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Abstract
Evaluating the vibroacoustic response of a fluid–structure coupled system is a relevant issue in many branches of engineer-
ing. Tasks related to this field are the analysis of the acoustic environment of the passenger compartment of a vehicle (in the 
automotive sector) and estimation of the vibrations of a satellite during its launch (in the aerospace sector). Vibroacoustic 
response is usually calculated by using the finite element method (FEM) for lower frequency band. For higher frequency 
band, the statistical energy analysis (SEA) is the usual choice. In this sense, the lack of a method capable to capture the 
response of the mid-frequency zone or even the full band is a matter of great interest for researchers from the last decades. 
A novel analytical model to evaluate the full band vibroacoustic response of a coupled system in a simplified way with 
average response is presented, the statistical modes method (SMM). The SMM provides the maximum responses on each 
frequency band and the overall response through the integral over the frequency domain. The eigenvalues are calculated 
based on modal density equations updated to also work in fundamental frequencies, the eigenvectors are not calculated in 
order to keep the method simple, and however, the variables which need it as coupling factor and nodal forces are analyti-
cally approximated from geometrical information and mode number. The method is validated over analytical, FEM, SEA 
and experimental results. The satellite Amazonia 1 from Instituto Nacional de Pesquisas Espacias acoustic tests was used 
for the experimental validation.
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1  Introduction

The vibroacoustic coupling is a common problem faced by 
engineering with a wide variety of problems ranging from 
acoustic comfort within the interior of cars, buildings and 
airplanes; to the vibration of satellites during its launch. 
The standard methods to analyze vibroacoustics are finite 
element method (FEM) for lower frequencies and statisti-
cal energy analysis (SEA) for higher frequencies. The FEM 

main issue in higher frequencies is related to the amount of 
elements necessary for a proper description of the modes. 
As a rule of thumb, it is considered necessary about 5–10 
elements per wavelength. This leads to a large increase in the 
number of degrees of freedom, which also greatly increases 
the computational cost (processing time, memory). Unlike 
the FEM, the SEA method is based on the average values 
of the vibrational energy exchanged between parts (subsys-
tems) of the analyzed system. It is considered that the energy 
exchange takes place between the natural modes of vibration 
of the subsystems involved. The energy of each subsystem 
is assumed to be evenly distributed across the modes within 
the system in the same frequency band. Therefore, SEA 
needs a high modal density to attend its requirements, and 
this is the real high frequency sense for SEA. The lack of a 
method capable to cover the mid-frequency range or even 
the full range motivated the creation of several studies and 
methods over the past years. Desmet et al. [1] presented a 
project with the compilation of the most recent works in the 
mid-frequency area.
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Hybrid methods coupling FEM and SEA to attend the 
mid-frequency range were developed, as presented by Lang-
ley and Cordioli [2], other works performing this technic are 
Pirk and Souto [3] and Jiao et al. [4]. Desmet [5] and Desmet 
et al. [6] proposed the wave-based method (WBM), which is 
derived from indirect Trefftz method, where a series of func-
tions that are solution of the wave equation are weighted to 
solve the boundary conditions. The WBM solution requires 
full matrices that are much smaller than FEM ones, but are 
frequency dependent and have some difficulties to be imple-
mented in complex geometries. In order to overcome the 
geometrical issues, Hal et al. [7] and Vanmaele [8] proposed 
the hybrid method FEM-WBM, the complex geometries are 
modeled with FEM and the most part of the domain is mod-
eled with WBM to take advantage on the smaller matrices 
of this method; however, as in WBM, the matrices are also 
frequency dependent. Another interesting method developed 
for the mid-frequency context is the statistical model energy 
distribution analyses (SmEdA), as can be checked on Stelzer 
[9] and Stelzer et al. [10], the SmEdA is a method direct 
derived from SEA that consists of the energy exchanges 
between vibration modes, what solves the SEA issue related 
to the lower frequencies, however, requires the computation 
of the eigenvalues and eigenvectors, which tends to be solved 
by FEM. Other works that present vibroacoustics analysis 
and experimental data are Braz and Souto [11], Anvariyeh 
et al. [12] and Zhong et al. [13].

It seems clear that the available models cannot deal with 
the full range of frequencies and the enhancements pro-
posed for the mid-frequency range require the use of FEM or 
something similar, which are susceptible to the FEM-related 
issues. In this context, a novel model that can handle the full 
range band and keeps simplicity compatible with SEA seems 
to attend an important demand in vibroacoustic area.

