03 [W/mK] ds =1.55894E-09 [(W/mK)/C3]
bs =1.79378E-04 [(W/m-K)/C] es =-7.6521E-13 [(W/mK)/CY]
ce =-7.50759E-07 [(W/mK)/C?]
Source: Xin et al. (2023).

4.6 Vapor specific heat capacity

The equation below was developed by Giaugue and Stout (1936) to be used from
15K to 273K (i.e., sublimated vapor over ice). That approximation was proven

correct years later by data collected by Flubacher et al. (1960):
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2
Cpice = aAp + b, T+c,T exp[ (dlj ] (4.42)

where T is absolute temperature in Kelvin.

Table 4.32 — Coefficient values of Equation (4.42).

aa=-2.0572E00 [J/kg/K] ca =6.6163E-02 [J/kg/K?]
ba =1.4644E-01 [J/kg/K?] da =1.251E02 [K]
Source: Giaugue and Stout (1936).

Murphy and Koop (2005) approximation can be written similar as the equation

above (4.42), using different coefficients:

2
Cpice = ap +D, T +C, T 2+d,T exp[— (elj ] (4.43)

A

Table 4.33 — Coefficients suggestion for Equation (4.43).

aa=4.67825E04 [J/mol/K] da =5.415E02 [J/mol/K?]
ba =3.58925E01 [J/mol/K?] ea =1.2375E02 [K]
Ca =-7.414E-02 [J/mol/K3]

Source: Murphy and Koop (2005).

“The last term is good for fitting the nonlinear portion because it goes to zero at
both low and elevated temperatures and can be integrated analytically. The same
form can be used for the difference in heat capacity between vapor and ice.”
Murphy and Koop (2005).
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Figure 4.11 — Correlation between vapor heat capacity and temperature.
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The same extrapolation, mentioned in vapor pressure topic, was made for the
heat capacity; the author exposed and compared different equations in a wider
range. It is important to highlight the limits of uncertainty of estimated curve and
its behavior with temperature variation. Above the specified range, this limit

becomes more permissible as is possible to see in Figure 4.12.

Murphy and Koop (2005) confronted their approximation result with experimental
data obtain by Angell et al. (1982), Tombari (1999), Archer and Carter (2000); the

result is shown in Figure 4.12.
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Figure 4.12 — Comparative study of ¢, made by (MURPHY; KOOP, 2005).
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The next part this work will show a potpourri of equations developed to describe
the specific heat capacity reached by Murphy and Koop (2005). He in his work
shows a relation for cp,ice, from 123K up to 155K, achieved by Giauque and Stout
(1936) mentioned above in Equation (4.42) whose also built an equation to
describes sublimated vapor cp,ice, from 123K to 167 K, and in Equation (4.45) is
possible to see the result reached by Giauque and Stout (1936) for water in vapor

phase.
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2
Cpice = aAp + b, T+c,T exp[ (dlj ] (4.44)

Table 4.34 — Equation (4.44) coefficients value.

aa=-5.72E-02 [J/mol/K] ca =6.6163E-02 [J/mol/K?]
ba =1.4644E-01[J/mol/K?] da =1.251E02 [K]
Source: Murphy and Koop (2005).

2 2
Cpuap = A +DgT +CgT exp{— (le } +egT exp[— Efl] } (4.45)
B B

Table 4.35 — Equation (4.45) coefficients value.

ap =3.326182E01[J/kg/K] ds =1.2985E02 [K]
bs =1.87E-03[J/kg/K?] es =6.6163E-02 [J/kg/K?]
ce =6.165E-02[J/kg/K?] fg =1.251E02 [K]

Source: Giaugue and Stout (1936).

Faghri (2016) also made his contribution using a 5" degree polynomial

approximation for saturated range of temperature.

Ln(c,, )= ag +byT +CoT2 +d T% +e,T* + f,T° (4.46)

where T is temperature in Celsius degree; the approximation is valid from 20°C
to 200°C.

Table 4.36 — Equation (4.46) coefficients value.
as =6.3198E-01 [In(J/kg/K)] ds =4.4936E-08 [In(J/kg/K)/C?]
bs =6.7903E-04 [In(J/kg/K)/C] es =2.2606E-10 [In(J/kg/K)/C*]
cs =-2.5923E-06 [In(J/kg/K)/C?] fs =-9.0694E-13 [In(J/kg/K)/C?]

Source: Faghri (2016).
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4.7 Vapor Prandtl number

This property is the combination of others three properties, vapor specific heat,
vapor thermal conductivity and vapor dynamic viscosity; so, many authors
choose to use those property approximations to build a dedicated approximation

of the Pr number instead.

4.8 Liquid density

Now we are going to look to liquid density. In their study, Qian et al. (2022) used
all fluid properties in two-phase range limited by (270K — 370 K) interval. They
used 4th polynomial approximation, Equation (4.47). Out of this range, the

eguation is not accurate enough to be used in mathematical models:
p(T)=a, +0b,T+c,T7+d,T° +e,T* (4.47)

where T is absolute temperature in Kelvin.

Table 4.37 — Equation (4.47) coefficients value.

as =9.997968E03 [kg/m?] ds =8.2140905E-04 [kg/m3/K3]
be =6.8317355E-02 [kg/m3/K] es =2.303988E-05 [kg/m3/K?4]
cs =-1.0740248E-02 [kg/m3/K?]
Source: Qian et al. (2022).

This approximation results in graph below, given in Figure 4.14.
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Figure 4.14 — Correlation between density and temperature.
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Le bideau et al. (2019) used the following approximation for liquid density.

p(T)= (aBT 2 +b,T +cy )exp(d s Yo ) (4.48)

where Y is coefficient of approximation and T is temperature in Celsius degree.
The approximation coefficients are available in
Table 4.38.

In spite of the work made by Le bideau et al. (2019) refers to an aqueous solution,
to reach this result, the authors started from a water liquid density, using a 2"

degree polynomial equation to model this behavior:

P1 = Ph2o exp(dBYKOH ) (4.49)

Table 4.38 — Coefficient values of Equation (4.48) and (4.49).

as =-3.25E-03 [kg/m3/K?] cs =1.00171E03 [kg/m?3]
be =1.11E-01 [kg/m3/K] ds =8.6E-01
Source: Le bideau et al. (2019).
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In their work Saul and Wagner (1987) proposed his contribution to discretize the
water density for saturated liquid also using like-polynomial equation and they
further have updated that work (WAGNER; SAUL; PRUSS, 1994):

Ln(ﬂj =1+ aBz-% +bBr% +CBT% +dBrl% +eBr4% + fBTll% (4.50)
Per

where T =1 —Tl (273.15<T<423.15 K). Differently to the classic polynomial

functions, authors used not-integer powers for dimensionless temperature.

Table 4.39 — Coefficient values of Equation (4.50).

as =1.99206 ds =-1.75263
bs =1.10123 es =-45.4485
cs =-0.512506 fs =-6.75615E5

Source: Saul and Wagner (1987).

Table 4.40 — Coefficient values of Equation (4.50).

as =1.99274064 ds =-1.75493479
bs =1.09965342 es =-45.5170352
cs =-0.510839303 fs =-6.74694450E5

Source: Wagner et al. (1994).

Popiel and Wojtkowiak (1998) also recommended the use of Saul and Wagner
(1987) equation. Faghri (2016) in his book used a classical polynomial

approximation 5" order instead:

Ln(p,)=ag +beT +C,T? +d T* +e,T* + f,T® (4.51)

where T is temperature in Celsius degree, from 20°C to 200°C.
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Table 4.41 — Coefficient values of Equation (4.51).

as =6.9094E+00 [In(kg/m?)] ds =2.5921E-08 [In(kg/m?3)/C3]
be =-2.0146E-05 [In(kg/m3)/C] es =-9.3244E-11 [In(kg/m3)/C]
ce = -5.9868E-06 [In(kg/m?3)/C?] fg =1.2103E-13 [In(kg/m?)/C5]

Source: Faghri (2016).
4.9 Liquid dynamic viscosity

Qian et al. (2022) gave contribution to this topic, and in the analogous way said

above reached his formulation for liquid dynamic viscosity:
w1 (T)=a, +bgT +c, T2 +d,T° (4.52)

where T is absolute temperature in Kelvin.

Table 4.42 — Coefficient values of Equation (4.52).

aB =5.5782468E02 [N'sm?] cs =1.360459E-01[N'sm?/K?]
bs =1.9408782E01 [N'sm?/K?] ds =3.1160832E-04 [N'sm2/K?]
Source: Qian et al. (2022).

Figure 4.15 — Correlation between dynamic viscosity and temperature.
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Kestin et al. (1978) made their contribution presenting the following
approximation using logarithm for reduced (i.e. dimensionless) dimensionless

dynamic viscosity.

(4.53)

wT) | 20-T 3 " 2
L = 2364-1.37-10°(20-T)+5.7-10°%(20-T
n{ﬂ(zooc)} T+96{1 ( )+ ( )} (4.54)

where T iso measured in Celsius degree; the approximation has a limited range
that goes from 0°C up to 40 °C.

Le bideau et al. (2019) used a 2" order polynomial for approximation under
exponential function; the approximation range is 15 °C to 60°C:

14,(T) = explag +bT +¢,T2 +d,C) (4.55)

where T is temperature in Celsius degree, and C is molarity (mol/L), a correlation

between mass fraction, density and molar mass.

Table 4.43 — Coefficient values of Equation (4.55).

as =4.3E-01 [In(N'sm?)] cs =1.E-04 [In(N's’m-?)/C?]
bs =-2.51E-02 [In(N'sm?)/C] ds =1.3E-01 [In(N'sm?) -L/mol]
Source: Le bideau et al. (2019).

Qian et al. (2022) also presented specific correlation for this property, developed
by Popiel and Wojtkowiak (1998):

1
ag +b, T +c,T?+d,T?

1 (T)=

(4.56)

where T is temperature in Celsius degree.
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Table 4.44 — Coefficient values of Equation (4.56).

ap =5.5782468E02 [1/(N'sm2)] cs =1.360459E-01 [1/(N'sm?)/C?]
be =1.9408782E01 [1/(N's'm™?)/C] ds =-3.1160832E-04 [1/(N's'm?)/C?]
Source: Qian et al. (2022).

And Faghri (2016) made his traditional contribution using a 5" degree polynomial

approximation:

Ln(g )=ag +0,T +C, T2 +d T2 +e,T* + f,T° (4.57)
where T is temperature in Celsius degree, from 20°C to 200°C.

Table 4.45 — Coefficient values of Equation (4.57).

as =-6.3530E+00 [In(N'sm2)] ds =-1.1559E-06 [In(N'sm2)/C?]
be =-3.1540E-02 [In(N'sm2)/C] ee =3.7470E-09 [In(N'sm2)/C*]
cs =2.1670E-04 [In(N'sm?)/C?] fg =-5.2189E-12 [In(N'sm2)/C5]

Source: Faghri (2016).

4.10 Liquid thermal conductivity

Mondal et al. (2021) developed a linear correlation to thermal conductivity for

liquid phase.

k, =a; +0gT (4.58)

where T is temperature in Celsius degree and k is thermal conductivity in
W miK1,

Table 4.46 — Coefficient values of Equation (4.58).

as =1.3572E02 [W/m-C] bs =-2.15E-01 [W/m-C?]
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Patek et al. (2009) presented the following approximation for liquid thermal

conductivity.
kG (T)=ag (T + (T )" +e,(T7)" + g, (T )" (4.59)

where T is absolute temperature in Kelvin, T" is dimensionless temperature
T'=T/300K and k is given in W m-*K-,

Table 4.47 — Coefficient values of Equation (4.59).

ae =8.0201E-01 [W/mK] ee =1.0024E-01 [W/mK]
be =-3.2E-01 fg =-1.2E01

c8 =-2.5992E-1 [W/mK] ge =-3.2005E-02 [W/mK]
ds =-5.7E00 he =-1.5E01

And Faghri (2016) has performed a 5" degree polynomial approximation:
Ln(k,)=ag +b T+, T2 +d T3 +e,T* + f,T° (4.60)
where T is temperature in Celsius degree, from 20°C to 200°C.

Table 4.48 — Coefficient values of Equation (4.60).

as =-5.8220E-01 [In(W/mC)] ds =6.5617E-08 [In(W/mC%)]
be =4.1177E-03 [In(W/m-C?)] es =4.1100E-11 [In(W/m-C5)]
cs =-2.7932E-05 [In(W/m-C3)] fg =-3.8220E-13 [In(W/m-C9)]

Source: Faghri (2016).

Popiel and Wojtkowiak (1998) published in their work a polynomial equation that

approximates this property behavior when temperature varieties.

K =ag +bT +C T +d T +e,T" (4.61)

where T is temperature in Celsius degree, from 0°C to 150°C.
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Table 4.49 — Coefficient values of Equation (4.61).

as =5.650285E-01 [W/m-C] ds =-1.5154918E-06 [W/m-C?]
be =2.6363895E-03 [W/m-C?] es =-9.9412945E-04 [W/m-CL9]
cs =-1.2516934E-04 [W/m-C25]

4.11 Liquid specific heat capacity

Zaytsev and Aseyev (1992) used the following correlation to describe liquid
specific heat capacity behavior with temperature, where Y is the molar mass of

the solution:

C,, =25 +Dy In(%)ﬂ% +d,Y +e,T)Y, (4.62)

Table 4.50 — Coefficient values of Equation (4.62).

as =4.236E03 [J/kg/K] ds =8E00
be =1,075E00 [J/kg/K/In(K)] es =8E00 [J/kg/K]
cs =-4.831E03 [J/kg/K]
Source: Zaytsev and Aseyev (1992).

The approximation (4.62) can be generalizes to the following expression:

C,, =8 +DgT +¢y In(T) (4.63)

Xin et al. (2023) developed a polynomial approximation of 4" order for this
property for water:

Cp, =g +hpT +CaT* +dgT° +e,T* (4.64)

where T is temperature in Celsius degree from 20°C up to 200°C and cp is given
inJ kgt K?,
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Table 4.51 — Coefficient values of Equation (4.64).

as = 8.356E03 [J/kg/K]  ds =-3.478E-04 [(J/kg/K)/C?]
bs = -4.501E01 [(J/kg/K)/IC] e = 2.576E-07 [(I/kg/K)/C*]
ce = 1.848E-01 [(J/kg/K)/C?]

And Faghri (2016) developed a 5" degree polynomial approximation using

logarithm of the value:

Ln(cpl):aB+bBT +C T2 +d TP +e, T+ f,T° (4.65)
where T is temperature in Celsius degree, from 20°C to 200°C.

Table 4.52 — Coefficient values of Equation (4.65).

as =1.4350E+00 [In(kJ/kg/K)] ds =-4.4099E-08 [In((kJ/kg/K)/C3)]

be =-3.2231E-04 [In((kJ/kg/K)/C)] e =2.0968E-10 [In((kJ/kg/K)/C*)]

cs =6.1633E-06 [In((kJ/kg/K)/C?)] fs =-3.0400E-13 [In((kJ/kg/K)/C>)]
Source: Faghri (2016).

In a similar way Qian et al. (2022) reached his formulation for water liquid specific
heat:

Cpy =85 +hpT +CT2+d, T +€,T¢ (4.66)
where T is absolute temperature in Kelvin.

Table 4.53 — Coefficient values of Equation (4.66).

as =4.2174356E03 [J/kg/K] ds =-1.115353E-01 [J/kg/K#]
be =-5.6181625E00 [J/kg/K?] es =4.14964E-03 [J/kg/K®]
ce =1.2992528E00 [J/kg/K3]

Source: Qian et al. (2022).
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Figure 4.16 — Correlation between specific heat and temperature.
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Source: Qian et al. (2022).

Popiel and Wojtkowiak (1998) published in their work a polynomial equation that

approximates this property behavior when temperature variates.

Cp, =8 +bgT "‘CBTL5 +dBT2‘5 +eBT3 (4.67)
where T is temperature in Celsius degree, from 0°C to 90°C.

Table 4.54 — Coefficient values of Equation (4.67).

as =4.2174365E00 [(J/kg/K)/C] ds =-1.1535353E-4 [(J/kg/K)/C35]
bs =-5.6181625E-03 [(J/kg/K)/C2] es =4.14964E-06 [(J/kg/K)/C¥]
cs =1.2992528E-03 [(J/kg/K)/C25]

4.12 Liquid Prandtl number

Popiel and Wojtkowiak (1998) suggested an equation to approximate this water

property by an inverse polynomial function:

1

Pr, = - 3
ag +0hT+c T +d,T

(4.68)

where T is temperature in Celsius degree.
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Table 4.55 — Coefficient values of Equation (4.68).

as =7.4763403E-02 cs =2.8606181E-05 [1/C?]
bs =2.9020983E-03 [1/C] ds =-8.1395537E-08 [1/C?]
Source: Popiel and Wojtkowiak (1998).

4.13 Latent heat (enthalpy) of vaporization

Faghri (2016) also contributed using a 5" degree polynomial approximation.
In(2)=exp(ag +bT +CoT2 +d T +e,T* + £,T°) (4.69)
where T is temperature in Celsius degree, from 20 to 200°C.

Table 4.56 — Coefficient values of Equation (4.69).

ae =7.8201E+00 [In(kJ/kg)] ds =8.4738E-08 [In(kJ/kg)/C?]
bs =-5.8906E-04 [In(kJ/kg)/C] es =-3.9635E-10 [In(kJ/kg)/C*]
cs =-9.1355E-06 [In(kJ/kg)/C?] fg =-5.9150E-13 [In(kJ/kg)/C?]

Source: Faghri (2016).

Popiel and Wojtkowiak (1998) published in their work a polynomial equation that
approximates this property behavior when temperature variates.

A=ag +b T +c, T +d T? +e,T° (4.70)
where T is temperature in Celsius degree, from 0 to 150°C.

Table 4.57 — Coefficient values of Equation (4.70).

ae =2.500304E+03 [kJ/kg] ds =3.1750163E-04 [kJ/kg/C29]
be =-2.2521025E00 [kJ/Kg/C] es =-2.867959E-05 [kJ/kg/C?]
Cs =-2.1465847E-02 [kJ/kg/CL5]
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4.14 Surface tension

Vargatftik et al. (1983) developed a more advanced approximation valid from 0.01

to 185°C.
bg
a|Je =T | fgyo [ Ta™T (4.71)
o= :
° TCI’ ° TCI‘
Table 4.58 — Coefficient values of Equation (4.71).
as =2.358E-01 [N/m] bs =-6.25E-01 cs =1.256E00

Also, Poling et al. (2001) presented an approximation of the following format:

ocox(l-T,) (4.72)
Where “n” is a local variable that can vary from 0.8 to 1.22 and Tr, also known as

reduced temperature, is a dimensionless result from T/Ter.

Devarakonda (2005), presented the following approximation:

o)
c=Q- (Pcr )% (Tcr )% (l_ Tij 107 (4.73)

cr

Where, Pcr and Ter are critical pressure in bar and critical temperature in Kelvin

respectively, resulting in surface tension in N m.

T ~In(PC)
T
Q=01191+ ——— (4.74)
1_Tboil

cr

Qasem et al. (2021) presented the correlation for pure water:
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T Cs T Cg

where T is absolute temperature in Kelvin.

Table 4.59 — Coefficient values of Equation (4.75).

as =2.358E02 [N/m] cs =1.256E00
bs =6.47096E02 [K] ds =6.25E-01
Source: Qasem et al. (2021).

And Faghri (2016) also made his contribution using a 5" degree polynomial

approximation.

Ln(c)=a, +0,T +c, T2 +d,T° +e,T*+f,T° (4.76)
where T is temperature in Celsius degree, from 20°C to 200°C.

Table 4.60 — Coefficient values of Equation (4.76).

as =4,3438E+00 [In(N/m)] ds =-2,5499E-07 [In(N/m)/C?]
be =-3,0664E-03 [In(N/m)/C] es =1,0377E-09 [In(N/m)/C*]
cs =2,0743E-05 [In(N/m)/C?] fg =-1,7156E-12 [In(N/m)/C5]

Source: Faghri (2016).
Straub (1980) developed an approximation using dimensionless temperature:
—a % d
o=a,7 (1+cbr ) (4.77)

T
r=1-— (4.78)

cr

Where sigma is the surface tension, Tc is the critical temperature, and T is the

temperature (in K).

53



Popiel and Wojtkowiak (1998) published a polynomial equation that approximates

this property behavior when temperature varies .
o=a +b,T +¢, T2 +d,T° (4.79)
where T is temperature in Celsius degree, valid from 0°C to 150°C.

Table 4.61 — Coefficient values of Equation (4.79).

ae =7.5652711E-02 [N/m] cs =-3.0842103E-07 [N/m/C?]
bs =-1.3936856E-04 [N/m/C] de =2.7588435E-10 [N/m/C?]
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5 METHODOLOGY

5.1 Building equations

Polynomial equations are widely used to build approximations for fluid properties.
It is quite common to find the following expressions for any property (p):

p(T,q) =a+bT +cT>+dT° +eT* + fT° +... (5.1)

where q - is a vector of approximation parameters (coefficients):

g={a,b,c,d,e, f,..} (5.2)

This type of correlation is usually only valid within well-defined limits. The higher
the order, the higher the precision of the approximation. However, out of the
range, the behavior of the polynomial may get a significant deviation away from
the physical sense. The higher the order of this polynomial equation applied in a

wide range of temperature implies into an unstable behavior.

Usually, a polynomial approximation does not reflect the physical nature of the
property behavior. To avoid this drawback, it is suggested for any thermo-physical
property p that the main component of approximation would follow the main
tendency of fluid behavior with temperature whenever possible. After that, the
approximation may be improved by adding auxiliary terms or coefficients. To
choose a suitable basic correlation, a collection of distinct functions shall be
preliminarily created and plotted with variation of key parameters (such a study
is presented in APPENDIX A — Equations and its derivatives). For example, for

the water surface tension, the original curve looks like in Figure 5.1.
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Figure 5.1 — Correlation between water surface tension and saturation temperature.
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A similar tendency is seen for the following function type.
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When x varies from 0 to 1 and a<=1:

Figure 5.2
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One can see that when a is adjusted between 0.6 and 0.9, the tendency in
function y follows the tendency of surface tension. This approach is not new, and
some correlations already have been elaborated by this manner. For example, a
correlation of this type for surface tension as a function of relative temperature

can be found in the technical literature:

o(T)=<%[1—%%J (5.4)

C

The parameters Ter, co and a — are different for each specific fluid.

One of the drawbacks of the usual approach with polynomial is that the

approximations coefficients “q” has dimensions, and those dimensions are
dependent on the system of units. To avoid this and for generality, we will use

dimensionless properties and temperature:

T:T‘E (5.5)
Tcr _TS
P-P
Pcr - P3

The example of Equation (5.6) is shown for pressure. However, the same

approach will be applied to all properties.

Wherefore, for the two-phase zone, the values for both t and p may vary from O
to 1. For sublimation, t and p are negative, and for the one-phase supercritical
zone (i.e., gas), the values are above 1. We expect such an approach will help to
elaborate universal correlations with close coefficients for different working fluids.

Moreover, the approximation parameters (coefficients) are also dimensionless.

The properties shall include saturated pressure, latent heat of vaporization and
surface tension for interface conditions, as well as density, dynamic viscosity,

specific heat, and thermal conductivity for both vapor and liquid phases.

The correlation for the approximation includes approximation parameters “q,”

whose values shall be obtained from the conditions of the best fitting of known
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tabulated data for different temperatures Ti. We denote such parameter vector
“q.” These components of vector “q” shall be obtained by a minimization of
deviations from tabulated data. To implement this for the dimensionless
variables, the first tabulated data shall be recalculated and passed to the

dimensionless format as a function of dimensionless temperature:
Yi(T) = Vi) (5.7)

When the least-square techniqgue may work fine. In mathematic terms it can be
expressed as minimization of average absolute deviation or minimization of

maximum absolute deviation:

N

min D, 212|y(q17i)_9i (Ti)| (5.8)
a N T

mqin Diax = miaX|y(Qa 7)Y (7 )| (5.9)

where N — number of points available in a table of the given thermo-physical
property.

These two criteria of optimization can be combined in one by applied

dimensionless wights which reflect the relative important of each criterion.

min D, =W,D
q

+W,D,, (5.10)

max

W, +W, =1 (5.11)

After performing the optimization by any this technique, the best values of the

vector “q” components, which provide a better fitting to the tabulated values, will
be obtained. The methods for best fitting may be different, starting from try-and-
error methods within EXCEL features, or using known search algorithms,

beginning from random search to some kinds of genetic optimization algorithms.

