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Science can never solve one problem without raising ten more problems. 

George Bernard Shaw  
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ABSTRACT 
 

Brazil faces the challenge of conciliating food production with natural vegetation 
preservation, and the government has been investing in earth observation 
satellites to assist in this task. In this context, images from the Wide-Field Imager 
(WFI) sensor onboard the China-Brazil Earth Resources Satellite (CBERS-4), 
CBERS-4A, and Amazonia-1 have been used in remote sensing applications in 
Brazil. Combining the data from the WFI sensors onboard the three satellites will 
allow 1-to-3-day revisit frequency. However, the integration of three sensors of different 
platforms requires several considerations to derive a consistent time series of surface 
reflectance or derived product (e.g., vegetation indices). Thus, the main objective 
of this research is to integrate WFI data from CBERS-4, CBERS-4A, and 
Amazonia-1 into a harmonized time series for agricultural monitoring. There are 
five main topics in this research: (i) cloud masking evaluation, (ii) geometric 
accuracy assessment, (iii) bi-directional effects normalization, (iv), inter-satellite 
cross-sensor comparison, and (v) usage of time series in an agricultural 
application. Initially we analyzed two cloud mask algorithms to apply to the WFI 
data. This is an essential product for time series analysis. The Automatic Time-
Series Analysis (ATSA) proved to be more balanced between omission and 
inclusion errors than the CMASK, despite the need for a time series to be applied. 
In a second study, we evaluated the geometric accuracy of the WFI data in three 
cases: band-to-band, multitemporal, and compared to Sentinel-2/MSI data. Large 
displacements were observed against the MSI data, reaching 1.45 pixels (93m) 
for CBERS-4/WFI and Amazonia-1/WFI, and 2.5 pixels (138 m) for CBERS-
4A/WFI. Thus, a framework for automatically correcting these displacements was 
implemented. After the co-registration procedures, the geometric accuracy of the 
images was improved, reaching an average root mean square error (RMSE) of 
spatial shifts on a tile basis less than 0.29±0.05 pixels. In the third study, we 
quantified the existing angular effects in the WFI data and compared six 
approaches to normalizing these effects. All six approaches were able to reduce 
directional effects, while only those using full Bidirectional Reflectance 
Distribution Function (BRDF) normalization were able to reduce angular effects 
due to illumination effects. In the fourth study, inter-satellite WFI cross-
comparison was performed and transformation function between satellites were 
derived. The BRDF normalization and co-registration reduced the differences 
between the WFI data from three satellites in most cases. The WFI data from 
CBERS-4 and CBERS-4A were more similar to each other compared to 
Amazonia-1 WFI data, the formation of two distinct clusters in the blue and NIR 
bands. Despite that, statistical transformation functions were derived and surface 
reflectance of one sensor was converted to the other. In the last study, we 
combined our previous findings in a case study to map corn frost-damaged areas 
in western Paraná state by extracting phenological metrics from WFI-based 
Normalized Difference Vegetation Index (NDVI) time series using all three 
satellites. These phenological metrics allowed us to separate areas affected by 
two frost events from areas that had already been harvested or were in 
senescence or not affected. This application proves the potential of combining 
the WFI data from the three satellites for agricultural monitoring. 
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Keywords: Wide-Field Imager, BRDF, co-registration, cross-comparison, crop 
monitoring, time series.  

  



xiii 
 

HARMONIZAÇÃO DE DADOS WFI DOS SATELITES CBERS-4, CBERS-4A 
E AMAZONIA-1 PARA APLICAÇÕES AGRÍCOLAS 

 
 

RESUMO 
 

O Brasil enfrenta o desafio de conciliar a produção de alimentos com a 

preservação da vegetação nativa, e o governo vem investindo em satélites de 

observação da Terra para auxiliar nessa tarefa. Nesse contexto, imagens do 

sensor Wide-Field Imager (WFI) a bordo do China-Brazil Earth Resources 

Satellite (CBERS-4), CBERS-4A e Amazonia-1 têm sido utilizados em aplicações 

de sensoriamento remoto no Brasil. A combinação dos dados dos sensores WFI 

a bordo dos três satélites permitirá uma frequência de revisita de 1 a 3 dias. No 

entanto, vários fatores relacionados ao sensor, à aquisição de dados e ao alvo 

precisam ser considerados para que os dados de diferentes sensores possam 

ser combinados em uma única série temporal consistente, ou seja, em que a 

refletância da superfície ou produto derivado (por exemplo, índices de 

vegetação) possa ser comparado ao longo do tempo e suas variações se devem 

apenas à mudança do alvo/cultura agrícola e não a outros fatores. Assim, o 

principal objetivo desta pesquisa é integrar os dados WFI do CBERS-4, CBERS-

4A e Amazônia-1 em uma única série temporal mais consistente para 

monitoramento agrícola. A pesquisa foi dividida em cinco partes: (i) avaliação de 

máscaras de nuvens, (ii) avaliação da acurácia geométrica, (iii) normalização de 

efeitos bidirecionais, (iv), comparação cruzada dos sensores entre satélites e (v) 

uso de séries temporais em uma aplicação agrícola. Inicialmente analisamos 

dois algoritmos de máscara de nuvem para aplicar aos dados WFI. Este é um 

produto essencial para a análise de séries temporais. O Automatic Time-Series 

Analysis (ATSA) mostrou-se mais equilibrado entre erros de omissão e inclusão 

do que o CMASK, apesar da necessidade da utilização de uma série temporal. 