The present work proposes a novel analytical model 
named as statistical modes method (SMM) with the objec-
tive to calculate in a simplified way the maximum response 
on each spectral band and the overall response given by 
the integral of the variables over the frequency range of a 
coupled vibroacoustic problem. These two outputs from the 
SMM are the most important information required for the 
design and tests of a system under a vibroacoustic environ-
ment. The SMM is based on the estimation of the eigenval-
ues using modal density equations, and therefore, the statisti-
cal properties of the SEA are also used in SMM to describe a 
behavior that in average corresponds to the real one. In order 
to keep the method simple, the eigenvectors are not evalu-
ated, and a special analytical treatment is applied for the 
variables which need it. As the SMM is based on eigenval-
ues, the coupled system is solved through modal summation, 
then the modal analysis may demand matrix inverse opera-
tions. If the fluid used has lower density, as the case of air, 
the SMM provides the calculation of coupling resistances 

which decouple the equations but keeps the mutual influence 
between fluid and structure. Stelzer [9] and Fahy [14] men-
tioned that the modal density would be used for eigenvalue 
determination, and however, no effective data regarding this 
were found in the literature.

The modal density is a field of research for acoustic engi-
neering since the beginning of twentieth century, as this 
affects the sound quality of acoustic chambers. Three of the 
most cited articles in acoustics are from the 40’s, the work 
of Richard Bolt (Bolt [15, 16] and [17]) presented formulas, 
tables and graphics for the determination of modal density of 
rectangular acoustic chambers. Schroeder and Kuttruff [18] 
presented the Schroeder frequency; beyond this frequency 
a diffuse field and high modal density can be assumed. 
Bonello [19] and Cox et al. [20] showed the influence of 
the sound quality in rooms and auditoriums regarding aver-
age modal spacing. The development of modal density of 
structural elements, as bars, beams and plates started mainly 
motivated by the development of SEA in 60’s. The modal 
density is an important term in SEA formulation and its 
development can be seen in several works, as Hart and Shah 
[21], Clarkson and Ranky [22] for sandwich panels and Xie 
et al. [23] that presents a resume of analytical deductions of 
several types of elements. All this understanding on acous-
tics and modal density was paramount for the development 
of the SMM method.

The SMM was validated by Monte Carlo analysis with 
864 interactions of rectangular geometries (analytical solu-
tion), by two finite element models with also comparison to 
SEA in order to verify its behavior for complex geometries 
and by comparison to results obtained for the Amazonia 1 
satellite acceptance acoustic tests in order to verify it against 
real experimental data. Amazonia 1 satellite is a project from 
Instituto Nacional de Pesquisas Espaciais (INPE) and was 
successfully launched by a PSLV launch vehicle on February 
28th of 2021, as shown in Fig. 1.

Fig. 1   Amazonia 1 satellite assembled on PSLV fourth stage (Source: 
INPE/ISRO)
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The presented paper contributes to the vibroacoustic dis-
cipline with a new analytical model that seems to be capable 
to solve coupled problems with relative low computational 
cost and to provide the eigenvalues, maximum responses 
and overall results, by integrals in frequency domain, in all 
frequency bands with reasonable accuracy.

2 � SMM

The SMM development is divided in eigenvalues estimator, 
coupling factor, modal force, modal source, modal mass, 
modal volume and couple modal model.

A simple but representative vibroacoustic system is con-
sidered for the analysis and development of the method: a 
rigid walled regular hexahedral-shaped cavity with a metal 
plate mounted in one of its walls, as described in Fig. 2.

2.1 � Eigenvalue estimator

The SMM eigenvalue estimator was developed based on 
modal density adapted to also work in fundamental frequen-
cies with a reasonable error.

First, the original density equations presented on Wijker 
[24] are described, respectively, for simply supported plates 
and rigid walled volumes

where N is the number of modes, k is the wave number, S is 
the area, P is the perimeter, and V is the volume.

The adaptation of these equations to be used as a natural 
frequency estimator for arbitrary geometries involves the use 

(1)Nplate =
k2S

4�
−
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,
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Vk3
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Stotalk
2

16�
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Pvolk
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,

of a dimensionless wave number (K), the definition of error 
criteria, the sum of a correction variable α and its adjustment 
based on an analytical study of rectangular geometries with 
different aspect ratios.

