INPE MINISTERIO DA CIENCIR, TECNOLOGIA € INOVACAO
INSTITUTO NACIONAL D€ PESQUISAS €SPACIAIS

sid.inpe.br/mtc-m21d/2023/03.30.19.42-TDI

BRAZIL DATA CUBE WORKFLOW ENGINE: A TOOL
FOR BIG EARTH OBSERVATION DATA PROCESSING

Vitor Conrado Faria Gomes

Doctorate Thesis of the Graduate
Course in Applied Computing,
guided by Drs. Karine Reis Ferreira
Gomes, and Gilberto Ribeiro de
Queiroz, approved in March 29,
2023.

URL of the original document:
<http://urlib.net/SIMKD3MGP3W34T /48QKERL>

INPE
Sao José dos Campos

2023

http://urlib.net/8JMKD3MGP3W34T/48QKERL

PUBLISHED BY:

Instituto Nacional de Pesquisas Espaciais - INPE
Coordenagao de Ensino, Pesquisa e Extensao (COEPE)
Divisao de Biblioteca (DIBIB)

CEP 12.227-010

Sao José dos Campos - SP - Brasil

Tel.:(012) 3208-6923/7348

E-mail: pubtc@inpe.br

BOARD OF PUBLISHING AND PRESERVATION OF INPE

INTELLECTUAL PRODUCTION - CEPPII (PORTARIA N°
176/2018 /SEI-INPE):
Chairperson:

Dra. Marley Cavalcante de Lima Moscati - Coordenacao-Geral de Ciéncias da Terra
(CGCT)

Members:

Dra. Ieda Del Arco Sanches - Conselho de Pés-Graduagao (CPG)

Dr. Evandro Marconi Rocco - Coordenagao-Geral de Engenharia, Tecnologia e
Ciéncia Espaciais (CGCE)

Dr. Rafael Duarte Coelho dos Santos - Coordenacao-Geral de Infraestrutura e
Pesquisas Aplicadas (CGIP)

Simone Angélica Del Ducca Barbedo - Divisao de Biblioteca (DIBIB)

DIGITAL LIBRARY:

Dr. Gerald Jean Francis Banon

Clayton Martins Pereira - Divisao de Biblioteca (DIBIB)

DOCUMENT REVIEW:

Simone Angélica Del Ducca Barbedo - Divisao de Biblioteca (DIBIB)

André Luis Dias Fernandes - Divisao de Biblioteca (DIBIB)

ELECTRONIC EDITING:

Ivone Martins - Divisao de Biblioteca (DIBIB)

André Luis Dias Fernandes - Divisao de Biblioteca (DIBIB)

INPE MINISTERIO DA CIENCIR, TECNOLOGIA € INOVACAO
INSTITUTO NACIONAL D€ PESQUISAS €SPACIAIS

sid.inpe.br/mtc-m21d/2023/03.30.19.42-TDI

BRAZIL DATA CUBE WORKFLOW ENGINE: A TOOL
FOR BIG EARTH OBSERVATION DATA PROCESSING

Vitor Conrado Faria Gomes

Doctorate Thesis of the Graduate
Course in Applied Computing,
guided by Drs. Karine Reis Ferreira
Gomes, and Gilberto Ribeiro de
Queiroz, approved in March 29,
2023.

URL of the original document:
<http://urlib.net/SIMKD3MGP3W34T /48QKERL>

INPE
Sao José dos Campos

2023

http://urlib.net/8JMKD3MGP3W34T/48QKERL

Cataloging in Publication Data

Gomes, Vitor Conrado Faria.

G585b Brazil Data Cube Workflow Engine: a tool for big earth
observation data processing / Vitor Conrado Faria Gomes. — Sao
José dos Campos : INPE, 2023.

xX + 97 p. ; (sid.inpe.br/mtc-m21d/2023/03.30.19.42-TDI)

Thesis (Doctorate in Applied Computing) — Instituto Nacional
de Pesquisas Espaciais, Sao José dos Campos, 2023.

Guiding : Drs. Karine Reis Ferreira Gomes, and Gilberto
Ribeiro de Queiroz.

1. Big data. 2. Directed acyclic graphs. 3. Open data cube.
4. OpenEQ. 5. Dagster. I.Title.

CDU 004.6:528.8

Esta obra foi licenciada sob uma Licenca Creative Commons Atribuicao-NaoComercial 3.0 Nao
Adaptada.

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported
License.

i

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/deed.pt_BR
http://creativecommons.org/licenses/by-nc/3.0/deed.pt_BR
http://creativecommons.org/licenses/by-nc/3.0/

SEI/MCTI - 10933930 - Ata de Reunido https://sei.mcti.gov.br/sei/controlador.php?acao=documento_imprimi...

MINISTERIO DA
INPE CIENCIA, TECNOLOGIA
E INOVAGCAO

INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS

DEFESA FINAL DE TESE VITOR CONRADO FARIA GOMES
BANCA N2 042/2023, REGISTRO 113654/2017

No dia 29 de margo de 2023, as 09h, por teleconferéncia, o(a) aluno(a) mencionado(a) acima defendeu
seu trabalho final (apresentacédo oral seguida de arguicdo) perante uma Banca Examinadora, cujos
membros estéo listados abaixo. O(A) aluno(a) foi APROVADO(A) pela Banca Examinadora, por
unanimidade, em cumprimento ao requisito exigido para obtencéo do Titulo de Doutor em Computacédo
Aplicada, com a exigéncia de que o trabalho final a ser publicado devera incorporar as correcoes
sugeridas pela Banca Examinadora, com reviséo pelo(s) orientador(es).

Titulo: “Brazil Data Cube Workflow Engine: a tool for big Earth Observation data processing”.

Membros da Banca:

Dr. Thales Sehn Korting — Presidente — INPE

Dra. Karine Reis Ferreira Gomes — Orientadora — INPE

Dr. Gilberto Ribeiro de Queiroz — Orientador — INPE

Dr. Claudio Clemente Faria Barbosa - Membro Interno - INPE
Dr. Claudio Elizio Calazans Campelo - Membro Externo - UFCG
Dr. Vinicius Vielmo Cogo - Membro Externo - ULisboa

p eil Documento assinado eletronicamente por Karine Reis Ferreira Gomes, Tecnologista, em
ginma @ 31/03/2023, as 14:42 (horario oficial de Brasilia), com fundamento no § 32 do art. 42 do Decreto

a
‘ eletrdnica n2 10.543, de 13 de novembro de 2020.

]

P eil Documento assinado eletronicamente por Thales Sehn Korting, Pesquisador, em 31/03/2023, as
gi“m; ﬁ 15:34 (horério oficial de Brasilia), com fundamento no § 32 do art. 42 do Decreto n? 10.543, de 13
eletrénica de novembro de 2020.

]

- il Documento assinado eletronicamente por Gilberto Ribeiro de Queiroz, Tecnologista, em
2 - @ 31/03/2023, as 15:38 (horario oficial de Brasilia), com fundamento no § 32 do art. 42 do Decreto

assinatura

eletrdnica n2 10.543, de 13 de novembro de 2020.

(D

]

P eil Documento assinado eletronicamente por Vinicius Vielmo Cogo (E), Usudrio Externo, em
gi“m; ﬁ 03/04/2023, as 09:59 (horario oficial de Brasilia), com fundamento no § 32 do art. 42 do Decreto
eletrénica n2 10.543, de 13 de novembro de 2020.

1of2 03/05/2023, 16:42

SEI/MCTI - 10933930 - Ata de Reunido

-
il
-
seil o
assinatura
‘ eletrbnica

https://sei.mcti.gov.br/sei/controlador.php?acao=documento_imprimi...

Documento assinado eletronicamente por CLAUDIO ELIZIO CALAZANS CAMPELO (E), Usuario
Externo, em 05/04/2023, as 23:59 (horario oficial de Brasilia), com fundamento no § 32 do art. 42
do Decreto n? 10.543, de 13 de novembro de 2020.

- -

seil 4

assinatura

eletrénica

Documento assinado eletronicamente por Claudio Clemente Faria Barbosa, Tecnologista, em
13/04/2023, as 09:06 (horario oficial de Brasilia), com fundamento no § 32 do art. 42 do Decreto
n2 10.543, de 13 de novembro de 2020.

Referéncia: Processo n° 01340.002139/2023-02

2 of 2

SEI n° 10933930

03/05/2023, 16:42

“The best race car drivers understand how their cars work. The best
architects know how carpenters, bricklayers, and electricians do their
jobs. And the best programmers know how the hardware they are
programming does computation”.

MARK L. CHANG

em “Reconfigurable Computing”, 2008

ACKNOWLEDGEMENTS

First, I would like to thank my family, especially my parents, Miriam Helena, and

Mario Sergio and my wife, Luciane.

Special thanks to my advisors, Dr. Karine Ferreira and Dr. Gilberto Queiroz, who

guided me, motivated me, and knew how to say the right words in difficult moments.

I would also like to thank the people who dedicate part of their time to creating
software or free intellectual works, which directly or indirectly supported the devel-

opment of this work.

This study was financed in part by the Coordenagao de Aperfeicoamento de Pessoal
de Nivel Superior - Brasil (CAPES) - Finance Code 001.

vii

ABSTRACT

Earth Observation (EO) satellites have produced large amounts of geospatial data
that are freely available to society and researchers. Handling these data often ex-
ceeds the capabilities of the hardware and software traditionally used for storing
and processing EO data. This scenario presents challenges for traditional Spatial
Data Infrastructure (SDI) to properly store, process, disseminate, and analyze big
data sets. To meet these demands, new technologies based on cloud computing and
distributed systems, such as matrix database systems, MapReduce systems, and web
services, have been proposed and developed. These technologies are now being inte-
grated into leading-edge platforms to support a new generation of SDI for big EO
data. These platforms have different characteristics in terms of governance, technolo-
gies used, data access, infrastructure abstractions, data processing, and flexibility
to extend their functionality. In general, we observed that the greater the degree of
abstraction given to the scientist, the greater the difficulty in providing flexibility
in data-processing approaches. This thesis contributes to the area of spatial data
infrastructure through the evaluation and analysis of available EO data process-
ing and analysis platforms as well as a server-side EO data processing architecture
that provides an abstraction of access and processing of EO data for users and
the possibility of including algorithms and access and processing techniques by SDI
maintainers. The main idea was to build a framework based on workflow orches-
tration tools integrated with a high-level API for user interaction. This tool allows
the configuration of processes and the extension of previously defined data models.
Furthermore, the interface between the processing services and the user is executed
through the OpenEO API, which establishes a standard for accessing, manipulating
and processing EO data. The architecture proposed in this thesis was implemented
and applied in two case studies.

Keywords: Big Data. Directed Acyclic graphs. Open Data Cube. OpenEQO. Dagster.

ix

BRAZIL DATA CUBE WORKFLOW ENGINE: UMA
FERRAMENTA PARA PROCESSAMENTO DE GRANDES
VOLUMES DE DADOS DE OBSERVACAO DA TERRA

RESUMO

Satélites de observagao da Terra (Earth Observation - EO) tém produzido grandes
quantidades de dados geoespaciais que estao disponiveis gratuitamente para a so-
ciedade e pesquisadores. Frequentemente, a manipulacao desses dados excedem as
capacidades de hardware e software tradicionalmente usados para o armazenamento
e processamento de dados de EO. Este cendrio traz desafios para as infraestrutu-
ras tradicionais de dados espaciais (SDI) para armazenar, processar, disseminar e
analisar adequadamente esses conjuntos de big data. Para atender a essas deman-
das, novas tecnologias foram propostas e desenvolvidas, baseadas em computagao
em nuvem e sistemas distribuidos, como sistemas de banco de dados matriciais,
sistemas MapReduce e servigos web, para acessar e processar esses volumes de da-
dos. Atualmente, essas tecnologias vém sendo integradas em plataformas de ponta
para suportar uma nova geracao de SDI para grandes volumes de dados de EO.
Essas plataformas apresentam diferentes caracteristicas em relagdo a governanca,
tecnologias utilizadas, acesso aos dados, abstragoes de infraestrutura, dados e pro-
cessamento e quanto a flexibilidade de extensao de suas funcionalidades. De maneira
geral, observamos que quanto maior o grau de abstracao entregue ao cientista, maior
a dificuldade em fornecer flexibilidade nas abordagens de processamento de dados.
Essa tese contribui para a area de infraestrutura de dados espaciais por meio da
avaliagdo e andlise de plataformas de processamento e andlise de dados de EO dis-
poniveis e pela proposicao de uma arquitetura de processamento de dados de EO
no lado do servidor que fornece, aos usuarios, abstracao de acesso e processamento
de dados. Essa arquitetura é estruturada na forma de um framework baseado em
ferramentas de orquestracao de workflows, integrado com uma API de alto nivel
para a interagdo com os usuarios. Essa ferramenta permite a configuracao de pro-
cessamentos e a extensao dos modelos de dados previamente definidos. Além disso, a
interface entre os servigos de processamento e o usuario é feita por meio da OpenEO
API, a qual estabelece um padrao para o acesso, manipulaciao e processamento de
dados de EO. A arquitetura proposta nesta tese foi implementa e aplicada em dois
estudos de caso.

Palavras-chave: Grafos aciclicos dirigidos. Open Data Cube. OpenEQO. Grandes vo-
lumes de dados. Dagster.

pal

2.1
2.2
2.3
24
2.5

2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13

3.1
3.2
3.3
3.4
3.5

3.6

3.7

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

LIST OF FIGURES

Page
A simplified Google Earth Engine system architecture diagram. 16
Sentinel Hub services and data abstraction diagram. 19
Architecture diagram of the Open Data Cube platform. 21
Architecture diagram of the SEPAL platform. 24
System architecture for interactive visualization and processing of EO
data on JEODPP platform. 26
Architecture of pipsCloud platform. 28
Architecture of the OpenEO project. 30
Data abstraction vs Processing abstraction. 38
Physical infrastructure abstraction vs Processing abstraction. 38
Infrastructure replicability vs Reproducibility of science. 39
Processing scalability vs Storage scalability. 39
Data access interoperability vs Extensibility. 39
Open Governance vs Extensibility. 39
Brazil Data Cube Project: data and software products. 48
Overview of data flow from BDC data to the BDC-ODC instance. 49
Computational infrastructure BDC-ODC. 53
Consumption of data products through WMS via datacube-ows. 54
Explorer presenting data from the CBERS-4 collection indexed in BDC-
ODC. . . e 55
Temporal NDVI Mean from Landsat-8/OLI collection in 01/2018 to
07/2020. 51§)
Computational infrastructure used to clustering Sentinel-2/MSI pixels in
Roraima state, Brazil. o7
Process Graph example. oL 63
BDC-WE diagram.o 64
BDC-WE data abstraction model. 67
Process graph example with resources configuration.. 73
BDC-WE study case instance diagram. 74
Mapaquali products generation dataflow. 76
Process Graph Collect Scenes diagram. 80
OpenEO Web Editor for the BDC-WE Mapaquali instance. 81
Process Graph diagram for image classification with SITS. 83

xiil

4.10 Western region of the cerrado biome classified using the SITS package
running on the BDC-WE.

5.1 Updated diagram of software and data products of Brazil Data Cube
Project (FERREIRA et al., 2020) integrated with the BDC-WE tool. . .

Xiv

88

LIST OF TABLES
Page

2.1 Capacities of the platforms for big EO data management and analysis. . 35

4.1 Resources available in the BDC-WE. 70
4.2 Processes available in the BDC-WE. 72

XV

LIST OF ABBREVIATIONS

AGDC — Australian Geoscience Data Cube

API — Application Programming Interface
ARD — Analysis Ready Data

AWS — Amazon Web Services

BDC — Brazil Data Cube

BDC-WE - Brazil Data Cube Workflow Engine
CEOS — Committee on Earth Observation Satellite
CRS — Coordinate Reference System

CSIRO — Commonwealth Scientific and Industrial Research Organization
CSW — Catalog Service for Web

DBMS — Database Management Systems

EO — Earth Observation

EODC — Earth Observation Data Cube

GA — Geoscience Australia

GDAL — Geospatial Data Abstraction Library
GEE — Google Earth Engine

GFS — Google File System

GIS — Geographic Information System

HDEFS — Hadoop Distributed File System

IDE — Integrated Development Environment
JEODPP - JRC EO Data and Processing Platform
JRC — Joint Research Centre

ODC — Open Data Cube

0GC — Open Geospatial Consortium

RDBMS - Relational DBMS

REST — Representational State Transfer

SDI — Spatial Data Infraestructure

SEPAL — System for EO, data access, processing & analysis for land monitoring
SH — Sentinel Hub

SITS — Satellite Image Time Series Analysis for Earth Observation Data Cubes
STAC — SpatioTemporal Asset Catalogs

TMS — Tile Map Service

UDF — User Defined Function

USGS — United States Geological Survey
WCPS — Web Coverage Processing Service

WCS — Web Coverge Service

WEFS — Web Feature Service

WLTS — Web Land Trajectory Service

WMS — Web Map Service

WMTS — Web Map Tile Service

WTSS — Web Time Series Service

xXvii

CONTENTS

Page
1 INTRODUCTION e e e e e et e et e e 1
1.1 Our proposal 2
1.2 Contributions 3
1.2.1 Related contributions 5
1.3 Document structureo 7

2 AN OVERVIEW OF PLATFORMS FOR BIG EARTH OBSER-

VATION DATA MANAGEMENT AND ANALYSIS 11
2.1 Platforms for big Earth observation data management and analysis . . . 15
2.1.1 Google Earth Engine oL 15
2.1.2 Sentinel Hub 18
2.1.3 Open Data Cube 20
2.1.4 SEPAL 23
2.1.5 JEODPP 25
2.1.6 pipsCloud 27
2.1.7 OpenEO 29
2.2 Assessment of the platforms 0oL 31
2.3 Final remarks and discussion L. 40

3 ACCESSING AND PROCESSING BRAZILIAN EARTH OB-
SERVATION DATA CUBES WITH THE OPEN DATA CUBE

PLATFORM e e e s e e e e e e e e e e e 43
3.1 Earth Observations Data Cubes 45
3.1.1 Open Data Cube 46
3.1.2 Brazil Data Cube 46
3.2 Methodology 47
3.21 Dataindexing 48
3.2.2 ODC services integration 50
3.2.3 Computational infrastructure 52
3.3 Results. 53
3.3.1 Code and data availability 0oL %)
3.4 Discussion and final remarkso 56

Xix

4 BRAZIL DATA CUBE WORKFLOW ENGINE: A TOOL FOR

BIG EARTH OBSERVATION PROCESSING 59
4.1 Introduction 59
4.2 BDC-WE: A tool for big EO processing 63
4.2.1 TImplementationo 66
4.2.1.1 BDC-WE boilerplate project 73
4.3 Study cases 74
4.3.1 MAPAQUALI. 75
4.3.2 SITS classification 81
4.4 Final remarks and discussion, 83
5 FINAL REMARKS o it e e i e et e e e o 87
REFERENCES et e e e e ettt e e e 91

XX

1 INTRODUCTION

The scientific community has increasingly made use of the wide availability of large
Earth Observation (EO) datasets to advance the understanding of processes on
Earth, monitoring environmental changes, detecting risks, and analyzing urban oc-
cupation (CAMARA et al., 2014; APPEL et al., 2018). However, dealing with these
massive datasets still represents a great challenge for extracting their full poten-
tial and value (APPEL; PEBESMA, 2019), implying that in practice, only a small
part of the available data is effectively used for scientific research and operational

applications (CAMARA et al., 2014).

To address these challenges, the EO community has been developing new tech-
nologies, such as platforms for big EO data. These platforms are computational
solutions offering a range of functionalities for managing, storing, and accessing big
EO data. These technologies allow server-side processing, eliminating the need to
download massive amounts of EO datasets. In addition, they provide a certain level
of data and processing abstractions that are useful to EO community users and
researchers (GOMES et al., 2020). These platforms integrate different types of tech-
nologies, Application Programming Interfaces (APIs), and web services, resulting
in a more comprehensive solution for managing and analyzing big EO data. The
Mowing Code paradigm is one of the concepts used in these systems. This paradigm
appears as an alternative to the classic client-server model, where data needs to
be transferred between servers and clients to be processed. In the Moving Code
approach, the executable content (or code) is moved closer to the other resources
involved in the computation, aiming for greater efficiency. A frequent application
of this approach is sending the code to be executed on the servers where the data
is located. In this situation, only the analysis results are moved between client and
server (MULLER, 2016). Some platforms for big EO data that provide some level
of support to users for server-side data processing are the Google Earth Engine
(GEE) (GOOGLE, 2020), OpenEO (OPENEO, 2022), Sentinel Hub (SINERGISE,
2020a), and Open Data Cube (ODC) (OPEN DATA CUBE, 2022b).

In the Brazilian context, the Brazil Data Cube (BDC) project is an initiative, created
in 2019 by the National Institute for Space Research (INPE), which leads the devel-
opment of a platform for big EO data called Brazil Data Cube. The BDC project
has four main objectives (FERREIRA et al., 2020): (1) create Analysis Ready Data
(ARD) image collections from spatial medium-resolution remote sensing images (10

to 64 m) for the whole Brazilian territory; (2) model these ARD images as mul-

tidimensional data cubes with three or more dimensions that include space, time,
and spectral-derived properties, mainly to support image time series analysis; (3)
use, propose, and develop big data technologies, such as cloud computing and dis-
tributed processing environments, to create, store, and process these data cubes; and
(4) create land use and cover information, for Brazil, from these data cubes using
satellite image time series analysis, machine learning methods, and image processing

procedures.

Despite the great advances already made in this area, the technologies for processing
and analyzing large sets of OE data are still in constant evolution, and there is no
predominant solution, although there are solutions that stand out (GOMES et al.,
2020). For this reason, exploring, proposing, and developing solutions to address the
challenges of processing large Earth Observation (EO) datasets are still significant

for the geoprocessing community.
1.1 Owur proposal

As part of the BDC project initiative, this thesis contributes to the proposal, de-
sign and development of a system for big EO data processing on the server side.
This system is part of BDC platform and is based on the OpenEO API, which has
recently been established as a standard adopted in several platforms for processing

EO data (EUROPEAN SPACE AGENCY, 2022).

Our scientific question is: how to design and implement a tool for big EO data
processing that allows users and developers of the BDC project to describe sequences

of processes to be efficiently executed in the project server-side infrastructure?

Our hypothesis is that for processing big EO data, it is necessary to provide users
with an environment for the execution of processing and analysis on the server side,
avoiding the need to move data. In addition, we consider that the integration of
existing open technologies can facilitate the development of this solution. The flexi-
bility to include new algorithms or customize existing processing, which is important
for BDC project developers, can be provided by building this environment in the

form of a framework that can be configured and adapted to the project’s needs.

To answer our scientific question using our hypotheses, this thesis presents a com-
plete study and review of existing technologies for big EO data processing and a
proposal for a system called BDC-Workflow Engine (BDC-WE) for the BDC plat-

form. This system uses technologies for orchestrating processes described by directed

acyclic graphs and integrates the OpenEO API to allow the submission and control
of processes by the users. A prototype of the BDC-WE was implemented as part of

the BDC platform and two case studies were developed to demonstrate its potential.
1.2 Contributions

The main contributions of this thesis are:

I) Study and review of distinct technologies for managing, processing, and

analysis of big EO data;

IT) A complete review and comparative analysis of the main platforms for big

EO data management and analysis;

III) The integration between the BDC platform and the Open Data Cube
framework, expanding the available tools to disseminate, process and an-
alyze the BDC data products;

IV) The proposal of a system architecture to allow the execution of user pro-

cessing in the infrastructure of the BDC project; and

V) The implementation of a prototype of this system called BDC-Workflow
Engine, as part of the BDC platform, for processing workflows on the

server-side with data access and interaction through an OpenEO API.

The materialization of these contributions can be found in articles and repositories
of code and documentation produced by the author of this thesis, which are listed
below. Indexes are included at the end of each element of these lists, for example

(I, II), to relate the contribution to the work produced.

These contributions can be found in five articles in which the author of this thesis

appears as the first author.

a) GOMES, V. C. F.; QUEIROZ, G. R.; FERREIRA, K. R.; BARBOSA,
C. C. F.; PEBESMA, E.. Brazil Data Cube Workflow Engine: a tool for
big Earth Observation data processing. Unsubmitted manuscript on the
date of writing of this thesis. (IV, V).

b) GOMES, V. C. F.; CARLOS, F. M.; QUEIROZ, G. R.; FERREIRA, K.
R.; SANTOS, R.. Accessing and processing brazilian Earth Observation

3

Data Cubes with the Open Data Cube platform. ISPRS Annals of the
Photogrammetry, Remote Sensing and Spatial Information Sciences, v. V-

4-2021, p. 153-159, 2021. (III).

GOMES, V. C. F.; QUEIROZ, G. R.; FERREIRA, K. R.. An Overview
of Platforms for big Earth Observation Data Management and Analysis.
Remote Sensing, v. 12, p. 2, 2020. (I, II).

GOMES, V. C. F.; QUEIROZ, G. R.; FERREIRA, K. R.; SATO, L. Y ;
SANTOS, R. D. C.. Um ambiente para analise exploratoria de grandes vol-
umes de dados geoespaciais: explorando risco de fogo e focos de queimadas.
In: XVIII Brazilian Symposium on Geoinformatics (Geolnfo 2017), 2017,
Salvador. XVIII Brazilian Symposium on Geoinformatics Proceedings, v.
1. p. 1, 2017. (I).