When we use the dimensionless properties, those values vary around 0-1
interval, the relative error for optimization is not recommended, once in the zone

where the parameter values are near to 0, the uncertainty 0/0 may lead to artificial
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exaggerated giant relative errors. Therefore, the absolute deviations are
preferable for the dimensionless parameters. This dimensionless absolute
deviation makes sense for relative error, referred to the entire two-phase interval.
For example, the absolute dimensionless deviation of 0.01 means 1% of the
interval (Pcr-P3). To be within this sense we will use % (factor of 100) to handle

the dimensionless absolute deviations.
5.2 Interfacing

5.2.1 Interfacing around T3 (t = 0)

Usually, it is easy to fund in technical literature approximations for two different

zones:
o for the sublimation zone, at t<0, let denote as ya(7);
o for two-phase zone, let denote as yg(7).
However, at t=0 we have an interruption, as illustrated on the curve of

Figure 5.3, for the magnitude and for derivatives for both sides: from the left and
from the right:

Ya(0) = ys(0) (5.12)

y'a (0) = y's (0) (5.13)

Figure 5.3 — Two equations of fluid properties at Ts.
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Such interruptions are not acceptable for HP numerical modeling for simulation
of transient behavior over a wide range of temperatures. To solve this problem,
the idea is to introduce a small interface zone (AB) around T3 temperature to
smooth these interruptions, as illustrated in Figure 5.4.

Figure 5.4 — Interfacing example around t=0.

At =0 'At, T

This zone is bounded by small deviations, say At1 and At2. The magnitude of
these variations must be set to a small value of temperature difference, say
~0.005 (it corresponds to about ~1 °C in absolute temperature scale). The
approximation in this interfacing zone, yas(z), must eliminate the non-continuity
and smooth these interruptions. To do this, some additional constrains are
imposed to the approximation (conditions of smoothing in interfacing zone),
considering that we already have the approximations ya(z) and yg(z) and its

derivatives:

Yas (FA7) = Ya(-A7)
Yas (A7) = Ya(-AT;)
Yas (AT;) = Y5 (AT,)
Yas (AT,) = Y5(AT,)

(5.14)

It was assumed that we already have satisfactory approximations ya(t) and ys(t)
and its derivatives in the curves before and after this interfacing zone around the

triple point temperature T=Ts (i.e., t=0). Therefore, there are 4 conditions, and

60



we can build a function for the interface zone with 4 variables. In general, it could
be done by any type of function, but a 3™ order polynomial function of is more

appropriate.

Ve (X) = @+bx+cx® +dx’ (5.15)

The derivative is following:

Vi (X) = b+ 2cx + 3dx’ (5.16)
After substitution of this approximation into the conditions, we have.

a+b(-Ar)+ C(—Arl)2 +d (—Az'l)3 =Y.(-A1)
b+2c(-Arz,)+3d (—Arl)2 =Y\ (-A7)

, 5 (5.17)
a+bArz, +CA7, +dAT, = Y5 (AT,)
b+2cAz, +3dA7] = y, (A7)
Here At is always positive.
a—-bAz, +cAr,” —dAT’ =y, (-A7)
b—2cAz, +3dAz,” =y, (-Az
1 1 yA( 1) (518)

a+bArz, +CAz; + Ad7 =y, (A7,)
b+ 2cArz, +3dA7Z = yi(AT,)

Therefore, we have a system of 4 algebraic equations of 4 unknowns a, b, ¢, and

d, which can be resolved by several appropriate methods.

To simplify the representation, we denote:

-Ar =1, (5.19)
At, =1, '

We can derive analytical solution for the polynomial coefficients for the interfacing

around 1=0, as presented below:
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T, (rl(rl -7, )(y;\r2 - yérl)+ YAl (32’1 +7, ))+ Yolt (1'1 + 372)

a
i (71 -7 )3

b,s = yI’3T1(Tl —2r, )(71 T )_ YaTa (271 ) )(71 +7 )"’ 67172(3/8 - yA)

(Tl Bz )3

Cop = y’A(Tl —2r, )(Tl + Z'2)'|' Ye (271 — 0 )(Tl + 72)"'3(71 — 0 )(yA - yB)
(Tl _72)3

d. = (y; + y’B)(Tl +72)+2(YA - YB)
AB

(Tl ) )3

(5.20)

(5.21)

(5.22)

(5.23)

The same approach may be used for interfacing of approximations around the

critical temperature Ter (T = 1), presented in next sub-section.

5.2.2 Interfacing around Tcr(t = 1)

The same approach may be used for interfacing of approximations around critical

temperature Ter (t = 1), illustrated in Figure 5.5.

Figure 5.5 — Interfacing example around t=1.

(1-Art,) (1+At,)

T =1

For the small temperature deviations, we will use Ats and Ats instead of At1 and

At2 .
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Yoc 1-A73) =Yg (1-A7,)
Yoc U—A73) =Yg (1-At;)
Yec A+A7,) =Yy A+A7,)
Yec Q+A7,)=Yyc(1+A7,)

(5.24)

If we apply the polynomial approximation of 3rd order over the interfacing zone,

the basic system of the equation will be the following.

a+b(l-Az,)+c(l-Ar,)’ +d(1-Az)° =y, (1- A7)
b+2c(l—Az,)+3d(1-Az,)? =y, (1-Az,)
a+b(@+Ar,)+c(l+Azr,) +d1+A7,)’ =y.(1+Az,)
b+2c(l+Az,)+3d(1+A7,)* = y. (1+Az,)

(5.25)

Therefore, we have 4 conditions. In this case a polynomial function of 3rd order
is adequate.

Pec (2) =a+bz+cz” +dz° (5.26)

The derivative is the following.

Phc (2) =b+2cz +3dz? (5.27)

Where z tends to (1-Ar) for the case of interfacing around Tcr.

After the substitution of the argument z to (1-At) of this approximation into the

system of the smooth interfacing conditions, At is replaced by coefficients in

Equation system (5.28).

a+br, +cr,” +dr,’ = py(z,)

b+2cr, +3dz,” = pL(r
3 23 pSB( 3) (528)
a+br,+cr,” +dr,” = p.(7,)

b+2cr, +3dr,” = pi(z,)
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Therefore, we have a system of 4 algebraic equations of 4 unknowns a, b, ¢, and

d, which can be solved by any method.
Solving the system above, the parameters values are available below.

The analytical solution of the system of the Equation (5.28) was obtained for the

polynomial coefficients of the interfacing curve.

_ 1'4(2'3(2'3 _T4XYE;T4 - y'cfs)"' YBT4(373 +7, ))"' ycrsz(rs +3T4)

g B (5.29)

by, = yéfs(fs —2z, )(Ts + 1'4)— y'B‘E;(Z_Tj_ _)374 )(73 + 74)"' 613’[4()/(; _ yB) (5.30)
37T

Coe = Vg (73 ~ 274)(73 + 2'4)"' ye (2(7: __T; )§:3 +T4)+3(73 — 1, )(YB - YC) (5.31)
37Ty

LY +7,)+20yg —
dye = (YB Yc )(73 2'4) 3 (YB YC) (5.32)
(73_74)

These solutions can be implemented into MS Excel spreadsheets.

In the case where fluid property not only depends on temperature but also on
pressure, especially in the region above the critical point, the approach may be
similar. However, the two-arguments approximation shall be presented as a

product of two functions:

Y. (7, p)=w(p)o(r) (5.33)

The function y(p) does not depend on temperature. Therefore, it can be treated
as a constant factor in the interfacing equations and will not interfere on the
solution of algebraic equations system. However, in this case, the polynomial
coefficients a, b, c, d will be functions of pressure. When value of pressure is
known, the value of these coefficients can be calculated at different magnitudes

of pressure.

The conjugate conditions for this case will be as following:
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a

c

Yec A—A7;) =y, (1-Azy)
Yoc - A7) =y (1- A7)
Yec 1+A7,) =Y. (1+A7,, )
Yoc I+ A7) =Yyc(1+Az,, p)

(5.34)

The basic system of equations, after substitution the expression for yc(t, p) looks

like the following.

a+b(l-Ar))+cl-Ar,)? +d(l-Az,)° =y, (1-Az,)
b+2c(l—Az,) +3d(L-Az,)? =y, (1-Az)
a+b(l+Arz,)+cl+Ar,)* +d1+A7,)° =w(p)pl+Ar,)
b+2c(l+Az,)+3d(1+Az,)* =y (p)p'd+Ar,)

(5.35)

Once we have a function of the variable “p” in the system, its solution shall be

obtained analytically.

To simplify the representation, we denote:

A-Azy) =7,

A+Az,) =1, (5:36)

The analytical solution for the system of Equations (5.35) was obtained for the

polynomial coefficients of the interfacing curve:

_ o)y ( p)z'§ (75 —37,) + 7,(¢' (z)y ( p)T§ (74 —75) — 74(74 —313) Yo (73) + 757, (7, — 75) Y5 (73))

o) (5.37)
p = 2RIz (55 — ) + 20) + 6r3ra (e )y (P) Yo (5)) ~alrd 757y ~200)Ya(%) (5 5
(75— 74)3 .
_ —=3pr W (P)(rs +7) + @ (0w (P) (2 + 237, —222) +3(z; + 7)o (7)) — (73 — 7,) (7 + 27,) o (7)
et (5.39)
d= 2¢(7,)y (P) —2Y5(73) + (7, — 7)) (@' (z)y (P) + Yu (z3)) (5.40)

(53— 74)3
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The solution can be also implemented into an EXCEL spreadsheet. Then, a linear

approximation of coefficients a,b,c,d as functions of pressure can be realized.

5.2.3 Interfacing at any point of temperature

By the same manner, the general interfacing algorithm can be used at any point
of the temperature axis. In this case we need to define the bound not by Ati and
Atz around O (or Atz and Ats4 around 1) but by the values from both sides of an
arbitrary conjugation (interruption) point i, let be ti on the left side and tr - on the

right side. This nomenclature is shown in Figure 5.6.

Figure 5.6 — Interfacing for general case.

y,(@)

a¥

The conjugate conditions include continuity on function values and on its

derivatives from both sides of the interruption point i.

Yi(zi) = Y (710)
Yi(7i) = Yr(7)
Yi(t) = Y (z,0)
y;(rrt) = y;t (Trt)

(5.41)

Note, that the interruption points position ti are not important anymore, only left,

and right bounds are considered.

These conditions are universal and are applicable for any point on the

temperature axis. Then we perform the following substitutions.
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{rn > At 1> AT Yo Ya Ya =Y Yio Vst (5.42)

In Equation (5.42), we obtain the conditions for the interfacing between freezing

and saturation zones.
{r >1-Az; 7, >1+AT; V> Ve Ya 2 Yer Vi Vact (5.43)

In Equation (5.43), we obtain the conditions for the interfacing between saturation

and super-critical zones.

As it has been proven, a polynomial function of 3rd order can be used in the

interval of the interfacing:

yi(r)=a +hr+c7’ +do’ (5.44)

After substitution, we obtain the system of equation which must be solved to get

the polynomial coefficients a, b, ¢, and d of the interfacing curve:

2 3
a +bzy +cry +diry =y, (7))

b, +2¢,7,, +3diT|f = Y1 (%) (5.45)

a+br, +ci+d =y (r,)

ivrt ivrt

b; +2¢,7,, +3diTr2t =Yu(7q)
The parts on the right side are numerical values. Therefore, we have a linear
system of 4 equations with 4 unknowns, which in general case has a unique
solution. This solution can be obtained analytically manually or with the help of
MATHEMATICA® or similar tool.

The analytical solution of the system of Equations (5.45) was obtained for the
polynomial coefficients of the interfacing curve and shown below.

_ (tq (r (7 =7 ) Vi T + YiT) =T (7 = 37,) Vi) + Z',f (7, —374)Yu)

g; 3
(Tlt - Trt)

(5.46)
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b = (Yt (7 — 7)) (@ +27,) — 7, (Vi (Trzt T T — 22’5) +67;, (Vi = Yu))).

A7

' (5= 70) 547

C = (=i (7 = 7) (7 +200)) + Vi (7 + 737 = 2030) + 3(7 + 70) (Vi = Vi) (5.48)
| (Tlt - Trt)s -

d, = O+ Y@ =7) = 29y +2Y0) (5.49)

(z-lt — Ty )3

The nomenclature is also not important; we may use any customized definition,

for example.

Ty = Typ Tt = Thos
Yie 2 Yoo Yo 2 Yao (5.50)
Vi > Yoo Yu = Yao

5.3 Piecewise approach using Heaviside functions

The main aim of the research is to develop the approximations which are valid
within the entire interval of temperature. It may be exceedingly difficult to
elaborate a unique correlation which may be valid for the entire interval, even
from 0 to 1 of dimensionless temperature. In this case it is worth to break the
interval in few parts where good approximations can be found separately. In this
case it is particularly important that in the conjugate point tn, the smooth transition
must be provided. The condition for the smooth transition is that the values and

derivatives of the right and left functions must be equal:

{yz () =Yi(zy) (5.51)

Yo(zy) =yi(zy)

Where y1 and y2 are the components of piecewise functions used for

approximation in two conjugate subintervals in this example.

To implement this feature, we propose to use Heaviside functions, defined as:
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0:7<17,

l:it>17,

Z(T_TH)Z{

We will also use the reverse Heaviside function:

liz <ty

R

O:7=>7,
Obviously:
2 (r-1)=1-y(r-1,)

-1+ (r-1)=1

(5.52)

(5.53)

(5.54)

(5.55)

For example, for the case when piecewise function has two components y1 and

y2, the approximation over entire interval of temperature can be expresses as:

¥(@,7) =L~ x(z —74))Y. (0, 7) + x(z — 7)Y, (0, 7)
EZ_:L(T_TH )Y1(0y,7) + 2(z —74)Y,(0,,7)

(5.56)

In this expression, the sub-vectors of approximation parameters g1 and gz are

included:

q :{Ch’qz}

(5.57)

Figure 5.7 illustrates the use of piecewise function with conjugation by Heaviside

function.
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Figure 5.7 — Example of piecewise function with conjugation by Heaviside function.

Y A

The expression for using 3 functions with two conjugate points is similar.

y(a,7) :Z_l(T_THl))ﬁ(qlaT)+Z(T_THl)Z_l(T_THz)yz(qz’T)

5.58
2T 702)Y5 (G5.7) (5:58)

q={0y, 9,05} (5.59)

Obviously, the approach can be expanded up to any number of components in

the piecewise function.

The approach may be called as piecewise approximation by substitution (one
function by another). However, this approach has a certain drawback: the solution
of the system of equations of smooth transition, Equation (5.60), may be difficult

for nonlinear functions.
In this case we propose the conjugation by addition.

For the case of two functions and one conjugate point it can be defined as follows.

B yi(r): <7y
¥e) = {yl(r) Ly, s, (5-60)
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It means the first function provide rough approximation over entire interval, while
the second function then add in the point t+ to improve the approximation. Using

the Heaviside functions, the approximation by addition is expressed as:

y(@.a) =y, (z,0,) + x(r —74) Y. (7.4;) (5.61)

q :{Ch!qz} (562)

Next Figure 5.8 illustrates the use of piecewise function with conjugation by

addition.

Figure 5.8 — The impact of a Heaviside function on an approximation curve.

VA

The conditions for the smooth transitions become simpler:

{yz(quH) =0 (5.63)

yé(qzﬂ'H):O

This approach also has the drawback that not all candidates for the approximation
functions y2 can be used. A collection for such functions which satisfy the
conditions for using in piecewise approximations by addition must be previously

created.

71



5.4 Final format

The results of the approximation over entire temperature range in the format of
an algorithm written in pseudo-code, which is quite easy to implement in any
programming language, can look like following:

if 7<z, then vy,(7)

if 7,<7<7, then vy, (7)

y(r)=4if 7, <7 <7, then vy, (7) (5.64)
if r;,<r<rz, then yg . (7)

if 7>z, then y.(7)

hy 9

Where any function “y” could have a shape like this

y(9,7) = Z_l(f ~ 7)Y, (0, 7) + (7 - THl)Z_l(T ~74,)Y2(0,,7) (5.65)

All approximations of all properties will be presented in this format.

5.5 The best approximation by optimization algorithm of random search

As a scientific contribution, this works proposes an optimization algorithm based
on applying random values within a specific range chosen by User. The algorithm
was developed by author in MS Visual Basic programming language, then
implemented, tested and validated within the MS Excel tool.

This algorithm can be checked in block diagram in Figure 5.9 below.
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Figure 5.9 — Algorithm block diagram.
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The developed tool has several interesting features. It reveals ten best results
achieved during iterations and reveals left and right boundaries for all best
approximation parameters, including conjugation points positions. At any
moment, the User may interrupt calculation and adjust the boundaries to reduce
diapason of optimization parameters variations and then continue the calculation.
It allows to reduce overall number of iterations and improves the quality of
approximation by achieving a better magnitude of the minimization criterion (total
deviation). The tool has e visualization of current curve of approximation and best

curve achieved.
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In our work we choose the liquid Prandtl number of waters to trim our optimization
technique. This will be detailed along this work, but Equation (5.66) introduces
the format of this dimensionless property by dimensionless temperature. Our
program optimizes thirteen variables available in Equation (5.67) using random

values in determinate ranges.

The optimization variables are the parameters of approximations.

Pr. (T) = Y1(T)_ Z(T - THl)yZ (T)"' Z(T Ty )YS (T) (5.66)

y, =ag +bgr+cyr? +dyr’ +eyrt + for® + g7t
Yo = hB(T_THl)iB (5.67)

Y. - js(l_ Cos(z(r -7y, ))jkf‘

2

Here we have the approach of three piecewise functions combined by addition
manner through two conjugate points, tH1 and tH2. The vector of optimization

variables (i.e., approximation parameters) has the following components:

q={0,,0,,05} (5.68)
qlz{aB’bB’CB’dB’eB’ fB’gB}
q, ={hg, iz} (5.69)
a; :{jB’kB}

The algorithm used to develop this optimization is based on the deviation of the

approximation when it's compared with the property table data., In

Figure 5.10 this value Dr is expressed by name “DesP”, this parameter must be
minimized and can be defined as weighted sum of the maximum absolute
deviation of the approximation from data, and the average deviation in all the

temperature range.
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min D, =W,D,,,, +W,D,, (5.70)
q

13 .
D., :WZW(q’Ti)_Yi (Ti)| (5.71)
i=1
Do = miax|y(q, 7)) = %:(7)| (5.72)

where, W1 and W2 are weights of importance applied by user to achieve the best

approximation result; the combination of those two always result in one.

W, +W, =1 (5.73)

When the start button is pressed, the algorithm applies random values on each
optimization variable; then the result of this operation is evaluated, and the ten
best results are ranked. After that, the program applies a routine that set random
values on each variable again within the established boundary limits and the

result is verified if it could be inserted in the rank of ten best results.

This code provides an iteration counter to observe the process of calculations.
Reinforcing that, the User may interrupt iterations at any moment and restrict the
range of each variable by readjusting the boundary limits. It may decrease the

overall numbers of iteration and may reach a much better approximation.

Figure 5.10 presents an overview of the User Interface within MS Excel
spreadsheet used to perform the optimization and a map of all components.
Everything in yellow (marked as P-01) is a user input since each error weight,
until boundaries of each variable, limiting the range of approximation parameter
variations. In box P-02 we have the command buttons (Start, Stop and Continue),
the start button initiated the approximation algorithm and the iteration counter.
Random values will be assigned to each variable, within the previously
determined range. The Stop button pauses the iterations, which allows the User,
if necessary, to adjust anything in yellow cells. The Continue button returns to

iterations with the modified variables (if applicable), but this button does not reset
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the ranking previously placed. The Start button restarts the algorithm, resetting

the counter and the ranking.

The green collum (P-03) shows the best result found after all iterations followed
by the ten best results ranking. The blue cells display the number of iterations
followed by error maximum; the average deviation after weight applied is marked
as box P-04. A possible check the approximation components, followed by the
chart, shows a visual comparison between data, best results and current
approximation curve. An important feature to evaluate the optimization
performance is the relationship between deviation and the number of iterations.
The box P-06 shows a table that update itself on each deviation achieved the
better result in a way to minimize this criterion. The chart of this table is
automatically updated to make the evaluation easier. And in box P-07 we have
the minimum and maximum values of each variable in rank, in ways to help the

adjusting of boundary limits.

Figure 5.10 — Excel Sheet function mapping.
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Besides the algorithm works automatically, it is possible to achieve a more
efficient way to get a satisfactory result working with each variable limit of
approximation. As an example, we set a satisfactory DesP (Dp) value and
executed twenty times the algorithm to show how efficient the algorithm can be
trimming with the variable limits. Out of those 20 runs, 10 times was running
without adjustments and the other 10 was doing after the adjustments. Our DesP
target was set as any value be less or equal to 1.30. In Figure 5.11 it is possible
to see the worst cases of each of the 20 rounds; the blue line without adjustments
demanded 38489 iterations and the orange line with adjustments demanded

1132 iterations to reach our DesP target.

Some more cases have been run to test the efficiency of the adjusting procedure.
In Figure 5.12 it is possible to see the result of each case to evaluate the impact
of the adjustments on the total number of iterations. The test results show that
the adjustments can help to get result faster. Using no adjustments, the user will
need on average of 18290 iterations to get the deviation under 1.30, as shown in
Figure 5.12 in green line. On the other hand, if the user trims the variables
operational limits, the user will need on average of 967 iterations (in red line) to

get the same results.

Figure 5.11 — Cases with more iteration.
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Figure 5.12 — Compilations of all cases number of iterations.
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The tool performs about 1200 iterations per minute on the usual desktop home
PC. The efficiency can be improved by limitation of the visualization function of

current curve be exposed at each iteration.
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6 RESULTS
6.1 Approximations for vapor pressure

6.1.1 Approximations for saturated zone

Vapor pressure under saturation conditions can be defined as the pressure of
vapor applied to a surface when a closed system is in thermodynamic equilibrium
with its condensed phase. It means the liquid tends to evaporate until the

equilibrium is achieved.

In general, the pressure is the force perpendicularly applied to the surface of an

object per unit area over which that force is distributed. Dimension is N/m? or Pa.

The original data of the water vapor pressure behavior with temperature is
presented in Figure 6.1 (LEMMON et al.,, 2023). Also, the figure has vapor
pressure data in sub-freezing zone compiled from (TURNS et al., 2007). In that

case, these data start in -40 °C and go to critical temperature.

Figure 6.1 — Water vapor pressure data.
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Faghri (2016) in his book suggested the Equation (6.1) to approximate this water

property by polynomial funtion.

Ln(p,(T))=-5.0945+7.228-107-T —2.8625-10* - T + 61)
9.2341.107 -T®-2.02955-10° - T* + 2.1645-10%2 . T '

where T is expressed in °C and pressure in Pa.

This equation is valid between 20°C and 200°C and can be used for HP modeling
with no concern once the approximation error mentioned in Faghri (2016) is
0.03%. The equation covers up to 48% of the entire two-phase temperature
range. However, when we try using this polynomial equation out of established
range, the result is not acceptable. The green line in Figure 6.2 expresses this

deviation from the real values.

Figure 6.2 — Faghri polynomial approximation.
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However, we will use the dimensionless vapor pressure following our generalal

approach:

80



p_pa
piv)=——— 6.2
() pcr_pS ( )

For the saturation interval (i.e., two-phase zone, 0<t<1), the main idea is work
with the deviation from well-known Clausius—Clapeyron Equation (6.3). This

equation determines the equilibrium between the two phases of a substance:

b (T) = Poe‘??[é?] 6.3)

The Clausius—Clapeyron equation has solid theoretical base, but it deviates from
the original table data at distant points from the reference point (To&Po). The

deviation increases as distances from (To&Po) increases.

Firstly, it is important to present the Clausius-Clapeyron equation at the
dimensionless format. This dimensionless Clapeyron-Clausius equation includes
dimensionless saturations pressure at reference point and dimensionless triple
point respectively (po & ps); then dimensionless reference temperature (7o),
constant temperatures at triple point and critical point respectively (T3 & Tcr), and

latent heat at reference point (Ao):

p T, +7,(T, ~T,)
— E 0 1_ 3 0 cr 3 _ 6.4
Pec (pO ' p3) Xp|: R(T3 +7, (Tcr _Ts))( T3 +T(Tcr _TS) Jj| P ( )

Finally, the Equation (6.4) is dimensionless.

