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ABSTRACT 

 

The rapid evolution of computational technology leads widespread use of 

numerical simulations in projects. These simulations offer cost-effective 

alternatives to extensive experimental work, using advanced mathematical 

models to represent complex physical phenomena. The focus of this work is on 

two-phase heat transfer devices, specifically heat pipes, whose performance 

depends on thermo-physical properties taking water as a working fluid. In this 

work it is proposed new-type approximations of 13 thermo-physical properties of 

water needed for heat pipes complex mathematical models, which could be able 

to simulate transient modes over the entire temperature range without 

interruptions either in value or derivative, including start-up from freeze or super-

critical conditions. All property formats are unified to be dimensionless and to 

have values 0 at the triple point and 1 at the critical point to all 13 properties. For 

the first time, the approximations are presented not in the commonly used format 

of closed-form empirical correlations, but in the form of pseudo-code, which can 

be implemented in any programming language. Smoothing within the piecewise 

functions and between matter states is performed by an interfacing algorithm with 

application of the Heaviside functions. Optimal parameters of some 

approximations are obtained with a developed random-search algorithm 

completed with a feature of interactive bounds reduction. A criterion which 

combines minimal average absolute deviation and minimal maximal deviation, 

factored with dimensionless weights, was used. Despite the significance of this 

topic for heat pipe numerical simulations, no prior publications have been found. 

The work presented is groundbreaking, linking all three major states of matter 

(freezing, saturation, and supercritical zones) and using water as working fluid for 

heat pipe.  

 

Keywords: Heat Pipes. Operating temperature limits. Working fluid properties. 

Uninterrupted correlations. Thermo-physical properties of water. 
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DESENVOLVIMENTO DE CORRELAÇÕES CONTÍNUAS DE 
PROPRIEDADES DO FLUIDO DE TRABALHO PARA DISPOSITIVOS 

PASSIVOS DE TRANSFERÊNCIA DE CALOR BIFÁSICO DENTRO E FORA 
DOS LIMITES DE TEMPERATURA DE OPERAÇÃO 

 

 

RESUMO 

A rápida evolução da tecnologia computacional conduz ao amplo uso de 

simulações numéricas em projetos. Essas simulações oferecem alternativas 

economicamente viáveis para extenso trabalho experimental, utilizando modelos 

matemáticos avançados para representar fenômenos físicos complexos. O foco 

deste trabalho está voltado para dispositivos de transferência de calor de duas 

fases, especificamente tubos de calor, cujo desempenho depende de 

propriedades termo físicas considerando a água como fluido de trabalho. Neste 

trabalho, são propostas novas aproximações de 13 propriedades termo físicas 

da água necessárias para modelos matemáticos complexos de tubos de calor, 

que podem ser capazes de simular modos transitórios em toda a faixa de 

temperatura sem interrupções, seja no valor ou na derivada, incluindo a 

inicialização a partir de condições de congelamento ou supercríticas. Todos os 

formatos de propriedades são unificados para serem adimensionais e terem 

valores 0 no ponto triplo e 1 no ponto crítico para todas as 13 propriedades. Pela 

primeira vez, as aproximações são apresentadas não no formato comumente 

usados de correlações empíricas em forma fechada, mas na forma de 

pseudocódigo, que pode ser implementado em qualquer linguagem de 

programação. O suavizamento dentro das funções e entre estados da matéria é 

realizado por um algoritmo de interface com a aplicação de funções de 

Heaviside. Parâmetros ótimos de algumas aproximações são obtidos com um 

algoritmo de busca aleatória desenvolvido com uma característica de redução 

interativa de limites. Um critério que combina desvio médio absoluto mínimo e 

desvio máximo mínimo, ponderado com pesos adimensionais, foi utilizado. 

Apesar da importância desse tópico para simulações numéricas de tubos de 

calor, nenhuma publicação anterior foi encontrada. O trabalho apresentado é 
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inovador, vinculando os três principais estados da matéria (sólido, saturação e 

zonas supercríticas) e utilizando a água como fluido de trabalho para tubos de 

calor. 

Palavras-chave: Tubos de calor. Limites de temperatura operacional. 
Propriedades dos fluidos de trabalho. Correlações ininterruptas. Propriedades 
termo físicas d’água. 
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1 INTRODUCTION 

Any electronic equipment produces heat while running. The satellite thermal 

control subsystem manages the heat distribution in the satellite and the heat 

pipes are widely applied for this purpose. Shukla (2015) explained the concept of 

heat pipes: “A typical heat pipe comprises a sealed pipe or tube made of a 

material that is compatible with the working fluid such as Copper for water heat 

pipes, or Aluminum for ammonia heat pipes. It is a simple construction that makes 

a heat pipe to allow high heat transfer rates over considerable distances, with 

minimum temperature drops...”. 

 
Figure 1.1 – Heat pipe schematic.  

 

Source: Shukla (2015). 

 
The heat pipe keeps vapor-liquid equilibrium with the saturated liquid and its 

vapor. The saturated liquid vaporizes and flows to the condenser part, where it is 

cooled and turned back to the saturated liquid. In a standard heat pipe, the 

condensate is returned to the evaporator by capillary force through a wick 

structure. Good wettability of the liquid phase of the working fluid with the material 

of the capillary structure is a main condition of such a capillary return. 

The concept of heat pipes traces its roots back to the early 1960s when the 

aerospace industry sought innovative ways to address thermal challenges in 

spacecraft. In 1963, the idea of using a capillary-driven heat transfer device to 
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manage the extreme temperatures gradient experienced by a satellite in outer 

space was proposed by George Grover (BRENNAN; KROLICZEK, 1979).  

The first designs of heat pipes focused on space applications, aiming to dissipate 

the heat generated by electronic components in spacecraft. The first functional 

heat pipe was developed and proven in 1964 by Grover and his coworkers 

(BRENNAN; KROLICZEK, 1979).  

Grover baptized the name “heat pipe” and characterized it as a “synergetic 

engineering structure which is equivalent to a material having a thermal 

conductivity exceeding that of any known metal.” These early heat pipes used 

water working fluid with copper mesh as a capillary structure and the case made 

by cooper. Soon later he manufactured a high-temperature HP with a sodium as 

a working fluid to operate above 1100K. The first cryogenic HP with nitrogen as 

a working fluid was developed by Haskin Brennan and Kroliczek (1979) at Wright-

Patterson Air Force Base, USA. The success of this demonstrations paved the 

way for further exploration of heat pipe technology in the aerospace sector. Figure 

1.2 shows the effect of heat pipe typical application to reduce the temperature 

gradients over a satellite honeycomb panel with installed electronic equipment. 

 
Figure 1.2 – Comparative simulation analyzes: CBERS3 Satellite panel with and without 

embedded heat pipe. 

 

Source: Vlassov (2021). 

 
As the benefits of heat pipes in space applications became clear, researchers 

and engineers explored their potential in other industrial fields. By the 1970s, heat 

pipes found applications in cooling systems for electronic devices, such as 
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computers and radar systems (BRENNAN; KROLICZEK, 1979). The versatility 

of heat pipes in transferring heat efficiently with no external power sources 

contributed to their widespread adoption in various thermal management 

scenarios. Brennan and Kroliczek (1979) argued in his word “...the capability of 

have a fixed and variable conductance heat pipes are being developed or 

proposed for various shuttle mission, including thermal canister.” 

The oil crisis of the 1970s (“Energy crisis”) spurred interest in energy-efficient 

technologies, leading to increased research on heat pipes to improve energy 

efficiency in heating and cooling systems. Heat pipes became integral 

components in solar collectors, where they efficiently transferred heat from the 

absorber plate to the working fluid, enhancing the overall performance of solar 

thermal systems “...the demand for alternated energy sources had led to the 

development of innovative intermediate and high temperature heat pipes for solar 

collection and coal gasification.” 

Heat pipes can be used in a wide variety of applications, besides satellites, solar 

energy, and coal mining application. Those categories of uses can be since 

satellites applications to medicine and human body temperature control, 

“Depending on their intended use, heat pipes can in the temperature range from 

4 to 3000K (FAGHRI, 2016). Furthermore, Faghri (2016) divided heat pipes into 

three major categories, firstly separation of heat source and sink, due to its 

efficiency of transport heat; followed by temperature equalization and 

temperature control. The temperate equalization is linked to the high thermal 

conductivity and the temperature control is linked to the capability of heat pipes 

transport copious quantities of heat rapidly. Some applications were listed by 

Faghri as following: 

• Electronic and electrical equipment cooling – the heat density of electronic 

and electrical equipment is rising by the miniaturization of components. 

Because of their sensitive operating temperature, the design is choosing 

to improve heat dissipation in its components by incorporating heat pipes. 

• Energy systems – the use of heat pipes and thermosiphons draws more 

attention of their efficiency of using energy conservation and cost. 
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According to Faghri (2016), a few systems have been used thermosiphons 

as an implementation on building heating seeking thermal comfort. 

Shortly, the system absorbs solar energy using a heat pipe and transports 

that energy to a living space. That space is heated by air convection or 

that energy is stored as hot water. And at night, those thermosiphons act 

like a one-way valve to that heat that energy only can be transferred from 

inside to outside by axial conduction through the pipe walls. 

• Aerospace and Avionics – some characteristics such as weight, 

maintenance, and reliability are decisive factors for the success or a 

potential disaster of the project, and heat pipes are an incredibly attractive 

choice because it has all those three characteristics. This occurs because 

of the simplicity of the object, with no moving parts to transport the energy, 

lightweight, and no maintenance, which enhances the reliability. 

• Medicine and human body temperature control. Faghri (2016) suggested 

that using of heat pipes relates to human physiology, the proposal is to 

incorporate a cryogenic heat pipe to destroy tumors in human body, using 

this technique, the tissue is freezing rather than irradiated, and as a result 

the surrounding tissue sustains no damage.  

Closed passive evaporation-condensation cycle and temperature-induced 

capillary pumping principle have given an impulse for developing of similar like-

HP heat transfer devises; they belong to a class of passive two-phase heat 

transfer devices.  

These two-phase heat transfer devices are important components for thermal 

control systems in the aerospace industry and terrestrial applications. It includes 

not only heat pipes but also thermosiphons, capillary pumped loops, looped heat 

pipes and advanced capillary pumped systems of complex networks. The 

performance of such devices depends on fluid properties at saturation conditions. 

Such devices cannot run out of temperature limits. When the temperature is 

below the triple point, the working fluid freezes. When the temperature is above 

the critical conditions, two phases cannot coexist anymore. However, for many 
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applications, such devices may temporarily be exposed to non-operational 

conditions but may resume normal operation afterwards.  

Experimental studies and tests are an important part of satellites development, 

but they are usually expensive and time consuming. Because of that, numerical 

simulations play a vital role. Numerical models can be very reality-representative 

and simulate many phenomena and particular cases within a fraction of the 

experiment’s cost and time. 

As it was said, the performance and operation limits of heat pipes depend purely 

on thermo-physical properties. Any mathematical model must have an adequate 

treatment of such properties that critically depend on temperature. Applications 

of heat pipes in satellites, as well as in other applications, may call to a very wide 

operational temperature range, for example, start-up from super-critical states in 

cryogenic HPs, or start-up of water HP from freezing state. Therefore, it is 

particularly important to have correct correlations for the entire temperature two-

phase range at saturation conditions and out of the saturation range. Simulation 

of HP transient modes needs smoothed property correlations without 

interruptions of value and derivatives. Commonly used tables or peas-wise linear 

interpolations between tabulated magnitudes are not acceptable. The most 

difficult problems come up in simulation of specific transient HP modes, like start-

up from solid state (high-temperature and freezable HPs) and start-up from 

super-critical states in cryogenic loop heat pipe (CLHP). Such the applications 

demand all three states of matter to be simulated by mathematical model; any 

interruptions in properties values may causes numerical instabilities and failures. 

These smooth uninterrupted variations must pass through the freezing zone up 

to the super critical zone (LEE et al., 2020). 

Jaworske et al. (2008) highlights the difficulty to perform start-up on a water heat 

pipe in space applications. This paper discusses the evaluation of panel 

performance under a Moon illumination for radiator panels equipped with 

titanium-water heat pipes. Authors study its behavior on the panel starts after 

freezing the water in the heat pipes under heater power applied. The modeling 

and investigation of lunar conditions confirmed that the heat pipes would be 
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freezing at lunar sunrise and would require more than one of sun illuminations to 

resume operation. This shows the importance and difficulty of transient 

simulation; part of this difficulty is placed in uninterrupted work fluid property 

models that cover all ranges with smooth transitions between freezing and 

saturation phases. 

The study of Jouhara et al. (2017) concluded that heat pipes have a wide range 

of applications but exists a gap in research for different temperature patterns. 

Authors affirm that while the implementation of heat pipes in low-temperature 

applications has been studied extensively, but there is still a backlog of research 

to be conducted. The same applies to high temperature applications where heat 

pipes are commonly used in waste heat recovery and solar power and other 

energy sources. The author fell to the lack of the fluid properties approximations 

available from literature. Jouhara et al. (2017) emphasized that the properties of 

the working fluids, related to phase changes and heat transfer characteristics, 

play a crucial role in the performance of heat pipes. However, there may be a 

lack of available data and commercial models for certain fluids, which can hinder 

the modeling and simulation of heat pipe systems. 
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2 MOTIVATION 

The mathematical modeling of heat pipes plays a key role in simulations of 

transient behavior and studies of operational failure risks as eventual dry-out and 

dynamic conditions for successful operational recuperation. Complex 

mathematical models include a complete system of fundamental differential 

equations of momentum, energy, mass conservation, as well as interfacing 

phenomena and multi-phase transitions (Bowman (1991), Faghri (2016), 

Tournier; El-Genk (1994) and Vlassov (2005, 2008)). One can extract the 

following thermo-physical properties from these fundamental equations; the list 

includes 13 parameters, namely   cpl, cpv, kl, kv, , l, v, Prl, Prv, Pv, l, v and . 

It is a well-known fact that the performance and operational limits of any HP 

depends on temperature. The only reason for this dependence is that the values 

of all properties depend on temperature, moreover, by different manner. 

Any mathematical model must have an adequate treatment of such properties 

that, as said, critically depends on temperature. Applications of heat pipes in 

aerospace industry, as well as in other applications, may call to extremely wide 

operational temperature range, for example, start-up from super-critical states in 

cryogenics HPs, or start-up of water HPs from freeze state. Therefore, it is 

especially important to have correct correlations for the entire temperature two-

phase range at saturation conditions as well as out of the saturation range. 

Simulation of HP transient modes needs smoothed property correlations without 

interruptions of value and derivatives; commonly used tables or peas-wise linear 

interpolations between tabulated magnitudes are not acceptable. The most 

difficult problems come up in simulation of specific transient HP modes, like start-

up from solid state (high-temperature and freezable HPs) and start-up from 

super-critical states in cryogenic heat pipe. Such the applications demand all 

three states of matter, if we put on a line this variation pass through freeze zone 

up to the supercritical zone (LEE et al., 2020). For example, Jaworske et al. 

(2008) highlights the difficulty of performing start-up on a water heat pipe in space 

application. 
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In order to property approximations be able to be implemented on a mathematical 

model, its behavior must be continuous and smooth, without sharp edges. Thus, 

to comply with those rules is common to see in literature thermos-physical data 

approximation in a strict range of temperature, mostly passing for only one state 

of matter and that behavior is described by a high polynomial equation, like shown 

in (2.1).  

 

21

3

3

2

210    |           .....)( TTTTaTaTaaTy ++++
 

(2.1) 

 
 

Usually, this temperature range is narrower than the entire operating range even 

in saturation zone, and the calculated values by the polynomial approximation 

may run away from the physical sense and may get absurd magnitudes.  

Using such a polynomial approximation, the iteration process in a numerical 

algorithm may temporarily get out of the expected temperature range, leading to 

numerical instability, false results and/or algorithm failure.  

For example, a 5-order polynomial approximation for water vapor specific heat, 

suggested by Faghri (2016) is valid from 20°C to 200°C. However, out of the 

range, the approximation lost the physical sense, see Figure 2.1.  
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Figure 2.1 – cpV polynomial approximation behavior within and out of the specified range.  

 

 
Certainly, other functions but polynomials must be investigated for using in 

approximations. 

Another drawback of commonly used polynomial approximation is that they 

usually depend on the system of units. The approximation coefficients will be 

different for the same fluid for SI Units, Imperial Units, US customary Units, etc. 

Moreover, the coefficients have dimensions. For example, a popular Faghri 

(2016) approximation plotted in the graph on Figure 2.1 in many handbooks is 

given exactly as follows in Equation (2.2). 

 

( )( )
51341038

2641

,

100694.9102606.2104936.4

105923.2107903.6103198.6

TTT

TTTcLn vp

−+

−−+=

−−−

−−−

 

(2.2) 

 
 

Where T is expressed in °C and CpV in kJ/kg/K. (By the way, neither SI system of 

units is used here since kJ is used instead of J). 

Let us examine the numerical coefficients. Their appearance may be 

unconventional, but each coefficient owns individual dimensions: 

• The coefficient 0.63198 is of dimension Ln(kJ/kg/K). 



10 
 

• The coefficient 6.7903.10-4 is of dimension Ln(kJ/kg/K)/K. 

• The coefficient 2.5923.10-6 is of dimension Ln(kJ/kg/K)/K2. 

• The coefficient 4.4936.10-8 is of dimension Ln(kJ/kg/K)/K3. 

• The coefficient 2.2606.10-10 is of dimension Ln(kJ/kg/K)/K4. 

• The coefficient 9.0694.10-13 is of dimension Ln(kJ/kg/K)/K5. 

Mathematically, this is not correct: numerical coefficients should not have 

dimensions.  

To overcome this inconsistency, only dimensionless parameters should be used 

in approximations for fluid thermo-physical properties as well as for temperature. 

Literature research reveals that dimensionless approximations were never used 

for passive two-phase heat transfer devise modeling. In conjugate areas like 

properties of steam and super-critical gases, rarely, in semi-empirical 

correlations, can be seen so named reduced parameters, like pressure and 

temperature:     

 

cr

r
T

T
t =  (2.3) 

cr

r
P

P
p =  (2.4) 

 
Once again, in the expression of the reduced temperature, the components must 

have the dimension either R or K, while °C or °F are prohibiting (due to 0/0 risk). 

Moreover, the reduced temperature tr has a limited association with the state of 

fluid. For water, the two-phase zone started from a temperature of 0.42, while 

below the 0.42 is a freezing zone. Why do not create a much more informing 

dimensionless temperature which value varies from 0 to 1 over saturation zone, 

be negative in the freezing zone, and be >1 for supercritical zone? We sughest 

this form where this can be naturally achieved, as shown in Equation (2.5) for the 

dimensionless temperature. 
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3

3

TT

TT

cr −

−
=  (2.5) 

 
where T3 - triple point temperature (temperature of freezing), and Tcr - critical 

temperature. This proposed temperature  does not depend on the system of 

unity used for components. We did not find publications for the fluid properties 

with the use of such convenient dimensionless temperature in approximations. 

Therefore, we are going to use this temperature and the same type of all 

dimensionless fluid properties in our study.  

Another example usual correlation of limited temperature range is the saturation 

pressure, for which the widely used Clausius-Clapeyron integrated equation is 

employed: 

 











−

=
TTR

ePT

11

0cc
0

0

)(P



 
(2.6) 

 
The Clausius–Clapeyron of Equation (2.6) derives from entropy maximization, 

which determines the equilibrium between two phases of a substance. 

“Mathematically, it is expressed as the relationship between temperature, T, and 

pressure, P, at the equilibrium.” (KOUTSOYIANNIS, 2012). 

However, the application of this equation directly causes a significant deviation 

from the table points far from the reference point 0. For example, for the reference 

point of T0=20 °C, the C-C curve and the table points have visible deviations for 

elevated temperatures:  
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Figure 2.2 – Difference between tabled saturation pressure and Clausius-Clapeyron 
equation. 

 
 
The possible approach to improve the approximation over the entire two-phase 

zone is trying to implement piecewise function for different intervals of the zone. 

In this case the crucial point is to assure smooth transitions over connection 

points; additional conditions shall be applied to approximation correlations at the 

edges of each function. They include the continuity of values and derivatives to 

fit the requirement of smooth uninterrupted conjunctions.  

Through our literature review, we did not find such type of approximations for fluid 

properties used in heat pipes.  

For many applications, heat pipes (HP) shall start from the non-operation 

temperature range. For example, high-temperature HP at the beginning may stay 

at normal ambient temperature such as sodium working fluid is solid in these 

conditions and when heated, the HP gradually enters its working regime. Another 

example – freezable water HP or freezable water thermal switch (KISEEV, et al, 

2010), which may have a periodic operation with thawing-freeze cycles. Also, 

working fluids in cryogenic HPs (for example, nitrogen) are under over-critical 

conditions at normal ambient temperature; when cooled down, the HP gradually 

gets its nominal operation.  

Numerical transient models shall simulate such start-up behavior from non-

operational conditions. In this case the approximation of thermo-physical 
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properties shall include near-triple point region and near-critical region. For such 

a wide-range approximation, three temperature intervals shall be proved,  and 

different correlations shall be used for each interval. Then, it is important to have 

smooth transitions between the intervals.  

Detailed literature investigation did not reveal any type of uninterrupted 

approximations for fluid properties over the expanded full temperature range. 

Such the correlations should include both piecewise approximations with smooth 

conjunctions and representations of fluid state transitions with seamless 

interfacing. It should be noted that it is a difficult or even impossible task when 

thinking in a traditional manner - an approximation must look like a correlation. 

Let us doubt this postulate; our main question is: Does an approximation must 

look like a correlation? What about trying a novel approach: an approximation 

may be a pseudo-code. So, let us take a new way that no one has walked before. 
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3 OBJECTIVES 

This work has the following main objectives: 

1) to prospect available all 13 thermo-physical properties of water, published in 

diverse sources and formats: tables, polynomials, empirical correlations, and 

transform all tables to dimensionless format;  

2) to develop an adequate format of correlations of the properties for the entire 

two-phase zone and develop best dimensionless approximations following 

piecewise approach with smooth transition in conjunction points; 

3) to develop approximations for freezing and super-critical zones and to develop 

a method of uninterrupted correlations on inter-zone interfacings, smooth 

approximations for values and the respective derivatives;  

4) to develop uninterrupted approximations for all three phase zones for water, 

also revealing the errors of approximations for the entire temperature range 

typical for heat pipes of several types; 

5) to present the results in the format of pseudo codes, being able to implement 

in any programming language, as universal dimensionless correlations; 

6) to develop an optimization algorithm based on random parameters in a 

determinate range chosen by the User, to minimize approximation deviation; to 

develop a functional tool within EXCEL Visual Basic features, and to apply this 

tool to find optimal parameters and coefficients in pre-selected correlations for 

the approximations.  
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4 LITERATURE REVIEW 

4.1 Fluid properties for heat pipes 

In his study, Gakal et al. (2022) ranked the most common fluids, applicable to 

heat pipes, in strategic indicators, including the working fluid safety, working fluid 

melting temperature and working fluid critical temperature. They performed an 

evaluation in many indicators and plotted the result diagram shown in Figure 4.1. 

 
Figure 4.1 – Working fluids grading results. 

 
Source: Gakal et al. (2022). 

 
In Figure 4.1 we have the higher scores fluids on 782 substances evaluated by 

Gakal et al. (2022), where Πtotal is the sum of each fluid grade in each 

classification. 

To make an efficient heat pipe project, the fluid choice is an important part of the 

process. As presented by Gakal et al. (2022), some fluid properties have more 

impact on the final design than others. As the heat pipe principle of function 

consists in liquid evaporation and condensation, naturally, melting point, boiling 

temperate, critical temperature, and critical pressure are variables that drive the 

main choice of the working for heat pipes.  
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Polasek and Stulc (1976), Ochterbeck and Mishkinis (2003) and Anderson et al. 

(2004) presented these main parameters for many fluids for intermediate 

temperatures, typical for aerospace applications (Table 4.1).  

 
Table 4.1 – Intermediate Temperature Fluids. 

 
Source: Anderson et al. (2004). 

 

Ochterbeck and Mishkinis (2003) developed some criteria (Figures of Merit Fm) 

to expose in the best way possible efficiency of using the working fluid in heat 

pipes, see Figure 4.2 and Figure 4.3.   

Figure 4.2 shows well-known Liquid Transport Factor criterion; the more its 

magnitude, the maximum theoretical heat transport capability the heat pipe may 

achieve.  

One can see, water is the best working fluid to work in the temperature range 

above 20 ºC for heat pipes.  

Additionally, they developed other figures of merits, such as presented in Figure 

4.3 to characterize the vapor phase. Ammonia and water are the best working 

fluid according to this criterion.  
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Figure 4.2 – Figure of merit (liquid based) for different fluids. 

 
Source: Ochterbeck and Mishkinis (2003). 

 

Figure 4.3 – Figure of merit (vapor based) for different fluids. 

 
Source: Ochterbeck and Mishkinis (2003). 
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Figure 4.4 – Vapor Pressure as a Function of Temperature, Potential Heat Pipe or LHP 
Working Fluids. 

 
Source: Anderson et al. (2004). 

 
Many studies were performed to develop best approximations for different 

properties of working fluids. In many studies dimensionless parameters were 

used, for example Pátek et al. (2009) in equation below. 

 

b

R

a

R

R TT

T
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T

T
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−
==  ,,

 
(4.1) 

 
 

where T is absolute temperature in K, TR=10 K, Ta=593 K and Tb=232 K. 

In the subsections 4.2 through 4.14, we show the review of typical approximations 

used in technical literature separately for each thermodynamic property.  

4.2 Vapor pressure 

Even though this work has a focus on heat pipe applications, the theme of vapor 

pressure approximations has a wide range of applications. We divide the review 

of water vapor pressure in three regions: sublimated vapor pressure above ice in 

freezing region below the triple point (0°C for water); saturated vapor pressure in 

two-phase region (between triple pointe and critical point) and super-critical 

region (temperatures above the critical point).  
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In their paper, Wagner and Pruss (1993) highlighted the importance of merging 

the experimental data collected for the freezing zone up to now. At that time, the 

work was the main reference in experimental data below 205K. 

The authors in Murphy and Koop (2005) highlighted the importance of an effective 

technique to maintain the equation continuity: “The functional form was chosen 

to satisfy experimental constraints at the triple point as well as to have well-

behaved vapor that simultaneously satisfy experimental data not only for vapor 

pressure and latent heat but also for other properties”. The authors also present 

several equations for the vapor pressure above ice (4.2) which depends on 

temperature (K) and pressure (Pa). 

 









−

T

b
aP A

Aicev exp,  (4.2) 

 
Table 4.2 – Equation (4.2) coefficients value. 

aA = 2.89074E1 [ln(Pa)] bA =-6.1437E03 [K ln(Pa )] 

Source: Murphy and Koop (2005). 

 
Once expressed the equation in the limited range, the authors tried to expand 

this range from 273K down to 111K, Equation (4.3). In this case the final 

expression was obtained through numerical solution provided by fourth order 

Runge-Kutta solver. It is possible to check the result in Figure 4.5. 
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Table 4.3 – Equation (4.2) coefficients values. 

aA = 9.550426E00 [ln(Pa)] cA =3.53068E00 [ln(Pa)/ln(K)] 

bA =-5.723265E03 [K ln(Pa)] dA =-7.28332E-3 [ln(Pa)/K] 

Source: Murphy and Koop (2005). 
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Through Figure 4.5, Jancso et al. (1970) expressed the formulation at 

temperature range from 195K to 273.16 K, pressure is in [Torr].  
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Table 4.4 – Equation (4.4) & (4.5) coefficients value. 

aA = -2.668726E03 [K exp(Torr)] dA =6.11657E02  

bA =1.043112E00 [exp(Torr)/K] eA = 6.11283E02 

cA =1.3332E02  

Source: Jancso et al. (1970). 

 
Also, Bryson et al. (1974), shared their approximation to vapor pressure, 

expressed in Torr. The temperature range for this approximation ranges from 153 

to 183 K. 

A
A

icev b
RT

a
 = ln P +,

 (4.6) 

 
Table 4.5 – Equation (4.9) coefficients value. 

aA = 1.2E01 [ln(Torr) kg/J] bA =2.4E02 [exp(Torr)] 

Source: Bryson et al. (1974). 