GOMES, V. C. F.; SATO, L. Y.; QUEIROZ, G. R.; VINHAS, L;
FERREIRA, K. R.. Gerenciamento de nuvem de pontos em SGBD:
avaliando a extensao PointCloud para PostgreSQL. In: XVII Brazilian
Symposium on Geoinformatics (Geolnfo 2016), 2016, Campos do Jordao.

Brazilian Symposium on Geoinformatics Proceedings, v. 1, 2016. (I).

These contributions also materialized in the form of documents, scripts, and libraries

available in the following repositories:

a)

b)

c)

bdc-we: the BDC-WE prototype. Available in <https://github.com/
brazil-data-cube/bdc-we>. (IV, V).

bdc-we-template: a BDC-WE boilerplate project. Available in <https:
//github.com /brazil-data-cube/bdc-we-template>. (IV, V).

dagster__graphql_client: a Python client for working with Dagster
GraphQL servers. Available in <https://github.com/vconrado/dagster
graphql_ client>. (IV, V).

bdc-odc: a collection of scripts and tools to facilitate the deployment
and maintenance of an ODC instance. Available in <https://github.com/
brazil-data-cube/bdc-ode>. (III).

stac2odc: a tool to facilitate indexing data in an Open Data Cube (ODC)
instance using the information provided by STAC catalogs. Available in
<https://github.com/brazil-data-cube/stac2odc>. (III, V).

4

https://github.com/brazil-data-cube/bdc-we
https://github.com/brazil-data-cube/bdc-we
https://github.com/brazil-data-cube/bdc-we-template
https://github.com/brazil-data-cube/bdc-we-template
https://github.com/vconrado/dagster_graphql_client
https://github.com/vconrado/dagster_graphql_client
https://github.com/brazil-data-cube/bdc-odc
https://github.com/brazil-data-cube/bdc-odc
https://github.com/brazil-data-cube/stac2odc

1.2.1 Related contributions

During the development of the research addressed in this document, other contri-

butions were made to topics related to the main subject of this thesis. These con-

tributions can be found in the following articles, in which the author of this thesis

appears as a co-author:

a)

FLORES JUNIOR, R.; GOMES, V. C. F.; FERREIRA, K. R,
QUEIROZ, G. R.; BONNET, M.. A QGIS plugin for BONDS project:
integrating field data with geographical, remote sensing and health infor-
mation. In: XXIII Brazilian Symposium on Geoinformatics (GEOINFO
2022), 2022, Sao José dos Campos. Proceedings of the XXIII Brazilian
Symposium on Geoinformatics (GEOINFO 2022), v. 1. p. 1-1, 2022. (TI).

CARLOS, F. M.; GOMES, V. C. F.; QUEIROZ, G. R.; SOUZA, F.
C.; FERREIRA, K. R.; SANTOS, R.. Integrating Open Data Cube and
Brazil Data Cube Platforms for Land Use and Cover Classifications. RBC.
REVISTA BRASILEIRA DE CARTOGRAFTA (ONLINE), v. 73, p. 1036-
1047, 2021. (I1I).

CARLOS, F. M.; GOMES, V. C. F.; QUEIROZ, G. R.; FERREIRA, K.
R.; SANTOS, R. D. C.. Integracao dos ambientes Brazil Data Cube e Open
Data Cube. In: GEOINFO 2020 - Brazilian Symposium on Geoinformatics,
2020, Sao José dos Campos. Geolnfo 2020 Proceedings, v. 1. p. 1, 2020.
(I11).

FERREIRA, K. R.; QUEIROZ, G. R.; VINHAS, L.; MARUJO, R. F. B,
SIMOES, R. E. O.; PICOLI, M. C. A.; CAMARA, G.; CARTAXO, R,
GOMES, V. C. F.; SANTOS, L. A. ; SANCHEZ, A. H.; ARCANJO,
J.S.; FRONZA, J. G.; NORONHA, C. A.; COSTA, R. W.; ZAGLIA, M.
C.; ZIOTI, F.; KORTING, T. S.; SOARES, A. R.; CHAVES, M. E. D
FONSECA, L. M. G.. Earth Observation Data Cubes for Brazil: Require-
ments, Methodology and Products. Remote Sensing, v. 12, p. 4033, 2020.
(I, II1).

FERREIRA, K. R.; QUEIROZ, G. R.; CAMARA, G.; SOUZA, R. C. M,;
VINHAS, L.; MARUJO, R. F. B.; SIMOES, R. E. O.; NORONHA, C. A.
F.; COSTA, R. W.; ARCANJO, J. S.; GOMES, V. C. F.; ZAGLIA, M.
C.. Using Remote Sensing Images and Cloud Services on Aws to Improve

Land Use and Cover Monitoring. In: 2020 IEEE Latin American GRSS &

>

ISPRS Remote Sensing Conference (LAGIRS), 2020, Santiago. 2020 IEEE
Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS).
p. 558, 2020. (I).

ZIOTI, F.; GOMES, V. C. F.; LLAPA, E.; QUEIROZ, G. R;
FERREIRA, K. R.. Um ambiente para acesso e andlise de trajetérias de
uso e cobertura da Terra. In: XIX Simpédsio Brasileiro de Sensoriamento

Remoto, 2019, Santos. Anais do XIX Simpoésio Brasileiro de Sensoriamento

Remoto, 2019. (I).

SANCHEZ, A.; VINHAS, L.; QUEIROZ, G. R.; SIMOES, R.; GOMES,
V. C. F.; ASSIS, L. F. F. G.; LLAPA, E.; CAMARA, G.. Reproducible
geospatial data science: Exploratory Data Analysis using collaborative

analysis environments. In: Brazilian Symposium on Geolnformatics, 2017,
Salvador /BA. Proceedings, p. 7-16, 2017. (I).

In addition to these articles, the following set of software, scripts, and documents

related to the objectives of this work were produced by the author of this thesis:

a)

)

scidb__clusterfier: a collection of scripts to facilitate a deployment
of a SciDB cluster. Available in <https://github.com/vconrado/scidb__
clusterfier>. (I).

chunkfier, interleaver and modis2scidb: a collection of scripts
to assist in preparing and loading EO data into a SciDB in-
stance. Available in <https://github.com/vconrado/chunkfier>,
<https://github.com/vconrado/interleaver>, and <https://github.
com/vconrado/modis2scidb>. (I).

avaliacao-sgbd-m: a collection of scripts and documentation used to au-
tomate benchmarking of Array DBMS SciDB, RasDaMan, and TileDB.
Available in <https://github.com/vconrado/avaliacao-sghd-m>. (I).

hadoop-docker: a collection of scripts to assist the management of a
Hadoop cluster with multiple nodes. Available in <https://github.com/
veonrado/hadoop-docker>. (I).

simple__geo.py: a Python client for integrating data from WFS and
WTSS. Available in <https://github.com/vconrado/simple geo.py>. (I).

6

https://github.com/vconrado/scidb_clusterfier
https://github.com/vconrado/scidb_clusterfier
https://github.com/vconrado/chunkfier
https://github.com/vconrado/interleaver
https://github.com/vconrado/modis2scidb
https://github.com/vconrado/modis2scidb
https://github.com/vconrado/avaliacao-sgbd-m
https://github.com/vconrado/hadoop-docker
https://github.com/vconrado/hadoop-docker
https://github.com/vconrado/simple_geo.py

Another contribution related to the theme of this thesis is the dissemination of

knowledge acquired during the development of this research. This was done in the

form of classes taught or through elaboration or collaboration in short courses:

a)

b)

f)

GOMES, V. F. G.; QUEIROZ, G. R.. Novas Abordagens em Banco
de Dados nao Relacionais para Dados Geograficos e Plataformas de big
Data para Dados de Observacao da Terra. Fundamentals of Geoprocessing
Course (SER-300) of the graduate program in Remote Sensing at INPE.
Class, 2019, 2020, 2021, and 2022. Available in <http://wiki.dpi.inpe.br/
doku.php?id=ser300:aulas_ 2022>. (I, II).

QUEIROZ, G. R.; GOMES, V. F. G.. Arquiteturas de SIG & Banco
de Dados Geograficos. Fundamentals of Geoprocessing Course (SER-
300) of the graduate program in Remote Sensing at INPE. Class, 2019,
2020, 2021, and 2022. Available in <http://wiki.dpi.inpe.br/doku.php?id=
ser300:aulas 2022>. (I, II).

SANTOS, R.: MEDEIROS, F.; BITTENCOURT, O. QUEIROZ, G. R.,
VIEIRA, L. S.;; DOMINGUES, M. B. P.; GOMES, V. C. F.. Hackathon
- Introdugao a Data Science. Applied Computing Workshop (WORCAP-
2019). Short course, 2019. Available in <https://github.com/gqueiroz/
worcap-hackathon>. (I).

GOMES, V. C. F.; COSTA, R. W.; QUEIROZ, G. R.. Docker: in-
troducdo a administracao de containers. Applied Computing Workshop
(WORCAP-2018). Short course, 2018. Available in <https://github.com/
veonrado/mc9-worcap2018>. (I).

SIMOES, R.; SANCHEZ, A.; VINHAS, L.; QUEIROZ, G. R.; GOMES,
V. C. F.. Python for Data Science in Earth Observation Analysis. CEOS
- Working Group on Information Systems and Services (WGISS Tech
Webinar). Webinar, 2017. Available in <https://github.com/rolfsimoes/
wgiss-py-webinar>. (I).

QUEIROZ, G. R.; SIMOES, R. E. O.; GOMES, V. C. F.. Big Geospatial
Data: Teoria e Pratica com SciDB e Python. Short course, 2017. (I).

1.3 Document structure

The structure of this thesis is based on the three papers presented in the following

chapters. Chapter 2 is a manuscript published in the special issue "Spatial Data

7

http://wiki.dpi.inpe.br/doku.php?id=ser300:aulas_2022
http://wiki.dpi.inpe.br/doku.php?id=ser300:aulas_2022
http://wiki.dpi.inpe.br/doku.php?id=ser300:aulas_2022
http://wiki.dpi.inpe.br/doku.php?id=ser300:aulas_2022
https://github.com/gqueiroz/worcap-hackathon
https://github.com/gqueiroz/worcap-hackathon
https://github.com/vconrado/mc9-worcap2018
https://github.com/vconrado/mc9-worcap2018
https://github.com/rolfsimoes/wgiss-py-webinar
https://github.com/rolfsimoes/wgiss-py-webinar

Infrastructures for Big Geospatial Sensing Data" of the Remote Sensing journal. This
paper presents the results of a study of the main platforms available for big EO data
management and analysis. For each of the seven technologies studied, a section is
dedicated to explaining their operation, architecture, and functionalities. This work
also presents a comparative analysis of these platforms in relation to ten capabilities,
which were defined based on the demands and needs presented by Camara et al.
(2016) and Ariza-Porras et al. (2017). In addition to discussing the capabilities of
each platform, this article provides a table and six graphs to summarize and illustrate
this assessment. We also discussed the difficulty of a platform to provide a greater
degree of abstraction simultaneously with flexibility in data-processing approaches.
In this article, we suggest that a possible solution is to provide scientists with a
platform with two forms of processing. The most frequently used features could be
made available through a high abstraction API, similar to that provided by OpenEO
and GEE. For more complex analyses, the platform could allow its extension through
a framework, such as the solution adopted by the ODC, so that the scientist has

direct access to data and infrastructure processing capabilities.

Chapter 3 is based on an article published in the "ISPRS Annals of the Photogram-
metry, Remote Sensing and Spatial Information Sciences'. The objective of this
study in the context of this thesis was to evaluate the possibility of using open
tools integrated with the BDC platform’s data and software products. For this pur-
pose, this study presents an integration process between the data products of the
BDC and ODC framework. This integration expands the services and tools that
can be used to access, view, and analyze the EODC produced by the BDC project.
In addition, this integration allows the algorithms previously developed for ODC
technology to be more easily adapted for use with BDC data. In this study, a tool
was developed and two ODC tools were adapted to work properly with the data
produced by the BDC project. An architecture for interactive analysis is proposed
and implemented, and we present the results of the processing performed on the
BDC project infrastructure using ODC tools with BDC EO data.

Based on the knowledge acquired in these two previous works and on the demands of
the BDC project, an architecture is proposed to allow users to process BDC EO data
in the BDC’s on-premise servers. The objective of this work is to provide a struc-
ture that allows the distributed processing of EO data, especially those recurrently
executed on the BDC platform and in other INPE projects. To provide greater flexi-
bility for data processing, the architecture was structured in the form of a framework

that allowed the inclusion of new algorithms and the extension of previously existing

data models. To provide a greater degree of abstraction, the proposed architecture
provides an OpenEO API that allows users to access data and trigger server-side
processing. The description of this architecture, the implementation of a prototype,
and the results of two test cases are presented in Chapter 4, entitled "Brazil Data
Cube Workflow Engine: a tool for big Earth Observation data processing" which will

be used as a basis for the preparation of an article with the same title.

Chapter 5 presents the final remarks and future works.

2 AN OVERVIEW OF PLATFORMS FOR BIG EARTH OBSERVA-
TION DATA MANAGEMENT AND ANALYSIS!

Nowadays, Earth observation (EO) data plays a crucial role in understanding pro-
cesses on our planet, enabling us to make great strides in monitoring environmental
change, risk detection and urban occupation analysis (APPEL et al., 2018; STRO-
MANN et al., 2020). Based on information extracted from EO data, researchers and
decision-makers are able to conceive and apply effective policies for environment

protection and sustainable management of natural resources.

In recent years, the amount of EO data freely available for society and researchers
has quite increased, driven by technological advances and open data policies adopted
by governments and space agencies. Only in 2019, the volume of open data produced
by Landsat-7 and Landsat-8, MODIS (Terra and Aqua units), and the three first
Sentinel missions (Sentinel-1, -2 and -3) is around 5 PB (SOILLE et al., 2018).
These big data sets often exceed the memory, storage, and processing capacities
of personal computers; imposing severe limits that lead users to take advantage of
only a small portion of the available data for scientific research and operational
applications (MULLER et al., 2010; CAMARA et al., 2016; STROMANN et al.,
2020). Thus, there is a need for novel technological solutions to properly store,

process, disseminate, and analyze these big EO data sets.

A Spatial Data Infrastructure (SDI) is a platform that facilitates the interface be-
tween people and systems in the exchanging and sharing of spatial data, including
EO information, by providing required technologies, policies, and standards (RA-
JABIFARD; WILLIAMSON;, 2001). SDI as a sharing platform aims to facilitate
the access and integration of multi-source spatial data inside a framework with a
number of technological components. In the last years, traditional SDIs have been
built based on standards to represent and store spatial information in data files
(e.g. GeoTIFF and Esri Shapefile) and database systems (e.g. PostGIS and Oracle
Spatial), as well as to serve spatial data, metadata and processes via web services,
such as Web Map Service (WMS), Web Feature Service (WFS), Web Coverage Ser-
vice (WCS), Catalog Service for Web (CSW) and Web Coverage Processing Service
(WCPS). These standards proposed by Organization for Standardization (ISO) and
the Open Geospatial Consortium (OGC) (OPEN GEOSPATIAL CONSORTIUM
(OGC), 2019) are essential to enable the spatial data interoperability among SDIs

IThis chapter is based on a paper published in the special issue “Spatial Data Infrastructures
for Big Geospatial Sensing Data” of the journal Remote Sensing (GOMES et al., 2020). The paper
is authored by Vitor C. F. Gomes, Gilberto R. Queiroz, and Karine R. Ferreira

11

from worldwide agencies and institutions. Although there are ISO and OGC web
services that allow data processing in the server side such as WCPS, most current
SDIs on regional, national, and international levels are focused on EO data sharing

and dissemination in the form of individual files, through HTTP, FTP and SSH
protocols, web services for data access, and web portals (MULLER, 2016).

In the current era of big spatial and EO data, there is a need for a next generation
of SDIs able to properly deal with this vast amount of data (YUE et al., 2015; YUE
et al., 2016; WOODCOCK et al., 2016; SEDONA et al., 2019). To take advantage
of all potential of this era, users need to handle hundreds (or thousands) of EO data
files, of different spectral, temporal, and spatial resolutions, by using or developing
software scripts to extract information of interest. To meet these demands, novel
technologies have been proposed and developed, based on cloud computing and

distributed systems.

According to Merticariu et al. (2015), Array Database Management Systems (Array
DBMS) have set out to fill an important gap in storage and management of EO
data represented as regular and multidimensional arrays, such as satellite images.
Unlike Relational Database Management Systems (RDBMS), which are based on the
concept of relations (or tables) and relational algebra, Array DBMS are centered on
multidimensional arrays. Examples of Array DBMS are RasDaMan (BAUMANN et
al., 1998), SciDB (STONEBRAKER et al., 2013) and TileDB (PAPADOPOULOS
et al., 2016). Most array DBMS have the capability to split large arrays into indexed
blocks or chunks that are stored and shared among multiple computers to improve
efficiency and performance. Besides that, they provide their own query language for
multidimensional arrays, such as RasDaMan RasQL, SciDB AFL (Array Functional
Language), and AQL (Array Query Language).

Another approach that has been explored for managing and handle big EO data is
MapReduce systems. Traditionally, high-performance computing systems separate
compute nodes and storage nodes, which are interconnected with high-speed links
to meet data access requirements. However, the capacity of these high-speed links is
still less than the aggregate bandwidth of all compute nodes (GUO et al., 2012). In
parallel data systems such as Google File System (GFS) (GHEMAWAT et al., 2003)
and Hadoop Distributed File System (HDFS) (SHVACHKO et al., 2010), clusters
are built from standard servers and each node takes on both compute and storage
functions. In these systems, data location stands out as a significant advantage

over traditional systems by leveraging data location and reducing network traffic

12

- one of the bottlenecks in computing applications that handle a large amount of
data (GUO et al., 2012; BLOMER, 2014; WANG; YING, 2016). Assis et al. (2017)
propose an approach to use MapReduce systems for EO satellite image time series
analysis. A comparison between Hadoop and SciDB in processing EO satellite images

is presented by Camara et al. (2016).

Despite these novel technologies are addressing issues of storage and access, an in-
creasing number of applications have reached data volumes and acquisition speeds
that make it impossible to move data to local systems for processing and analy-
sis (WOODCOCK et al., 2016; WU et al., 2018). The Moving Code paradigm stands
out as an alternative in this scenario. In this approach, the executable application
(or source code) is sent to run on the servers where the data is located, avoiding
data movement (MULLER, 2016). To properly deal with big EO data, the next
generation of SDIs should provide solutions based on the Moving Code paradigm

and the approach to process data on the server side where data is stored.

Regarding web services protocols that allow EO data processing on the server side,
we can cite two examples WCPS proposed by OGC and Web Time Series Service
(WTSS). WCPS is an extension of WCS which allows server-side coverage ma-
nipulation, extraction, and analysis through a functional language (BAUMANN,
2010). This language allows the retrieving of one or more server-side coverages and
performing of operations on the data. The EarthServer project has a WCPS imple-
mentation using the RasDaMan array database as a backend (BAUMANN et al.,
2016). WTSS is a lightweight web service for time series recovery from big amounts

of remote sensing images organized as coverages (VINHAS et al., 2016).

Recently, a solution that has facilitated the building of infrastructures based on
Moving Code paradigm is the cloud computing environment offered by providers
as services, such as Amazon Web Services (AWS) and Microsoft Azure Cloud Ser-
vices. These environments often are highly scalable and provide developer tools,
storage, database, and networking services. Besides providing services for virtual
machines and containers, AWS contains several of the most used EO satellite image
collections as open data, including Landsat-8, Sentinel-2, and CBERS-4 (Open Data
on AWS (AMAZON WEB SERVICES, 2020)). Following this trend, the European
Commission has financed five systems for cloud computing in the context of DIAS
(Data and Information Access Service) (COPERNICUS, 2020): CREODIAS (CRE-
ODIAS, 2020), Mundi (MUNDI WEB SERVICES, 2020), ONDA (ONDA, 2020),
WEKEO (WEKEO, 2020), and Sobloo (SOBLOO, 2020). These systems provide

13

open EO data from Copernicus program through standard web services and proto-
cols such as OpenSearch, WFS, WMS, WCS, and CSW (CREODIAS, 2020; MUNDI
WEB SERVICES, 2020; ONDA, 2020; WEKEO, 2020; SOBLOO, 2020). Besides
that, these systems allow users to contract on-demand services to store and process
EO data sets as well as to directly access these data sets. Similar to AWS, the DIAS
systems allow users to execute their applications in a cloud environment where data
is stored, avoiding the movement of data through the network and so improving the

processing performance.

Although the cloud computing environments as AWS and DIAS facilitate the high
scale processing of EO data, considerable effort and advanced technical knowledge
are still required for users to take advantage of these cloud computing environments.
In addition to analytical tasks, the EO community scientists and users face with
challenges to the management of these environment computational resources. Thus,
there is a need for user-friendly solutions that provide high-level analytical tools
for EO community researchers and users, abstracting the technical issues of these
cloud computing environments. The Sentinel Hub platform is an example of this
kind of solution (SINERGISE, 2020a). This platform uses the CREODIAS cloud
computing services to access and process the Copernicus EO data sets and provides
a high-level programming interface that allows users to deal with these data sets

without worrying about technical details.

In this context, we define "Platforms for big EO Data Management and Analysis" as
computational solutions that provide functionalities for big EO data management,
storage and access; that allow the processing on the server side without having to
download big amounts of EO data sets; and that provide a certain level of data
and processing abstractions for EO community users and researchers. These plat-
forms integrate different kinds of technologies, Application Programming Interfaces
(API), and web services to provide a more complete solution for big EO data man-
agement and analysis. Based on this definition, this Chapter presents an overview
of seven platforms and a comparison among their functionalities: Google Earth En-
gine (GEE) (GORELICK et al., 2017), Sentinel Hub (SH) (SINERGISE, 2020a),
Open Data Cube (ODC) (OPEN DATA CUBE, 2022b), System for Earth Observa-
tion Data Access, Processing and Analysis for Land Monitoring (SEPAL) (FOOD
AND AGRICULTURE ORGANIZATION (FAO), 2020), OpenEO (PEBESMA et
al., 2017), JEODPP (SOILLE et al., 2018), and pipsCloud (WANG et al., 2018).
These platforms have close purposes but use different storage systems, access inter-

faces, and abstractions for EO data sets.

14

This Chapter is organized as follows. In Section 2.1, we present an overview of the
platforms where their main functionalities and technical issues are described. In
Section 2.2, ten capabilities of the EO community interest are presented and used to
compare the platforms presented. Finally, in Section 2.3, we discuss the platforms
that stand out in the evaluated capabilities, the challenges in building a platform

that fully meets the evaluated capabilities, and the new trends in these technologies.
2.1 Platforms for big Earth observation data management and analysis

This section presents the features, available functionality, and technical details of
the seven platforms evaluated in this paper. The questions that are addressed about
each platform in this section are: i) who supports it?; ii) how is it made available?;
iii) what is the software architecture?; iv) how is the data stored?; v) how is the
data processed?; vi) how is the data made available?; vii) what are the data abstrac-
tions used?; viii) is it possible to extend the platform?; and ix) is there support for

reproducible science?
2.1.1 Google Earth Engine

Google Earth Engine (GEE) is a cloud-based platform that enables large-scale sci-
entific analysis and visualization of geospatial data sets. GEE was launched in 2010
by Google as a proprietary system. Currently, it is available to users as a free ser-
vice for small and medium workloads, using a business model similar to the other

cloud-based services of the company.

This platform is built from a collection of technologies available on Google’s infras-
tructure, such as the large-scale computer cluster management system (Borg), the
distributed databases (Bigtable and Spanner), the distributed file system (Colos-
sus), and the parallel pipeline execution framework FlumeJava, as depicted in Fig-
ure 2.1 (GORELICK et al., 2017).

GEE provides a JavaScript API and a Python API for data management and analy-
sis. For the JavaScript version, a web Integrated Development Environment (IDE)?
is also provided, where the user has easy access to available data, applications and
real-time visualization of the processing results. The Python API is available through

a module and has a structure similar to its JavaScript version.

This platform provides a data catalog that stores a large repository of geospatial

2<https://code.earthengine.google.com>

15

https://code.earthengine.google.com

Figure 2.1 - A simplified Google Earth Engine system architecture diagram.

[Web REST APIs]

SOURCE: Gorelick et al. (2017).

data, including optical imagery of a variety of satellites and air systems, environ-
mental variables, weather and climate forecasts, land cover, socioeconomic, and to-
pographic datasets. Before being made available, these data sets are preprocessed,

enabling efficient access and removing many barriers associated with data manage-
ment (GORELICK et al., 2017).

GEE uses four object types to represent data that can be manipulated by its API.
The Image type represents raster data that can consist of one or more bands, which
contain a name, data type, scale, and projection. A stack or a time series of Images
is represented by the ImageCollection type. GEE represents vector data through
the Feature type. This type is represented by a geometry (point, line, or polygon)
and a list of attributes. The FeatureCollection type represents groups of related
Features and provides functions to manipulate this data, such as sorting, filtering,

and visualization.

To process and analyze data available in the GEE public catalog or data from the

16

user’s private repository, GEE provides an operator library for the object types
listed above. These operators are implemented in a parallel processing system that
automatically splits the computation so that it can be performed in a distributed

environment.

In the GEE approach, objects handled via JavaScript or Python represent proxies for
data stored in Google’s infrastructure. When a new object is generated as a result of
some operation, the locally stored object has the description of the operation and the
addresses of the input objects of the operation. Processing only occurs when there
is an output (visualization or writing) of the object produced for computation. This
lazy computation mode allows the processing of only some parts of the data that

actually produce the required output.