To build an adequate approximation for vapor pressure, we have two main ways
to work with that property. The first one is trying to build a curve with property

value “as is,” and the second one is to work with the natural logarithm of that
property.

The best results have been obtained the following approximate functions, “as is”,
Equation(6.5). The results for the natural logarithm approximation are given by
Equation (6.6):
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pSat(T): Pec +a+br+cr?+ds? (6.5)

p a
L =L cc | _ d .
N(Psx (7)) n(—po J o) + (6.6)

Figure 6.3 — Vapor pressure approximation result in saturated zone “as is”.
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Figure 6.4 — Logarithm Vapor pressure approximation in saturated zone.
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We observe the deviation from data by approximation “as is” lies within the usual
acceptance criteria in 5% of deviation.

Figure 6.5 shows the difference between real data and the result that Clausius-
Clapeyron achieved to vapor pressure.
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Figure 6.5 — Deviation of Data and Clausius—Clapeyron equation for saturated zone.
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6.1.2 Approximations for freezing zone or sublimation zone

To approximate the pressure of sublimated vapor in freezing zone, some results
have been published. The work of Liley (2005) uses an equation, which starts in

-20 °C and go up to 0°C. The approximation is expressed in Equation (6.7), where
P is pressure in kPa.

6166.44

Ln(p,e (T)) = 22.01251-———" (6.7)

Marti and Mauersberger (1993) developed the Equation (6.8) with the
temperature ranging from -105°C to 0°C, where P is in Pa.

61329
P, = exp[28.868— Tj (6.8)

In Figure 6.6 is possible to see the results of equation (6.5) for a wider temperature
range.
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Figure 6.6 — Property data in freezing (sublimation) zone.
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In this work, we tried several types of approximations. The best results were

achieved by the exponential function in freezing zone.

psatA(T) = aAebAT +Cp (6.9)

Finally, for freezing zone we have:

pa(r) _, =a.e™ +c, (6.10)
d((l;’(A()T ) _ a,b,e" (6.11)
T 0
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Figure 6.7 — Vapor pressure approximation result in freezing zone.
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The interfacing equation joins subcooled zone with saturated zone.

Looking for a smooth transition between those two zones of Equations (6.5) and

(6.9), it is used the third-degree polynomial (Equation (6.12)):
pAB(T)ZaAB +bABT+CABz-2 ‘HjABT3 (6.12)

Finally, the system will be of the following format to the interfacing equation

performs tangency of both curves and makes a continuous smooth link.

_va (Tl) =pg T0p7, + CABz'l2 + dABTIS
d(va (Tl))

d (Tl)

_EVB (72 ) =8pg + 07, + CABz'z2 + dABTZS
d<po (TZ ))

d(rz)

=b,g +2C,7, + 30 57,
(6.13)

=b,g +2C,57, +3d 57,

Points of tangency were defined to optimize the approximation results. In this

case dt is the distance between the points; the results are as follows.
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Ar, =0.003

Ar, =0.0% (6.14)
7, =—At, '
7, =+AT,

The analytical solution for the polynomial coefficients for the interfacing around

tau=0 is presented in the Methodology section.

The results are expressed below.

s =—0.000025

a
b, =0.002519
C
d

(6.15)
e =0.408934

4 =—35.2521

The result approximation around triple point (t=0), including the interfacing curve,

is shown in Figure 6.8.
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Figure 6.8 — Final Result to interfacing below sub freezing point.

1,4

Legend
1,2 pC 350 kg/mA3

pC 340 kg/mA3

= pC 330 kg/m"3 1,26-05
1 ——— pC322 kg/mA3 oo
— |nterfacing
ois —— pB 4E-06
' —— pAB "
— — DA
h%; 0,6 4E-06
Q.
—  -8E06
=
0,4 S 2605

1,6E-05

02 -2E-05

Q 2,4E-05

-2,8E-05

-3,2€-05
-0'2 -0,02 -0,016 -0,012 -0,008 -0,004 0 0,004 0,008 0,012 0,016
-0,2 0 0,2 T[]

6.1.3 Approximations for super-critical zone

To obtain precision approximation the pressure above the critical point cannot be
treated through a well-known ideal gas low. We will use a real gas approach
based on the Van der Waals equation, Redlich-Kwong equation, and Soave-
Redlich-Kwon equation. The best variant was selected for the approximation and

interfacing at t=1.

Heat pipes have a peculiarity: the total density of working fluid, considering liquid
and vapor phases together, is fixed and defined by the working fluid amount
charged into the heat pipe during HP manufacturing. Then, the HP container is
hermetically sealed, and the mass of working fluid does not change. By knowing

the internal volume of heat pipe, total density can be easily calculated:

Therefore, the author chose more than one fluid density for the analysis, which
varies from 332 kg/m? (critical density) to 350 kg/m? but in this study only the

critical density will be analyzed. The Equation (6.16) can be expressed by the Van
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der Waals equation, Redlich-Kwong Equation (6.19), and Soave Equation (6.28),
Smith et al. (2013), Markoci¢ and Knez (2016).

We transform the Van der Waals definition with the use of dimensionless

temperature:

CR(T+2(T, —Ty)) P,
(W _bjp _p) (W jp _p) P, -P, (6.16)

(al(T3 + T(TCV _T3))2 + bl(Ts + z-(Tcr _TS)) + Cl) ) R2 'Tcrz
P

cr

a(r) = (6.17)

b(z) = R Ty 6.18
@ (T, + (T, —T3)? +b,(T, +2(T, —T,)+C))Ps (6.18)

The statement summarizes intuitively the differences of vapor pressure equations
and our goal, which is to modify the original equation to cover a wider range of

temperatures.

Table 6.1 — Coefficients “a” and “b” expressed by polynomial coefficients.

al p=322 b1 p=322 cl p=322
al kg/m3 bl kg/m3 cl kg/m3
a - -6,00E-08 - 9,00E-05 4,22E+04 3,97E+02
Van der Waals
b - - - 7,00E-04 8.00 7.81
a - - - 2.4E-03 23.393  7,26E+02
Redlich-Kwong
b - - - -9.6E-3 11.542 1,79E+05
Soave-Redlich- a 1.3E-02 23.393 1.485
Kwong b - ; ; 58E-3 11542 1,54E+04
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Figure 6.9 — Correlation between dimensionless pressure and dimensionless
temperature for water above critical point and with a density equal to 322

kg/mé3.
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This property has behavior in super critical zone that will be considered in this
study; figures below show data by (ACREE; CHICKOS, 2023). Considering that
the charged density is an important parameter for HPs, in this case we get the

saturation pressure behavior by temperature and density.

As mentioned above, at the supercritical region, the property not only depends
on temperature, but also on density. The strategy adopted to this zone is to work
of known equations available in literature, focused on Soave-Redlich-Kwong
equation. We try to modify those equations to reach an approximation of the
vapor pressure as more precise as possible. It is worth mentioning that choosing
the Soave-Redlich-Kwong approximation is to obtain a vapor pressure value
considering as a real gas; in other words, the compressibility effects must be
included.
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Figure 6.10 — Property data in supercritical zone.
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Soave-Redlich-Kwong approximation is defined by:

p_ RT B a
I\%Cr_b I\%cr('\%cr-l_bj-r%

2 2
L A B
2.3393P,

_ RT,
 11.5420P,

m=0.480+1.574w—0.1760°

P
o= Iogm(P—“]—l
vp

Tr = %Tcr +8)
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(6.19)

(6.20)

(6.21)

(6.22)

(6.23)

(6.24)



Z=MI\%JCr - a
/Ocr—b RT(%Cr+bj

(6.25)

We changed “a@” in Equation (6.20) format to adequate this approximation to

values that pass in our acceptance criteria.

= o (o, T (6.29)

R-T,
(CC + dCTcr )Pcr

b(z, p) = (6.27)

Rewriting the equation to be all dimensionless, we have:

R-(T; + (T, Ts)) a(z,p) P

('\%a—b) ('\%a('\%ﬁ Dp P, (P, —-P,) (6.28)

We can write ac(p) and bc(p) as:

T,

a.(p)=a. +b.p+c.p? (6.29)

be(p)=d. +ecp+ fep? (6.30)

These equations, given above, result in the graph of Figure 6.11.
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Figure 6.11 — Vapor pressure approximation result in supercritical zone by density.
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AR

Looking for a smooth transition between those two zones in Equations (6.5) and
(6.31), it is used a third-degree polynomial, Equation (6.32).
Psc (T!P): e +Dp7+Coe 7’ +dge 7’

(6.32)

Points of tangency can be defined trying to optimize the approximation result. In

this case At defines how far each point will be stay from the critical point, (t=1).
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A7, =0.008;
Az, =0.003
7, =1-A7r, =0.992
r,=1-Ar, =1.003

(6.33)

The system has the following format, built from the interfacing equation tangency

when both curves make a continuous smooth link.

- 2 3
Py, (73 ) =8pc T 0573 +Coc 7y + g7y

__poC (74 , P) =g (,0)+ bgc (p)Z'A +Cge (,0)1'42 +dge (p)743
d Pyye (T4,p))

= by + 2047, +3dg. 7,
(6.34)

bgc (,0)+ 20y (,0)1'4 +3dge (,0>Z'42

By solving the system above, the parameters values are available below, and we

denoted here:

d ( Ps (T))
(z)
Ve (7) = pg ()

(6.35)
Ve (7, p) =—d(pg((;)’p )

Ye(7) =

o

Yo (7, P) = Pc (Z’,p)

Using the values mentioned above, the result is:

a,. =1226533

by. = 368906
¢, = 3698463 (6.36)
d,. —-123593

Figure 6.12 shows the result of the approximation.

94



Figure 6.12 — Final result with interfacing at critical point.
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If we expand the idea of pressure as funcition of density in supercritical zone, we

reach the behavior expressed in Figure 6.13.

Figure 6.13 — Interfacing supercritical region details.
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6.1.4 Final approximation and pseudo code

In this chapter we have reached an approximation in a wider range of
temperature, managing the approximation error in satisfactory levels (no greater
than 5%). The pseudo code provides fluid property values starting below triple

point up to above critical point, Figure 6.14.

Figure 6.14 — Final result to vapor pressure approximation in the entire temperature

range.
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The interfacing technique provides softening and continuity in the conjugate
points. It is possible to check the interfacing results in figures above (Figure 6.8
and Figure 6.13).

The all results are condensed together in a pseudo-code. This code can be

implemented in any programming language:

if (r<7) then p,(r) =a,e™ +c,

if (r,<r<7,) then Puy(r)=a,, +br+Cr’ +d,,7°

if (r,<tr<r,) then Pg(r)=p, +as +bgr+Ccyr’ +dy7° (6.37)
if (r;<r<7,) then Pgo(r)=ag. +bget+Coer’ +dg.7°

it (c27)  then Pe(r,p)=Ye(r.p)
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Table 6.2 — Result algorithm values for density of 350kg/m?.

aa=-3E-5 bs = -5E-5 Csc= 3.6985E5 Qc=-5.8E-3
ba=3.26E1 cs=-1.02E-2 dec=-1.2359E5 hc=1.536E1
ca=-9E-7 ds = 2.33E-2 ac=-5.991E-8 Aty = 3E-3
aas = -2.5182E-5 Aog=2.145E3 bc=5.0877E-5 At,=1E-2
bas =2.5185E-3 Pos=1.6329E-2 Cc = -8.694E-3 Atz = 8E-3
Cas = 4.089E-1 t8=3.7417E-1 dc=4.093E-5 Atq= 3E-3
dag =-3.5252E1 asc = 1.2265E5 ec = -3.4385E-2
ag=-3E-5 bec = -3.6891E5 fc=8.3122

6.2 Approximations for vapor density

6.2.1 Approximations for saturated vapor density
Vapor density (pv) can be defined the ratio between mass (m) and volume (V)
and can be written by the following equation.

(6.38)

m
pv:v

American Society of Heating, Refrigerating and Air-Conditioning Engineers
(ASHRAE) Lemmon et al. (2023) presented the original data table of the
saturated vapor density behavior with temperature, plotted in Figure 6.15.
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Figure 6.15 — Water vapor density data.
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The data covers freezing and saturated temperature regions.

To use this property in the heat pipe modeling, Faghri (2016) in his book
suggested a polynomial function over logarithm of the density, Equation (6.39),
to approximate the water vapor in the two-phase saturated (i.e. phases

coexisting) temperature region.

Ln(p, (T))=-5.3225+6.8366-102 - T —2.7243-10 . T? + 639
8.4522-10" -T*-1.6558-10° - T* +1.5514.10 ™ .T® '
the Vapor density is expressed in kg/m3, and the temperature is in degrees of

Celsius.

This equation is valid from 20°C to 200°C; and is widely used for HP modeling
once the approximation error mentioned is 0.03% within this range. The equation
covers up to 48% of the entire two-phase temperature range. However, when we
try to use this polynomial equation out of the range stablished, the result can

deviate from real behavior.
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Figure 6.16 — Faghri polynomial approximation.
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For the saturation interval (i.e., two-phase zone, 0<t<1), the original curve has a
sharp climb as it approaches the critical temperature. It is difficult to obtain a
unique function which approximates the entire zone within acceptable error;
therefore, we improve it with application of an interruption point (t+) and join two
approximation functions in the interval th<t<1 by application of the Heaviside

function.
In the approximations, we will use dimensionless charged density defined by the

same way.

Peh _pv,3

6.40
pV,cr — Pz ( )

/_)ch =

The best results gave the following approximate functions:

y, =ag +bgr+cyr?+drl+e,rt + for® + 9,70

Y, =hg (T_THI)IB (6.41)
. Ke

Y3 = JB(T_THZ)
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These functions are used in an additive way: when 0<t<tH1, then y=yi1; when

tH1<t<tH2, then y(t)=yi(t)+y2(t); when t>th2 then y(t)=yi(t)+y2(t)+y3(t) This can
be condensed in a unique correlation for our property:

Py (T) = Y1(T)+ )((T - THl)yZ (T)"' Z(T Ty )y3 (T) (6.42)

By applying the algorithm above, in the saturation interval of temperature we
achieve the curve below. That chart shows data from ASHRAE using green
circles in Figure 6.15 (LEMMON et al., 2023). The approximation results is in the
blue line. In red bars we have the deviation error from property table data and
approximation.

Figure 6.17 — Vapor density approximation result in saturated zone.
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We observe the deviation from data by approximation lie within the usual
acceptance criteria in 5% of deviation from the properties table data. In the

beginning of approximation, the interface technique replaced the inaccurate data

to a smooth link between the two approximations.
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To develop this property approximation, we used a baseline curve (4" degree
polynomial equation), and we add two auxiliary curves with the use of the

Heaviside function, resulting in a final curve shown in

Figure 6.18. The main motive to use this technique is to reach an approximation

curve be continuous and “smooth,” without sharp edges.

Figure 6.18 — Approximation by three piecewise functions.
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Figure 6.19 — Detail of Heaviside function application in approximation for saturated

Zone.
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To reiterate the definitions, the critical point is where vapor and liquid are
indistinguishable and triple point is where liquid phase (water), solid phase (ice)
and vapor phase coexist in thermodynamic equilibrium. Therefore, in the zone
below the triple point we will consider only vapor phase. Certainly, the Faghri’s

approximation does not cover these regions.

Turns et al. (2007) compiled in their book a liquid density behavior on freezing

zone (Figure 6.20). In that case, this starts in -40 °C and go to 0°C.
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Figure 6.20 — Vapor density in freezing zone.
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6.2.2 Approximations for freezing zone and interfacing

We approximate the data in freezing zone by a second-degree polynomial
Equation (6.42), using results of Turns et al. (2007).

,L_)A(TXKO =a, +b,r+c,c’ +d,z° (6.43)
% :bA2'+2CAz'+3dAT2 (6.44)
7<0

The interface between the freezing zone and saturated zone must meet the
requirements of continuity and smoothness. It can be accomplished by using a
third-degree polynomial Equation (6.45).

— 2 3
D7) =0, +0,57+Cg7? 0,57 (6.45)
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The system of equations is of the following format to yield continuity and smooth

tangency of both curves.

2 3
pA(Tl): Apg tDppTy +Ce?y” +d 7y

1 (6.46)
d(—ﬁ?(r3)): Bps +DpsTy +CogT, +U g7,
S\Psll,))

(72 )

o

2
=D, +2C,57, +3d 457,

o

Points of tangency can be defined by trying to optimize the approximation result,
balancing between better smoothing and less error. In this case At defines how

far each point will be away from the O (i.e., triple point).

Az, =0.005
At, =0.0% (6.47)
7, = AT,
7, = +AT,
The solution is expressed below.
a,; =0.000000533
b,s =0.0000675 (6.48)

C,, =0.013846
d,, =—2.33408

The result approximations around triple point (t=0), including the interfacing

curve, is shown in Figure 6.21.
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Figure 6.21 — Result to the interface around the triple point.
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6.2.3 Approximations for supercritical zone and interfacing

As discussed in the introduction, for isochoric systems the density above the

critical temperature is always constant and is equal to the “charged density.”
lBV |‘|'ZTcr = ﬁch

The smoothing is achieved using a polynomial function of third order. The result
is presented below in a pseudo-code for the exponential approximation in the

two-phase region and polynomial approximations for smoothed regions.

At the supercritical region, the property does not depend on either temperature,

pressure, or any other property; it always constant and equal to charged density.

As said above, the properties values above the critical point are charged density
constant value. Those can be expressed below.

For super-critical zone:

= P d(ﬁvc (T)) -0 (6.49)
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A smoother transition between those two zones Equations (6.42) and (6.50)

provides a third-degree polynomial, Equation (6.50).

— 2 3
Prc (T):ch +DpT+Coe 7" + g7 (6.50)

Points of tangency can be defined by trying to optimize the approximation result.

In this case At is how far each point will be away from the critical point, (t=1).

A7, =0.008;

At, =0.06913
7,=1-A7,=0.992
7, =1+A7,=1.06913

(6.51)

The system has the following format to the interfacing equations, when both

curves make a continuous smoothie link.

_ 2 3
( pB((T ): Qe T D0pc 73 +Coe 7y + g 7s
d(og 733 2
— =2 = + 20,7, + 307,
dz,
_ 2 3
Pc (74): Qgc 07, +Cpe7,” + g7,

d(Pc(z,))

(6.52)

= by +2Cg.7, +3dge7,

We denote here:

Pe(t)= P % =0 (6.53)

Therefore, the solution of the system (6.52) depends on the value of

dimensionless charged density. Using the values mentioned above, the result for

the case Py =1 is the following:
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a,. =—676.914
by =1887.644
Coe =—1751.94
dge =541.9615

(6.54)

Figure 6.22 shows the result of the approximation.

Figure 6.22 — Final result for the interface above the critical point.
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6.2.4 Final approximation and pseudo code

The algorithm above that we proposed for the approximation of the entire region
which includes below freezing point and above critical point regions is shown in

Equation (6.55).
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Figure 6.23 — Final result for liquid density approximation for the entire temperature
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Therefore, in this chapter we have reached an approximation in a wider range of

temperature, managing the approximation error in satisfactory levels (no greater
than 5%).

This code can be implemented in any programming language:

then
then
then
then
then

a,+b,r+c,r’+d,z’

N

AA/‘:\/—\/-\
— — — — —
I

ﬂ

2 3
Apg TDpT+Cpg7” +d 57

yl(T)"' Z(T - THl)yZ (T)"' Z(T —Th2 )y3 (T) (6.55)
Qge + DT+ Cpet’ +dp 7°

N

QD D T T

N
s
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Table 6.3 — Result liquid density algorithm values for the case ,5ch =1

aan=-3E-7 cas=1.38E-2 es=4.4E-1 ke=2.1 dsc=5.42E2

ba= 4E-4 das=-2.33  fzg=-3.48E-1 v = 0.81 Aty = 5E-3

ca=4E-3 ag=5.1E-6 gs=3.43E-1 tH2= 0.95 At = 1E-2
da=1.41E-2 bs = 1E-5 hg=3 asc=-6.77E2 Atz = 8E-3

aas= 5.33E-7 cg=1.38E-2 is=1.9 bec=1.887E3 Ats=6.913E-2
bas=6.75E-4 dg=-5.49E-2 jg=1.35E2 cCgc=-1.751E3

6.3 Approximations for vapor dynamic viscosity

6.3.1 Approximations for saturated zone

Liquid dynamic viscosity (uv is defined as the relation between shear stress and
the fluid deformation velocity. This property is essential in determining how the
flow is shaped. Therefore, this property is responsible for the fluid interface force
between its layers or other fluid or solid surfaces in contact with that flow. This

property is expressed mostly in uPa's, where Pa is N/m2.

The presented data Huber et al. (2009) of the water vapor dynamic viscosity

dependence with temperature for saturated conditions is shown in Figure 6.24.
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Figure 6.24 — Water vapor dynamic viscosity tabulated data.
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Faghri in his book Faghri (2016) suggested equation to approximate this water
property (6.56). The dynamic viscosity is expressed in Pa*s and the temperature

is in Celsius.

Ln(z,(T))=-1.1596+2.6382-10° -T +6.9205-10° -T2 —

(6.56)
6.1035-10° -T2 +1.6844-10%° . T* -1.5910-10 ™ .T®

This equation is valid between 20°C and 200°C, the approximation error is 0.03%,
and the equation covers up to 48% of the entire two-phase temperature range.
Although Faghri (2016) suggested this equation, if we verify, the Equation (6.56)
cannot reach a correct result; it is possible, that a new version of the equation

need to be presented.

We use non-dimensional variables for both temperature and vapor dynamic

viscosity:
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— H— Hy,
u, (1) =—— (6.57)
'Ltvcr _‘les

For the saturation interval (i.e., two-phase zone, 0<t<1), the original curve has a
sharp rise as it approaches the critical temperature. It is difficult to obtain a unique
function which approximates the entire zone within acceptable error. Therefore,
we improved it by applying interruption points (tH1 and tH2) and joining three
approximation functions in the interval 0 <t<1 by the application of Heaviside

function.

The best results are the following.

y, =ag +byr+cyr’ +d 7’ +e 7t
Y, = fB(T_THl)gB (6.58)
Y = hB(T_THz)IB

These functions are used in an additive way: when 0<t<tn1, then y=y1; when
tH1<t<tH2, then y(t)=yi(t)+y2(t); when tH2<t<1, then y(t)=yi(t)+y2(t)+Yys(t). This

can be condensed in a unique correlation:

1, (0) =i (0)+ (e =10 )¥o (0)+ 2z = 711, )y5(2) (6.59)

Applying the algorithm above, in the saturation interval of temperature we achieve
the curve shown below in Figure 6.25. That graph shows data from using green
circles (HUBER et al., 2009). The approximation results in the blue line. In red

bars we have the deviation error from property table data.
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Figure 6.25 — Vapor dynamic viscosity approximation result in saturation zone.
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We observed that the deviation from data by approximation lie within the ~2%

compared to the properties table data.

Demonstration of Heaviside function application is shown in Figure 6.26.

112



Figure 6.26 — Heaviside function in approximation for saturated zone.
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Figure 6.27 — Zoom on Heaviside function conjugate points
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6.3.2 Approximations for freezing zone

Smith (1924) discovered a non-linear dependence of viscosity with temperature
for this zone (6.60), where the dynamic viscosity is expressed in Pa's and the

temperature in K.
u~T% (6.60)

We used Smith (1924) data to fit a suggested approximation using a second-

degree polynomial curve (6.61), , as it is possible to see in

Figure 6.28.

Ky, (r)=a, +b,r+c,7? (6.61)

Figure 6.28 — Property value prediction below the triple point.
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Looking for a smooth transition between those two zones it is used a third-degree

polynomial Equation (6.62).

Ky, (r)=a,, +bpgr+Cpgr® +d 5 7° (6.62)
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The system of equations of smoothing and uninterrupted conditions has the same
format as for vapor density Equation (6.46) and does not present here points of

tangency is defined by a similar manner:

Az, =0.003
Az, =0.003

(6.63)
7, = -At,

7, =+Ar,

The solution for the polynomial coefficients for the interfacing around t=0 is

presented below.

a,, =0.00053978
b,s = 0.55665453
Chs =11.7682
d,, =—8521.201

(6.64)

The result approximations around the triple point (t=0), including the interfacing

curve, is shown in Figure 6.29.