Em um segundo estudo, avaliamos a acurácia geométrica dos dados WFI em 

três casos: banda a banda, multitemporal e usando os dados do Sentinel-2/MSI 

como referência. Grandes deslocamentos foram observados em relação aos 

dados MSI, chegando a 1,45 pixels (93m) para o CBERS-4/WFI e Amazônia-

1/WFI, e 2,5 pixels (138 m) para o CBERS-4A/WFI. Assim, foi implementado um 

esquema para correção automática desses deslocamentos. Após os 

procedimentos de corregistro, a acurácia geométrica das imagens foi melhorada, 

atingindo um erro quadrático médio (RMSE) médio de deslocamentos espaciais 

usando os tiles como referência inferior a 0,29±0,05. Em seguida, quantificamos 

os efeitos angulares existentes nos dados WFI e comparamos seis abordagens 

para normalizar esses efeitos. Todas as seis abordagens foram capazes de 

reduzir os efeitos direcionais, enquanto apenas aquelas que usaram a 

normalização Bidirectional Reflectance Distribution Function (BRDF) completa 

foram capazes de reduzir os efeitos angulares em função dos ângulos de 
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iluminação. Em nosso quarto estudo, a comparação cruzada WFI entre satélites 

foi realizada e funções de transformação entre satélites foram derivadas. O 

corregistro e a normalização BRDF reduziram as diferenças entre os dados WFI 

dos diferentes satélites na maioria dos casos. Os dados WFI do CBERS-4 e 

CBERS-4A foram mais semelhantes entre si. Quando comparados com os 

dados do Amazonia-1/WFI, houve a formação de dois clusters distintos nas 

bandas azul e NIR. Apesar disso, foram derivadas funções de transformação 

estatística que permitem a conversão da refletância da superfície de um sensor 

para o equivalente ao outro. Por fim, em nosso quinto estudo, combinamos 

nossas descobertas anteriores em um estudo de caso para mapear áreas 

agrícolas afetadas por geadas no oeste do estado do Paraná extraindo métricas 

fenológicas da série temporal de Índice de Vegetação por Diferença Normalizada 

(NDVI) do sensor WFI dos três satélites. Essas métricas fenológicas permitiram 

separar áreas afetadas por dois eventos de geada de áreas que já haviam sido 

colhidas, ou estavam em senescência, ou que não foram afetadas. Essa 

pesquisa comprova o potencial de combinar os dados WFI dos três satélites para 

monitoramento agrícola. 

Palavras-chave: Wide-Field Imager, BRDF, corregistro, comparação cruzada, 

monitoramento agrícola, série temporal.  
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1 INTRODUCTION 

Global food production needs to meet the increased projected demands of 

population growth, dietary changes, and increasing bioenergy use to ensure food 

security (KEARNEY, 2010; PELLETIER; TYEDMERS, 2010; TILMAN et al., 

2011). Brazil is one of the world's largest producers and exporters of agricultural 

commodities  (FAOSTAT, 2022), with a great potential of increasing crop 

production (DIAS et al., 2016), in order to supply this growing global demand. 

However, in recent years, part of the growth of the cultivated area has taken place 

on native vegetation (ZALLES et al., 2019; POTAPOV et al., 2021). Therefore, 

Brazil has the challenge of increasing crop production and preserving the natural 

vegetation from being converted into cropland (SOTERRONI et al., 2019; PICOLI 

et al., 2020a). 

In this scenario, there is an increasing need to monitor Brazilian crop production 

and supply chain as well as your areas of natural vegetation (ZU ERMGASSEN 

et al., 2020; CHAVES et al., 2021a). The monitoring of agricultural activity 

becomes an essential task, generating valuable information for all those involved 

in the sector and for the formulation of public policies. Due to the large territorial 

extension of Brazil and the high dynamics of agricultural activity, remote sensing 

(RS) is the most viable data source for large area crop monitoring (ATZBERGER, 

2013; BÉGUÉ et al., 2018). Satellite-based RS data provide information over 

large areas in short periods allowing to subsidize the implementation of public 

policies related to food security, reducing deforestation, climate change, and 

agriculture dynamics (ATZBERGER, 2013; DIAS et al., 2016; BÉGUÉ et al., 
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2018; WHITCRAFT et al., 2019; SALES; STROBL; ELLIOTT, 2022). These data 

can be used to classify crop types, estimate phenological stages, estimate yield, 

among others (FRITZ et al., 2019). 

Nevertheless, the application of optical remote sensing data in tropical regions 

can be challenging due to constant cloud cover during the growing season of 

crops (WHITCRAFT et al., 2015b; PRUDENTE et al., 2020). According to 

Whitcraft et al. (2015a), data are required at least every eight days to monitor 

agricultural activity. Due to cloud cover, in some regions, a revisit frequency of 2 

days or more is required to maximize the opportunities of cloud-free observations 

through optical orbital SR. In addition, for agricultural monitoring to cover all sizes 

of fields, sensor data with a medium spatial resolution (10-100 m) is essential 

(WHITCRAFT et al., 2015b). Combining several Earth observation (EO) satellites 

is one way to overcome this limitation and achieve the necessary revisit 

frequency for proper monitoring (WHITCRAFT et al., 2015b; WULDER et al., 

2015).  