The result of a GEE processing can be viewed in the web IDE or saved in one of
three company services: Drive, Cloud Storage or Assets. GEE uses a Tiles server
to make data available to the web interface efficiently. However, this service is not

explicitly provided and so users can not integrate it into other applications.

As a computing system with shared resources among users, GEE imposes limits
on the iterative usage mode (On-the-Fly Computation box in Figure 2.1), where
execution takes place in real-time. The limits are on the maximum duration of
each request, the maximum number of simultaneous requests per user, and the
maximum execution of operations considered costly, such as spatial aggregations.
Processing beyond thresholds is possible through batch computing mode (Batch
Computation box in Figure 2.1) (GORELICK et al., 2017). For data-intensive pro-
cessing or compute-intensive analytics, there is currently a need to make a request

to Google.

The Google Earth Engine library has over 800 functions to handle big EO data sets.
Despite this large number of builtin functions, these functions are close and users
can not update or extend their basic functionalities. While GEE provides a friendly
environment for scientists, the implementation of procedures that are not available
through the GEE API functions requires significant user effort (SHELESTOV et
al., 2017). Besides that, GEE only offers programming interfaces that support pixel-
based processing, and there are natively no region-based methods such as image

segmentation or large-scale time series analysis.

The characteristics of GEE have motivated its use by the EO community re-

searchers. There are, for example, studies using this platform for urban area assess-

17

ment (GOLDBLATT et al., 2016) and evaluations of the performance of algorithms
available in the platform for the classification of agricultural crops (SHELESTOV
et al., 2017).

One facility that GEE provides to users is the capability to share their scripts and
assets with other users of the platform. Nevertheless, it is important to keep in mind
that these scripts use algorithms implemented internally by the platform and that
these algorithms are close and can not be extended on the server side. Therefore,
GEE can not guarantee that an analysis performed on the platform can be repro-

duced in the future, since these internal algorithms can be changed or discontinued
by the platform at any time (GOOGLE, 2020).

The GEE terms of service guarantee users the intellectual property of their codes
and data as well as that the company does not use such information for purposes
other than what is necessary to provide the service to the user (GOOGLE, 2020).

2.1.2 Sentinel Hub

Sentinel Hub (SH) is a platform developed by Sinergise that provides Sentinel data
access and visualization services. This is a private platform with public access®.
Unlike Google Earth Engine, SH limits access to functionality in different payment
plans. The free plan only allows viewing, selection, and downloading of raw data.
Paid access enables data access through OGC protocols and a specific API, data pro-
cessing, mobile application data access, higher resource access limits, and technical

support (SINERGISE, 2020a).

The features of the SH platform are made available through OGC services and a
RESTful API. A web interface is also available that allows the configuration of
specific services. Sinergise does not provide a diagram of the system architecture
used by Sentinel Hub or information about how data is stored or processed. Thus,
Figure 2.2, prepared by us, intends to illustrate the interaction between the services
provided and the data abstractions used by the SH platform. In this figure, the

arrows indicate the direction of the data flow.

SH uses the concepts of Data Source, Instances, and Layer to represent the data
available in its services. Data Source is an abstraction equivalent to the GEE Im-

ageCollection, representing datasets that share the same set of bands and metadata.

3<https://www.sentinel-hub.com>

18

https://www.sentinel-hub.com

Figure 2.2 - Sentinel Hub services and data abstraction diagram.

OGC Sentinel Hub Data Source
Services
Instances Sentinel-1
Instance 1
- Layer 1 Sentinel-2
- Layer 2
- Layer 3
Client / \ PE:iISEripES Sentinel-3
AR ~ | RESTrulARI [P processing Scrpt
Landsat 8
Process
MODIS
Batch
AWS S3
Colletion

The Data Sources currently available on SH are: Landsat 8 L1C, Mapzen DEM,
MODIS MCD43A4, Sentinel-1 GRD, Sentinel-2 L1C and L2A, Sentinel-3 OLCI and
SLSTR, and Sentinel-5P L2. It is also possible to include your own data in the SH
platform. These data sets are named Collections by SH and need to be stored in the
cloud optimized GeoTIFF (COG) format in a S3 bucket.

An Instance in SH platform acts as a distinct OGC service that can be configured to
provide a set of Layers that fulfill user needs. Each Layer is associated with one or
more bands of a specific Data Source and a processing script. These scripts, called
Fualscripts by the SH, are applied to each pixel of the data requested by the user.
It is not possible to access the data of a pixel’s neighborhood during the execution

of the script, which can basically perform operations between bands.

Fuvalscripts are also used for SH API Process and Batch modules. In the Process
module, the user can request a Data Source, informing filtering parameters, such as
bounding box and time range, and indicating an Fwvalscript that will be applied to
each pixel of the data before being delivered by the service. In the Batch mode the

behavior is the same, except the service that is asynchronous and saves the result in

19

an S3 bucket informed by the user during the request (SINERGISE, 2020b). The SH
web interface provides an interactive means for creating Instances and registering

Collections by users.

The Sentinel Hub source code is close and so it is not possible to extend it. Sinergise
provides good documentation with examples for using the web interface and SH
API. Similar to GEE, Sentinel Hub terms of service guarantee users the intellectual
property of their content and that the company will use it only for the provision of
the platform services. Also, Sentinel Hub can change the offered functionalities at
any time and there is no guarantee of continuity of services (SINERGISE, 2020a).

Currently, SH has no tools to facilitate the sharing of Fvalscripts among researchers.
2.1.3 Open Data Cube

The Open Data Cube (ODC), previously known as the Australian Geoscience Data
Cube (AGDC), is an analytical framework composed of a series of data structures
and tools that facilitate the organization and analysis of EO data. It is available
under Apache 2.0 license as a suite of applications. It is currently supported by
Analytical Mechanics Associates (AMA), The Committee on Earth Observation
Satellites (CEOS), The Commonwealth Scientific and Industrial Research Organi-
zation (CSIRO), Geoscience Australia (GA), and United States Geological Survey
(USGS).

ODC allows the cataloging of massive EO data sets and their access and manipula-
tion through a set of command line tools and a Python API. Figure 2.3 illustrates the
architecture of ODC. Data Acquisition and Inflow represents the process to collect
and prepare EO data before indexed by ODC. Data Cube Infrastructure illustrates
the main core of ODC, where EO data is indexed, stored and delivered to users
over the Python API. Data and Application Platform group auxiliary application

modules as job management and authentication.

The source code of ODC and its tools are open and are officially distributed through
dozens of git repositories?. These repositories include web interface modules for
data visualization, data statistics extraction tools as well as jupyter notebooks with

examples of access and use of indexed data in ODC.

The main module responsible for data indexing is called datacube-core and consists

of a Python script set that uses a PostgreSQL database to catalog the metadata of

4 <https://github.com/opendatacube>

20

https://github.com/opendatacube

Figure 2.3 - Architecture diagram of the Open Data Cube platform.

Datacube Notional Architecture

~—® User Interfaces and Application Layer

Forest | Economics

Integrating Tool Application/GIS Mobile App

~—® Data and Application Platform

Business Processes Authentication:

: (Data Management, S
Virtual Lab Platform s e Authorisation,

Job Management etc) Accountmg
S
~—@ Data Cube Infrastructure
Task : 3 . : ot Analytical
Exastition Discovery Reporting Web Services Visualisation Task Definition
N-Dimensional Array Interface
Storage Query and Access Module Ingester (ARD and Result)

Data Collection 1 Data Collection 2

Multi-
dimensional
Storage Unit

Multi-
dimensional

Index Store Storage Unit

Index Store

~® Data Acquisition and Inflow

SOURCE: Lewis et al. (2017).

S

the data and provides an API for data retrieval. ODC can index data stored on a
file system or the web. This platform does not use any approach to data distribution
between servers, and it is the user’s chosen file system’s responsibility to ensure the

scalability of data storage and access.

ODC uses the concepts of Product and Dataset to represent the data indexed in its

catalog. Products are collections of data sets that share the same set of measures

21

and some subsets of metadata. The Dataset represents the smallest independently

described, inventoried, and managed data aggregation. These are usually scenes

stored in files that together represent a Product (OPEN DATA CUBE, 2021).

The data loading process in ODC consists of four steps. First, a Product must be
registered from its metadata. In the second step, the metadata is extracted from
each file (Dataset) that will be linked to the Product. To automate this process,
ODC provides metadata extraction scripts for the following instruments/sensors:
Landsat-5/7/8, Sentinel-1/2, ALOS-1/2, ASTER Digital Elevation Model (DEM),
and MODIS (OPEN DATA CUBE, 2022b). With the metadata of the prepared
files, the third step is to register these Datasets in the ODC catalog. The last step,
called data ingestion, is optional and deals with the process of creating new Datasets
from already registered Datasets. These new Datasets are saved using a new stor-
age scheme, composing a new Product. At this stage, data can be re-sampled, re-
organized in time series, and/or broken into smaller blocks for storage. The main
purpose of producing these new Datasets is to optimize the data format to speed up

the reading process of data in the file system.

The development of applications for processing data indexed by an ODC instance
requires the use of the framework’s Python API. This API allows listing of indexed
Products, retrieving Products and Datasets data and metadata. Data retrieval is per-
formed by a load function that receives parameters such as product name, bounding
box, period range, and spatial output resolution. This function returns a xarray
object to be used by user’s application. For parallelization of processing, ODC has
examples of using asynchronous task queues through the use of the Celery frame-
work. Nevertheless, the parallelization of the processing of applications using ODC

is the responsibility of the user.

For data access, ODC provides implementations of OGC web services such as WCS,
WMS and WMTS. In addition to these modules, ODC also provides tools that facili-
tate ODC deployment through containers, an implementation that exposes the ODC
Python API through a REST API, Jupyter Notebooks with Sample Applications,
an application for extracting statistics from indexed data and an implementation of
a web portal. In this web portal, it is possible to discover the available products,
select and retrieve datasets (GeoTIFF and NetCDF'), and perform analyzes through

applications available in the portal.

Out of the box, this web portal offers a small set of sample applications, but new

features can be added. This requires using a template provided by ODC developers.

22

In this template, the researcher needs to extend classes from the Django framework
and the Celery framework (OPEN DATA CUBE, 2020).

Currently the ODC platform has no tools to facilitate the sharing of applications
and data between researchers. For a user to be able to reproduce results in an-
other instance of ODC it is necessary to manually share and index the data and

applications used.

In June 2019, 9 institutions were using ODC operationally, 14 were in the imple-
mentation phase and 33 were analyzing its implementation (OPEN DATA CUBE,
2019). The most prominent instance is the Australian version, called the Australian
Geoscience Data Cube (AGDC). This instance stores over 300,000 Landsat im-
ages covering Australia, corresponding to approximately 10 measurements stored.
To store this volume of data, AGDC uses a cluster of computers with the Lustre
distributed file system (LEWIS et al., 2017). Two other operational instances are
Switzerland (GIULIANI et al., 2017) and Colombia (ARIZA-PORRAS et al., 2017).

2.1.4 SEPAL

The System for Earth Observation Data Access, Processing and Analysis for Land
Monitoring (SEPAL) is a cloud computing platform developed for the automatic
monitoring of land cover. It combines cloud services, such as Google Earth Engine,
Amazon Web Services Cloud (AWS), with free software, such as Orfeo Toolbox,
GDAL, RStudio, R Shiny Server, SNAP Toolkit, and OpenForis Geospatial. The
main focus of this platform is on building an environment with previously configured
tools and on managing the use of computational resources in the cloud to facilitate
the way scientists search, access, process, and analyze EO data, especially in coun-

tries that have difficulties with connection with the Internet and few computational

resources (FOOD AND AGRICULTURE ORGANIZATION (FAO), 2020).

SEPAL is an initiative of the Forestry Department of the United Nations Food and
Agriculture Organization (FAO) and financed by Norway. Its source code® is avail-
able under MIT license and is still under development (FOOD AND AGRICUL-
TURE ORGANIZATION (FAO), 2020). It works as an interface that facilitates
access and integration of other services. Figure 2.4 presents a diagram of SEPAL
architecture. The Sepal Instance, provides a web-based user interface where users
can search and retrieve datasets and start preconfigured cloud-based machines to

perform their analysis.

®<https://github.com/openforis/sepal >

23

https://github.com/openforis/sepal

SEPAL uses Google Cloud Storage and Google Drive to store EO data and metadata.
The Google Earth Engine is used for data processing and retrieval and the Amazon
Web Services Cloud (AWS) is used for data storage (S3 and EFS AWS services) and

as an infrastructure for computing analyses (EC2 AWS service).

Figure 2.4 - Architecture diagram of the SEPAL platform.

Google
Earth
Engine

Google
Cloud
Storage

Google
Drive

o

@ I
e
(@

Task

Executor
Task Executor Instance \
p— S

EFS

___https API
ssh _’ Gateway GateOne
user

ssh

N

Sandbox Instance

Sepal instance

SOURCE: FOOD AND AGRICULTURE ORGANIZATION (FAO) (2020).

The SEPAL platform can be accessed through a web portal®, running on the AWS
infrastructure, or it can be installed on the user own infrastructure using Vagrant
for the management of processing instances. Currently, there are few available doc-

umentations about the deployment on in-house infrastructure.

In the web portal, the functionalities are divided into 4 areas: Process, Files, Ter-
minal, and Apps. In Process, the user can search and retrieve images for further
processing or viewing, by selecting the area, the sensor (Landsat or Sentinel-1 and
2) and the period of interest on the web interface. After searching, it is possible to
select the best scenes for the production of a mosaic that can be downloaded to a

user’s storage space. In the Files section, users can browse through the files previ-

6 <https://sepal.io>
24

https://sepal.io

ously saved in their storage space. The files searched and retrieved in the Search
section can be accessed and viewed from this area of the portal. The area called
Terminal allows users to start a machine in the AWS cloud. Before executing it,
users must choose one of the 22 hardware configurations available. Each machine is
associated with a cost per hour of use. Upon accessing the SEPAL account, users
receive a fixed amount of credits monthly. The machine configuration options avail-
able are some possibilities found in the AWS EC2 service. In the Apps area, ap-
plications are available to process and analyze data previously stored in the user’s
storage space. When an option is selected, SEPAL deploys the application code to
the user’s running machine (or instantiates a new one, if none is active) and opens
a new browser window pointing to its interface. Currently available applications are
RStudio, Jupyter Notebook, Jupyter Lab, and interactive documents that run on
an R Shiny Server.

Although SEPAL provides functionality for users to manage and view data on its
web interface (Files), this platform does not provide any web service to access the
data or send processing requests to the server. Its features are more focused on
the management of computational resources (virtual machines) and the aid of data
pre-processing from EO data providers through a web interface (Process). SEPAL
automatically connects the storage service to the virtual machines allocated by the
users, making the previously downloaded files available to the user’s applications. In
this environment, researchers are responsible for developing applications that make
good use of available computational resources. SEPAL also does not provide tools

to facilitate the sharing of analysis between users.
2.1.5 JEODPP

The JRC Earth Observation Data and Processing Platform (JEODPP) is a closed
solution developed since 2016 by the Joint Research Center (JRC) for the storage and
processing of large volumes of Earth observation data. This platform has features
for interactive data processing and visualization, virtual desktop, and batch data
processing. This platform uses a set of servers for data storage and another set
for processing. The storage servers use the EOS (ADDE et al., 2015) distributed file
system and store the data in its original format, with only pyramidal representations

added to speed up the reading and visualization of the data.

For data visualization, JEODPP uses a Jupyter Notebook environment and provides
an API for the construction of objects that represent processing chains, through

previously defined functions. When a visualization object is built, the associated

25

processing chain is not executed instantly. The execution of the processing chain
only occurs when data associated with the object is used. This lazzy processing

approach is the same as that adopted by GEE for data visualization.

Figure 2.5 illustrates the data processing and visualization flows adopted by
JEODPP. The left side shows the flow of registration of the processing chains, while

the right side shows the flow of data delivery for visualization.

Figure 2.5 - System architecture for interactive visualization and processing of EO data
on JEODPP platform.

JavaScript/HTML

JEODPP
HPC cluster

& JavaScript/Python
infrastructure

synchronization
1

Http calls for tile-based
and window-based display

_______ i____________ay_th_o;_'

|
|
1
Http calls for image_| Web-service containers
and data exports
: Python WSGI HTTP server
|

iCalI library TSend processed data

I
I
I
! Interactive library \
I
. an
|
I

Python

Notebook container \r

Geospatial processing !

Read image
collections
"""""""""""""" metadata ————-——f————-——-—-—————-———————d
Store

Export to local files processing Read source
under user “home” chains raster and
folder vector data

SOURCE: Soille et al. (2018).

For the virtual desktop feature, JEODPP uses the Apache Guacamole system, which
allows viewing a remote terminal through a browser. This feature allows the use of
remote Linux or Windows terminals, which are previously prepared with tools for
processing EO data (R, Grass, GIS, QGIS, MATLAB, etc.) and where the data is
available through the EOS file system.

For batch processing, JEODPP uses the HT Condor framework for scheduling tasks
on servers. Users are responsible for integrating HTCondor into their applications

in order to take advantage of the cluster of processing servers. In these processing

26

modes, users directly access the files, making it necessary to know the folder structure
and the formats of the stored data. JEODPP does not provide any kind of extra

abstraction for accessing and manipulating this data.

Soille et al. (2018) presents the results of two tests performed with JRC applica-
tions in an instance of the JEODPP system running in a cluster with 912 cores
(15.8TFLOS) and accessing 1PB of data. The tested applications are: i) Search for
Unidentified Maritime Objects (SUMO); and ii) Global Human Settlement Layer
(GHSL) framework. For each application, the number of pixels processed per sec-
ond in Mpixel/s was calculated. The results show a linear growth of performance in
relation to the increase of processor numbers, indicating good processing and data

access scalability.

Based on the documentation available, the JEODPP does not have tools to facili-
tate the sharing of analysis among researchers. This capability is only available for
internal use of JRC and there is no source code available for implementation in other

institutions.
2.1.6 pipsCloud

PipsCloud (WANG et al., 2018) is a proprietary solution developed by Chinese re-
search institutions for the management and processing of large volumes of EO data
based on cloud computing. The file system used in pipsCloud is HPGF'S, a propri-
etary file system also developed by Chinese institutions and which is not available
for use by third parties. Its cloud environment is implemented in the organization’s
internal infrastructure using OpenStack technology, which allows the construction

of virtualized services infrastructure.

Figure 2.6 shows the architecture of pipsCloud. The highlight is given to the file
indexing scheme, which uses a Hilbert-R+ tree, and a virtual file catalog. Users who
need to process data should describe a query to identify the files of interest. From
these files, a file system is mounted on the user’s processing machine with only the

requested data.

For data processing on the server-side, pipsCloud provides C++ code templates for
building applications. These templates abstract the reading of the data on disk and
the submission of the processes to the processing nodes. The communication between
the processing nodes and the parallel reading of the files is done using features of

the MPT interface (Message Passing Interface).

27

Figure 2.6 - Architecture of pipsCloud platform.

I
| Cloud Portal
! WPS, WMS, WCS, SOAP(web service), HTTP...

Cloud Management

Multi-tenancy

|
|
l[Accounting] [Statistic] [
|
1

Data Management

VS-RS

! L ' N !
1 | ! ! |
H 5| E (Subscription & Sharing) E i (Virtual Processing System for RS) i i :
| Q [N} I | !
1 1 ! ! 1
| > [[Order Management | | System Management |' 1 I
! g | ‘ Data Subscription | 1 1 Hoo
| Z | b e — !
! Z5 | Ma V| workflow Workflow | [RS Workflow |1 ! i
) Yo |}t P 7 I | | Customization || Processin: Deposit 1 d
i B 2 ! I'| Service Data Service 0 °] pository 1 !
1 & [[— 1
(Mapserver) ! gori !
i 3 E i Data Data ! :[Kepler] Rsoééo%gt‘ym h i
! % B Retrieval | | Download || 1 L oo oooooooooooooo—Z-Tm====== - " !
| Q [e I !
| = [! |
A ¥ VE-RS b
N : ! (Virtual HPC Cluster Environment for RS) "]
i i RS Data Indexing n : ¥]
) | ' (R+ Indexing Tree, Bloom Filter) ' Task Sql'hedu“PrI;Sg (DAG) " X
! 2| | : | (Torque,PBS) i ! !
| alg | P 5 1 !
Z| @ | 1| Distributed Programming i
:g 93 |1 Metadata |! ! ‘ RS Data Skeletons ag na &
= a_% P RS Data Management | ! | Structure (RS-GPPS) g3 He 9 i
18| &2 |11 Management || ——— | @3S S
:(8 g | (HPGFS) Aé\etaqtoto i HPGFS MPI, g5i1e<
= epository i licati =
H Q E . (HBase) b déi%‘)\g;gﬁtfgn%véggy) MapReduce @ i: :
| | | !
1 Vo L M\ I T _________I——4 " !
T | 1
1 [| 1
: ¥ Cloud Framework (OpenStack) ;i !
I [} I 1
! 20 Image [Rs Software VM Schedular VMDeployer |1 !
| 8 | Repository || Repository (nova-schedular) (nova+xCAT) |1} |
! _E it (Glance) Nooon-— T J! :
| 23 i T v 1.
1 | @z [i!| Storage Quota ¥ Hypervisor N i
D] 28 i (Nova-quota)] | 1| Virtual Machine Bare Meta i :
| = 1 1 \
i 3 E | (Cinder| ¥ :: |
| =3 . i I: |
\ «Q | : 1! Yy |
| v ____. (] ! |
1 1
| 1
1 1
I 1
1 |
| |

— (= = =g
E g E ==l EalE2
RS Data Storage Compute
SOURCE: Wang et al. (2018).

The pipscloud platform does not provide any functionality to export data using
OGC standards or to facilitate the reproducibility of science. In addition, it is only
available for internal use by the institutions that participate in the project and its

source code is close and is not available for implementation in other institutions.

28

2.1.7 OpenEO

The OpenEO project started in October 2017 in order to meet the need to consol-
idate available technologies for storing, processing, and analyzing large volumes of
EO data. This demand arises from the difficulty that many users of EO data have in
migrating their data analytics to cloud-based processing platforms. The main rea-
son is not, in many cases, of a technical nature, but the fear of becoming dependent
on the provider of the chosen platform. OpenEO aims to reduce these concerns,
by providing a mechanism for scientists to develop their applications and analyzes
using a single standard that can be processed in different systems, even facilitating
the comparison of these providers. With this approach, OpenEO aims to reduce the
entry barriers for the EO community in cloud computing technologies and in big

EO data analysis platforms.

To this end, this system has been developing as a common and open source’ inter-
face (Apache license 2.0) to facilitate the integration between storage systems and

analysis of EO data and applications of the European program Copernicus.

Figure 2.7 shows the three-tier architecture adopted by OpenEO. The Client APIs
layer consists of packages or modules in R, Python, and JavaScript, which act as
an entry point for the development of analyzes by researchers. This API uses two
terms to describe EO datasets. The Granule refers to a limited area and represents
the less granularity of data that can be managed independently. The Collection is
a sequence of Granules sharing the same product specification (OPENEO, 2022).
The Core API layer is responsible for standardizing Client APIs requests, unifying
access to services provided by data processing technologies and platforms. Finally,
the Driver APIs layer is responsible for the interface between the Core API and the

data storage and processing services (back-end services).

OpenEO uses microservices to implement the Core API These web services use
REST architectural style and are divided into the following functionalities (OPE-
NEO, 2018):

o Capabilities: retrieves the functionality of the back-end services, such as
which authentication methods are supported and which User-defined func-

tions (UDF) can be performed;

e FO Data Discovery: describes which data sets and image Collections are

T<https://github.com/Open-EO>

29

https://github.com/Open-EO

Figure 2.7 - Architecture of the OpenEO project.

s

@ 0‘ pqthon Jav;;':lpt

$ o

P LR RS EEE SR RN '
! |

ClientAPls ! .] :
! : JavaScript | Mobile
: it packase module 1 application '
: \ / |
! 1
X 1
! 1
! 1
1

Core APl 1 1

; openEO .
1
! |
| / T \ I
! 1
! 1
[1
L File-based — High-level |
1 &
: data “g;‘ifg%:ezl API back !

Driver APIs processing '
1
I_ e ;/ ___________ i ___________ X“ EE :

rasdaman, SciDB,
GEE

GeoTrellis, GRASS
GIS. PROBA-V MEP
Apache Spark

Eurac Research,
DIAS, AWS

SOURCE: Pebesma et al. (2017).

available on back-end services;

Process Discovery: provides the types of processing available at each back-

end provider;

UDF Runtime Discovery: allows the discovery of programming languages

and environments for the execution of UDFs;

Job Management: organizes and manages the tasks running at the back-

end providers;

Result Access and Services: provides the services for data recovery and
processing results in the form of OGC Web Coverage Service (WCS) or
OGC Web Map Service (WMS);

User Data Management: manages the user account, such as storage and

processing usage issues; and
Authentication: provides user authentication.

30

The interaction between the Client API and Core API layers is made using 4 ab-
stractions of processing elements, which are used to represent the objects sent by
users to the OpenEO web services. The first, Process Graphs, defines process calls,
including input parameters for previously defined functions. For more complex pro-
cessing, these graphs allow the linking of multiple processes, where one process can
receive another graph as a parameter, and so on. This type of computation invoca-
tion is equivalent to that used by GEE. Tasks represent another abstraction used
in the processing flow adopted by OpenEO. These Tasks can be: Lazy evaluated
jobs; Batch jobs; or Synchronously executed jobs. From the execution of a Job, it is
possible to make its results available through OGC WCS or WMS.