115



Figure 6.29 — Final Result to interfacing below freezing point.
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6.3.3 Approximations for super-critical zone

In the super-critical zone, the viscosity suddenly drops and then gets a light
permanent increasing. Moreover, the behavior above the critical point begins
having a dependence of pressure, as shown in Figure 6.30.
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Figure 6.30 — Water dynamic viscosity data at critical pressure [220.64 bar].
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The property is pressure dependent. When we consider heat pipes, it is not
expected much pressure variations as exceed the critical value at the critical
temperature. Because of that, in the super critical zone our effort will be focused
on property value at 220.64 bar (critical pressure).

For super-critical zone we also use second order polynomial approximation:

:(aC +bCT+CCTZ) (6.65)

w7

>1

We also use a third-degree polynomial Equation (6.66) for the interface:
;‘vsc (r): Ape +bBCr+CBCT2 + dBCT3 (6.66)

Points of tangency at t=1 are defined by the following values
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A7, =0.003

At, =0.07,

7, =1-A7,=0.997
7, =1-Ar, =107

(6.67)

The system of equations of smoothing and uninterrupted conditions has the same

format as for vapor density Equation (6.52) and does not present here.

Solving the system above, the parameters values are available below.

a,. =-3375.60375
bec = 9685.299

Coc =—92555652
g = 29468674

(6.68)

Figure 6.32 shows the result of the approximation around critical point.

Figure 6.31 — Final result to interfacing above critical point.
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6.3.4 Final approximation and pseudo code

In this chapter we have reached an approximation in a wide range of temperature,

managing the approximation error in satisfactory levels (usually no greater than
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5%). The pseudo code provides a set of closed form approximations of the fluid

property values starting below triple point and going up to above the critical point.

Figure 6.32 — Final Result to vapor dynamic viscosity approximation in the entire
temperature range.
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This pseudo-code for the entire temperature range is presented in (6.71) and can

be implemented in any programming language:

r<1,) then

it ( /_jv(r):aA +b,r+c,7°

if (r,<r<r,) then ;V(r):aAB +hr+Cr’ +d,57°

if (72 sT< Ts) then ’Zl" (T) = yl(T)+ Z(T - THl)yZ (T)+ Z(T - Z'|-|2)y3(2') (6.69)
if (ry<r<r,) then u,(r)=ag +bget+Cher? +dy.7’

if (r>17,) then ;lv(f)= ac +bcr+cc72)
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Table 6.4 — Result of vapor dynamic viscosity algorithm values.

aa=-2.2577E-5 ag= 1.22E-3 hs = 1700 dsc = -3.136E2
ba= 2.5844E-1 bg=2.118E-1 ig=1.5 ac=1.0038
ca=4.1116E-1 cs= 7.933E-1 tH1 = 0.95 bc=1.47E-2
aas = 5.6374E-4 ds=-1.53 tH2 = 0.997 Ccc=-9.1E-3
bas = 5.4605E-1 es= 1.005 asc = 2.862E2 At = 1E-2
Cas = -3.2879 fs=25 bec = -8.9221E2 At2= 3E-3
dag = -1.1474E4 gs=1.6 Csc = 9.2039E2 Atz = 3E-3

6.4 Approximations for vapor thermal conductivity

6.4.1 Approximations for saturated zone

Ata=TE-2

Vapor thermal conductivity (kv) is defined as the capacity of a solid or stationary

fluid to conduct heat from one side to the other whenever a temperature

difference occurs.

The property can be illustrated by the Figure 6.33.

Figure 6.33- Thermal Conductivity Schematics.

https://www.concepts-of-physics.com/thermodynamics/heat-conduction.php

Material having
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\ |

| e
T P

T > 1a

Source: Singh (2019).

The thermal conductivity is measured in W/ (m K). This property is a key

parameter in the fundamental Fourier’s Law for heat conduction. The original

data of the water vapor thermal conductivity behavior with temperature, published

by American Society of Heating, Refrigerating and Air-Conditioning Engineers
(ASHRAE), is presented in Figure 6.34.
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Figure 6.34 — Water vapor thermal conductivity tabled data.
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Faghri (2016) in his book, that serves as a reference for research in mathematical
modeling of heat pipes, suggested a logarithm-polynomial expression (6.70) to
approximate this water property. The vapor thermal conductivity is expressed in

W/mK, and the temperature is in Celsius.

Ln(k,(T))=-4.0722+3.2364-10° - T +6.3860-10° - T* + (6.7
8.5114-10° -T°-1.0464-10" -T* +1.6481.10™" . T°
This equation is valid between from 20°C to 200°C and presents the
approximation error of 0.03% in this range. The equation covers up to 48% of the
entire two-phase temperature range. As an example, when we try to use this
approximation out of range stablished, the result can be no tangible with real

behavior. The green line in Figure 6.35 expresses this deviation from real value.
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Figure 6.35 — Faghri polynomial approximation.
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This deviation of Faghir's approximation at elevated temperatures shows that the

approximation over entire two-phase range cannot be achieved with a unique

polynomial function.

In our study we use

thermal conductivity:

non-dimensional variables for both temperature and vapor

(6.71)

The best results were obtained with the following combination of approximate

functions:

y, =ag +byr+cyr’ +d 7’ +e 7t
Y, = fB(T_THl)s +gB(T_TH1)4
Y3 :hB(T_THz)IB

(6.72)
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These functions are used in an additive way: when 0<t<tH, then y=yl; when
tH1<t<tH2, then y(t)=yi(t)+y2(t); when tH2<t<1, then y(t)=yi(t)+y2(t)+ys(t). This

can be condensed in a unique correlation for our property:

R"B (T) = yl(z-)+ Z(T - THl)yZ (T)+ Z(T “Tha )Y3 (T) (6.73)

The smoothing in the conjugate points (tH1 & tH2) has been achieved by the

application of the conditions of continuity of both function and its derivative.

Applying the algorithm above, in the saturation interval of temperature we
achieved the approximation shown in Figure 6.36. That chart shows data from
ASHRAE using green circles. The approximation result is shown in the blue line.
In red bars we have the deviation error between property table data and the
approximation.

The technique of the piece-wise technique with using the Heaviside function by
addition is illustrated in Figure 6.37. As one can see, this technique allows
reaching an approximation without sharp edges.

Figure 6.36 — Vapor thermal conductivity approximation result in saturated zone.
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We observe the deviation from data by approximation lie within the acceptance

criteria in 3% of deviation from the properties table data.

Figure 6.37 — Approximation for saturated zone by combination of three functions.
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Figure 6.38 — Zoom on the conjugation points in approximation for the saturation zone.
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6.4.2 Approximations for freezing zone and interfacing

For freezing zone data, Liley (2005) arranged approximation results for water
properties braking ranges of approximations in three zones A, B & C, whereas A
is placed between -20 and 0°C, B in 0 up to 25°C and C starting in 25 reaching
50°C.

In this work we use the approximation in the freezing zone (range “A”) by (LILEY,
2005):

k,, (T)=2.216-0.0102T +6.9444-10°T (6.74)

Where k is in W/mK and T in Celsius degrees.

Figure 6.39 — Vapor thermal conductivity data in freezing zone.
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Liley (2005) used the second order polynomial approximations, however in this
work we will use 3rd order polynomial approximation aiming to improve the
precision. After transformation of original data into dimensionless format, the

proposed approximation is the following:
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k, (r)=a,+b,r+c,r® +d,7° (6.75)

The interfacing equations smoothly connect the subcooled zone with saturated
zone. Following the general approach, the third-degree polynomial in Equation

(6.76) is used.
lszB (T): Ap +bABT+CABT2 +dABTS (6.76)

The system of equations of smoothing and uninterrupted conditions has the same

format as for vapor density Equation (6.46) and does not present here:
Points of tangency are defined by a similar manner

Az, =0.0035
Az, =0.003;

(6.77)
T, =-At,

7, =+Ar,

The solution of the system of the conjugate equations system is expressed below

(6.78).

a,; =-2.6775-10°°
b,e =1.6029-10°2
Cpe =2.0710-10™
d, = 4.6490-10

(6.78)

The result approximations around triple point (t=0), including the interfacing

curve, is shown in Figure 6.40.
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Figure 6.40 — Final Result to interfacing below sub-freezing point.
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One can observe the interfacing curve links two approximation curves smoothly
and tangentially. The value of dimensionless thermal conductivity of the vapor
above ice is negative due to the absolute value of the conductivity is lower than

in two-phase zone.

6.4.3 Approximations for supercritical zone and interfacing

In the super-critical zone, the behavior of the thermal conductivity is very
complicated and very non-linear. Figure 6.41 presents original data for the water
vapor in the supercritical region (gas). It is worthy to mention that in literature, the
value of this property in the critical point is either not defined or considered infinity,
so we decide to attribute a value for vapor thermal conductivity at critical point
defined by an interpolation curve of the past four points. At temperature above
the critical point, the thermal conductivity drops down to the value of about 0.09
W/m/K. Dhanuskodi et al (2011) showed the graph of such a sudden drop.

We can pick the curve which corresponds to the critical pressure (220.64 bar), as
itis close to real heat pipe internal condition near critical point. The same behavior
is presented in (PIORO, 2020).
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Figure 6.41 — Property data in supercritical zone.
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Another point which deserves attention is the continuity of the vales and
derivatives in the interface between curves, to guarantee that the interfacing
technique provides a correct softening in the conjugate points. It was
implemented and the result is possible to check in figures below, starting at the

triple point and then at critical temperature point.

For super-critical zone we found that the polynomial curve of fifth order fits

reasonable the tabled property data:
K, (r)=a, +b.r+cor? +d 7% +e. + fr° (6.79)

Looking for a smoother transition between those two zones Equations (6.73) and
(6.79), it is used a third-degree polynomial in Equation (6.80).

k (r) =8pc + DT+ CBCTZ + dBcr3 (6.80)

Vec

Points of tangency can be defined trying to optimize the approximation result. In

this case At is how far each point will be away from the critical point, (t=1).
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A7, =0.0062

At, =0.07,

7, =1- A7, =0.9938
7, =1+A7r, =1.07

(6.81)

The system of equation for smooth interfacing is similar to Equation (6.46) and

does not present here.

Using the values mentioned above, the result is:

2, = 753836
by = 2161362
Coe = —20645 (6.82)

dge = 6570554

Figure 6.42 shows the result of approximation at the critical point and beyond it.

Figure 6.42 — Final result to interfacing at critical point.
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6.4.4 Final approximation and pseudo code

The algorithm that we proposed for the approximation of the entire region, which
includes below freezing point and above critical point zones, provides the result
curve shown in Figure 6.43.

Figure 6.43 — Final result for vapor thermal conductivity approximation over entire
temperature range.
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Therefore, in this chapter we have reached an approximation in the entire range
of temperature, managing the approximation error in satisfactory levels (no
greater than 5%). The pseudo-code (6.83) provides fluid property values starting
below triple point up to above critical point.
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Table 6.5 —Vapor thermal conductivity pseudo-code values.

aa=2E-5 das = 4.65E2 gs=1.95E1 Csc = -2.065E4 fc= 1.525E1
ba=3.71E-2 as = -5E-5 he=1.7E7 dsc=6.571E3 Aty = 3.5E-3
ca= 3.823E-1 bg=2.72E-2 iB=6 ac=-1.018E2 Atz = 3E-3
da=3.811 Cs = 4.62E-2 1= 0.73 bc = 3.56E2 At3=6.2E-3
aas = -2.6759E-5 ds= 1.77E2 H2= 0.96 Cc=-4.895E2 Aty=7TE-2
bas = 1.603E-2 es=1.77E2 agc = -7.538E3 dc=3.342E2
Cas = 2.0710E-1 fe=5 bec=2.161E4 ec=-1.133E2

6.5 Approximations for vapor specific heat capacity

6.5.1 Approximations for saturated zone

Liquid specific heat capacity (cp.L) is defined as an amount of heat (dQ) needed

to raise the temperature by an increment (dT) of a unity mass (M). (6.84).

Coy =— (6.84)
The unity is J/kg/K.
The original data of the liquid specific heat capacity behavior with temperature in

the two-phase zone, presented by ASHRAE, is shown in Figure 6.44 (LEMMON
et al., 2023).
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Figure 6.44 — Water vapor specific heat capacity number data.
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Faghri (2016) in his book suggested equation to approximate this water property

by fifth order polynomial Equation (6.85) applied to logarithm of the specific heat.

Ln(c,,(T))=6.3198-10* +6.7903-10* - T —2.5923.10° - T? — 655
4.4936-10°%.T3+2.2606-10" -T* -9.0694-10 " .T> '

where T is expressed in °C and Cpv in kJ/kg/K.

This equation is valid between 20°C and 200°C; in this range of temperature this
eguation can be used for HP modeling, because of the approximation error is
0.03%. The approximation covers up to 48% of the entire two-phase temperature
range. However, when we try using this polynomial equation out of the range
established, the result deviates from real behavior. The green line is expressed

this deviation in Figure 6.45.
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Figure 6.45 — Faghri polynomial approximation.
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We use dimensionless vapor specific heat capacity, following our general
approach:

Cpv—C V3
c,,(r)= C"—p (6.86)

P:Ver C P.Vv3

For the saturated interval (i.e., two-phase zone, 0<t<1), the original curve has a
sharp climb as it approaches the critical temperature. It is difficult to obtain a
unique function which approximates the entire zone with acceptable error.
Therefore, we improve it by applying three interruption points (th1, THz and tH3)
and join three approximation functions in the interval o <t<1 by the application of

the Heaviside function.

The best results were obtained using the following combination of four

approximate functions:
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Y. = (aB (1+Tanh(b8 (T —Cg ))))_ dg
Y, :eB(T_THl)fB
Y; = gssenth (T_THZ)

Y, = iB(T_THs)jB

(6.87)

These functions are used in an additive way: when 0<t<tn1, then y=y1; when
tH1<t<tH2, then y(t)=y1(1)-y2(1); when tH2<t<1, then y(t)=yi(t)-y2(t)-y3(t)+Yya(t).

This can be condensed in a unique correlation for our property:

Ep,V (T) = yl(T)_ Z(T - THl)yZ (T)_ Z(T Ty )ys (T)"' Z(T B 2'H3)Y4 (T) (6.88)

By applying the algorithm above, we obtain the curve shown below in Figure 6.46
within the saturation interval of temperature. That graph shows data from
ASHRAE using green circles (LEMMON et al., 2023). The approximation results
are in the blue line. Red bars indicate the deviation error from the table data and

the approximation.

Figure 6.46 — Vapor specific heat capacity approximation in saturated zone.
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We observe the deviation from data by approximation lies within the usual
acceptance criteria in 5% of deviation from the properties table data; the only high

error occurs near the critical point where initial data are not well defined.

To develop this property approximation, we used a baseline curve (fourth degree
polynomial equation), and we add piece-wise functions to this curve with the use

of the Heaviside function. It results in a final curve shown in Figure 6.47.

Figure 6.47 — Heaviside function in approximation for saturated zone.
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6.5.2 Approximations for freezing zone and interfacing

The algorithm above that we proposed for the approximation of the entire region

includes zones below freezing and above critical point.

Below the saturation zone, in the freezing zone Liley (2005) proposed an equation
which describes vapor specific heat capacity at constant pressure in
temperatures below the triple point from 0 down to -20 °C, Equation (6.89).

c,,(T)=1.8844-1035-10°T +1.15-10°T* (6.89)

where T is expressed in °C and Cpv - in kJ/kg/K.
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Figure 6.48 — Property data in freezing zone.
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The best approximation for this region was provided by the 2nd order polynomial

function.

~ 2
Cov, (Z')(KO =a,+b,7+C,7

(6.90)

Figure 6.49 shows this approximation curve as a solid blue line.

Figure 6.49 — Property dimensionless data and approximation in freezing zone.
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Another point that deserves attention is the continuity of the values and
derivatives at the intervening conjugate points (interfaces between curves) to

guarantee perfect softening at these points.

The interfacing technique is the same that showed in others part of this work; we
start with both equation that we want to link and the derivatives of each one, The

interfacing equation joins the freezing zone with saturated zone.

For a smooth transition between these two zones, it is used a third-degree
polynomial Equation (6.91).

Cou, (T):aAB +b,gT+Cu7” +d 7° (6.91)
The conditions of continuity of values and derivatives have four unknowns and 4

equations, and the format similar to one presented in Equation (6.46) bult.

Points of tangency can be defined through optimize of the approximation results.

In this case At defines how far each point will be away from the other.

Az, =0.003
Az, =0.008;

T, =—At,

(6.92)

7, =+Ar7,

Using the developed universal approach for any property, the result is:

a,, =-3.7991-107
b,s =9.2049-10° (6.93)
Chp =-9.4741:107

d

s =—1.0678-10"

The result approximations around triple point (t=0), including the interfacing

curve, is shown in Figure 6.50.
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Figure 6.50 — Final result to interfacing around the freezing triple point.
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6.5.3 Approximations for supercritical zone and interfacing

For the supercritical region, the difference between the liquid and vapor phases
disappears. The cpv behaves in a very complicated manner near the critical point:
its values sharply decrease as t approaches one from the left, and then gets
sharp falling as t slightly pass 1 to the right. The graph for near-critical pressure
P=250 bar is shown in Figure 6.51. (adapted from DHANUSKODI; ARUNAGIRI;
ANANTHARAMAN, 2011).
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Figure 6.51 — Property data in supercritical zone.
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Initially, the interfacing technique is the same that showed in others part of this
work, we start with both equation that we want to link and their respective

derivatives. For super-critical zone we found that the best result gave the

approximation by the hyperbolical function:

Ol

pVe (Tle = ((1—Tanh(er))a° bC +Cc (6.94)

= (— acb.eSech(er)’ Xac be (L—Tanh(ez))* ) (6.95)

>1

A smooth transition between these two zones is accomplished with a third-degree

polynomial Equation (6.96).
(T): dgc +bBCT+CBCT2 +dBCT3 (6.96)

vaVBC

Points of tangency around the critical point, (t=1) are the following.
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Az, =0.005;
Az, =0.005,

r,=1-Ar, =0.995
7, =1+ Az, =1.005

(6.97)

The system has the usual format like in Equation (6.52) when both curves make

a continuous smooth link.

By solving the system of continuity, the obtained parameters values are available
below.

2, =-130298422
bee = 390855571
Coe =—390806476
dpe =130249392

(6.98)

Figure 6.52 shows the result of the approximation.

Figure 6.52 — Final result to interfacing around critical point.
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6.5.4 Final approximation and pseudo code

Therefore, in this chapter we reached an approximation in the entire range of
temperature, managing the approximation error in satisfactory levels (no greater
than 5%). The pseudo code provides fluid property values starting below the triple

point and going beyond the critical point.

Figure 6.53 — Final approximation for Vapor specific heat capacity in the entire
temperature range.
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This code can be implemented in any programming language:

if (r<7,) then Eplv(r)zaA+bAr+CA12
if (r,<r<7,) then T, (r)=a, +Dupr+Chpr’ +d,7°
if (r,<r<z,) then

+x\7 TH) ()

if (r3<r<r4) then Cov z') aBC+bBCr+CBCr +dBCr

Cou(
pVEr) () (Z' 2'|—|1)y2() Z(T_THz)ys(T) (6.99)
Cou(

if (c>7,) then ¢,,(r)= ((1—Tanh(er))ac ))C +Cg
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Piece-wise functions y; are defined by Equation (6.87).

Table 6.6 — Result values of vapor specific heat capacity pseudo-code.

aan=2.599E-7 ag=5.1E-1 gs=9E-1 3= 7.4E-1  cec=-3.908E6
ba=9.727E-3 be=4.2 hg=1.99 ac=6.358E4 dsc=1.302E6
ca=4.042E-2 cg=8.8E-1 iz=1.65E2 Dbc= 1.405E-2 Aty = 3E-2
aas=-3.79E-7 dg=6.1E-4 [j5=3.89 Cc=4.042E-2 At = 8E-3
bas = 9.204E3 ee=1 tH1= 2.5E-1 apc=-1.303E6 At3= 5E-3
Cas = -9.474E-2 fe=3 2= 5.3E-1 bgc= 3.908E6 At4= 5E-3
dag = -1.06E1

6.6 Approximations for vapor Prandtl number

6.6.1 Approximations for saturated zone

The Prandtl number makes the correlation between the momentum diffusivity (v)

and the thermal diffusivity (o).

1%
v_ _ oot (6.100)
“ Hlep) K

The parameters are defined as following:

v is momentum diffusivity or kinematic viscosity, o is thermal diffusivity, pis

dynamic viscosity, k is thermal conductivity, cpis specific heat and p is density.

The Prandtl vapor number behavior with temperature in saturation zone is
expressed in Figure 6.54 (BEATON, 1986).
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Figure 6.54 — Water vapor Prandtl number Data.
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This parameter has an abrupt increase value around 350
temperature. Direct approximation of such a function is a challenging task and
may lead to elevated errors of the approximation. To minimize this peak, a natural

logarithm was applied in tabled properties data to smooth this abruption, Figure

6.55.

Figure 6.55 — Water vapor Prandtl number after logarithm application.
5

In (Pry)

20

10

0

0

-50

o
Tod
cese
©00000000000000000006000000000

0 50 100 150 200 250 300 350 400
T[°C]

0 50 100 150 200 250 300 350 400
T[°C]

143

°C, near critical



It is possible to notice in Figure 6.55 that the peak value was decreased from 52.4
down to ~4. To align with the methodology used in this work until now, we
introduce a normalized function of In (Prv), following our dimensionless

parameters technique.

In(Pr,) —In(Pr,,)
In(Prv,cr) - In(Prv3)

f(InPr,) = (6.101)

We denote this function as normalized (and dimensionless) logarithmic Prandtl

number (“nl-Pr”):

Pr,(r)=f(InPr) (6.102)

The curve in Figure 6.55 shows this function plotted over interval starting from

=0 and ending in t=1.

To perform the approximation, we divide the entire two-phase zone in three
intervals, improving the approximation quality by adding new functions in each

interval.

y, =ag +byr+cyr’ +d 7’ +e,r?
Y, = (fBTanth (f—le)) (6.103)
Ys :(hB(T_THz)IB + jB)

The algorithm can be realized by using two Heaviside functions to build a unique

approximation function over entire two-phase interval of t from 0 to 1. (6.104).

ﬁ"s (T) =Y,(0) + x(t —730) Y, (0) + x(z —7,,) Y5(7) (6.104)

Applying the algorithm in the saturation interval of temperature we achieve an
approximated curve to nl-Pr number in saturated range, Figure 6.56, which shows
also tabled data from (BEATON, 1986) using green circles. The approximation
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result function is shown in the blue line. In red bars we have the deviation error

between property table data and the approximation.

Figure 6.56 — Prandtl approximation result.
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In Figure 6.56, we have the deviation from data by the approximation e delimited
by a usual acceptance criterion of 4%. It is worth mentioning that when the nl-
Prandtl value is close to zero, an exceedingly small absolute deviation. In this

case, the correct way to evaluate errors is by using the absolute deviations.

Like other properties, Prandtl number has different values above the critical point
like exposed in Figure 6.57.

It is important to note that this parameter above the critical point varies with
pressure and temperature and in that place demands more effort to build a robust
approximation. In this case several interfacing curves might be created; each one
to a different pressure level and in the end, all polynomial coefficients in the

interfacing zones will be pressure functions.

6.6.2 Approximations for freezing zone

It is possible to demonstrate interfacing equation to joint subcooled zone with

saturated zone.
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Pr.,(z)=0 (6.105)

0 - 0 (6.106)

A smooth transition between A and B zones are accomplished with a third-degree

polynomial function (6.107).
Pru, (r)=a,s + 0,7 +Cpg7? +d,57° (6.107)

The system of continuity around the triple point has the following format to the

interfacing tangency both curves, making a continuous smooth link.

P_rVA(Tl; =8pg +0pp7; + CAEsz'l2 + dABl'l3
diz,
@: Qg + 0,57, +Cog7, + 0,57, (6.108)
d Pr\,B (TZ) — bAB + 2CABTQ +3dABTZZ

d(Tz)

2
=D,g +2C,57, +3d 57,

Points of tangency is defined, trying to optimize the approximation results. In this

case A defines how far each point is away from the other.

Az, =0.0%
Ar,=0.003
(6.109)
7, =—At,
7, =+AT,
The result parameters of the interfacing curves are expressed below.
a,; =—0.000042
b, =—0.0199
¢,o = —1.10528 (6.110)
d,s =-34.0329
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The result approximations around triple point (t=0), including the interfacing

curve, shown in Figure 6.57.