In this context, China-Brazil Earth Resources Satellite (CBERS) Program has 

been providing multi-temporal data for assessing and monitoring natural 

resources in Brazil (FONSECA et al., 2014). Currently, two CBERS satellites are 

in operation, the CBERS-4 and CBERS-4A and both have the Wide-Field Imager 

(WFI) camera in the payload module. The WFI is a multispectral camera acquires 

Visible and Near-Infrared (VNIR) bands, with a spatial resolution of 55-64m at 

nadir and a 5-day temporal resolution at the Equator. The CBERS-4/WFI imagery 

have been used for agricultural and environmental monitoring (PICOLI et al., 
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2020b; CHAVES et al., 2021b), and they are the primary data source for the Real-

Time Deforestation Detection System (DETER), which generates data to support 

Brazil's actions in protecting Amazon rainforest against deforestation (INPE, 

2019). In addition, another WFI sensor with characteristics similar to the CBERS-

4 and -4A is onboard of Amazonia-1, the first EO satellite completely designed, 

integrated, tested, and operated by Brazil (INPE, 2021a). Combining data from 

the WFI sensors from the three platforms (CBERS-4, CBERS-4A, and Amazonia-

1) will allow a near-daily revisit with a medium spatial resolution and will benefit 

agricultural and environmental monitoring (FONSECA et al., 2014; PICOLI et al., 

2020b; CHAVES et al., 2021b). Particularly, WFI constellation is highlighted to 

overcome cloud cover limitations over the main harvest seasons across Brazilian 

producers' regions (WHITCRAFT et al., 2015b; PRUDENTE et al., 2020) and 

meet the required temporal resolutions indicated by Whitcraft et al. (2015a) for 

crop monitoring. 

However, to integrate data from different sensors into the same time series, it is 

necessary to reduce possible spectral, geometric, spatial, calibration, and 

angular differences (CLAVERIE et al., 2018). Fritz et al. (2019) indicate that a 

better understanding of discrepancies between spectral data and vegetation 

indices from different sources is still one of the gaps in agricultural monitoring 

programs. This research topic has recently gained more attention, with remaining 

challenges (WULDER et al., 2015; MANSARAY et al., 2019). 

Despite the great potential for agricultural monitoring in integrating the data 

acquired by the WFI sensors onboard the CBERS-4, CBERS-4A, and Amazonia-
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1 in a single time series, this has not yet been documented in the literature. The 

hypothesis of this work is that the WFI data from CBERS-4, CBERS-4A and 

Amazonia-1 can be integrated into a single consistent and seamless time series 

for agricultural applications. This research investigates possible sources of 

differences between WFI data acquired on three satellites to improve the data 

quality and generate a more consistent time series. 

1.1 Objectives 

The main objective of this research is to integrate WFI data from CBERS-4, 

CBERS-4A, and Amazonia-1 into a single and more consistent time series for 

agricultural monitoring. The specific objectives are: 

1.1.1 Specific objectives 

• Perform accuracy assessment of cloud mask and cloud shadow 

mask detection algorithms for WFI data; 

• Propose a framework for automatic sub-pixel registration of WFI 

images from CBERS-4, CBERS-4A, and AMAZONIA-1; 

• Evaluate six approaches for angular normalization of WFI images; 

• Derive transformation functions to convert the reflectance of one 

sensor to the equivalent of what would be obtained by the other 

sensor based on inter-satellite cross-comparison of WFI data from 

CBERS-4, CBERS-4A, and Amazonia-1; 

• Integration of WFI data from CBERS-4, CBERS-4A, and Amazonia-

1 in a single time series for mapping frost-damaged corn areas. 
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2 THEORETICAL BACKGROUND 

This chapter describes a theoretical background about agriculture and its 

monitoring (2.1), the Brazilian remote sensing program (2.2), and integration of 

remote sensing data from optical sensors (2.3). The idea is to provide an 

overview of the context and the state-of-art that was further explored in the next 

chapters.  

2.1 Agriculture and its monitoring  

Due to the economic importance and to ensure food security, agricultural 

monitoring is essential. This information is important to everyone involved in the 

production chain, from the government, industries, cooperatives, and producers, 

to avoid excess or lack of products, assist in planning and avoid losses. In this 

sense, accurate information on the spatial and temporal distribution of land use 

for agriculture, crop yield and production, is a starting point for the development 

of public policies aimed at making production more sustainable (DIAS et al., 

2016). 

Brazil uses subjective data sources (interviews with people, agencies and entities 

related to agriculture, e.g., farmers, companies, cooperatives, supplier banks) in 

the official estimates of agricultural production carried out by the Brazilian Institute 

of Geography and Statistics (IBGE) and by the National Supply Company 

(CONAB). Although highly useful, these surveys do not allow the quantification 

of errors and the spatial representation of the estimates (FORMAGGIO et al., 

2003; SANTOS et al., 2014; SCHULTZ, 2016).  
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In this context, the SR can significantly contribute by providing accurate and 

timely information on the agricultural sector, being probably the best way to obtain 

unbiased information on large areas (ATZBERGER, 2013). Among the 

information about agriculture that can be inferred by SR are mapping of 

agricultural areas, agricultural calendar (start, end and length of the crop growing 

cycle), agricultural intensity maps (number of crop growing cycles per year), crop 

types maps, yield and production estimate (FRITZ et al., 2019). However, 

agricultural monitoring through SR is still challenging. This is especially true in 

tropical regions, such as Brazil, where the favorable climate allows multiple crops 

per year and different cropping systems (e.g., no-till, minimal cultivation, 

irrigation, crop rotation and early varieties, integrated crop–livestock system) 

(FORMAGGIO; SANCHES, 2017). In addition, there is great diversity in the 

phenological cycle of crops and in the agricultural calendar. 

Annual crops are highly dynamic in time, with a significant change in the amount 

of biomass occurring within a week (DUVEILLER et al., 2013). For an adequate 

monitoring of annual agricultural crops, it is necessary to use orbital images with 

a weekly interval, or even smaller, during the entire phenological cycle 

(WHITCRAFT et al., 2015c; WHITCRAFT et al., 2015d). The temporal resolution 

is related to the type of monitoring performed. For example, agricultural calendar 

(WHITCRAFT et al., 2015d) and yield (GAO et al., 2018) estimates require a 

higher temporal resolution than necessary for mapping cropland. 