The third abstraction used by OpenEO is User Defined Functions. They are used
to expose, on the server side, data to applications in different ways. They represent
the interface of the functions that users can implement to run on the server side.
The last abstraction provided by OpenEQO is Data View. This functionality allows
the user to select and configure the temporal and spatial resolution of the data to
be viewed. A Data View allows processing on demand, when only the data to be
viewed is processed. This approach is similar to that adopted by the Lazy mode
used by the GEE (OPENEQO, 2018; OPENEO, 2022).

OpenEO does not restrict the technologies used in the back-end for data storage
or processing. Thus, it is not possible to guarantee that all functionalities will be
available or that the applications will work in the same way in different back-ends.
Besides that, OpenEO does not provide facilities to guarantee the reproducibility of

science.
2.2 Assessment of the platforms

We define "Platforms for big EO Data Management and Analysis" as computational
solutions that provide functionalities for big EO data management, storage and
access; that allow the processing on the server side without having to download big
amounts of EO data sets; and that provide a certain level of data and processing
abstractions for EO community users and researchers. EO community users need
efficient and stable solutions that provide analytical tasks and that minimize their
effort and required technological expertise to manage large EO data sets. These
solutions should provide a certain level of data and processing abstraction that allows
scientist to deal with large EO data sets without worrying about technologies such
as database systems, web services and distributed computing. These technologies

should be integrated and presented to scientists in the form of a platform where

31

the complexities of data storage, processing, and infrastructure must be abstracted.
According to Camara et al. (2016), an architecture for big EO data analysis must

meet the following requirements:

o Analytical Scalability: it should cover the entire research cycle, allowing
algorithms developed on personal computers to be executed in massive

computing environments or large data volumes without major changes.

o Software reuse: it should allow researchers to adapt existing methods for

application to large volumes of data with minimal rework.

e Collaborative work: it should allow results to be shared with the scientific

community.

e Replication: it should encourage research groups to deploy their own in-

frastructure.

Ariza-Porras et al. (2017) list the following characteristics needed in a system for

managing and analyzing EO data of interest to their research group:

o Data ownership: historical out-of-the-box data series should be available

without reliance on external services.

o FEaxtensibility: new processing algorithms should be easily added to the sys-

tem.

o Lineage: the origin of the results should be identifiable by the algorithms

and parameters used.
o Replicability: results should be replicable.

o Complexity abstraction: developers should be able to create new algorithms
without interacting directly with the data query API. Developers should

work with multidimensional arrays.

o Fase of use: The user interface should allow analysts to execute algorithms
without long training. Developers should be able to create new algorithms

using programming language knowledge with a small learning curve.

o Parallelism: Available computing resources should be used effectively by

the system.

32

The demands and needs presented by Camara et al. (2016) and Ariza-Porras et al.
(2017) motivated us to define ten capabilities to serve as criteria for evaluating the
platforms presented in this work. The following list provides each capability name,
its description, and, when applicable, its associated term proposed by other authors

in parentheses:

« Data abstraction: the capacity to provide data abstraction, hiding from
scientists details about how data is stored without limiting its access mode

(Complexity abstraction; Ease of use).

e Processing abstraction: the capacity to provide data processing abstrac-
tion, hiding from scientists details about where and how data is processed,

without limiting its processing power (Complexity abstraction).

o Physical infrastructure abstraction: the capacity to hide from sci-
entists aspects regarding the number of servers, hardware and software

resources (Analytical scalability; Complexity abstraction).

o Open Governance: the capacity of the scientific community to partici-

pate in the governance and development of the platform.

« Reproducibility of science: the capacity to provide means that allow
scientist to share their analysis and/or reproduce the results among other

researchers (Collaborative work; Replicability).

o Infrastructure replicability: the capacity to replicate the software stack,

processes, and data on own infrastructure (Replication).

» Processing scalability: the capacity to scale processing performance by
adding more resources (hardware/software) without a direct impact on the

way scientists conduct their analysis (Parallelism).

» Storage scalability: the capability to scale storage space by adding more
resources (hardware/software) without a direct impact on how scientists

access data (Parallelism).

« Data access interoperability: the capacity to provide means, based on
standardized interfaces, that allow other applications to access analysis

results or data sets available in the platform.

33

« Extensibility: the capacity to add new software tools that utilize the stor-
age and processing modules available internally in the platform (Analytical

Scalability; Software reuse; Extensibility).

In this work, we evaluate these ten capabilities of the platforms Google Earth Engine
(GEE), Sentinel Hub (SH), Open Data Cube (ODC), System for Earth Observation
Data Access, Processing and Analysis for Land Monitoring (SEPAL), OpenEO,
JEODPP, and pipsCloud. Table 2.1 presents a summary of this evaluation. For
each platform, we classify each capability in three levels: low, medium, and high.

The following paragraphs present details about the platform capabilities.

GEE, ODC, OpenEQO, and SH provide high data abstraction to facilitate data access
by users. On these platforms, users can make queries with spatial and temporal
criteria to select the data set of interest. GEE uses the concept of ImageCollection
to represent the data sets stored in these platforms. ODC uses the concept of Product
and delivers data through a multidimensional data, while OpenEQO uses the concept
of Collection for these structures. SH provides access to data through Data Sources
that can be accessed through services. SEPAL, JEODPP, and pipsCloud do not
provide data abstraction. On these platforms, data is accessed through direct file

manipulation.

Regarding the abstraction of data processing, we consider that no platform fully
meets this capacity. GEE and SH platforms make transparent to users how and
where processing is performed, but limit or hinder the use of a non-pixel-by-pixel
processing approach. ODC does not have this limitation, but it requires the user to
be aware of the processing mode used. In this platform, it is possible to perform
sequential or parallel processing. For parallel mode, ODC provides a toolkit to fa-
cilitate application development, which should be developed by the user. OpenEO
provides a complete interface for performing server-side processing transparently, but
it demands that such functionality must be available on the back-end used. Thus,
the processing abstraction may or may not be observed in the OpenEO, depending
on the chosen back-end platform. SEPAL, JEODPP, and pipsCloud platforms do
not have processing abstraction capabilities because they require users to develop
their applications and access data directly through files. On these platforms, paral-
lelization or distribution of processing must be implemented and managed by the

users themselves.
GEE, OpenEO, and SH platforms provide a high abstraction of the physical infras-

34

2IBM]JOS 9DINOS PISO[d

Aiegoradoag :morg

aremjjos Arejaradoad
UM pajeISejul aIemijos
901nos uado wunIpaA

9I'M}JOS 9DINOS POSOd

Arejoradorg :morg

9IBMJJOS 9DINOS PIsO[d

Kiejoradoag :morg

soanos uadQ YSTH

2IBM]}JOS 9DINOS

poso[o Arejoradorg :morg

Qpoo IRMpow pue

ooanos uad(YSIH

AjIqIsuLIxy

$901A195 DDHO YSIH

§901A195 DHO YSIH

oses
Aue MOy} A\ MO

osea

Aue JNOYIIAN: MO

oseo

Aue IMOYIIAN MO

901A10S O[L], :WINIPAIA

§901A195 DHO YSIH

Kyriqeaadoasjul
sso00® vle(q

uornjos pesor) :YSrHg

pesn pueddeq 93 UO
juopuoda(J :pauyepun

welsAg o[t g
poInquysiq :YyStH

woe)sAg O[T
ponquusiq ‘YStH

S9OIAISS

98r109s 913005 YSIH

S9OIAISS

98ri109s 913005 YSIH

dLLH
pue ‘g¢g ‘waysAg o1 g
peinquysiq ‘YyStH

A3t1qereos
o8ea0l1g

uornjos pesor) Y81y

pesn pueddeq 9Y3 UO
juopuoada(:pauyepun

(IdIN pue ++D)
a[qe[rear uoryeoijdde
ojerduwe) y :wunIpan

IopuoD H ‘WnipaA

9pod umo

SIJ Sund I9s() MO

yoevoadde sonpoydreIy ®
Suisn [ofreted ur pajnooxe
Aresrpewoine apo) YSTH

(L1010 pue uoylLJg)
a[qeqreae uorjeorjdde
ojerdwey y ruwunipan

A3tiqereos
Sursseooad

2IBM]JOS 90IN0S PIsod

Arejoradoig :morf

pasn puadeq o913 uo
#E@ﬂvﬁ@ﬁmwo ‘pauygspun

29IeM)JOS 9DIN0S PISO[D

Kiejoradorg :morg

9IBMIJOS 9DINO0S Paso[d

Krejroradorg :morg

a[qerear
UOT1eJUSWNIOP DISB(
YIIM 9POD 92INOS

uad(rwnipsIN

2IBM1]JOS 90IN0S

poso[o Airejeradoig :mory

a[qelreae
uor1eIULTWNOOP
pue ‘siaurejuod
I9300p ‘epod
9oanos uad(Q YSIH

A3rqeoidag

aanjonajiseqyuy

oses
Aue JNOYIIAA MO

osea Aue JNOYIIA\ ‘MO

oseo
Aue INOYIIA\ MmO

oses
Aue MOYI A MmO

oses

Aue INOYMIA MmO

arqronpoadex
2q 09 99juerens
noylim orqeareys s1diios
pue s3juI] ele ‘wnipajN

oses

Aue INOYIIA\ MO

20UaIds jJo
Ayiqronpoadeay

2IBMJJOS 9DINOS PISO[O

Arejoradorg :morg

K1og1sodax 9o1nos

uado ATuQ :wnipajn

9IBM}JOS 9DINOS POSO[d

Arejorrdorg :morg

9IBMJJOS 9DINOS PISO[D

Arejorrdoig :mory

K1og1sodax 9o1nos

uado A[uQ wunipajn

2IeMmlJjos
20Inos paso[d VQMM?QMOW

Arejoradoid :morf

ssoooixd edouruIoA03

pauge(YStH

90URBUJIBAOLD)

uadQ

aInjonrjseryur
Bursseooid pue o8e109s
ejep yjog YSIH

9INYONIISRIJUT
Bursseooad pue
98wr109s ®lep Yrog YySiH

aInjonrjseiyur 98eIols

©lep A[UQ WNIPaIA

2Injonijseijul 93wvI0ls

ejep A[uQ wnipan

2anjonijyseijul 98eio)s

ejep A[UQ :wnipajA

9IN9)ONIISRIJUT
Bursseooad pue
o8wr109s elep Yrog YSiH

2Injonijseijur 08eiols

ejep A[UQ WNIPaA

uorjoeajlsqe
aJanjonajiseqjul
1ed1sfyg

Buisseooad asim-roxid
uriojred siake|
(s3draosteary) sydrros
wojsny WNIPajA

sqor pue ‘sydeis8
S§S9001J ‘suorjouny

pouya(I-I19s() ‘WNIPIIA

opod umo

SIY SunI I9s() Mo

9poOd uMOo

SIY SUNI I9s() MO

9pod uMo

SIJ Sund I9s() MO

suorjouny astm-roxrd
ﬁvwiuwﬁvwhﬁm ”E:mﬂvwz

A19[00
pue Aeirey ‘wWINIPLIA

uorjorIlsqe
Suisseooadg

s1oAer] pue seouw)SUT

‘oounog eye(YSr1H

a[nueIr)

pue uoroa[[o) ‘Yy3tH

Surpuey
9[Y 300II(] MO

Surpuey
O[Y 30011 MO

Surpuey
oIy 30211 MmO

UuoI309[[0DaINYed,] PU®
‘aanjes ‘uorjos([opesew|
‘o8ew] Y31

josele(]
pue jonpoid ‘YSr

uorjorIlsqe elre

HS

oxguadQ

pnorpsdid

ddaodr

TVddS

HAD

oao

Ayiqede)n

‘sIsAJeue pue juoweSeurw eyep)y 31q 1oy suniojje[d o) Jo serjoede)) - 1°g 9[qRL

35

tructure used for data storage and processing. In the case of GEE and SH, the user
only interacts with their APIs using JavaScript (SH and GEE) or Python languages
(GEE) or OGC web services (SH). For OpenEOQ, physical infrastructure abstraction
is one of the main goals of the platform. Thus, it provides a single interface for

analysis on different back-ends.

The platforms ODC, JEODPP, pipsCloud, and SEPAL partially abstract the phys-
ical infrastructure. Although users have facilities to use ODC, JEODPP, pipsCloud,
and SEPAL through remote resources, it is not transparent for users the use of the

file system or the use of multiple resources for distributed processing.

ODC, SEPAL, and OpenEO platforms are open source and their code are available
in open repositories that allow the scientific community to collaboratively partici-
pate in their development. Considering these platforms, ODC is the only one that
provide publicly disclose documents that formalize the platform governance process
and how to create or incorporate new features into the platform. GEE, JEODPP,
pipsCloud, and SH are closed solutions that do not allow collaborative development

or participation in governance by members outside the responsible teams.

The only solution reviewed that presents a clear initiative in providing reproducibil-
ity of science is the GEE platform. Users can share their scripts and data, allowing
other platform users to reproduce their analysis. Nevertheless, the analysis of re-
producibility of science is a complex issue when we observe that GEE is a closed
solution and that the scripts only represent processing invocations to the platform
API. Changes in algorithm implementations, even if they are corrections, can im-
pact the results observed by running the same script on the same dataset at different
dates. GEE does not provide a versioning system for algorithms or data in public
catalog. For this reason, we consider that GEE provides only an intermediate repro-

ducibility of science capability.

The reproducibility of results in the other platforms is not facilitated through some
platform-specific functionalities. In general, users need to manually share scripts and

data with other users before the analyzes can be replicated.

ODC, SEPAL, and OpenEO platforms allow users to deploy them on their own
infrastructures. ODC, besides providing source code, provides a good documenta-
tion about the platform deployment process and a repository with docker images,
facilitating the platform infrastructure replication process. Differently from ODC,
SEPAL, and OpenEQO have little documentation about the deployment of available

36

applications, making this process difficult. The other platforms analyzed do not

publicly present means to be deployed in user infrastructures.

Regarding the processing scalability, GEE has the best performance gain with the
increase of resources because it uses a MapReduce architecture where data and
processing are distributed using technologies developed by Google. Processing scal-
ability can also be observed in the solution adopted by JEODPP in the production
of visualization data (processing chains). This same capability is not available in the

other data processing modes of the JEODPP, leading us to classify it as medium.

We consider that ODC and pipsCloud partially meet the scalability of processing.
For while, these platforms help users to make better use of processing resources by
incorporating distributed processing tools or code templates. However, the respon-

sibility to implement such solutions is entirely of the users.

A high level of storage scalability is observed in the GEE, SH, JEODPP, SEPAL,
ODC, and pipsCloud platforms. These platforms use or allow the use of distributed
file systems to scale data storage. The file systems themselves used by these solutions
allow new storage features to be added without a direct impact on how users access
data.

Regarding data access interoperability, only ODC, OpenEO and SH platforms pro-
vide standardized APIs for accessing stored data. These platforms provide OGC web
services, such as WMS, WTMS, and WCS. GEE uses a Tile Map Service (TMS) only
to show the results on the web IDE, without explicitly informing the API endpoint.

Only ODC, SEPAL, and OpenEO allow the extension of their functionalities by
including new software tools to the solutions already used by them. ODC stands
out in this capacity because it provides a good documentation about how to add
new features by other users, including the distribution of sample applications for

distributed processing.

To summarize and visually illustrate the rating levels assigned to each platform in the
analyzed capacities, we produced six graphs. Each graph shows a pair of capacities.
When possible, capabilities were grouped by similarities, such as abstraction and

scalability issues.

Figure 2.8 presents a graph illustrating the position of each platform in relation to
data abstraction and processing abstraction capabilities. In this figure, we observe

two groups of platforms, those with low data and processing abstraction (SEPAL,

37

JEODPP, and pipsCloud) and those with high data abstraction and medium pro-
cessing abstraction (ODC, GEE, and OpenEO).

Figure 2.9 illustrates the distribution of platforms against processing and physical
infrastructure abstractions. In this figure, SEPAL, JEODPP, and pipscloud plat-
forms are grouped with low processing abstraction and medium level of physical
infrastructure abstraction capability. ODC presents medium classification in both

categories presented in this figure.

Figure 2.9 - Physical infrastructure ab-

Figure 2.8 - Data abstraction vs Process- ; .
straction ws Processing ab-

ing abstraction.

A straction.
high high
c
il c
= S
© 5]
= ©
3 =
s SR GrenEo & GEE
° [.
2 SH.Open > ODCe SH,OpenEOe
g 2
o S
SEPAL, o
JEODPP, SEPAL,
low | @pipsCloud JEODPP,
—> low o pipsCloud
low) high low high
Data abstraction Physical infrastructure abstraction

Figure 2.10 presents the position of each platform in relation to reproducibility of
science and infrastructure replicability. In this graph we can observe that, in terms
of infrastructure replicability, the highlight is ODC, while GEE stands out in the
reproducibility of science axis. JEODPP, pipsCloud, and SH have none of these

capabilities.

Figure 2.11 presents a graph that shows platforms in relation to storage scalability
and processing scalability capabilities. Note that all platforms appear at the top of
this figure. SEPAL appears in the top left corner, pipsCloud, JEODPP, and ODC
are rated with medium processing scalability and the platforms that appear in the

upper right are only GEE and SH.

Figure 2.12 maps the extensibility and data access interoperability capabilities.
Among the graphs showed in this Chapter, this graph presents the largest dispersion
among the capabilities of the platforms. At the lower left corner, we have JEODPP
and pipsCloud, while in the lower right corner only the SH appears. ODC appears at

38

Figure 2.10 - Infrastructure replicability

Figure 2.11 - Processing scalabilit V8
vs Reproducibility of sci- & & Y

Storage scalability.

ence. A
i high
high '9 ®SEPAL epipsCloud, e
JEODPP, (3,23

o)
2 > L1
2 = O
? 3
G ©
= b
= |®GEE g
2 8
=]]
B n
a
(0]
& JEODPP,

pipsCloud, |
ow |@SH ®SEPAL ODCe o >

low highD low b \abil high
rocessing scalabilit
Infrastructure replicability "9 y

the upper right corner, highlighting its high level in these two capabilities. SEPAL
is in the northwest corner, showing good extensibility, while GEE shows a medium

data access interoperability.

Figure 2.13 presents a graph relating the extensibility and open governance capabil-
ities. In this figure we can observe four groups. The first is formed by the platforms
GEE, JEODPP, pipsCloud, and SH that does not have these capabilities. In the
upper part, SEPAL appears at the center of the open governance axis, while ODC
appears on the right edge. The latter group appears at the center of both axes and
is formed only by OpenEO platform.

Figure 2.12 - Data access interoperability Figure 2.13 - Open Governance vs Exten-
vs Extensibility. sibility.
A A
Niah | o SEPAL oDCe high ®SEPAL ODCe

2 2
5 el
% #OpenEO % eopenEO
i i
GEE,
JEODPP,
JEODPP, pipsCloud,
low |e@pipsCloud OGEE SHe low |®@SH
—>
low high low high
Data access interoperability Open Governance

39

2.3 Final remarks and discussion

From the point of view of data abstraction and processing, OpenEO is the system
that provides the most flexible solution to the scientist. Process chaining through
Process Graphs allows a high degree of abstraction of processing tasks, equivalent
to the solution used by GEE. Besides that, OpenEO allows the scientist to use User
Defined Functions, which allow data processing in different modes (scenes, time
series, cubes, and windows). The shortcoming of this processing mode is the lack of

support to operate on more than one image.

On the other hand, OpenEO cannot guarantee that back-end systems will provide
data, features, and implementations that are compatible with each other. This fact
can limit the execution of the same analysis on different back-ends or require re-

searchers to adapt their applications.

From the standpoint of ease of use and development maturity, GEE is the platform
that delivers the best solution for users. However, it has limitations because it is
a closed platform, especially as to guarantee the reproducibility of the analyzes.
Another important issue to consider is the lack of guarantee of platform continuity,
as it is not possible to replicate GEE in a particular infrastructure. These drawbacks

are also shared by Sentinel Hub.

The technological solution adopted by SEPAL is more focused on infrastructure
management and the provision of tools for the analysis of EO data. Big data chal-
lenges are not directly addressed by this platform, leaving the user with the burden
to make efficient use of available hardware and software resources. The ability to
order hardware on demand, as provided by this platform, implies moving data to
perform processing. This strategy may be efficient for CPU-bound tasks, but in I/O-
bound computations, the approach of moving analysis closer to the data (moving

code paradigm) is more appropriate.

Among the analyzed platforms, ODC is the solution that presents the best balance
between the analyzed capacities. The drawback of the ODC solution is mainly the
lack of support for reproducibility of science, which is not found in the others either.

On the other hand, the other capacities evaluated are at least partially met.

Recently, ODC has been used by different projects to manage multidimensional data
cubes created from remote sensing images for a specific country, such as the Aus-
tralian Data Cube (LEWIS et al., 2017), Swiss Data Cube (GIULIANT et al., 2017),

40

and Africa Regional Data Cube (KILLOUGH, 2019). In these projects, Analysis
Ready Data (ARD) generated from Earth observation satellite images are modeled
as multidimensional data cubes, especially for image time series analysis (NATIVI
et al., 2017). Such data cubes have three or more dimensions that include space,
time, and spectral derived properties. These data cubes can also be defined as a

set of time series associated to spatially aligned pixels ready for analysis (APPEL;
PEBESMA, 2019).

This novel worldwide trend in creating multidimensional data cubes from big
amounts of remote sensing images brings new challenges for SDI. A novel generation
of SDI has to properly store, access, visualize, and analyze these multidimensional
data cubes, based on image time series processing. Following this trend, ODC pro-
vides functions to index multidimensional data cubes and to handle them, partially

meeting these challenges.

Building a platform that fully meets all the capabilities discussed in this Chapter
is a big challenge. The greater the degree of abstraction delivered to the scientist,
the greater the difficulty in providing flexibility in data processing approaches. The
solution, perhaps, is to provide a platform with two forms of processing for the
scientist. The most frequently used features could be made available through a
high abstraction API, similar to that provided by OpenEO and GEE. For more
complex analyzes, the platform could allow its extension through a framework, such
as the solution adopted by ODC, so that the scientist has direct access to data
and infrastructure processing capabilities. Besides that, the use of distributed data
storage is important to minimize data movement during processing. In this approach,
processing would occur where data is stored, using the moving code approach. In
the scenario presented in this Chapter, we believe that ODC is the solution that

presents the best conditions to evolve to a platform with these characteristics.

41

3 ACCESSING AND PROCESSING BRAZILIAN EARTH OBSERVA-
TION DATA CUBES WITH THE OPEN DATA CUBE PLATFORM!

In recent years, the amount of Earth Observation data freely available has grown,
motivated by technological advances in acquisition and storage equipment and space
agencies’ policies that make their data repositories available. The estimated volume
of EO data produced in 2019 by Landsat (7 and 8), MODIS (Terra and Aqua units),
and the Sentinel missions (1, 2, and 3) exceeded 5 PB (SOILLE et al., 2018). The
technological challenges to store, process, and analyze these large data sets impose
significant restrictions for EO community scientists to take advantage of all potential
of these resources (CAMARA et al., 2016; STROMANN et al., 2020).

A Spatial Data Infrastructure (SDI) provides an environment that allows people and
systems to interact with technologies to foster activities for using, managing, and
producing geographic data (RAJABIFARD; WILLIAMSON;, 2001). In the last years,
SDIs have been built using technological components that implement standards pro-
posed by Open Geospatial Consortium (OGC) and Organization for Standardization
(ISO) to represent, store, and disseminate spatial data. Even with these standards,
most current SDIs are focused on EO data sharing and dissemination in the form of
individual files through web portals and HTTP, FTP, and SSH protocols (MULLER,
2016).

In the scenario of big EO data, the proper management, processing, and dissemina-
tion of this vast volume of data poses a challenge for EO system infrastructures. The
needs in this scenario demand more precise and structured research services, auto-
mated acquisition, calibration and availability processes, and the possibility of data
being processed without having to be moved through the network (WOODCOCK
et al., 2016).

To address these challenges, the scientific community recently adopted the Earth
Observation Data Cube paradigm, which, through specialized technologies, seeks to
change the way researchers deal with these large volumes of EO data (GIULIANI et
al., 2019). Even though there is no consensus on the definition of the term EODC,
these systems are software infrastructures that manage large time series of EO data
using multidimensional array concepts, facilitating the access and the use of Analysis
Ready Data (ARD) by users (NATIVI et al., 2017; GIULIANTI et al., 2019).

LA version of this Chapter as published on the "ISPRS Annals of the Photogrammetry, Remote
Sensing and Spatial Information Sciences" (GOMES et al., 2021). The paper is authored by Vitor
C. F. Gomes, Felipe M. Carlos, Gilberto R. Queiroz, Karine R. Ferreira, and Rafael Santos.

43

Many institutions have been developing technologies that use these concepts and
can be considered EODC (GIULIANI et al., 2019), such as Open Data Cube
(ODC) (OPEN DATA CUBE, 2022b), Google Earth Engine (GEE) (GORELICK
et al., 2017), JRC Earth Observation Data and Processing Platform (JEODPP)
(SOILLE et al., 2018), Sentinel Hub (SH) (SINERGISE, 2020a), or Brazil Data Cube
(BDC) Platform (FERREIRA et al., 2020). These platforms adopt different data
abstractions, standards, or technological solutions to provide their functionalities
despite similar functionalities (GOMES et al., 2020). ODC and BDC, for example,
are both open source solutions that use different data abstractions and methods
to process and prepare ARD. BDC Platform uses an R package, called sits (CA-
MARA et al., 2018) for land use and land cover mapping, while ODC focuses on
all data processing and analysis using Python language and xarray package. GEE
and Sentinel Hub are commercial solutions that allow users to access and process
large EO catalogs using, each one, specialized APIs and different web services. For
data abstraction, GEE uses Image/ImageCollection and Feature/FeatureCollection,

while Sentinel Hub uses Data Source, Instances, and Layer concepts.