Figure 6.57 — Interfacing nl-Prandtl number linking subcooled zone with saturated zone.
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6.6.3 Approximations for super critical zone
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As soon as the Pr number depends on pressure as well, we assume the two-

arguments approximation shall be presented as a product of two functions,

temperature and pressure:

Pr,(z, p) =y (p)e(r)

This splitting makes the approximation possible.
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Figure 6.58 — Approximation of nl-Prandtl humber as a function of temperature and

pressure.
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Beaton (1986) in his work demonstrates Prandtl number behavior variating with

temperature above critical temperature.
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Figure 6.59 — Prandtl number behavior above critical point dependent of temperature
and pressure (BEATON, 1986).
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Source: Beaton (1986).
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Figure 6.60 — Approximation of nl-Prandtl number as a function of dimensionless
pressure.
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The interfacing technique is the same that showed in others part of this work, we
start with both equations that we want to link and the derivative of each one,

however assuming a linear approximation of pressure-dependent factor.

The Prandtl number approximation above critical point.

P (p.7)=(ac +bp)-(cer®) (6.112)
d(Pry "
dr(rgf) = (. +be p)-(ccdo ) (6.113)

As usual, a third-degree polynomial function is used for the interfacing:

Pruc (7, p)=25c (P)+ by ()7 + Coc (P) + i () (6.114)
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Points of tangency can be defined optimizing the approximation result. In this

case At defines how far each point is departs from the critical point, (t=1).

A7, =0.003

Az, =0.06913
7,=1-A7, =0.997
r,=1-Ar, =1.06913

(6.115)

The system has the following format to the interfacing equation tangency when
both curves make a continuous smooth link. Note, the coefficients anc, boe, Cnc

and dnc become functions of pressure.

(P)+bac(P)rs +Coc ()" +dac (P
—— X = b (p)+2¢ec (P)rs +3dgc (e’

(p)

(p)

2|

—
s
—_
=~
w
=]
Il
QD
W
(@]
=
+

N (o

6.116
_Per T, P)=28g:\P +bBC(p)T4 +CBCT42 +dBC(p)T43 ( )

d{Pry, (74' p) =Dy (p +2CBC(D)T4 +3d5c(p)142

Solving the system above for selected pressure magnitude, the parameters have

the following values.

a,. =—164369
by = 4740355
Coe = —4553470
dy. =14569.33

(6.117)

Below, a solution of the system of interfacing equation (6.108) is presented.
Since the method of solving is the same, with the only change being the pressure

dependence, we set a particular pressure value as an example.
These coefficients were obtained for a particular value of the pressure: p=1.3581.

Figure 6.61 shows the result of the approximation.
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Figure 6.61 — Interfacing Prandtl number example to P=300 [bar] or p[-]=1.3581.
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The pressure value can be calculated from the known charging density.

6.6.4 Final approximation and pseudo code

The result above summarizes the approximations including the interfacing
between subcooled zone and saturated zone. It also includes saturation zone
and a part with the link between the saturated zone and supercritical zone. The
last interfacing polynomial equation depends on two variables, dimensionless

temperature, and dimensionless pressure, Figure 6.63 exposes a consistent

result.
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Figure 6.62 — Final Result to Prandtl number approximation in the entire temperature
and pressure range.
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Figure 6.63 shows interfacing nl-Prandtl number linking saturated zone with

supercritical zone under different values of pressure.

Figure 6.63 — Interfacing nl Prandtl number around critical temperature.
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Final approximations

as a pseudo-code.

over all three zones are shown below in Equation (6.118)
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if (c<7,) then Pr,(z)=0

if (r,<r<r,) then P_rv(z')= Qug + 0,7 +Cag7’ +d 57°

if (r,<r<7,) then ﬂ(r): V(D) + x(t =74y, (@) + x(r —7,,) Y, (z)  (6.118)

if (ry<r<t,) then Pr,(r)=ag. +0bge7+Cpet’ +dg7°

it (>z,)  then Pr,(p,z)=(ac +b.p)-(ccr™)

Table 6.7 —vapor Prandtl number pseudo-code values.

ans=-3.5E-5 ¢cg=0.0770 ig=8.252 Cc = 0.5397 At;=0.01
bas=-0.199 dg=-0.3076 js=0.045 dc =-9.51 At,=0.003

Cas=-3.08  €=0.7142 14p1=0.50 asc(p) = 3915,7p - 27960  Ar3=0.003
das=-139.0  fsg=1.41  1he2=0.93 bac(p)=-11406p + 80662 Ar,=0.06913
ag=-3.0E-5 @s=3.00 ac=-0.966 cac(p)=11064p — 77511

bs=-0.0199 hg=2.0E-9 bc=1580 desc(p)=-3574,3p + 24811

To return to original Prandtl number from the obtained approximations, the

inverse expression must be used:

P, (T) = Pr, (T,) + aprx(Pr, () XPr, (T, ) — Pr, (T,)) (6.119)

6.7 Approximations for liquid density

6.7.1 Approximations for saturated zone

Liquid density (pv) is defined as a relation between liquid mass (m) and volume

(V) of that mass occupies:

pL= (6.120)

m
Y

where mis in kg, Vis in m3 and p is in kg/m?3.

Liquid density behavior with temperature data, published by ASHRAE are
presented in Figure 6.64 (LEMMON et al., 2023).
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Figure 6.64 — Water liquid density data.
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The data covers freezing and saturated temperature regions.

In HP modeling the approximations presented by Faghri (2016) are widely used.
He suggested equation to approximate this water property by 5-order polynomial
function (6.121), applied to the logarithm of the density.

Ln(p, (T))=6.9094—2.0146-10° -T —5.9868-10° - T* + 6.12)
2.5921.10°.T%-9.3244.10™ . T* +1.2103-10 % . T® '
The liquid density is expressed in kg/m3, and the temperature is in Celsius. For

other unities, the polynomial coefficients must be redefined.

This equation is valid between 20°C and 200°C; in this range of temperature the
approximation error mentioned in (FAGHRI, 2016) is 0.03% and the equation
covers up to 48% of the entire two-phase temperature range. However, when we
try to use this polynomial equation out of range stablished, the result can deviate
from real behavior. The green line in Figure 6.65 expresses this deviation from

real value.
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Figure 6.65 — Faghri polynomial approximation.
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Following the same approach, we expand the approximation over entire range
for liquid density. Non-dimensional variables are used for both temperature and

liquid density:

pi(7) = LS (6.122)

Icr |3

For the saturation interval (i.e., two-phase zone, 0<t<1), the original curve has a
sharp climb as it approaches the critical temperature. It is difficult to obtain a
unique function which approximates the entire zone within acceptable error:
therefore, we will improve it with application of an interruption point (t1) and join
two approximation functions in the interval th<t<1 by application of Heaviside

function.

The best results gave the following approximate functions:

{yﬁaB+bBr+cBr2+dBr3+eBT4+ fo7® +gg7° (6.123)

Y, =hg (-7, )"
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pi(7)=y:(7)+ 2(z )y, (7) (6.124)

By applying this technique, in the saturation interval of temperature we achieve
the curve shown in Figure 6.66. The chart shows data from ASHRAE using green
circles. The approximation results are given in the blue line. In red bars we have

the deviation error from property table data and approximation.

Figure 6.66 — Liquid Density approximation result in saturated zone.
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We observe the deviation from data by approximation lies within the acceptance
criteria in 2% of deviation from the properties table data.

To build this property approximation we used a baseline curve (fourth degree
polynomial equation), and we add in these curves one that satisfies the condition
of smooth transition using Heaviside function. The result is shown in Figure 6.67.
The main motive to use this technique is reach and approximation curve
continuous and “smooth,” without sharp edges.
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Figure 6.67 — Two- functions approximation for saturated zone.
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6.7.2 Approximations for freezing zone

Under negative temperatures water turns into ice, and at positive temperatures it
melts. Such behavior is typical for freezing HP start-up, therefore we continue
referring ice as liquid in the freezing zone, Liquid density behavior with
temperature data, published by ASHRAE Lemmon et al. (2023), are presented in
Figure 6.64, and a closer look for the freezing zone (ice) is shown in Figure 6.68,
where Turns et al. (2007) compiled in their book a liquid density behavior in

freezing zone. In that case, the temperature ranges from -40 °C to 0°C.
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Figure 6.68 — Water liquid density data before triple point.
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The approximation must include a region below the freezing point (i.e., triple
point), so for freezing zone the density is approximated very well by linear

function:
P, (7))  =an+br (6.125)

The interfacing equation joints subcooled zone with saturated zone. as usual, we

use a third-degree polynomial function (6.126).
o, (T):aAB +bABT+CABTZ +dABTS (6.126)

Choosing the third order polynomial functions is beneficial because here we have
4 unknown coefficients and 4 conditions for smooth interfacing: the equality of

derivatives and values on both ends of the interface curve.

The system will be of the following format to the interface equation tangency both

curves and makes a continuous smooth link.
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P, (715 =apg +hpp7; + CABTlZ + dABT13
d(ZﬂA(Ti)
d(Tl)
,5|B(12§:aAB"'bABTZ"'CABTZZ"'dABTZ3
d (/5|B (72)

d(Tz)

=b,g +2C,57, +30d 57,
(6.127)

=b,g +2C,57, +3d 57,

Points of tangency can be defined by trying to optimize the approximation result.

In this case At defines how far each point will be away from the other

Az, =0.004
Az, =0.0267,
(6.128)
7, =-At,
7, =+Art,
The results are expressed below.
a,, =0.115772
b,s =-2.65106 (6.129)
C,s =—289.963

d,, =8503355

The result approximations around triple point (t=0), including the interfacing

curve, is presented in Figure 6.69.
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Figure 6.69 — Final result to interfacing below freezing point.
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6.7.3 Approximations for super critical zone

Just to remember the definitions, the critical point is where vapor and liquid are
indistinguishable and triple point is where liquid phase (water), solid phase (ice)

and vapor phase coexist in thermodynamic equilibrium.

As discussed in the introduction, for isochoric systems the density above the
critical temperature is always constant and for HP is equal to the “charged

density.”
Pilr = Pan (6.130)

The zone above the critical point corresponds to the situation of no vapor-liquid
interface existence. i.e., only one unique phase exists denoted here as “gas.”
Therefore, we have a transition from liquid phase to the gas phase at the critical

temperature.

The interface conditions are the continuity of the values and derivatives in the
interrupting points (interface between curves), used to guarantee that the

interfacing technique provides perfect softening in the conjugate points.
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The interfacing technique is the same that showed in others part of this work, we

start with both equation that we want to link and the derivate of each one.

As said above, the properties values above the critical point are charged density
constant value. Those can be expressed below:

T

P (T)| 4= Pen d(p'—c(r)) =0 (6.131)

Looking for a smooth transition between those two zones Equations (6.124) and
(6.131), it is used a third-degree polynomial Equation (6.132).

P, (r)zaBC +bBCr+CBCT2 +dBC2'3 (6.132)
Parameters of the points of tangency at (1=1) have been selected as following:

A7, =0.003
Ar, =0.008;
7, =1-A7, =0.997
7, =1-A7r, =1.008

(6.133)

The system of the smooth interfacing conditions is the same as for other
properties (Equation 6.52) and does not present here.

The solution for the parameter’s values for the interfacing curve, obtained from

available analytical solution (Equations 5.29 and 5.32) are presented in (6.134).

2, =9719614

by = —291272
Cac = 2909447 (6.134)
dBC = _96868.2

Figure 6.70 shows the result of the approximation for this case, then py, =1.
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Figure 6.70 — Final result to interfacing above critical point.
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6.7.4 Final approximation and pseudo code

11

The algorithm below that we proposed for the approximation of the entire region

is shown in Equation (6.135) as a pseudo code.
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Figure 6.71 — Final result for liquid density approximation over entire temperature range.
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Therefore, in this chapter we reached an approximation in a wide range of
temperature, managing the approximation error in satisfactory levels (no greater
than 5%). The pseudo code provides fluid property values starting below the triple

point up to beyond critical point.

This code can be implemented in any programming language for use in
mathematical models of heat pipes:

if (r<t) then p,(r)=a, +b,7

if (r,<z<7,) then p(r)=a, +0u7+Cpr? +d,g7°

if (Tz st< Ta) then p, (T): yl(T)+ Z(THl)YZ (T) (6.135)
if (ry<r<z,) then p(r)=ag. +0g7+Coet? + g7

it (r>z,) then p,(z)=p,,
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Table 6.8 — Result algorithm values for the case of py, =1.

aa=1.22E-01
ba= 7.68E-02
ass = 1,158E-01
bas=-2,651
Cas = -2,90E+02
dag = 8,503E+03
ag=-2.8E-4

bg=-2.21E-2
ce= 1.4836
ds=-3.152
es = 5.386
fg =-5.046
gs=2.103
hs = 6.5E1

iB=2 Atp= 2.67E-2
1= 0.95 At3=5E-3
aesc = 9.72E4 Ats= 8E-3

bec = -2.913E5

Cec = 2.909E5

dsc = -9.687E4
A1, = 3E-3

6.8 Approximations for liquid dynamic viscosity

6.8.1 Approximations for saturated zone

Liquid dynamic viscosity (u) can be defined as a relation between shear stress
and the fluid deformation velocity. This property is essential to set a way as flow
is shaped. Therefore, this property is responsible for the fluid interface force
between its layers or other fluid or solid surfaces in contact with that flow.
(TUREKIAN; HOLLAND, 2014). American Society of Heating, Refrigerating and
Air-Conditioning Engineers (ASHRAE) conveyed water data (LEMMON et al.,

2023). The original data of the liquid dynamic viscosity behavior with temperature

are presented in Figure 6.72.
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Figure 6.72 — Water liquid dynamic viscosity number data.
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Faghri (2016) suggested the Equation (6.136) to approximate this water property,
where the dynamic viscosity is expressed in N-s/m? and the temperature used in

equation below in in Celsius.

Ln(z, (T))=—6.3530—3.154-102 -T +2.167-10* - T — 6.136)
1.156-10°-T°+3.747-10°.T* -5.219.10 ™ .T°
It is worth mentioning once again, that this kind of approximation, widely used by
other authors, has dimensional numerical coefficients (also known as factors),
that is not correct from the point of view of a mathematician. For example, one
must keep in mind that the number -6.3530 has dimension In(Pa's), but -5.219
1012 has dimension of In(Pa's)/C® and, by the way, not In(Pa:s)/K> . Moreover,
researchers in UK or USA may not feel comfortable with these coefficients once
they use Imperial units instead of Sl; another approximation with different

coefficients should be elaborated for them.

This equation is valid from 20°C to 200°C; with because the approximation error
0.03% mentioned in (FAGHRI, 2016). The equation covers up to 48% of the entire
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two-phase temperature range; out of the range the equation diverges from the

experimental tabled data, as shown in Figure 6.73.

Figure 6.73 — Faghri polynomial approximation.
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Following the same approach to elaborate the approximation over entire two-
phase range, from the triple point to the critical point, we use non-dimensional

variables for both temperature and liquid dynamic viscosity:

w(t)=—"— (6.137)

For the saturation interval (i.e., two-phase zone, 0<t<1), it is difficult to obtain a
unique function which approximates the entire zone with acceptable error.
Therefore, it was decided to insert one or few interruption points (twi) and join the
approximation piece-wise functions by one-by-one by either addition or

substitution with the use of Heaviside function.

The best results yielded the following approximation functions:
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—c 2\
ylsz(l_(T zB) j

a’B
y, =e,Senh(r —z,,,)"
Vs =0g(r—7,)" (6.138)
Ya :issenh(T_THs)jB
Y = kBSenh(z'—z',M)IB

Yo = mB(T_THs)nB

These functions are used in an additive way:

H (T) = Y1(T)_Z(T - THl)yZ (T)+ Z(T “Tha )y3(7)+
(6.139)

+Z(T_TH3)y4(T)+Z(T_TH4)y5(T)+Z(T_THs)yG(T)

Applying the algorithm above, in the saturation interval of temperature the curve

on Figure 6.74 was achieved. The graph shows data from ASHRAE using green

circles (LEMMON et al., 2023). The approximation result is shown in the blue line.

In red bars we have the deviation error between experimental property table data
and the approximation.

Figure 6.74 — Liquid Dynamic Viscosity approximation result in saturated zone using

additive technique of approximate functions.
1,2 10

0,8

Error [%]

0,4

Legend

Aprox. 6
0,2 % error

e e Datal[-]

168



The additive technique of approximate functions, applied step by step, is

illustrated in Figure 6.75.

Figure 6.75 — Approximation for saturated zone using additive technique of piece-wise
functions.
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The conjugate points are tH1=0.11; tH2=0.20; tH3=0.43; tH4=0.60; tH5=0.91.

Next, , we perform here another approach to do approximation in the same two-
phase zone, using substitution of approximate functions instead of addition.

To join two non-linear functions, an intermediate polynomial function must be
used. The smoothing (or continuation) conditions should be applied from both
sides of this intermediate functions, in the points tH1 and tH2, having four
eguations to solve. When the intermediate polynomial function is of third order,

having 4 coefficients, the solution is easy and direct.

The best results provide the following combination of two non-linear approximate

functions with the intermediate polynomial function of 3rd order:
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Y1 =ag _bBe_CBT
y, =dg +egr+ for® +g,7° (6.140)

Y, = %(1+Tanhj8 (hB (7_ iB)))

These functions are used in substitution way: if 0<t<th1, then y=y1; if tH1<t<tH2,

then y(t)=yi(7); if tHi<t<1, then y(t)=y2(t). This can be condensed in a unique
correlation for our property:

H (T)=Z_l(T_THl)y1(7)+Z(T_TH1)Z_1(T_TH2)yi @)+ x(z—742)Y.(7) (6.141)
The result approximation is shown in Figure 6.76.

Figure 6.76 — Liquid Dynamic Viscosity approximation result in saturated zone using
substitution of approximate functions.
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The deviation from data by approximation lies within the usual acceptance criteria
in 2% of deviation from the properties table data.

Figure 6.77 shows the components used in the approximation as each

contributes to the result. The main reason to use this technique is to reach a
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continuous and “smooth” approximation curve, without visible undulation and

interruptions.

Figure 6.77 — Components adding used in the approximation using substitution of
approximate functions.
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The conjugate points are tHi1=0.084; tHi2=0.19.

For this property, the approach by substitution was used to build the
approximation over the entire two-phase zone, with application of two of

Heaviside functions to create a curve without ripples.

Basically, this approach consists of creating of two or more curves which correctly
describe the property variation within limited intervals and then joint these curves

with a fourth-degree polynomial equation.

The addition technique has an intrinsic undesirable effect, when each interruption
point, added into the curve, brings an unwelcome side effect that is a local
oscillation affecting the error in a local region; this behaves are expressed in
Figure 6.79. The substitution technique results in a stable curve, we use this
curve to continue the study, doing interfacing between the freezing zone and the

super-critical zone.
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Figure 6.78 — Step by step components adding used in the approximation
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Figure 6.79 — Compare between Heaviside substitution and Heaviside addition
techniques.
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The comparison show that the substitution technique provide more smooth result

for this property.

6.8.2 Approximations for freezing zone and interfacing

The algorithm above that we proposed for the approximation of the entire region

shall also include the zones below the freezing point and above critical point.

For the interfacing with the freezing zone and super-critical zone we use the last

approximation obtained by substitution technique in the two-phase zone.

A liquid, when freezing, becomes more viscous and actually turns into a solid.
Kumagai et al. (1978) defined viscoelastic as a property of many solids; they flow
like liquids, however very slowly, even under small stress. Such materials are
best described as viscoelastic, that is, possessing both elasticity (reaction to
deformation) and viscosity (reaction to rate of deformation). We assume that ice
behaves as viscoelastic solid; then viscosity can be characterized through the

reaction to the rate of deformation.

The viscous components can be modeled as dashpots such that the stress—strain
rate relationship is given in Equation (6.142) (DAY, 1990).
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o=n— (6.142)

where o is the stress (Pa), n is the viscosity (Pa-s), (similar to liquid) , and de/dt
is the time derivative of strain (1/s); € is strain or relative deformation without units

(or mm/mm).

This definition is similar to the Newton’s law of viscosity, where viscosity p is
introduced as proportional factor to obtain shear stress through shear

deformation or shear velocity, du/dy:
T=H_— (6.143)

This mechanical viscosity n we will consider as equivalent of freezing liquid
viscosity p. It is possible to find different values of viscosity of different ice types
in diverse sources measured for different conditions. As soon as the value for ice
is much higher than the viscosity for liquids, we will use a unique value presented
in (SOTIN; POIRIER, 1987) as a reference to use in our interfacing on transition
from liquid to solid, equal to 8.4*10° Pa s (or 8.4*10'? mPa*s). The value is
remarkably high, accounted of about twelve orders of magnitude higher than for

the liquid.
1u=n=8.4-10°[Pa-s] (6.144)

Therefore, for the freezing zone we use a constant of high magnitude.

;_JIA(T)LO ——4.8.107 d(g'(—;()f)) ~0 (6.145)

7<0

Another point which deserves attention is the continuity of the values and

derivatives in the interrupting points (interface between curves), to guarantee that
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the interfacing technique provides a satisfying softening in the conjugate points.

It is possible to check the interfacing result in Figure 6.80.

The developed interfacing joins the curves of subcooled zone (i.e., freezing
region) with saturated zone.

As usual, we use a third-degree polynomial Equation (6.146) to smooth

interfacing even for such different values.

H, (r)=a,g +b,g7+Cpgr? +d 5 7° (6.146)

The system owns the following format, which are conditions for tangency and

continuity of both curves, which makes a continuous smooth link.

_;IA (Tl) =pg TDpe7; + CABTlZ + dABTlS
d
—(g '(T (;1 ) bro +2C 57, +30 457
1

— 2 3 (6.147)
Hy, (72): Apg +DagT, +Cpp7," +Upe7,

d(/_hB (72 ))

d(Tz)

=D,5 +2C 57, +3d ABZ‘22

Where 11 and t2 are near-zero points from the left and from the right of the central
0 (freezing) point.

Points of tangency have been defined through optimization of the shape of the

interfacing curve.

A7, =0.0%
A7, =0.003

6.148
T, =-Art, ( )

7, =+AT,

The numerical result obtained with available analytical solution for the polynomial

coefficients for the interfacing around t=0 is presented below:

175



a,, =—6.4926-10"
b, =3.9349-10%

C,s = —4.5907-10'°
d,, =-4.3721.10°

(6.149)

The result approximations around triple point (t=0), including the interfacing

curve, are shown in Figure 6.80.

Figure 6.80 — Final Result to interfacing below freezing point.
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6.8.3 Approximations for supercritical zone and interfacing

In the super-critical zone, the viscosity suffers sudden drop and then gets a light
permanent increasing. Moreover, the behavior above the critical point begins
having a dependence of pressure, as shown in Figure 6.81.
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Figure 6.81 — Water dynamic viscosity data at critical pressure [220.64 bar].

0,14

0,12

0,1

1103 [Pa‘s]
o
&

0,04

0,02
160 200 240 280 320 360 400 440 480 520
T[°C]

Therefore, the property has different values at different pressure. When we
consider heat pipes, it is most common case when the work pressure cannot
exceed the critical value at the critical temperature. Because of that, in the super
critical zone our effort will be focused on property value at 220.64 bar (critical
pressure). A 2" order polynomial function approximates the property in the

super-critical region with acceptable error:

m (r)( = (ac +b,7+ ccrz) (6.150)

>1
Fort the interfacing, as usual, we use a third-degree polynomial Equation (6.151).
/_IIBC (T): 8gc +Dge 7 +Coe7” +dge 7 (6.151)

Points of tangency were obtained and shown in Equation (6.152). In this case At

defines how far each point lies be away from the critical point, (t=1).
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A7, =0.003

Az, =0.07,
7,=1-A7r, =0.997
7,=1-A7, =107

(6.152)

The system of smooth interfacing conditions is the same as usual, for example
Equation 6.52 and does not present here. The parameters values are given in
Equation (6.153) from the available analytical solution (Equations 5.29 and 5.32).

a,. =78.0984

bee =-224.519

Coe =217.668 (6.153)
dge =—70.2521

Figure 6.82 shows the result of the approximation.