The rectangular plates considered have aspect ratios vary-
ing from 1 to 7 and the rectangular volumes have aspect 
ratios varying from 1 to 10, but limited to prevent the acous-
tic cavities to behave like acoustic tubes in, if R1 = 1 than 
R2 < 4 and if R1 = 2 than R2 < 7. The aspect ratios R1 and 
R2 can be described as L2/L1 and L3/L1, see Fig. 2, where 
L1 is the smallest side of the volume.

Table 1 presents the error criteria used. The errors defined 
for the volume may seem to be higher, and however, as the 
wave number of the volume is directly proportional to the 
frequency and the plate natural frequencies are proportional 
to the squared wave numbers, the results are similar. Most of 
the errors faced by the method are due to degenerate modes, 
which are modes with same eigenvalue but different eigen-
vectors, the method is not able to model them with same 
frequency. Although developed via analysis using rectangu-
lar geometries, the average results for complex shapes are 
in agreement with error criteria. Equations (3) and (4) show 
the proposed adaptations.

 
Plate and volume wavenumber estimator formulas using, 

respectively, Baskhara and Cardano-Tartaglia are given by
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Fig. 2   Model used for SMM development, volume sides: L1, L2, L3; 
plate sides: Lp1, Lp2; plate position: P1, P2

Table 1   Wave number error 
criteria for plate and volume 
eigenvalue estimators

Plate Volume

Mode 1 < 10% Mode 2 < 35%
Mode 2 < 11% Mode 3 < 30%
Mode 3 < 10% Mode 4 < 30%
Mode 4 < 12% Mode 5 < 30%
Mode 5 < 13% Mode 6 < 30%
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where

2.2 � Coupling factor

For a volume mode n and a plate mode i, a coupling fac-
tor is given by the integral of these modes eigenvectors 
over the plate area. The SMM works statistically in order 
to describe the vibroacoustic problem in a simple way; 
therefore, the eigenvector is not evaluated, and a statistical 
approach based on average is used. The coupling factor 
can be approximated as the multiplication of two inde-
pendent integrals, each one in one dimension of the plate, 
that is treated independently, according to

where Lp and Lv are the plate and volume length on each 
direction, p is the plate position on volume, i,j = 1, 2, 3…, 
n,z = 0, 1, 2… and S is the plate area.

In order to deal with arbitrary geometry and different 
configurations, the average of the first integral of Eq. (11) 
over plate length Lp1 (0 to Lv1) and position p1 (0 to Lv1-
Lp1) is taken in Eq. (12). For simplicity, notation 1,2 refer-
ring to plate dimensions will be omitted from now on.
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The first two integrals can be analytically solved, which 
results in

where

The last integral was solved with the use of Wolfram 
Alpha integrator [25] and resulted in an equation depend-
ent of minus Sinc function integrated from x to infinite, 
which can be approximated by ± 1.5 for ± x different than 
0. Performing all calculations and approximations result 
in the following

 and a point of discontinuity for i = n.
Now some physical simplifications can be performed in 

order to produce a practical result that can be applied in the 
SMM method. First, the Lv is obtained by the integral of Lp 
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to the plate dimension, Lv =  > Lp. The modes counters i 
and n can be considered to be in the same order, n ~  = i. 
The relation (i2-n2) can be approximated to be in the same 
order of magnitude than i2, (i2 − n2) ~  = i2. The last approx-
imation concerns to the expression (cos(πn) − cos(πi)), 
which can assume three possible values, 0, 1 or 2, and in 
average is equal to 1, than this expression is approximate 
to 1. The wave counters numbers of plates were preferred 
in relation to the volume ones because volume counters 
can assume zero value, which make them unstable for 
practical use.

After some manipulations in Eqs. (15) and (16), the aver-
age coupling factor regarding one dimension of the integral 
of the plate is obtained, however, the SMM looks for the 
maximum responses over each frequency band, then the 
expression is multiplied by two twice, one for each average 
taken, and finally, the expression is multiplied by the result 

of the other direction, which results in the following final 
formula

where S is the plate area, and ij is the multiplication between 
the wave counters in the two directions of each plate mode. 
The ij term can also be treated as the quantity of maximum 
and minimum response for each plate mode eigenvector.