As a consequence of the difference in the way each platform manages data and
provides access and processing to users, there is a lack of interoperability between
these solutions, making it a challenge to discover, access, and share processes between
EODCs (NATIVI et al., 2017; GIULIANI et al., 2019).

One of the leading platforms in the EODC scenario (GOMES et al., 2020) is the Open
Data Cube, which is composed of a set of tools and services for the management,
processing, and access to EO data and which has been used by several initiatives
and institutions around the world. In July 2019, there were 56 initiatives for ODC, 9
of which are operational, 14 under development, and 33 under review (OPEN DATA
CUBE, 2019). The expectation is that there will be 22 operational instances of ODC
in 2022 (KILLOUGH, 2018).

In the Brazilian context, the National Institute for Space Research (INPE) leads the
development of the Brazil Data Cube Platform for management and analyzing mas-
sive EO data. The main objectives of the BDC project are to produce cubes with
Analysis Read Data in medium resolution for the Brazilian territory that allows
the analysis of time series and the use and development of technologies for pro-

cessing and storage of those data cubes, including cloud computing and distributed

processing (FERREIRA et al., 2020).

This Chapter presents the integration process between the data products of the BDC

44

project and the ODC framework. This integration aims to expand the services and
tools that can be used to access, view, and analyze the EODC produced by the BDC
project. Besides, the integration intends to allow algorithms previously developed
for ODC technology to be more easily adapted for use with the BDC data.

The remainder of this article is organized as follows. In Section 3.1, we present
an overview of the Open Data Cube and Brazil Data Cube platforms. Section 3.2
the process used to integrate the systems and the developed tools is presented. Sec-
tion 3.3 presents the results of the integration of the ODC components with the data
and services of the BDC. Finally, in Section 3.4, we make the final considerations

regarding the challenges encountered and the next steps that will be developed.
3.1 Earth Observations Data Cubes

Earth Observations Data Cube is commonly used to refer to multidimensional arrays
with space, time dimensions, and spectral derived properties created from remote
sensing images (APPEL; PEBESMA, 2019). This term is often used to refer to ana-
lytical technology solutions that make use of these data structures. The term can also
be found to refer to analytical, technological solutions that allow the management,
processing, and analysis of these data structures (GIULIANI et al., 2019).

Recently, many institutions have been creating EO data cubes from remote sensing
images to specific regions, such as Australian Data Cube (LEWIS et al., 2017),
Swiss Data Cube (GIULIANI et al., 2017), Armenian Data Cube (ASMARYAN et
al., 2019), Africa Regional Data Cube (KILLOUGH, 2018), Colombian Data Cube
(CDCol) (ARIZA-PORRAS et al., 2017), and Brazil Data Cube (FERREIRA et al.,
2020). Except for the last one, the other initiatives use the framework Open Data
Cube as the core technology to index and handle the EO data. These initiatives
use ODC as a starting point and build custom applications to accomplish specific
demands. The CDCol initiative, for example, implements tools to handle a bank
of algorithms and its live cycle (in development, published, obsolete, and deleted)
and user roles to distinguish the responsibilities of users in the platform (ARIZA-
PORRAS et al., 2017). On the other hand, the Brazil Data Cube platform uses
its own tools to produce and manipulate data cubes, but it has been developing
tools to integrate its solutions with the ODC framework, such as the one presented
in this work. The following subsections present details about the Open Data Cube

framework and the Brazil Data Cube platform.

45

3.1.1 Open Data Cube

The Open Data Cube is a framework that allows the cataloging and analysis of
EO data. It consists of a set of data structures and Python libraries that allow the
manipulation, visualization, and analysis of that data. The source code of ODC is

available under Apache 2.0 license and is distributed as modules on github?.

The module datacube-core is responsible for indexing, searching, and retrieving cat-
aloged data. It consists of a Python package and command-line tools that use a

PostgreSQL database to store metadata for managed data.

In indexing the data, the description and metadata of a Product is initially registered.
Product is the abstraction used by ODC for data collections that share the same
measures (bands) and metadata. Then, information about the Datasets that together
represent a Product are recorded. Datasets represent the smallest aggregation of
managed data, they usually are scenes of a given Product stored in files (OPEN
DATA CUBE, 2021).

After indexing the EO data in an ODC instance, it is possible to use an ODC Python
APIT to access and process it. ODC also provides other modules for: data visualiza-
tion (datacube-explorer); performing temporal statistical analysis (datacube-stats);
disseminating data through OGC services (datacube-ows); illustrates the usage of
ODC Python interface (datacube-notebooks); etc.

Also, ODC has a catalog® with the source code of applications that use the ODC
Python API to access data cubes and perform specific analyzes. The Committee on
Earth Observation Satellites (CEOS) also provides a repository (CEOS, 2021) with

algorithms for processing data accessed in an ODC catalog.
3.1.2 Brazil Data Cube

The Brazil Data Cube project has objectives to produce Analysis Ready Data struc-
tured in data cubes in medium resolution for the entire Brazilian territory. For this,
the BDC project uses and develops technologies necessary for the processing, anal-
ysis, and dissemination of these data products and to produce information on Land
Use and Land Cover from the cubes using machine learning methods and image
processing techniques (FERREIRA et al., 2020).

2<http://github.com/opendatacube>
3<https://www.opendatacube.org/dcal >

46

http://github.com/opendatacube
https://www.opendatacube.org/dcal

Figure 3.1 illustrates the services and products of the Brazil Data Cube platform.
The first layer, below, represents the generating process of ARD data sets used to
create the data cubes. The layer above represents the cataloging of the metadata of

the generated data products.

The data and metadata of the data products produced by the BDC are accessed
and processed through web services presented in the Services layer. Services using
standard protocols are available, such as Tile Map Service (TMS), Web Feature
Service (WFS), Web Map Service (WMS), and Web Coverage Service (WCS). In
addition to these, there are also special-purpose services developed by the project
team, such as Web Time Series Service (WTSS) (VINHAS et al., 2016) and Web
Land Trajectory Service (WLTS).

The Brazil Data Cube platform also makes its data products publicly available
through a STAC service?.

The applications, available to end-users, use these web services to access the data
cubes produced by the BDC. In this project’s structure, ODC behaves like an ap-

plication that uses BDC services to consume and index metadata and EO data.

All software products developed by BDC are available under MIT license in the

project’s source code repository®.
3.2 Methodology

Four steps were necessary to accomplish the integration between BDC’s data prod-
ucts in the ODC platform and the availability of a computational environment to
use the new integrated functionalities. Figure 3.2 illustrates these four steps and the
associated data flow from BDC Platform to the BDC’s ODC instance.

The first step was to prepare an ODC instance of the BDC project’s computing
infrastructure. For this, an instance of the PostgreSQL DBMS was implemented
to store the products and datasets catalog metadata (ODC-db). Also, a Docker
container (ODC-core) with the datacube-core module of the ODC framework was
deployed, which provides the necessary tools to index and manage the metadata
catalog. This instance and all the others created in this integration process have
direct access to a file system that contains the BDC data repository. Thus, no data

replication is required for shared use between the BDC tools and the ODC instance.

4<http://brazildatacube.dpi.inpe.br/stac>
®<https://github.com /brazil-data-cube>

47

http://brazildatacube.dpi.inpe.br/stac
 https://github.com/brazil-data-cube

Figure 3.1 - Brazil Data Cube Project: data and software products.

Applications
. Interactive computing Satellite Image Time Open Data
‘ Web Portal ’ Forest Monitor JupyterHub Series (SITS) R package Cube (ODC)
Services :

Web Time Series Service
(WTSS)

Web Sample Assessment
Service (WSAS)

Web Land
Trajectory Service (WLTS)

Catalog (STAC) Service

SpatioTemporal Asset
Service (TMS) WFS, WMS e WCS System Service (WLCSS)

Tile Map ’ { OGC Web Services - ’ [Web Land Classification J

Data and metadata
ymmmmmmmmmm—--- N
' ' C >
1 1
1 1
' % % . Metadata - Land use and Land use and
0 1 _ collections of cover samples cover data sets
' Image DEREIED images and data and metadata and metadata
1 collections collections : cubes
1
N e e e e e e 1

External providers Data acquisition, processing and data cube generation

% |:> Image Collection Builder Data Cube Builder

(Image acquisition, ARD builder and (Warping, temporal compositing,
co1?;§3§ns metadata publishing) and metadata publishing)

SOURCE: Ferreira et al. (2020).

To facilitate readability, we will use the acronym BDC-ODC to refer to the ODC

instance running on the BDC project infrastructure.

The other three integration steps are the indexing of BDC data products in the BDC-
ODC (Step 2), the adaptation and configuration of ODC framework services in the
BDC-ODC (Step 3), and the provision of a multi-user computational infrastructure
to access and processing of data indexed in the BDC-ODC (Step 4). The following

subsections detail these tasks.
3.2.1 Data indexing

The BDC STAC service was chosen as the source for access the BDC project prod-
ucts’ data and metadata. This choice over direct access to the BDC database was

motivated by leveraging other future available catalogs’ indexing through this spec-

48

Figure 3.2 - Overview of data flow from BDC data to the BDC-ODC instance.

Step 3: ODC services

integration
BDC Stac u '
Service ODC-apps Jupyter-Hub
stac2odc ODC-core
Step 2: Indexing the Step 4: Computational

BDC data on BDC-ODC - Infrastructure
ODC-db

Step 1: Preparing the
BDC-ODC Instance

ification.

From this choice and motivated by the need to manipulate large volumes of data
from the BDC, an application was developed, called stac2odc, to automate reading
the STAC catalog and indexing the metadata in the BDC-ODC.

Figure 3.2 presents an overview of the data flow used in this integration. It can
be seen that the stac2odc tool is responsible for collecting the data in the BDC
catalog and, after converting it, storing it in the BDC-ODC catalog through the
datacube-core module. From that moment on, the data will be available for use in

other applications.

The stac2odc tool maps the BDC STAC catalog metadata to the format accepted by
the ODC. The mapping specification is done through a configuration file. This option
allows changes to the BDC or ODC metadata structures to be easily incorporated

into the tool.

Listing 3.1 shows an example of the configuration file in JSON format used by
stac2odc tool. In this example, it is possible to view the mapping definition struc-
ture. The JSON keys represent the values’ source, and the respective values represent
the destination in the ODC metadata file to be generated. This file can also define
external scripts (custom_mapping.py) for the translation of metadata or constant

values.

49

10

11

12

13

14

This configuration file also allows the user to inform the location where the data
products consulted at STAC are stored. With this information, stac2odc does not
need to duplicate the data in the BDC project infrastructure. On the other hand, if
it is of interest to the user, it is possible to inform a target folder to download the
data being indexed. This feature is handy for researchers who want to populate a
particular instance of the ODC with data from the BDC project.

Listing 3.1 - Example of an stac2odc configuration file.

{
"product": {

"fromSTAC": {

"name": {
"from": "id",
"customMapFunction": {
"functionName": "transform_id",
"functionFile": "custom_mapping.py"}
i
"storage.crs": "bdc:crs",
"fromConstant": {
"metadata_type": "eo",
"measurements.units": "meters"}}}

3.2.2 ODC services integration

With BDC data products indexed in BDC-ODC, they are now ready for use through
the command line tools and the ODC Python API, available on the datacube-core

module.

The ODC provides a wide range of tools and services in its ecosystem in a modu-
lar way. For this first phase of integrating BDC data products into the ODC, the
datacube-ows, data-explorer, datacube-stats, and datacube-ui modules have been
chosen. The following paragraphs present the functionalities and considerations

made for each module’s configuration during this integration.

The datacube-ows module allows the dissemination of data indexed in the ODC
catalog through web services in the OGC WMS, WMTS, and WCS standards. Its
configuration is done through a command-line tool, which helps to create indexes

used by the service in the database. This module also requires creating a configura-

20

tion file with the description of the products to be published and their associated
styles.

Changes to datacube-ows module source code were necessary to use this module
with the BDC data products. These changes were made to adapt how a Coordinate
Reference System (CRS) is handled in the module internal operations. The BDC
project uses a CRS generated specifically for its data products to reduce geometric
distortions in the data generated for South American territories (FERREIRA et al.,
2020). The CRS used by the BDC project does not have a standard EPSG code,

which is required by the original code of the datacube-ows module.

The datacube-explorer module provides a simple web interface for searching data
and metadata indexed in the ODC catalog. This application also provides a STAC
API for advanced searches. Similar to datacube-ows, this module is also configured
using a command-line tool. This tool creates new tables in the database used by
the ODC and populates them with the information used by the module. During
the configuration of the datacube-explorer, it was also identified the lack of support
for the use of CRS that does not have a standard EPSG code. For this reason, it
was necessary to modify the source code of the tool in order to make possible the
use of custom CRS. This capability was implemented by adding a new command
line parameter,-~custom-crs-definition-file, which allows users to inform the
location of an additional configuration file. This file allows linking a CRS, defined
through a PROJ String, with an arbitrary EPSG code. These settings are made in
JSON format. Listing 3.2 presents the configuration used for the use of the BDC

data products in the datacube-explorer module.

Listing 3.2 - BDC custom CRS definition file used in datacube-explorer module.

{"epsg:100001": "+proj=aea +lat_0=-12 +lon_0=-54 +lat_1=-
2 +lat_2=-22 +x_0=5000000 +y_0=10000000 +ellps=GRS80 +

units=m +no_defs"}

The need to process a large volume of EO data often requires the researchers to use
advanced techniques such as parallel processing and efficient data management in
memory. These requirements can represent a barrier for users who want to process

and analyze data but do not have enough technical expertise for this complex task.

To address these needs, the ODC datacube-stats module provides a simple inter-
face for processing the data indexed in the ODC catalog and automatically managing

the computational resources used in this process. In the integration of this module in

51

the BDC-ODC, the configuration of the Dask tool was also done to allow the parallel
and distributed analyzes. Dask® is a Python library that provides data structures

and tools for scheduling tasks across multiple processing nodes.

Finally, the datacube-ui module was configured. Unlike the other modules used, the
datacube-ui is available in the CEOS github repository”. This module provides a full-
stack Python web application for performing analysis on data indexed in an ODC
catalog. This application’s objective is to provide a high-level interface for users to
access the indexed data, perform analyses previously configured in the tool, and
easily access the metadata of the analyses performed (CEOS, 2021). This module
currently comes with analysis application code such as Cloud coverage detection,
Coastal change, Water detection, and spectral indices calculation. It is also possible
to include new applications through a template included in the documentation of

this module.

Currently, the applications previously available in datacube-ui are not in use in the
BDC project due to the incompatibility between the data and metadata required
by the applications present in this module and those available in BDC-ODC. The
usage of this module is currently more focused on the access and visualization of

indexed data and metadata on the BDC project.

The implementation of datacube-stats and datacube-ui modules in the BDC-ODC

did not require changes in their source codes.
3.2.3 Computational infrastructure

The processing and analysis of the large volume of EO data indexed in the BDC-
ODC may require many computational resources. To allow BDC researchers to con-
sume this data, a computational infrastructure was prepared. This infrastructure,

illustrated in Figure 3.3, provides a multi-user web interface for processing the data
indexed in the BDC-ODC.

The infrastructure presented was done using JupyterHub technology, which provides
for each user a ready-to-use isolated environment. The available environments are
created by the DockerSpawner module of JupyterHub®, through Docker images. In
these images is stored a set of instructions for creating the environment. Different

images can be created and used in the DockerSpawner, which makes the definition

6<http://dask.org>
"<https://github.com/ceos-seo>
8 <https://jupyter.org/hub>

52

http://dask.org
https://github.com/ceos-seo
https://jupyter.org/hub

Figure 3.3 - Computational infrastructure BDC-ODC.

— OAuth — ettt :
! o ® DockerSpawner \
_
? < : Jupyterhub | > & i
! N’ :
! || spawn 1
' 1
_ pe— ' |ODC Catalog |BDC/ODC Apps % k)Méi
1 ‘ N —y
' | % . |datacube-exp|orer U ‘ ¥
> ! : T T i
| |datacube—ows U ‘ H
1 Dask Scheduler T — H
: Workers |da.tac.LJbe,_u,l k) ‘ :
1 7 ; o
! f \”maﬂ datacube-stats 7 {J ‘ O
| YT
1
1

‘BDC Data Repository ‘

of environments flexible to users’ needs. User authentication is done with the BDC-

OAuth service, previously used in other services of the BDC project.

This infrastructure was configured in the data processing servers of the BDC project.
For this, Docker images were prepared for the use of datacube-core and datacube-
stats tools, being added in the images all the software dependencies of each one of
these tools. An instance of Dask Scheduler and Dask Workers was also configured to
enable distributed processing in datacube-stats. When an environment is generated
by DockerSpawner, it is configured to have direct access to the file system where
the BDC data repository is stored. The environment also has access to the database
server used by BDC-ODC.

Besides the Docker images for the use of the BDC-ODC, there are also available in
the JupyterLab Docker images with other tools used by the BDC project team, such
as SITS (CAMARA et al., 2018) and GDALCubes (APPEL; PEBESMA, 2019).

3.3 Results

This section presents the use of the modules and tools made available after the
ODC integration in the BDC project platform. Other examples of using the tools
presented and the documentation of the changes made can be found in the code

repository of BDC project.

23

The configuration of the datacube-ows module made possible the consumption of
the data indexed in the BDC-ODC through the WMS, WMTS, and WCS services.
These services bring benefits to several applications by allowing quick access to
data, making it possible to perform data processing and visualization. An example
of the use of the WMS service can be seen in Figure 3.4. In the example, through a
web page, Landsat-8/OLI data from the whole Brazilian territory is presented. The

creation of the presented mosaic is done on-the-fly by the datacube-ows module.

Figure 3.4 - Consumption of data products through WMS via datacube-ows.

The modifications made to the datacube-explorer made it possible to use it to per-
form space-time searches of the data indexed in the BDC-ODC. All operations can
be performed through a web interface, which allows, besides the search, to inspect
the metadata of each Dataset identified. Figure 3.5 presents the result for a search

made for January 2020 in all Brazilian territory.

For data processing, the datacube-stats tool facilitated the extraction of time statis-

tics from indexed data. With this module, the processing of large spatial extensions

o4

Figure 3.5 - Explorer presenting data from the CBERS-4 collection indexed in BDC-ODC.

CB4_64_16D_STK_1: This datacube was generated with all available surface reflectance v January v All days v

images from CB4_64 cube. The data is provided with 64 meters of spatial resolution,
reprojected and cropped to BDC_LG grid, considering a temporal compositing function of
16 days using the best pixel approach (Stack). v

JAMAICA) - .
- | ‘ (OFOOTPRINT ®DATASETS
L.

%, CB4 64 16D STK 1
across January 2020

VENEZ Last processed 2 days ago
| 76 datasets
et | 11,223,381km? (approx.)
No configured regions @
Entirely EPSG:100001

‘20 metadata:

format GeoTiff

instrument AWFI

label «

platform CBERS4
product_type cyclic_16_day

Product information

to extract metrics from the data can be done by users without technical knowledge.
This tool hides from the user the complexity of the processing distribution. To illus-
trate the use of datacube-stats, the extraction of the temporal average of NDVI data
CBERS-4/WFTI was realized in the whole Amazon biome between January 2018 to
July 2020. The results are presented in Figure 3.6.

The extraction of time metrics from the data, presented in Figure 3.6, was per-
formed in the prepared computational infrastructure based on JupyterHub. The
possibility of adding ready-to-use environments, easily customized with the users’
needs, made it simple to apply the indexed data in different contexts. To show an-
other customization of this infrastructure and the use of existing applications for
the ODC, Figure 3.7 presents the result of the execution of a code developed by
CEOS researchers to cluster pixels of a Sentinel-2/MSI scene (CEOS, 2021). The

scene chosen for this analysis is located in the state of Roraima, in Brazil.
3.3.1 Code and data availability

All the tools necessary to reproduce the activities presented in this work are available

in the repository <https://github.com/brazil-data-cube/bdc-ode>.

95

https://github.com/brazil-data-cube/bdc-odc

Figure 3.6 - Temporal NDVI Mean from Landsat-8/OLI collection in 01/2018 to 07/2020.

In this repository, the following are available: i) the source code of the stac2odc
tool and usage documentation; ii) the modified ODC modules; iii) documentation of
changes made to the ODC modules; iv) the configuration files used in the deployment
of ODC modules; and v) Dockerfiles to generate the images used in this integration.
We believe that the content of this repository allows an interested researcher to
prepare an ODC instance in his local infrastructure with the data available in the

BDC’s STAC catalog, including the modules presented in our integration.

The added usage documentation was created following (KILLOUGH, 2018) recom-
mendations. Thus, details have been passed on so that others can understand and

consume the lessons we have learned during the integration process.
3.4 Discussion and final remarks

In this work, we presented the integration process between the Open Data Cube
framework with the Brazil Data Cube project’s data products. The results obtained
indicate that the integration approach, done through the conversion of metadata
formats and linking with the existing data repository, can be used as an initial form

of interoperability between the technologies. The tool created for such a process is

26

Figure 3.7 - Computational infrastructure used to clustering Sentinel-2/MSI pixels in Ro-
raima state, Brauzil.

KMeans Clustering - S2_10_16D_STK_ 1

This document presents an example of spectral clustering in the Sentinel-2 collection V1 (S2_10_16D_STK_1) of the BDC.

This simple example aims to present how to clustering the data from the BDC stored inside the ODC. To know all the possible products, use BDC-STAC.
import datacube
import numpy as np

import matplotlib.pyplot as plt

from utils.data cube utilities.dc display map import display map

Load the data cube index. This allow search indej

dc = datacube.Datacube(app='datacube")
PRODUCT_NAME = "S2 10 16D STK 1"

Using S2_10_16D_STK v1 products

To begin with, the area of study is defined. The area seleq

longitude = (-61.6553, -60.4935)
latitude = (1.9744, 2.6907)

independent of the source of the data. This tool can be used to consume other data

services that implement the STAC specification.

The addition of the ODC ecosystem modules to the BDC-ODC complemented the
BDC’s technology base to disseminate and process the large volumes of data gen-
erated by the project. With the use of datacube-ows, the BDC data cubes became
available through standardized and interoperable interfaces, such as OGC WMS,
WMTS, and WCS. These services allow researchers use well-known geographic in-

formation systems (GIS) to consume these data.

In this study, an example of using the datacube-stats for the processing of NDVTI time
averages for the entire Amazon biome was presented. This tool, the functionalities
of the datacube-core module and the computational infrastructure defined in this
work, can be used as a reference setup for the application of time-first, space-later

approaches that analyses the temporal variation of EO datasets.

Even with the benefits presented and the ODC tools’ maturity, the integration re-
quired adaptations to some modules’ source code for their adequacy and use with
the BDC data. Such modifications were made to the datacube-ows and datacube-

explorer modules, which out-of-the-box expected data that had a coordinate refer-

o7

ence system (CRS) with a standard EPSG code. The modifications made improve
the ODC ecosystem tools, making their use possible in more general scopes of data
cubes. However, further testing is needed to verify that any defined coordinate ref-

erence system is compatible.

Although the process of this work still represents the beginning of the integration
process between ODC and BDC technologies, we believe that there are two main
contributions presented: the provision of data from the BDC project to the EO
community already familiar with ODC tools; and the possibility for users of the
BDC platform to take advantage of the large catalog of algorithms available for the
ODC framework.

For the next steps, we hope that more tests will be done on the modifications made
to the modules to be sent to the official ODC repositories. It can help the ODC
community reach out to more projects and initiatives that seek to use the tools
available. It is also essential to consider that during integration, modules such as
datacube-ui, due to attribute incompatibilities, could not be readily used to apply
the algorithms to the indexed data. It is expected that the adaptation or even the

development of new algorithms will be performed for this tool.

Although there is still a long way to go for optimal interoperability between EODCs,
this work of integrating ODC tools with the BDC platform paves the way to in-
crease integration between these technologies. Currently, few efforts are known in
the domain of EODCs integration. These initiatives are important to prevent these
solutions from becoming silos of information (GIULIANT et al., 2019).

28

4 BRAZIL DATA CUBE WORKFLOW ENGINE: A TOOL FOR BIG
EARTH OBSERVATION PROCESSING!

4.1 Introduction

Earth observation (EO) data are currently instrumental in comprehending the pro-
cesses that occur on our planet, leading to significant advancements in monitoring en-
vironmental changes, risk detection, urban occupation, and food security (BROWN),
2016). By extracting information from EO data, researchers and policymakers can
formulate and implement effective policies for protecting the environment and man-

aging natural resources sustainably.

Satellite observations and geospatial data are being obtained and shared at an un-
precedented rate with petabyte production on a daily basis (PAGANINI et al., 2022).
Storing, processing, and analyzing these vast datasets pose significant technological
challenges that limit the ability of EO scientists to capitalize on their potential (CA-
MARA et al., 2016; STROMANN et al., 2020). These datasets often exceed the
storage, processing, and memory capacities of personal computers, leading users to
utilize only a fraction of the available data for scientific research and operational
applications (MULLER et al., 2010; CAMARA et al., 2016; STROMANN et al.,
2020). Thus, novel technological solutions are required to adequately store, process,

disseminate, and analyze these large EO datasets.