 
Where, R is the specific  gas constant of sublimated wapor, and T is the absolute 

temperature in Kelvin. In lower temperature ranges, starting from 132 up to 153K, 

Bryson et al. (1974) suggested different coefficients. 

The plotted curve available in Figure 4.5, Marti and Mauersberger (1993), ranges 

from 169K to 273K. 
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Table 4.6 – Equation (4.7) coefficients value. 

aA= 2.8868E01 [ln(Pa)] bA =-6.1329E03 [K ln(Pa)] 

Source: Marti and Mauersberger (1993). 

 

Figure 4.5 – Vapor pressure of ice versus inverse temperature for selected experimental 
data. 

 
Source: Murphy and Koop (2005). 

 
Each experimental strategy shows strengths and weaknesses (Figure 4.6). Also, 

this image is good to see the equation behavior when the temperature range is 

increased. For comparison, dimensionless pressure was represented by the ratio 

to nominal vapor pressure; this dimensionless property is a ratio by the result 

achieved by the approximation and tabled data. Figure 4.6 “shows a more 

detailed comparison of some experimental data on the vapor pressure of ice. 

Although the experimental data confirm the thermodynamic predictions, it is 

apparent that they do little to narrow the uncertainty compared to integrating the 

Clapeyron equation” (MURPHY; KOOP, 2005) 

Their strategy was to validate their approximation tendency and quantify their 

advance in approximation rating their result by tabled data, the closer the 

tolerance, the better the result. Figure 4.6 has the main approximations 

considered in the study. Figure 4.7 presents the performance of such approach, 

including different references, data and equations. 
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Figure 4.6 – The ratio of selected ice vapor pressure data. 

 
Source: Murphy and Koop (2005). 

 

Murphy and Koop (2005) correlations are expressed in a common functional 

form: 

( ) ( ) TdTlnc
T

b
aPln AA

A
Aicev +++=,

 (4.8) 

 
Table 4.7 – Equation (4.8) coefficients value. 

aA = 9.550426E00 [ln(Pa)] cA =-3.53068E00 [ln(Pa)/ln(K)] 

bA =-5.723265E03 [K ln(Pa)] dA =-7.28332E-03 [ln(Pa)/K] 

Source: Murphy and Koop (2005). 

 
Where P is vapor pressure in Pa and T is absolute temperature in Kelvin. 
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Figure 4.7 – Ratios of various parametrizations of the vapor pressure of ice to the 
nominal thermodynamic solution proposed by (MURPHY; KOOP, 2005). 

 

Source: Murphy and Koop (2005). 

 
 Below we show a group of more equations that describes de vapor pressure in 

the freezing zone. 

Correlation of Goff and Gratch (1946), valid within 184 K<T<273.16K: 
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Table 4.8 – Coefficient values of Equation (4.9). 

aA =-9.09718E00 [ln(Pa)] dA =8.76793E-01 [ln(Pa)]2 

bA =2.7316E02 [K ln(Pa)] eA =6.1071E02 (Pa) 

cA =-3.56654E00   

Source: Goff and Gratch (1946). 

 
In other hand Goff (1957) expressed another correlation, valid within 180K<T< 

273.16 K, 
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Table 4.9 – Coefficient values of Equation (4.10). 

aA = 6.1114E02 [Pa] cA =-3.566506E00 [ln(Pa)] 

bA =-9.096853E00 [ln(Pa)] dA =8.76812E-01 [ln(Pa)] 

Source: Goff (1957). 

 
Hyland and Wexler (1983) presented the following correlation, valid within 

173.16K ≤T<273.16K, 
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 (4.11) 

 

Table 4.10 – Coefficient values of Equation (4.11). 

aA = -5.6745359E03 [K ln(Pa)] eA =2.0747825E-09 [ln(Pa)]/K3] 

bA =6.3925247E00 [ln(Pa)] fA = -9.484024E-13 [ln(Pa)]/K4] 

cA =-9.677843E-03 [ln(Pa)/K] gA =4.1635019E00 [ln(Pa)]/ ln(K)] 

dA =6.2215701E-07 [ln(Pa)]/K2]  

Source: Hyland and Wexler (1983). 

 
Mauersberger (2003) developed exponential correlation for pressure [Pa], valid 

within 164.5 K <T<169 K: 
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Table 4.11 – Coefficient values of Equation (4.12). 

aA =3.4262E01 [ln(Pa)] bA =-7.044E03 [K ln(Pa)] 

Source: Mauersberger (2003). 

 
Jancso et al. (1970), presented a mix correlation for the range  

173K <T<273.16K: 
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Table 4.12 – Coefficient values of Equations (4.13) and (4.14). 

aA = -2.481604E03 [K ln(Pa)] eA =1.901973E00 [ln(Pa)] 

bA =3.572198E00 [ln(Pa)/ln(K)]] fA = 1.3332E02 

cA =3.097203E-03 [ln(Pa)/K] gA =6.11657E02 

dA =-1.7649E-07 [ln(Pa)/K2] hA = 6.11283E02 

Source: Jancso et al. (1970). 

 
Sonntag (1990) presented exponential correlation for iced vapor pressure [Pa] 

for 173.15K ≤ T ≤ 273.16K: 
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Table 4.13 – Coefficient values of Equation (4.15). 

aA = 1E02 [Pa] dA =1.0613868E-2 [ln(Pa)/K] 

bA =2.47219E01 [ln(Pa)] eA = -1.3198825E-05 [ln(Pa)/T2] 

cA =-6.0245282E03 [K ln(Pa)] fA =-4.9382577E-01 [ln(Pa)/ln(K)] 

Source: Sonntag (1990). 

 
Wagner et al. (1994) developed the following correlation, valid within 

190K<T<273.16K: 
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Table 4.14 – Coefficient values of Equation (4.16). 

aA = 6.11657E02 [Pa] cA =3.47078238E01 [ln(Pa)] 

bA =-1.3928169E01 [ln(Pa)]  

Source: Wagner et al. (1994). 

 
Murphy and Koop (2005) extended upward from triple point using Wagner and 

Pruss (1993) results as a base and making this equation fitted from 

123K<T<322K. It means the correlation becomes valid for two zones - freeze and 

two-phase one: 
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In this correlation a hyperbolic tangent function first time was used. 
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Table 4.15 – Coefficient values of Equation (4.17). 

aB = 5.4842763E01 [ln(Pa)] fB =-2.188E02 [K] 

bB =-6.76322E03 [K ln(Pa)] gB =5.3878E01 [ln(Pa)] 

cB =-4.21E00 [ln(Pa)/ln(K)] hB =-1.33122E03 [ln(Pa)/K] 

dB =-3.6E-04 [ln(Pa)/K] iB =-9.44523E00 [ln(Pa)/ln(K)] 

eB =-4.15E-02 [1/K] jB =1.4025E-02 [ln(Pa)/K] 

Source: Murphy and Koop (2005). 

 
Also, Murphy and Koop (2005) expressed his concerns about continuity; it is not 

necessarily those two equations will start or end in the same value, and this can 

be a numerical problem for the equation of continuity, translating in a problem to 

transient simulations. To build a bridge between vapor pressure below triple point 

and vapor pressure in saturation zone Murphy and Koop (2005) expressed their 

solution condensed in Figure 4.8. 

 
Figure 4.8 – Discontinuity in the changing phase. 

 
Source: Murphy and Koop (2005). 

 
Kalova and Mares (2010) in their introduction mentioned the preferences of using 

water properties equation instead the using of experimental data due to the lack 

of quality in that range. In their work, they expressed the equation created by Saul 
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and Wagner (1987) and wrote below, valid from 123K to 332 K. They also 

highlighted the deviations associated. 
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(4.18) 

 
Table 4.16 – Equation (4.18) coefficients value. 

aB =-7.85951783E00 [ln(Pa)/K] dB =2.26807411E01 [ln(Pa)/K3.5] 

bB =1.84408259E00 [ln(Pa)/K1.5] eB =-1.59618718E01 [ln(Pa)/K4] 

cB =-1.18766497E01 [ln(Pa)/K3] fB =1.80122502E00 [ln(Pa)/K7.5] 

Source: Saul and Wagner (1987). 

 
 

Figure 4.9 – Result deviation by comparation between Equation (4.17) and (4.18). 

 
Source: Kalova and Mares (2010). 

 
In work Kalova and Mares (2010) shows the equation valid in the range of 120K 

to 270K. 

Next a potpourri of equations designed to describe the vapor pressure of the 

saturated phase are shown. Popiel and Wojtkowiak (1998) exposed in their work 

a good approximation results to vapor pressure of water in temperatures from 0 

to 150°C, reached by (SAUL; WAGNER, 1987). 
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Where PC is water critical pressure (220.64 bar), TC is water critical temperature 

(647.096K), and T is temperature in °C. The coefficients are the same as 

presented in  

Table 4.16. 

Goff and Gratch (1946), 273.15<T <373.15 K: 
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Table 4.17 – Coefficient values of Equation (4.20). 

aB =-7.90298E00[ln(Pa)] eB =1.011344E03 

bB =3.7316E02 [K] fB = 8.1328E-03 [ln(Pa)] 

cB =5.02808E00 [ln(Pa)/ln(K)] gB =-3.49149E00 

dB =-1.3816E-07 hB = 1.01325E05 [Pa] 

Source: Goff and Gratch (1946). 

 
Goff (1957), 273.15< T<373.15K:  
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Table 4.18 – Coefficient values of Equation (4.21). 

aB = 6.1114E02 [Pa] eB =-8.2969E00 

bB =1.079574E01 [ln(Pa)] fB = 4.2873E-04 [ln(Pa)] 

cB =-5.028E00 [ln(Pa)] gB =4.76955E00 

dB =1.50475E-04 [ln(Pa)]  

Source: Goff (1957). 

 
Goff (1965), 180K<T<273.16K: 











+









t

B
t

BBv
T

T
 lnc

T

1- T
)+b ln(a= )ln(P

 




























+























−
- 110+ f 1 - 10d

 
T

1-T
g

B

1T

T
e

B

t
B

t
B

 

(4.22) 

 
 

Table 4.19 – Coefficient values of Equation (4.22). 

aB =6.1114E02 [Pa] eB =-8.2969E00 

bB =1.079574E01 [ln(Pa)] fB = 4.2873E-04 [ln(Pa)] 

cB =-5.028E00 [ln(Pa)] gB =4.76955E00 

dB =1.50475E-04 [ln(Pa)]  

Source: Goff (1965). 

 
Hyland and Wexler (1983), 173.16 ≤T<273.16K: 
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(4.23) 

 
Table 4.20 – Coefficient values of Equation (4.23). 

aB =-5.8002206E03 [K ln(Pa)] dB =4.1764768E-05 [ln(Pa)/K2] 

bB =1.3914993E00 [ln(Pa)] eB =-1.4452093E-08 [ln(Pa)/K3] 

cB =-4.8640239E-02 [ln(Pa)/K] fB =6.5459673E00 [ln(Pa)/ln(K)] 

Source: Hyland and Wexler (1983). 

 
Koop et al. (2000), 150 <T <273 K: 
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Table 4.21 – Coefficient values of Equation (4.24). 

aB =-2.10368E05  cB =-3.32373E06 [K] 

bB =1.31438E02 [1/K] dB =-4.17291E04[J/kg/ln(K)] 

Source: Koop et al. (2000). 

 
Sonntag (1990), 173.15K ≤T≤ 373.15K: 
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Table 4.22 – Coefficient values of Equation (4.25). 

aB =1.6635764E01 [ln(Pa)] dB =1.673952E-02 [ln(Pa)/K2] 

bB =-6.0969385E03 [K ln(Pa)] eB =2.433502E00 [ln(Pa)/ln(K)] 

cB =-2.711193E-02 [ln(Pa)/K]  

Source: Sonntag (1990). 

 
Wagner et al. (1994), 273.16K≤T≤647 K: 
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Table 4.23 – Coefficient values of Equation (4.26). 

aB =2.2064E07 [Pa] eB =2.26807411E01 

bB =-7.85951783E00 fB =-1.59618719E01 

cB =1.84408259E00 gB =1.80122502E00 

dB =-1.17866497E01  

Source: Wagner et al. (1994). 

 

where crT
T−= 1

 and Tcr = 647.096K. 

For temperatures above the critical point, Van der Waals pressure equation 

usually can be applied: 
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Where Pcr and Tcr are pressure and temperature at critical point, respectively, T 

is absolute temperature in Kelvin, M is the molar mass and R is the universal gas 

constant.  

Redlich and Kwong (1949) have improved the Van der Waals (4.27) Equation: 
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Soave (1972) proposed a modification of equation presented Redlich and Kwong 

(1949) work, achieving a new concept of fluid characterization. At that time, the 

focus was on the improved temperature dependency of the attractive parameter 

“a”. Currently, the component “a” depends on the saturated vapor pressure (Pvp) 

in a reduced temperature characterized by TR=0.7/Tcr. 
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2176.0574.1480.0  −+=m  (4.33) 
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4.3 Vapor density 

Saul and Wagner (1987) present a dimensionless density correlation based on 

data based on the thermal-physical properties on the saturation line of ordinary 

water substance. (273K<T<647.2K): 
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where 𝜏 = 1 −
𝑇

𝑇𝑐𝑟
. 

 
Table 4.24 – Coefficient values of Equation (4.35). 

aC=-2.02957 dC=-17.3151 

bC=-2.68781 eC=-44.6384 

cC=-5.38107 fC=-64.3486 

Source: Saul and Wagner (1987). 

 
Wagner et al. (1994) have slightly refined these coefficients: 

 
Table 4.25 – Coefficient values of Equation (4.35). 

aC=-2.03150240 dC=-17.2991605 

bC=-2.68302940 eC=-44.7586581 

cC=-5.38626492 fC=-63.9201063 

Source: Wagner et al. (1994). 

 
Faghri (2016) in his book also used a polynomial approximation 5th order instead. 

 

( ) 5432ln TfTeTdTcTba BBBBBBv +++++=
 

(4.36) 

 
where T is temperature in Celsius degree, from 20°C to 200°C. 
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Table 4.26 – Coefficient values of Equation (4.36). 

aB =-5.3225E+00 [ln(kg/m3)] dB =8.4522E-07 [ln(kg/m3)/C3] 

bB =6.8366E-02 [ln(kg/m3)/C] eB =-1.6558E-09 [ln(kg/m3)/C4] 

cB =-2.7243E-04 [ln(kg/m3)/C2] fB =1.5514E-12 [ln(kg/m3)/C5] 

Source: Faghri (2016). 

 

4.4 Vapor dynamic viscosity 

Xin et al. (2023) developed a polynomial approximation of 4th order for this 

property of water for heat pipe numerical models. This equation is valid for the 

temperature range from 20°C to 200°C. 

 
432 TeTdTcTba BBBBBv ++++=
 

(4.37) 

 

where T is temperature in Celsius degree and μ in N.s.m-2 

 
Table 4.27 – Coefficient values of Equation (4.37). 

aB =2.37687E-05 [N.s.m-2] dB =-1.24876E-12 [N.s.m-2/C3] 

bB =-1.94073E-07 [N.s.m-2/C] eB =7.2752E-16 [N.s.m-2/C4] 

cB =8.02182E-10 [N.s.m-2/C2]  

Source: Xin et al. (2023). 

 
Faghri (2016) in his book also used a polynomial approximation of 5th order. 

 

( ) 5432 TfTeTdTcTbaLn BBBBBBv +++++=
 

(4.38) 

 
where T is temperature in Celsius degree, from 20°C to 200°C. 
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Table 4.28 – Coefficient values of Equation (4.38). 

aB =-1.1596E+00 [ln(N.s.m-2)] dB =-6.1035E-08 [ln(N.s.m-2)/C3] 

bB =2.6382E-03 [ln(N.s.m-2)/C] eB =1.6844E-10 [ln(N.s.m-2)/C4] 

cB =6.9205E-06 [ln(N.s.m-2)/C2] fB =-1.5910E-13 [ln(N.s.m-2)/C5] 

Source: Faghri (2016). 

 

4.5 Vapor thermal conductivity 

Qian et al. (2022) also achieved an approximation to water thermal conductivity; 

the result can be seen in graph below. 

 
432 TeTdTcTbak BBBBBv ++++=
 

(4.39) 

 
where T is temperature in Celsius degree. 

 
Table 4.29 – Coefficient values of Equation (4.39). 

aB =5.650285E-01 [W/m.K] dB =-1.515492E-06 [(W/m.K)/C3] 

bB =2.6363895E-03 [(W/m.K)/C] eB =9.412945E-04 [(W/m.K)/C4] 

cB =-1.2516934E-04 [(W/m.K)/C2]  

Source: Qian et al. (2022). 

 

Figure 4.10 – Correlation between thermal conductivity and temperature. 

 
Source: Qian et al. (2022). 
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In a higher temperature range, Polasek and Stulc (1976), Saaski (1977) and 

Mishkinis et al. (2009) have reached a linear equation which presents a good 

property accuracy. 

 

Tbak BBvsat +=,  (4.40) 

 
where T is temperature in Celsius degree. 

 
Table 4.30 – Coefficient values of Equation (4.40). 

aB =-6.99E+00 [W/m.K] bB =-6.2E-02 [(W/m.K)/C] 

Source: Polasek and Stulc (1976), Saaski (1977) and Mishkinis et al. (2009). 

 
Also, Xin et al. (2023) developed a polynomial approximation of 4th degree for this 

water property with the intention to use in heat pipe numerical model. This 

equation is valid in a temperature range of 20 to 200 °C. 

 
432 TeTdTcTbak BBBBBv ++++=
 (4.41) 

 
where T is temperature in Celsius degree and k in W.m-1.K-1 

 
Table 4.31 – Coefficient values of Equation (4.41). 

aB =-3.46E-03 [W/m.K] dB =1.55894E-09 [(W/m.K)/C3] 

bB =1.79378E-04 [(W/m.K)/C] eB =-7.6521E-13 [(W/m.K)/C4] 

cB =-7.50759E-07 [(W/m.K)/C2]  

Source: Xin et al. (2023). 

 

4.6 Vapor specific heat capacity 

The equation below was developed by Giauque and Stout (1936) to be used from 

15K to 273K (i.e., sublimated vapor over ice). That approximation was proven 

correct years later by data collected by Flubacher et al. (1960): 
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where T is absolute temperature in Kelvin. 

 
Table 4.32 – Coefficient values of Equation (4.42). 

aA =-2.0572E00 [J/kg/K] cA =6.6163E-02 [J/kg/K2] 

bA =1.4644E-01 [J/kg/K2] dA =1.251E02 [K] 

Source: Giauque and Stout (1936).  

 
Murphy and Koop (2005) approximation can be written similar as the equation 

above (4.42), using different coefficients: 
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(4.43) 

 
Table 4.33 – Coefficients suggestion for Equation (4.43). 

aA =4.67825E04 [J/mol/K] dA =5.415E02 [J/mol/K2] 

bA =3.58925E01 [J/mol/K2] eA =1.2375E02 [K] 

cA =-7.414E-02 [J/mol/K3]  

Source: Murphy and Koop (2005). 

 
“The last term is good for fitting the nonlinear portion because it goes to zero at 

both low and elevated temperatures and can be integrated analytically. The same 

form can be used for the difference in heat capacity between vapor and ice.” 

Murphy and Koop (2005). 
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Figure 4.11 – Correlation between vapor heat capacity and temperature. 

 
Source: Murphy and Koop (2005). 

 
The same extrapolation, mentioned in vapor pressure topic, was  made for the 

heat capacity; the author exposed and compared different equations in a wider 

range. It is important to highlight the limits of uncertainty of estimated curve and 

its behavior with temperature variation. Above the specified range, this limit 

becomes more permissible as is possible to see in Figure 4.12. 

Murphy and Koop (2005) confronted their approximation result with experimental 

data obtain by Angell et al. (1982), Tombari (1999), Archer and Carter (2000); the 

result is shown in Figure 4.12. 
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Figure 4.12 – Comparative study of cp made by (MURPHY; KOOP, 2005). 

 
Source: Murphy and Koop (2005). 

 

Figure 4.13 – Comparative study of cp developed by (MURPHY; KOOP, 2005) 
continuation. 

 
Source: Murphy and Koop (2005). 

 
The next part this work will show a potpourri of equations developed to describe 

the specific heat capacity reached by Murphy and Koop (2005). He in his work 

shows a relation for cp,ice, from 123K up to 155K, achieved by Giauque and Stout 

(1936) mentioned above in Equation (4.42) whose also built an equation to 

describes sublimated vapor cp,ice, from 123K to 167 K, and in Equation (4.45) is 

possible to see the result reached by Giauque and Stout (1936) for water in vapor 

phase. 
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Table 4.34 – Equation (4.44) coefficients value. 

aA =-5.72E-02 [J/mol/K] cA =6.6163E-02 [J/mol/K2] 

bA =1.4644E-01[J/mol/K2] dA =1.251E02 [K] 

Source: Murphy and Koop (2005). 
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Table 4.35 – Equation (4.45) coefficients value. 

aB =3.326182E01[J/kg/K] dB =1.2985E02 [K] 

bB =1.87E-03[J/kg/K2] eB =6.6163E-02 [J/kg/K2] 

cB =6.165E-02[J/kg/K2] fB =1.251E02 [K] 

Source: Giauque and Stout (1936). 

 
Faghri (2016) also made his contribution using a 5th degree polynomial 

approximation for saturated range of temperature. 

 

( ) 5432

, TfTeTdTcTbacLn BBBBBBvp +++++=
 

(4.46) 

 
where T is temperature in Celsius degree; the approximation is valid from 20°C 

to 200°C. 

 
Table 4.36 – Equation (4.46) coefficients value. 

aB =6.3198E-01 [ln(J/kg/K)] dB =4.4936E-08 [ln(J/kg/K)/C3] 

bB =6.7903E-04 [ln(J/kg/K)/C] eB =2.2606E-10 [ln(J/kg/K)/C4] 

cB =-2.5923E-06 [ln(J/kg/K)/C2] fB =-9.0694E-13 [ln(J/kg/K)/C5] 

Source: Faghri (2016). 
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4.7 Vapor Prandtl number 

This property is the combination of others three properties, vapor specific heat, 

vapor thermal conductivity and vapor dynamic viscosity; so, many authors 

choose to use those property approximations to build a dedicated approximation 

of the Pr number instead.  

4.8 Liquid density 

Now we are going to look to liquid density. In their study, Qian et al. (2022) used 

all fluid properties in two-phase range limited by (270K – 370 K) interval. They 

used 4th polynomial approximation, Equation (4.47). Out of this range, the 

equation is not accurate enough to be used in mathematical models: 

 
432)( TeTdTcTbaT BBBBBl ++++=  (4.47) 

 
where T is absolute temperature in Kelvin. 

 
Table 4.37 – Equation (4.47) coefficients value. 

aB =9.997968E03 [kg/m3] dB =8.2140905E-04 [kg/m3/K3] 

bB =6.8317355E-02 [kg/m3/K] eB =2.303988E-05 [kg/m3/K4] 

cB =-1.0740248E-02 [kg/m3/K2]  

Source: Qian et al. (2022). 

 
This approximation results in graph below, given in Figure 4.14. 
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Figure 4.14 – Correlation between density and temperature. 

 
Source: Qian et al. (2022).  

 
Le bideau et al. (2019) used the following approximation for liquid density. 

 

( ) ( ) ( )KOHBBBBl dcTbTaT ++= exp2
 

(4.48) 

 
where Y is coefficient of approximation and T is temperature in Celsius degree. 

The approximation coefficients are available in  

Table 4.38. 

In spite of the work made by Le bideau et al. (2019) refers to an aqueous solution, 

to reach this result, the authors started from a water liquid density, using a 2nd 

degree polynomial equation to model this behavior: 

 

( )KOHBOHl d = exp2
 

(4.49) 

 
Table 4.38 – Coefficient values of Equation (4.48) and (4.49). 

aB =-3.25E-03 [kg/m3/K2] cB =1.00171E03 [kg/m3] 

bB =1.11E-01 [kg/m3/K] dB =8.6E-01 

Source: Le bideau et al. (2019). 
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In their work Saul and Wagner (1987) proposed his contribution to discretize the 

water density for saturated liquid also using like-polynomial equation and they 

further have updated that work (WAGNER; SAUL; PRUSS, 1994):  

3
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(4.50) 

 

where 𝜏 = 1 −
𝑇

𝑇𝑐
 (273.15<T<423.15 K). Differently to the classic polynomial 

functions, authors used not-integer powers for dimensionless temperature.  

 
Table 4.39 – Coefficient values of Equation (4.50). 

aB =1.99206 dB =-1.75263 

bB =1.10123 eB =-45.4485 

cB =-0.512506 fB =-6.75615E5 

Source: Saul and Wagner (1987). 

 
Table 4.40  –  Coefficient values of Equation (4.50). 

aB =1.99274064 dB =-1.75493479 

bB =1.09965342 eB =-45.5170352 

cB =-0.510839303 fB =-6.74694450E5 

Source: Wagner et al. (1994). 

 
Popiel and Wojtkowiak (1998) also recommended the use of Saul and Wagner 

(1987) equation. Faghri (2016) in his book used a classical polynomial 

approximation 5th order instead: 

 

( ) 5432 TfTeTdTcTbaLn BBBBBBl +++++=
 

(4.51) 

 
where T is temperature in Celsius degree, from 20°C to 200°C. 
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Table 4.41 – Coefficient values of Equation (4.51). 

aB =6.9094E+00 [ln(kg/m3)] dB =2.5921E-08 [ln(kg/m3)/C3] 

bB =-2.0146E-05 [ln(kg/m3)/C] eB =-9.3244E-11 [ln(kg/m3)/C4] 

cB = -5.9868E-06 [ln(kg/m3)/C2] fB =1.2103E-13 [ln(kg/m3)/C5] 

Source: Faghri (2016). 

4.9 Liquid dynamic viscosity 

Qian et al. (2022) gave contribution to this topic, and in the analogous way said 

above reached his formulation for liquid dynamic viscosity: 

 
32)( TdTcTbaT BBBBl +++=
 

(4.52) 

 
where T is absolute temperature in Kelvin. 

 
Table 4.42 – Coefficient values of Equation (4.52). 

aB =5.5782468E02 [N.s.m-2] cB =1.360459E-01[N.s.m-2/K2] 

bB =1.9408782E01 [N.s.m-2/K2] dB =3.1160832E-04 [N.s.m-2/K3] 

Source: Qian et al. (2022). 

 
Figure 4.15 – Correlation between dynamic viscosity and temperature. 

 

 
Source: Qian et al. (2022). 
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Kestin et al. (1978) made their contribution presenting the following 

approximation using logarithm for reduced (i.e. dimensionless) dimensionless 

dynamic viscosity. 
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(4.54) 

 
where T iso measured in Celsius degree; the approximation has a limited range 

that goes from 0°C up to 40 °C. 

Le bideau et al. (2019) used a 2nd order polynomial for approximation under 

exponential function; the approximation range is 15 °C to 60°C: 

 

( )CdTcTbaT BBBBl +++= 2exp)(
 (4.55) 

 
where T is temperature in Celsius degree, and C is molarity (mol/L), a correlation 

between mass fraction, density and molar mass. 

 
Table 4.43 – Coefficient values of Equation (4.55). 

aB =4.3E-01 [ln(N.s.m-2)] cB =1.E-04 [ln(N.s.m-2)/C2] 

bB =-2.51E-02 [ln(N.s.m-2)/C] dB =1.3E-01 [ln(N.s.m-2) .L/mol] 

Source: Le bideau et al. (2019). 

 

Qian et al. (2022) also presented specific correlation for this property, developed 

by Popiel and Wojtkowiak (1998): 
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(4.56) 

 
where T is temperature in Celsius degree. 
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Table 4.44 – Coefficient values of Equation (4.56). 

aB =5.5782468E02 [1/(N.s.m-2)] cB =1.360459E-01 [1/(N.s.m-2)/C2] 

bB =1.9408782E01 [1/(N.s.m-2)/C] dB =-3.1160832E-04 [1/(N.s.m-2)/C3] 

Source: Qian et al. (2022). 

 

And Faghri (2016) made his traditional contribution using a 5th degree polynomial 

approximation: 

 

( ) 5432 TfTeTdTcTbaLn BBBBBBl +++++=
 

(4.57) 

 
where T is temperature in Celsius degree, from 20°C to 200°C. 