Orbital sensors acquire images from the same place on the earth's surface 

regularly, enabling the images obtained by them to be calibrated, allowing the 
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comparison of measurements at different times. Thus, each pixel location (x, y) 

in consecutive times, t1, ..., tm, constitutes a Satellite Image Time Series (SITS) 

(PICOLI et al., 2018). Agricultural monitoring is often performed using Vegetation 

Index (VI) SITS (ATZBERGER, 2013). VIs are mathematical combinations of 

spectral reflectance at different wavelengths, mainly in the visible and near-

infrared (VNIR) regions and can be related to biophysical characteristics of 

vegetation (VIÑA et al., 2011). IVs such as the Normalized Difference Vegetation 

Index (NDVI) (ROUSE et al., 1974a) and the Enhanced Vegetation Index (EVI) 

(HUETE et al., 2002), can be used as an indicator of the temporal evolution of 

green biomass throughout the growing cycle of crops (Figure 2.1), showing low 

values at the beginning, gradually increasing until the maximum biomass and 

decreasing with the end of the growing cycle (ESQUERDO; ZULLO JÚNIOR; 

ANTUNES, 2011). 
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Figure 2.1 – Example of an average NDVI time series from a municipality and the 
respective phenological phases. 

 

Source: Esquerdo, Zullo Júnior and Antunes (2011). 

Several agricultural monitoring methodologies require dense SITS (high temporal 

frequency). The MODIS sensor, onboard Terra and Aqua satellites, can provide 

this type of data with high temporal resolution, and it has been the main sensor 

employed in agricultural monitoring, mainly due to its daily acquisitions, the 16-

day compositions of IVs (EVI and/or NDVI), and the moderate spatial resolution 

(250 m) (ATZBERGER, 2013; BÉGUÉ et al., 2018). MODIS SITS applications 

include monitoring phenological development stage and crop progress (GAO et 

al., 2017), agricultural calendars (WHITCRAFT, 2015d), agricultural expansion 

(ADAMI et al., 2012), mapping of agricultural areas (WALDNER; CANTO; 

DEFOURNY, 2015), distinguish and map crop species (ZHONG et al., 2016; 

CHEN et al., 2018), estimate yield (AZZARI; JAIN; LOBELL, 2017; GAO et al., 
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2018), in addition to identifying the dynamics and cycles of annual crops (Figure 

2.2). However, in some regions that have greater spatial heterogeneity, with 

fragmented, irregular and smaller fields, the 250 m spatial resolution of the 

MODIS sensor can be a limiting factor, both for mapping (YAN; ROY, 2014; 

FRITZ et al., 2015; ZHONG et al., 2016a), and for estimating yield (GAO et al., 

2018). 

Figure 2.2 – Example of an area with three annual growing cycles of agricultural crops 
identified with MODIS NDVI SITS. 

 

Source: Esquerdo et al. (2020). 

Optical sensors, such as MODIS, are dependent on clear sky conditions to 

acquire useful images. Persistent cloud cover combined with low revisit 

frequency can prevent the observation of crucial stages of crop growing by optical 

sensors (especially crops of annual cycle) (GRIFFITHS et al., 2019). This can be 

a limiting factor, especially in tropical regions (SANO et al., 2007; SUGAWARA; 

RUDORFF; ADAMI, 2008; WHITCRAFT et al., 2015b; EBERHARDT et al., 2016; 

PRUDENTE et al., 2020). Eberhardt et al. (2016) observed a maximum average 

probability of occurrence of cloud-free observations of 30% for the months of 

December and January in the states of Paraná and São Paulo, a period in which 

crops are experiencing intense vegetative growth in almost the entire country 

(WHITCRAFT et al., 2015d). According to Whitcraft (2015a), in much of Brazil 

during the month of January, to obtain a cloud-free image every 8 days with 70% 

Soy Bean Wheat Soy Bean Wheat 
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probability, a revisit of 1-2 days is necessary. To obtain the same result with 95% 

probability, the frequency of observations must be greater than one day. 

Thus, no medium spatial resolution optical sensor alone with free data can 

provide the frequency of acquisitions necessary for adequate agricultural 

monitoring in Brazil (WHITCRAFT et al., 2015b). This is the main reason why the 

monitoring of crop development conditions and productivity estimation with 

medium spatial resolution (10-100m) has not yet reached a large scale around 

the world. This is one of the gaps in agricultural monitoring systems, so that they 

can cover all fields sizes (FRITZ et al., 2019). Therefore, the integration of images 

from multiple sensors to generate dense and consistent SITS becomes an 

essential task for agricultural monitoring. This, considering that in a consistent 

time series the surface reflectance or derived product (e.g., IVs) can be compared 

over time and its variations are due only to the change in the target/crop and not 

due to other factors. 

2.2 Brazilian remote sensing program 

The incorporation of Brazil into a long-term remote sensing program has begun 

with the establishment of the China Brazil Earth Resources Satellite (CBERS) 

program (PINTO et al., 2016a). The CBERS program has been developed under 

a cooperation agreement between Brazil and China for making and operating 

remote sensing satellites providing multi-spectral data for monitoring and 

studying the natural resources and anthropogenic phenomena (EPIPHANIO, 

2009, 2011a; FONSECA et al., 2014). CBERS-1, the first satellite developed, was 

launched on 14 October 1999 by the Chinese Long March 4B launcher from the 
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Taiyuan Satellite Launch Center in China (PONZONI; ZULLO; LAMPARELLI, 

2008). CBERS-1 remained functional until August 2003 (PINTO et al., 2016a). 