The Spatial Data Infrastructure (SDI) provides an environment that fosters the use,
management, and production of geographic data by allowing people and systems to
interact with technology (RAJABIFARD; WILLIAMSON, 2001). In recent years,
SDIs have implemented technological components that adopt the standards pro-
posed by the Open Geospatial Consortium (OGC) and International Organization
for Standardization (ISO) to store, represent, and disseminate spatial data. How-
ever, most current SDIs primarily focus on sharing and disseminating EO data as
individual files through web portals and various protocols, such as HT'TP, FTP, and
SSH (MULLER, 2016).

In the context of big EO data, managing, processing, and disseminating this enor-
mous amount of data poses a significant challenge for EO system infrastructure.
This scenario demands more structured and precise research services, automated

acquisition, calibration, and availability processes, as well as the ability to process

!This chapter is a unpublished manuscript entitled "Brazil Data Cube Workflow Engine: a tool
for big Earth Observation data processing".

29

data without the need to move them across the network (WOODCOCK et al., 2016).

In response to these challenges, the EO community has developed new technologies
in the form of platforms for big EO data. These platforms are computational so-
lutions offering a range of functionalities for managing, storing, and accessing big
EO data. These platforms allow for server-side processing, eliminating the need to
download massive amounts of EO datasets. In addition, they provide a certain level
of data and processing abstractions that are useful to EO community users and
researchers (GOMES et al., 2020). These platforms integrate different types of tech-
nologies, Application Programming Interfaces (APIs), and web services, resulting in

a more comprehensive solution for managing and analyzing big EO data.

Many institutions have adopted platforms for big EO data, such as Open Data
Cube (ODC) (OPEN DATA CUBE, 2022b), Google Earth Engine (GEE) (GORE-
LICK et al., 2017), JRC Earth Observation Data and Processing Platform
(JEODPP) (SOILLE et al., 2018), Sentinel Hub (SH) (SINERGISE, 2020a),
pipsCloud (WANG et al., 2018), and openEO platform (EUROPEAN SPACE
AGENCY, 2022). These platforms adopt different data abstractions, standards, or

technological solutions despite their similar functionalities.

In a previous work (GOMES et al., 2020), we performed a review and comparative
analysis of these platforms in relation to ten capabilities, including governance, in-
frastructure, data and processing abstractions, and extensibility. We discussed that
the greater the degree of abstraction delivered to the scientist, the greater the dif-
ficulty in providing flexibility in data-processing approaches. EO platforms need
layers of abstractions that enable both data scientists and data production staff to
express computations that exploit available computational resources. One possible
alternative would be to provide scientists with a platform that provides two ways
to perform server-side data processing. In the first form, an API with a high level
of abstraction is made available for scientists to describe their analyses in a manner
equivalent to that provided by GEE or OpenEO. The second method allows new
algorithms to be added to the platform. These algorithms would directly access the
data and take advantage of the distributed processing capabilities provided by the

platform.

In the Brazilian context, the management and analysis of massive EO data are made
from the Brazil Data Cube project, which has led to the development of the Brazil
Data Cube Platform (BRAZIL DATA CUBE PROJECT, 2022). This project is

responsible for the production of ARD cubes for the entire Brazilian territory and

60

the development and availability of the BDC platform, with services and tools for
accessing, analyzing, and processing the produced data cubes (FERREIRA et al.,
2020)

Currently, most of the data generated by the BDC platform are produced using two
applications developed by the project team. These applications, called BDC Col-
lection Builder and BDC' Cube Builder, are configured by platform maintainers to
discover and retrieve scenes from EO data providers, index them in collections, and
produce ARD cubes. These applications are configurable through the definition of
processing workflows to enable the production of different types of products. This
process is performed by defining a structure in JSON format that specifies the selec-
tion, parameterization, and chaining of a set of operations previously implemented
in these tools (MARUJO et al., 2022). The BDC platform maintainers have two
versions of these tools. One runs on AWS using Lambda services, and another runs
on BDC on-premise servers (FERREIRA et al., 2022).

The users of the BDC platform can perform their analyses in two ways. The first,
available to the public, consists of downloading the data and software products
from the BDC and performing processing and analysis on a personal computer or
in any other environment external to the BDC’s infrastructure. The second op-
tion, currently available to researchers associated with the project, involves using a
Jupyterhub environment available on the BDC platform. In this interactive environ-
ment, scientists can develop and run scripts to process and analyze EO data using
the on-premise servers of the BDC project. One of the tools used by specialists in
this environment is SITS (SIMOES et al., 2021). It is an open-source R package
that is used for satellite image time-series analysis and LULC map generation. This
package uses parallelization techniques to speed up the processing of datasets. How-
ever, there is no native support for large-scale processing of clusters of computers,
as available in the BDC' Collection Builder and BDC' Data Builder tools.

The integration of the ODC framework into the portfolio of services and tools offered
by the BDC project was one of its initiatives to broaden the available processing tools
accessible to users. For this integration (GOMES et al., 2021), a tool for importing
data was developed, and ODC modules were adapted to support the data produced
by the BDC project. As a result, this integration is made available to BDC users: 1)
the ODC API in the BDC JupyterHub environment; ii) services for viewing metadata
and data (datacube-explorer and datacube-ows); and iii) the datacube-stats tool,

which allows parallel processing of scenes recorded in an ODC catalog.

61

Similar to the BDC' Cube builder, the datacube-stats is a command line tool that
provides a set of previously defined statistical processing, but allows new processing
functions to be added from the extension of the Statistic class and the implemen-
tation of two new methods: — Measurements, which provides a list of measurements
that the class will produce, and — compute, which takes a xarray.Dataset and re-
turns a xarray.Dataset with the computed measurements (OPEN DATA CUBE,
2022a). Scene processing is described using a YAML file.

A common characteristic observed in these solutions is the approach used to describe
the processing tasks. The explicit or implicit use of Directed Acyclic Graphs (DAGs)
to represent workflows has been observed in GEE, OpenEO, BDC Collection and
Cube Builders, and ODC Stats. While BDC and ODC uses text files to describe
processing flows, GEE and OpenEO provide a higher-level interface, allowing the
user to write code in a programming language (Javascript and Python for GEE and
Javascript, Python, and R for OpenEQO). In both cases, these scripts are converted
into data structures that represent DAGs and are sent to run on the backend. Us-
ing this technique of sending code close to the data, known as the Moving Code
approach (MULLER, 2016), EO platforms are evolving to integrate data ready for

analysis and technologies for extracting information on the server side.

Based on the knowledge acquired in our previous works (GOMES et al., 2020;
GOMES et al., 2021) and on BDC demands to enable users and developers of
the BDC project to describe sequences of processes to be efficiently executed in
the project server-side infrastructure, we proposed a system architecture to be inte-
grated in the BDC platform. This system uses DAGs as a core concept and integrates
the OpenEO API to allow the submission and control of processes by the users. To
take advantage of all the computational power available in the infrastructure of the
BDC project, this system uses technologies for orchestrating processes distributed

in clusters of computers.

The remainder of this section is organized as follows. In Section 4.2, we present
the main concepts adopted, the proposed architecture, and the details of the imple-
mentation of a prototype, called Brazil Data Cube Workflow Engine (BDC-WE).
Section 4.3 presents two study cases. In the first one, legacy processing flows from
INPE’s Mapaquali project were converted to DAGs to be processed in the BDC-WE.
In the second case study, the processing flow of a land use and land cover classifi-
cation application written in R language using SITS was converted into DAGs and

executed using the BDC-WE. Finally, in Section 4.4, we present the final consider-

62

ations and the subsequent steps that will be carried out.
4.2 BDC-WE: A tool for big EO processing

The architecture presented in this section uses workflow as a central concept for the
description of processing described by the chaining of tasks. Direct Acyclic Graphs
are used to represent the workflows. In this approach, each vertex of a graph repre-
sents a specific operation and the edges indicate the data dependency between each

operation.

In this study, the nomenclature used by OpenEO (OPENEO, 2022) is used as a
reference, where the vertices (tasks) are called Process(es) and the chains of Process
(DAG) are called Process graph(s)(PGs).

Figure 4.1 illustrates a simple example of PG with four Processes. This workflow,
which illustrates data collection from an external provider, includes Processes for:
i) scene discovery from an external provider; ii) downloading the scenes to a lo-
cal repository; iii) registration of new scenes in a metadata catalog; and iv) the

publication of new scenes in a Web Map Service (WMS).

Figure 4.1 - Process Graph example.

Fetch from Download Record to Publish to a
ext. provider scenes a catalog WMS service

In the context of the BDC-WE architecture, Process represents a meta-task, which
represents an operation class that does not have a functional core that will actually
perform the expected operation. BDC-WE uses an abstraction called Resources to

configure the Process with the operations to be performed.

Figure 4.2 shows a diagram of the BDC-WE architecture. Some elements of this
diagram represent software artifacts (Resources, Processing repository, and OpenEO
Client), tools for workflow orchestration and task execution (Workflow Orchestrator
and Workers), (web)services (OpenEO Backend, Rest API, and External Services),
and Graphical User Interfaces (GUIs) (OpenEO Web Editor and Workflow Orches-

trator Interfaces).

63

To make the rest of this text easier to read, we use the following terms to refer to
the actors that interact with a BDC-WE instance: i) Developers: people responsible
for deploying or maintaining a BDC-WE instance. Have technical knowledge for
configuring BDC-WE and the other tools/services used; ii) Ezperts: people who
master the topic of data products that are produced on the BDC-WE platform. They
are responsible for the creation/parameterization of the algorithms that generate the
data products; and iii) Users: people who make use of the services, APIs, or GUIs
available in a BDC-WE instance. These actors do not need to have technical mastery
of the inner workings of BDC-WE.

Figure 4.2 - BDC-WE diagram.

OpenEO
Web Editor
ogl?:rio Workflow Orchestrator Interfaces External Services
A y
\A / A BDC-WE
> RESTAPI | '
¢ Resources
8
9 Workflow b n Workers B R
= Orchestrator
m
s | |
= Processing repository
-
o Process Processes .

Resources are software artifacts (classes or functions) that abstract elements man-
aged by the platform and that provide the implementations of the processing that
will be performed. They must be accessible to Workers so that they can be instan-

tiated and passed as a dependency on Processes.

For example, to record scenes in a local catalog, a new Resource can be implemented
by extending an interface called Catalog. The use of Resources prevents the platform
from having to know the algorithms that will be used and expands the opportunities

for use in different applications, only observing that the specificities of each solution

64

are integrated.

Currently, BDC-WE manages the following types of Resources.

o Provider: represents an external provider. It has functions for searching

scene metadata in an external catalog;

o Catalog: represents a catalog of metadata that can be managed by BDC-
WE. It provides functions for searching, adding, and removing scenes in a

catalog;

o Processor: represents a processing function that can be applied to a scene

or a set of scenes;

o Publisher: represents an external service to the platform. Provides func-

tions for publishing (and unpublishing) a scene or a set of scenes;

» Repository: represents a file system manager where data is retrieved or
written. Provides functions to manage the structure of directories where
the data will be stored; and

o Features: represents a collection of vector data that can be used as input

parameters to Processors. Provides a catalog of vector data.

The Processing Repository represents the repository with functions and classes that
implement the available Processes and descriptions of Process Graphs available in

the platform. Developers can add new Processes to the list of built-in Processes

available in BDC-WE.

Workers are responsible for executing Processes. The use of multiple Workers can

increase the scalability of processing large volumes of data.

The Workflow Orchestrator (WO) is responsible for managing the execution of Pro-
cess Graphs performed by Workers. 1t is responsible for loading the available Process
Graphs and Process, checking whether the input and output dependencies between
the Process are compatible, receiving execution requests from Workflow Orchestra-
tor Interfaces or OpenEO Backend through BDC-WE REST API, and managing

the execution of the workflow on Workers.

BDC-WE REST API is a module responsible for managing access and identifying
users who will submit and monitor processing. For example, it is used to limit access

to restricted data or the number of running processes by a User.

65

The openEO Backend is responsible for providing a standardized API so that exter-
nal clients to the BDC-WE can interact with the platform using available libraries
or graphical interfaces, such as the openEO client (JavaScript, Python, and R) and
the openEO Web Editor. The openEO Backend is responsible for making Processes
available in the BDC-WE instance so that users can describe their Process Graphs
using an openEO client. This backend also allows Users to invoke the Process Graphs

to run and download the produced data.

Workflow Orchestrator Interfaces (WOI) represents interfaces that allow in-
teraction with WO, allowing the configuration and execution of Process Graphs.
They are mainly intended for Developers, as they require technical mastery of how
BDC-WE works and provides more details about Process Graphs and processing

executions. WOI can be used for scheduling recurring processing.

The External Services represents the services used by the Resources in a BDC-
WE instance, for example, an STAC Provider, an OGC WMS, etc.

In addition to Resources, which represent the resources that perform processing,
BDC-WE provides a set of classes that represent processable elements. These data
models have the necessary attributes to be managed by WO and can be extended

by developers to include other attributes or methods.

Figure 4.3 presents a diagram of the classes supported by BDC-WE. The core ele-
ment is Scene, which is extended to LocalScene and RemoteScene. A LocalScene
represents a Scene that has a list of Measurements and methods to combine with
other LocalScenes (merge) or to remove it (remove). A Measurement has a path
to a file and a MeasurementProperty. A MeasurementProperty has at least two
attributes: name and data type. A RemoteScene uses a method download that im-
plements a way to download files from a Scene to the repository. An IndexedScene
extends LocalScene by including a unique identifier for the Catalog in use. A
Collection represents a set of Scenes that share the same MeasurementProperties

types. A Cube is defined as a set of Scenes.
4.2.1 Implementation

To implement the architecture described in the Section 4.2, a set of technologies
were chosen as a way to accelerate the framework development process and reuse
open-source solutions that met the needs of the BDC-WE.

The Python language was used as a reference, as it is used for BDC Plataform for

66

Figure 4.3 - BDC-WE data abstraction model.

LocalCube
scenes: List[LocalScene]
SceneProperties
- save_mosaic (dest_path: str)
sourc-e_ld. str) timeseries()
datetime: datetime bounds()
L N
1 LocalScene Measurement
Scene measurements: List{Measurment] oN path: str
.) properties: MeasurementProperties
properties: SceneProperties <— merge (other: LocalScene)
remove() remove()
Lf 1
1
RemoteScene IndexedScene MeasurementProperties
id: Any .
download(dest_path: str) name: str
data_type: DataType
1.N 1
IndexedCube LN
Collection
scenes: List[IndexedScene]
id: str
save_mosaic (dest_path: str) name: str
timeseries() extent: dict
bounds() dimensions: dict
measurements: ListfMeasurementProperties]

collection and cube Builders and is also adopted by other platforms, such as Open
Data Cube, openEO, and Google Earth Engine (GOMES et al., 2020).

The core element of the framework is the Workflow Orchestrator. In the ecosystem
of processing data through workflows, are available a variety of open-source tools,

such as Apache Airflow?, Argo®, Temporal*, and Dagster®.

Apache Airflow is a platform that allows the programmatic creation of workflows in
Python and the scheduling and monitoring of executions. DAG's are defined through
the instantiation of Operators available on the platform. A DAG is created from

the dependency configuration between Operators.

2<https:/ /airflow.apache.org/>
3<https://argoproj.github.io/>
4 <https://temporal.io/ >

5 <https://dagster.io/>

67

https://airflow.apache.org/
https://argoproj.github.io/
https://temporal.io/
https://dagster.io/

Argo, however, has a higher granularity for tasks. This engine manages workflows
in a Kubernetes environment, where each task is represented by the execution of a
container and a workflow is defined through a YAML file.

Temporal is a platform for orchestrating workflows written in Go, Java, PHP,
Python, or TypeScript codes. In Python, a DAG is represented by a class deco-
rated with a decorator, @workflow.defn, and each task is represented by a method
decorated with @activity.defn. Temporal is a platform that is still under devel-

opment and does not have full support for some languages. The tool documentation

is also under development (TEMPORAL TECHNOLOGIES, 2022).

Dagster is a platform for orchestrating workflows in Python. The elements that
constitute the processing workflow are defined using the decorators available in the
dagster package. A workflow task is a function decorated with the @op decora-
tor, and a DAG is a function decorated with @graph called a task function. By
identifying the task calling sequence, Dagster creates a DAG structure with data
dependencies between the tasks. This structure is used during the orchestration of
workflow execution. In Dagster, a workflow can run locally in serial or parallel modes
using DASK, Celery, Docker, or Kubernetes. Triggering the execution of a DAG can
be performed through a WEB interface, GraphQL API, Python code, or by config-
uring Schedulers or Sensors. Dagster also has the ability to export a DAG to run
on Apache Airflow. Dagster provides a paid service to run DAGs in a private cloud
environment (ELEMENTL, 2022).

Dagster (ELEMENTL, 2022) was chosen for use as a WO on the BDC-WE platform.
This choice was made because it allows the dynamic generation of Process Graphs
and provides a GraphQL API for the interaction between external applications and
the orchestrator. This API is necessary for the interaction between the WO, WOI,
openEO Backend, and BDC-WE Rest API.

In addition, Dagster has a web graphical interface that allows an easy configura-
tion and monitoring of the processes and a variety of execution modes, allowing
the execution of all the processing locally, in a single thread or in multiple threads,
or the distribution of the processing, using Celery, Dask, and/or Kubernetes tech-
nologies. These features facilitate the debugging process and the transition between

development and operational environments.

In Dagster, the central processing unit is called Ops and represented through func-

tions with the @op decorator. In this way, all Process developed for BDC-WE use

68

this decorator with the respective metadata to ensure compatibility verification of
function input and output parameters. Process Graphs in Dagster are called Graphs
and are defined using functions decorated with @graph and making calls to Ops

functions .

The dynamic generation and configuration of these elements can be achieved through
the classes available in the dagster package. Using this functionality, BDC-WE can
generate these elements from a JGF (Json Graph Format) file that describes a
Process Graph. The objective of this feature is to facilitate the configuration and
maintenance of the workflows managed by the BDC-WE. These files follow a high-
level format, without requiring technical knowledge about how Dagster works. In

the Section 4.3, an example of the use of this functionality is presented.

BDC-WE-API was implemented through a REST service that intermediates re-
quests from WO and openEO Backend to WO. REST requests are converted to
GraphQL requests, which interact with the Dagster service. In the current phase of
BDC-WE development, only access control via username and password is performed
by BDC-WE REST API. Controlling the number of running processes or limiting

the Process Graphs available for each User is not implemented yet.

For the development of the OpenEO Backend, a template available in the repository®
of the developers of the openEO standard was used as a starting point. It implements
the general REST request handling of the openEO API and dispatches the work
to a pluggable openEO backend driver. Thus, a driver was developed to translate
requests from openEO API requests into requests for WO. This driver uses the same
Resources used by Processors running on Workers. Resource Catalog, for example,
is used by developed driver to find available collections or find scenes to be delivered

to users.

The openEO backend interacts with WO through the GraphQL API available in
Dagster. For this, a Python client was developed (dagster_graphql_client”). This
client allows starting runs, tracking run status, retrieving results, and reloading Pro-
cess Graphs available for running. This last feature, together with the possibility of
generating new Process Graphs at runtime, provides great flexibility when creat-
ing new workflows. The implemented GraphQL client also has the possibility of

controlling and managing executions through command line.

6 <https://github.com/Open-EO /openeo-python-driver>
"<https://github.com /vconrado/dagster _graphql client>

69

https://github.com/Open-EO/openeo-python-driver
https://github.com/vconrado/dagster_graphql_client

The BDC-WE is still a prototype and the openEO Backend developed still does
not support all functions of the openEO standard. New functions are being incorpo-
rated according to the demand of Developers who use BDC-WE in INPE’s internal

projects.

A minimal working set of Resources is available in BDC-WE prototype. These built-
in Resources can be used in operational applications or serve as a reference for other
implementations. The built-in Resource stac_provider available in BDC-WE, for
example, extends the RemoteScene class to create the StacRemoteScene class, which
implements the downloading of scenes listed in a STAC service. Developers can

develop new Resources from the inheritance of base classes made available in BDC-
WE.

Table 4.1 presents a list of Resources currently available in BDC-WE.

Table 4.1 - Resources available in the BDC-WE.

Name Type Description

stac_ provider Provider Performs queries in a STAC service.
Performs insert, remove, and search

odc_ catalog Catalog metadata operations in an Open Data
Cube catalog.

Crop__scene_ proc Processor Crops a Scene using GDAL.

) Performs time reduction operations
reduce time_ proc Processor

(max, min, mean, median) on a cube.
download_ proc Processor Download a remote scene via HT'TP.
Publishes a scene to an ImageMosaic

geoserver_pub Publisher Store on a Geoserver server.
ssh_pub Publisher Run a previously configured ssh
command.
discord pub Publisher Sends a message to a Discord channel.
slack pub Publisher Send a message to a Slack channel.
) Performs the creation of folders in the file
file__system_ repo Repository

system using the metadata of the scenes.
Performs the creation of folders in the
protected file system repo Repository file system, blocking the other folders for
read-only.

Loads and serves vector data in formats

gdal_features Features supported by GDAL.

In addition to Resources and data models, BDC-WE prototype also provides a set of

previously implemented Processes that can be used by Developers to build Process

70

Graphs. If necessary, Developers can implement new Processes and make them avail-
able to the platform through a configuration file. With the currently available Pro-
cesses, we believe that a large number of EO data processing applications demanded
by INPE projects can be modeled because these Processes represent meta-tasks and

that the code to be executed basically depends on the Resources used.

The Processes available in the framework are grouped into 4 types:

o Discovery: Processes that allow discovery of the resources to be pro-
cessed. The discovery can be performed in external services (Provider
Resource) or in the catalog managed by BDC-WE (Catalog Resource).
Discovery functions in Providers produce RemoteScenes while discovery

functions in Catalogs produce IndexedScenes;

o Processing: Processes that call a processing function (Processor Re-
source) which must receive a LocalScene or a LocalCube and will produce,

respectively, a new LocalScene or a new LocalCube;

o Indexing: Process that registers a LocalScene or LocalCube in the catalog
managed by the BDC-WE (Catalog Resource). The indexing process takes
a LocalScene or LocalCube and produces, respectively, an IndexedScene

or a IndexedCube;

o Publishing: Process which notifies an external service (Publisher Re-
source) about the creation or removal of a scene or set of Scenes. A Pub-
lisher receives a set of InderedScene or an InderedCube and must return

an object of the same type received.

Table 4.2 presents the Processes currently available in the BDC-WE prototype. In
this Table, the first column presents the name of the Process, the second the type,
and the third the Resources used. The fourth and fifth columns present the types of
object expected as the input and output by Resource, respectively. The last column

of this table presents the parameters expected from Processor.

71

sAox jesse ‘gonpoid aqnpaxapuy aqnpaxapuy K1ogrsodoy ‘[roysiqng]ast Surysiiqng aqno~ ysiqnd
sAox jesse ‘gonpoad [ousogpoexepuy]ysi [ousogpoexepuy]ysi A1091s0dey ‘[10YysIIqNJ]9SIT Surysiqng souoos™ ysiqnd
s3ie
aqnog[eso aqn)[eoo A1031s0dey ‘[10ss0001J]9ST Burssesoa aqno~ A1dde
‘oprireao ‘yredqns ‘ewreu ssodoad Anest 1 Anol 1 i ol e ’ d 4 I
s31e ‘srerjred oaouwax o
. 2uadg[ed0] ouadg[ed0] A1031s0doy ‘[10889001J]1SIT Surssedsorg ouoos™ Ajdde bes
‘oprizeao ‘yredqns ‘ewreu sseooad
s38ae o
. oua0g[eO0] oue0g[ed0] K1oq1sodoy ‘[10859001J]9SIT Surssedsorg aueos” Ardde
‘oprureao ‘yjredqns ‘ewreu ssedoad
sKoy goesse ‘gonpoad aqnpexepur aqnyresor] K1oj1sodey ‘3orere) Suixepug aqno~ xepul
sAoy josse ‘jonpouad ouadgpoxepu] oua0g[ed0] A1oy1soday ‘3oreje) Surxepuy Queds” xopul
?jep puo _
_ [ousogpoxepuy]ysiT - Sorere) K10A00S1 aqnd AISA0DSIP
‘ogep” jaels ‘xoqq ‘jonpoad
p1 auedgpexapu] - 3orere) A19A0081(J pr Aq~ AI19A00SIp
jospgo ‘prul| o
. [ousogpoxepuy]si - 3orere) K19A00S1(Q poasseosoxd jou” AI9A0DSIp
‘xoqq ‘ewreu sseoouad ‘yonpoad
j1esygo
‘gruar] ‘sjposse” o1ouSr ‘UoI1109][0d [ousogejowag]asi - sainjes ‘Ioplaorg A19r0081(] aInyeay Aq [RUIdIXS KIDAODSIP
‘orep” pus ‘elep jIe)s ‘pr oanjes]
j1esgo
‘gruar] ‘sjpesse’ a1oull ‘UO0I109][0D [eusogejomwray]asiy - I9praoig A19A0081([euI9)Xa” AISAODSIP
‘9jep” pue ‘erep 1jIels ‘xoqq
s19jowRICd ndinQ ynduy S90.IN0SaY odAT, sureN

IO 93 Ul O[qR[IeAR $0850001 - &' O[q¥L

72

Using the Processes and Resources available in BDC-WE, the Process Graph illus-
trated in Figure 4.1 can be configured according to the diagram presented in 4.4. In
this example, a STAC provider is being used as an external RemoteScenes provider,
the Processor download_proc will be applied to each RemoteScene found, the odc_-
catalog Catalog will be used to index the LocalScenes and finally, the IndezedScenes
will be published on a Geoserver server, using the Publisher geoserver_pub. Al-
though this Process Graph illustrates a flow as if only a single RemoteScene was
found in the first Process, BDC-WE allows the description of Process Graphs that
execute, for example, the Process apply_scene (download_proc) in parallel for each
RemoteScene returned by Process discovery_external (stac_provider). More de-

tails regarding the process description of Process Graphs are presented in Section 4.3.