Although Eq. (17) is very simple, the quantity ij cannot be 
calculated analytically and because of that a simplification 
based on the study of rectangular plates is used according 
to Fig. 3 and Eq. (18).
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,

(18)ij ≅ 1 + 0.5N, ij = 1 forN = 1.

Fig. 3   ij relation for plates with aspect ratio R from 1 to 16 (The horizontal axis is the mode number, the vertical axis is the ij, the red line is the 
actual result, and the blue line is Eq. (18))
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Equation (17) represents a huge simplification in the cou-
pling factor. The final value depends only on the plate area 
S and mode number N. Studies comparing this result with 
the calculation of the real integral show that, on average, this 
expression can be considered valid.

2.3 � Nodal force

The modal force of a nodal input in a simply supported plate 
is dependent on the mass (Mp) and the eigenvector value on 
the nodal position (px,py) and can be expressed as:

It is clear from Eq. (19) that is necessary an approxima-
tion for the eigenvector value for the use of this expression 
on SMM. Considering again a rectangular plate, it is pos-
sible to describe the eigenvector as the multiplication of two 
sines with the phase of the nodal position of the first mode 
multiplied by its wave counter, then, taking advantage of 

Eq. (18), the value of the eigenvector in a determined posi-
tion can be approximated by

In a rectangular plate one of the phases φ1 and φ2 will 
have the value of π(1 − Rc)/2 and the other phase value will 
lie in the range between π/2 and π(1 − Rc)/2, where Rc is the 
ratio of the distance connecting the plate center point to the 
node position to the length of a straight line from the center 
point to the boundary passing through the node position. 
Another way to calculate Rc is by scaling the geometry in 
order that the node point falls in a boundary of the scaled 
plate, and the Rc is the square root of the area scale. Assum-
ing the average value for the phase range described above, 
the approximated phase φ1mod can then be described as:
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2.4 � Nodal acoustic source

The first attempt to include a nodal source in a volume to 
the use on SMM was like the implementation of the nodal 
force on a plate, however, as the eigenvector of a volume is 
dependent on wave counters that can assume the value zero, 
the equivalent ijn modal relation of volumes is not stable as 
the ij relation for plates (Eq. (18)); then, it was not possible 
to create a reasonable relation in this same way.

The modal nodal source was developed based on the high 
density of modes of acoustic systems. As acoustic systems 
have much more modes per band than the structural ones, 
the relevance of an individual mode losses importance com-
pared to the global behavior of the band. Thus, for modal 
nodal source, the average of the eigenvector was applied, 
which resulted, respectively, in the equations below for the 
modal source, average module of eigenvector on volume 
interior, wall, edge and vertex:

where Qm_ijn is the modal source of mode ijn applied on 
position (x,y,z), and Vijn is the modal volume. Additionally, 
it is considered that a point is on a volume vertex, edge or 
wall if its distance to these elements is smaller than 1/10 of 
the acoustic wavelength in the applied frequency, in case of 
conflict it shall be used the higher value.

The proposed model works well on average for the inte-
rior and gets better as the node position gets close to the 
vertex due to the reduction on degrees of freedom.
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2.5 � Modal mass and volume

The last modal variables required for vibroacoustic analy-
sis are the modal mass and volume. The modal mass of a 
rectangular plate has analytical solution, and therefore, it 
will be used on SMM:

The modal volume requires more care on the calcula-
tions, as the wave counters on each direction of a rectan-
gular volume can be zero, the modal volume results

(27)
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where εx = 1, for x = 0, and εx = 1/2, for x > 0.
Appealing again for the study with regular hexahedral vol-

umes with aspect ratio varying from 1 to 10, it is possible to 
prove that the εiεjεn for the first mode is always equal to 1, the 
second and third modes εiεjεn are always equal to 0.5, from 
fourth to tenth modes the average result is 1/3, and thereafter, 
the average value of εiεjεn is proportional to the relation S1.5/V, 
as described in Eqs. (29–32) and Fig. 4.

2.6 � Coupled modal equations

From the literature, the coupled modal equations of a vibroa-
coustic problem are described according to

(29)�i�j�n = 1, for fist mode

(30)�i�j�n = 0.5, for second and third modes

(31)�i�j�n = 1∕3, for fourth to tenth modes

(32)
1

�i�j�n
= 6.477106 − 0.0504092

S1.5

V
, for others

Fig. 4   1/εiεjεn average of modes 
11th to 200th in relation to the 
dimensionless relation S.1.5/V 
for rectangular volumes with 
aspect ratio from 1 to 10
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where the last term of left side of both equations is the cou-
pling terms, αair is the air absorption coefficient, Trev is the 
reverberation time, and ξ is the plate damping coefficient.