The second satellite (CBERS-2) was launched successfully from the same launch 

center on 21 October 2003 and carried an identical payload as CBERS-1: Wide 

Field Imager (WFI), High Resolution Charge-coupled devices Camera (CCD), 

and the Infrared Multispectral Scanner (IRMSS) (PONZONI; ZULLO; 

LAMPARELLI, 2008). The CCD camera had visible, near infrared (NIR) and 

panchromatic bands, with 20 m spatial resolution and a 26-day revisit. IRMSS 

sensor had the same revisit period as the CCD camera, with panchromatic, 

SWIR, and TIR bands, at spatial resolution of 80 and 160 m. Finally, the WFI had 

red and NIR bands with spatial resolution of 260 m and a revisit time of 3-5 days. 

The third satellite of the program, CBERS-2B, was launched in 2007 and 

operated until June 2010 (PINTO et al., 2016a), and had characteristics very 

similar to its predecessors, with the difference that the IRMSS sensor was 

replaced by the High Resolution Panchromatic Imaging Camera (HRC), with a 

single panchromatic band of 2.7 m of spatial resolution (EPIPHANIO, 2009). In 

2004, the Brazilian National Institute for Space Research (INPE) began providing 

free and open access to CBERS data acquired directly by its ground receiving 

station or recorded on board the satellite which caused an exponential increase 

in the number of RS data users in Brazil (FONSECA et al., 2014). 

CBERS-3 and CBERS-4 were developed as part of the second generation of the 

Chinese-Brazilian cooperation effort, with improved payload characteristics 

(EPIPHANIO, 2009). CBERS-3 was launched on 9 December 2013, also by a 

Long-March 4B rocket from the Taiyuan base in China, however, the satellite was 
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lost due to failure on the launcher’s third stage (PINTO et al., 2016a). The fifth 

satellite of the CBERS Program, CBERS-4, was successfully launched from the 

Taiyuan Satellite Launch Center on 7 December 2014 (PINTO et al., 2016a), and 

provides free daily remote sensing images of the Brazilian territory and other 

regions of the Earth (CHAVES et al., 2021b), i.e., South America, Africa, and 

China. CBERS-4 carries four cameras in the payload module: Panchromatic and 

Multispectral Camera (PAN); Multispectral Camera (MUX); Infrared System 

(IRS); Wide-Field Imager (WFI) (EPIPHANIO, 2011a). The PAN camera has 3 

visible bands up to 10 m and a panchromatic band up to 5 m, with a temporal 

resolution of 52 days. The MUX camera has visible and NIR (VNIR) bands with 

a spatial resolution of 20 m and a 26-day revisit time. The IRS camera has a 

revisit period equal to MUX, and panchromatic, SWIR and TIR bands, with a 

spatial resolution of 40 m (80 m for the TIR) (EPIPHANIO, 2009, 2011a). The 

WFI sensor had improvements over the first generation of CBERS satellites, with 

4 multispectral bands in the VNIR, spatial resolution of 64 m at the nadir, while 

maintaining the revisit time capacity of 5 days at the equator (PINTO et al., 

2016a). 

On 20 December 2019, CBERS-4A, the sixth satellite of the CBERS Program, 

was launched from the Taiyuan Satellite Launch by the Chinese Long March 4B 

launcher (INPE, 2021b). CBERS-4A has three cameras: Wide Scan Multispectral 

and Panchromatic Camera (WPM), MUX and WFI. The WPM camera has 4 

multispectral bands in the VNIR and a panchromatic band. The multispectral 

bands have a spatial resolution of 8 m and the PAN of 2 m, with a revisit time of 

31 days. The MUX and WFI sensors have the same sensor characteristics as 
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presented in the CBERS-4, only with a change in spatial resolution from 20 m to 

16 m in the MUX camera and from 64 m to 55 m in the WFI sensor (INPE, 2021b). 

On February 28, 2021, Brazil launched the Amazonia-1, the first EO satellite 

completely designed, integrated, tested, and operated by the country (INPE, 

2021a). The Amazonia-1 satellite also carries a WFI sensor in its payload module, 

with similar spectral, temporal, and spatial characteristics to the WFI onboard of 

CBERS-4 satellite. 

Among the sensors onboard Brazilian EO satellites, the WFI sensor has better 

characteristics to monitor dynamic activities due to its high temporal resolution. 

The CBERS-4/WFI imageries have been used for agricultural and environmental 

monitoring (PICOLI et al., 2020b; CHAVES et al., 2021b), and they are the 

primary data source for the Real-Time Deforestation Detection System (DETER), 

which produces daily alerts on changes in forest cover in the Brazilian Legal 

Amazon, to support surveillance work and control from authorities of 

deforestation by identifying clear-cutting and forest degradation (DINIZ et al., 

2015; INPE, 2019). By combining the data from the three satellites it is possible 

to obtain a one-to-two-day revisit time with medium spatial resolution (Figure 2.3). 

This will improve the capacity to detect deforestation in the Amazon rainforest 

(INPE, 2019) and other biomes. In addition, the WFI data combination will allow 

more detailed information about agricultural production like crop type mapping, 

crop phenological growing assessment, yield estimation, and crop sowing and 

harvest progress (Figure 2.3b). Nevertheless, combining data from different 

satellite sensors, even with similar characteristics, involves challenges that will 

be discussed in the next section. 
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Figure 2.3 –  Example of combining WFI data from CBERS-4 (C4), CBERS-4A (C4A) 
and Amazonia-1 (AM1) satellites over an area with predominance of 
agriculture in Primavera do Leste, Mato Grosso, Brazil (a), with the 
detailing of second crop corn harvest progress in central pivot areas (Lat, 
Lon: -15.370559, -54.437669) (b). 