Figure 4.4 - Process graph example with resources configuration.

discover : ;
S apply_scene index_scene publish
‘ Provider: stac ‘ ‘Processor: download’ ‘ Catalog: odc ’ ‘Publisher: geoserver‘

4.2.1.1 BDC-WE boilerplate project

To facilitate the process of deploying a BDC-WE instance, a preconfigured template
project was developed to run BDC-WE with an ODC catalog. This project has a
basic example of processing and a set of pre-configured services. To facilitate the
deployment process, each service is run in a Docker container. These services have
been grouped into four docker-compose files to make service management easier. The
main file (docker-compose.yml) has the minimum number of services for running
BDC-WE: a PostgreSQL database, a RabbitM(Q messaging service, and Dagster.
The worker is configured in a separate file (docker-compose.worker.yml) to easily
run on multiple servers. The third file is docker-compose.odc.yml, configures the
following external services: datacube-explorer® (STAC); Geoserver (WMS, WFS,
WCS), nginx (as a file server); and a container with scripts to initialize the database
and load the collections into the ODC base. The docker-compose.openeo.yml file
configures the openEO backend and the openEO Web editor.

8 <https://github.com/opendatacube/datacube-explorer>

73

https://github.com/opendatacube/datacube-explorer

Using this complete project, it is possible to start a working BDC-WE instance.
Developers can also customize this template project to meet the specific needs of an

application.
4.3 Study cases

To evaluate the use of the presented BDC-WE implementation, two case studies
were conducted in scenarios recurrently found in research projects at INPE. The first
case study, presented in subsection 4.3.1 is more complete and deals with the oper-
ationalization of the production of water quality indices of the Mapaquali project.
The second, presented in subsection 4.3.2, evaluates the use of BDC-WE for image
classification using Satellite Image Time Series Analysis for Earth Observation Data
Cubes (SITS) library (SIMOES et al., 2021) developed in R language. The second
case study is useful for illustrating the use of the tool with an application written

in a language other than Python.

The BDC-WE boilerplate project was used as the starting point in both case studies.
The diagram in Figure 4.5 illustrates the services used in both the case studies. The
ODC Catalog Database is a PostgreSQL instance configured with the schema used by
ODC?. The STAC service used by Workers is the publicly available BDC! instance.
The ODC Explorer and Geoserver services were used for data dissemination using

the STAC and OGC WMS standards.

Figure 4.5 - BDC-WE study case instance diagram.

open . 0103
TR &ceoserr
)
BDC-WE \ﬁ Y
REST API Study case instance
Resources > ODC Catalog

v

9 dagStel’ > Workers > _

\ \ Repositories
Processing repository

== |—
F Ao Processes |§I
BOC STAC

B U
~_ 7

OpenEO Backend

Graphs Publishers

9<https://github.com/opendatacube/datacube-core>
10 <https://brazildatacube.dpi.inpe.br/stac/>

74

https://github.com/opendatacube/datacube-core
https://brazildatacube.dpi.inpe.br/stac/

4.3.1 MAPAQUALI

This case study was developed with the purpose of validating the BDC-WE in
an operational environment, as a way of verifying the applicability of the system
for the generation of EO data products. The MAPAQUALI project was selected
for this case study. This project, being carried out at INPE’s Aquatic Systems In-
strumentation Laboratory (LabISA), has, among its objectives, the generation and
availability of time series of the spatial distribution of water quality parameters:
Chlorophyll-a, Cyanobacteria, Total Suspended Solids, Dissolved Colored Organic
Matter (CDOM), an underwater light field through the diffuse attenuation coeffi-
cient (Kd), and alerts of bloom events (especially cyanobacteria). The MAPAQUALI
project also demands that these water quality parameters be customized for new
aquatic systems added to the platform (LABISA, 2022).

The MAPAQUALI project demands that a set of algorithms can be parameterized
to generate and make available products for different areas of interest. To produce
ARD, MAPAQUALI uses third-party scripts and algorithms written in Python pro-
duced by the project team. MAPAQUALI researchers also used this language to
write scripts responsible for generating water quality parameter products. Most of
these scripts receive the paths of the bands of a scene, the algorithm configuration
parameters, and the path(s) of the file(s) of the product(s) that will be calculated

as input parameters.

Figure 4.6 illustrates the general data flow of the products calculated using the
MAPAQUALI project. The blue rectangles represent the data used or produced,

whereas the gray rectangles illustrate the processing tasks performed.

From the collection of raw data (Landsat-8 OLI and Sentinel 2 L1C TOA) in an
External Provider, a sequence of algorithms is applied to produce analysis-ready
data (MAPAQUALI-ARD) used as a source for other products. The second stage
deals with the mapping of MAPAQUALI-ARD for the regions of interest (ROI) of
the project. In the case of MAPAQUALI, these ROI were lakes, water reservoirs,
and other aquatic systems. In the third step, the clipped ARDs were used as inputs
to the functions that produced the water quality indices developed by the LabISA
research group. The same function that produces a water quality product can be

used for different ROIs or be exclusive to a single ROI.

The STAC and OGC WMS services were chosen to disseminate data produced by
the MAPAQUALI project. The WMS is used to view the data on the web portal

75

Figure 4.6 - Mapaquali products generation dataflow.

External
Provider
v
RAW 3rd party MAPAQUALI MAPAQUALI
scene applications Scripts ARD scene
|
Crop by MAPAQUALI
ROI-1 ARD ROI-1
. Product A
Function A > ROI-1
. Product B
Function B > ROI-1
Crop by MAPAQUALI
: ROI-2 ARD ROI-2
. Product A
Function A > ROI-2
. Product C
Function C > ROI-2

of the MAPAQUALI project, whereas the STAC allows users to consult the catalog
and download the products generated by the project. As a metadata catalog, the
Open Data Cube was chosen, since this framework meets the needs of the project
and also provides the application datacube-explorer!!, which provides a STAC im-
plementation and a visual interface for navigating between indexed collections in the
catalog. For the WMS service, Geoserver'? was chosen, due to the previous experi-
ence of the MAPAQUALI team in the use and configuration of this server and the
availability of a resource Publisher for Geoserver implemented by BDC-WE. In ad-
dition to publishing data in the WMS service, it was decided to publish messages in
the Discord communication application. Thus, the MAPAQUALI team can monitor

the generation of products more easily.

Briefly, the Resources selected for use in the case study of the MAPAQUALI project
were: i) stac (Provider); ii) odc (Catalog); iii) GDAL-Features (Features); and iv)

" <https://github.com/opendatacube/datacube-explorer>
12 <https://geoserver.org>

76

https://github.com/opendatacube/datacube-explorer
https://geoserver.org

odc-stac and discord (Publishers). Wrapper functions were created as Processors for
each legacy function previously developed by the MAPAQUALI team. The wrap-
per functions are responsible for receiving the parameters in the format used by
BDC-WE and passing them on to the legacy functions in the format they expect.

Listing 4.1 presents an example of the recurring structure of wrapper functions used.

Listing 4.1 - Wrapper function example.

def processor_a(in_scene: Scene, dest_path: Path, resources: dict,

**xkwargs) -> LocalScene:

prod_file = Path(dest_path, "prod_a.TIF")

function_a(prod_file, in_scene.measurement (’B01’).path, kwargsl|[
’nodata’])

return LocalScene (measurements=[Measurement (path=prod_file,

properties=MeasurementProperties (name="prod_a", data_type=
DataType.float32))1]1)

Processing Graphs (PG) were created from the identified data flow to perform pro-
cessing. To facilitate reading, the PG will be presented, indicating the process used
and resource(s) used in parentheses. For example, index_scene (Catalog: odc) in-
dicates the use of the process index scene configured with the Open Data Cube

catalog. Arrows indicate the direction of data flow.

The PGs used in the case study of the MAPAQUALI project are:

« Collect Scenes: discovery_external (Provider: stac) — apply_scene
(Processor: download) — index_scene (Catalog: odc) — publish (Pub-

lishers: stac, geoserver, discord);

« ARD: discovery_by_id (Provider: odc) — mq_scene (Processor: down-
load) —
index_scene (Catalog: odc) — publish (Publishers: stac, geoserver, dis-
cord);

« ARD ROI: discovery_by_id (Provider: odc) — crop (Processor: crop,
Features: GDAL-features) — index_scene (Catalog: odc) — publish

(Publishers: stac, geoserver, discord); e

77

© 00 N O Otk W N -

O RN RN N N D = o e e e e s e e e
U = W NP O © 0 3 O U = W N = O

[\
oo

o Product A: discovery_by_id (Provider: odc) — apply_scene (Proces-
sor: processor__a) — index_scene (Catalog: odc) — publish (Publishers:

stac, geoserver, discord); e

The Process used are those listed in Table 4.2, while the Resources are those listed
in Table 4.1. Processor mq_ ard is a wrapper function that calls third-party scripts
and MAPAQUALI functions to produce ARD data. Process Graph Product A
represents the template used to generate the different products of the MAPAQUALI
project, while processor a refers to a wrapper function that, for example, calls a
function that calculates one of the indices of water quality developed by the project’s

researchers.

Listing 4.2 shows how the description of PG Product A is performed through a
JSON file using the specification of the standard JSON Graph Format!3.

Listing 4.2 - Example of Process Graph description.

{"graph": {
"id": "process_a'",
"label": "Produce the water quality index A",
"nodes": {
"discovery by id": {
"metadata": {
"type": "discovery_by_id",
"resources": {"provider': "odc"}}},
"apply_scene": {
"metadata": {
"type": "apply_ scene",
"resources": {"processors': ['"process_a"]}}},
"index_scene": {
"metadata": {
"type": "index_scene",
"resources": {'"catalog': "odc"}}},
"publish": {
"metadata": {
"type": "publish",
"resources": {"publishers": ["stac","geoserver", "discord"]}}}
’
"edges": |
{ "source": "discovery_ by_id",
"target": "apply_scene",
"relation": "map'},

13 Available at <https://jsongraphformat.info/>

78

https://jsongraphformat.info/

26
27
29
30
31
32
33
34

© 00 N O U = W N

=
— O

"o [0 ; n
{ "source": "apply_scene",
"target"': "index_ scene",

n]

relation "map" },
[) [["
{ "source": "index_scene',
"target": "publish",

"relation": "collect"}

Initially, each node of PG is defined. The type attribute indicates the Processor to
be invoked. Optionally, it is possible to define the resources that are used by the
Processor. The dependencies between nodes are defined in the edges attribute of
the graph. For each dependency, the origin and destination of the data and the type
of relation (map or collect) were provided. The Resources used in a PG must be

previously defined in a configuration file for BDC-WE to manage these artifacts.

Listing 4.3 illustrates the configuration of Process process_a, which does not de-
mand any other Resources and will receive, in addition to the process interface
parameters defined by BDC-WE, the argument nodata. These arguments are useful
so that processing function parameters can be configured without being previously

defined in wrapper functions.

Listing 4.3 - Processors config example.

"processors": {
n n
process_a'": {
"path": "/path/to/wrappers.py",
"function": "process_a'",
"resources': [],
"args"': { "nodata': 0.0 }

The configuration of data dependencies was performed using the deps at-
tribute. Dependency map:discovery_by_id indicates that apply_scene is mapped
(map) to each scene produced by discovery_by_id. On the other hand, the
collect:index_scene dependency indicates that all scenes produced by index -
scene are grouped into a list (collect) and then passed on to Process publish.

When only one scene is produced by each Process, the processing flow is performed

79

sequentially. On the other hand, if a Process produces a set of scenes, the next process
can be performed in parallel. The concurrent execution of the Processes is managed
by the WO. For example, running PG Collect Scenes that found two new scenes on
the External Provider is illustrated by the diagram in Figure 4.7. The dependency
of type map was used to map the multiple results of discover_external for each
execution of apply_scene. The dependency of type collect performs grouping of
results before invoking Process publish. The map type dependency can also be used
between a Process that produces only one scene and one that consumes only one

scene.

Figure 4.7 - Process Graph Collect Scenes diagram.

discovery apply index_ :
external™ scené . scené publish
‘ Provider: stac ‘ Proc.: download Catalog: odc ‘ Pl Ss;?és'e‘?i\?éﬁ)rd'
apply index_
scené > scene
Proc.: download Catalog: odc

Schedulers are used for recurring execution of PGs. In the case of MAPAQUALI,
this feature is used for PGs of the Collect Scene type, which searches for new

scenes from external providers daily.

For the initialization of the other PGs, the Sensor resource was used. This function-

ality is used in the following situations:
« PG ARD begins when a new scene is downloaded by PG Collect Scenes.
« PG ARD ROI when a new scene is produced by PG ARD; and
o PGs of type Product A begin when a new scene is produced by the PG

ARD ROL

The PGs used in this instance of MAPAQUALI's BDC-WE were also available for
execution through the OpenEQO interface. In this manner, researchers can execute
algorithms with different parameters to carry out tests. The generated products can

be downloaded to the researcher’s desktop using OpenEO’s API. These products

80

are saved in a staging repository separate from the main repository. Likewise, the
metadata of these products generated by researchers via the OpenEO API are not
indexed in MAPAQUALTI’s main catalogue. This choice was motivated to avoid con-
tamination of research data with products made available to the public. Figure 4.8
shows the OpenEO Web Editor interface for the BDC-WE Mapaquali instance.

Figure 4.8 - OpenEO Web Editor for the BDC-WE Mapaquali instance.

Web Ed|t0r = ? Help i Server v & vconrado
Search ko =2 [Call- IRET AR FS] W Map
v Collections (2) ﬂ ﬂ
-]

LCB_ARD LUz LU f mapaquali_collect_scenes owi mapaqual_ard oni

spatial_extent: Boundi
S2_ARD tem
S2_ARD bands: B1

LC8_ARD . . B

ing Box f] Bdata
nt: 2020-06-25..., 2020-08-27. ddts)

v Processes (11
an mapaqualiindex #7127 owi mapaquall_publish owilE

load_collection {Eldata
Load a collection catalog: odc publisher: stac

mapaquali_ard
Apply atmospheric correction and create
cloud mask

mapaquali_collect_scenes

Fetch scenes from collection % isual Model || < Code

mapaquali_index
Index

. #= Data Processing || @B Web Services || & Custom Processes
mapaquali_kd

Process KD index = Create Batch Job || B>Run / Preview

mapaquali_publish ‘Add your first batch job here...
Publish

mapaquali_secchi

Process Secchi index " OpenStreatMap
™ Contribuors.

mapaquali tsi .

4.3.2 SITS classification

SITS is an open-source R package used for satellite image time-series analysis. In
the context of the BDC project, this package is used in the LULC map-generation
process. The task of generating these maps is often divided into two phases: training
and classification. In the training phase, previously classified samples from a region
of interest (ROI) are used to calibrate the predictive model. With this model, the
scenes of this ROI, previously structured in the form of a data cube by the SITS

package, are then classified.

For the current case study, a Process Graph was created to classify the SITS data
cube, considering the existence of a previously calibrated predictive model. This
classification phase consists of the following function invocation sequence from the
SITS package:

a) sits_cube: performs the query on the BDC STAC and defines one of a

81

data cube for the region of interest;

b) sits_classify: performs scene classification using a predictive model and

the data cube produced in the previous step;

¢) sits_smooth: performs the smoothing of the classification performed in

the previous step; and

d) sits_label_classification: from the scene probability values, it con-

verts to a label based on the highest probability of each pixel.

This algorithm was divided into two phases to run on BDC-WE, considering a
PG type Discovery -> Process -> Index -> Publish. In the search phase, a new
Provider, SitsProvider, was implemented. SitsProvider’s search method invokes the
sits _cube function and produces a list of scenes to be processed. For this, a script
was created in the R language, which receives the necessary parameters and invokes
the sits_cube function. The data cube definition resulting from this function is
then spatially split to define the smaller data cubes. This subdivision is performed
by considering the grid used by the BDC for the collection. The purpose of this
split was to make it easier to parallelize the sort run on each data cube. The data
structure in R, representing the metadata of these smaller data cubes, was saved in
.rda format. The search method of SitsProvider returns a list of objects of type
SitsRemoteScene (which extends the RemoteScene class). Each of these objects has
among its attributes the path to one of the data cubes generated by the script in R.
This approach was used to represent an object produced in Python and processed

in the R language.

The objects produced in the previous phase (discovery) were passed to a classified
processor. This function follows the structure presented in listing 4.1, and calls a
script in R called classify.R, which receives as input parameter the path of the pre-
dictive model and file .rda of the data cube. This script is responsible for performing
classification, smoothing, and labeling of the pixels of each data cube. In addition,
it returned the path of the sorted file. This path is for the processor to classify and

create the scene object, which is returned to the Process Graph.

The classified scenes were then indexed into an STAC catalog and published to an
OGC WMS service (Geoserver) and an STAC catalog. Figure 4.9 illustrates the
Process Graph used in the case study and Figure 4.10 shows the results of the

classification performed in this study.

82

Figure 4.9 - Process Graph diagram for image classification with SITS.

‘ désxctoe\;ﬁr){ M apply_scene M index_scene M publish

‘ Provider: StISPr‘OVIder ‘Processor classify ’ ‘ Catalog: odc ’ ‘ Pub: geoserver, stac ‘

Figure 4.10 - Western region of the cerrado biome classified using the SITS package run-
ning on the BDC-WE.

Legend

[Brazil

[cerrado

Class

[0 crop

[Pasture

Il Natural Vegeration

0 100.000 200.000
<3 L.

4.4 Final remarks and discussion

This study presents an architecture for the processing of workflows for processing
EO data. This architecture addresses the possibility of flexibility for the inclusion
of new algorithms while also providing a high-level interface for users, namely, the

OpenEO API. A prototype was developed and evaluated using two cases.

The case study of the Mapaquali project showed us that the use of Process that rep-

resent meta-tasks made the process of creating PGs easier with algorithms previously

83

developed by the Mapaquali team. Through wrapper functions and the configuration
of a PG with four Process (Discovery, Process, Index, and Publish), it was possible
to produce most of the products of this project. Dagster’s scheduling functionality
was useful in this use case, as it allows new scenes to be found daily from providers
and processed by the configured PG. Currently, the Mapaquali project has been us-
ing an exclusive instance of the BDC-WE prototype to produce water quality indices

provided by the project.

Regarding the second use case, we observed that the decomposition of the algorithm
for classifying images into subtasks and the description through a PG facilitates the
processing of massive sets of data for the production of classification maps using
SITS. The OpenEO API can be used by users and developers to select a region of
interest and provide a file with a model previously trained by SITS to the BDC-
WE, which executes this classification PG distributing the Process to all available
Workers.

These two case studies show us that the BDC-WE allowed applications, which were
initially implemented to be executed sequentially or in parallel on a single machine,
to easily gain processing scale. This is possible because of the description of these
applications in Processes, which can be orchestrated by the BDC-WE. In this man-
ner, once the application is modeled in the form of PG, new computational resources
can be accommodated in the cluster to allow a gain in the processing scale, without

the need for any change in PG.

The integration of OpenEO with WO through requests to the GraphQL API proved
to be efficient because it is possible to access all the resources available in Dasgster.
This separation between WO and the module responsible for processing requests
allows, for example, new APIs to be integrated or developed in the future without the
need to change the way processing is carried out. The advantage of using OpenEO as
a high-level interface for BDC-WE is the availability of tools, such as the OpenEO
Web Editor and clients in three different programming languages, and the possibility
of future integration with other EO data processing platforms using this API.

Using a development-ready OpenEO Backend framework accelerated the integration
of this API into BDC-WE. In particular, to make collections available, calls were
made to methods already implemented by a Resource of type Catalog. However, the
implementation of the entire set of operators available in this API requires consid-
erable effort. In the case of the BDC-WE prototype, in which the purpose was to

validate the proposed architecture, a reduced set of operators was implemented, such

84

as cross-band operation, time reduction (mean, maximum, minimum, and standard

deviation), and invocation of pre-defined PG specific to each use case.

The results obtained until the present moment of development of this research moti-
vates us to establish a continuity. Among the points that we would like to address in
future work, we highlight the individualized management of the use of computational
resources, reproducibility, and code sharing. Regarding the management of the use
of computational resources, OpenEO API defines endpoints for billing management,
such as checking the credit available to the user, cost estimate for operations, and
information on the costs of operations performed. However, this API does not define
how these operations should be performed. In the BDC-WE architecture, the BDC-
WE REST-API module that mediates all processing requests is responsible for these
activities. A possible solution to this issue is the use of an approach inspired by the
solution adopted by GEE, which limits the amount of RAM and CPU memory per
processing. In the case of BDC-WE, the expectation is to limit the use of RAM by
Process and use CPU time as a metric to be discounted from users’ credits. The
limits of memory and CPU used by a Process can be established in the execution of

Docker containers and technology currently in use by BDC-WE.

In relation of code sharing, although the use of the OpenEO API facilitates this
process in BDC-WE; it is still up to the researchers to manage the exchange of files
among their peers. The ability to share the analyses is the first step in the path
to reproducibility. Carlos (2022)’s work presents a tool to assist in the process of
managing research artifacts to ensure reproducible sharing, and should be considered

as an important source of inspiration for including this capability in the BDC-WE.

In addition to these works, we intend to move forward with the implementation
of BDC-WE through the implementation of all operators available in the OpenEO
API, and automate the loading and availability of PGs through configuration files.
As the implementation of this tool advances, our goal is to make BCD-WE the
central tool for carrying out processing on the BDC platform, being responsible for
both processing user analyses and executing platform-specific applications, such as
the Collection Builder and Cube Builder.

85

5 FINAL REMARKS

In this work, a set of activities was carried out that can be grouped into three phases,

which were presented in Chapters 2, 3 and 4.

In the first stage, a study and exploration of the main platforms for processing big
EO data were carried out. Each platform was evaluated considering ten capabilities,
and a comparative analysis was performed. It is noteworthy that, in this study, the
objective is not to suggest that an “ideal” platform would have all the aforementioned
capabilities at a full level. This theme is brought to light so that users and developers

can assess which features might best meet their requirements.

In the second stage, a set of technologies was explored, and the ODC framework was
chosen to join the other services available on the BDC platform. The integration of
different big EO data platforms can provide gains for the users of both platforms.
In the work carried out, users familiar with ODC had access to a new dataset and
environment for processing, whereas BDC users benefited from a large catalog of

algorithms available for the ODC framework.

From the knowledge acquired in the previous phases, we observed that the main
open-source platforms and technologies provide tools for data indexing (ODC) or
high-level interfaces for processing descriptions (OpenEQO). SEPAL, on the other
hand, focuses on providing a private cloud processing environment for researchers
with restricted access to these resources. The solutions that offer more complete
processing capabilities are focused on running on-premise servers such as GEE,
JEODPP, and pipsCloud. This choice is mainly owing to the need for these so-
lutions to be integrated with the available hardware and software resources and the
needs of the target users of each platform. Decisions that consider specific needs add
value to platform users, which often makes them unfeasible for users with specific

applications.

In the third stage, the architecture of a tool called BDC-WE is proposed for pro-
cessing big EO data using the concept of workflows. A prototype of this tool was
implemented and two use cases were realized. The focus of this case is to fill the gap
in terms of structuring and orchestrating large-scale processing in BDC platform.
Metadata cataloging and high-level interfaces are already more established and avail-
able, such as, respectively, ODC and OpenEQO. Thus, we use these two technologies
in the implemented prototype. In the BDC platform scenario, BDC-WE represents

part of the data processing solutions. Figure 5.1 presents an updated diagram with

87

the BDC-WE tool proposed in this work together with the other software and data
products of the Brazil Data Cube platform. In this diagram, the elements highlighted
by the dotted border represent the BDC-WE modules, developed in the context of
this thesis.

Figure 5.1 - Updated diagram of software and data products of Brazil Data Cube
Project (FERREIRA et al., 2020) integrated with the BDC-WE tool.

Applications

Satellite Image Time J §.BDC-WE OpenEOé
ol i

{ Web Portal Series (SITS) R packag

- Interactive computing
Forest Mon|torJ { JupyterHub J

U

Web Sample Assessment
Service (WSAS)

Services

Web Time Series Service
(WTSS)

Web Land Trajectory OGC Web Services -
Service (WLTS) WFS, WMS and WCS

{ SpatioTemporal Asset]

Tile Map Web Land Classification
Catalog (STAC) Service

Service (TMS) | | System Service (WLCSS) :

& &

External Providers Data and Metadata

Image Land use and cover
collections T N Image Data cube samples and
Data acquisition, processing and collections collections metadata

cube generation

Y
N

BDC-WE cmfel;?oa;: of Land use and cover
: ; o dat data sets and
H imagens and data metadata

Punsssesssieeesssssssnnnnnnnss . cubes \/

In this Figure, the BDC-WE tool is illustrated as the primary tool for the data
acquisition and processing, and generation of data cubes. The BDC-WE APIs (BDC-
WE REST API and BDC-WE OpenEO API) are a part of the service layer of the
BDC platform. The OpenEO Web Editor, which also indirectly represents OpenEO

libraries in R, Python, and JavaScript languages, is present in the application layer.

In synchronous applications, such as WTSS, WSAS, and WLTS, which perform
minimal processing before delivering data to users, we understand that processing

must continue to be performed in the context of each application. However, appli-

88

cations that demand more intensive processing must be executed in a coordinated
execution environment, such as BDC-WE. The Collection Builder and Data Builder

applications are examples of applications with these characteristics.