 
Table 4.45 – Coefficient values of Equation (4.57). 

aB =-6.3530E+00 [ln(N.s.m-2)] dB =-1.1559E-06 [ln(N.s.m-2)/C3] 

bB =-3.1540E-02 [ln(N.s.m-2)/C] eB =3.7470E-09 [ln(N.s.m-2)/C4] 

cB =2.1670E-04 [ln(N.s.m-2)/C2] fB =-5.2189E-12 [ln(N.s.m-2)/C5] 

Source: Faghri (2016). 

 

4.10 Liquid thermal conductivity 

 Mondal et al. (2021) developed a linear correlation to thermal conductivity for 

liquid phase. 

 

Tbak BBl +=
 

(4.58) 

 
where T is temperature in Celsius degree and k is thermal conductivity in  

W m-1K-1. 

 
Table 4.46 – Coefficient values of Equation (4.58). 

aB =1.3572E02 [W/m.C] bB =-2.15E-01 [W/m.C2] 
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Pátek et al. (2009) presented the following approximation for liquid thermal 

conductivity. 

 

( ) ( ) ( ) ( ) ( ) BBBB h
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B
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Bl TgTeTcTaTk **** +++=
 

(4.59) 

 
where T is absolute temperature in Kelvin, T* is dimensionless temperature 

T*=T/300K and k is given in W m-1K-1. 

 
Table 4.47 – Coefficient values of Equation (4.59). 

aB =8.0201E-01 [W/m.K] eB =1.0024E-01 [W/m.K] 

bB =-3.2E-01 fB =-1.2E01 

cB =-2.5992E-1 [W/m.K] gB =-3.2005E-02 [W/m.K] 

dB =-5.7E00 hB =-1.5E01 

 
And Faghri (2016) has performed a 5th degree polynomial approximation: 

 

( ) 5432 TfTeTdTcTbakLn BBBBBBl +++++=
 

(4.60) 

 
where T is temperature in Celsius degree, from 20°C to 200°C. 

 
Table 4.48 – Coefficient values of Equation (4.60). 

aB =-5.8220E-01 [ln(W/m.C)] dB =6.5617E-08 [ln(W/m.C4)] 

bB =4.1177E-03 [ln(W/m.C2)] eB =4.1100E-11 [ln(W/m.C5)] 

cB =-2.7932E-05 [ln(W/m.C3)] fB =-3.8220E-13 [ln(W/m.C6)] 

Source: Faghri (2016). 

 

Popiel and Wojtkowiak (1998) published in their work a polynomial equation that 

approximates this property behavior when temperature varieties. 

 
5.025.1 TeTdTcTbak BBBBBl ++++=
 

(4.61) 

 
where T is temperature in Celsius degree, from 0°C to 150°C. 
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Table 4.49 – Coefficient values of Equation (4.61). 

aB =5.650285E-01 [W/m.C] dB =-1.5154918E-06 [W/m.C3] 

bB =2.6363895E-03 [W/m.C2] eB =-9.9412945E-04 [W/m.C1.5] 

cB =-1.2516934E-04 [W/m.C2.5]  

4.11 Liquid specific heat capacity 

Zaytsev and Aseyev (1992) used the following correlation to describe liquid 

specific heat capacity behavior with temperature, where Y is the molar mass of 

the solution: 

( ) iBBBBBlp Tedc
T

bac +++







+=

100
ln,  (4.62) 

 
 

Table 4.50 – Coefficient values of Equation (4.62). 

aB =4.236E03 [J/kg/K] dB =8E00 

bB =1,075E00 [J/kg/K/ln(K)] eB =8E00 [J/kg/K] 

cB =-4.831E03 [J/kg/K]  

Source: Zaytsev and Aseyev (1992). 

 
The approximation (4.62) can be generalizes to the following expression: 

( )TcTbac BBBlp ln, ++=  (4.63) 

 
Xin et al. (2023) developed a polynomial approximation of 4th order for this 

property for water: 

 
432

, TeTdTcTbac BBBBBlp ++++=  (4.64) 

 
where T is temperature in Celsius degree from 20°C up to 200°C and cP is given 

in J kg-1 K-1. 
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Table 4.51 – Coefficient values of Equation (4.64). 

aB = 8.356E03 [J/kg/K] dB =-3.478E-04 [(J/kg/K)/C3] 

bB = -4.501E01 [(J/kg/K)/C] eB = 2.576E-07 [(J/kg/K)/C4] 

cB = 1.848E-01 [(J/kg/K)/C2]  

 

And Faghri (2016) developed a 5th degree polynomial approximation using 

logarithm of the value: 

( ) 5432

,
TfTeTdTcTbacLn BBBBBBlp +++++=

 
(4.65) 

 
where T is temperature in Celsius degree, from 20°C to 200°C. 

 
Table 4.52 – Coefficient values of Equation (4.65). 

aB =1.4350E+00 [ln(kJ/kg/K)] dB =-4.4099E-08 [ln((kJ/kg/K)/C3)] 

bB =-3.2231E-04 [ln((kJ/kg/K)/C)] eB =2.0968E-10 [ln((kJ/kg/K)/C4)] 

cB =6.1633E-06 [ln((kJ/kg/K)/C2)] fB =-3.0400E-13 [ln((kJ/kg/K)/C5)] 

Source: Faghri (2016). 

 
In a similar way Qian et al. (2022) reached his formulation for water liquid specific 

heat: 

432

, TeTdTcTbac BBBBBlp ++++=  (4.66) 

 
where T is absolute temperature in Kelvin. 

 
Table 4.53 – Coefficient values of Equation (4.66). 

aB =4.2174356E03 [J/kg/K] dB =-1.115353E-01 [J/kg/K4] 

bB =-5.6181625E00 [J/kg/K2] eB =4.14964E-03 [J/kg/K5] 

cB =1.2992528E00 [J/kg/K3]  

Source: Qian et al. (2022). 
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Figure 4.16 – Correlation between specific heat and temperature. 

 
Source: Qian et al. (2022). 

 
Popiel and Wojtkowiak (1998) published in their work a polynomial equation that 

approximates this property behavior when temperature variates. 

 
35.25.1

, TeTdTcTbac BBBBBlp ++++=
 

(4.67) 

 
where T is temperature in Celsius degree, from 0°C to 90°C. 

 
Table 4.54 – Coefficient values of Equation (4.67). 

aB =4.2174365E00 [(J/kg/K)/C] dB =-1.1535353E-4 [(J/kg/K)/C3.5] 

bB =-5.6181625E-03 [(J/kg/K)/C2] eB =4.14964E-06 [(J/kg/K)/C4] 

cB =1.2992528E-03 [(J/kg/K)/C2.5]  

 

4.12 Liquid Prandtl number 

Popiel and Wojtkowiak (1998) suggested an equation to approximate this water 

property by an inverse polynomial function: 

 

32
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(4.68) 

 
where T is temperature in Celsius degree. 
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Table 4.55 – Coefficient values of Equation (4.68). 

aB =7.4763403E-02 cB =2.8606181E-05 [1/C2] 

bB =2.9020983E-03 [1/C] dB =-8.1395537E-08 [1/C3] 

Source: Popiel and Wojtkowiak (1998). 

 

4.13 Latent heat (enthalpy) of vaporization 

Faghri (2016) also contributed using a 5th degree polynomial approximation. 

 

( ) ( )5432expln TfTeTdTcTba BBBBBB +++++=  (4.69) 

 
where T is temperature in Celsius degree, from 20 to 200°C. 

 
Table 4.56 – Coefficient values of Equation (4.69). 

aB =7.8201E+00 [ln(kJ/kg)] dB =8.4738E-08 [ln(kJ/kg)/C3] 

bB =-5.8906E-04 [ln(kJ/kg)/C] eB =-3.9635E-10 [ln(kJ/kg)/C4] 

cB =-9.1355E-06 [ln(kJ/kg)/C2] fB =-5.9150E-13 [ln(kJ/kg)/C5] 

Source: Faghri (2016). 

 
Popiel and Wojtkowiak (1998) published in their work a polynomial equation that 

approximates this property behavior when temperature variates. 

 
35.25.1 TeTdTcTba BBBBB ++++=  (4.70) 

 
where T is temperature in Celsius degree, from 0 to 150°C. 

 
Table 4.57 – Coefficient values of Equation (4.70). 

aB =2.500304E+03 [kJ/kg] dB =3.1750163E-04 [kJ/kg/C2.5] 

bB =-2.2521025E00 [kJ/kg/C] eB =-2.867959E-05 [kJ/kg/C3] 

cB =-2.1465847E-02 [kJ/kg/C1.5]  
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4.14 Surface tension  

Vargaftik et al. (1983) developed a more advanced approximation valid from 0.01 

to 185°C. 
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(4.71) 

 

Table 4.58 – Coefficient values of Equation (4.71). 

aB =2.358E-01 [N/m] bB =-6.25E-01 cB =1.256E00 

 
 
Also, Poling et al. (2001) presented an approximation of the following format: 

 

( )n

RT− 1
 

(4.72) 

 
Where “n” is a local variable that can vary from 0.8 to 1.22 and TR, also known as 

reduced temperature, is a dimensionless result from T/Tcr. 

Devarakonda (2005), presented the following approximation: 
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(4.73) 

 
Where, Pcr and Tcr are critical pressure in bar and critical temperature in Kelvin 

respectively, resulting in surface tension in N m-1. 
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Qasem et al. (2021) presented the correlation for pure water: 
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(4.75) 

 
where T is absolute temperature in Kelvin. 

 
Table 4.59 – Coefficient values of Equation (4.75). 

aB =2.358E02 [N/m] cB =1.256E00 

bB =6.47096E02 [K] dB =6.25E-01 

Source: Qasem et al. (2021). 

 
And Faghri (2016) also made his contribution using a 5th degree polynomial 

approximation. 

 

( ) 5432 TfTeTdTcTbaLn BBBBBB +++++=
 

(4.76) 

 
where T is temperature in Celsius degree, from 20°C to 200°C. 

 
Table 4.60 – Coefficient values of Equation (4.76). 

aB =4,3438E+00 [ln(N/m)] dB =-2,5499E-07 [ln(N/m)/C3] 

bB =-3,0664E-03 [ln(N/m)/C] eB =1,0377E-09 [ln(N/m)/C4] 

cB =2,0743E-05 [ln(N/m)/C2] fB =-1,7156E-12 [ln(N/m)/C5] 

Source: Faghri (2016). 

 
Straub (1980) developed an approximation using dimensionless temperature: 

 

( )bb d

b

b

b ca  += 1  (4.77) 

 

 crT

T
−= 1

 

(4.78) 

 

Where sigma is the surface tension, TC is the critical temperature, and T is the 

temperature (in K).  
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Popiel and Wojtkowiak (1998) published a polynomial equation that approximates 

this property behavior when temperature varies . 

 
32 TdTcTba BBBB +++=
 

(4.79) 

 
where T is temperature in Celsius degree, valid from 0°C to 150°C. 

 
Table 4.61 – Coefficient values of Equation (4.79). 

aB =7.5652711E-02 [N/m] cB =-3.0842103E-07 [N/m/C2] 

bB =-1.3936856E-04 [N/m/C] dB =2.7588435E-10 [N/m/C3] 
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5 METHODOLOGY 

5.1 Building equations 

Polynomial equations are widely used to build approximations for fluid properties. 

It is quite common to find the following expressions for any property (p): 

 

...),( 5432 ++++++= fTeTdTcTbTaqTp  
(5.1) 

 
where q - is a vector of approximation parameters (coefficients): 

,...},,,,,{ fedcbaq =  (5.2) 

 
This type of correlation is usually only valid within well-defined limits. The higher 

the order, the higher the precision of the approximation. However, out of the 

range, the behavior of the polynomial may get a significant deviation away from 

the physical sense. The higher the order of this polynomial equation applied in a 

wide range of temperature implies into an unstable behavior.  

Usually, a polynomial approximation does not reflect the physical nature of the 

property behavior. To avoid this drawback, it is suggested for any thermo-physical 

property p that the main component of approximation would follow the main 

tendency of fluid behavior with temperature whenever possible. After that, the 

approximation may be improved by adding auxiliary terms or coefficients. To 

choose a suitable basic correlation, a collection of distinct functions shall be 

preliminarily created and plotted with variation of key parameters (such a study 

is presented in APPENDIX A – Equations and its derivatives). For example, for 

the water surface tension, the original curve looks like in Figure 5.1. 
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Figure 5.1 – Correlation between water surface tension and saturation temperature. 

 

 
A similar tendency is seen for the following function type. 

axy )1( −=  
(5.3) 

 
When x varies from 0 to 1 and a<=1: 

 
Figure 5.2 – Example of function tendency for different “a” value. 
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One can see that when a is adjusted between 0.6 and 0.9, the tendency in 

function y follows the tendency of surface tension. This approach is not new, and 

some correlations already have been elaborated by this manner. For example, a 

correlation of this type for surface tension as a function of relative temperature 

can be found in the technical literature:  

a

crT

T
T 








−= 1)( 0  (5.4) 

 

The parameters Tcr, 0 and a – are different for each specific fluid.  

One of the drawbacks of the usual approach with polynomial is that the 

approximations coefficients “q” has dimensions, and those dimensions are 

dependent on the system of units. To avoid this and for generality, we will use 

dimensionless properties and temperature: 
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The example of Equation (5.6) is shown for pressure. However, the same 

approach will be applied to all properties.  

Wherefore, for the two-phase zone, the values for both   and p may vary from 0 

to 1. For sublimation,  and p are negative, and for the one-phase supercritical 

zone (i.e., gas), the values are above 1. We expect such an approach will help to 

elaborate universal correlations with close coefficients for different working fluids. 

Moreover, the approximation parameters (coefficients) are also dimensionless.  

The properties shall include saturated pressure, latent heat of vaporization and 

surface tension for interface conditions, as well as density, dynamic viscosity, 

specific heat, and thermal conductivity for both vapor and liquid phases. 

The correlation for the approximation includes approximation parameters “q,” 

whose values shall be obtained from the conditions of the best fitting of known 
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tabulated data for different temperatures Ti. We denote such parameter vector 

“q.” These components of vector “q” shall be obtained by a minimization of 

deviations from tabulated data. To implement this for the dimensionless 

variables, the first tabulated data shall be recalculated and passed to the 

dimensionless format as a function of dimensionless temperature: 

 

)(ˆ)(ˆ iiii yTY   (5.7) 

 
When the least-square technique may work fine. In mathematic terms it can be 

expressed as minimization of average absolute deviation or minimization of 

maximum absolute deviation:  


=

−=
N

i

iiiav
q

yqy
N

D
1

)(ˆ),(
1

min   (5.8) 

)(ˆ),(maxmin max iii
iq

yqyD  −=  (5.9) 

 
where N – number of points available in a table of the given thermo-physical 

property.  

These two criteria of optimization can be combined in one by applied 

dimensionless wights which reflect the relative important of each criterion.  

 

avP
q

DWDWD 2max1min +=
 

(5.10) 

121 =+WW  
(5.11) 

 
After performing the optimization by any this technique, the best values of the 

vector “q” components, which provide a better fitting to the tabulated values, will 

be obtained. The methods for best fitting may be different, starting from try-and-

error methods within EXCEL features, or using known search algorithms, 

beginning from random search to some kinds of genetic optimization algorithms. 

When we use the dimensionless properties, those values vary around 0-1 

interval, the relative error for optimization is not recommended, once in the zone 

where the parameter values are near to 0, the uncertainty 0/0 may lead to artificial 
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exaggerated giant relative errors. Therefore, the absolute deviations are 

preferable for the dimensionless parameters. This dimensionless absolute 

deviation makes sense for relative error, referred to the entire two-phase interval. 

For example, the absolute dimensionless deviation of 0.01 means 1% of the 

interval (Pcr-P3). To be within this sense we will use % (factor of 100) to handle 

the dimensionless absolute deviations. 

5.2 Interfacing 

5.2.1 Interfacing around T3 ( = 0) 

Usually, it is easy to fund in technical literature  approximations for two different 

zones:  

• for the sublimation zone, at <0, let denote as yA(); 

• for two-phase zone, let denote as yB(). 

However, at =0 we have an interruption, as illustrated on the curve of  

Figure 5.3, for the magnitude and for derivatives for both sides: from the left and 

from the right: 

 
)0()0( BA yy   (5.12) 

)0(')0(' BA yy   (5.13) 

  

 
Figure 5.3 – Two equations of fluid properties at T3. 
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Such interruptions are not acceptable for HP numerical modeling for simulation 

of transient behavior over a wide range of temperatures. To solve this problem, 

the idea is to introduce a small interface zone (AB) around T3 temperature to 

smooth these interruptions, as illustrated in Figure 5.4. 

 

Figure 5.4 – Interfacing example around =0. 

 

 

This zone is bounded by small deviations, say 1 and 2. The magnitude of 

these variations must be set to a small value of temperature difference, say 

~0.005 (it corresponds to about ~1 °C in absolute temperature scale). The 

approximation in this interfacing zone, yAB(), must eliminate the non-continuity 

and smooth these interruptions. To do this, some additional constrains are 

imposed to the approximation (conditions of smoothing in interfacing zone), 

considering that we already have the approximations yA() and yB() and its 

derivatives: 
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 (5.14) 

 

It was assumed that we already have satisfactory approximations yA() and yB() 

and its derivatives in the curves before and after this interfacing zone around the 

triple point temperature T=T3 (i.e., =0). Therefore, there are 4 conditions, and 
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we can build a function for the interface zone with 4 variables. In general, it could 

be done by any type of function, but a 3rd order polynomial function of is more 

appropriate. 

32)( dxcxbxaxyAB +++=  (5.15) 

 
The derivative is following: 

232)( dxcxbxyAB ++=  (5.16) 

 
After substitution of this approximation into the conditions, we have. 
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Here  is always positive. 
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Therefore, we have a system of 4 algebraic equations of 4 unknowns a, b, c, and 

d, which can be resolved by several  appropriate methods.  

To simplify the representation, we denote: 

 

22

11
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



−
 (5.19) 

 
We can derive analytical solution for the polynomial coefficients for the interfacing 

around τ=0, as presented below:  
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(5.20) 

 
(5.21) 

 
(5.22) 

 
(5.23) 

 
The same approach may be used for interfacing of approximations around the 

critical temperature Tcr ( = 1), presented in next sub-section. 

5.2.2 Interfacing around TCR ( = 1) 

The same approach may be used for interfacing of approximations around critical 

temperature Tcr ( = 1), illustrated in Figure 5.5. 

 

Figure 5.5 – Interfacing example around =1. 

 

 

For the small temperature deviations, we will use 3 and 4 instead of 1 and 

2 :  
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 (5.24) 

 
If we apply the polynomial approximation of 3rd order over the interfacing zone, 

the basic system of the equation will be the following. 
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 (5.25) 

 
Therefore, we have 4 conditions. In this case a polynomial function of 3rd order 

is adequate. 

32)( dzczbzazpBC +++=
 

(5.26) 

 
The derivative is the following. 

232)( dzczbzpBC ++=
 

(5.27) 

 

Where z tends to (1-) for the case of interfacing around TCR. 

After the substitution of the argument z to (1-) of this approximation into the 

system of the smooth interfacing conditions,  is replaced by coefficients in 

Equation system (5.28). 
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(5.28) 
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Therefore, we have a system of 4 algebraic equations of 4 unknowns a, b, c, and 

d, which can be solved by any method. 

Solving the system above, the parameters values are available below. 

The analytical solution of the system of the Equation (5.28) was obtained for the 

polynomial coefficients of the interfacing curve. 

 

 
(5.29) 

 
(5.30) 

 
(5.31) 

 
(5.32) 

 
These solutions can be implemented into MS Excel spreadsheets. 

In the case where fluid property not only depends on temperature but also on 

pressure, especially in the region above the critical point, the approach may be 

similar. However, the two-arguments approximation shall be presented as a 

product of two functions:   
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The function (p) does not depend on temperature. Therefore, it can be treated 

as a constant factor in the interfacing equations and will not interfere on the 

solution of algebraic equations system. However, in this case, the polynomial 

coefficients a, b, c, d will be functions of pressure. When value of pressure is 

known, the value of these coefficients can be calculated at different magnitudes 

of pressure. 

The conjugate conditions for this case will be as following: 
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The basic system of equations, after substitution the expression for yC(, p) looks 

like the following. 
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Once we have a function of the variable “p” in the system, its solution shall be 

obtained analytically.  

To simplify the representation, we denote: 
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The analytical solution for the system of Equations (5.35) was obtained for the 

polynomial coefficients of the interfacing curve: 
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The solution can be also implemented into an EXCEL spreadsheet. Then, a linear 

approximation of coefficients a,b,c,d as functions of pressure can be realized.  

5.2.3 Interfacing at any point of temperature 

By the same manner, the general interfacing algorithm can be used at any point 

of the temperature axis. In this case we need to define the bound not by 1 and 

2 around 0 (or 3 and 4 around 1) but by the values from both sides of an 

arbitrary conjugation (interruption) point i, let be lt on the left side and rt - on the 

right side. This nomenclature is shown in Figure 5.6. 

 
Figure 5.6 – Interfacing for general case. 

 

The conjugate conditions include continuity on function values and on its 

derivatives from both sides of the interruption point i. 
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 (5.41) 

 

Note, that the interruption points position i are not important anymore, only left, 

and right bounds are considered. 

These conditions are universal and are applicable for any point on the 

temperature axis. Then we perform the following substitutions. 
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 } yy    ;yy   ;yy   ;   ;{ 21 ABiBrtAltrtlt →→→→−→   (5.42) 

 
In Equation (5.42), we obtain the conditions for the interfacing between freezing 

and saturation zones. 

 

 } yy    ;yy   ;yy   ;1   ;1{ 43 BCiCrtBltrtlt →→→+→−→   (5.43) 

 
In Equation (5.43), we obtain the conditions for the interfacing between saturation 

and super-critical zones. 

As it has been proven, a polynomial function of 3rd order can be used in the 

interval of the interfacing: 

32)(  iiiii dcbay +++=  (5.44) 

 
After substitution, we obtain the system of equation which must be solved to get 

the polynomial coefficients a, b, c, and d of the interfacing curve: 
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The parts on the right side are numerical values. Therefore, we have a linear 

system of 4 equations with 4 unknowns, which in general case has a unique 

solution. This solution can be obtained analytically manually or with the help of 

MATHEMATICA© or similar tool. 

The analytical solution of the system of Equations (5.45) was obtained for the 

polynomial coefficients of the interfacing curve and shown below. 

3

2

)(

))3())3())((((

rtlt

rtrtltltltltrtrtrtltltrtltrtltrt
i

yyyy
a





−

−+−−+−
=  (5.46) 



68 
 

'
)(

)))(6)2(()2)(((
3

22

rtlt

rtltltltrtltrtltrtrtltrtltltrt
i

yyyy
b





−

−+−+−+−
=  (5.47) 

3

22

)(

)))((3)2())2)((((

rtlt

rtltrtltltrtltrtrtrtltrtltlt
i

yyyy
c





−

−++−+++−−
=  (5.48) 

3)(

)22))(((

rtlt

rtltrtltrtlt
i

yyyy
d





−

+−−+
=  (5.49) 

 
The nomenclature is also not important; we may use any customized definition, 

for example. 
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5.3 Piecewise approach using Heaviside functions 

The main aim of the research is to develop the approximations which are valid 

within the entire interval of temperature. It may be exceedingly difficult to 

elaborate a unique correlation which may be valid for the entire interval, even 

from 0 to 1 of dimensionless temperature. In this case it is worth to break the 

interval in few parts where good approximations can be found separately. In this 

case it is particularly important that in the conjugate point H, the smooth transition 

must be provided. The condition for the smooth transition is that the values and 

derivatives of the right and left functions must be equal: 
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Where y1 and y2 are the components of piecewise functions used for 

approximation in two conjugate subintervals in this example.  

To implement this feature, we propose to use Heaviside functions, defined as: 
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We will also use the reverse Heaviside function:  

 








=−−

H

H

H





:0

:1
)(1  (5.53) 

Obviously:  
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For example, for the case when piecewise function has two components y1 and 

y2, the approximation over entire interval of temperature can be expresses as: 
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In this expression, the sub-vectors of approximation parameters q1 and q2 are 

included: 

},{ 21 qqq =  (5.57) 

 
Figure 5.7 illustrates the use of piecewise function with conjugation by Heaviside 

function. 
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Figure 5.7 – Example of piecewise function with conjugation by Heaviside function. 

 

The expression for using 3 functions with two conjugate points is similar. 
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(5.58) 

},,{ 321 qqqq =
 

(5.59) 

 
Obviously, the approach can be expanded up to any number of components in 

the piecewise function. 

The approach may be called as piecewise approximation by substitution (one 

function by another). However, this approach has a certain drawback: the solution 

of the system of equations of smooth transition, Equation (5.60),  may be difficult 

for nonlinear functions.  

In this case we propose the conjugation by addition. 

For the case of two functions and one conjugate point it can be defined as follows. 
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It means the first function provide rough approximation over entire interval, while 

the second function then add in the point H to improve the approximation. Using 

the Heaviside functions, the approximation by addition is expressed as: 

 
),()(),(),( 2211 qyqyqy H  −+=  (5.61) 

},{ 21 qqq =  (5.62) 

 
Next Figure 5.8 illustrates the use of piecewise function with conjugation by 

addition. 

 
Figure 5.8 – The impact of a Heaviside function on an approximation curve. 

 

The conditions for the smooth transitions become simpler: 
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(5.63) 

 
This approach also has the drawback that not all candidates for the approximation 

functions y2 can be used. A collection for such functions which satisfy the 

conditions for using in piecewise approximations by addition must be previously 

created. 
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5.4 Final format 

The results of the approximation over entire temperature range in the format of 

an algorithm written in pseudo-code, which is quite easy to implement in any 

programming language, can look like following:  
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(5.64) 

 
Where any function “y” could have a shape like this 
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(5.65) 

 
 

All approximations of all properties will be presented in this format.  

5.5 The best approximation by optimization algorithm of random search  

As a scientific contribution, this works proposes an optimization algorithm based 

on applying random values within a specific range chosen by User. The algorithm 

was developed by author in MS Visual Basic programming language, then 

implemented, tested and validated within the MS Excel tool.  

This algorithm can be checked in block diagram in Figure 5.9 below. 
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Figure 5.9 – Algorithm block diagram. 

 

 
The developed tool has several interesting features. It reveals ten best results 

achieved during iterations and reveals left and right boundaries for all best 

approximation parameters, including conjugation points positions. At any 

moment, the User may interrupt calculation and adjust the boundaries to reduce 

diapason of optimization parameters variations and then continue the calculation. 

It allows to reduce overall number of iterations and improves the quality of 

approximation by achieving a better magnitude of the minimization criterion (total 

deviation). The tool has e visualization of current curve of approximation and best 

curve achieved. 
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In our work we choose the liquid Prandtl number of waters to trim our optimization 

technique. This will be detailed along this work, but Equation (5.66)  introduces 

the format of this dimensionless property by dimensionless temperature. Our 

program optimizes thirteen variables available in Equation (5.67) using random 

values in determinate ranges. 

The optimization variables are the parameters of approximations. 
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(5.67) 

 
Here we have the approach of three piecewise functions combined by addition 

manner through two conjugate points, H1 and H2. The vector of optimization 

variables (i.e., approximation parameters) has the following components: 
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The algorithm used to develop this optimization is based on the deviation of the 

approximation when it’s compared with the property table data., In  

Figure 5.10 this value DP is expressed by name “DesP”, this parameter must be 

minimized and can be defined as weighted sum of the maximum absolute 

deviation of the approximation from data, and the average deviation in all the 

temperature range. 
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where, W1 and W2 are weights of importance applied by user to achieve the best 

approximation result; the combination of those two always result in one.  

 
121 =+WW  (5.73) 

 
When the start button is pressed, the algorithm applies random values on each 

optimization variable; then the result of this operation is evaluated, and the ten 

best results are ranked. After that, the program applies a routine that set random 

values on each variable again within the established boundary limits and the 

result is verified if it could be inserted in the rank of ten best results.  

This code provides an iteration counter to observe the process of calculations. 

Reinforcing that, the User may interrupt iterations at any moment and restrict the 

range of each variable by readjusting the boundary limits. It may decrease the 

overall numbers of iteration and may reach a much better approximation. 