The way used on SMM to keep the influence between 
mediums but decoupling the equations was to substitute cou-
plings terms from Eqs. (33 and 34) to approximate couplings 
resistances derived specifically to simplify the response 
computations

Equation (35) is calculated zeroing the terms of right side 
of Eq. (34) and isolating wm, the same approach for Eq. (36).

2.7 � Variable integral over frequency domain

The SMM evaluates the modal response of the variables 
which can be assumed to be also the maximum ones, as the 
eigenvectors used on SMM development are normalized in 
1; then, the variables integral over frequency domain present 
the maximum result expected. However, it may be neces-
sary to know the integral over some part of the domain, 
like volume interior, wall, edge and vertex or plate interior. 
For this purpose, it was used the statistical behavior of the 
method and adopted the average of the eigenvector module; 
thus, following the calculations of Eqs. (23–26), the integral 
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of the respective domains are equal to the integral of the 
obtained variable multiplied by: 0.35 for volume interior; 
0.5 for volume wall and plate interior; 0.7 for volume edges; 
and 1 for vertex.

2.8 � SMM implementation

The SMM implementation is simple and can be performed 
straightforward. First, the natural frequencies (Sect. 2.1), 
coupling factor (Sect. 2.2), modal input (Sects 2.3 and 
2.4), modal mass and modal volume (Sect. 2.5) shall be 
evaluated based on geometrical data, material data, band 
frequency of interest and the excitation input of the sys-
tem. Then, the modal summation shall be decoupled cal-
culated following the equations of Sect. 2.6. In this sense, 
the decouple equations shall be solved sequentially fol-
lowing the load path. The subsystem which receives the 
input shall be solved first (Eq. 33 or 34) and considering 
the coupling resistances (Eq. 35 or 36) from the directly 
coupled subsystems, then the directly coupled subsystems 
shall be solved using the responses from the previous sub-

systems and accounting for coupling resistances of the 
next subsystems, and so on until the last coupled item of 
the load path.

As an example to clarify SMM implementation, consider 
an acoustic chamber excited by a loudspeaker (nodal source) 
with a plate mounted inside it. After evaluating all variables 
from Sects. 2.1–2.5, it is necessary to solve the modal equa-
tions according to the load path, first Eq. (33) shall be solved 
including the loudspeaker input and plate couple resistance 
from Eq.  (35); then, after evaluating the pressure field, 
Eq. (34) shall be solved using the pressure field from last 
step as input (last term of left side of Eq. (34)).

The SMM works with modal summation, then, if more 
than one input is applied, it is just necessary to evaluate the 
responses for each input individually and sum the results.
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3 � SMM validation

The validation of the SMM method is performed in three 
ways: comparison with analytical results (Monte Carlo 
analysis with 864 interactions); comparison with numerical 
results obtained via FEM and SEA methods of the study of 
a car interior and a satellite inside a fairing and, finally, a 
comparison with experimental results obtained for the satel-
lite Amazonia 1 acoustic test.

The analytical validation was used to develop the method 
and to provide statistical data regarding SMM error stats. 
The SMM development described in Sect. 2 was based in 
rectangular elements and, in that sense, a validation with 
non-rectangular shapes was mandatory, as presented in 
Sect. 3.2 with FEM and SEA. Finally, the SMM needed a 
real test data of a complex engineering case to assure its 
performance in real cases, and this is performed in Sect. 3.3 
with Amazonia 1 satellite.

3.1 � Analytical validation

The vibroacoustic process is of very high complexity, and 
therefore, it is not possible to define analytically the aver-
age and standard deviation errors of the SMM method. In 
order to overcome this issue, a Monte Carlo analysis with 
864 interactions was performed. For all cases, rectangular 
volumes and plates were considered. The relative sizes, 
aspect ratios and plate positions varied for each case, half of 
the interactions were related to nodal force application and 
another half to nodal source. Table 2 presents the description 
of the cases used on the analysis.