Figure 6.82 — Final result to interfacing above critical point.
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6.8.4 Final approximation and pseudo code

The result for different pressure can be seen in Figure 6.83 and shown in

Equation 6.154 in the form of pseudo-code.
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Figure 6.83 — Result to liquid dynamic viscosity approximation in saturated range and

super critical.
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This code can be implemented in any programming language:
if (r<7,) then u,(z)=-4.8-10
if (Tl<T<Tz) then ;,(z’):aAB+bABr+CABrz+dABz’3
if (r Srér) then
T +2(0-7,,)Y,(7)

if (c,<z<r,) then (r)=ag +bgr+Ceer® +dge7°

if (r>7,) then :t,(r)z(ac +bcr+ccrz)
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;I(T): Zﬁl(T_THl))ﬁ(T) +Z(T_TH1)}(1(T_TH2)yi (7)

1,2

(6.154)



Table 6.9 — Result liquid dynamic viscosity pseudo-code values.

aas=-6.493E11 dg=2.42 tH1= 8.4E-2 bc=1.47E-2
bas = 3.934E14 ep=-4E-2 2 = 1.9E-1 Cc=-9.1E-3
Cas=-4.591E16 fz=7.6E-1 agc=7.8098E1 At1=1E-2
das=-4.372E18 (gs=-3.027E-2 bpc=-2.2452E2 At,= 3E-3
ag=9.79E-1 he=1E14E1  Ccsc=2.1767E2  Atz=3E-3
bs = 9.49E-1 iB=-5.539E1  dgc=-7.0252E1 Ats=T7E-2
cs= 1.072E1 jg=9.658E1 ac=1.0038

Table 6.10 — Heaviside Addiction coefficient value for liquid dynamic viscosity.

as=1.02 fg=1.61 k=32 142=0.20
be=17 Qe=46 Ilg=2 T3 = 0.43
cs=1.02 hg=157 mg=15 1u=0.60
ds=0.6 i5=19 ne=15 1us=0.91
=53 jg=15 14 =0.11

6.9 Approximations for liquid thermal conductivity

6.9.1 Approximations for saturated zone

Liquid thermal conductivity (ki) can be defined as the ability of a stationary liquid
to conduct heat from its one side to the other, without considering any kind of

convection. This parameter can be illustrated in Figure 6.34.

American Society of Heating, Refrigerating and Air-Conditioning Engineers
(ASHRAE) (LEMMON et al., 2023) conveyed water properties data, including
liquid thermal conductivity as a function of temperature; the graph of the liquid

thermal conductivity in two-phase zone is presented in Figure 6.84.
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Figure 6.84 — Water liquid thermal conductivity numerical data.
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Faghri in his book (2016) suggested the polynomial function (6.155) to
approximate this water property, where the liquid thermal conductivity is

expressed in W/mK, and the temperature is in Celsius.

Ln(k,(T))=-5.822-10" +4.1177-10°.T —2.7932.10° - T? (6.155)
+6.5617-10°-T®+4.11.10™.7* -3.822.10 " .T°
This equation is valid between 20°C and 200°C; in this range of temperature this
equation can be used for HP modeling with no concern, because of the
approximation error mentioned is 0.03% and the equation covers up to 48% of
the entire two-phase temperature range. As an example, when we try to use this
polynomial equation out of the range, the result has no real behavior. The green

line in Figure 6.85 expresses this deviation from the real value.
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Figure 6.85 — Faghri polynomial approximation.
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Following our approach, non-dimensional variables are used for both
temperature and liquid thermal conductivity. This deviation of Faghri’s
approximation at elevated temperatures shows that the approximation over entire
two-phase range cannot be achieved by a unique polynomial function. Several

combinations of two or more functions have been evaluated.

To elaborate the approximation over entire two-phase range, from below the triple
point to the zone above the critical point, we continue using non-dimensional

variables for temperature, t, as well as for the liquid thermal conductivity:

k —k,
k (r) = ——
1 (7) K~k (6.156)

The best result for the approximation within the saturation zone has been

achieved with the combination of two functions.

y, =ag +byr+cyr? +d 7’ +egrt + fir°
(6.157)

Y, = gB(T_THl)

hg
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These functions are used in an additive way: when 0<t<tH, then y= yi(t); when

tH1<Tt, then y(t)=y1(t)+Yy2(t). This can be condensed in a unique correlation for our
property:

E|B (r) =Y, (r)-l— }((T —Ty 1)y2 (T) (6.158)

The smoothing in the conjugate point (tH1) has been achieved by the application

of continuity conditions for both function and its derivative.

Applying the algorithm above, in the saturation interval of temperature we achieve
the curve below. That graph in Figure 6.86 shows data from ASHRAE using green
circles (LEMMON et al., 2023). The approximation result is shown in the blue line.

In red bars we have the deviation error between property table data and the
approximation.

Figure 6.86 — Liquid thermal conductivity approximation results in saturated zone.
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We observed that deviation from data by approximation lies within the acceptance

criteria in 1% of deviation from the properties table data.
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To build this property approximation we used a baseline curve (fifth degree
polynomial equation), and we add y2(t) approximate function using the Heaviside
function Equation (6.158). The result of that is in Figure 6.86. The main reason to
use this technique is reach approximation without sharp interruptions. The

technique of the approximation by addition is illustrated in Figures 6.87 and 6.88.

Figure 6.87 —Approximation by two functions for saturated zone.
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Figure 6.88 — Zoom on conjugate point in the approximation.
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6.9.2 Approximations for freezing zone and interfacing

Liley (2005), described this property behavior in the freezing zone, from
-20 °C to 0°C This data fits the linear type of approximation function. Fukusako
(1990) summarized the properties data from 7 different published sources and
found the 2nd order polynomial approximation of thermal conductivity of ice in the
range from 100 to 273 K (i.e., from -173 C to 0 C):

k =1.16(1.91-8.66-10°T +2.97-10°T?) (6.159)

or in general form:

k =a+bT +cT? (6.160)

where T is measured in C and k - in W/m/K, and a=2.216: b=0.01; c=3.445.10°.

Despite wider range of temperature than that by Liley, the Fukusako’s
approximation is close to linear one, therefore we can continue with linear

approximation of Liley:
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k, (T)=2.216-0.0102T (6.161)

In this work we used the table presented by Liley (2005) to make an

approximation over that data.

Figure 6.89 - Liquid thermal conductivity tabled data in freezing zone.
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In this zone, the dimensionless latent heat can be approximated by a linear

function:

K, (r)=a, +b,r (6.162)

A smooth transition between those two zones is achieved with a third-degree
polynomial function (6.163).

IZIAB (r)=a,, +hgr+Cpg7’ +d,7° (6.163)
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The system of equations of smooth interfacing that touches tangentially both
curves and makes a continuous link is the same as for other properties, for

example, Equation 6.46.

Points of tangency can be defined by optimizing the approximation result and are
presented below.

Az, =0.003
Ar, =0.008
(6.164)
7, = -At,

T, =+AT,,

The resulting interfacing polynomial coefficients, obtained with the available

analytical solution (Equations (5.20 and 5.23)), are expressed below:

a,, =-8.4248

b =1.1216-10°
Cpp =1.1387-10°
d,s =1.5359-10

(6.165)

The result approximations around triple point (t=0), including the interfacing
curve, is shown in Figure 6.90.
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Figure 6.90 — Final Result to interfacing below freezing point.
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6.9.3 Approximations for supercritical zone and interfacing

In the super-critical zone, the behavior of the thermal conductivity is complex and
nonlinear. It is worth mentioning that in the literature, the value of this property in
the critical point is either not defined or considered infinity. Therefore, we decide
to arbitrate a value for liquid thermal conductivity at critical point as an
extrapolation of an interpolation curve of the past 4 points. At temperature above
the critical point, the thermal conductivity drops down to the value of about 0.09
W/m/K, shown in the graph in Figure 6.91 as a sudden drop (DHANUSKODI et
al., 2011).

We can pick the curve which corresponds to the critical pressure (220.64 bar), as
itis close to real heat pipe internal condition near critical point. The same behavior
is presented in (PIORO, 2020).
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Figure 6.91 — Liquid thermal conductivity data under the critical pressure.
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Another point deserving attention is the continuity of the values and derivatives
in the interrupting points (interface between curves). To guarantee that, the
interfacing technique provides perfect softening in the conjugate points. It is
possible to check the interfacing result in figures below.

For super-critical zone we found that the polynomial curve of 5th order fits

reasonable the tabled property data:

Elc (z-)(pl =a. +ber+cet? +dord recrt + for® (6.166)
dlk, (z
((ch( )) =b. +2c.7+3d.7’ +4e.7° +5f.7* (6.167)
T

>1

Looking for a smoother transition between those two zones in Equations (6.158),
and (6.166), it is used a third-degree polynomial Equation (6.168).

|Z,BC (T)z age +hge7+ CBCT2 + dBCT3 (6.168)
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Points of tangency were obtained through optimization the approximation results:

A, =0.003
At, =0.008;
7, =1-A7, =0.997
7, =1+A7r, =1.008

(6.169)

In this case At defines how far each point will be away from the critical point,
(t=1).
The system has the usual format to the interfacing equation when both curves

make a continuous smoothie link (for example, Equation 6.52).

After solving the system, the parameters values are available below:

8, =-3.7797-10°
bee =1.1298-10°
Cpe = —1.1257-10°
dge =3.7385-10°

(6.170)

Figure 6.92 shows the result of the approximation for the critical region.
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Figure 6.92 — Final result to interfacing above critical point.
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6.9.4 Final approximation and pseudo code

The algorithm above that we proposed for the approximation for the entire region
which also includes below freezing point and above critical point regions provides

the result curve as shown in Figure 6.93.
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Figure 6.93 — Final result to liquid thermal conductivity approximation in the entire
temperature range.
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Therefore, in this chapter we have reached an approximation in the entire range

of temperature, managing the approximation error in satisfactory levels (no

greater than 5%). The pseudo code provides fluid property values starting below

triple point up to above critical point (Figure 6.93).

This code can be implemented in any programming language.

then
then
then
then
then

oy

a,+b,r

N

oy

2 3
Apg T DT +C 7" +d 57

Y1(T)+Z(T_TH1)y2 (7) (6.171)
Qg +bge T +Cpe’ +dg 7P

=)

oyl
N
I

5

=

=
AA/;\/‘\/‘\
N N N N N’
Il

>~

ac +h.r+c.r’ +dord recrt + for
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Table 6.11 — Result of liquid thermal conductivity the algorithm values.

aa=-1.028E1 cs= 5.0444 bec = 1.1298E6 fc= 1.525E1
ba=2.37E1 ds=-6.911 Cec = -1.1257E6 Aty = 3E-3
aas = -8.423 eg = 6.2103 dec = 3.7385E5 Atz = 8E-3
bas=1.123E3 fs=-2.075 ac=-1.018E2 Atz = 3E-3
cas= 1.14E5 gs=4E2 bc= 3.56E2 At4= 8E-3
das = -1.536E7 hg=2 Cc=-4.895E2
ag=7E-3 tH1= 0.96 dc= 3.342E2
bg=-1.92 asc=-3.7797E5 ec=-1.133E2

6.10 Approximations for liquid specific heat capacity

6.10.1 Approximations for saturated zone

Liquid specific heat capacity (cp,) is defined as the amount of heat (dQ) needed
to raise the temperature by a small increment (dT) of the sample of unity of mass
(M), Equation (6.172).

Cpy = (6.172)
The original data of the liquid specific heat capacity behavior for water with

temperature in the two-phase zone, presented by ASHRAE (LEMMON et al.,
2023), is shown in Figure 6.94.
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Figure 6.94 — Water Liquid specific heat capacity number data.
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Faghri in his book (2016) suggested an equation to approximate this water

property, Equation (6.173).

Ln(c,,(T))=1.435-3.2231.10* . T +6.1633-10° -T2 - 6173)
4.4099-10°-T° +2.0968-10° - T* ~3.04-10*.T® '

where T is expressed in °C and Cpc in kJ/kg/K.

This equation is valid from 20°C to 200°C; for such temperature range this
equation can be used for HP modeling with no concern since the approximation
error mentioned is 0.03% and the equation covers up to 48% of the entire two-
phase temperature range. However, when we try to use this polynomial equation
out of the range established, the result run out of the real behavior. The green

continuous line in Figure 6.95 expresses this deviation from the real values.
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Figure 6.95 — Faghri polynomial approximation.
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The dimensionless liquid specific heat capacity follows general dimensionless

definition and presented as:

c, ()= 2 "ok

pl Cor —Cor (6.174)
For the saturation interval (i.e., two-phase zone, 0<t<1), the original curve has a
sharp climb as it approaches the critical temperature. It is difficult to obtain a
unique function which approximates the entire zone within acceptable error;
therefore, we resolved it by applying an interruption point (tn) and join two
approximation functions in the interval ti<t<1l by application of Heaviside

function. The best results gave the following approximation functions:

Y, =ag +byr+cyr’ +dgr’ +e,rt + for + g7’
_ hy(r—7,)" (6.175)
1- jB(T_THl)kB

2
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These functions are used in an additive way: when 0<t<tH, then y= yi(t); when

TH1<T<TH2, then y(t)=Yyi(t)+y2(t).This can be condensed in a unique correlation for
our property:

o (T): yl(T)"'Z(T_THl)yz(T) (6.176)

Applying the algorithm above, in the saturation interval of temperature we achieve
the curve shown below. That chart on Figure 6.96 shows data from ASHRAE
using green circles (LEMMON et al., 2023). The approximation results are in the

blue line. In red bars we have the deviation error from property table data and
approximation.

Figure 6.96 — Liquid specific heat capacity approximation results in saturated zone.
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We observed the deviation from data by approximation lie within the usual

acceptance criteria in 1.5% of deviation from the properties table data.

To build this property approximation we used a baseline curve (4" degree
polynomial equation), and we add an auxiliary function in that curve with the use
of the Heaviside function. By the use of Equation (6.176) the result of the
approximation is shown in Figure 6.97.
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Figure 6.97 — Heaviside function in approximation for saturated zone.
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The proposed algorithm shall cover the approximation of the entire region which

also includes the zones below freezing and above critical points.

6.10.2 Approximations for freezing zone and interfacing

Liley (2005) suggested one approximation to describe that property behavior on
freezing zone as presented in Equation 6.177 as a linear function (Figure 6.98).

In that case, the equation starts at -20 °C and go to 0°C.

c,,(T)=2.067+6.89-107-T (6.177)

where T is expressed in °C and cpi in kJ/kg/K.

A remarkably similar approximation for cp, of water ice has been developed by
Fukusako (1990) for the temperature range from -183 °C to 0 °C:

c,, =0.185+0.689-10°T (6.178)

where cp, is measured in kJ/kg/K and T - in Kelvin,

197



Figure 6.98 — Property data in freezing zone.
2,08

Legend
206 ® o liguid Specific Heat Capacity Data .

2,04 .
[ ]
.

2,02 .
2 .
up
_ﬂi L ]
2 2 .
= °
L& -

1,08 o

[ ]
.
1,96
[ ]
L ]
L ]
1,94
-
[ ]
1,92
-24 -20 -16 -12 -8 -4 0 a
T[°C]

Another point which deserves attention is the continuity of the vales and
derivatives in the interface between curves to guarantee that the interfacing

technique provides perfect softening.

The interfacing technique is the same that showed in other sections of this work.
We start by presenting both equations 6.194 and 6.195 that we intend to connect

along with the respective derivatives.

For freezing zone:

C,, (7], =aa+b,r (6.179)

It is possible to demonstrate a third-degree polynomial function yields the smooth

interfacing to join the subcooled zone with saturated zone, Equation (6.180).

Cote (7) =85 +hg7+Cpg7’ +0 57" (6.180)

The system of smooth interfacing has the similar format as for other properties
(for example, Equation 6.46). Points of tangency can will be defined aiming to

optimize the approximation result:
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Az, =0.003;

At, =0.008, (6.181)
7, =—-At, '
7, =+AT,

Using the developed universal approach for any property, the result coefficients

for cpi interfacing curve is following:

a,, =0.012020
b,, =—6.237840
C e = 958.34396
d,, =-47962682

(6.182)

The result approximation around triple point (t=0), including the interfacing curve,

is shown in Figure 6.99.

Figure 6.99 — Final Result to interfacing below freezing point.
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6.10.3 Approximations for supercritical zone and interfacing

For the supercritical region, the Cp. becomes Cpv as soon as the difference
between the liquid and vapor phases disappears. In various sources this region
is referenced as either “superheated vapor” or “steam” or “gas.” The CpL behaves
in an overly complicated manner near the critical point: its values get sharp
increasing as t approaches 1 from the left, and then gets sharp falling as < slightly
pass 1 to the right. It also slightly depends on pressure. The chart for near-critical
pressure P=250 bar is shown in Figure 6.100 (adapted from DHANUSKODI et
al., 2011).

Figure 6.100 — Property data in super critical zone.
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For super-critical zone a polynomial function of 5th order approximates well the
property:

Cole (T)L>1 =a, +h.r+c. 7’ +d.r’ +ert + ford (6.183)
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The interfacing technique is the same that we used showed in others part of this
work, we start with both equation that we want to link and the respective

derivatives.

Looking for a smoother transition between those two zones ((6.176) & 6.183), it is

used a third-degree polynomial function (6.184).

2 3
Colec (T): 8gc +Dpc 7 +Cae 7" + e T (6.184)

Points of tangency can be defined aiming to optimize the approximation result. In

this case, At defines how far each point is away from the critical point, (t=1).

A7, =0.005
At, =0.005;
7, =1-A7, =0.995
7, =1-Ar, =1.005

(6.185)

The system has the usual format to the interfacing equations when both curves
make a continuous smooth link (Equations 5.29 and 5.32). Using the values

mentioned above, the solution is the following:

a,. =3073101729
bee =—9234222057
Coc =9248942382
dge =-308781161

(6.186)

Figure 6.101 shows the result of the approximation.
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Figure 6.101 — Final result to interfacing above critical point.
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6.10.4 Final approximation and pseudo code

Therefore, in this chapter we reached an approximation in a wide range of
temperature, managing the approximation error in satisfactory levels (no greater
than 5%) Figure 6.102. The pseudo code provides the fluid property values
starting below triple point up to above critical point and is presented by Equation
(6.187).
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Figure 6.102 — Final result for liquid specific heat capacity approximation in the entire
temperature range.
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This code can be implemented in any programming language.
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Table 6.12 — Resulting liquid specific heat capacity pseudo code values.

aa=-1.087E-1 cs= 5.511E-1 ke =1 Cc =4.5485E3
ba=1.305E1 ds = -2.5295 H1= 0.89 dc=-3.311E3
aas = -8.9014E-2 es = 6.4967 asc = 3.073E5 ec=1.2023E3
bas= 1.1790E1 fg =-7.9777 bec = -9.234E5 fc=-1.7421E2
cas= 1.2116E3 gs = 3.8797 Csc = 9.249E5 Aty = 3E-3
dag = -1.6262E5 hs = 5E1 dsc = -3.088E3 Atz = 8E-3
ag=-2E-6 iB=2 ac =8.536E2 Atz = 5E-3
bg=-5.53E-2 jg=5E-1 bc=-3,1181E3 At4= 5E-3

6.11 Approximations for liquid Prandtl number

6.11.1 Approximations for saturated zone

The Prandtl number makes the correlation between the momentum diffusivity (v)

and the thermal diffusivity (o).

7
C
Pr:z:}(—p:p—ﬂ (6.188)
a K
/(Cpp)

The parameters are defined as following:

v is momentum diffusivity or kinematic viscosity, o is thermal diffusivity, pis

dynamic viscosity, «k is thermal conductivity, cpis specific heat and p is density.

By the use of this property initial table, it can be approximated directly from the
available points. As an option the Prandtl number approximation can be obtained
from the approximations of its components: viscosity, thermal conductivity, and

sensible heat.

However, Prandtl number is a dimensionless number that does not means that it
is exclusively composed by dimensionless numbers, in fact, to obtain the
approximation to Prandtl number using the relations between others

dimensionless approximations we need to follow those steps:
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e Transform the available dimensionless approximations of Pr components

into dimensional values by inverse formulas.

¢ Build a table of values of Prandtl number, calculated from its components,
as a function of temperature and pressure. Then add columns which
calculate reduced Pr number as a function of dimensionless temperature

and dimensionless pressure.

e Perform approximations of reduced Pr number to result in pseudo-code

format.

The Prandtl liquid number behavior with temperature in saturation zone is
expressed below in Figure 6.103 (BEATON, 1986).

Figure 6.103 — Water liquid Prandtl number Data.
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It is worth to mention that in literature the value of this property in critical point is
considered infinite, so we decide to attribute an extrapolated value for Liquid
Prandtl Number at critical point by an interpolation curve build from the past 4
points. It resulted in a value of original Pr number equal to 31 (plotted in Figure
6.103).
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About this property Liley (2005) suggested a group of equations to describe
properties behavior with temperature. To build liquid Prandtl number behavior
from -20°C up to 50 °C the author breaks its equation in three parts. One starting
from -20°C until 0°C, moving to 0°C up to 25°C and from 25°C to 50°C.

All those three equations, that Liley (2005) suggested, represents 13,37% of the
saturation range. In order to exemplify the deviation of an equation out of his
range of actuation we compared the data, equation suggested by (LILEY, 2005),
and that same equation out of temperature range suggested.

,1.78023+501.834(

PI‘(T ) —e T+114.643) (6.189)

This equation is valid from 25°C to 50°C; that equation covers up to 6.7% of the
entire two-phase temperature range. As an example, when we try to use this
polynomial equation out of the established range, in that case from 0°C up to
374°C, the result does not follow the real behavior. The green line in Figure 6.104

expresses this deviation from the real data.
Figure 6.104 — Liley approximation.
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Following the general approach for all other properties, despite Pr number is
already a dimensionless parameter, we introduce “reduced Pr number” defined

as.

ﬁr (T) — I:)rl (T) - I:)rl (TB)
7 P(T,) —Pr(T,)

(6.190)

Following our approach to elaborate the approximation over entire two-phase
range, from the triple point to the critical point, we also continue using non-

dimensional variables for temperature.

As shown in Figure 6.103, for the saturation interval (i.e., two-phase zone,
0<t<1), the original curve has a sharp climb as it approaches the critical
temperature. It is difficult to obtain a unique function which approximates the
entire zone within acceptable error: therefore, we will improve it with application
of two interruption points (tH1 and tr2) and join the approximation functions by

application of Heaviside functions.

The best results are the following approximate functions:

y, =ag +bgr+cr’ +dgrd+egrt + for® +g,7°
Y, =hg(z =7y, )"° (6.191)

v = s [1— Cos(z(r —17,, ))Jks

2

To build such approximation we used a baseline curve (6™ degree polynomial
eguation), and we add in that curves that satisfies continuity and smooth interface

conditions.

These functions are used in an additive way: when 0<t<tH, then y= yi(t); when
tH1<t<tH2, then y(t)=yi(r)-y2(t); when tH2<t<l, then y(t)=Yyi(t)-y2(t)+y3(t). This

can be condensed in a unique correlation for our property:
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Pr, (T) = yl(T)_ Z(T - TH1)Y2 (T)"' Z(T “Tha )Y3(T) (6.192)

Applying the algorithm above, in the saturation interval of temperature we achieve
the curve shown in Figure 6.105. This chart also shows data from ASHRAE tables
using green circles. The approximation results are shown by the blue line. In red

bars we have the deviation error from property table data and the approximation.

Figure 6.105 — Liquid reduced Prandtl number approximation in saturated zone.
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We observe that the deviation from the available data by approximation lies within
the acceptance criteria of 3% of deviation from the properties table data. The
point that deserves attention is the end of range due to the error that point

conducts. This point will be smoothed by the link curves that will be result of the
interface technique application.

The final curve and contribution of each approximation functions, obtained from
Equation (6.192), are shown in Figure 6.106.
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Figure 6.106 — Contributions of approximation functions to final approximation for
saturated zone.
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Figure 6.107 — Zoom on individual functions in approximation for saturated zone.
1

0,3 Legend
® @ Datal[-]
— 1
yl-y2
— yl-y2+y3

0,6

0,4

0,2

Pr[-]

0,6 e,

0 0,2 0,4 0,6 0,8 1

From the other hand, this property is a combination of other properties. When we

perform this calculation, we obtain the result shown in Figure 6.108.
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Figure 6.108 — Reduced Prandtl number calculated.
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One can see, the maximal error lies within 2 %.

If we put side by side the Prandtl number data, approximation, and calculation,
we reach the curves given in Figure 6.109, where it is possible to notice the main
difference of obtaining property value by approximation or calculation way. This
difference is the oscillation highlighted by dash circle, this phenomenon occurs
because of a side effect of using addition Heaviside, in each curve interruption
has localized oscillation in a way to best fit.
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Figure 6.109 — Prandtl number data compare with approximation and calculation.
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Therefore, calculated approximation of liquid Pr number provides slightly better
result than the direct piece-wise approximation.