 

Figure 5.10 presents an overview of the User Interface within MS Excel 

spreadsheet used to perform the optimization and a map of all components. 

Everything in yellow (marked as P-01) is a user input since each error weight, 

until boundaries of each variable, limiting the range of approximation parameter 

variations. In box P-02 we have the command buttons (Start, Stop and Continue), 

the start button initiated the approximation algorithm and the iteration counter. 

Random values will be assigned to each variable, within the previously 

determined range. The Stop button pauses the iterations, which allows the User, 

if necessary, to adjust anything in yellow cells. The Continue button returns to 

iterations with the modified variables (if applicable), but this button does not reset 
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the ranking previously placed. The Start button restarts the algorithm, resetting 

the counter and the ranking. 

The green collum (P-03) shows the best result found after all iterations followed 

by the ten best results ranking. The blue cells display the number of iterations 

followed by error maximum; the average deviation after weight applied is marked 

as box P-04. A possible check the approximation components, followed by the 

chart, shows a visual comparison between data, best results and current 

approximation curve. An important feature to evaluate the optimization 

performance is the relationship between deviation and the number of iterations. 

The box P-06 shows a table that update itself on each deviation achieved the 

better result in a way to minimize this criterion. The chart of this table is 

automatically updated to make the evaluation easier. And in box P-07 we have 

the minimum and maximum values of each variable in rank, in ways to help the 

adjusting of boundary limits. 

 
Figure 5.10 – Excel Sheet function mapping. 
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Besides the algorithm works automatically, it is possible to achieve a more 

efficient way to get a satisfactory result working with each variable limit of 

approximation. As an example, we set a satisfactory DesP (DP) value and 

executed twenty times the algorithm to show how efficient the algorithm can be 

trimming with the variable limits. Out of those 20 runs, 10 times was running 

without adjustments and the other 10 was doing after the adjustments. Our DesP 

target was set as any value be less or equal to 1.30. In Figure 5.11 it is possible 

to see the worst cases of each of the 20 rounds; the blue line without adjustments 

demanded 38489 iterations and the orange line with adjustments demanded 

1132 iterations to reach our DesP target.  

Some more cases have been run to test the efficiency of the adjusting procedure. 

In Figure 5.12 it is possible to see the result of each case to evaluate the impact 

of the adjustments on the total number of iterations. The test results show that 

the adjustments can help to get result faster. Using no adjustments, the user will 

need on average of 18290 iterations to get the deviation under 1.30, as shown in 

Figure 5.12 in green line. On the other hand, if the user trims the variables 

operational limits, the user will need on average of 967 iterations (in red line) to 

get the same results. 

Figure 5.11 – Cases with more iteration. 
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Figure 5.12 – Compilations of all cases number of iterations. 

 

 
The tool performs about 1200 iterations per minute on the usual desktop home 

PC. The efficiency can be improved by limitation of the visualization function of 

current curve be exposed at each iteration. 
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6 RESULTS 

6.1 Approximations for vapor pressure 

6.1.1 Approximations for saturated zone 

Vapor pressure under saturation conditions can be defined as the pressure of 

vapor applied to a surface when a closed system is in thermodynamic equilibrium 

with its condensed phase. It means the liquid tends to evaporate until the 

equilibrium is achieved.  

In general, the pressure is the force perpendicularly applied to the surface of an 

object per unit area over which that force is distributed. Dimension is N/m2 or Pa. 

The original data of the water vapor pressure behavior with temperature is 

presented in Figure 6.1 (LEMMON et al., 2023). Also, the figure has vapor 

pressure data in sub-freezing zone compiled from (TURNS et al., 2007). In that 

case, these data start in -40 °C and go to critical temperature. 

 
Figure 6.1 – Water vapor pressure data. 
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Faghri (2016) in his book suggested the Equation (6.1) to approximate this water 

property by polynomial funtion. 
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(6.1) 

 
where T is expressed in °C and pressure in Pa. 

This equation is valid between 20°C and 200°C and can be used for HP modeling 

with no concern once the approximation error mentioned in Faghri (2016) is 

0.03%. The equation covers up to 48% of the entire two-phase temperature 

range. However, when we try using this polynomial equation out of established 

range, the result is not acceptable. The green line in Figure 6.2 expresses this 

deviation from the real values. 

 
Figure 6.2 – Faghri polynomial approximation.  

 

 
However, we will use the dimensionless vapor pressure following our generalal 

approach: 
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For the saturation interval (i.e., two-phase zone, 0<<1), the main idea is work 

with the deviation from well-known Clausius–Clapeyron Equation (6.3). This 

equation determines the equilibrium between the two phases of a substance:  

 

 
(6.3) 

 
The Clausius–Clapeyron equation has solid theoretical base, but it deviates from 

the original table data at distant points from the reference point (T0&P0). The 

deviation increases as distances from (T0&P0) increases. 

Firstly, it is important to present the Clausius-Clapeyron equation at the 

dimensionless format. This dimensionless Clapeyron-Clausius equation includes 

dimensionless saturations pressure at reference point and dimensionless triple 

point respectively (p0 & p3); then dimensionless reference temperature (0), 

constant temperatures at triple point and critical point respectively (T3 & TCR), and 

latent heat at reference point (λ0): 

 

 

(6.4) 

 
Finally, the Equation (6.4) is dimensionless. 

To build an adequate approximation for vapor pressure, we have two main ways 

to work with that property. The first one is trying to build a curve with property 

value “as is,” and the second one is to work with the natural logarithm of that 

property. 

The best results have been obtained the following approximate functions, “as is”, 

Equation(6.5). The results for the natural logarithm approximation are given by 

Equation (6.6):  
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 (6.5) 

 

(6.6) 

 
Figure 6.3 – Vapor pressure approximation result in saturated zone “as is”. 
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Figure 6.4 – Logarithm Vapor pressure approximation in saturated zone. 

 

 
We observe the deviation from data by approximation “as is” lies within the usual 

acceptance criteria in 5% of deviation.  

Figure 6.5 shows the difference between real data and the result that Clausius-

Clapeyron achieved to vapor pressure. 
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Figure 6.5 – Deviation of Data and Clausius–Clapeyron equation for saturated zone.  

 

 

6.1.2 Approximations for freezing zone or sublimation zone 

To approximate the pressure of sublimated vapor in freezing zone, some results 

have been published. The work of Liley (2005) uses an equation, which starts in 

-20 °C and go up to 0°C. The approximation is expressed in Equation (6.7), where 

P is pressure in kPa. 
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(6.7) 

 
Marti and Mauersberger (1993) developed the Equation (6.8) with the 

temperature ranging from -105°C to 0°C, where P is in Pa. 
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In Figure 6.6 is possible to see the results of equation (6.5) for a wider temperature 

range.  
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Figure 6.6 – Property data in freezing (sublimation) zone. 

 

 
In this work, we tried several types of approximations. The best results were 

achieved by the exponential function in freezing zone. 

 

 (6.9) 

 
Finally, for freezing zone we have: 
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Figure 6.7 – Vapor pressure approximation result in freezing zone. 

 

 
The interfacing equation joins subcooled zone with saturated zone. 

Looking for a smooth transition between those two zones of Equations (6.5) and 

(6.9), it is used the third-degree polynomial (Equation (6.12)):  

  

   (6.12) 

 
Finally, the system will be of the following format to the interfacing equation 

performs tangency of both curves and makes a continuous smooth link. 
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Points of tangency were defined to optimize the approximation results. In this 

case dt is the distance between the points; the results are as follows.  

( ) 32  ABABABABAB dcbap +++=
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The analytical solution for the polynomial coefficients for the interfacing around 

tau=0 is presented in the Methodology section. 

The results are expressed below. 

 

 

(6.15) 

 

The result approximation around triple point (=0), including the interfacing curve, 

is shown in Figure 6.8. 

  













−=

=

=

−=

2521.35

408934.0

002519.0

000025.0

AB

AB

AB

AB

d

c

b

a



88 
 

Figure 6.8 – Final Result to interfacing below sub freezing point. 

 

 

6.1.3 Approximations for super-critical zone 

To obtain precision approximation the pressure above the critical point cannot be 

treated through a well-known ideal gas low. We will use a real gas approach 

based on the Van der Waals equation, Redlich-Kwong equation, and Soave-

Redlich-Kwon equation. The best variant was selected for the approximation and 

interfacing at =1. 

Heat pipes have a peculiarity: the total density of working fluid, considering liquid 

and vapor phases together, is fixed and defined by the working fluid amount 

charged into the heat pipe during HP manufacturing. Then, the HP container is 

hermetically sealed, and the mass of working fluid does not change. By knowing 

the internal volume of heat pipe, total density can be easily calculated: 

Therefore, the author chose more than one fluid density for the analysis, which 

varies from 332 kg/m3 (critical density) to 350 kg/m3 but in this study only the 

critical density will be analyzed. The Equation (6.16) can be expressed by the Van 
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der Waals equation, Redlich-Kwong Equation (6.19), and Soave Equation (6.28), 

Smith et al. (2013), Markočič and Knez (2016). 

We transform the Van der Waals definition with the use of dimensionless 

temperature: 
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(6.18) 

 
The statement summarizes intuitively the differences of vapor pressure equations 

and our goal, which is to modify the original equation to cover a wider range of 

temperatures. 

 
Table 6.1 – Coefficients “a” and “b” expressed by polynomial coefficients. 

  a1 
a1 ρ= 322 

kg/m3 
b1 

b1 ρ= 322 

kg/m3 
c1 

c1 ρ= 322 

kg/m3 

Van der Waals  

a - -6,00E-08 - 9,00E-05 4,22E+04 3,97E+02 

b - - - 7,00E-04 8.00 7.81 

Redlich-Kwong 

a - - - 2.4E-03 23.393 7,26E+02 

b - - - -9.6E-3 11.542 1,79E+05 

Soave-Redlich-

Kwong 

a - - - 1.3E-02 23.393 1.485 

b - - - -5.8E-3 11.542 1,54E+04 
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Figure 6.9 – Correlation between dimensionless pressure and dimensionless 
temperature for water above critical point and with a density equal to 322 
kg/m3. 

 

 

This property has behavior in super critical zone that will be considered in this 

study; figures below show data by (ACREE; CHICKOS, 2023). Considering that 

the charged density is an important parameter for HPs, in this case we get the 

saturation pressure behavior by temperature and density.  

As mentioned above, at the supercritical region, the property not only depends 

on temperature, but also on density. The strategy adopted to this zone is to work 

of known equations available in literature, focused on Soave-Redlich-Kwong 

equation. We try to modify those equations to reach an approximation of the 

vapor pressure as more precise as possible. It is worth mentioning that choosing 

the Soave-Redlich-Kwong approximation is to obtain a vapor pressure value 

considering as a real gas; in other words, the compressibility effects must be 

included.  
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Figure 6.10 – Property data in supercritical zone. 

 

 
Soave-Redlich-Kwong approximation is defined by: 
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We changed “a” in Equation (6.20) format to adequate this approximation to 

values that pass in our acceptance criteria. 
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Rewriting the equation to be all dimensionless, we have: 
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We can write aC(ρ) and bC(ρ) as: 

 

 (6.29) 

 (6.30) 

 
These equations, given above, result in the graph of Figure 6.11. 
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Figure 6.11 – Vapor pressure approximation result in supercritical zone by density.  

 

For super-critical zone: 
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Looking for a smooth transition between those two zones in Equations (6.5) and 

(6.31), it is used a third-degree polynomial, Equation (6.32).   

 

 (6.32) 

 
Points of tangency can be defined trying to optimize the approximation result. In 

this case  defines how far each point will be stay from the critical point, (=1).  
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The system has the following format, built from the interfacing equation tangency 

when both curves make a continuous smooth link. 
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By solving the system above, the parameters values are available below, and we 

denoted here: 

 

 

(6.35) 

 
Using the values mentioned above, the result is: 

 

 

(6.36) 

 
Figure 6.12 shows the result of the approximation. 
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Figure 6.12 – Final result with interfacing at critical point. 

 

 
If we expand the idea of pressure as funcition of density in supercritical zone, we 

reach the behavior expressed in Figure 6.13. 

 
Figure 6.13 – Interfacing supercritical region details. 
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6.1.4 Final approximation and pseudo code 

In this chapter we have reached an approximation in a wider range of 

temperature, managing the approximation error in satisfactory levels (no greater 

than 5%). The pseudo code provides fluid property values starting below triple 

point up to above critical point, Figure 6.14. 

 
Figure 6.14 – Final result to vapor pressure approximation  in the entire temperature 

range. 

 

 
The interfacing technique provides softening and continuity in the conjugate 

points. It is possible to check the interfacing results in figures above (Figure 6.8 

and Figure 6.13).  

The all results are condensed together in a pseudo-code. This code can be 

implemented in any programming language:  
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Table 6.2 – Result algorithm values for  density of 350kg/m3. 

aA = -3E-5 bB = -5E-5 cBC = 3.6985E5 gC = -5.8E-3 

bA = 3.26E1 cB = -1.02E-2 dBC = -1.2359E5 hC = 1.536E1 

cA = -9E-7 dB = 2.33E-2 aC = -5.991E-8 1 = 3E-3 

aAB = -2.5182E-5  λ0B=2.145E3 bC = 5.0877E-5 2 = 1E-2 

bAB =2.5185E-3 p0B=1.6329E-2 cC = -8.694E-3 3 = 8E-3 

cAB = 4.089E-1 τ0B=3.7417E-1 dC = 4.093E-5 4 = 3E-3 

dAB =-3.5252E1  aBC = 1.2265E5 eC = -3.4385E-2  

aB = -3E-5 bBC = -3.6891E5 fC = 8.3122  

 

6.2 Approximations for vapor density  

6.2.1 Approximations for saturated vapor density 

Vapor density (ρV) can be defined the ratio between mass (m) and volume (V) 

and can be written by the following equation. 

 V

m
V =

 
(6.38) 

 
American Society of Heating, Refrigerating and Air-Conditioning Engineers 

(ASHRAE) Lemmon et al. (2023) presented the original data table of the 

saturated vapor density behavior with temperature, plotted in Figure 6.15. 
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Figure 6.15 – Water vapor density data. 

 

 
The data covers freezing and saturated temperature regions. 

To use this property in the heat pipe modeling, Faghri (2016) in his book 

suggested a polynomial function over logarithm of the density, Equation (6.39), 

to approximate the water vapor in the two-phase saturated (i.e. phases 

coexisting) temperature region. 
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(6.39) 

 
the Vapor density is expressed in kg/m3, and the temperature is in degrees of 

Celsius. 

This equation is valid from 20°C to 200°C; and is widely used for HP modeling  

once the approximation error mentioned is 0.03% within this range. The equation 

covers up to 48% of the entire two-phase temperature range. However, when we 

try to use this polynomial equation out of the range stablished, the result can 

deviate from real behavior. 
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Figure 6.16 – Faghri polynomial approximation. 

 

 

For the saturation interval (i.e., two-phase zone, 0<<1), the original curve has a 

sharp climb as it approaches the critical temperature. It is difficult to obtain a 

unique function which approximates the entire zone within acceptable error; 

therefore, we improve it with application of an interruption point (H) and join two 

approximation functions in the interval H<1 by application of the Heaviside 

function. 

In the approximations, we will use dimensionless charged density defined by the 

same way:  
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The best results gave the following approximate functions:  
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These functions are used in an additive way: when 0<H1, then y=y1; when 

H1<H2, then y()=y1()+y2(); when >H2 then y()=y1()+y2()+y3() This can 

be condensed in a unique correlation for our property: 

 

( ) ( ) ( ) ( ) ( ) ( ) 32211 yyy HHV −+−+=  (6.42) 

 
By applying the algorithm above, in the saturation interval of temperature we 

achieve the curve below. That chart shows data from ASHRAE using green 

circles in Figure 6.15 (LEMMON et al., 2023). The approximation results is in the 

blue line. In red bars we have the deviation error from property table data and 

approximation.  

 
Figure 6.17 – Vapor density approximation result in saturated zone. 

 

 
We observe the deviation from data by approximation lie within the usual 

acceptance criteria in 5% of deviation from the properties table data. In the 

beginning of approximation, the interface technique replaced the inaccurate data 

to a smooth link between the two approximations. 
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To develop this property approximation, we used a baseline curve (4th degree 

polynomial equation), and we add two auxiliary curves with the use of the 

Heaviside function, resulting in a final curve shown in  

Figure 6.18. The main motive to use this technique is to reach an approximation 

curve be continuous and “smooth,” without sharp edges.  

 
Figure 6.18 – Approximation by three piecewise functions.  
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Figure 6.19 – Detail of Heaviside function application in approximation for saturated 
zone.  

 

 
To reiterate the definitions, the critical point is where vapor and liquid are 

indistinguishable and triple point is where liquid phase (water), solid phase (ice) 

and vapor phase coexist in thermodynamic equilibrium. Therefore, in the zone 

below the triple point we will consider only vapor phase. Certainly, the Faghri´s 

approximation does not cover these regions. 

Turns et al. (2007) compiled in their book a liquid density behavior on freezing 

zone (Figure 6.20). In that case, this starts in -40 °C and go to 0°C. 
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Figure 6.20 – Vapor density in freezing zone. 

 

6.2.2 Approximations for freezing zone and interfacing  

We approximate the data in freezing zone by a second-degree polynomial 

Equation (6.42), using results of Turns et al. (2007). 

 

( ) 32

0


 AAAAA dcba +++=


        (6.43) 

       ( )( )
( )

2

0

32 






AAA
A dcb

d

d
++=



 (6.44) 

 
The interface between the freezing zone and saturated zone must meet the 

requirements of continuity and smoothness. It can be accomplished by using a 

third-degree polynomial Equation (6.45).  
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(6.45) 
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The system of equations is of the following format to yield continuity and smooth 

tangency of both curves. 
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Points of tangency can be defined by trying to optimize the approximation result, 

balancing between better smoothing and less error. In this case t defines how 

far each point will be away from the 0 (i.e., triple point). 
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The solution is expressed below. 
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(6.48) 

 

The result approximations around triple point (=0), including the interfacing 

curve, is shown in Figure 6.21. 
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Figure 6.21 – Result to the interface around the triple point. 

 

6.2.3 Approximations for supercritical zone and interfacing  

As discussed in the introduction, for isochoric systems the density above the 

critical temperature is always constant and is equal to the “charged density.” 

chTTv
cr

 =


 

The smoothing is achieved using a polynomial function of third order. The result 

is presented below in a pseudo-code for the exponential approximation in the 

two-phase region and polynomial approximations for smoothed regions.  

At the supercritical region, the property does not depend on either temperature, 

pressure, or any other property; it always constant and equal to charged density. 

As said above, the properties values above the critical point are charged density 

constant value. Those can be expressed below. 

For super-critical zone: 
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 A smoother transition between those two zones Equations (6.42) and (6.50) 

provides a third-degree polynomial, Equation (6.50).   
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(6.50) 

 
Points of tangency can be defined by trying to optimize the approximation result. 

In this case  is how far each point will be away from the critical point, (=1).  
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The system has the following format to the interfacing equations, when both 

curves make a continuous smoothie link. 
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We denote here: 

( ) chC  =4
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 (6.53) 

 
Therefore, the solution of the system (6.52) depends on the value of 

dimensionless charged density. Using the values mentioned above, the result for 

the case 1=ch  is the following: 
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(6.54) 

 
 

Figure 6.22 shows the result of the approximation. 

 
Figure 6.22 – Final result for the interface above the critical point. 

 

 

6.2.4 Final approximation and pseudo code  

The algorithm above that we proposed for the approximation of the entire region 

which includes below freezing point and above critical point regions is shown in 

Equation (6.55).  
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Figure 6.23 – Final result for liquid density approximation for the entire temperature 
range. 

 

 
Therefore, in this chapter we have reached an approximation in a wider range of 

temperature, managing the approximation error in satisfactory levels (no greater 

than 5%). 

This code can be implemented in any programming language:  
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Table 6.3 – Result liquid density algorithm values for the case 1=ch . 

aA = -3E-7 cAB = 1.38E-2 eB = 4.4E-1 kB = 2.1 dBC = 5.42E2 

bA = 4E-4 dAB =-2.33  fB = -3.48E-1 H1 = 0.81 1 = 5E-3 

cA = 4E-3 aB = 5.1E-6 gB = 3.43E-1 H2 = 0.95 2 = 1E-2 

dA = 1.41E-2 bB = 1E-5 hB = 3 aBC = -6.77E2 3 = 8E-3 

aAB = 5.33E-7 cB = 1.38E-2 iB = 1.9 bBC = 1.887E3 4 = 6.913E-2 

bAB =6.75E-4  dB = -5.49E-2 jB =1.35E2 cBC = -1.751E3  

6.3 Approximations for vapor dynamic viscosity 

6.3.1 Approximations for saturated zone  

Liquid dynamic viscosity (v is defined as the relation between shear stress and 

the fluid deformation velocity. This property is essential in determining how the 

flow is shaped. Therefore, this property is responsible for the fluid interface force 

between its layers or other fluid or solid surfaces in contact with that flow. This 

property is expressed mostly in Pa.s, where Pa is N/m2. 

The presented data Huber et al. (2009) of the water vapor dynamic viscosity 

dependence with temperature for saturated conditions is shown in Figure 6.24. 
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Figure 6.24 – Water vapor dynamic viscosity tabulated data. 

 

 
Faghri in his book Faghri (2016) suggested equation to approximate this water 

property (6.56). The dynamic viscosity is expressed in Pa*s and the temperature 

is in Celsius. 
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This equation is valid between 20°C and 200°C, the approximation error is 0.03%, 

and the equation covers up to 48% of the entire two-phase temperature range. 

Although Faghri (2016) suggested this equation, if we verify, the Equation (6.56) 

cannot reach a correct result; it is possible, that a new version of the equation 

need to be presented. 

We use non-dimensional variables for both temperature and vapor dynamic 

viscosity:  
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For the saturation interval (i.e., two-phase zone, 0<<1), the original curve has a 

sharp rise as it approaches the critical temperature. It is difficult to obtain a unique 

function which approximates the entire zone within acceptable error. Therefore, 

we improved it by applying interruption points (H1 and H2) and joining three 

approximation functions in the interval 0 <1 by the application of Heaviside 

function. 

The best results are the following. 
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(6.58) 

 

These functions are used in an additive way: when 0<<H1, then y=y1; when 

H1<<H2, then y()=y1()+y2(); when H2<<1, then y()=y1()+y2()+y3(). This 

can be condensed in a unique correlation: 

 

( ) ( ) ( ) ( ) ( ) ( ) 32211 yyy HHvB
−+−+=  (6.59) 

 
Applying the algorithm above, in the saturation interval of temperature we achieve 

the curve shown below in Figure 6.25. That graph shows data from using green 

circles (HUBER et al., 2009). The approximation results in the blue line. In red 

bars we have the deviation error from property table data. 
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Figure 6.25 – Vapor dynamic viscosity approximation result in saturation zone.  

 

 
We observed that the deviation from data by approximation lie within the ~2% 

compared to the properties table data. 

Demonstration of Heaviside function application is shown in Figure 6.26.  
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Figure 6.26 – Heaviside function in approximation for saturated zone.  

 

 
 

Figure 6.27 – Zoom on Heaviside function conjugate points  
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6.3.2 Approximations for freezing zone  

Smith (1924) discovered a non-linear dependence of viscosity with temperature 

for this zone (6.60), where the dynamic viscosity is expressed in Pa.s and the 

temperature in K.  

 

  2
3

~ T  (6.60) 

 
We used Smith (1924) data to fit a suggested approximation using a second-

degree polynomial curve (6.61), , as it is possible to see in  

Figure 6.28. 
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Figure 6.28 – Property value prediction below the triple point. 

 

 
Looking for a smooth transition between those two zones it is used a third-degree 

polynomial Equation (6.62). 
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The system of equations of smoothing and uninterrupted conditions has the same 

format as for vapor density Equation (6.46) and does not present here points of 

tangency is defined by a similar manner:  
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The solution for the polynomial coefficients for the interfacing around τ=0 is 

presented below. 
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(6.64) 

 

The result approximations around the triple point (=0), including the interfacing 

curve, is shown in Figure 6.29. 
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Figure 6.29 – Final Result to interfacing below freezing point. 

 

 

6.3.3 Approximations for super-critical zone  

In the super-critical zone, the viscosity suddenly drops and then gets a light 

permanent increasing. Moreover, the behavior above the critical point begins 

having a dependence of pressure, as shown in Figure 6.30. 
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Figure 6.30 – Water dynamic viscosity data at critical pressure [220.64 bar]. 

 

 
The property is pressure dependent. When we consider heat pipes, it is not 

expected much pressure variations as exceed the critical value at the critical 

temperature. Because of that, in the super critical zone our effort will be focused 

on property value at 220.64 bar (critical pressure). 

For super-critical zone we also use second order polynomial approximation: 
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We also use a third-degree polynomial Equation (6.66) for the interface:  
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Points of tangency at =1 are defined by the following values  
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The system of equations of smoothing and uninterrupted conditions has the same 

format as for vapor density Equation (6.52) and does not present here. 

Solving the system above, the parameters values are available below. 
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(6.68) 

 
Figure 6.32 shows the result of the approximation around critical point. 

Figure 6.31 – Final result to interfacing above critical point. 

 

 

6.3.4 Final approximation and pseudo code  

In this chapter we have reached an approximation in a wide range of temperature, 

managing the approximation error in satisfactory levels (usually no greater than 
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5%). The pseudo code provides a set of closed form approximations of the fluid 

property values starting below triple point and going up to above the critical point.  

 

Figure 6.32 – Final Result to vapor dynamic viscosity approximation  in the entire 
temperature range. 

 

 

This pseudo-code for the entire temperature range is presented in (6.71) and can 

be implemented in any programming language:  
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Table 6.4 – Result of vapor dynamic viscosity algorithm values. 

aA = -2.2577E-5 aB = 1.22E-3 hB = 1700 dBC = -3.136E2 4 = 7E-2 

bA = 2.5844E-1 bB = 2.118E-1 iB = 1.5 aC = 1.0038  

cA = 4.1116E-1 cB = 7.933E-1 H1 = 0.95 bC = 1.47E-2  

aAB = 5.6374E-4 dB = -1.53 H2 = 0.997 cC = -9.1E-3  

bAB = 5.4605E-1 eB = 1.005 aBC = 2.862E2 1 = 1E-2  

cAB = -3.2879 fB = 25 bBC = -8.9221E2 2 = 3E-3  

dAB = -1.1474E4 gB = 1.6 cBC = 9.2039E2 3 = 3E-3  

 

6.4 Approximations for vapor thermal conductivity  

6.4.1 Approximations for saturated zone  

Vapor thermal conductivity (kv) is defined as the capacity of a solid or stationary 

fluid to conduct heat from one side to the other whenever a temperature 

difference occurs.  

The property can be illustrated by the Figure 6.33.  

 
Figure 6.33- Thermal Conductivity Schematics. 

 

https://www.concepts-of-physics.com/thermodynamics/heat-conduction.php 

Source: Singh (2019). 

 
The thermal conductivity is measured in W/ (m K). This property is a key 

parameter in the fundamental Fourier´s Law for heat conduction. The original 

data of the water vapor thermal conductivity behavior with temperature, published 

by American Society of Heating, Refrigerating and Air-Conditioning Engineers 

(ASHRAE), is presented in Figure 6.34. 

https://www.concepts-of-physics.com/thermodynamics/heat-conduction.php
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Figure 6.34 – Water vapor thermal conductivity tabled data. 

 

 
Faghri (2016) in his book, that serves as a reference for research in mathematical 

modeling of heat pipes, suggested a logarithm-polynomial expression (6.70) to 

approximate this water property. The vapor thermal conductivity is expressed in 

W/mK, and the temperature is in Celsius. 
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(6.70) 

 
This equation is valid between from 20°C to 200°C and presents the 

approximation error of 0.03% in this range. The equation covers up to 48% of the 

entire two-phase temperature range. As an example, when we try to use this 

approximation out of range stablished, the result can be no tangible with real 

behavior. The green line in Figure 6.35 expresses this deviation from real value.  
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Figure 6.35 – Faghri polynomial approximation.  

 

This deviation of Faghir’s approximation at elevated temperatures shows that the 

approximation over entire two-phase range cannot be achieved with a unique 

polynomial function.  