For the task of processing and analyzing time series using SITS, for example, we
understand that the researcher will only use BDC-WE when the methodology is al-
ready consolidated. Until then, the JupyterHub environment can be used iteratively
to perform sample selection, calibrate and train models, and perform test classifica-
tions. Once a model is ready, BDC-WE can be used through the OpenEO API to

perform the classification of a large volume of data in a distributed environment.

The path taken thus far indicates that BDC-WE is a promising tool for definitive
incorporation into the BDC platform and that it will bring significant gains to
platform users. As mentioned in Section 4.4, our next implementation steps include
the other operators available in the OpenEO API, the migration of the Collection
Builder and Data Builder applications to run on the BDC -WE and the availability
of the OpenEOQO client in the JupyterHub environment of the BDC platform. In the
field of research, our focus will turn to issues of accountability of resources used by

users, reproducibility, and code sharing.

89

REFERENCES

ADDE, G.; CHAN, B.; DUELLMANN, D.; ESPINAL, X.; FIOROT, A.; IVEN, J;
JANYST, L.; LAMANNA, M.; MASCETTI, L.; ROCHA, J. M.; PETERS, A. J.;
SINDRILARU, E. A. Latest evolution of EOS filesystem. Journal of Physics:
Conference Series, v. 608, n. 1, 2015. 25

AMAZON WEB SERVICES. Open data on AWS. 2020. Available from:
<https://aws.amazon.com/opendata/>. Access on: 26 Mar. 2020. 13

APPEL, M.; LAHN, F.; BUYTAERT, W.; PEBESMA, E. Open and scalable
analytics of large Earth observation datasets: from scenes to multidimensional
arrays using SciDB and GDAL. ISPRS Journal of Photogrammetry and
Remote Sensing, v. 138, p. 47-56, apr 2018. ISSN 0924-2716. 1, 11

APPEL, M.; PEBESMA, E. On-demand processing of data cubes from satellite
image collections with the gdalcubes library. Data, v. 4, n. 3, p. 92, 2019. ISSN
2306-5729. 1, 41, 45, 53

ARIZA-PORRAS, C.; BRAVO, G.; VILLAMIZAR, M.; MORENO, A.; CASTRO,
H.; GALINDO, G.; CABERA, E.; VALBUENA, S.; LOZANO, P. CDCol: a
geoscience data cube that meets colombian needs. In: Solano, A., Ordonez, H.
(eds) Advances in computing. Cham: Springer, 2017. p. 87-99. 8, 23, 32, 33, 45

ASMARYAN, S.; MURADYAN, V.; TEPANOSYAN, G.; HOVSEPYAN;, A.;
SAGHATELYAN, A.; ASTSATRYAN, H.; GRIGORYAN, H.; ABRAHAMYAN,
R.; GUIGOZ, Y.; GIULIANI, G. Paving the way towards an armenian data cube.
Data, v. 4, n. 3, p. 11, 2019. ISSN 2306-5729. 45

ASSIS, L. F. F. G. d.; QUEIROZ, G. R. de; FERREIRA, K. R.; VINHAS, L;
LLAPA, E.; SANCHEZ, A. 1.; MAUS, V.; CAMARA, G. Big data streaming for
remote sensing time series analytics using mapreduce. Revista Brasileira de
Cartografia, v. 69, n. 5, 2017. 13

BAUMANN, P. The OGC web coverage processing service (WCPS) standard.
Geolnformatica, v. 14, n. 4, p. 447-479, 2010. ISSN 13846175. 13

BAUMANN, P.; DEHMEL, A.; FURTADO, P.; RITSCH, R.; WIDMANN, N. The
multidimensional database system RasDaMan. ACM SIGMOD Record, v. 27,
n. 2, p. 575-577, 1998. ISSN 01635808. 12

BAUMANN, P.; MAZZETTI, P.; UNGAR, J.; BARBERA, R.; BARBONI, D;
BECCATI, A.; BIGAGLI, L.; BOLDRINI, E.; BRUNO, R.; CALANDUCCI, A.;
CAMPALANI, P.; CLEMENTS, O.; DUMITRU, A.; GRANT, M.; HERZIG, P.;
KAKALETRIS, G.; LAXTON, J.; KOLTSIDA, P.; LIPSKOCH, K.; MAHDIRAJI,
A. R.; MANTOVANI, S.; MERTICARIU, V.; MESSINA, A.; MISEV, D.;
NATALIL S.; NATIVI, S.; OOSTHOEK, J.; PAPPALARDO, M.; PASSMORE, J.;
ROSSI, A. P.; RUNDO, F.; SEN, M.; SORBERA, V.; SULLIVAN, D.; TORRISI,
M.; TROVATO, L.; VERATELLI, M. G.; WAGNER, S. Big data analytics for

91

https://aws.amazon.com/opendata/

earth sciences: the EarthServer approach. International Journal of Digital
Earth, v. 9, n. 1, p. 3-29, 2016. 13

BLOMER, J. A survey on distributed file system technology. Journal of
Physics, 2014. 13

BRAZIL DATA CUBE PROJECT. Brazil Data Cube platform. 2022.
Available from: <http://www.brazildatacube.org/>. Access on: 20 July 2022. 60

BROWN, M. E. Remote sensing technology and land use analysis in food security
assessment. Journal of Land Use Science, v. 11, n. 6, p. 623-641, 2016. 59

CAMARA, G.; ASSIS, L. F.; RIBEIRO, G.; FERREIRA, K. R.; LLAPA, E.;
VINHAS, L. Big earth observation data analytics: matching requirements to
system architectures. In: ACM SIGSPATIAL INTERNATIONAL WORKSHOP
ON ANALYTICS FOR BIG GEOSPATIAL DATA, 5., 2016, California, USA.
Proceedings... New York: ACM, 2016. p. 1-6. 8, 11, 13, 32, 33, 43, 59

CAMARA, G.; EGENHOFER, M. J.; FERREIRA, K.; ANDRADE, P.;
QUEIROZ, G.; SANCHEZ, A.; JONES, J.; VINHAS, L. Fields as a generic data

type for big spatial data. Geographic information science, p. in press, 2014.
ISSN 16113349. 1

CAMARA, G.;: SIMOES, R.;: ANDRADE, P. R.: MAUS, V.: SANCHEZ, A..
ASSIS, L. F. F. G. de; SANTOS, L. A.; YWATA, A. C.: MACIEL, A. M.
VINHAS, L.; QUEIROZ, G. e-sensing/sits: version 1.12.5. [S.L]: Zenodo:
Geneva, Switzerland, 2018. Available from:
<https://doi.org/10.5281/zenodo.1974065>. 44, 53

CARLOS, F. M. Storm: platform to support the development of
reproducible and collaborative geospatial applications. Dissertation

(Master in Applied Computing) — Instituto Nacional de Pesquisas Espaciais
(INPE), Sao José dos Campos, 2022. 85

CEOS. CEOS repository. 2021. Available from:
<https://github.com/ceos-seo/>. Access on: 25 Jan. 2021. 46, 52, 55

COPERNICUS. DIAS | Copernicus. 2020. Available from:
<https://www.copernicus.eu/en/access-data/dias/>. Access on: 26 Mar. 2020. 13

CREODIAS. What is CREODIAS? 2020. Available from:
<https://creodias.eu/>. Access on: 26 Mar. 2020. 13, 14

ELEMENTL. Dagster - Cloud-native orchestration of data pipelines. 2022.
Available from: <https://dagster.io/>. Access on: 20 July 2022. 68

EUROPEAN SPACE AGENCY. openEO platform. 2022. Available from:
<https://openeo.cloud/>. Access on: 20 July 2022. 2, 60

92

http://www.brazildatacube.org/
https://doi.org/10.5281/zenodo.1974065
https://github.com/ceos-seo/
https://www.copernicus.eu/en/access-data/dias/
https://creodias.eu/
https://dagster.io/
https://openeo.cloud/

FERREIRA, K. R.; QUEIROZ, G. R.; MARUJO, R. F. B.; COSTA, R. W.
Building earth observation data cubes on AWS. The International Archives of

the Photogrammetry, Remote Sensing and Spatial Information Sciences,
XLITI-B3-2022, p. 597-602, 2022. 61

FERREIRA, K. R.; QUEIROZ, G. R.; VINHAS, L.; MARUJO, R. F.; SIMOES,
R. E.; PICOLI, M. C.; CAMARA, G.; CARTAXO, R.; GOMES, V. C.; SANTOS,
L. A.; SANCHEZ, A. H.; ARCANJO, J. S.;; FRONZA, J. G.; NORONHA, C. A;
COSTA, R. W.; ZAGLIA, M. C.; ZIOTI, F.; KORTING, T. S.; SOARES, A. R.;
CHAVES, M. E.; FONSECA, L. M. Earth observation data cubes for Brazil:
requirements, methodology and products. Remote Sensing, v. 12, n. 24, p. 1-19,
2020. ISSN 20724292. xiv, 1, 44, 45, 46, 48, 51, 61, 88

FOOD AND AGRICULTURE ORGANIZATION (FAO). SEPAL repository.
2020. Available from: <https://github.com/openforis/sepal/>. Access on: 07 Feb.
2020. 14, 23, 24

GHEMAWAT, S.; GOBIOFF, H.; LEUNG, S.-t. The Google file system. In: ACM
SYMPOSIUM ON OPERATING SYSTEMS PRINCIPLES, 2003, Bolton Landing,
New York, USA. Proceedings... New York, NY, USA: ACM, 2003. p. 20-43. 12

GIULIANI, G.; CAMARA, G.; KILLOUGH, B.; MINCHIN, S. Earth observation
open science: enhancing reproducible science using data cubes. Data, v. 4, n. 4,
p. 4-9, 2019. ISSN 23065729. 45

GIULIANI, G.; CHATENOUX, B.: De Bono, A.;: RODILA, D.: RICHARD, J.-P.;
ALLENBACH, K.; DAO, H.; PEDUZZI, P. Building an Earth Observations Data
Cube: lessons learned from the Swiss Data Cube (SDC) on generating Analysis
Ready Data (ARD). Big Earth Data, v. 1, n. 1-2, p. 100-117, 2017. ISSN
2096-4471. 23, 40, 45

GIULIANI, G.; MASO, J.; MAZZETTI, P.; NATIVL S.; ZABALA, A. Paving the
way to increased interoperability of Earth Observations Data Cubes. Data, v. 4,
n. 3, p. 23, 2019. 43, 44, 58

GOLDBLATT, R.; YOU, W.; HANSON, G.; KHANDELWAL, A. Detecting the
boundaries of urban areas in India: a dataset for pixel-based image classification in
Google Earth Engine. Remote Sensing, v. 8, n. 8, p. 634, aug 2016. ISSN
2072-4292. 18

GOMES, V. C.; CARLOS, F. M.; QUEIROZ, G. R.; FERREIRA, K. R.;
SANTOS, R. Accessing and processing Brazilian Earth Observation Data Cubes
with the Open Data Cube platform. ISPRS Annals of the Photogrammetry,

Remote Sensing and Spatial Information Sciences, v. 5, n. 4, p. 153-159,
2021. ISSN 21949050. 43, 61, 62

GOMES, V. C. F.; QUEIROZ, G. R.; FERREIRA, K. R. An overview of platforms
for big earth observation data management and analysis. Remote Sensing, v. 12,
n. 8, p. 25, 2020. 1, 2, 11, 44, 60, 62, 67

93

https://github.com/openforis/sepal/

GOOGLE. Google Earth Engine. 2020. Available from:
<https://earthengine.google.com/>. Access on: 27 Mar. 2020. 1, 18

GORELICK, N.;: HANCHER, M.; DIXON, M.; ILYUSHCHENKO, S.; THAU, D.;
MOORE, R. Google Earth Engine: planetary-scale geospatial analysis for
everyone. Remote Sensing of Environment, v. 202, n. 2016, p. 18-27, 2017.
ISSN 00344257. 14, 15, 16, 17, 44, 60

GUO, Z.; FOX, G.; ZHOU, M. Investigation of data locality in MapReduce. In:
INTERNATIONAL SYMPOSIUM ON CLUSTER, CLOUD AND GRID
COMPUTING, 12., 2012, Ottawa, ON, Canada. Proceedings... Ottawa:
IEEE/ACM, 2012. p. 419-426. 12, 13

KILLOUGH, B. Overview of the open data cube initiative. In: INTERNATIONAL
GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2018,
Valencia, Spain. Proceedings... Valencia: IEEE, 2018. p. 8629-8632. 44, 45, 56

. The impact of analysis ready data in the Africa Regional Data Cube. In:
INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM,
Yokohama, Japan. Proceedings... Yokohama: IEEE, 2019. p. 5646-5649. ISBN
978-1-5386-9154-0. 41

LABISA. Mapaquali. 2022. Available from:
<http://www.dpi.inpe.br/labisa/project /mapaquali/>. Access on: 20 July 2022.
75

LEWIS, A.; OLIVER, S.; LYMBURNER, L.; EVANS, B.; WYBORN, L.;
MUELLER, N.; RAEVKSI, G.; HOOKE, J.; WOODCOCK, R.; SIXSMITH, J.;
WU, W.; TAN, P.; LI, F.; KILLOUGH, B.; MINCHIN, S.; ROBERTS, D.;
AYERS, D.; BALA, B.; DWYER, J.; DEKKER, A.; DHU, T.; HICKS, A.; IP, A_;
PURSS, M.; RICHARDS, C.; SAGAR, S.; TRENHAM, C.; WANG, P.; WANG,
L. W. The Australian Geoscience Data Cube — foundations and lessons learned.
Remote Sensing of Environment, v. 202, p. 276-292, 2017. ISSN 00344257. 21,
23, 40, 45

MARUJO, R. F. B.; FERREIRA, K. R.; QUEIROZ, G. R.; COSTA, R. W_;
ARCANJO, J. S.; SOUZA, R. C. M. Generating analysis ready data collections for
Brazil. In: INTERNATIONAL GEOSCIENCE AND REMOTE SENSING
SYMPOSIUM, 2022, Kuala Lumpur, Malaysia. Proceedings... Kuala Lumpur:
IEEE, 2022. p. 6844-6847. 61

MERTICARIU, G.; MISEV, D.; BAUMANN, P. Towards a general array database
benchmark: measuring storage access. In: Rabl, T., Nambiar, R., Baru, C.,
Bhandarkar, M., Poess, M., Pyne, S. (eds) Big data benchmarking. [S.1]:
Springer, 2015. p. 40-67. 12

MULLER, M. Service-oriented geoprocessing in Spatial Data
Infrastructures. 123 p. Thesis (PhD in Natural Sciences) — Technische
Universitat Dresden, Dresden, 2016. 1, 12, 13, 43, 59, 62

94

https://earthengine.google.com/
http://www.dpi.inpe.br/labisa/project/mapaquali/

MULLER, M.; BERNARD, L.; BRAUNER, J. Moving code in spatial data
infrastructures - web service based deployment of geoprocessing algorithms.
Transactions in GIS, v. 14, n. Suppl. 1, p. 101-118, 2010. ISSN 13611682. 11, 59

MUNDI WEB SERVICES. Mundi Web Services. 2020. Available from:
<https://mundiwebservices.com/>. Access on: 26 Mar. 2020. 13, 14

NATIVI, S.; MAZZETTI, P.; CRAGLIA, M. A view-based model of data-cube to
support big earth data systems interoperability. Big Earth Data, v. 1, n. 1-2, p.
7599, dec 2017. ISSN 2096-4471, 2574-5417. 41, 43, 44

ONDA. ONDA. 2020. Available from: <https://www.onda-dias.eu/>. Access on:
26 Mar. 2020. 13, 14

OPEN DATA CUBE. The "Road to 20" international data cube
deployments. [S.1.], 2019. 10 p. 23, 44

. Open Data Cube repository. 2020. Available from:
<https://github.com/opendatacube/>. Access on: 07 Feb. 2020. 23

. Open Data Cube manual. 2021. Available from:
<https://datacube-core.readthedocs.io/en/latest/>. Access on: 25 Jan. 2021. 22,
46

. ODC stats repository. 2022. Available from:
<https://github.com/opendatacube/odc-stats>. Access on: 20 July 2022. 62

. Open Data Cube. 2022. Available from:
<https://www.opendatacube.org/>. Access on: 13 Jun. 2022. 1, 14, 22, 44, 60

OPEN GEOSPATIAL CONSORTIUM (OGC). OGC standards and
supporting documents. 2019. Available from:
<http://www.opengeospatial.org/standards/>. Access on: 12 Dec. 2019. 11

OPENEO. openEO - concepts and API reference. 2018. Available from:
<https://open-eo.github.io/openeo-api/arch /index.html>. Access on: 10 Jan.
2020. 29, 31

OPENEO. openEO documentation. 2022. Available from:
<https://api.openeo.org/>. Access on: 20 July 2022. 1, 29, 31, 63

PAGANINI, M.; PETITEVILLE, I.; WARD, S.; DYKE, G.; STEVENTON, M.;
HARRY, J.; KERBLAT, F. Satellite Earth observations in support of the
sustainable development goals - Special Edition 2018. 2022. Available from:
<http://eohandbook.com/sdg/files/CEOS_EOHB_ 2018 SDG.pdf>. Access on:
20 July 2022. 59

PAPADOPOULOS, S.; MADDEN, S.; MATTSON, T. The TileDB array data
storage manager. Proceedings of the VLDB Endowment, v. 10, n. i, p.
349-360, 2016. ISSN 21508097. 12

95

https://mundiwebservices.com/
https://www.onda-dias.eu/
https://github.com/opendatacube/
https://datacube-core.readthedocs.io/en/latest/
https://github.com/opendatacube/odc-stats
https://www.opendatacube.org/
http://www.opengeospatial.org/standards/
https://open-eo.github.io/openeo-api/arch/index.html
https://api.openeo.org/
http://eohandbook.com/sdg/files/CEOS_EOHB_2018_SDG.pdf

PEBESMA, E.; WAGNER, W.; SCHRAMM, M.; Von Beringe, A.; PAULIK, C.;
NETELER, M.; REICHE, J.; VERBESSELT, J.; DRIES, J.; GOOR, E.;
MISTELBAUER, T.; BRIESE, C.; NOTARNICOLA, C.; MONSORNO, R.;
MARIN, C.; JACOB, A.; KEMPENEERS, P.; SOILLE, P. openEO - a
common, open source interface between earth observation data
infrastructures and front-end applications. [S.1.], 2017. 57 p. 14, 30

RAJABIFARD, A.; WILLIAMSON, I. P. Spatial data infrastructures: concept,
SDI hierarchy and future directions. In: GEOMATICS CONFERENCE, 2001,
Australia. Proceedings... Australia, 2001. 11, 43, 59

SEDONA, R.; CAVALLARO, G.; JITSEV, J.; STRUBE, A.; RIEDEL, M.;
BENEDIKTSSON, J. A. Remote sensing big data classification with high

performance distributed deep learning. Remote Sensing, v. 11, n. 24, p. 1-19,
2019. ISSN 20724292. 12

SHELESTOV, A.; LAVRENIUK, M.; KUSSUL, N.; NOVIKOV, A.; SKAKUN, S.
Exploring Google Earth Engine platform for big data processing: classification of

multi-temporal satellite imagery for crop mapping. Frontiers in Earth Science,
v. 5, p. 1-10, 2017. ISSN 2296-6463. 17, 18

SHVACHKO, K.; KUANG, H.; RADIA, S.; CHANSLER YAHOO, R. The Hadoop
distributed file system. In: SYMPOSIUM ON MASS STORAGE SYSTEMS AND
TECHNOLOGIES (MSST), 26., 2010, California, USA. Proceedings...
California: IEEE, 2010. p. 1-10. ISBN 9781424471539. 12

SIMOES, R.; CAMARA, G.; QUEIROZ, G.; SOUZA, F.; ANDRADE, P. R
SANTOS, L.; CARVALHO, A.; FERREIRA, K. Satellite image time series

analysis for big earth observation data. Remote Sensing, v. 13, n. 13, 2021. ISSN
2072-4292. 61, 74

SINERGISE. Sentinel-Hub by Sinergise. 2020. Available from:
<https://www.sentinel-hub.com/>. Access on: 10 Jan. 2020. 1, 14, 18, 20, 44, 60

. Sentinel-Hub documentation. 2020. Available from:
<https://docs.sentinel-hub.com/api/>. Access on: 10 Jan. 2020. 20

SOBLOO. sobloo. 2020. Available from: <https://sobloo.eu/>. Access on: 26
Mar. 2020. 13, 14

SOILLE, P.; BURGER, A.; DE MARCHI, D.; KEMPENEERS, P.; RODRIGUEZ,
D.; SYRRIS, V.; VASILEV, V. A versatile data-intensive computing platform for
information retrieval from big geospatial data. Future Generation Computer
Systems, v. 81, p. 3040, 2018. ISSN 0167739X. 11, 14, 26, 27, 43, 44, 60

STONEBRAKER, M.; DUGGAN, J.; BATTLE, L.; PAPAEMMANOUIL, O.
SciDB DBMS research at M.I.'T. IEEE Data Engineering Bulletin, v. 36, n. 4,
p. 21-30, 2013. 12

96

https://www.sentinel-hub.com/
https://docs.sentinel-hub.com/api/
https://sobloo.eu/

STROMANN, O.; NASCETTI, A.; YOUSIF, O.; BAN, Y. Dimensionality
reduction and feature selection for object-based land cover classification based on
Sentinel-1 and Sentinel-2 time series using Google Earth Engine. Remote
Sensing, v. 12, n. 1, 2020. ISSN 20724292. 11, 43, 59

TEMPORAL TECHNOLOGIES. Temporal - open source durable execution
platform. 2022. Available from: <https://temporal.io/>. Access on: 20 July 2022.
68

VINHAS, L.; QUEIROZ, G. R.; FERREIRA, K. R.; CAMARA, G. Web Services
for big earth observation data. In: GEOINFO, 17., 2016, Campos do Jordao,
Brazil. Proceedings... Campos do Jordao, 2016. p. 166-177. 13, 47

WANG, L.; MA, Y.; YAN, J.; CHANG, V.; ZOMAYA, A. Y. pipscloud: high
performance cloud computing for remote sensing big data management and

processing. Future Generation Computer Systems, v. 78, p. 353 — 368, 2018.
ISSN 0167-739X. 14, 27, 28, 60

WANG, W.; YING, L. Data locality in MapReduce: a network perspective.
Performance Evaluation, v. 96, p. 1-11, 2016. ISSN 01665316. 13

WEKEO. WEKEO. 2020. Available from: <https://www.wekeo.eu/>. Access on:
26 Mar. 2020. 13, 14

WOODCOCK, R.; CECERE, T.; MITCHELL, A.; KILLOUGH, B.; DYKE, G.;
ROSS, J.; ALBANI, M.; WARD, S.; LABAHN, S. CEOS future data access
and analysis architectures study. [S.l.], 2016. 33 p. 12, 13, 43, 60

WU, Y.; XIANG, Y.; GE, J.; MULLER, P. High-performance computing for big
data processing. Future Generation Computer Systems, v. 88, p. 693-695,
2018. ISSN 0167739X. 13

YUE, P.; RAMACHANDRAN, R.; BAUMANN, P.; KHALSA, S. J. S.; DENG, M,;
JIANG, L. Recent activities in earth data science [technical committees]. IEEE
Geoscience and Remote Sensing Magazine, v. 4, n. 4, p. 84-89, 2016. 12

YUE, P.; ZHANG, C.; ZHANG, M.; ZHAI, X.; JIANG, L. An SDI approach for
big data analytics: the case on sensor web event detection and geoprocessing
workflow. IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, v. 8 n. 10, p. 4720-4728, 2015. 12

97

https://temporal.io/
https://www.wekeo.eu/

	COVER
	VERSUS
	TITLE PAGE
	INDEX CARD
	APPROVAL TERM
	EPIGRAPHY
	ACKNOWLEDGEMENTS
	ABSTRACT
	RESUMO
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ABBREVIATIONS
	CONTENTS
	1 INTRODUCTION
	1.1 Our proposal
	1.2 Contributions
	1.2.1 Related contributions

	1.3 Document structure

	2 AN OVERVIEW OF PLATFORMS FOR BIG EARTH OBSERVATION DATA MANAGEMENT AND ANALYSIS
	2.1 Platforms for big Earth observation data management and analysis
	2.1.1 Google Earth Engine
	2.1.2 Sentinel Hub
	2.1.3 Open Data Cube
	2.1.4 SEPAL
	2.1.5 JEODPP
	2.1.6 pipsCloud
	2.1.7 OpenEO

	2.2 Assessment of the platforms
	2.3 Final remarks and discussion

	3 ACCESSING AND PROCESSING BRAZILIAN EARTH OBSERVATION DATA CUBES WITH THE OPEN DATA CUBE PLATFORM
	3.1 Earth Observations Data Cubes
	3.1.1 Open Data Cube
	3.1.2 Brazil Data Cube

	3.2 Methodology
	3.2.1 Data indexing
	3.2.2 ODC services integration
	3.2.3 Computational infrastructure

	3.3 Results
	3.3.1 Code and data availability

	3.4 Discussion and final remarks

	4 BRAZIL DATA CUBE WORKFLOW ENGINE: A TOOL FOR BIG EARTH OBSERVATION PROCESSING
	4.1 Introduction
	4.2 BDC-WE: A tool for big EO processing
	4.2.1 Implementation
	4.2.1.1 BDC-WE boilerplate project

	4.3 Study cases
	4.3.1 MAPAQUALI
	4.3.2 SITS classification

	4.4 Final remarks and discussion

	5 FINAL REMARKS
	REFERENCES