6.11.2 Approximations for freezing zone and interfacing

In freezing zone, there is not many data available for this property, with that in
mind, we calculate the property in this temperature rage using obtained
approximations of Pr number components given in Equation (6.188). It is
important to expose that in the freezing zone, this property is directly bonded to
the dynamic viscosity and Pr behavior is mostly driven by the viscosity of ice. In

the case, this value is much higher when compared with the liquid value.
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Figure 6.110 — Prandtl Number in freezing zone.
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In this zone, the reduced Prandtl number can be approximated by a linear

function:

Pr, (r)=a,+b,r (6.193)

Interfacing equation joins the subcooled zone with saturated zone.

Looking for a smooth transition between those two zones, Equations (6.192) and

(6.193), it is used a third-degree polynomial Equation (6.194).
Pr, (r):aAB +0,,7+C g7’ +d 57 (6.194)

The system of equations to calculate the coefficients in (6.194) will be of the
following format to interface tangency both curves and to make a continuous

smooth link.
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5 2 3
PrIA (Tl): Apg +DaeTi +Cae7 + U7y

(6.195)

Points of tangency can be defined trying to optimize the approximation result. In

this case At determines how far each point will be away from the triple point:

Az, =0.004;
Az, =0.003;
7, =-Ar,

7, =+Ar,

The solution of system of Equation (6.195) is expressed below.

a,; =1.7315-10"
b, =-9.245-10"
Cpp = 3.9173-10%
d,; =2.5536-10*

(6.196)

(6.197)

The result approximation around triple point (t=0), including the interfacing

curve, are shown in Figure 6.111.
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Figure 6.111 — Final result to interfacing below freezing point.
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6.11.3 Approximations for supercritical zone and interfacing

In super-critical zone, we correlate the pressure variation and temperature
variation, resulting in an equation of two variables: dimensionless temperature

and pressure.

For super-critical zone:

Pr, (7, p)(r>1 = (ag +by p)(cBrdB) (6.198)

d(l5r,c (z, p))
d(r)

= (aB +bg p)(CBdBTdBil) (6.199)

>1

In Figure 6.112 is possible to see the reduced Prandtl number approximation

compared with the available data.
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Figure 6.112 — Approximation of reduced Prandtl number as a function of dimensionless
temperature and pressure for super-critical zone.
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Looking for smooth transition between those two zones in Equations (6.192) and
(6.198), it is used a third-degree polynomial Equation (6.200).
Pr.. (T): 8gc +Dgc 7 +Cpe 7 + g7 (6.200)

Points of tangency can be defined by trying to optimize the approximation result.
In this case At defines how far each point will be away from the critical point,
(t=1).

A7, =0.003;

Ar, =0.06913

7, =1-A7r, =0.997
7, =1+A7r, =1.06913

(6.201)

This system has the following format to the interfacing equation tangency when

both curves make a continuous smoothie link.
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= 2 3
Pr,B (73): Agc +Dgc Ty +Coc Ty + g7y

=Dy +2C5. 7, +3d BCT32

_5r|C (2'4, p)= g +Dge7, + CBCT42 + dBCT43 (6.202)
d (Pﬁc (74 )1 p)

d(74)

=Dy +2Co.7, +3d g7l

Solving the system above, the parameters values are available below.

0,8

0,6

0,4

0,2

Pri[-]

-0,2

-0,4

-0,6

-0,8

ag. =-100286257

bee = 28674.39

6.203
Cgc =—2731595 ( )
dgc =8670.22
Figure 6.113 shows the result of the approximation with this interfacing.
Figure 6.113 — Final result to interfacing above critical point.
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6.11.4 Final approximation and pseudo code

Because of the large magnitude of this property in freezing region, which is much

greater than for the others zone, we omit freezing zone from the Figure 6.114 to
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the other details be available; but is possible to check the freezing behavior in
Figure 6.111.

Figure 6.114 — Final result for liquid reduced Prandtl number approximation in the entire

temperature range.
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Therefore, in this section we reach an approximation in a wider range of
temperature, managing the approximation error in satisfactory levels (no greater
than 5%). The pseudo code (Equation 6.204) provides fluid property values
starting below triple point up to above critical point.

This pseudo-code can be implemented in any programming language.

if (r<z,) then Pr (r)=a,+b,r

if (r,<z<7,) then Pr(r)=a,, +bur+Cuur’ +d,,7°

if (72<T<73) then ﬁrL(T):y() (T THl)yZ( )+Z(T_TH2)y3(T) (6.204)
if (r;<r<7,) then Pr(r)=ap. +beer+Coer’ +dpe®

if (c>7,) then Pr,(z, p)z(aB+be)(cBr )
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Table 6.13 — Resulting liquid reduced Prandtl number approximation parameters.

aan=4.4707E14 ds=-1.609E2 142=0.976 Aty = 4E-3
ba=1.2177E15 eg=2.743E2 agc=-7.398E3 Art,=3E-3
aas=1.7315E14 fzg=-2.368E2 bec=2.106E4 Atz=3E-3
bae=-9.245E16 0gs=8.097E1 cCec=-1.998E4 Ats=6.913E-2

Cas=3.9173E18 hg=8.5 dsc = 6.317E3
das = 2.5536E21 ig=1.5 ac = -9.66E-1
ap= -2.7E-2 js= 9E3 be = 1.582
bs = -8.667 ke = 1.467 cc=5.38E-1
cs= 5.091E1 T = 0.87 dc = -9.651

To return to original Prandtl number from the obtained approximations, use

inverse expression:

Pr,(T) =Pr, (T;) + apfx(ﬁﬁ (T)Xprl (T, )—Pr, (Tg)) (6.205)

6.12 Approximations for latent heat

6.12.1 Approximations for saturated zone

Latent Heat (A) can be defined as the amount of energy released or absorbed
during the phase change of the substance (Q) by unity of mass (M). Latent heat
also known as energy released or absorbed by a thermodynamical system during
a transmission between phases. It can be applied to evaporation-condensation
process (transition of liquid phase to vapor phase, and vice versa), as well as to
melting-solidification process (transition of solid phase to liquid phase and vice
versa). In the first case it is known as latent heat of vaporization (or enthalpy of
vaporization), and in second case it is known as latent heat of fusion (enthalpy of

fusion).

The parameter can be defined through the following equation:

(6.206)
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The original data of the latent heat behavior with temperature, published by
ASHRAE Lemmon et al. (2023), and data from Liley (2005), are presented in
Figure 6.115.

Figure 6.115 — Water Latent Heat Data. (LEMMON et al., 2023; LILEY, 2005).

2800

'Q"
2400 ""'cm«
"'
L ] ° ° o
L]
L ]
2000 Ce,
[ ]
[
[ ]
[
1600
o0 [ ]
vy
} [ ]
)
< 1200 °
[ ]
800
L ]
400 Ceeqe Legend

® @ [atent Heat Data
0 &
0 40 80 120 160 200 240 280 320 360 400
T[°C]
The data presented in Figure 6.115 covers solid state and two-phase coexisting

phase zone. At super-critical temperature zone, the latent heat is 0.

Faghri (2016) suggested a polynomial function to approximate logarithm of this
water property (6.207). The latent heat is expressed in KJ/kg and the temperature

is in Celsius.

Ln(A(T))=7.8201-5.8906-10 -T —9,1355.10° -T2 + (6.207)
8.4738-10°.T%-39635.10%°.T* -3.04.10™.T°® '

This equation is valid from 20°C up to 200°C, having the approximation error of

0.03%. However, the approximation covers up to 48% of the entire two-phase

temperature range. As an example, when we try to use this polynomial equation

out of established range, the result does not follow the real behavior. The green
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line in Figure 6.116 expresses this deviation from the real value. It is not possible

to use such approximation above 200 °C.

Figure 6.116 — Faghri polynomial approximation.
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Following our approach to elaborate the approximation over entire two-phase
range, from below the triple point to the zone above the critical point, we continue

using non-dimensional variables for temperature, t, as well as for the latent heat:

A7) =

(6.208)

At the critical point and above it, the dimensional A is always equal to O; therefore,
the dimensionless latent heat A4 =1 for this region. At t=0, A3=~2500 KJ/kg. In
the ice (solid) region, the latent heat value drops from ~2500 KJ/kg down to ~333
KJ/kg. Therefore, in the negative temperature region (t<0, i.e., “ice”), the

dimensionless latent heat A jumps from 0 to the value of ~0.867.

For the saturation interval (i.e., two-phase zone, 0<t<1), the original curve has a
sharp climb as it approaches the critical temperature. It is difficult to obtain a
unigue function which approximates the entire two-phase zone within acceptable
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error. Therefore, we propose to improve it with application of an interruption point
(tn) and join two approximation functions in the interval tH<t<1 by application of

Heaviside function.

The best outcome resulted the following combination of two approximate

functions:

{yl =a, +bgr+cyr’ +d 7’ +egrt (6.209)

Y, = gB(T_Tm)hB

These functions are used in an additive way: when 0<t<tH, then y= yi(t); when
tH1<t<tH2, then y(t)=y1(t)+y2(t). This can be condensed in a unique correlation

for our property:

Ar)=y,(2)+ lew, )y, 0) (6.210)

By applying the algorithm above, in the saturation interval of temperature we
achieve the curve shown below. The chart on Figure 6.117 shows data from
ASHRAE using green circles (LEMMON et al., 2023). The approximation results
are in the blue line. In red bars we have the deviation error from property table
data and approximation.
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Figure 6.117 — Latent Heat approximation result in saturated zone.
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We observe the deviation from the experimental property data by the

approximation lie within the acceptance criteria of 3%.

To build this property approximation we used a baseline curve (4™ degree
polynomial equation), by adding the second function y2, that satisfies the criteria
of tangency and continuity, by using of the Heaviside function. The result of that
is shown in Figure 6.118. The main reason to use this technique is to reach the

approximation curve to be continuous and “smooth,” without sharp edges.
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Figure 6.118 — Two-functions approximation for saturated zone.
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6.12.2 Approximations for freezing zone and interfacing

For the sub-freezing zone, Liley (2005) suggested one approximation to describe
that property behavior (Where, A is in KJ/Kg and T is in Celsius degree, see
Figure  6.119). In that case, this equation ranges  from

-20 °C to 0°C. The approximation is expressed in Equation (6.211).

AMT)=-3334+211-T +4-10°.T? (6.211)

Where, )\ is KJ/Kg and T is Celsius degree.
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Figure 6.119 — Property data in freezing zone. (LILEY, 2005).
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In this zone, the dimensionless latent heat can be approximated by a linear

function:

A(t)=a,+b,r (6.212)

Interfacing third-degree polynomial function joins the subcooled zone with

saturated zone, Equation (6.213).

Jog (1) = ,5 + 0,57 +Cppr° +0 5 7° (6.213)

The system of 4 equations for uninterrupted join conditions presents the usual
format to the interfacing equations touching tangentially both curves of value and
derivative, (as example, see Equation 6.46). The tangency points are defined

aiming to optimize the approximation result:

At, =0.005,
At, =0.003

6.214
7, =—-A1; ( )

T, =+Ar,
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The solution for interfacing polynomial coefficients is expressed below:

a,, =0.27425
b =—152.0027
Che =10159662

d,s = 33853750

The result approximations around triple point (t=0), including the interfacing

curve, are shown in Figure 6.120.

Figure 6.120 — Final Result to interfacing below freezing point.
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6.12.3 Approximations for supercritical zone and interfacing

In super-critical zone, the latent heat is 0, so the equation system follows the

steps below.

For super-critical zone dimensional A=0, dimensionless A =1 , and derivative is

0:
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Ac(z) =1 (6.216)

o
—
s*l
—~

N
~—
=

I
o

(6.217)

Looking for a smooth transition between those two zones, Equations (6.210) and

(6.216), it is used a third-degree polynomial Equation (6.218).

oo (1) = 8 + b7 +Coo 7% +dg 7 (6.218)

The tangency points can be defined by optimizing the approximation result. In

this case At defines how far each point are from the critical point, (t=1).

Ar, =0.003
Ar, =0.06913

7, =1-Ar, =0.997
7, =1-Ar, =1.06913

(6.219)

The system of Equation (6.220) has the following format to uninterrupted joining

when both curves make a continuous smooth link.

- 2 3
_/13 (Ta)g: e +Dpc Ty +Cpe 7y + e 7,

dii
(d(B 7)3 = oo + 20 s +30 507,
73 , 5 (6.220)
Ae 74; =alpe +Dpe Ty +Cae7, + g7y
di4
( c () =bge +2C5.7, +3dge 7,
d (74)
Solving the system, the parameters values are available below.
ag. = 421.552
by =—1247.8504
(6.221)

Coe =1230554
dge =-403.426
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Figure 6.121 shows the result of the approximation.
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6.12.4 Final approximation and pseudo code

The proposed approximation of the entire region, which includes the regions

below freezing and above critical point, is shown in Figure 6.122.

Therefore, the approximation is starting with a negative dimensionless
temperature in the freezing region, and A4 achieving a maximum A =1 above the
critical point, which corresponds the situation of no vapor-liquid interface
existence. At the supercritical region, the property has 0 value, translating into 4

=1 on dimensionless rule.
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Figure 6.122 — Final result to latent heat approximation in the entire temperature range.
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In this section we reach an approximation in a wide range of temperature, with
satisfactory error levels (no greater than 3%). The pseudo code provides fluid

property values starting below triple point up to above critical point (Figure 6.122).

This code (6.222) can be implemented in any programming language.

if (r<17,) then A(r)=a,+b,r

if (r,<z<r7,) then A(r)=a,, +br+Cpr’+d,57°

if (r,<7<7,) then A(c)=y,(c)+ x(r—74,)y,(7) (6.222)
if (r;<r<7,) then A(r)=ag +0pe7+Coet? + g7

if (r>7,) then A(r)=0
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Table 6.14 — Resulting latent heat approximation parameters.

aa = 8.67E-1 dAB =3.385E6 eg= 5.3E-2 bBc =-1.248E3 At3= 3E-3

bao=3.04E-1 ag=0 fs =2.75 Cec=1.230E3 Ats=6.913E-2
aas = 2.74E-1 bB= 3.608E-1 Os = 1.7 dBc= -4.034E3
bAB =-1.52E2 Cs= -6.84E-2 TH1 = 0.80 At = 5E-3

crs= 1.016E4 dg=3.06E-1 asc=4.215E2 At,=3E-3

6.13 Approximations for surface tension

Surface tension is an important parameter with physical effect, which is
observable in two physical phases. This phenomenon becomes noticeable when
the liquid surface behaves like an elastic membrane due to molecular cohesive

forces between its molecules.

Surface tension, represented by the symbol o, is measured in force per unit
length: N/m. The surface tension behavior with temperature can be seen below
(LEMMON et al., 2023) in Figure 6.123.

Figure 6.123 — Water surface tension data.
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Faghri (2016) suggested equation to approximate the logarithm of this water

property by a polynomial function of 5th order.
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Ln(o(T)) = 4.3438—3.0664-10° - T +2.0743-10° -T2 — 6.223)
2.5499-107" -T*+1.0377-10°-T* -1.7156-10 ™ - T® '
The surface tension is expressed in N/m and the temperature used in the

equation is in Celsius.

This equation is valid between 20°C and 200°C; in this range the approximation
error mentioned in (FAGHRI, 2016) is 0.03% and the equation (6.223) covers up
to 48% of working temperature range.

Figure 6.124 — Faghri approximation available range.
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Following the approach to elaborate the approximation over entire two-phase
range, from below the triple point to the zone above the critical point, we continue
using non-dimensional variables for temperature, 1, as well as for the surface

tension:

o -0,

o(r) = (6.224)

Oy — 03

As for the approximation, the best results gave the following function:
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&(r)= """ (6.225)

In the saturation interval of temperature, we achieve the curve presented in
Figure 6.124. That graph shows data from ASHRAE using green circles
(LEMMON et al., 2023). The approximation results in the blue line. In red bars we

have the deviation error from property table data and approximation.

Figure 6.125 — Surface tension approximation result in saturated zone.
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We observe the deviation from the tabled original property data by the

approximation lies within the acceptance criteria of 3% over almost entire range.

In the freezing zone, this property has no value, so the smooth link will be
established having a 0 value:

EA(T) =0 (6.226)

Interfacing equation joins the subcooled zone with saturated zone, used a third-
degree polynomial function (6.227).
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— 2 3
()= 8,5 +0,s7+C g 77 +0 57 (6.227)

The system of equations of uninterrupted joining has a usual format, like Equation
6.46, and does not present here.

Points of tangency are the following:

Az, =0.003
Az, =0.008; (6.228)
7, =—-At1,
7, =+Ar,
The solution for interfacing polynomial coefficients is expressed below.
a,; =0.0003698
b,s = 0.23650 (6.220)
C. = 34.4026
d, =-111435

The result approximations around triple point (t=0), including the interfacing

curve, is shown in Figure 6.126.
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Figure 6.126 — Final Result to interfacing below freezing point.
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For the super-critical zone, this parameter does not make sense once the vapor-
liquid interface does not exist; Therefore, we assume this absolute value to be 0,

which corresponds to 1 for the dimensionless surface tension:
G.(7)=1 (6.230)

A smooth transition between those two zones provides a third-degree polynomial
function (6.231).

G (7)= ge +0ge 7 +Coo 7%+ 7° (6.231)

Chosen points of tangency at critical point, (t=1), are given below.

A7, =0.005
At, =0.005;
7, =1-A7, =0.995
7, =1-Ar, =1.005

(6.232)
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The system has the following similar format to the interfacing equation tangency

when both curves make a continuous smooth link.

By solving this system, the parameters values are presented below.

a,. =-107.658

bee = 272.3035

Coe =—219.159 (6.233)
dge =55.5123

Figure 6.127 shows the result of the approximation with the interfacing curve.

Figure 6.127 — Final result to interfacing above the critical point.
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The algorithm above that we proposed for the approximation of the entire region

which also includes below freezing and above critical point regions is shown in

Figure 6.128.
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Figure 6.128 — Final result to surface tension approximation in the entire temperature

range.
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Therefore, in this chapter we reach an approximation in a wide range of
temperature, managing the approximation error at satisfactory levels (no greater
than 3%), Figure 6.127. The pseudo code provides fluid property values starting

below triple point up to above critical point, (6.234) .

This code can be implemented in any programming language.

if (r<7) then &(z)=0

if (r,<r<7,) then &(r)=a,,+ber+Cur’ +d,,7°

if (r,<r<z,) then &(r)= 7% (140e7) (6.234)
if (r;<z<7,) then &(r)=ap, +bger+Coet’ +dpe 7’

if (c>7,) then &(r)=1
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Table 6.15 — Resulting to surface tension approximation parameters.

aas = 3.698E-4 bec=2.723E2
bag =2.365E-1 Csc = -2.192E2
cas = 3.440E1 dsc=5.551E1
dag=-1.1143E3 Aty = 8E-3
as=1.15 At2= 5E-3
b = -9E-2 At3= 5E-3
asc=-1.077E2 At4= 5E-3
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7. CONCLUSIONS

This work presents for the first time a methodology for the approximations of 13
thermophysical properties applied for water in the expanded temperature range
starting from the freezing zone (below triple point), then passing through entire
vapor-liquid coexisting zone (two-phase or saturation zone) and ending at the
supercritical zone (above the critical temperature). This is different from the usual
approach in which researchers propose approximations to a property in a strict
temperature range, aligning with the typical operating limits of heat pipes. The
development of methodologies and approximations provides the foundation for
complex transient mathematical models applicable to freezable and cryogenic
heat pipes. An important feature of these approximations is the uninterrupted and
smooth behavior of any thermo-physical property over the entire temperature
range, with an acceptable deviation to prevent erroneous modeling and numerical
instability. To develop these property approximations over the entire temperature
range by a piecewise function with different components, the Heaviside function
technique was applied for the first time. Another advance is the interfacing
technique, which provides a smooth connection between the curves in different

matter state zones.

It is proposed an advanced unique dimensionless format for temperature,
pressure, and all other properties, correlating not only the value of the property
at the critical point but also at the triple point. To treat the dimensionless
temperature as dimensionless values, some authors used only the temperature
divided by critical temperature; our approach brings a certain physical sense
because the dimensionless temperature is always 0 at the freezing point and 1
at a critical point, keeping the interval between 0 to 1 for the saturation conditions
when both vapor and liquid phases coexist. Correspondingly, if temperature is
negative, it means the freezing zone; if above 1 - supercritical region. Moreover,
all 13 properties behave by a similar way. Such approach provides universal
approximations, and we expect the similar correlations can be developed for
other working fluids. Another advantage of using dimensionless temperature and

dimensionless properties is that the approximation parameters do not depend on
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a system of units of measurement, which can be used in International System or

Imperial System od Units without any changes.

These approaches establish a solid foundation for developing approximations for
other fluids, such as acetone and ammonia, among others. These can be used
in mathematical models of heat pipes for transient behavior simulations in a large
temperature range. Notably, the developed approximations are not closed-form
correlations but as pseudo-codes, which can be implemented in any
programming language and applied in mathematical models.

The implemented random optimal search method was applied within MS Excel
spreadsheets using the VBA language. The users may actively modify the
optimization process by adjusting the variable limits, reducing the time of
computation, and improving the approximation precision. The best parameters
are obtained by minimizing a combined weighted criterion of the average

deviation and the maximum error.

The applicability of the developed technique is not limited by heat pipes, capillary
pumped loops, thermosyphons and other two-phase passive heat transfer

devices but also every other development that need water property value.

238



8. PROPOSAL FOR FUTURE RESEARCH

This innovative approach, along with all approximation results, was initially
developed for water due to the wide availability of tabulated data for all 13 thermo-
physical properties for the saturation zone, overheated steam, and ice. We expect
that the format of multiple piecewise functions and pseudo-codes would be similar
for other working fluids thanks to the universal dimensionless approach. The
optimization algorithm can be improved to not only to calculate the best
approximation parameters but also to select the best set of functions used in the
piecewise approximation.
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APPENDIX A — EQUATIONS AND ITS DERIVATIVES

This appendix relies on a foundation of key mathematical equations and
derivatives, presented in the work. These essential expressions serve as a

guidance to build the approximations and its derivatives used for the interfacing.

y(x)= x4 — ) _ xa(“bx)(—a(l +bx) +a-b-Ln [X]j

OX X
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APPENDIX B — FUNCTIONS AND GRAPHS FOR THE APPROXIMATIONS

This appendix is related to be a visual collection which may be helpful to build the
appropriate approximations. The figures show the functions and its behaviors

variating x (as dimensionless temperature t), and other parameters.

In Figures B.1-B7 first we present functions that obey addition Heaviside
conditions which is the functions and its derivates must be equal to zero at x=0.

Figure B.1 — Equation behavior example y = ax™ (Function meets conditions y(0)=0;
y'(0)=0 at n>~1.5).
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ax™

Figure B.2 — Equation behavior example y = ——,

y'(0)=0 at n>~1.5; 0.1 <b < 0.9

Function meets conditions y(0)=0;

5_

Figure B.3 — Equation behavior example, y = a,x? + azx> + a,x*, Function meets
conditions y(0)=0; y’(0)=0.
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Figure B.4 — Equation behavior example y = aTanh™(ex), Function meets conditions
y(0)=0; y’(0)=0 at n>~1.5.
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Figure B.5 — Equation behavior example y = aSinh™(x), Function meets conditions
y(0)=0; y’(0)=0 at n>~1.5.
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_ n
(%S(”x)) , Function meets conditions

Figure B.6 — Equation behavior example y = a
y(0)=0; y'(0)=0.
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Figure B.7 — Equation behavior example y = ax?e*", Function meets conditions y(0)=0;
y’(0)=0 at b>~1.5 & n>0.
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The functions below do not necessarily need satisfy the Heaviside conditions.

Figure B.8 — Equation behavior example y = Tanh™ (ex).
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Figure B.9 — Equation behavior example y = 1 — Tanh™(ex).

0 0,1 0,2 03 04 05 0,6 0,7 0,38 0,9 1

—4—n=1 —B—05 —A—2 =x=5

252



Figure B.10 — Equation behavior example y = (1 — Tanh"(ex))".
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Figure B.11 — Equation behavior example y = %(1 + Tanh(n(x — 0.5))).
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Figure B.12 — Equation behavior example y = (1 — x)".
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Figure B.14 — Equation behavior example y = Sech™(x).
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Figure B.16 — Equation behavior example y(x) = Ln (a -Exp (b . (1 - i)) + e).

nx.