In our study we use non-dimensional variables for both temperature and vapor 

thermal conductivity:  
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(6.71) 

 
The best results were obtained with the following combination of approximate 

functions:  
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(6.72) 
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These functions are used in an additive way: when 0<<H, then y=y1; when 

H1<<H2, then y()=y1()+y2(); when H2<<1, then y()=y1()+y2()+y3(). This 

can be condensed in a unique correlation for our property: 

 

( ) ( ) ( ) ( ) ( ) ( ) 32211 yyyk HHvB
−+−+=  (6.73) 

 

The smoothing in the conjugate points (H1 & H2) has been achieved by the 

application of the conditions of continuity of both function and its derivative.  

Applying the algorithm above, in the saturation interval of temperature we 

achieved the approximation shown in Figure 6.36. That chart shows data from 

ASHRAE using green circles. The approximation result is shown in the blue line. 

In red bars we have the deviation error between property table data and the 

approximation.  

The technique of the piece-wise technique with using the Heaviside function by 

addition is illustrated in Figure 6.37. As one can see, this technique allows 

reaching an approximation without sharp edges.  

 
 Figure 6.36 – Vapor thermal conductivity approximation result in saturated zone.  
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We observe the deviation from data by approximation lie within the acceptance 

criteria in 3% of deviation from the properties table data. 

 
Figure 6.37 – Approximation for saturated zone by combination of three functions.  

 

 
Figure 6.38 – Zoom on the conjugation points in approximation for the saturation zone.  
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6.4.2 Approximations for freezing zone and interfacing  

For freezing zone data, Liley (2005) arranged approximation results for water 

properties braking ranges of approximations in three zones A, B & C, whereas A 

is placed between -20 and 0°C, B in 0 up to 25°C and C starting in 25 reaching 

50°C.  

In this work we use the approximation in the freezing zone (range “A”) by (LILEY, 

2005): 

 

( ) 25109444.60102.0216.2 TTTk
Av

−+−=         (6.74) 

 

Where k is in W/mK and T in Celsius degrees. 

 
Figure 6.39 – Vapor thermal conductivity data in freezing zone. 

 

 

Liley (2005) used the second order polynomial approximations, however in this 

work we will use 3rd order polynomial approximation aiming to improve the 

precision. After transformation of original data into dimensionless format, the 

proposed approximation is the following: 
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( ) 32  AAAAv dcbak
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+++=
        

(6.75) 

 
The interfacing equations smoothly connect the subcooled zone with saturated 

zone. Following the general approach, the third-degree polynomial in Equation 

(6.76) is used. 
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AB
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(6.76) 

 
The system of equations of smoothing and uninterrupted conditions has the same 

format as for vapor density Equation (6.46) and does not present here: 

 
Points of tangency are defined by a similar manner  
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(6.77) 

 
The solution of the system of the conjugate equations system is expressed below 

(6.78). 
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(6.78) 

 

The result approximations around triple point (=0), including the interfacing 

curve, is shown in Figure 6.40. 
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Figure 6.40 – Final Result to interfacing below sub-freezing point. 

 

 
One can observe the interfacing curve links two approximation curves smoothly 

and tangentially. The value of dimensionless thermal conductivity of the vapor 

above ice is negative due to the absolute value of the conductivity is lower than 

in two-phase zone.  

6.4.3 Approximations for supercritical zone and interfacing  

In the super-critical zone, the behavior of the thermal conductivity is very 

complicated and very non-linear. Figure 6.41 presents original data for the water 

vapor in the supercritical region (gas). It is worthy to mention that in literature, the 

value of this property in the critical point is either not defined or considered infinity, 

so we decide to attribute a value for vapor thermal conductivity at critical point 

defined by an interpolation curve of the past four points. At temperature above 

the critical point, the thermal conductivity drops down to the value of about 0.09 

W/m/K. Dhanuskodi et al (2011) showed the graph of such a sudden drop. 

We can pick the curve which corresponds to the critical pressure (220.64 bar), as 

it is close to real heat pipe internal condition near critical point. The same behavior 

is presented in (PIORO, 2020). 
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Figure 6.41 – Property data in supercritical zone. 

 

 
Another point which deserves attention is the continuity of the vales and 

derivatives in the interface between curves, to guarantee that the interfacing 

technique provides a correct softening in the conjugate points. It was 

implemented and the result is possible to check in figures below, starting at the 

triple point and then at critical temperature point.  

For super-critical zone we found that the polynomial curve of fifth order fits 

reasonable the tabled property data: 

 

( ) 5432  CCCCCCv fedcbak
C

+++++=         (6.79) 

 
Looking for a smoother transition between those two zones Equations (6.73) and 

(6.79), it is used a third-degree polynomial in Equation (6.80).   
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(6.80) 

 
Points of tangency can be defined trying to optimize the approximation result. In 

this case  is how far each point will be away from the critical point, (=1). 
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The system of equation for smooth interfacing is similar to Equation (6.46) and 

does not present here. 

Using the values mentioned above, the result is: 
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(6.82) 

 
 

Figure 6.42 shows the result of approximation at the critical point and beyond it. 

 
Figure 6.42 – Final result to interfacing at critical point. 
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6.4.4 Final approximation and pseudo code  

The algorithm that we proposed for the approximation of the entire region, which 

includes below freezing point and above critical point zones, provides the result 

curve shown in Figure 6.43. 

 
Figure 6.43 – Final result for vapor thermal conductivity approximation over entire 

temperature range. 

 

 
Therefore, in this chapter we have reached an approximation in the entire range 

of temperature, managing the approximation error in satisfactory levels (no 

greater than 5%). The pseudo-code (6.83) provides fluid property values starting 

below triple point up to above critical point. 
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Table 6.5 –Vapor thermal conductivity pseudo-code values. 

aA = 2E-5 dAB = 4.65E2 gB = 1.95E1 cBC = -2.065E4 fC = 1.525E1 

bA = 3.71E-2 aB = -5E-5 hB = 1.7E7 dBC = 6.571E3 1 = 3.5E-3 

cA = 3.823E-1 bB = 2.72E-2 iB = 6 aC = -1.018E2 2 = 3E-3 

dA = 3.811 cB = 4.62E-2 H1 = 0.73 bC = 3.56E2 3 = 6.2E-3 

aAB = -2.6759E-5 dB = 1.77E2 H2 = 0.96 cC = -4.895E2 4 = 7E-2 

bAB = 1.603E-2 eB = 1.77E2 aBC = -7.538E3 dC = 3.342E2  

cAB = 2.0710E-1 fB = 5 bBC = 2.161E4 eC = -1.133E2  

     

 

6.5 Approximations for vapor specific heat capacity  

6.5.1 Approximations for saturated zone  

Liquid specific heat capacity (cp,L) is defined as an amount of heat (dQ) needed 

to raise the temperature by an  increment (dT) of a unity mass (M). (6.84). 

 

dT

dQ

M
c vp =

1
,

 
(6.84) 

 
The unity is J/kg/K. 

The original data of the liquid specific heat capacity behavior with temperature in 

the two-phase zone, presented by ASHRAE, is shown in Figure 6.44 (LEMMON 

et al., 2023). 
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Figure 6.44 – Water vapor specific heat capacity number data. 

 

 
Faghri (2016) in his book suggested equation to approximate this water property 

by fifth order polynomial Equation (6.85) applied to logarithm of the specific heat. 
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(6.85) 

 
where T is expressed in °C and Cpv in kJ/kg/K. 

This equation is valid between 20°C and 200°C; in this range of temperature this 

equation can be used for HP modeling, because of the approximation error is 

0.03%. The approximation covers up to 48% of the entire two-phase temperature 

range. However, when we try using this polynomial equation out of the range 

established, the result  deviates from real behavior. The green line is expressed 

this deviation in Figure 6.45. 
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Figure 6.45 – Faghri polynomial approximation.  

 

 
We use dimensionless vapor specific heat capacity, following our general 

approach: 
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(6.86) 

 

For the saturated interval (i.e., two-phase zone, 0<<1), the original curve has a 

sharp climb as it approaches the critical temperature. It is difficult to obtain a 

unique function which approximates the entire zone with acceptable error. 

Therefore, we improve it by applying three interruption points (H1, H2 and H3) 

and join three approximation functions in the interval o <1 by the application of 

the Heaviside function. 

The best results were obtained using the following combination of four 

approximate functions:  
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(6.87) 

 

These functions are used in an additive way: when 0<<H1, then y=y1; when 

H1<<H2, then y()=y1()-y2(); when H2<<1, then y()=y1()-y2()-y3()+y4(). 

This can be condensed in a unique correlation for our property: 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 4332211, yyyyc HHHvp −+−−−−=  (6.88) 

 
By applying the algorithm above, we obtain the curve shown below in Figure 6.46 

within the saturation interval of temperature. That graph shows data from 

ASHRAE using green circles (LEMMON et al., 2023). The approximation results 

are in the blue line. Red bars indicate the deviation error from the table data and 

the approximation. 

 
Figure 6.46 – Vapor specific heat capacity approximation in saturated zone. 

 

 



135 
 

We observe the deviation from data by approximation lies within the usual 

acceptance criteria in 5% of deviation from the properties table data; the only high 

error occurs near the critical point where initial data are not well defined. 

To develop this property approximation, we used a baseline curve (fourth degree 

polynomial equation), and we add piece-wise functions to this curve with the use 

of the Heaviside function. It results in a final curve shown in Figure 6.47. 

 
Figure 6.47 – Heaviside function in approximation for saturated zone.  

 

 

6.5.2 Approximations for freezing zone and interfacing  

The algorithm above that we proposed for the approximation of the entire region 

includes zones below freezing and above critical point.  

Below the saturation zone, in the freezing zone Liley (2005) proposed an equation 

which describes vapor specific heat capacity at constant pressure in 

temperatures below the triple point from 0 down to -20 °C, Equation (6.89). 

 

( ) 253
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(6.89) 

  
where T is expressed in °C and Cpv - in kJ/kg/K. 
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Figure 6.48 – Property data in freezing zone. 

 

 
The best approximation for this region was provided by the 2nd order polynomial 

function. 
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Figure 6.49 shows this approximation curve as a solid blue line. 

 
Figure 6.49 – Property dimensionless data and approximation in freezing zone. 
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Another point that deserves attention is the continuity of the values and 

derivatives at the intervening conjugate points (interfaces between curves) to 

guarantee perfect softening at these points.  

The interfacing technique is the same that showed in others part of this work; we 

start with both equation that we want to link and the derivatives of each one, The 

interfacing equation joins the freezing zone with saturated zone.  

For a smooth transition between these two zones,  it is used a third-degree 

polynomial Equation (6.91).   
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(6.91) 

 
The conditions of continuity of values and derivatives have four unknowns and 4 

equations, and the format similar to one presented in Equation (6.46)  bult. 

Points of tangency can be defined through optimize of the approximation results. 

In this case t defines how far each point will be away from the other. 
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Using the developed universal approach for any property, the result is: 
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(6.93) 

 

The result approximations around triple point (=0), including the interfacing 

curve, is shown in Figure 6.50. 
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Figure 6.50 – Final result to interfacing around the freezing triple point. 

 

 

6.5.3 Approximations for supercritical zone and interfacing  

For the supercritical region, the difference between the liquid and vapor phases 

disappears. The cpv behaves in a very complicated manner near the critical point: 

its values sharply decrease as  approaches one from the left, and then gets 

sharp falling as  slightly pass 1 to the right. The graph for near-critical pressure 

P=250 bar is shown in Figure 6.51. (adapted from DHANUSKODI; ARUNAGIRI; 

ANANTHARAMAN, 2011). 
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Figure 6.51 – Property data in supercritical zone. 

 

 
Initially, the interfacing technique is the same that showed in others part of this 

work, we start with both equation that we want to link and their respective 

derivatives. For super-critical zone we found that the best result gave the 

approximation by the hyperbolical function:   
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A smooth transition between these two zones is accomplished with a third-degree 

polynomial Equation (6.96).  
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Points of tangency around the critical point, (=1) are the following.  
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The system has the usual format like in Equation (6.52) when both curves make 

a continuous smooth link. 

By solving the system of continuity, the obtained parameters values are available 

below. 
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(6.98) 

 
Figure 6.52 shows the result of the approximation. 

 
 

Figure 6.52 – Final result to interfacing around critical point. 
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6.5.4 Final approximation and pseudo code  

Therefore, in this chapter we reached an approximation in the entire range of 

temperature, managing the approximation error in satisfactory levels (no greater 

than 5%). The pseudo code provides fluid property values starting below the triple 

point and going beyond the critical point. 

 
Figure 6.53 – Final approximation for Vapor specific heat capacity in the entire 

temperature range. 

 

 
This code can be implemented in any programming language:  
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Piece-wise functions yi are defined by Equation (6.87). 
 

Table 6.6 – Result values of vapor specific heat capacity pseudo-code. 

aA = 2.599E-7 aB = 5.1E-1 gB = 9E-1 H3 = 7.4E-1 cBC = -3.908E6 

bA = 9.727E-3 bB = 4.2 hB = 1.99 aC = 6.358E4 dBC = 1.302E6 

cA = 4.042E-2 cB = 8.8E-1 iB = 1.65E2 bC = 1.405E-2 1 = 3E-2 

aAB = -3.79E-7 dB = 6.1E-4 jB = 3.89 cC = 4.042E-2 2 = 8E-3 

bAB = 9.204E3 eB = 1 H1 = 2.5E-1 aBC = -1.303E6 3 = 5E-3 

cAB = -9.474E-2 fB = 3 H2 = 5.3E-1 bBC = 3.908E6 4 = 5E-3 

dAB = -1.06E1     

     

6.6 Approximations for vapor Prandtl number 

6.6.1 Approximations for saturated zone 

The Prandtl number makes the correlation between the momentum diffusivity () 

and the thermal diffusivity (). 
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The parameters are defined as following: 

 is momentum diffusivity or kinematic viscosity,  is thermal diffusivity,  is 

dynamic viscosity,  is thermal conductivity, cp is specific heat and  is density. 

The Prandtl vapor number behavior with temperature in saturation zone is 

expressed in Figure 6.54 (BEATON, 1986). 
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Figure 6.54 – Water vapor Prandtl number Data. 

 

 
This parameter has an abrupt increase value around 350 °C, near critical 

temperature. Direct approximation of such a function is a challenging task and 

may lead to elevated errors of the approximation. To minimize this peak, a natural 

logarithm was applied in tabled properties data to smooth this abruption,  Figure 

6.55. 

 
Figure 6.55 – Water vapor Prandtl number after logarithm application.  
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It is possible to notice in Figure 6.55 that the peak value was decreased from 52.4 

down to ~4. To align with the methodology used in this work until now, we 

introduce a normalized function of ln (Prv), following our dimensionless 

parameters technique. 
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(6.101) 

 
We denote this function as normalized (and dimensionless) logarithmic Prandtl 

number (“nl-Pr”): 

( ) )Pr(lnPr vv f=  (6.102) 

 
The curve in Figure 6.55 shows this function plotted over interval starting from 

=0 and ending in =1.  

To perform the approximation, we divide the entire two-phase zone in three 

intervals, improving the approximation quality by adding new functions in each 

interval. 
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The algorithm can be realized by using two Heaviside functions to build a unique 

approximation function over entire two-phase interval of  from 0 to 1. (6.104).  
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Applying the algorithm in the saturation interval of temperature we achieve an 

approximated curve to nl-Pr number in saturated range, Figure 6.56, which shows 

also tabled data from (BEATON, 1986) using green circles. The approximation 
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result function is shown in the blue line. In red bars we have the deviation error 

between property table data and the approximation.  

 
Figure 6.56 – Prandtl approximation result. 

 

 
In Figure 6.56, we have the deviation from data by the approximation e delimited 

by a usual acceptance criterion of 4%. It is worth mentioning that when the nl-

Prandtl value is close to zero, an exceedingly small absolute deviation. In this 

case, the correct way to evaluate errors is by using the absolute deviations. 

Like other properties, Prandtl number has different values above the critical point 

like exposed in Figure 6.57. 

It is important to note that this parameter above the critical point varies with 

pressure and temperature and in that place demands more effort to build a robust 

approximation. In this case several interfacing curves might be created; each one 

to a different pressure level and in the end, all polynomial coefficients in the 

interfacing zones will be pressure functions. 

6.6.2 Approximations for freezing zone 

It is possible to demonstrate interfacing equation to joint subcooled zone with 

saturated zone.  
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A smooth transition between A and B zones are accomplished with a third-degree 

polynomial function (6.107).   
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The system of continuity around the triple point has the following format to the 

interfacing tangency both curves, making a continuous smooth link. 
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Points of tangency  is defined, trying to optimize the approximation results. In this 

case  defines how far each point is away from the other. 
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The result parameters of the interfacing curves are expressed below. 
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The result approximations around triple point (=0), including the interfacing 

curve, shown in Figure 6.57. 

 
Figure 6.57 – Interfacing nl-Prandtl number linking subcooled zone with saturated zone. 

 

 

6.6.3 Approximations for super critical zone 

As soon as the Pr number depends on pressure as well, we assume the two-

arguments approximation shall be presented as a product of two functions, 

temperature and pressure: 

 

( ) )()(,Pr  ppv =    (6.111) 

 
This splitting makes the approximation possible.  
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Figure 6.58 – Approximation of nl-Prandtl number as a function of temperature and 
pressure. 

 

 

Beaton (1986) in his work demonstrates Prandtl number behavior variating with 

temperature above critical temperature. 
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Figure 6.59 – Prandtl number behavior above critical point dependent of temperature 
and pressure (BEATON, 1986). 

 

Source: Beaton (1986). 
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Figure 6.60 – Approximation of nl-Prandtl number as a function of dimensionless 
pressure. 

 

 
The interfacing technique is the same that showed in others part of this work, we 

start with both equations that we want to link and the derivative of each one, 

however assuming a linear approximation of pressure-dependent factor.  

The Prandtl number approximation above critical point. 
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As usual, a third-degree polynomial function is used for the interfacing:   
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Points of tangency can be defined optimizing the approximation result. In this 

case  defines how far each point is departs from the critical point, (=1).  
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The system has the following format to the interfacing equation tangency when 

both curves make a continuous smooth link. Note, the coefficients abc, bbc, cbc 

and dbc become functions of pressure. 
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Solving the system above for selected pressure magnitude, the parameters have 

the following values. 
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Below,  a solution of the system of interfacing equation (6.108) is presented. 

Since the method of solving is the same, with the only change being the pressure  

dependence, we set a particular pressure value as an example. 

These coefficients were obtained for a particular value of the pressure: p=1.3581.  

Figure 6.61 shows the result of the approximation. 
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Figure 6.61 – Interfacing Prandtl number example to P=300 [bar] or p[-]=1.3581. 

 

 

The pressure value can be calculated from the known charging density. 

6.6.4 Final approximation and pseudo code 

The result above summarizes the approximations including the interfacing 

between subcooled zone and saturated zone. It also includes saturation zone 

and a part with the link between the saturated zone and supercritical zone. The 

last interfacing polynomial equation depends on two variables, dimensionless 

temperature, and dimensionless pressure, Figure 6.63 exposes a consistent 

result.  
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Figure 6.62 – Final Result to Prandtl number approximation in the entire temperature 
and pressure range. 

 

Figure 6.63 shows interfacing nl-Prandtl number linking saturated zone with 

supercritical zone under different values of pressure. 

 
Figure 6.63 – Interfacing nl Prandtl number around critical temperature. 

 

 
Final approximations over all three zones are shown below in Equation (6.118) 

as a pseudo-code. 
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Table 6.7 –vapor Prandtl number pseudo-code values. 

aAB = -3.5E-5 cB = 0.0770 iB = 8.252 cC = 0.5397  = 0.01 

bAB = -0.199 dB = -0.3076 jB = 0.045 dC = -9.51  = 0.003 

cAB = -3.08 eB = 0.7142 HB1 = 0.50 aBC(p) = 3915,7p - 27960  =0.003 

dAB = -139.0 fB = 1.41 HB2 = 0.93 bBC(p)= -11406p + 80662  =0.06913 

aB = -3.0E-5 gB = 3.00 aC = -0.966 cBC(p)=11064p – 77511  

bB = -0.0199  hB = 2.0E-9 bC = 1.580 dBC(p)= -3574,3p + 24811  

 

 
To return to original Prandtl number from the obtained approximations, the 

inverse expression must be used:  
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 (6.119) 

6.7 Approximations for liquid density 

6.7.1 Approximations for saturated zone 

Liquid density (ρL) is defined as a relation between liquid mass (m) and volume 

(V) of that mass occupies:  

V

m
L =

 
(6.120) 

 
where m is in kg, V is in m3 and ρ is in kg/m3. 

Liquid density behavior with temperature data, published by ASHRAE are 

presented in Figure 6.64 (LEMMON et al., 2023). 
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Figure 6.64 – Water liquid density data. 

 

The data covers freezing and saturated temperature regions. 

In HP modeling the approximations presented by Faghri (2016) are widely used. 

He suggested equation to approximate this water property by 5-order polynomial 

function (6.121), applied to the logarithm of the density.  
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The liquid density is expressed in kg/m3, and the temperature is in Celsius. For 

other unities, the polynomial coefficients must be redefined. 

This equation is valid between 20°C and 200°C; in this range of temperature the 

approximation error mentioned in (FAGHRI, 2016) is 0.03% and the equation 

covers up to 48% of the entire two-phase temperature range. However, when we 

try to use this polynomial equation out of range stablished, the result can deviate 

from real behavior. The green line in Figure 6.65 expresses this deviation from 

real value. 
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Figure 6.65 – Faghri polynomial approximation.  

 

Following the same approach, we expand the approximation over entire range 

for liquid density. Non-dimensional variables are used for both temperature and 

liquid density:  
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For the saturation interval (i.e., two-phase zone, 0<<1), the original curve has a 

sharp climb as it approaches the critical temperature. It is difficult to obtain a 

unique function which approximates the entire zone within acceptable error: 

therefore, we will improve it with application of an interruption point (H) and join 

two approximation functions in the interval H<1 by application of Heaviside 

function. 

The best results gave the following approximate functions:  

 

( )





−=

++++++=

Bi

HB

BBBBBBB

hy

gfedcbay





2

65432

1
 (6.123) 



157 
 

( ) ( ) ( ) ( ) 21 yy Hl +=  (6.124) 

 
By applying this technique, in the saturation interval of temperature we achieve 

the curve shown in Figure 6.66. The chart shows data from ASHRAE using green 

circles. The approximation results are given in the blue line. In red bars we have 

the deviation error from property table data and approximation. 

 
Figure 6.66 – Liquid Density approximation result in saturated zone.  

 

 
We observe the deviation from data by approximation lies within the acceptance 

criteria in 2% of deviation from the properties table data. 

To build this property approximation we used a baseline curve (fourth degree 

polynomial equation), and we add in these curves one that satisfies the condition 

of smooth transition using Heaviside function. The result is shown in Figure 6.67. 

The main motive to use this technique is reach and approximation curve 

continuous and “smooth,” without sharp edges.  
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Figure 6.67 – Two- functions approximation for saturated zone. 

 

 

6.7.2 Approximations for freezing zone 

Under negative temperatures water turns into ice, and at positive temperatures it 

melts. Such behavior is typical for freezing HP start-up, therefore we continue 

referring ice as liquid in the freezing zone, Liquid density behavior with 

temperature data, published by ASHRAE Lemmon et al. (2023), are presented in 

Figure 6.64, and a closer look for the freezing zone (ice) is shown in Figure 6.68, 

where Turns et al. (2007) compiled in their book a liquid density behavior in 

freezing zone. In that case, the temperature ranges from -40 °C to 0°C. 
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Figure 6.68 – Water liquid density data before triple point. 

 

 
The approximation must include a region below the freezing point (i.e., triple 

point), so for freezing zone the density is approximated very well by linear 

function: 
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The interfacing equation joints subcooled zone with saturated zone. as usual, we 

use a third-degree polynomial function (6.126).   
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Choosing the third order polynomial functions is beneficial because here we have 

4 unknown coefficients and 4 conditions for smooth interfacing: the equality of 

derivatives and values on both ends of the interface curve.  

The system will be of the following format to the interface equation tangency both 

curves and makes a continuous smooth link. 
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Points of tangency can be defined by trying to optimize the approximation result. 

In this case t defines how far each point will be away from the other  
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The results are expressed below. 
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The result approximations around triple point (=0), including the interfacing 

curve, is presented in Figure 6.69. 
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Figure 6.69 – Final result to interfacing below freezing point. 

 

 

6.7.3 Approximations for super critical zone 

Just to remember the definitions, the critical point is where vapor and liquid are 

indistinguishable and triple point is where liquid phase (water), solid phase (ice) 

and vapor phase coexist in thermodynamic equilibrium. 

As discussed in the introduction, for isochoric systems the density above the 

critical temperature is always constant and for HP is equal to the “charged 

density.” 

 

    chTTl
cr

 =


    (6.130) 

 
The zone above the critical point corresponds to the situation of no vapor-liquid 

interface existence. i.e., only one unique phase exists denoted here as “gas.” 

Therefore, we have a transition from liquid phase to the gas phase at the critical 

temperature.  

The interface conditions are the continuity of the values and derivatives in the 

interrupting points (interface between curves), used to guarantee that the 

interfacing technique provides perfect softening in the conjugate points.  
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The interfacing technique is the same that showed in others part of this work, we 

start with both equation that we want to link and the derivate of each one.  

As said above, the properties values above the critical point are charged density 

constant value. Those can be expressed below: 
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Looking for a smooth transition between those two zones Equations (6.124) and 

(6.131), it is used a third-degree polynomial Equation (6.132).   
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Parameters of the points of tangency at (=1) have been selected as following:  
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The system of the smooth interfacing conditions is the same as for other 

properties (Equation 6.52) and does not present here. 

The solution for the parameter’s values for the interfacing curve, obtained from 

available analytical solution (Equations 5.29 and 5.32) are presented in (6.134). 
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Figure 6.70 shows the result of the approximation for this case, then 1=ch . 
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Figure 6.70 – Final result to interfacing above critical point. 

 

 

6.7.4 Final approximation and pseudo code 

The algorithm below that we proposed for the approximation of the entire region 

is shown in Equation (6.135) as a pseudo code.  
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Figure 6.71 – Final result for liquid density approximation over entire temperature range. 

 

 
Therefore, in this chapter we reached an approximation in a wide range of 

temperature, managing the approximation error in satisfactory levels (no greater 

than 5%). The pseudo code provides fluid property values starting below the triple 

point up to beyond critical point. 

This code can be implemented in any programming language for use in 

mathematical models of heat pipes:  
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Table 6.8 – Result algorithm values for the case of 1=ch . 

aA = 1.22E-01 bB = -2.21E-2 iB = 2 2 = 2.67E-2 

bA = 7.68E-02 cB = 1.4836 H1 = 0.95 3 = 5E-3 

aAB = 1,158E-01 dB = -3.152 aBC = 9.72E4 4 = 8E-3 

bAB = -2,651 eB = 5.386 bBC = -2.913E5  

cAB = -2,90E+02 fB =-5.046 cBC = 2.909E5  

dAB = 8,503E+03 gB = 2.103 dBC = -9.687E4  

aB = -2.8E-4 hB = 6.5E1 1 = 3E-3  

 

6.8 Approximations for liquid dynamic viscosity  

6.8.1 Approximations for saturated zone  

Liquid dynamic viscosity (l) can be defined as a relation between shear stress 

and the fluid deformation velocity. This property is essential to set a way as flow 

is shaped. Therefore, this property is responsible for the fluid interface force 

between its layers or other fluid or solid surfaces in contact with that flow. 

(TUREKIAN; HOLLAND, 2014). American Society of Heating, Refrigerating and 

Air-Conditioning Engineers (ASHRAE) conveyed water data (LEMMON et al., 

2023). The original data of the liquid dynamic viscosity behavior with temperature 

are presented in Figure 6.72. 
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Figure 6.72 – Water liquid dynamic viscosity number data. 

 

 
Faghri (2016) suggested the Equation (6.136) to approximate this water property, 

where the dynamic viscosity is expressed in N.s/m2 and the temperature used in 

equation below in in Celsius. 
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It is worth mentioning once again, that this kind of approximation, widely used by 

other authors, has dimensional numerical coefficients (also known as factors), 

that is not correct from the point of view of a mathematician. For example, one 

must keep in mind that the number -6.3530 has dimension ln(Pa.s), but  -5.219 

10-12 has dimension of ln(Pa.s)/C5 and, by the way, not ln(Pa.s)/K5 . Moreover, 

researchers in UK or USA may not feel comfortable with these coefficients once 

they use Imperial units instead of SI; another approximation with different 

coefficients should be elaborated for them.  