 

 

2.3 Integration of remote sensing data from optical orbital sensors 

The acquisition of useful optical images with medium spatial resolution over large 

areas is limited by the frequency of temporal observation, latitude, sensor-specific 

acquisition conditions and period, as well as atmospheric contamination, 

including cloud, shadow, fog and smoke (WULDER et al., 2015). The combined 

use of data generated by different orbital sensors enables the development of 

virtual constellations with high temporal resolution and medium spatial resolution 

(WULDER et al., 2008; GOWARD et al., 2012). The main objective of a virtual 
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constellation is to increase the temporal revisit frequency of medium spatial 

resolution sensors. 

However, the combination of different sensors involves challenges related to 

orbital, spatial, number, width, and position of spectral bands (MANDANICI; 

BITELLI, 2016), and also related to target characteristics (FLOOD, 2017). Thus, 

in order to be able to combine the surface reflectance  between different sensors 

and over time, procedures for data harmonization are needed (GOWARD et al., 

2012; WULDER et al., 2015). This enables data from different sensors to be 

combined into the same consistent and seamless time series (CLAVERIE et al., 

2018). The main factors that generate differences between the surface 

reflectance obtained from different sensors are geometric and radiometric 

calibration, atmospheric correction, difference in spectral response function and 

observation geometry (FLOOD, 2017; CLAVERIE et al., 2018; HELDER et al., 

2018; MARTINS et al., 2018; ZHANG, et al., 2018). These factors will be 

discussed in the next sections. 

2.3.1 Geometric accuracy 

A prerequisite for quantitative remote sensing applications is the accuracy and 

consistency of geolocation, especially for multi-temporal image analysis, so that 

images acquired from different sensors and dates can be compared directly 

(GAO; MASEK; WOLFE, 2009). The comprehensive analysis of geometric 

accuracy of the data from orbital sensors provides important guidance for 

improving geolocation accuracy and data application (JING et al., 2021). 

Although satellite data is usually registered accurately, displacements of up to a 
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few pixels are common in these data sources (YAN et al., 2016; SCHEFFLER et 

al., 2017; SKAKUN et al., 2017a). In these cases, it may be necessary to co-

register the data from the different sensors before they can be integrated into the 

same consistent time series (CLAVERIE et al., 2018). 

2.3.2 Atmospheric correction 

Surface reflectance products are important for quantitative RS applications, being 

essential for combining data from different sensors in order to generate a 

consistent time series (HELDER et al., 2018). The use of different atmospheric 

correction algorithms can increase the differences between the surface 

reflectance of the sensors, as each model has different associated uncertainties 

depending on atmospheric correction inputs and how the atmospheric 

parameters are calculated (MARTINS et al., 2017; HELDER et al., 2018). Thus, 

the use of different algorithms should be carefully analyzed (MARTINS et al., 

2017), and the ideal would be to use the same atmospheric correction model 

(MARTINS et al., 2017; CLAVERIE et al., 2018). 

2.3.3 Spectral adjustment 

Although sensors generally have similar bands in certain regions of the 

electromagnetic spectrum, there may be differences in the relative spectral 

response function between them. The importance of differences arising from 

relative spectral response function depends on the application and approach 

adopted to perform the time series analysis (MANDANICI; BITELLI, 2016). 

Methods based on physical quantities recovered by RS reflectance or empirical 

approaches based on multispectral indices are more affected by relative spectral 
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response function differences (VAN DER WERFF; VAN DER MEER, 2016). 

Thus, for proper interoperability of data from different sensors, it is desirable to 

perform spectral adjustment (HELDER et al., 2018). Two approaches are usually 

used to convert the reflectance of a sensor into the equivalent of the other sensor: 

using the Spectral Band Adjustment Factor (SBAF) (CHANDER et al., 2010; 

PINTO et al., 2016b; CLAVERIE et al., 2018; MARTINS et al., 2018); and through 

empirical comparison (ROY et al., 2016a; ZHANG et al., 2018). The SBAF is 

target specific and requires a hyperspectral data source to be calculated 

(HELDER et al., 2018), thus, allowing the reflectance of one sensor to be 

converted to a reflectance equivalent to that of the other. In the empirical 

approach, the real data are compared, and statistical transformation functions are 

derived to allow the conversion of data from one sensor into the equivalent of the 

other. 

2.3.4 Angular normalization 

Most surfaces are not isotropic, and angular effects may occur due to the 

variation of the viewing and illumination angles (observation geometry) (BRÉON; 

VERMOTE, 2012). This can generate significant variation in surface reflectance, 

even in the absence of change in vegetation condition/type or ground cover (GAO 

et al., 2014). Therefore, it may be necessary to normalize these effects for data 

integration (HELDER et al., 2018), so that in the analysis of the time series, the 

changes that occur are due to the crop canopy condition instead of artefacts of 

sun-target-sensor geometry (GAO et al., 2014). Expressing the pixel reflectance 

as a function of that geometry provides the Bidirectional Reflectance Distribution 
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Function (BRDF) (BRÉON; VERMOTE, 2012; FLOOD et al., 2013). BRDF effects 

are accentuated in sensors with a large Field of View (FOV) such as MODIS 

(SCHAAF et al., 2002). However, previous studies have shown this effect in 

narrow FOV sensors (FLOOD et al., 2013; GAO et al., 2014; ROY et al., 2016b, 

2017; FRANCH et al., 2019), and proposed the angular normalization for data 

integration (FLOOD, 2017; CLAVERIE et al., 2018; ZHANG et al., 2018). 