The ratio of SMM integral of modal responses to the ana-
lytical integral of modal responses is presented in Fig. 5, 
where the averages varied from 1.3 to 2.2 and the stand-
ard deviation varied from 0.4 to 0.8. The ratio was better 
for the medium which received the input and some more 
error was propagated for the coupled medium, which is 
expected. For the medium which received the input a num-
ber of approximations were used, for the coupled medium 

Table 2   Cases description of the Monte Carlo analysis

Source input Force input

Description Panel mounted on side L1L2 of the volume with a 
source acoustic input, see Fig. 2

Panel with force input mounted 
on side L1L2 of the volume, see 
Fig. 2

Volume 2 m3 2 m3

Volumes aspect ratios L1 | L2 | L3: L1 | L2 | L3:
1 | 1 | 1 1 | 1 | 1
1 | 2 | 3 1 | 2 | 3
2 | 1 | 2 2 | 1 | 2
3 | 1 | 2 3 | 1 | 2

Plate aspect ratios Lp1 | Lp2: Lp1 | Lp2:
1 | 1 1 | 1
1 | 2 1 | 2
3 | 1 3 | 1

(Lp1xLp2)/(L1xL2) and plate thickness Ratio | Thickness: Ratio | Thickness:
0.7 | 10 mm 0.7 | 10 mm
0.3 | 7 mm 0.3 | 7 mm
0.05 | 3 mm 0.05 | 3 mm

Input position Pv1 | Pv2 | Pv3: Pp1 | Pp2:
0 | 0 | 0 Lp1/4 | Lp2/2
L1/8 | L2/8 | L3/8 Lp1/2 | Lp2/4
L1/4 | L2/4 | L3/4 Lp1/4 | Lp2/4
L1/2 | L2/2 | L3/2 Lp1/2 | Lp2/2

Panel position (bottom left point) P1 | P2: P1 | P2:
0 | 0 | 0 0 | 0
L1/4 | L2/4 L1/4 | L2/4
L1/2 | L2/2 L1/2 | L2/2
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the approximations necessary for its evaluations are the ones 
used in the input medium plus the coupling factor approxi-
mations and the medium itself approximations. The results 
were a little better for the source input, because as the vol-
ume has much more modes than the plate, the errors in the 
natural frequency estimator were minimized. The degree of 
accuracy of the method can be considered adequate and reli-
able, the integral variations allow a proper design of coupled 
systems, as it represents a relative energy variation accept-
able for phases pre-experimental tests, where a calibration 
on stiffness and damping can adjust the model, additionally, 
the maximum responses, as shown on some examples of 
Fig. 6, are all captured within the same order of magnitude, 
these values will mostly dictate the analysis of strength and 
dynamic compatibility of the elements, by example, of elec-
tronic equipment mounted in a satellite panel. 

3.2 � FEM and SEA validation

The SMM was designed and validated in last sections based 
on rectangular elements with analytical solution. Thus, it is 
mandatory to also validate the method for cases with non-
rectangular geometries and representative as vibroacoustic 
systems. Two cases were designed to fulfill these require-
ments: a car interior and a satellite inside a fairing.

3.2.1 � Car interior case

A simplified model of a car with a single seat and window 
was considered and is described in Fig. 7, the model total 
volume is 0.0117 m3 and fulfilled with air. The plate area is 
0.0103 m2, and it is constituted by aluminum 8-mm thick. 
A harmonic nodal force of 10 N is applied at the plate 

Fig. 5   Ratio of SMM integral responses to the analytical integral responses for the 864 Monte Carlo interactions: a and b source input; c and d 
force input



Journal of the Brazilian Society of Mechanical Sciences and Engineering            (2023) 45:2 	

1 3

Page 11 of 16      2 

center, and its frequency varies over the frequency band 
from 50 to 5,000 Hz. The FEM analysis was run in Elmer, 
an open-source multiphysical software [26], using a mesh 
with 12,762 nodes, 57,548 volume acoustic elements and 
1468 plate elements. The maximum responses obtained 

from FEM, SEA and SMM were compared and are plotted 
in Fig. 8. Elmer software solves the finite element matrix 
numerically for every frequency; the total run time for Elmer 
FEM was 4366 s. The SMM took 53 s to solve the problem 
in the same frequencies. In addition to the computational 

Fig. 6   Modal responses comparison of SMM (black) to analytical results (red): a Case 1—force input; b case 400 – source input

Fig. 7   Car interior case 
with plate (window) in red: 
a mesh; b internal geom-
etry (car geometry fits in a 
box 0.4 × 0.2 × 0.2 m)
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efficiency, it is necessary to take into account the necessary 
time to build the mesh and configure it in the solver, while 
in SMM, it is only necessary to fulfill the systems properties, 
such as area, volume, and material data. 