This equation is valid from 20°C to 200°C; with because the approximation error 

0.03% mentioned in (FAGHRI, 2016). The equation covers up to 48% of the entire 
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two-phase temperature range; out of the range the equation diverges from the 

experimental tabled data, as shown in Figure 6.73. 

 
Figure 6.73 – Faghri polynomial approximation.  

 

 
Following the same approach to elaborate the approximation over entire two-

phase range, from the triple point to the critical point, we use non-dimensional 

variables for both temperature and liquid dynamic viscosity:  
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For the saturation interval (i.e., two-phase zone, 0<<1), it is difficult to obtain a 

unique function which approximates the entire zone with acceptable error. 

Therefore, it was decided to insert one or few interruption points (Hi) and join the 

approximation piece-wise functions by one-by-one by either addition or 

substitution with the use of Heaviside function. 

The best results yielded the following approximation functions:  
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These functions are used in an additive way:  
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(6.139) 

 
Applying the algorithm above, in the saturation interval of temperature the curve 

on  Figure 6.74 was achieved. The graph shows data from ASHRAE using green 

circles (LEMMON et al., 2023). The approximation result is shown in the blue line. 

In red bars we have the deviation error between experimental property table data 

and the approximation. 

  
Figure 6.74 – Liquid Dynamic Viscosity approximation result in saturated zone using 

additive technique of approximate functions. 
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The additive technique of approximate functions, applied step by step, is 

illustrated in Figure 6.75. 

 
Figure 6.75 – Approximation for saturated zone using additive technique of piece-wise 

functions.  

 

 

The conjugate points are H1=0.11; H2=0.20; H3=0.43; H4=0.60; H5=0.91. 

Next, , we perform here another approach to do approximation in the same two-

phase zone, using substitution of approximate functions instead of addition.  

To join two non-linear functions, an intermediate polynomial function must be 

used. The smoothing (or continuation) conditions should be applied from both 

sides of this intermediate functions, in the points H1 and H2, having four 

equations to solve. When the intermediate polynomial function is of third order, 

having 4 coefficients, the solution is easy and direct.  

The best results provide the following combination of two non-linear approximate 

functions with the intermediate polynomial function of 3rd order: 
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These functions are used in substitution way:  if 0<H1, then y=y1; if H1<H2, 

then y()=yi(); if H1<1, then y()=y2(). This can be condensed in a unique 

correlation for our property: 
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The result approximation is shown in Figure 6.76. 
 
 
Figure 6.76 – Liquid Dynamic Viscosity approximation result in saturated zone using 

substitution of approximate functions. 

 

 
The deviation from data by approximation lies within the usual acceptance criteria 

in 2% of deviation from the properties table data. 

 

Figure 6.77 shows the components used in the approximation as each 

contributes to the result. The main reason to use this technique is to reach a 
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continuous and “smooth” approximation curve, without visible undulation and 

interruptions.  

 
Figure 6.77 – Components adding used in the approximation using substitution of 

approximate functions. 

 

 

The conjugate points are Hi1=0.084; Hi2=0.19. 

For this property, the approach by substitution was used to build the 

approximation over the entire two-phase zone, with application of two of 

Heaviside functions to create a curve without ripples.  

Basically, this approach consists of creating of two or more curves which correctly 

describe the property variation within limited intervals and then joint these curves 

with a fourth-degree polynomial equation. 

The addition technique has an intrinsic undesirable effect , when each interruption 

point, added into the curve, brings an unwelcome side effect that is a local 

oscillation affecting the error in a local region; this behaves are expressed in 

Figure 6.79. The substitution technique results in a stable curve, we use this 

curve to continue the study, doing interfacing between the freezing zone and the 

super-critical zone. 
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Figure 6.78 – Step by step components adding used in the approximation  
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Figure 6.79 – Compare between Heaviside substitution and Heaviside addition 

techniques. 

 

 

The comparison show that the substitution technique provide more smooth result 

for this property.  

6.8.2 Approximations for freezing zone and interfacing  

The algorithm above that we proposed for the approximation of the entire region 

shall also include the zones below the freezing point and above critical point.  

For the interfacing with the freezing zone and super-critical zone we use the last 

approximation obtained by substitution technique in the two-phase zone.  

А liquid, when freezing, becomes more viscous and actually turns into a solid. 

Kumagai et al. (1978) defined viscoelastic as a property of many solids; they flow 

like liquids, however very slowly, even under small stress. Such materials are 

best described as viscoelastic, that is, possessing both elasticity (reaction to 

deformation) and viscosity (reaction to rate of deformation). We assume that ice 

behaves as viscoelastic solid; then viscosity can be characterized through the 

reaction to the rate of deformation.  

The viscous components can be modeled as dashpots such that the stress–strain 

rate relationship is given in Equation (6.142) (DAY, 1990). 
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dt

d
 =

 
(6.142) 

 
where σ is the stress (Pa), η is the viscosity (Pa.s), (similar to liquid) , and dε/dt 

is the time derivative of strain (1/s); ε is strain or relative deformation without units 

(or mm/mm). 

This definition is similar to the Newton´s law of viscosity, where viscosity   is 

introduced as proportional factor to obtain shear stress through shear 

deformation or shear velocity, du/dy: 
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(6.143) 

 

This mechanical viscosity  we will consider as equivalent of freezing liquid 

viscosity . It is possible to find different values of viscosity of different ice types 

in diverse sources measured for different conditions. As soon as the value for ice 

is much higher than the viscosity for liquids, we will use a unique value presented 

in (SOTIN; POIRIER, 1987) as a reference to use in our interfacing on transition 

from liquid to solid, equal to 8.4*109 Pa s (or 8.4*1012 mPa*s). The value is 

remarkably high, accounted of about twelve orders of magnitude higher than for 

the liquid. 

 

][104.8 9 sPa =   (6.144) 

 
Therefore, for the freezing zone we use a constant of high magnitude. 
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Another point which deserves attention is the continuity of the values and 

derivatives in the interrupting points (interface between curves), to guarantee that 
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the interfacing technique provides a satisfying softening in the conjugate points. 

It is possible to check the interfacing result in Figure 6.80.  

The developed interfacing joins the curves of subcooled zone (i.e., freezing 

region) with saturated zone.  

As usual, we use a third-degree polynomial Equation (6.146) to smooth 

interfacing even for such different values. 
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The system owns the following format, which are conditions for tangency and 

continuity of both curves, which makes a continuous smooth link. 
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Where 1 and 2 are near-zero points from the left and from the right of the central 

0 (freezing) point.  

Points of tangency have been defined through optimization of the shape of the 

interfacing curve.  
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The numerical result obtained with available analytical solution for the polynomial 

coefficients for the interfacing around =0 is presented below:  
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The result approximations around triple point (=0), including the interfacing 

curve, are shown in Figure 6.80. 

 
Figure 6.80 – Final Result to interfacing below freezing point. 

 

 

6.8.3 Approximations for supercritical zone and interfacing  

In the super-critical zone, the viscosity suffers sudden drop and then gets a light 

permanent increasing. Moreover, the behavior above the critical point begins 

having a dependence of pressure, as shown in Figure 6.81. 
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Figure 6.81 – Water dynamic viscosity data at critical pressure [220.64 bar]. 

 

 
Therefore, the property has different values at different pressure. When we 

consider heat pipes, it is most common case when the work pressure cannot 

exceed the critical value at the critical temperature. Because of that, in the super 

critical zone our effort will be focused on property value at 220.64 bar (critical 

pressure). A 2nd order polynomial function approximates the property in the 

super-critical region with acceptable error:  
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Fort the interfacing, as usual, we use a third-degree polynomial Equation (6.151).   
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Points of tangency were obtained and shown in Equation (6.152). In this case  

defines how far each point lies be away from the critical point, (=1).  
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The system of smooth interfacing conditions is the same as usual, for example 

Equation 6.52 and does not present here. The parameters values are given in 

Equation (6.153) from the available analytical solution (Equations 5.29 and 5.32). 
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Figure 6.82 shows the result of the approximation. 

Figure 6.82 – Final result to interfacing above critical point. 

 

 

6.8.4 Final approximation and pseudo code  

The result for different pressure can be seen in Figure 6.83 and shown in 

Equation 6.154 in the form of pseudo-code. 
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Figure 6.83 – Result to liquid dynamic viscosity approximation in saturated range and 
super critical. 

 

 
This code can be implemented in any programming language:  
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Table 6.9 – Result liquid dynamic viscosity pseudo-code values. 

aAB = -6.493E11 dB = 2.42 H1 = 8.4E-2 bC =1.47E-2 

bAB = 3.934E14 eB = -4E-2 H2 = 1.9E-1 cC =-9.1E-3 

cAB = -4.591E16 fB = 7.6E-1 aBC = 7.8098E1 1 = 1E-2 

dAB = -4.372E18 gB = -3.027E-2 bBC = -2.2452E2 2 = 3E-3 

aB = 9.79E-1 hB = 1E14E1 cBC =2.1767E2 3 = 3E-3 

bB = 9.49E-1 iB = -5.539E1 dBC = -7.0252E1 4 = 7E-2 

cB = 1.072E1 jB = 9.658E1 aC = 1.0038  

 

Table 6.10 – Heaviside Addiction coefficient value for liquid dynamic viscosity. 

aB = 1.02 fB = 1.61 kB = 3.2 H2 = 0.20 

bB = 1.7 gB = 4.6 lB = 2 H3 = 0.43 

cB = 1.02 hB = 1.57 mB = 1.5 H4 = 0.60 

dB = 0.6 iB = 1.9 nB = 1.5 H5 = 0.91 

eB = 5.3 jB = 1.5 H1 = 0.11  

 

6.9 Approximations for liquid thermal conductivity  

6.9.1 Approximations for saturated zone  

Liquid thermal conductivity (kl) can be defined as the ability of a stationary liquid 

to conduct heat from its one side to the other, without considering any kind of 

convection. This parameter can be illustrated in Figure 6.34.  

American Society of Heating, Refrigerating and Air-Conditioning Engineers 

(ASHRAE) (LEMMON et al., 2023) conveyed water properties data, including 

liquid thermal conductivity as a function of temperature; the graph of the liquid 

thermal conductivity in two-phase zone is presented in Figure 6.84. 
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Figure 6.84 – Water liquid thermal conductivity numerical data. 

 

 
Faghri in his book (2016) suggested the polynomial function (6.155) to 

approximate this water property, where the liquid thermal conductivity is 

expressed in W/mK, and the temperature is in Celsius. 
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(6.155) 

 
This equation is valid between 20°C and 200°C; in this range of temperature this 

equation can be used for HP modeling with no concern, because of the 

approximation error mentioned is 0.03% and the equation covers up to 48% of 

the entire two-phase temperature range. As an example, when we try to use this 

polynomial equation out of the range, the result has no real behavior. The green 

line in Figure 6.85 expresses this deviation from the real value. 
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Figure 6.85 – Faghri polynomial approximation.  

 

 
Following our approach, non-dimensional variables are used for both 

temperature and liquid thermal conductivity. This deviation of Faghri’s 

approximation at elevated temperatures shows that the approximation over entire 

two-phase range cannot be achieved by a unique polynomial function. Several 

combinations of two or more functions have been evaluated.  

To elaborate the approximation over entire two-phase range, from below the triple 

point to the zone above the critical point, we continue using non-dimensional 

variables for temperature, , as well as for the liquid thermal conductivity:  
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The best result for the approximation within the saturation zone has been 

achieved with the combination of two functions.  
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These functions are used in an additive way: when 0<<H, then y= y1(); when 

H1<, then y()=y1()+y2(). This can be condensed in a unique correlation for our 

property: 

 

( ) ( ) ( ) ( ) 211 yyk HlB
−+=  (6.158) 

 

The smoothing in the conjugate point (H1) has been achieved by the application 

of continuity conditions for both function and its derivative.  

Applying the algorithm above, in the saturation interval of temperature we achieve 

the curve below. That graph in Figure 6.86 shows data from ASHRAE using green 

circles (LEMMON et al., 2023). The approximation result is shown in the blue line. 

In red bars we have the deviation error between property table data and the 

approximation.  

 
Figure 6.86 – Liquid thermal conductivity approximation results in saturated zone. 

 

 
We observed that deviation from data by approximation lies within the acceptance 

criteria in 1% of deviation from the properties table data. 
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To build this property approximation we used a baseline curve (fifth degree 

polynomial equation), and we add y2() approximate function using the Heaviside 

function Equation (6.158). The result of that is in Figure 6.86. The main reason to 

use this technique is reach approximation without sharp interruptions. The 

technique of the approximation by addition is illustrated in Figures 6.87 and 6.88. 

 
Figure 6.87 –Approximation by two functions for saturated zone.  
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Figure 6.88 – Zoom on conjugate point in the approximation.  

 

 

6.9.2 Approximations for freezing zone and interfacing  

Liley (2005), described this property behavior in the freezing zone, from  

-20 °C to 0°C This data fits the linear type of approximation function. Fukusako 

(1990) summarized the properties data from 7 different published sources and 

found the 2nd order polynomial approximation of thermal conductivity of ice in the 

range from 100 to 273 K (i.e., from -173 C to 0 C): 

 

)1097.21066.891.1(16.1 253 TTkl

−− +−=  (6.159) 

 
or in general form: 

2cTbTakl ++=  (6.160) 

 
where T is measured in C and k - in W/m/K, and a=2.216; b=0.01; c=3.445.10-5. 

Despite wider range of temperature than that by Liley, the Fukusako’s 

approximation is close to linear one, therefore we can continue with linear 

approximation of Liley:   
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In this work we used the table presented by Liley (2005) to make an 

approximation over that data. 

 
Figure 6.89 - Liquid thermal conductivity tabled data in freezing zone. 

 

 
In this zone, the dimensionless latent heat can be approximated by a linear 

function: 
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A smooth transition between those two zones is achieved with a third-degree 

polynomial function (6.163).  
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The system of equations of smooth interfacing that touches tangentially both 

curves and makes a continuous link is the same as for other properties, for 

example, Equation 6.46. 

Points of tangency can be defined by optimizing the approximation result and are 

presented below.  
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The resulting interfacing polynomial coefficients, obtained with the available 

analytical solution (Equations (5.20 and 5.23)), are expressed below:  
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The result approximations around triple point (=0), including the interfacing 
curve, is shown in Figure 6.90. 
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Figure 6.90 – Final Result to interfacing below freezing point. 

 

 

6.9.3 Approximations for supercritical zone and interfacing  

In the super-critical zone, the behavior of the thermal conductivity is complex and 

nonlinear. It is worth mentioning that in the literature, the value of this property in 

the critical point is either not defined or considered infinity. Therefore, we decide 

to arbitrate a value for liquid thermal conductivity at critical point as an 

extrapolation of an interpolation curve of the past 4 points. At temperature above 

the critical point, the thermal conductivity drops down to the value of about 0.09 

W/m/K, shown in the graph in Figure 6.91  as a sudden drop (DHANUSKODI et 

al., 2011). 

We can pick the curve which corresponds to the critical pressure (220.64 bar), as 

it is close to real heat pipe internal condition near critical point. The same behavior 

is presented in (PIORO, 2020). 
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Figure 6.91 – Liquid thermal conductivity data under the critical pressure. 

 

 
Another point deserving attention is the continuity of the values and derivatives 

in the interrupting points (interface between curves). To guarantee that, the 

interfacing technique provides perfect softening in the conjugate points. It is 

possible to check the interfacing result in figures below.  

For super-critical zone we found that the polynomial curve of 5th order fits 

reasonable the tabled property data: 

 

( ) 5432

1


 CCCCCCl fedcbak
C

+++++=


        (6.166) 

( )( )
432

1

5432 






CCCCC

l
fedcb

d

kd
C ++++=



 (6.167) 

 
Looking for a smoother transition between those two zones in Equations (6.158), 

and (6.166), it is used a third-degree polynomial Equation (6.168).   
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Points of tangency were obtained through optimization the approximation results:  
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In this case  defines how far each point will be away from the critical point, 

(=1). 

The system has the usual format to the interfacing equation when both curves 

make a continuous smoothie link (for example, Equation 6.52). 

After solving the system, the parameters values are available below: 
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Figure 6.92 shows the result of the approximation for the critical region. 
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Figure 6.92 – Final result to interfacing above critical point. 

 

 

6.9.4 Final approximation and pseudo code  

The algorithm above that we proposed for the approximation for the entire region 

which also includes below freezing point and above critical point regions provides 

the result curve as shown in Figure 6.93. 
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Figure 6.93 – Final result to liquid thermal conductivity approximation  in the entire 
temperature range. 

 

 
Therefore, in this chapter we have reached an approximation in the entire range 

of temperature, managing the approximation error in satisfactory levels (no 

greater than 5%). The pseudo code provides fluid property values starting below 

triple point up to above critical point (Figure 6.93).  

This code can be implemented in any programming language.  
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Table 6.11 – Result of liquid thermal conductivity the algorithm values. 

aA = -1.028E1 cB = 5.0444 bBC = 1.1298E6 fC = 1.525E1 

bA = 2.37E1 dB = -6.911 cBC = -1.1257E6 1 = 3E-3 

aAB = -8.423 eB = 6.2103 dBC = 3.7385E5 2 = 8E-3 

bAB = 1.123E3 fB = -2.075 aC = -1.018E2 3 = 3E-3 

cAB = 1.14E5 gB = 4E2 bC = 3.56E2 4 = 8E-3 

dAB = -1.536E7 hB = 2 cC = -4.895E2  

aB = 7E-3 H1 = 0.96 dC = 3.342E2  

bB = -1.92 aBC = -3.7797E5 eC = -1.133E2  

 

6.10 Approximations for liquid specific heat capacity 

6.10.1 Approximations for saturated zone  

Liquid specific heat capacity (cp,l) is defined as the amount of heat (dQ) needed 

to raise the temperature by a small increment (dT) of the sample of unity of mass 

(M), Equation (6.172). 

 

dT

dQ

M
c lp =

1
,

 
(6.172) 

 
The original data of the liquid specific heat capacity behavior for water with 

temperature in the two-phase zone, presented by ASHRAE (LEMMON et al., 

2023), is shown in Figure 6.94. 
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Figure 6.94 – Water Liquid specific heat capacity number data. 

 

 
Faghri in his book (2016) suggested an equation to approximate this water 

property, Equation (6.173). 
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(6.173) 

 
where T is expressed in °C and CpL in kJ/kg/K. 

This equation is valid from 20°C to 200°C; for such temperature range this 

equation can be used for HP modeling with no concern since the approximation 

error mentioned is 0.03% and the equation covers up to 48% of the entire two-

phase temperature range. However, when we try to use this polynomial equation 

out of the range established, the result run out of the real behavior. The green 

continuous line in Figure 6.95 expresses this deviation from the real values. 
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Figure 6.95 – Faghri polynomial approximation.  

 

 
The dimensionless liquid specific heat capacity follows general dimensionless 

definition and presented as: 
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For the saturation interval (i.e., two-phase zone, 0<<1), the original curve has a 

sharp climb as it approaches the critical temperature. It is difficult to obtain a 

unique function which approximates the entire zone within acceptable error; 

therefore, we resolved it by applying an interruption point (H) and join two 

approximation functions in the interval H<1 by application of Heaviside 

function. The best results gave the following approximation functions:  
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These functions are used in an additive way: when 0<<H, then y= y1(); when 

H1<<H2, then y()=y1()+y2().This can be condensed in a unique correlation for 

our property: 

 

( ) ( ) ( ) ( ) 211, yyc Hlp −+=  (6.176) 

 
Applying the algorithm above, in the saturation interval of temperature we achieve 

the curve shown below. That chart on Figure 6.96 shows data from ASHRAE 

using green circles (LEMMON et al., 2023). The approximation results are in the 

blue line. In red bars we have the deviation error from property table data and 

approximation.  

 
Figure 6.96 – Liquid specific heat capacity approximation results in saturated zone.  

 

 
We observed the deviation from data by approximation lie within the usual 

acceptance criteria in 1.5% of deviation from the properties table data. 

To build this property approximation we used a baseline curve (4th degree 

polynomial equation), and we add an auxiliary function in that curve with the use 

of the Heaviside function. By the use of Equation (6.176) the result of the 

approximation is shown in Figure 6.97. 
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Figure 6.97 – Heaviside function in approximation for saturated zone.  

 

 
The proposed algorithm shall cover the approximation of the entire region which 

also includes the zones below freezing and above critical points.  

6.10.2 Approximations for freezing zone and interfacing  

 Liley (2005) suggested one approximation to describe that property behavior on 

freezing zone as presented in Equation 6.177 as a linear function (Figure 6.98). 

In that case, the equation starts at -20 °C and go to 0°C. 

 

( ) TTc lp += −3

, 1089.6067.2
 

(6.177) 

 
where T is expressed in °C and cpl in kJ/kg/K. 

A remarkably similar approximation for cp,l of water ice has been developed by 

Fukusako (1990) for the temperature range from -183 ºC to 0 ºC: 

 

Tc lp

2

, 10689.0185.0 −+=  (6.178) 

 
where cp,l is measured in kJ/kg/K and T - in Kelvin. 
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Figure 6.98 – Property data in freezing zone. 

 

 
Another point which deserves attention is the continuity of the vales and 

derivatives in the interface between curves to guarantee that the interfacing 

technique provides perfect softening.  

The interfacing technique is the same that showed in other sections of this work. 

We start by presenting both equations 6.194 and 6.195  that we intend to connect 

along with the respective derivatives.  

For freezing zone: 

( ) 
 AAlp bac

A
+=

0
,         (6.179) 

 
It is possible to demonstrate a third-degree polynomial function yields the smooth 

interfacing to join the subcooled zone with saturated zone, Equation (6.180).  

  

  
( ) 32
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(6.180) 

 
The system of smooth interfacing has the similar format as for other properties 

(for example, Equation 6.46). Points of tangency can will be defined aiming to 

optimize the approximation result:  
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Using the developed universal approach for any property, the result coefficients 

for cpl interfacing curve is following: 
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(6.182) 

 

The result approximation around triple point (=0), including the interfacing curve, 

is shown in Figure 6.99. 

 
Figure 6.99 – Final Result to interfacing below freezing point. 
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6.10.3 Approximations for supercritical zone and interfacing  

For the supercritical region, the CpL becomes CpV as soon as the difference 

between the liquid and vapor phases disappears. In various sources this region 

is referenced as either “superheated vapor” or “steam” or “gas.” The CpL behaves 

in an overly complicated manner near the critical point: its values get sharp 

increasing as  approaches 1 from the left, and then gets sharp falling as  slightly 

pass 1 to the right. It also slightly depends on pressure. The chart for near-critical 

pressure P=250 bar is shown in Figure 6.100 (adapted from DHANUSKODI et 

al., 2011). 

 
Figure 6.100 – Property data in super critical zone. 

 

 
For super-critical zone a polynomial function of 5th order approximates well the 

property: 
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The interfacing technique is the same that we used showed in others part of this 

work, we start with both equation that we want to link and the respective 

derivatives. 

Looking for a smoother transition between those two zones ((6.176) & 6.183), it is 

used a third-degree polynomial function (6.184).   
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(6.184) 

 
Points of tangency can be defined aiming to optimize the approximation result. In 

this case,  defines how far each point is away from the critical point, (=1).  
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The system has the usual format to the interfacing equations when both curves 

make a continuous smooth link (Equations 5.29 and 5.32). Using the values 

mentioned above, the solution is the following: 
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Figure 6.101 shows the result of the approximation. 
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Figure 6.101 – Final result to interfacing above critical point. 

 

 

6.10.4 Final approximation and pseudo code  

Therefore, in this chapter we reached an approximation in a wide range of 

temperature, managing the approximation error in satisfactory levels (no greater 

than 5%) Figure 6.102. The pseudo code provides the fluid property values 

starting below triple point up to above critical point and is presented by Equation 

(6.187).  

 

 

 

 

 

 

 

 



203 
 

Figure 6.102 – Final result for liquid specific heat capacity approximation  in the entire 
temperature range. 

 

 
This code can be implemented in any programming language.  
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Table 6.12 – Resulting liquid specific heat capacity pseudo code values. 

aA = -1.087E-1 cB = 5.511E-1 kB = 1  cC =4.5485E3 

bA = 1.305E1 dB = -2.5295 H1 = 0.89  dC =-3.311E3 

aAB = -8.9014E-2 eB = 6.4967 aBC = 3.073E5  eC =1.2023E3 

bAB = 1.1790E1 fB =-7.9777 bBC = -9.234E5  fC =-1.7421E2 

cAB = 1.2116E3 gB = 3.8797 cBC = 9.249E5  1 = 3E-3 

dAB = -1.6262E5 hB = 5E1 dBC = -3.088E3  2 = 8E-3 

aB = -2E-6 iB = 2 aC =8.536E2  3 = 5E-3 

bB = -5.53E-2 jB = 5E-1 bC =-3,1181E3  4 = 5E-3 

 
 

6.11 Approximations for liquid Prandtl number  

6.11.1 Approximations for saturated zone  

The Prandtl number makes the correlation between the momentum diffusivity () 

and the thermal diffusivity (). 
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(6.188) 

 
The parameters are defined as following: 

 is momentum diffusivity or kinematic viscosity,  is thermal diffusivity,  is 

dynamic viscosity,  is thermal conductivity, cp is specific heat and  is density. 

By the use of this property initial table, it can be approximated directly from the 

available points. As an option the Prandtl number approximation can be obtained 

from the approximations of its components: viscosity, thermal conductivity, and 

sensible heat.  

However, Prandtl number is a dimensionless number that does not means that it 

is exclusively composed by dimensionless numbers, in fact, to obtain the 

approximation to Prandtl number using the relations between others 

dimensionless approximations we need to follow those steps: 
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• Transform the available dimensionless approximations of Pr components 

into dimensional values by inverse formulas. 

• Build a table of values of Prandtl number, calculated from its components, 

as a function of temperature and pressure. Then add columns which 

calculate reduced Pr number as a function of dimensionless temperature 

and dimensionless pressure. 

• Perform approximations of reduced Pr number to result in pseudo-code 

format. 

The Prandtl liquid number behavior with temperature in saturation zone is 

expressed below in Figure 6.103 (BEATON, 1986). 

 
Figure 6.103 – Water liquid Prandtl number Data. 

 

 
It is worth to mention that in literature the value of this property in critical point is 

considered infinite, so we decide to attribute an extrapolated value for Liquid 

Prandtl Number at critical point by an interpolation curve build from the past 4 

points. It resulted in a value of original Pr number equal to 31 (plotted in Figure 

6.103).  
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About this property Liley (2005) suggested a group of equations to describe 

properties behavior with temperature. To build liquid Prandtl number behavior 

from -20°C up to 50 °C the author breaks its equation in three parts. One starting 

from -20°C until 0°C, moving to 0°C up to 25°C and from 25°C to 50°C. 

All those three equations, that Liley (2005) suggested, represents 13,37% of the 

saturation range. In order to exemplify the deviation of an equation out of his 

range of actuation we compared the data, equation suggested by (LILEY, 2005), 

and that same equation out of temperature range suggested.  

 

( ) ( )643.114
834.50178023.1

Pr +
+−

= TeT  
(6.189) 

 
This equation is valid from 25°C to 50°C; that equation covers up to 6.7% of the 

entire two-phase temperature range. As an example, when we try to use this 

polynomial equation out of the established range, in that case from 0°C up to 

374°C, the result does not follow the real behavior. The green line in Figure 6.104 

expresses this deviation from the real data. 

 
Figure 6.104 – Liley approximation.  
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Following the general approach for all other properties, despite Pr number is 

already a dimensionless parameter, we introduce “reduced Pr number” defined 

as:  

)(Pr)(Pr

)(Pr)(Pr
)(rP
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ll
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−
=  (6.190) 

 
Following our approach to elaborate the approximation over entire two-phase 

range, from the triple point to the critical point, we also continue using non-

dimensional variables for temperature.  