According to Claverie et al. (2018), it is desirable to normalize the data to a nadir 

view zenith angle (VZA) and constant solar zenith angle (SZA), which is known 

as Nadir BRDF-Adjusted Reflectance (NBAR). 

2.3.5 Cloud and cloud shadow mask 

Although cloud masks and cloud shadows are not essential for the integration of 

data from different sensors, most time series applications of optical RS images 

require a cloud mask and cloud shadow with good accuracy (CLAVERIE et al., 

2018). Omission of clouds can lead to errors that propagate to high-level 

products, while commission errors can lead to a reduced number of valid 

observations and, therefore, decrease the cloud-free observations (SKAKUN et 

al., 2022). Currently, there are a large number of methodologies to generate cloud 

and cloud shadow mask (FOGA et al., 2017; ZHU; HELMER, 2018; SKAKUN et 

al., 2022), which can be used for different sensors depending on their 

characteristics. Sensors with fewer spectral bands have greater limitations in the 

cloud mask and cloud shadow mask algorithms that are supported (ZHU; 

HELMER, 2018). Furthermore, it is important to evaluate and compare the cloud 

mask and cloud shadow algorithms available to sensors in different situations to 
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provide guidance in the application of optical RS data (FOGA et al., 2017; 

SKAKUN et al., 2022). 
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3 MATERIAL AND METHODS 

In this chapter, we present a general description of the material and methods 

used in this research. First, we describe the thesis organization and show a 

general flowchart (3.1). Lastly, we describe the RS data (3.2) used in the 

analyses. 

3.1 Thesis organization 

This thesis is structured into a brief contextualization and theoretical background, 

general methods, five articles (Figure 3.1), overall discussion, contributions, and 

conclusions. Initially, we described the data used in the following chapters. In the 

first paper, we presented an accuracy assessment and comparison between two 

cloud masks algorithms for the WFI data. In the second paper, we evaluated the 

geometric accuracy of WFI images and presented a framework for sub-pixel 

automatic registration. In the third paper, we evaluated the angular effects on WFI 

images and compared six normalization approaches. In the fourth paper, we 

performed inter-satellite cross-comparison of WFI data and transformation 

functions are derived to convert the reflectance of one sensor to the equivalent 

of what would be obtained by the other sensor. In the fifth paper, we applied the 

developed algorithms to integrate the WFI data from the satellites in a single time 

series to map the corn frost-damaged areas in Paraná, as a study case in 

application to agricultural monitoring. Lastly, we discussed the main research 

findings and highlighted the main contributions and conclusions. 
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Figure 3.1  – Flowchart of this research. 

 

 

3.2 Remote sensing data 

3.2.1 WFI sensor 

The WFI sensors onboard CBERS-4, CBERS-4A, and Amazonia-1 satellites are 

a pushbroom imaging spectrometer acquiring data at four similar spectral bands, 

three at visible wavelengths (Blue, Green, and Red) and one at near-infrared 

(NIR). WFI has a large FOV of ±28.63º. The temporal resolution for each sensor 

is five days at the Equator. Because of the altitude difference between the 

satellites, the CBERS-4A images have a spatial resolution of 55 m, while those 

by CBERS-4 and Amazonia-1 have 64 m. The characteristics of the WFI sensors 

are summarized in Table 3.1.  
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Table 3.1 – Summary of the characteristics of WFI sensors onboard CBERS-4, CBERS-
4A, and Amazonia-1. 

Characteristic CBERS-4/WFI CBERS-4A/WFI Amazonia-1/WFI 

Technique Pushbroom Pushbroom Pushbroom 

Altitude 778 km 628.6 km 752 km 

Spectral 

Bands 

 

Blue: 0.45-0.52 µm 

Green: 0.52-0.59 

µm 

Red: 0.63-0.69 µm 

NIR: 0.77-0.89 µm 

Blue: 0.45-0.52 µm 

Green: 0.52-0.59 

µm 

Red: 0.63-0.69 µm 

NIR: 0.77-0.89 µm 

Blue: 0.45-0.52 µm 

Green: 0.52-0.59 

µm 

Red: 0.63-0.69 µm 

NIR: 0.77-0.89 µm 

Spatial 

Resolution 
64 m 55 m 64 m 

Swath width 866 km 684 km 850 km 

FOV ±28.63º ±28.63º ±28.63º 

Temporal 

Resolution 
5 days 5 days 5 days 

Radiometric 

Resolution 
10 bits 10 bits 10 bits 

Source: Epiphanio (2011b); Pinto et al. (2016a); INPE (2021a;b) and Moutinho (2021). 

 

3.2.2 MSI sensor 

Sentinel-2A and Sentinel-2B satellites were launched in 2015 and 2017, 

respectively, within the European Copernicus program (DRUSCH et al., 2012). 

These two satellites have the Multi-Spectral Instrument (MSI) onboard, an optical 

pushbroom sensor that acquires images of the Earth's surface in 13 spectral 

bands from visible and NIR to Short Wave InfraRed (SWIR) region at 10 m, 20 

m, and 60 m spatial resolution (GASCON et al., 2014). 
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3.2.3 MODIS sensor 

The MODIS sensors onboard the Terra and Aqua platforms provide at least two 

observations per day, making it possible to obtain a set of observations at 

different angular configurations in a short period of time. The MODIS sensor 

images are distributed in several products with different processing levels. 