SMM could describe with very good accuracy the 
maximum responses of pressures in the cavity and accel-
eration in the plate in all frequency spectrum; the error 
of maximum magnitude around the first mode of each 
subsystem is 38% for pressure and 2% for acceleration. 
The SMM integral ratio to FEM was 0.8 for pressure 
and 1.8 for acceleration. SEA presented only the average 
response with good integral estimation, but was not capa-
ble to capture the maximum responses and overestimated 
results below 300 Hz.

3.2.2 � Satellite in fairing case

A simplified model of a satellite inside a fairing is now con-
sidered. The fairing geometry is approximated as a cylindri-
cal volume with a semi-sphere on the top, while the satel-
lite is modeled as squared cut extrusion in the center of the 
cylinder. On the satellite top is placed an elliptical antenna 
which is modeled as the plate of this model. The fairing inte-
rior volume is 0.0042 m3 (fulfilled with air), and the antenna 
area is 0.0025 m2. The antenna is an aluminum plate 4 mm 
thick. A harmonic source of 10 kg/s2 from 5 to 5,000 Hz 
was applied at the cylinder center line above the antenna 
position. The FEM model mesh is displayed in Fig. 9 and 
has 4,209 nodes, 17,421 volume acoustic elements and 285 
plate elements. The maximum results from FEM were plot-
ted with results from SMM and SEA in Fig. 10 for compari-
son purposes. SMM could capture with good agreement to 
FEM the maximum responses on each frequency band and 
the integral over the frequency ratio from SMM to FEM is 
2.1 for acceleration and 0.9 for pressure, which is in agree-
ment with analytical errors showed in Sect. 3.1. In this case, 
as the fairing has an axis of symmetry, there are much more 
degenerate modes and for that reason the SMM shows more 
modes per band than FEM, see Fig. 10. SEA captured the 
average behavior but was not capable to deal with maximum 
responses and lower frequencies close to the first modes, 
as in car cabin case. The FEM responses were computed 
with Elmer software [26] and the total run time was 564 s, 
while the SMM executed the results in 8 s. The processing 
time difference shows the low computational cost of SMM; 
another relevant point is related to the time spent building 
the mesh and finite element model, which is not necessary 
on SMM. 

The results obtained for the two presented models showed 
the potential of the method even in more complex geom-
etries. The maximum frequencies were well captured, and 

Fig. 8   Acceleration and pressure maximum responses in the car inte-
rior case. SMM in blue, SEA in black and FEM in red

Fig. 9   Satellite in fairing case with plate (antenna) in red: Two views 
(faring fits in a cubic box of 0.2 m)
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the integrals over the frequency domain presented similar 
results to the ones obtained for the Monte Carlo analysis 
with rectangular geometries. This validates the results to 
be applied in a wide range of problems. The SMM seems 
to present more information than SEA and is close to FEM 
results.

3.3 � Experimental validation

The last and more important validation of SMM is against 
Amazonia 1 satellite acceptance tests. The Amazonia 1 
satellite is a project from INPE and passed through acous-
tic tests in the middle of 2020 in order to be accepted for 
launch, which happened in February of 2021 by a PSLV 
rocket. Amazonia 1 is a satellite with around 640 kg. It 
was designed for a sun-synchronous orbit with approxi-
mately 750 km height and equatorial passage of 10:30 h. 

The mission provides images in green, blue, red and NIR 
(near infrared) bands with resolution of around 65 m on 
nadir. For the tests, the satellite was mounted in a special 
trolley isolated from the ground and positioned inside a 
chamber with 10.5 × 8.4 × 20 m in an oblique way to its 
walls, four control microphones were positioned in the 
satellite center one meter from its lateral panels, as showed 
in Fig. 11. The INPE’s acoustic chamber is a closed loop 
reverberant chamber where high-pressure gaseous nitrogen 

Fig. 10   Acceleration and pressure maximum responses in the satellite 
inside fairing case. SMM in blue, SEA in black and FEM in red

Fig. 11   Amazonia 1 satellite inside acoustic chamber (Source: INPE)