As shown in Figure 6.103, for the saturation interval (i.e., two-phase zone, 

0<<1), the original curve has a sharp climb as it approaches the critical 

temperature. It is difficult to obtain a unique function which approximates the 

entire zone within acceptable error: therefore, we will improve it with application 

of two interruption points (H1 and H2) and join the approximation functions by 

application of Heaviside functions. 

The best results are the following approximate functions:  

 

( )

( )( )





















 −−
=

−=

++++++=

B

B

k

H
B

i

HB

BBBBBBB

Cos
jy

hy

gfedcbay

2

1 2
3

12

65432

1







 

(6.191) 

 
To build such approximation we used a baseline curve (6th degree polynomial 

equation), and we add in that curves that satisfies continuity and smooth interface 

conditions.  

These functions are used in an additive way: when 0<<H, then y= y1(); when 

H1<<H2, then y()=y1()-y2(); when H2<<1, then y()=y1()-y2()+y3(). This 

can be condensed in a unique correlation for our property: 
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( ) ( ) ( ) ( ) ( ) ( ) 32211Pr yyy HHl −+−−=  (6.192) 

 
Applying the algorithm above, in the saturation interval of temperature we achieve 

the curve shown in Figure 6.105. This chart also shows data from ASHRAE tables 

using green circles. The approximation results are shown by the blue line. In red 

bars we have the deviation error from property table data and the approximation. 

 
Figure 6.105 – Liquid reduced Prandtl number approximation in saturated zone. 

 

 
We observe that the deviation from the available data by approximation lies within 

the acceptance criteria of 3% of deviation from the properties table data. The 

point that deserves attention is the end of range due to the error that point 

conducts. This point will be smoothed by the link curves that will be result of the 

interface technique application. 

The final curve and contribution of each approximation functions, obtained from 

Equation (6.192), are shown in  Figure 6.106. 
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Figure 6.106 – Contributions of approximation functions to final approximation for 
saturated zone.  

 

 
Figure 6.107 – Zoom on individual functions in approximation for saturated zone.  

 

 
From the other hand, this property is a combination of other properties. When we 

perform this calculation, we obtain the result shown in Figure 6.108. 
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Figure 6.108 – Reduced Prandtl number calculated. 

 

 
One can see, the maximal error lies within 2 %. 
 
If we put side by side the Prandtl number data, approximation, and calculation, 

we reach the curves given in Figure 6.109, where it is possible to notice the main 

difference of obtaining property value by approximation or calculation way. This 

difference is the oscillation highlighted by dash circle, this phenomenon occurs 

because of a side effect of using addition Heaviside, in each curve interruption 

has localized oscillation in a way to best fit.  
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Figure 6.109 – Prandtl number data compare with approximation and calculation.  

 

 

Therefore, calculated approximation of liquid Pr number provides slightly better 

result than the direct piece-wise approximation.  

6.11.2 Approximations for freezing zone and interfacing  

In freezing zone, there is not many data available for this property, with that in 

mind, we calculate the property in this temperature rage using obtained 

approximations of Pr number components given in Equation (6.188). It is 

important to expose that in the freezing zone, this property is directly bonded to 

the dynamic viscosity and Pr behavior is mostly driven by the viscosity of ice. In 

the case, this value is much higher when compared with the liquid value.  
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Figure 6.110 – Prandtl Number in freezing zone. 

 

 

In this zone, the reduced Prandtl number can be approximated by a linear 

function: 

  ( )  AAl ba
A

+=rP  (6.193) 

 
Interfacing equation joins the subcooled zone with saturated zone. 

Looking for a smooth transition between those two zones, Equations (6.192) and 

(6.193), it is used a third-degree polynomial Equation (6.194).  
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(6.194) 

 
The system of equations to calculate the coefficients in (6.194) will be of the 

following format to interface tangency both curves and to make a continuous 

smooth link. 
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Points of tangency can be defined trying to optimize the approximation result. In 

this case t determines how far each point will be away from the triple point:  
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The solution of system of Equation (6.195) is expressed below. 
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(6.197) 

 

The result approximation around triple point (=0), including the interfacing 

curve, are shown in Figure 6.111. 
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Figure 6.111 – Final result to interfacing below freezing point. 

 

 

6.11.3 Approximations for supercritical zone and interfacing  

In super-critical zone, we correlate the pressure variation and temperature 

variation, resulting in an equation of two variables: dimensionless temperature 

and pressure. 

For super-critical zone: 
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In Figure 6.112 is possible to see the reduced Prandtl number approximation 

compared with the available data. 
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Figure 6.112 – Approximation of reduced Prandtl number as a function of dimensionless 
temperature and pressure for super-critical zone.  

 

 
Looking for smooth transition between those two zones in Equations (6.192) and 

(6.198), it is used a third-degree polynomial Equation (6.200).   
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(6.200) 

 
Points of tangency can be defined by trying to optimize the approximation result. 

In this case  defines how far each point will be away from the critical point, 

(=1).  
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This system has the following format to the interfacing equation tangency when 

both curves make a continuous smoothie link. 
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Solving the system above, the parameters values are available below. 
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Figure 6.113 shows the result of the approximation with this interfacing. 

 
Figure 6.113 – Final result to interfacing above critical point. 

 

6.11.4 Final approximation and pseudo code  

Because of the large magnitude of this property in freezing region, which is much 

greater than for the others zone, we omit freezing zone from the Figure 6.114 to 
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the other details be available; but is possible to check the freezing behavior in 

Figure 6.111. 

 
Figure 6.114 – Final result for liquid reduced Prandtl number approximation  in the entire 

temperature range. 

 

 
Therefore, in this section we reach an approximation in a wider range of 

temperature, managing the approximation error in satisfactory levels (no greater 

than 5%). The pseudo code (Equation 6.204) provides fluid property values 

starting below triple point up to above critical point. 

This pseudo-code can be implemented in any programming language.  
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Table 6.13 – Resulting liquid reduced Prandtl number approximation parameters. 

aA = 4.4707E14 dB = -1.609E2 H2 = 0.976 1 = 4E-3 

bA = 1.2177E15 eB = 2.743E2 aBC = -7.398E3 2 = 3E-3 

aAB = 1.7315E14 fB = -2.368E2 bBC = 2.106E4 3 = 3E-3 

bAB = -9.245E16 gB = 8.097E1 cBC = -1.998E4 4 = 6.913E-2 

cAB = 3.9173E18 hB = 8.5 dBC = 6.317E3  

dAB = 2.5536E21 iB = 1.5 aC = -9.66E-1  

aB = -2.7E-2 jB = 9E3 bC = 1.582  

bB = -8.667 kB = 1.467 cC = 5.38E-1  

cB = 5.091E1 H1 = 0.87 dC = -9.651  

 
To return to original Prandtl number from the obtained approximations, use 

inverse expression:  

 

( )( ))(Pr)(Pr)(rP)(Pr)(Pr 33 TTaprxTT lcrllll −+= 
 (6.205) 

 

6.12 Approximations for latent heat 

6.12.1 Approximations for saturated zone  

Latent Heat (λ) can be defined as the amount of energy released or absorbed 

during the phase change of the substance (Q) by unity of mass (M). Latent heat 

also known as energy released or absorbed by a thermodynamical system during 

a transmission between phases. It can be applied to evaporation-condensation 

process (transition of liquid phase to vapor phase, and vice versa), as well as to 

melting-solidification process (transition of solid phase to liquid phase and vice 

versa). In the first case it is known as latent heat of vaporization (or enthalpy of 

vaporization), and in second case it is known as latent heat of fusion (enthalpy of 

fusion). 

The parameter can be defined through the following equation:  

 

M

Q
=  (6.206) 



219 
 

 
The original data of the latent heat behavior with temperature, published by 

ASHRAE Lemmon et al. (2023), and data from Liley (2005), are presented in 

Figure 6.115. 

 
Figure 6.115 – Water Latent Heat Data. (LEMMON et al., 2023; LILEY, 2005). 

 

 
The data presented in Figure 6.115 covers solid state and two-phase coexisting 

phase zone. At super-critical temperature zone, the latent heat is 0.  

Faghri (2016) suggested a polynomial function to approximate logarithm of this 

water property (6.207). The latent heat is expressed in KJ/kg and the temperature 

is in Celsius. 
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(6.207) 

 
This equation is valid from 20°C up to 200°C, having the approximation error of 

0.03%. However, the approximation covers up to 48% of the entire two-phase 

temperature range. As an example, when we try to use this polynomial equation 

out of established range, the result does not follow  the real behavior. The green 
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line in Figure 6.116 expresses this deviation from the real value. It is not possible 

to use such approximation above 200 ºC. 

 
Figure 6.116 – Faghri polynomial approximation.  

 

 
Following our approach to elaborate the approximation over entire two-phase 

range, from below the triple point to the zone above the critical point, we continue 

using non-dimensional variables for temperature, , as well as for the latent heat:  

3
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 (6.208) 

 

At the critical point and above it, the dimensional  is always equal to 0; therefore, 

the dimensionless latent heat 1=  for this region. At =0, 3=~2500 KJ/kg. In 

the ice (solid) region, the latent heat value drops from ~2500 KJ/kg down to ~333 

KJ/kg. Therefore, in the negative temperature region (<0, i.e., “ice”), the 

dimensionless latent heat    jumps from 0 to the value of ~0.867.  

For the saturation interval (i.e., two-phase zone, 0<<1), the original curve has a 

sharp climb as it approaches the critical temperature. It is difficult to obtain a 

unique function which approximates the entire two-phase zone within acceptable 
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error. Therefore, we propose to improve it with application of an interruption point 

(H) and join two approximation functions in the interval H<1 by application of 

Heaviside function. 

The best outcome resulted the following combination of two approximate 

functions:  
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(6.209) 

 

These functions are used in an additive way: when 0<<H, then y= y1(); when 

H1<<H2, then y()=y1()+y2(). This can be condensed in a unique correlation 

for our property: 

 

( ) ( ) ( ) ( ) 211 yy H+=  (6.210) 

 
By applying the algorithm above, in the saturation interval of temperature we 

achieve the curve shown below. The chart on Figure 6.117 shows data from 

ASHRAE using green circles (LEMMON et al., 2023). The approximation results 

are in the blue line. In red bars we have the deviation error from property table 

data and approximation.  
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Figure 6.117 – Latent Heat approximation result in saturated zone.  

 

 
We observe the deviation from the experimental property data by the 

approximation lie within the acceptance criteria of 3%. 

To build this property approximation we used a baseline curve (4th degree 

polynomial equation), by adding the second function y2, that satisfies the criteria 

of tangency and continuity, by using of the Heaviside function. The result of that 

is shown in Figure 6.118. The main reason to use this technique is to reach the 

approximation curve to be continuous and “smooth,” without sharp edges.  
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Figure 6.118 – Two-functions approximation for saturated zone.  

 

 

6.12.2 Approximations for freezing zone and interfacing  

For the sub-freezing zone, Liley (2005) suggested one approximation to describe 

that property behavior (Where,  is in KJ/Kg and T is in Celsius degree, see 

Figure 6.119). In that case, this equation ranges from  

-20 °C to 0°C. The approximation is expressed in Equation (6.211). 

 

( ) 2310411.24.333 TTT ++−= −  (6.211) 

 

Where,  is KJ/Kg and T is Celsius degree. 
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Figure 6.119 – Property data in freezing zone. (LILEY, 2005). 

 

 

In this zone, the dimensionless latent heat can be approximated by a linear 

function: 

  ( )  AAA ba +=  (6.212) 

  

Interfacing third-degree polynomial function joins the subcooled zone with 

saturated zone, Equation (6.213). 

 

  
( ) 32  ABABABABAB dcba +++=

 
(6.213) 

 
The system of 4 equations for uninterrupted join conditions presents the usual 

format to the interfacing equations touching tangentially both curves of value and 

derivative, (as example, see Equation 6.46). The tangency points are defined 

aiming to optimize the approximation result: 
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The solution for interfacing polynomial coefficients is expressed below: 
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The result approximations around triple point (=0), including the interfacing 

curve, are shown in Figure 6.120. 

 
 

Figure 6.120 – Final Result to interfacing below freezing point. 

 

 

6.12.3 Approximations for supercritical zone and interfacing  

In super-critical zone, the latent heat is 0, so the equation system follows the 

steps below. 

For super-critical zone dimensional =0, dimensionless 1=  , and derivative is 

0: 
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Looking for a smooth transition between those two zones, Equations (6.210) and 

(6.216), it is used a third-degree polynomial Equation (6.218).   

( ) 32  BCBCBCBCBC dcba +++=
 

(6.218) 

 
The tangency points can be defined by optimizing the approximation result. In 

this case  defines how far each point are from the critical point, (=1).  
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The system of Equation (6.220) has the following format to uninterrupted joining 

when both curves make a continuous smooth link. 
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Solving the system, the parameters values are available below. 
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Figure 6.121 shows the result of the approximation. 

 
Figure 6.121 – Final result to interfacing above critical point. 

 

 

6.12.4 Final approximation and pseudo code  

The proposed approximation of the entire region, which includes the regions 

below freezing and above critical point, is shown in Figure 6.122.  

Therefore, the approximation is starting with a negative dimensionless 

temperature in the freezing region, and   achieving a maximum  =1 above the 

critical point, which corresponds the situation of no vapor-liquid interface 

existence. At the supercritical region, the property has 0 value, translating into 

=1 on dimensionless rule.  
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Figure 6.122 – Final result to latent heat approximation  in the entire temperature range. 

 

 
In this section we reach an approximation in a wide range of temperature, with 

satisfactory error levels (no greater than 3%). The pseudo code provides fluid 

property values starting below triple point up to above critical point (Figure 6.122). 

This code (6.222) can be implemented in any programming language.  
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Table 6.14 – Resulting latent heat approximation parameters. 

aA = 8.67E-1 dAB =3.385E6  eB = 5.3E-2 bBC = -1.248E3 3 = 3E-3 

bA = 3.04E-1 aB = 0 fB =2.75 cBC = 1.230E3 4 = 6.913E-2 

aAB = 2.74E-1 bB = 3.608E-1 gB = 1.7 dBC = -4.034E3  

bAB =-1.52E2  cB = -6.84E-2 H1 = 0.80 1 = 5E-3  

cAB = 1.016E4 dB = 3.06E-1 aBC = 4.215E2 2 = 3E-3  

 

6.13 Approximations for surface tension 

Surface tension is an important parameter with physical effect, which is 

observable in two physical phases. This phenomenon becomes noticeable when 

the liquid surface behaves like an elastic membrane due to molecular cohesive 

forces between its molecules.  

Surface tension, represented by the symbol σ, is measured in force per unit 

length: N/m. The surface tension behavior with temperature can be seen below 

(LEMMON et al., 2023) in Figure 6.123. 

 
Figure 6.123 – Water surface tension data. 

 

 
Faghri (2016) suggested equation to approximate the logarithm of this water 

property by a polynomial function of 5th order.  
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The surface tension is expressed in N/m and the temperature used in the 

equation is in Celsius. 

This equation is valid between 20°C and 200°C; in this range the approximation 

error mentioned in (FAGHRI, 2016) is 0.03% and the equation (6.223) covers up 

to 48% of working temperature range. 

 
Figure 6.124 – Faghri approximation available range. 

 

 
Following the approach to elaborate the approximation over entire two-phase 

range, from below the triple point to the zone above the critical point, we continue 

using non-dimensional variables for temperature, , as well as for the surface 

tension:  

3

3)(





−

−
=

cr

 (6.224) 

 
As for the approximation, the best results gave the following function: 



231 
 

( ) ( )
 BB

ba +
=

1
 (6.225) 

 
In the saturation interval of temperature, we achieve the curve presented in 

Figure 6.124. That graph shows data from ASHRAE using green circles 

(LEMMON et al., 2023). The approximation results in the blue line. In red bars we 

have the deviation error from property table data and approximation.  

 
Figure 6.125 – Surface tension approximation result in saturated zone. 

 

 
We observe the deviation from the tabled original property data by the 

approximation lies within the acceptance criteria of 3% over almost entire range. 

In the freezing zone, this property has no value, so the smooth link will be 

established having a 0 value: 

  
( ) 0= A  

(6.226) 

 
Interfacing equation joins the subcooled zone with saturated zone, used a third-

degree polynomial function (6.227).   
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( ) 32  ABABABABAB dcba +++=

 
(6.227) 

 
The system of equations of uninterrupted joining has a usual format, like Equation 

6.46, and does not present here. 

Points of tangency are the following: 
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The solution for interfacing polynomial coefficients is expressed below. 
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The result approximations around triple point (=0), including the interfacing 

curve, is shown in Figure 6.126. 
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Figure 6.126 – Final Result to interfacing below freezing point. 

 

 
For the super-critical zone, this parameter does not make sense once the vapor-

liquid interface does not exist; Therefore, we assume this absolute value to be 0, 

which corresponds to 1 for the dimensionless surface tension: 
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(6.230) 

 
A smooth transition between those two zones provides a third-degree polynomial 

function (6.231).   
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Chosen points of tangency at critical point, (=1), are given below.  
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The system has the following similar format to the interfacing equation tangency 

when both curves make a continuous smooth link. 

By solving this system, the parameters values are presented below. 
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Figure 6.127 shows the result of the approximation with the interfacing curve. 

 
 

Figure 6.127 – Final result to interfacing above the critical point. 

 

 
 

The algorithm above that we proposed for the approximation of the entire region 

which also includes below freezing and above critical point regions is shown in 

Figure 6.128. 
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Figure 6.128 – Final result to surface tension approximation in the entire temperature 
range. 

 

Therefore, in this chapter we reach an approximation in a wide range of 

temperature, managing the approximation error at satisfactory levels (no greater 

than 3%), Figure 6.127. The pseudo code provides fluid property values starting 

below triple point up to above critical point, (6.234) . 

This code can be implemented in any programming language. 
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Table 6.15 – Resulting to surface tension approximation parameters. 

aAB = 3.698E-4 bBC = 2.723E2 

bAB =2.365E-1 cBC = -2.192E2 

cAB = 3.440E1 dBC = 5.551E1 

dAB =-1.1143E3 1 = 8E-3 

aB = 1.15 2 = 5E-3 

bB = -9E-2 3 = 5E-3 

aBC = -1.077E2 4 = 5E-3 
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7. CONCLUSIONS 

This work presents for the first time a methodology for the approximations of 13  

thermophysical properties applied for water in the expanded temperature range 

starting from the freezing zone (below triple point), then passing through entire 

vapor-liquid coexisting zone (two-phase or saturation zone) and ending at the 

supercritical zone (above the critical temperature). This is different from the usual 

approach in which researchers propose approximations to a property in a strict 

temperature range, aligning with the typical operating limits of heat pipes. The 

development of methodologies and approximations provides the foundation for 

complex transient mathematical models applicable to freezable and cryogenic 

heat pipes. An important feature of these approximations is the uninterrupted and 

smooth behavior of any thermo-physical property over the entire temperature 

range, with an acceptable deviation to prevent erroneous modeling and numerical 

instability. To develop these property approximations over the entire temperature 

range by a piecewise function with different components, the Heaviside function 

technique was applied for the first time. Another advance is the interfacing 

technique, which provides a smooth connection between the curves in different 

matter state zones.  

It is proposed an advanced unique dimensionless format for temperature, 

pressure, and all other properties, correlating not only the value of the property 

at the critical point but also at the triple point. To treat the dimensionless 

temperature as dimensionless values, some authors used only the temperature 

divided by critical temperature; our approach brings a certain physical sense 

because the dimensionless temperature is always 0 at the freezing point and 1 

at a critical point, keeping the interval between 0 to 1 for the saturation conditions 

when both vapor and liquid phases coexist. Correspondingly, if temperature is 

negative, it means the freezing zone; if above 1 - supercritical region. Moreover, 

all 13 properties behave by a similar way. Such approach provides universal 

approximations, and we expect the similar correlations can be developed for 

other working fluids. Another advantage of using dimensionless temperature and 

dimensionless properties is that the approximation parameters do not depend on 
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a system of units of measurement, which can be used in International System or 

Imperial System od Units without any changes. 

These approaches establish a solid foundation for developing approximations for 

other fluids, such as acetone and ammonia, among others. These can be used 

in mathematical models of heat pipes for transient behavior simulations in a large 

temperature range. Notably, the developed approximations are not closed-form 

correlations but as pseudo-codes, which can be implemented in any 

programming language and applied in mathematical models.  

The implemented random optimal search method was applied within MS Excel 

spreadsheets using the VBA language. The users may actively modify the 

optimization process by adjusting the variable limits, reducing the time of 

computation, and improving the approximation precision. The best parameters 

are obtained by minimizing a combined weighted criterion of the average 

deviation and the maximum error. 

The applicability of the developed technique is not limited by heat pipes, capillary 

pumped loops, thermosyphons and other two-phase passive heat transfer 

devices but also every other development that need water property value. 
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8. PROPOSAL FOR FUTURE RESEARCH 

This innovative approach, along with all approximation results, was initially 

developed for water due to the wide availability of tabulated data for all 13 thermo-

physical properties for the saturation zone, overheated steam, and ice. We expect 

that the format of multiple piecewise functions and pseudo-codes would be similar 

for other working fluids thanks to the universal dimensionless approach. The 

optimization algorithm can be improved to not only to calculate the best 

approximation parameters but also to select the best set of functions used in the 

piecewise approximation. 
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APPENDIX A – EQUATIONS AND ITS DERIVATIVES 

This appendix relies on a foundation of key mathematical equations and 

derivatives, presented in the work. These essential expressions serve as a 

guidance to build the approximations and its derivatives used for the interfacing.  
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APPENDIX B – FUNCTIONS AND GRAPHS FOR THE APPROXIMATIONS 

This appendix is related to be a visual collection which may be helpful to build the 

appropriate approximations. The figures show the functions and its behaviors 

variating x (as dimensionless temperature ), and other parameters. 

In Figures B.1-B7 first we present functions that obey addition Heaviside 

conditions which is the functions and its derivates must be equal to zero at x=0. 

 
Figure B.1 – Equation behavior example 𝑦 = 𝑎𝑥𝑛 (Function meets conditions y(0)=0; 

y’(0)=0 at n>~1.5). 
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Figure B.2 – Equation behavior example 𝑦 =
𝑎𝑥𝑛

1−𝑏𝑥𝑚, Function meets conditions y(0)=0; 

y’(0)=0 at n>~1.5; 0.1 < b < 0.9 

 

 

Figure B.3 – Equation behavior example, 𝑦 = 𝑎2𝑥2 + 𝑎3𝑥3 + 𝑎4𝑥4, Function meets 
conditions y(0)=0; y’(0)=0. 
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Figure B.4 – Equation behavior example 𝑦 = а𝑇𝑎𝑛ℎ𝑛(𝑒𝑥), Function meets conditions 
y(0)=0; y’(0)=0 at n>~1.5. 

 

 
Figure B.5 – Equation behavior example 𝑦 = 𝑎𝑆𝑖𝑛ℎ𝑛(𝑥), Function meets conditions 

y(0)=0; y’(0)=0 at n>~1.5. 
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Figure B.6 – Equation behavior example 𝑦 = 𝑎 (
1−𝐶𝑜𝑠(𝜋𝑥)

2
)

𝑛
, Function meets conditions 

y(0)=0; y’(0)=0. 

 

Figure B.7 – Equation behavior example 𝑦 = 𝑎𝑥𝑏𝑒𝑐𝑥𝑛
, Function meets conditions y(0)=0; 

y’(0)=0 at b>~1.5 & n>0. 
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The functions below do not necessarily need satisfy the Heaviside conditions. 

 

Figure B.8 – Equation behavior example 𝑦 = 𝑇𝑎𝑛ℎ𝑛(𝑒𝑥). 

  

  

Figure B.9 – Equation behavior example 𝑦 = 1 − 𝑇𝑎𝑛ℎ𝑛(𝑒𝑥). 
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 Figure B.10 – Equation behavior example 𝑦 = (1 − 𝑇𝑎𝑛ℎ𝑛(𝑒𝑥))
𝑛
. 

 

  

Figure B.11 – Equation behavior example 𝑦 =
1

2
(1 + 𝑇𝑎𝑛ℎ(𝑛(𝑥 − 0.5))). 
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Figure B.12 – Equation behavior example 𝑦 = (1 − 𝑥)𝑛. 

 

  
 

Figure B.13 – Equation behavior example 𝑦 =
1−𝑥

1−𝑥𝑛. 
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Figure B.14 – Equation behavior example 𝑦 = 𝑆𝑒𝑐ℎ𝑛(𝑥). 

 

 

Figure B.15 – Equation behavior example 𝑦(𝑥) = 𝑎 (1 −
(𝑥−𝑏)2

𝑐2 )
𝑛

. 
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Figure B.16 – Equation behavior example 𝑦(𝑥) = 𝐿𝑛 (𝑎 ⋅ 𝐸𝑥𝑝 (𝑏 ⋅ (1 −
𝑐

𝑛𝑥
)) + 𝑒). 
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APPENDIX C –  EXCEL VISUAL BASIC CODE FOR RANDOM SEARCH 

This part presents a developed VBA code built within EXCEL table to help the 

User to reach the best approximation results by minimizing the weighted error of 

the approximation. The parameters of approximations are optimized variables. 

This code applies random search within values, chosen by User, on the 

approximation parameters and place the 10th better result interactively in a rank. 

At any moment User may interrupt the execution to narrow the range of variation 

of any variable. The algorithm of this code was described in section 4.5 of 

Methodology capture. 