14 -

1,2 A

1 4

0,8 -

06 -

04 -

0,2 -

0 0,25 0.5 0,75 1

——n=1 B 15 —A—2 —=—3 —#=5

256



APPENDIX C — EXCEL VISUAL BASIC CODE FOR RANDOM SEARCH

This part presents a developed VBA code built within EXCEL table to help the

User to reach the best approximation results by minimizing the weighted error of

the approximation. The parameters of approximations are optimized variables.

This code applies random search within values, chosen by User, on the

approximation parameters and place the 10" better result interactively in a rank.

At any moment User may interrupt the execution to narrow the range of variation

of any variable. The algorithm of this code was described in section 4.5 of

Methodology capture.

Dim continuarExecucao As Boolean
Public b As Integer

Sub EncontrarMelhoresValores()

continuarExecucao = True

On Error GoTo ErrorHandler ' Lidar com erros
continuarExecucao = True

Dim melhorResultado As Double

Dim erroMaximo As Double

Dim desvioO10 As Double

Dim variaveis(1 To 13) As Double

Dim Interacoes, loops, p As Long

Dim i, t, CONTROLE, j As Integer

Dim numeroDeColunas As Integer

Dim melhoresResultados(1 To 10) As Double

Dim melhoresVariaveis(1 To 10, 1 To 13) As
Double

Dim ResultAtual As Double

Range("AC9:AD100").Value = "

Interacoes = 30000

loops = 500

p=0

b=8

Range("N8").Value = p

Range("AC9:AD100").Value = "
Fort=1 To loops
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coloca valores

" Inicialize o melhorResultado
Ift=1Then

Forj=1To 13

variaveis(j) =
RndRange(Limitelnferior(j), LimiteSuperior(j))

Next j
Forj=11To 23

Range("N" & j).Value = variaveis(j - 10)
" Ajuste o indice da variavel para corresponder as
células

Next j
Forj=10To 23

Range("O" & j).Value = Range("N" &
j)-Value

Next j

‘Y->Z
Forj=10To 23

Range("Z” & j).Value = Range("N”
& j).Value

Next j
‘ X->Y
Forj=10To 23

Range(’Y” & j).Value = Range("N”
& j).Value

Next j
‘W->X
Forj=10To 23



Range("X” & j).Value = Range("N” Desvio4 = Range("T10”).Value
&))-value Desvio5 = Range(’U10”).Value
Next j . " 74 A
Desvio6 = Range("V10”).Value
‘V->W . ” »
Desvio7 = Range("W10”).Value
Forj=10To 23 .
or ° Desvio8 = Range("X10").Value
R "W’ & j).Value = R "N” .
& )).Value ange("W" & j).Value = Range( Desvio9 = Range("Y10”).Value
Next j DesviolO = Range("Z210").Value
‘U->v
Forj=10To 23 melhorResultado = melhordesvio
Range("V” & j).Value = Range("N”
&j).Value Resultl = Desviol
Next j Result2 = Desvio2
‘T->U Result3 = Desvio3
Forj=10To 23 Result4 = Desvio4
Range("U” & j).Value = Range("N” Result5 = Desvio5
& j).Value .
Result6 = Desvio6
Next j )
Result7 = Desvio7
‘S->T )
Result8 = Desvio8
Forj=10To 23 )
Result9 = Desvio9
Range("T” & j).Value = Range(’N” )
&j).Value Result10 = Desviol0
Next j
‘R->S ' Array para rastrear os 10 melhores
resultados e suas variaveis
Forj=10To 23
Range(’S” & j).Value = Range("N” )
&j).Value Fori=1 To Interacoes
Next | Do Until Not continuarExecucao
‘Q->R
Forj=10To 23 ' Defina os limites iniciais das variaveis
Range('R” & j).Value = Range(’N” Forj=1To13
& j).Value variaveis(j) =
Next | RndRange(Limitelnferior(j), LimiteSuperior(j))
“N->Q Next
Forj=10To 23
Range("Q” & j).Value = Range(’N” " Inserir valores aleat6rios nas células
&j).Value N11 a N21
Next | Forj=11To21
End If Range("N" & j).Value = variaveis(j - 10)
' Ajuste o indice da variavel para corresponder as
melhordesvio = Range("010”).Value células
Next j
Desvio1 = Range("Q10”).Value p=p+1
Desvio2 = Range(’R10”).Value Range("N8").Value = p

Desvio3 = Range("S10”).Value
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' Verificar se os resultados atendem aos
critérios

desvioAtual = Range(’N10”).Value

If desvioAtual < melhordesvio Then
b=b+1

' Calcular a multiplicagdo de N9 e N10

ResultAtual = desvioAtual

If ResultAtual < melhorResultado Then

--------------- Separar dados para grafico
Range("AC" & b).Value = p
Range("AD" & b).Value = desvioAtual

melhorResultado = ResultAtual

' Copiar os valores de N9 a N21 para
as células 09 a 021

Forj=10To 23

Range("O" & j).Value = Range("N" &
j)-Value

Next j

melhordesvio = Range(’010”).Value

End If

End If
Desvio1 = Range("Q10”).Value
Desvio2 = Range(’R10").Value
Desvio3 = Range("S10”).Value
Desvio4 = Range("T10”).Value
Desvio5 = Range("U10”).Value
Desvio6 = Range("V10”).Value
Desvio7 = Range("W10”).Value
Desvio8 = Range("X10”).Value
Desvio9 = Range("Y10”).Value
Desviol0 = Range("Z10").Value
melhorResultado = melhordesvio
Resultl = Desviol

Result2 = Desvio2
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Result3 = Desvio3

Result4 = Desvio4

Result5 = Desvio5

Resulté = Desviob

Result7 = Desvio7

Result8 = Desvio8

Result9 = Desvio9

Result10 = Desviol0

& j).Value

& j).Value

& j).Value

& j).Value

& j).Value

& j).Value

& j).Value

If melhordesvio < Desviol Then

‘Y->Z
Forj=10To 23
Range("Z” & j).Value = Range("Y”

Next j
CX->Y
Forj=10To 23
Range("Y” & j).Value = Range("X”

Next j
‘W->X
Forj=10To 23
Range("X” & j).Value = Range("W"

Next j
CV->SW
Forj=10To 23
Range("W” & j).Value = Range("V”

Next j
‘U->Vv
Forj=10To 23
Range("V” & j).Value = Range("U”

Next j
‘T->U
Forj=10To 23
Range(’U” & j).Value = Range("T”

Next j
‘S->T
Forj=10To 23
Range("T” & j).Value = Range(’S”



Next j
‘R->S
Forj=10To 23

Range(’S” & j).Value = Range("R”
& j).Value

Next j
‘Q->R
Forj=10To 23

Range("R" & j).Value = Range("Q"
& j).Value

Next j
‘N->Q
Forj=10To 23

Range("Q" & j).Value = Range("O"
& j).Value

Next j

Else

If Range("N10").Value < Desvio2 Then
‘Y->Z
Forj=10To 23

Range("Z” & j).Value = Range("Y”
& j).Value

Next j
‘X->Y
Forj=10To 23

Range("Y” & j).Value = Range("X”
& j).Value

Next j
‘W->X
Forj=10To 23

Range("X” & j).Value = Range("W”
& j).Value

Next j
‘V->W
Forj=10To 23

Range("W” & j).Value = Range("V”
& j).Value

Next j
CU->V
Forj=10To 23

Range("V” & j).Value = Range("U”
& j).Value

Next j
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‘T->U
Forj=10To 23

Range("U” & j).Value = Range("T”
& j).Value

Next j
‘S->T
Forj=10To 23

Range("T” & j).Value = Range("S”
& j).Value

Next j
‘R->S
Forj=10To 23

Range("S” & j).Value = Range("R”
& j).Value

Next j
‘N->R
Forj=10To 23

Range("R” & j).Value = Range("N”
& j).Value

Next j

Else

If Range("N10”).Value < Desvio3 Then
‘Y->Z
Forj=10To 23

Range("Z” & j).Value = Range("Y”
& j).Value

Next j
fX->Y
Forj=10To 23

Range("Y” & j).Value = Range("X"
&j).Value

Next j
‘W->X
Forj=10To 23

Range("X” & j).Value = Range("W"
& j).Value

Next j
‘V->W
Forj=10To 23

Range("W” & j).Value = Range("V”
& j).Value

Next j
‘U->Vv



Forj=10To 23

Range("V” & j).Value = Range("U”
& j).Value

Next j
‘T->U
Forj=10To 23

Range(’U” & j).Value = Range("T”
& j).Value

Next j
‘S->T
Forj=10To 23

Range("T” & j).Value = Range("S”
& j).Value

Next j
‘N->S
Forj=10To 23

Range("S” & j).Value = Range("N”
& j).Value

Next j

Else

If Range("N10”).Value < Desvio4 Then
‘Y->Z
Forj=10To 23

Range(’Z” & j).Value = Range("Y”
& j).Value

Next j
X->Y
Forj=10To 23

Range(Y” & j).Value = Range("X”
& j).Value

Next j
‘W->X
Forj=10To 23

Range("X” & j).Value = Range("W”
& j).Value

Next j
‘V->W
Forj=10To 23

Range("W” & j).Value = Range("V”
& j).Value

Next j
‘U->Vv
Forj=10To 23
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Range("V” & j).Value = Range("U”
& j).Value

Next j
‘T->U
Forj=10To 23

Range("U” & j).Value = Range('T”
& j).Value

Next j
“N->T
Forj=10To 23

Range("T” & j).Value = Range(’N”
& j).Value

Next j

Else

If Range("N10”).Value < Desvio5 Then
'Y->Z
Forj=10To 21

Range("Z" & j).Value = Range("Y"
& j).Value

Next j
"X->Y
Forj=10To 23

Range("Y" & j).Value = Range("X"
& j).Value

Next j
"W->X
Forj=10To 23

Range("X" & j).Value = Range("W"
& j).Value

Next j
'V->W
Forj=10To 23

Range("W" & j).Value = Range("V"
& j).Value

Next j
'U->V
Forj=10To 23

Range("V" & j).Value = Range("U"
&j).Value

Next j
"N->U
Forj=10To 23



Range("U" & j).Value = Range("N"
& j).Value

Next j
Else
' ERRO 6
If Range("N10").Value < Desvio6 Then
'Y->Z
Forj=10To 23
Range("Z" & j).Value = Range("Y"

& j).Value
Next j
' X->Y
Forj=10To 23

Range("Y" & j).Value = Range("X"
& j).Value

Next j
'W->X
Forj=10To 23

Range("X" & j).Value = Range("W"
& j).Value

Next j
"V->W
Forj=10To 23

Range("W" & j).Value = Range("V"
& j).Value

Next j
"N->V
Forj=10To 23

Range("V" & j).Value = Range("N"
& j).Value

Next j

Else

If Range("N10").Value < Desvio7 Then
'Y->Z
Forj=10To 23

Range("Z" & j).Value = Range("Y"
& j).Value

Next j
' X->Y
Forj=10To 23

Range("Y" & j).Value = Range("X"
& j).Value

Next j
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"W->X
Forj=10To 23

Range("X" & j).Value = Range("W"
& j).Value

Next j
"N->W
Forj=10To 23

Range("W" & j).Value = Range("N"
& j).Value

Next j

Else

If Range("N10").Value < Desvio8 Then
'Y->Z
Forj=10To 23

Range("Z" & j).Value = Range("Y"
&j).Value

Next j
"X->Y
Forj=10To 23

Range("Y" & j).Value = Range("X"
&j).Value

Next j
"N->X
Forj=10To 23

Range("X" & j).Value = Range("N"
& j).Value

Next j
Else
' ERRO 9
If Range("N10").Value < Desvio9 Then
'Y->Z
Forj=10To 23
Range("Z" & j).Value = Range("Y"

& j).Value
Next j
"N->Y
Forj=10To 23

Range("Y" & j).Value = Range("N"
&j).Value

Next j

Else



If Range("N10").Value < DesviolO
Then

'Y->Z

Forj=10To 23

Range("Z" & j).Value = Range("N"
& j).Value

Next j
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If
DoEvents
Loop
Next i
Next t

Exit Sub ' Sair em caso de sucesso

ErrorHandler:
MsgBox "Ocorreu um erro: " & Err.Description
End Sub

Function Limitelnferior(ByVal index As Integer)
As Double

' Defina os limites inferiores para as variaveis
Select Case index
Case 1
Limitelnferior = Range("P11").Value
Case 2
Limitelnferior = Range("P12").Value
Case 3
Limitelnferior = Range("P13").Value
Case 4
Limitelnferior = Range("P14").Value
Case 5

Limitelnferior = Range("P15").Value
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Case 6
Limitelnferior = Range("P16").Value
Case 7
Limitelnferior = Range("P17").Value
Case 8
Limitelnferior = Range("P18").Value
Case 9
Limitelnferior = Range("P19").Value
Case 10
Limitelnferior = Range("P20").Value
Case 11
Limitelnferior = Range("P21").Value
Case 12
Limitelnferior = Range("P22").Value
Case 13
Limitelnferior = Range("P23").Value
End Select

End Function

Function LimiteSuperior(ByVal index As Integer)
As Double

' Defina os limites superiores para as variaveis
Select Case index

Case 1l

LimiteSuperior = Range("AA11").Value
Case 2

LimiteSuperior = Range("AA12").Value
Case 3

LimiteSuperior = Range("AA13").Value
Case 4

LimiteSuperior = Range("AA14").Value
Case 5

LimiteSuperior = Range("AA15").Value
Case 6

LimiteSuperior = Range("AA16").Value
Case 7

LimiteSuperior = Range("AA17").Value
Case 8

LimiteSuperior = Range("AA18").Value
Case 9

LimiteSuperior = Range("AA19").Value



Case 10
LimiteSuperior = Range("AA20").Value

Case 11
LimiteSuperior = Range("AA21").Value

Case 12
LimiteSuperior = Range("AA22").Value

Case 13
LimiteSuperior = Range("AA23").Value

End Select

End Function

Function RndRange(ByVal MinValue As Double,
ByVal MaxValue As Double) As Double

' Gera um numero aleatério entre MinValue e
MaxValue

RndRange = (MaxValue - MinValue) * Rnd +
MinValue

End Function

Sub PararMacro()
continuarExecucao = False
Dim j As Integer
Forj=11To 23

Range("N" & j).Value = Range("o" &
j)-Value

Next j
End Sub

Sub EncontrarMelhoresValoresPause_cont()

continuarExecucao = True

On Error GoTo ErrorHandler ' Lidar com erros
continuarExecucao = True

Dim melhorResultado As Double

Dim erroMaximo As Double

Dim desvioO10 As Double

Dim variaveis(1 To 13) As Double

Dim Interacoes, loops, pcont As Long

Dim i, t, CONTROLE As Integer

Dim numeroDeColunas As Integer

Dim melhoresResultados(1 To 10) As Double

Dim melhoresVariaveis(1 To 10, 1 To 13) As
Double

Dim ResultAtual As Double
Interacoes = 30000
loops = 500
Fort=1 To loops
melhordesvio = Range("010").Value
Desviol = Range("Q10").Value
Desvio2 = Range("R10").Value
Desvio3 = Range("S10").Value
Desvio4 = Range("T10").Value
Desvio5 = Range("U10").Value
Desvio6 = Range("V10").Value
Desvio7 = Range("W10").Value
Desvio8 = Range("X10").Value
Desvio9 = Range("Y10").Value
Desviol0 = Range("Z10").Value
melhorResultado = melhordesvio
Resultl = Desviol
Result2 = Desvio2
Result3 = Desvio3
Result4 = Desvio4
Result5 = Desvio5
Result6 = Desvio6
Result7 = Desvio7
Result8 = Desvio8
Result9 = Desvio9
Result10 = Desviol0

Array para rastrear os 10 melhores
resultados e suas variaveis

Fori=1 To Interacoes

Do Until Not continuarExecucao

' Defina os limites iniciais das variaveis
Forj=1To 13

variaveis(j) =
RndRange(Limitelnferior(j), LimiteSuperior(j))

Next j

' Inserir valores aleatorios nas células
N11 a N21

Forj=11To 23



Range("N" & j).Value = variaveis(j - 10)
' Ajuste o indice da variavel para corresponder as
células

Next j

pcont = Range("N8").Value
pcont = pcont + 1
Range("N8").Value = pcont

' Verificar se os resultados atendem aos
critérios

desvioAtual = Range("N10").Value

If desvioAtual < melhordesvio Then
b=b+1

' Calcular a multiplicacdo de N9 e N10

ResultAtual = desvioAtual

If ResultAtual < melhorResultado Then

--------------- Separar dados para grafico
Range("AC" & b).Value = pcont
Range("AD" & b).Value = desvioAtual

melhorResultado = ResultAtual

' Copiar os valores de N9 a N21 para
as células 09 a 021

Forj=10To 23

Range("O" & j).Value = Range("N" &
j)-Value

Next j

melhordesvio = Range("010").Value
End If
End If

Desviol = Range("Q10").Value
Desvio2 = Range("R10").Value
Desvio3 = Range("S10").Value
Desvio4 = Range("T10").Value
Desvio5 = Range("U10").Value
Desvio6 = Range("V10").Value
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Desvio7 = Range("W10").Value
Desvio8 = Range("X10").Value
Desvio9 = Range("Y10").Value
Desviol0 = Range("Z10").Value

melhorResultado = melhordesvio

Resultl = Desviol

Result2 = Desvio2

Result3 = Desvio3

Result4 = Desvio4

Result5 = Desvio5

Result6 = Desviob

Result7 = Desvio7

Result8 = Desvio8

Result9 = Desvio9
Result10 = Desviol0

& j).Value

& j).Value

& j).Value

& j).Value

& j).Value

If melhordesvio < Desviol Then

'Y->Z
Forj=10To 23
Range("Z" & j).Value = Range("Y"

Next j
' X->Y
Forj=10To 23
Range("Y" & j).Value = Range("X"

Next j
'W->X
Forj=10To 23
Range("X" & j).Value = Range("W"

Next j
"V->W
Forj=10To 23
Range("W" & j).Value = Range("V"

Next j
'U->V
Forj=10To 23
Range("V" & j).Value = Range("U"

Next j



'T->U
Forj=10To 23

Range("U" & j).Value = Range("T"
& j).Value

Next j
'S->T
Forj=10To 23

Range("T" & j).Value = Range("S"
& j).Value

Next j
'R->S
Forj=10To 23

Range("S" & j).Value = Range("R"
& j).Value

Next j
1 Q_>R
Forj=10To 23

Range("R" & j).Value = Range("Q"
& j).Value

Next j
' N_>Q
Forj=10To 23

Range("Q" & j).Value = Range("O"
& j).Value

Next j
Else
ERRO 2
If Range("N10").Value < Desvio2 Then
'Y->Z
Forj=10To 23
Range("Z" & j).Value = Range("Y"

& j).Value
Next j
' X->Y
Forj=10To 23

Range("Y" & j).Value = Range("X"
& j).Value

Next j
"W->X
Forj=10To 23

Range("X" & j).Value = Range("W"
& j).Value

Next j
'V->W
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& j).Value

& j).Value

&j).Value

& j).Value

&j).Value

& j).Value

Forj=10To 23
Range("W" & j).Value = Range("V"

Next j
'U->V
Forj=10To 23
Range("V" & j).Value = Range("U"

Next j
'T->U
Forj=10To 23
Range("U" & j).Value = Range("T"

Next j
'S->T
Forj=10To 23
Range("T" & j).Value = Range("S"

Next j
'R->S
Forj=10To 23
Range("S" & j).Value = Range("R"

Next j
"N->R
Forj=10To 23
Range("R" & j).Value = Range("N"

Next j

Else

ERRO 3

& j).Value

&j).Value

If Range("N10").Value < Desvio3 Then

'Y->Z
Forj=10To 23
Range("Z" & j).Value = Range("Y"

Next j
' X->Y
Forj=10To 23
Range("Y" & j).Value = Range("X"

Next j
"W->X
Forj=10To 23



Range("X" & j).Value = Range("W"
& j).Value

Next j
'V->W
Forj=10To 23

Range("W" & j).Value = Range("V"
& j).Value

Next j
'U->v
Forj=10To 23

Range("V" & j).Value = Range("U"
& j).Value

Next j
'T->U
Forj=10To 23

Range("U" & j).Value = Range("T"
& j).Value

Next j
'S->T
Forj=10To 23

Range("T" & j).Value = Range("S"
& j).Value

Next j
'N->S
Forj=10To 23

Range("S" & j).Value = Range("N"
& j).Value

Next j
Else
' ERRO 4
If Range("N10").Value < Desvio4 Then
'Y->Z
Forj=10To 23
Range("Z" & j).Value = Range("Y"

& j).Value
Next j
' X->Y
Forj=10To 23

Range("Y" & j).Value = Range("X"
& j).Value

Next j
'W->X
Forj=10To 23
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Range("X" & j).Value = Range("W"
& j).Value

Next j
"V->W
Forj=10To 23

Range("W" & j).Value = Range("V"
& j).Value

Next j
'U->Vv
Forj=10To 23

Range("V" & j).Value = Range("U"
& j).Value

Next j
'T->U
Forj=10To 23

Range("U" & j).Value = Range("T"
& j).Value

Next j
"N->T
Forj=10To 23

Range("T" & j).Value = Range("N"
& j).Value

Next j
Else
' ERRO 5
If Range("N10").Value < Desvio5 Then
'Y->Z
Forj=10To 21
Range("Z" & j).Value = Range("Y"

& j).Value
Next j
' X->Y
Forj=10To 23

Range("Y" & j).Value = Range("X"
& j).Value

Next j
'W->X
Forj=10To 23

Range("X" & j).Value = Range("W"
&j).Value

Next j
'V->W
Forj=10To 23



Range("W" & j).Value = Range("V"
& j).Value

Next j
'U->Vv
Forj=10To 23

Range("V" & j).Value = Range("U"
& j).Value

Next j
'N->U
Forj=10To 23

Range("U" & j).Value = Range("N"
& j).Value

Next j
Else
' ERRO 6
If Range("N10").Value < Desvio6 Then
'Y->Z
Forj=10To 23
Range("Z" & j).Value = Range("Y"

& j).Value
Next j
' X->Y
Forj=10To 23

Range("Y" & j).Value = Range("X"
& j).Value

Next j
"W->X
Forj=10To 23

Range("X" & j).Value = Range("W"
& j).Value

Next j
"V->W
Forj=10To 23

Range("W" & j).Value = Range("V"
& j).Value

Next j
"'N->V
Forj=10To 23

Range("V" & j).Value = Range("N"
& j).Value

Next j
Else
' ERRO 7
If Range("N10").Value < Desvio7 Then
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'Y->Z
Forj=10To 23

Range("Z" & j).Value = Range("Y"
& j).Value

Next j
' X->Y
Forj=10To 23

Range("Y" & j).Value = Range("X"
& j).Value

Next j
'W->X
Forj=10To 23

Range("X" & j).Value = Range("W"
& j).Value

Next j
"N->W
Forj=10To 23

Range("W" & j).Value = Range("N"
& j).Value

Next j

Else

If Range("N10").Value < Desvio8 Then
'Y->Z
Forj=10To 23

Range("Z" & j).Value = Range("Y"
& j).Value

Next j
"X->Y
Forj=10To 23

Range("Y" & j).Value = Range("X"
& j).Value

Next j
"N->X
Forj=10To 23

Range("X" & j).Value = Range("N"
&j).Value

Next j
Else
' ERRO 9
If Range("N10").Value < Desvio9 Then
'Y->Z
Forj=10To 23




Range("Z" & j).Value = Range("Y"
& j).Value

Next j
'N->Y
Forj=10To 23

Range("Y" & j).Value = Range("N"
& j).Value

Next j
Else

B ety ERRO 10
If Range("N10").Value < DesviolO

'Y->Z

Forj=10To 23

Range("Z" & j).Value = Range("N"
& j).Value

Next j
End If
End If
End If
End If
End If
End If
End If
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End If

End If

End If
DoEvents

Loop

Next i
Next t

Exit Sub ' Sair em caso de sucesso

ErrorHandler:

MsgBox "Ocorreu um erro: " & Err.Description

End Sub
Function HV(val)

'‘Heaviside user function

If val >0 Then HV = 1 Else HV = 0
End Function
Function HVR(val)

'Reverse Heaviside user function

If val >= 0 Then HYR =0 Else HVR = 1

End Function
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