Table 3   Pressure field registered during Amazonia 1 acoustic accept-
ance test, frequency defined in 1/3 octave (Source: INPE)

Frequency (Hz) SPL (dB) Frequency (Hz) SPL (dB)

31.5 123.88 1000 135
63 126.16 2000 126.66
125 129.65 4000 120.78
250 135.82 8000 119.57
500 139.81 OASPL 142.75

Table 4   SMM and tests results Grms (Source: INPE)

Panel SMM Grms Test Grms Ratio 
SMM/
Test

 + X 1.78 2.34 0.76
 + Y 2.23 2.73 0.82
-X 2.33 2.01 1.16
-Y 2.77 2.45 1.13
PL vert 3.23 3.11 1.04
PL inner 3.55 2.84 1.25
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Fig. 12   SMM validation to Amazonia 1 satellite acoustic tests, SMM in black (Source: INPE)
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is used to generate high-intensity noise by means of gas 
stream modulators connected to horns placed in the cham-
ber’s top. The specified pressure field is monitored by the 
control microphones. The acceptance tests are preceded 
by functional electrical tests and signature pressure tests, 
which has a pressure field 6 dB lower than acceptance test 
itself. Then, after the acceptance test, these two verifica-
tions are repeated and compared with the initial ones. The 
registered pressure obtained during the test is showed in 
Table 3.

The accelerations recorded in the satellite six different 
panels were used as reference data to validate the SMM. 
Amazonia 1 panels are sandwich panels with honeycomb 
and face sheet of aluminum. Considering yet that SMM 
frequency estimator only accounts for bending modes, 
sandwich panels have much more modes in high frequen-
cies than a homogeneous plate and taking advantage on 
SEA heritage, which calculates the coupled response to 
be direct proportional to the modes density, a corrector 
factor equal to the ratio of sandwich panels modes density 
to normal homogenous panels modes density was applied, 
what seemed to be very relevant to improve the accuracy 
of the approximation in higher frequencies. The sandwich 
panel modal density formula was taken from Wijker [24]

where cb is the bending wave speed, cs is the shear wave 
speed, and cb,eff is the effective bending wave speed.
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The results of SMM and test measurements are pre-
sented in Table 4 and Fig. 12, it can be noted that the 
maximum acceleration on each frequency band is very 
close, the global behavior and tendencies are well cap-
tured, and finally, the Grms responses are in good agree-
ment, the Grms ratio from SMM to test data varied from 
0.76 to 1.25.

The SMM results detached from the experimental ones 
in frequencies below 25 Hz. In fact, at these frequencies, the 
input pressure had a drop down (Fig. 13), which was cap-
tured by the SMM, and however, the panels still presented 
some response in the test. This may be caused by lower fre-
quencies interactions to the satellite and satellite trolley, both 
not modeled in the SMM model used.

4 � Conclusions

A novel method for vibroacoustic coupled analyses was 
developed, the statistical modes method — SMM. The 
method is based on the calculus of eigenvalues from modi-
fied modal density equations and provides two main outputs, 
the maximum responses over each frequency band and the 
overall responses through the integral over the frequency 
domain. The SMM seems to be a method with simple 
implementation and low computational cost that can solve 
a coupled system in a statistical way, presenting reasonable 
results for all frequency bands. The method was validated 
by analytical models, by FEM, by SEA and by experimental 
data from Amazonia 1 satellite acceptance tests. In all cases, 
the maximum responses were well captured and the integrals 
obtained were in average around 1.3–2.2 times the real ones, 
which is sufficient accuracy for analysis before the execu-
tion of physical tests, usually used to tune the model. The 
SMM seems to provide more information than SEA with 
not much more computation effort, in this sense is a method 
much more simple than FEM but not too much complicated 
than SEA.

A significant part of the errors obtained by the proposed 
method on the integrals or maximum responses calculations 
can be regarded to the degraded modes, which are not yet 
modeled by the SMM method. As part of future develop-
ments, an algorithm is planned to take into account degraded 
modes in symmetrical elements.

The objective of creating a method with low computa-
tional cost that provides reasonable accuracy in low, medium 
and high frequencies for coupled vibroacoustic systems has 
been achieved. The presented results show that the SMM 
can be used in several vibroacoustics coupled analysis with 
consistent results.

Fig. 13   Amazonia 1 satellite acoustic tests: Microphones pressure 
average (Source: INPE)
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