Dim continuarExecucao As Boolean 

 

Public b As Integer 

 

Sub EncontrarMelhoresValores() 

continuarExecucao = True 

  

    On Error GoTo ErrorHandler ' Lidar com erros 

    continuarExecucao = True 

    Dim melhorResultado As Double 

    Dim erroMaximo As Double 

    Dim desvioO10 As Double 

    Dim variaveis(1 To 13) As Double 

    Dim Interacoes, loops, p As Long 

    Dim i, t, CONTROLE, j As Integer 

    Dim numeroDeColunas As Integer 

    Dim melhoresResultados(1 To 10) As Double 

    Dim melhoresVariaveis(1 To 10, 1 To 13) As 
Double 

    Dim ResultAtual As Double 

     

   Range("AC9:AD100").Value = "" 

    Interacoes = 30000 

    loops = 500 

    p = 0 

    b = 8 

    Range("N8").Value = p 

    Range("AC9:AD100").Value = "" 

      For t = 1 To loops 

'----------------Inicialmente coloca valores 
aleatorios-------------- 

        ' Inicialize o melhorResultado 

        If t = 1 Then 

         

        For j = 1 To 13 

                variaveis(j) = 
RndRange(LimiteInferior(j), LimiteSuperior(j)) 

            Next j 

            For j = 11 To 23 

                Range("N" & j).Value = variaveis(j - 10) 
' Ajuste o índice da variável para corresponder às 
células 

            Next j 

           For j = 10 To 23 

                    Range("O" & j).Value = Range("N" & 
j).Value 

                Next j 

                 

                   ‘ Y->Z 

                   For j = 10 To 23 

                       Range(”Z” & j).Value = Range(”N” 
& j).Value 

                   Next j 

                   ‘ X->Y 

                   For j = 10 To 23 

                       Range(”Y” & j).Value = Range(”N” 
& j).Value 

                   Next j 

                   ‘ W->X 

                   For j = 10 To 23 
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                       Range(”X” & j).Value = Range(”N” 
& j).Value 

                   Next j 

                   ‘ V->W 

                   For j = 10 To 23 

                       Range(”W” & j).Value = Range(”N” 
& j).Value 

                   Next j 

                   ‘ U->V 

                   For j = 10 To 23 

                       Range(”V” & j).Value = Range(”N” 
& j).Value 

                   Next j 

                   ‘ T->U 

                   For j = 10 To 23 

                       Range(”U” & j).Value = Range(”N” 
& j).Value 

                   Next j 

                   ‘ S->T 

                   For j = 10 To 23 

                       Range(”T” & j).Value = Range(”N” 
& j).Value 

                   Next j 

                   ‘ R->S 

                   For j = 10 To 23 

                       Range(”S” & j).Value = Range(”N” 
& j).Value 

                   Next j 

                   ‘ Q->R 

                   For j = 10 To 23 

                       Range(”R” & j).Value = Range(”N” 
& j).Value 

                   Next j 

                   ‘ N->Q 

                   For j = 10 To 23 

                       Range(”Q” & j).Value = Range(”N” 
& j).Value 

                   Next j 

            End If 

        melhordesvio = Range(”O10”).Value 

 

        Desvio1 = Range(”Q10”).Value 

        Desvio2 = Range(”R10”).Value 

        Desvio3 = Range(”S10”).Value 

        Desvio4 = Range(”T10”).Value 

        Desvio5 = Range(”U10”).Value 

        Desvio6 = Range(”V10”).Value 

        Desvio7 = Range(”W10”).Value 

        Desvio8 = Range(”X10”).Value 

        Desvio9 = Range(”Y10”).Value 

        Desvio10 = Range("Z10").Value 

         

        melhorResultado = melhordesvio 

 

        Result1 = Desvio1 

        Result2 = Desvio2 

        Result3 = Desvio3 

        Result4 = Desvio4 

        Result5 = Desvio5 

        Result6 = Desvio6 

        Result7 = Desvio7 

        Result8 = Desvio8 

        Result9 = Desvio9 

        Result10 = Desvio10 

         

        ' Array para rastrear os 10 melhores 
resultados e suas variáveis 

 

        For i = 1 To Interacoes 

        Do Until Not continuarExecucao 

 

            ' Defina os limites iniciais das variáveis 

            For j = 1 To 13 

                variaveis(j) = 
RndRange(LimiteInferior(j), LimiteSuperior(j)) 

            Next j 

 

            ' Inserir valores aleatórios nas células 
N11 a N21 

            For j = 11 To 21 

                Range("N" & j).Value = variaveis(j - 10) 
' Ajuste o índice da variável para corresponder às 
células 

            Next j 

            p = p + 1 

            Range("N8").Value = p 
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            ' Verificar se os resultados atendem aos 
critérios 

             

            desvioAtual = Range(”N10”).Value 

             

            If desvioAtual < melhordesvio Then 

                b = b + 1 

 

                ' Calcular a multiplicação de N9 e N10 

                ResultAtual = desvioAtual 

 

                If ResultAtual < melhorResultado Then 

                 

‘---------------Separar dados para grafico 

                Range("AC" & b).Value = p 

                Range("AD" & b).Value = desvioAtual 

 

 

                melhorResultado = ResultAtual 

                    ' Copiar os valores de N9 a N21 para 
as células O9 a O21 

                For j = 10 To 23 

                    Range("O" & j).Value = Range("N" & 
j).Value 

                Next j 

                 

                melhordesvio = Range(”O10”).Value 

                End If 

                End If 

        Desvio1 = Range(”Q10”).Value 

        Desvio2 = Range(”R10”).Value 

        Desvio3 = Range(”S10”).Value 

        Desvio4 = Range(”T10”).Value 

        Desvio5 = Range(”U10”).Value 

        Desvio6 = Range(”V10”).Value 

        Desvio7 = Range(”W10”).Value 

        Desvio8 = Range(”X10”).Value 

        Desvio9 = Range(”Y10”).Value 

        Desvio10 = Range("Z10").Value 

        melhorResultado = melhordesvio 

        Result1 = Desvio1 

        Result2 = Desvio2 

        Result3 = Desvio3 

        Result4 = Desvio4 

        Result5 = Desvio5 

        Result6 = Desvio6 

        Result7 = Desvio7 

        Result8 = Desvio8 

        Result9 = Desvio9 

        Result10 = Desvio10 

‘--------------------ERRO 1--------------------------------- 

                If melhordesvio < Desvio1 Then 

                   ‘ Y->Z 

                   For j = 10 To 23 

                       Range(”Z” & j).Value = Range(”Y” 
& j).Value 

                   Next j 

                   ‘ X->Y 

                   For j = 10 To 23 

                       Range(”Y” & j).Value = Range(”X” 
& j).Value 

                   Next j 

                   ‘ W->X 

                   For j = 10 To 23 

                       Range(”X” & j).Value = Range(”W” 
& j).Value 

                   Next j 

                   ‘ V->W 

                   For j = 10 To 23 

                       Range(”W” & j).Value = Range(”V” 
& j).Value 

                   Next j 

                   ‘ U->V 

                   For j = 10 To 23 

                       Range(”V” & j).Value = Range(”U” 
& j).Value 

                   Next j 

                   ‘ T->U 

                   For j = 10 To 23 

                       Range(”U” & j).Value = Range(”T” 
& j).Value 

                   Next j 

                   ‘ S->T 

                   For j = 10 To 23 

                       Range(”T” & j).Value = Range(”S” 
& j).Value 
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                   Next j 

                   ‘ R->S 

                   For j = 10 To 23 

                       Range(”S” & j).Value = Range(”R” 
& j).Value 

                   Next j 

                   ‘ Q->R 

                   For j = 10 To 23 

                       Range("R" & j).Value = Range("Q" 
& j).Value 

                   Next j 

                   ‘ N->Q 

                   For j = 10 To 23 

                       Range("Q" & j).Value = Range("O" 
& j).Value 

                   Next j 

                Else 

'------------------------ERRO 2----------------------------- 

                If Range("N10").Value < Desvio2 Then 

                   ‘ Y->Z 

                   For j = 10 To 23 

                       Range(”Z” & j).Value = Range(”Y” 
& j).Value 

                   Next j 

                   ‘ X->Y 

                   For j = 10 To 23 

                       Range(”Y” & j).Value = Range(”X” 
& j).Value 

                   Next j 

                   ‘ W->X 

                   For j = 10 To 23 

                       Range(”X” & j).Value = Range(”W” 
& j).Value 

                   Next j 

                   ‘ V->W 

                   For j = 10 To 23 

                       Range(”W” & j).Value = Range(”V” 
& j).Value 

                   Next j 

                   ‘ U->V 

                   For j = 10 To 23 

                       Range(”V” & j).Value = Range(”U” 
& j).Value 

                   Next j 

                   ‘ T->U 

                   For j = 10 To 23 

                       Range(”U” & j).Value = Range(”T” 
& j).Value 

                   Next j 

                   ‘ S->T 

                   For j = 10 To 23 

                       Range(”T” & j).Value = Range(”S” 
& j).Value 

                   Next j 

                   ‘ R->S 

                   For j = 10 To 23 

                       Range(”S” & j).Value = Range(”R” 
& j).Value 

                   Next j 

                   ‘ N->R 

                   For j = 10 To 23 

                       Range(”R” & j).Value = Range(”N” 
& j).Value 

                   Next j 

                Else 

‘----------------------ERRO 3------------------------------- 

                If Range(”N10”).Value < Desvio3 Then 

                   ‘ Y->Z 

                   For j = 10 To 23 

                       Range(”Z” & j).Value = Range(”Y” 
& j).Value 

                   Next j 

                   ‘ X->Y 

                   For j = 10 To 23 

                       Range(”Y” & j).Value = Range(”X” 
& j).Value 

                   Next j 

                   ‘ W->X 

                   For j = 10 To 23 

                       Range(”X” & j).Value = Range(”W” 
& j).Value 

                   Next j 

                   ‘ V->W 

                   For j = 10 To 23 

                       Range(”W” & j).Value = Range(”V” 
& j).Value 

                   Next j 

                   ‘ U->V 
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                   For j = 10 To 23 

                       Range(”V” & j).Value = Range(”U” 
& j).Value 

                   Next j 

                   ‘ T->U 

                   For j = 10 To 23 

                       Range(”U” & j).Value = Range(”T” 
& j).Value 

                   Next j 

                   ‘ S->T 

                   For j = 10 To 23 

                       Range(”T” & j).Value = Range(”S” 
& j).Value 

                   Next j 

                   ‘ N->S 

                   For j = 10 To 23 

                       Range(”S” & j).Value = Range(”N” 
& j).Value 

                   Next j 

                Else 

‘------------------------ERRO 4----------------------------- 

                If Range(”N10”).Value < Desvio4 Then 

                   ‘ Y->Z 

                   For j = 10 To 23 

                       Range(”Z” & j).Value = Range(”Y” 
& j).Value 

                   Next j 

                   ‘ X->Y 

                   For j = 10 To 23 

                       Range(”Y” & j).Value = Range(”X” 
& j).Value 

                   Next j 

                   ‘ W->X 

                   For j = 10 To 23 

                       Range(”X” & j).Value = Range(”W” 
& j).Value 

                   Next j 

                   ‘ V->W 

                   For j = 10 To 23 

                       Range(”W” & j).Value = Range(”V” 
& j).Value 

                   Next j 

                   ‘ U->V 

                   For j = 10 To 23 

                       Range(”V” & j).Value = Range(”U” 
& j).Value 

                   Next j 

                   ‘ T->U 

                   For j = 10 To 23 

                       Range(”U” & j).Value = Range(”T” 
& j).Value 

                   Next j 

                   ‘ N->T 

                   For j = 10 To 23 

                       Range(”T” & j).Value = Range(”N” 
& j).Value 

                   Next j 

                Else 

‘------------------------ERRO 5----------------------------- 

                If Range(”N10”).Value < Desvio5 Then 

                   ' Y->Z 

                   For j = 10 To 21 

                       Range("Z" & j).Value = Range("Y" 
& j).Value 

                   Next j 

                   ' X->Y 

                   For j = 10 To 23 

                       Range("Y" & j).Value = Range("X" 
& j).Value 

                   Next j 

                   ' W->X 

                   For j = 10 To 23 

                       Range("X" & j).Value = Range("W" 
& j).Value 

                   Next j 

                   ' V->W 

                   For j = 10 To 23 

                       Range(”W" & j).Value = Range("V" 
& j).Value 

                   Next j 

                   ' U->V 

                   For j = 10 To 23 

                       Range("V" & j).Value = Range("U" 
& j).Value 

                   Next j 

                   ' N->U 

                   For j = 10 To 23 
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                       Range("U" & j).Value = Range("N" 
& j).Value 

                   Next j 

                Else 

'-------------------------ERRO 6---------------------------- 

                If Range("N10").Value < Desvio6 Then 

                   ' Y->Z 

                   For j = 10 To 23 

                       Range("Z" & j).Value = Range("Y" 
& j).Value 

                   Next j 

                   ' X->Y 

                   For j = 10 To 23 

                       Range("Y" & j).Value = Range("X" 
& j).Value 

                   Next j 

                   ' W->X 

                   For j = 10 To 23 

                       Range("X" & j).Value = Range("W" 
& j).Value 

                   Next j 

                   ' V->W 

                   For j = 10 To 23 

                       Range("W" & j).Value = Range("V" 
& j).Value 

                   Next j 

                   ' N->V 

                   For j = 10 To 23 

                       Range("V" & j).Value = Range("N" 
& j).Value 

                   Next j 

                Else 

'---------------------ERRO 7-------------------------------- 

                If Range("N10").Value < Desvio7 Then 

                   ' Y->Z 

                   For j = 10 To 23 

                       Range("Z" & j).Value = Range("Y" 
& j).Value 

                   Next j 

                   ' X->Y 

                   For j = 10 To 23 

                       Range("Y" & j).Value = Range("X" 
& j).Value 

                   Next j 

                   ' W->X 

                   For j = 10 To 23 

                       Range("X" & j).Value = Range("W" 
& j).Value 

                   Next j 

                   ' N->W 

                   For j = 10 To 23 

                       Range("W" & j).Value = Range("N" 
& j).Value 

                   Next j 

                Else 

'-----------------------ERRO 8------------------------------ 

                If Range("N10").Value < Desvio8 Then 

                   ' Y->Z 

                   For j = 10 To 23 

                       Range("Z" & j).Value = Range("Y" 
& j).Value 

                   Next j 

                   ' X->Y 

                   For j = 10 To 23 

                       Range("Y" & j).Value = Range("X" 
& j).Value 

                   Next j 

                   ' N->X 

                   For j = 10 To 23 

                       Range("X" & j).Value = Range("N" 
& j).Value 

                   Next j 

                Else 

'------------------------ERRO 9----------------------------- 

                If Range("N10").Value < Desvio9 Then 

                   ' Y->Z 

                   For j = 10 To 23 

                       Range("Z" & j).Value = Range("Y" 
& j).Value 

                   Next j 

                   ' N->Y 

                   For j = 10 To 23 

                       Range("Y" & j).Value = Range("N" 
& j).Value 

                   Next j 

                Else 

'-----------------------ERRO 10----------------------- 
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                If Range("N10").Value < Desvio10 
Then 

                   ' Y->Z 

 

                   For j = 10 To 23 

                       Range("Z" & j).Value = Range("N" 
& j).Value 

                   Next j 

                End If 

                End If 

                End If 

                End If 

                End If 

                End If 

                End If 

                End If 

                End If 

                End If 

    DoEvents 

    Loop 

    Next i 

  Next t 

    Exit Sub ' Sair em caso de sucesso 

 

ErrorHandler: 

    MsgBox "Ocorreu um erro: " & Err.Description    

End Sub 

 

Function LimiteInferior(ByVal index As Integer) 
As Double 

    ' Defina os limites inferiores para as variáveis 

    Select Case index 

        Case 1 

            LimiteInferior = Range("P11").Value 

        Case 2 

            LimiteInferior = Range("P12").Value 

        Case 3 

            LimiteInferior = Range("P13").Value 

        Case 4 

            LimiteInferior = Range("P14").Value 

        Case 5 

            LimiteInferior = Range("P15").Value 

        Case 6 

            LimiteInferior = Range("P16").Value 

        Case 7 

            LimiteInferior = Range("P17").Value 

        Case 8 

            LimiteInferior = Range("P18").Value 

        Case 9 

            LimiteInferior = Range("P19").Value 

        Case 10 

            LimiteInferior = Range("P20").Value 

        Case 11 

            LimiteInferior = Range("P21").Value 

        Case 12 

            LimiteInferior = Range("P22").Value 

        Case 13 

            LimiteInferior = Range("P23").Value 

    End Select 

End Function 

 

Function LimiteSuperior(ByVal index As Integer) 
As Double 

    ' Defina os limites superiores para as variáveis 

    Select Case index 

        Case 1 

            LimiteSuperior = Range("AA11").Value 

        Case 2 

            LimiteSuperior = Range("AA12").Value 

        Case 3 

            LimiteSuperior = Range("AA13").Value 

        Case 4 

            LimiteSuperior = Range("AA14").Value 

        Case 5 

            LimiteSuperior = Range("AA15").Value 

        Case 6 

            LimiteSuperior = Range("AA16").Value 

        Case 7 

            LimiteSuperior = Range("AA17").Value 

        Case 8 

            LimiteSuperior = Range("AA18").Value 

        Case 9 

            LimiteSuperior = Range("AA19").Value 
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        Case 10 

            LimiteSuperior = Range("AA20").Value 

        Case 11 

            LimiteSuperior = Range("AA21").Value 

        Case 12 

            LimiteSuperior = Range("AA22").Value 

        Case 13 

            LimiteSuperior = Range("AA23").Value 

    End Select 

End Function 

 

Function RndRange(ByVal MinValue As Double, 
ByVal MaxValue As Double) As Double 

    ' Gera um número aleatório entre MinValue e 
MaxValue 

    RndRange = (MaxValue - MinValue) * Rnd + 
MinValue 

End Function 

 

Sub PararMacro() 

    continuarExecucao = False 

      Dim j As Integer 

      For j = 11 To 23 

          Range("N" & j).Value = Range("o" & 
j).Value 

      Next j 

End Sub 

 

Sub EncontrarMelhoresValoresPause_cont() 

continuarExecucao = True 

    

    On Error GoTo ErrorHandler ' Lidar com erros 

     continuarExecucao = True 

    Dim melhorResultado As Double 

    Dim erroMaximo As Double 

    Dim desvioO10 As Double 

    Dim variaveis(1 To 13) As Double 

    Dim Interacoes, loops, pcont As Long 

    Dim i, t, CONTROLE As Integer 

    Dim numeroDeColunas As Integer 

    Dim melhoresResultados(1 To 10) As Double 

    Dim melhoresVariaveis(1 To 10, 1 To 13) As 
Double 

    Dim ResultAtual As Double 

   Interacoes = 30000 

    loops = 500 

    For t = 1 To loops 

       melhordesvio = Range("O10").Value 

        Desvio1 = Range("Q10").Value 

        Desvio2 = Range("R10").Value 

        Desvio3 = Range("S10").Value 

        Desvio4 = Range("T10").Value 

        Desvio5 = Range("U10").Value 

        Desvio6 = Range("V10").Value 

        Desvio7 = Range("W10").Value 

        Desvio8 = Range("X10").Value 

        Desvio9 = Range("Y10").Value 

        Desvio10 = Range("Z10").Value 

        melhorResultado = melhordesvio 

        Result1 = Desvio1 

        Result2 = Desvio2 

        Result3 = Desvio3 

        Result4 = Desvio4 

        Result5 = Desvio5 

        Result6 = Desvio6 

        Result7 = Desvio7 

        Result8 = Desvio8 

        Result9 = Desvio9 

        Result10 = Desvio10 

         

        ' Array para rastrear os 10 melhores 
resultados e suas variáveis 

        For i = 1 To Interacoes 

        Do Until Not continuarExecucao 

 

            ' Defina os limites iniciais das variáveis 

            For j = 1 To 13 

                variaveis(j) = 
RndRange(LimiteInferior(j), LimiteSuperior(j)) 

            Next j 

 

            ' Inserir valores aleatórios nas células 
N11 a N21 

            For j = 11 To 23 
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                Range("N" & j).Value = variaveis(j - 10) 
' Ajuste o índice da variável para corresponder às 
células 

            Next j 

            pcont = Range("N8").Value 

            pcont = pcont + 1 

            Range("N8").Value = pcont 

            ' Verificar se os resultados atendem aos 
critérios 

 

            desvioAtual = Range("N10").Value 

             

            If desvioAtual < melhordesvio Then 

                b = b + 1 

                 

                ' Calcular a multiplicação de N9 e N10 

                 

                ResultAtual = desvioAtual 

 

                If ResultAtual < melhorResultado Then 

                 

'---------------Separar dados para grafico 

                Range("AC" & b).Value = pcont 

                Range("AD" & b).Value = desvioAtual 

 

                melhorResultado = ResultAtual 

                    ' Copiar os valores de N9 a N21 para 
as células O9 a O21 

                For j = 10 To 23 

                    Range("O" & j).Value = Range("N" & 
j).Value 

                Next j 

                 

                melhordesvio = Range("O10").Value 

                End If 

                End If 

                 

        Desvio1 = Range("Q10").Value 

        Desvio2 = Range("R10").Value 

        Desvio3 = Range("S10").Value 

        Desvio4 = Range("T10").Value 

        Desvio5 = Range("U10").Value 

        Desvio6 = Range("V10").Value 

        Desvio7 = Range("W10").Value 

        Desvio8 = Range("X10").Value 

        Desvio9 = Range("Y10").Value 

        Desvio10 = Range("Z10").Value 

         melhorResultado = melhordesvio 

 

        Result1 = Desvio1 

        Result2 = Desvio2 

        Result3 = Desvio3 

        Result4 = Desvio4 

        Result5 = Desvio5 

        Result6 = Desvio6 

        Result7 = Desvio7 

        Result8 = Desvio8 

        Result9 = Desvio9 

        Result10 = Desvio10 

'----------------------ERRO 1------------------------------- 

                If melhordesvio < Desvio1 Then 

                   ' Y->Z 

                   For j = 10 To 23 

                       Range("Z" & j).Value = Range("Y" 
& j).Value 

                   Next j 

                   ' X->Y 

                   For j = 10 To 23 

                       Range("Y" & j).Value = Range("X" 
& j).Value 

                   Next j 

                   ' W->X 

                   For j = 10 To 23 

                       Range("X" & j).Value = Range("W" 
& j).Value 

                   Next j 

                   ' V->W 

                   For j = 10 To 23 

                       Range("W" & j).Value = Range("V" 
& j).Value 

                   Next j 

                   ' U->V 

                   For j = 10 To 23 

                       Range("V" & j).Value = Range("U" 
& j).Value 

                   Next j 
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                   ' T->U 

                   For j = 10 To 23 

                       Range("U" & j).Value = Range("T" 
& j).Value 

                   Next j 

                   ' S->T 

                   For j = 10 To 23 

                       Range("T" & j).Value = Range("S" 
& j).Value 

                   Next j 

                   ' R->S 

                   For j = 10 To 23 

                       Range("S" & j).Value = Range("R" 
& j).Value 

                   Next j 

                   ' Q->R 

                   For j = 10 To 23 

                       Range("R" & j).Value = Range("Q" 
& j).Value 

                   Next j 

                   ' N->Q 

                   For j = 10 To 23 

                       Range("Q" & j).Value = Range("O" 
& j).Value 

                   Next j 

                Else 

'-----------------------ERRO 2------------------------------ 

                If Range("N10").Value < Desvio2 Then 

                   ' Y->Z 

                   For j = 10 To 23 

                       Range("Z" & j).Value = Range("Y" 
& j).Value 

                   Next j 

                   ' X->Y 

                   For j = 10 To 23 

                       Range("Y" & j).Value = Range("X" 
& j).Value 

                   Next j 

                   ' W->X 

                   For j = 10 To 23 

                       Range("X" & j).Value = Range("W" 
& j).Value 

                   Next j 

                   ' V->W 

                   For j = 10 To 23 

                       Range("W" & j).Value = Range("V" 
& j).Value 

                   Next j 

                   ' U->V 

                   For j = 10 To 23 

                       Range("V" & j).Value = Range("U" 
& j).Value 

                   Next j 

                   ' T->U 

                   For j = 10 To 23 

                       Range("U" & j).Value = Range("T" 
& j).Value 

                   Next j 

                   ' S->T 

                   For j = 10 To 23 

                       Range("T" & j).Value = Range("S" 
& j).Value 

                   Next j 

                   ' R->S 

                   For j = 10 To 23 

                       Range("S" & j).Value = Range("R" 
& j).Value 

                   Next j 

                   ' N->R 

                   For j = 10 To 23 

                       Range("R" & j).Value = Range("N" 
& j).Value 

                   Next j 

                Else 

'--------------------------ERRO 3--------------------------- 

                If Range("N10").Value < Desvio3 Then 

                   ' Y->Z 

                   For j = 10 To 23 

                       Range("Z" & j).Value = Range("Y" 
& j).Value 

                   Next j 

                   ' X->Y 

                   For j = 10 To 23 

                       Range("Y" & j).Value = Range("X" 
& j).Value 

                   Next j 

                   ' W->X 

                   For j = 10 To 23 
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                       Range("X" & j).Value = Range("W" 
& j).Value 

                   Next j 

                   ' V->W 

                   For j = 10 To 23 

                       Range("W" & j).Value = Range("V" 
& j).Value 

                   Next j 

                   ' U->V 

                   For j = 10 To 23 

                       Range("V" & j).Value = Range("U" 
& j).Value 

                   Next j 

                   ' T->U 

                   For j = 10 To 23 

                       Range("U" & j).Value = Range("T" 
& j).Value 

                   Next j 

                   ' S->T 

                   For j = 10 To 23 

                       Range("T" & j).Value = Range("S" 
& j).Value 

                   Next j 

                   ' N->S 

                   For j = 10 To 23 

                       Range("S" & j).Value = Range("N" 
& j).Value 

                   Next j 

                Else 

'--------------------------ERRO 4--------------------------- 

                If Range("N10").Value < Desvio4 Then 

                   ' Y->Z 

                   For j = 10 To 23 

                       Range("Z" & j).Value = Range("Y" 
& j).Value 

                   Next j 

                   ' X->Y 

                   For j = 10 To 23 

                       Range("Y" & j).Value = Range("X" 
& j).Value 

                   Next j 

                   ' W->X 

                   For j = 10 To 23 

                       Range("X" & j).Value = Range("W" 
& j).Value 

                   Next j 

                   ' V->W 

                   For j = 10 To 23 

                       Range("W" & j).Value = Range("V" 
& j).Value 

                   Next j 

                   ' U->V 

                   For j = 10 To 23 

                       Range("V" & j).Value = Range("U" 
& j).Value 

                   Next j 

                   ' T->U 

                   For j = 10 To 23 

                       Range("U" & j).Value = Range("T" 
& j).Value 

                   Next j 

                   ' N->T 

                   For j = 10 To 23 

                       Range("T" & j).Value = Range("N" 
& j).Value 

                   Next j 

                Else 

'--------------------------ERRO 5--------------------------- 

                If Range("N10").Value < Desvio5 Then 

                   ' Y->Z 

                   For j = 10 To 21 

                       Range("Z" & j).Value = Range("Y" 
& j).Value 

                   Next j 

                   ' X->Y 

                   For j = 10 To 23 

                       Range("Y" & j).Value = Range("X" 
& j).Value 

                   Next j 

                   ' W->X 

                   For j = 10 To 23 

                       Range("X" & j).Value = Range("W" 
& j).Value 

                   Next j 

                   ' V->W 

                   For j = 10 To 23 
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                       Range("W" & j).Value = Range("V" 
& j).Value 

                   Next j 

                   ' U->V 

                   For j = 10 To 23 

                       Range("V" & j).Value = Range("U" 
& j).Value 

                   Next j 

                   ' N->U 

                   For j = 10 To 23 

                       Range("U" & j).Value = Range("N" 
& j).Value 

                   Next j 

                Else 

'--------------------------ERRO 6--------------------------- 

                If Range("N10").Value < Desvio6 Then 

                   ' Y->Z 

                   For j = 10 To 23 

                       Range("Z" & j).Value = Range("Y" 
& j).Value 

                   Next j 

                   ' X->Y 

                   For j = 10 To 23 

                       Range("Y" & j).Value = Range("X" 
& j).Value 

                   Next j 

                   ' W->X 

                   For j = 10 To 23 

                       Range("X" & j).Value = Range("W" 
& j).Value 

                   Next j 

                   ' V->W 

                   For j = 10 To 23 

                       Range("W" & j).Value = Range("V" 
& j).Value 

                   Next j 

                   ' N->V 

                   For j = 10 To 23 

                       Range("V" & j).Value = Range("N" 
& j).Value 

                   Next j 

                Else 

'---------------------------ERRO 7-------------------------- 

                If Range("N10").Value < Desvio7 Then 

                   ' Y->Z 

                   For j = 10 To 23 

                       Range("Z" & j).Value = Range("Y" 
& j).Value 

                   Next j 

                   ' X->Y 

                   For j = 10 To 23 

                       Range("Y" & j).Value = Range("X" 
& j).Value 

                   Next j 

                   ' W->X 

                   For j = 10 To 23 

                       Range("X" & j).Value = Range("W" 
& j).Value 

                   Next j 

                   ' N->W 

                   For j = 10 To 23 

                       Range("W" & j).Value = Range("N" 
& j).Value 

                   Next j 

                Else 

'---------------------------------------ERRO 8--------------
---------------------------------- 

                If Range("N10").Value < Desvio8 Then 

                   ' Y->Z 

                   For j = 10 To 23 

                       Range("Z" & j).Value = Range("Y" 
& j).Value 

                   Next j 

                   ' X->Y 

                   For j = 10 To 23 

                       Range("Y" & j).Value = Range("X" 
& j).Value 

                   Next j 

                   ' N->X 

                   For j = 10 To 23 

                       Range("X" & j).Value = Range("N" 
& j).Value 

                   Next j 

                Else 

'--------------------------ERRO 9------------------------- 

              If Range("N10").Value < Desvio9 Then 

                   ' Y->Z 

                   For j = 10 To 23 
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                       Range("Z" & j).Value = Range("Y" 
& j).Value 

                   Next j 

                   ' N->Y 

                   For j = 10 To 23 

                       Range("Y" & j).Value = Range("N" 
& j).Value 

                   Next j 

                Else 

'-----------------------ERRO 10---------------------------- 

                If Range("N10").Value < Desvio10 
Then 

                   ' Y->Z 

 

                   For j = 10 To 23 

                       Range("Z" & j).Value = Range("N" 
& j).Value 

                   Next j 

                End If 

                End If 

                End If 

                End If 

                End If 

                End If 

                End If 

                End If 

                End If 

                End If 

    DoEvents 

    Loop 

     

    Next i 

  Next t 

    Exit Sub ' Sair em caso de sucesso 

 

ErrorHandler: 

    MsgBox "Ocorreu um erro: " & Err.Description 

     

End Sub 

Function HV(val) 

   'Heaviside user function 

    If val > 0 Then HV = 1 Else HV = 0 

End Function 

Function HVR(val) 

   'Reverse Heaviside user function 

    If val >= 0 Then HVR = 0 Else HVR = 1 

End Function 
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