MCD43A products provide information on MODIS BRDF/albedo. The weighting 

parameters for isotropic, volumetric, and geometric kernels (LUCHT; SCHAAF; 

STRAHLER, 2000) are retrieved as the best fit to the BRDF model from the 

accumulation of bidirectional observations obtained from both platforms over a 

16-day period (SCHAAF et al., 2002) (for the Collection V006 MODIS 

BRDF/Albedo product) and stored in the MCD43A1 product. MODIS 

BRDF/albedo algorithm uses different strategies to retrieve the BRDF depending 

on the number and distribution, and quality of observations within this period 

(SCHAAF et al., 2002). The BRDF/Albedo band quality associated with the 

retrieve information of the BRDF parameters is stored in a similar product, the 

MCD43A2. The MCD43A4 BRDF-Adjusted Reflectance (NBAR) product uses the 

BRDF parameters to normalize reflectance values to nadir view given the mean 

SZA of the 16-day period, minimizing the effects of the anisotropic scattering and 

the view angle, resulting in a more stable and consistent product (LUCHT; 

ROUJEAN, 2000; SCHAAF et al., 2002). MCD43A product data are computed 

daily for MODIS spectral bands 1‒7 in the Collection 6 and temporally weighted 

for the ninth day of the 16-day recovery period. The MCD43A images are 

distributed in sinusoidal projection at 500 m of spatial resolution, covering an area 

of approximately 10° x 10°.  
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4 ACCURACY ASSESSMENT OF CLOUD MASK DETECTION 

ALGORITHMS FOR CBERS-4/WFI IMAGERY1 

Our first paper presented the accuracy assessment and comparison of two cloud 

mask algorithms for CBERS-4/WFI data. The results support the understanding 

of strengths and weaknesses of the algorithms in order to guide the use of cloud 

masks necessary for the further analyses proposed in this thesis (presented in 

the next chapters). 

4.1 Introduction 

Optical satellite imagery are widely used to map land use and land cover (LULC), 

monitor crops and ecosystems, and estimate land surface parameters, enabling 

a better understanding of the Earth system's functioning and how it has changed 

over time (COHEN; GOWARD, 2004; HANSEN; LOVELAND, 2012; WULDER et 

al., 2015, 2018; GÓMEZ; WHITE; WULDER, 2016; ZHU; HELMER, 2018; 

ENNOURI; KALLEL; ALBANO, 2019). Nonetheless, in optical remote sensing 

images, clouds and their corresponding shadows are inevitable and limit the 

potential of the imagery for ground information extraction (LI et al., 2019b). 

Estimates show that the global mean cloud cover over land surfaces is greater 

than 55% (ROSSOW; SCHIFFER, 1999; KING et al., 2013). In tropical regions, 

this value can be even higher, as in the Amazon region, where the frequency of 

 
1 Most part of this chapter was published in the OLDONI, L. V.; SANCHES, I. D.; PICOLI, M. C. A. 

ACCURACY ASSESSMENT OF CLOUD MASK DETECTION ALGORITHMS FOR CBERS-4 WFI 

IMAGERY. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, v. V-

3–2022, n. June, p. 61–67, 17 maio 2022.  
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cloud cover is higher than 80% in the wet season (PRUDENTE et al., 2020). 

Many applications need remote sensing data periodically, as is the case of LULC 

change and agricultural monitoring, and cloud contamination of optical imagery 

presents a major limitation (HANSEN; LOVELAND, 2012; WHITCRAFT et al., 

2015b). 

Thus, accurately extracting clouds and cloud shadows from cloud-contaminated 

images can help reduce the negative influences that cloud coverage brings to the 

automated application of the imagery (LI et al., 2017b), especially in dense time 

series focused on agricultural monitoring (BENDINI et al., 2019). Furthermore, 

due to the large amount of data required for multi-temporal and large-scale 

studies, it is important to acquire cloudless images automatically (SUN et al., 

2017). Therefore, masking clouds and cloud shadows is often the first and most 

necessary step of image pre-processing in optical remote sensing applications 

(BRAATEN; COHEN; YANG, 2015; ZHU; HELMER, 2018; BAETENS; 

DESJARDINS; HAGOLLE, 2019).  

Automatic and accurate detection of clouds and cloud shadows is challenging 

(ZHU; WOODCOCK, 2012, 2014; LI et al., 2017b; ZHU; HELMER, 2018). 

Different clouds with different spectral signatures (BIAN et al., 2016) can be easily 

confused with some cloud-free bright objects on the land surface (ZHU; 

HELMER, 2018). Furthermore, the spectral signature of thin clouds can be similar 

to the signature of the land surfaces underneath, as the observed reflectance 

contain a mixture of cloud and land signals, making them more difficult to identify 

(ZHU; WOODCOCK, 2014; BAETENS; DESJARDINS; HAGOLLE, 2019). Cloud 
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shadows are another challenge as they are easily confused with dark land 

surfaces due to the spectral similarity between them (ZHU; WOODCOCK, 2012; 

ZHU; HELMER, 2018). 

Despite the challenges mentioned above, various methods have been 

successfully developed to detect clouds and cloud shadows. The methods for 

masking cloud and cloud shadows can be divided into two categories according 

to the single or multi-temporal images that the algorithms use (LI et al., 2017b). 

Most single-image methods screen clouds in individual images using predefined 

or adaptive thresholds (ZHU; HELMER, 2018). Single images methods require 

fewer input data than multi-temporal methods, and they are more popular (LI et 

al., 2017b). In multi-temporal methods, the temporal information in the images 

acquired at different times is used to detect clouds and shadows (ZHU; HELMER, 

2018). The idea of these algorithms is that clouds and cloud shadows will cause 

sudden changes to the reflectance, and by comparing the image analysed with a 

reference without clouds, the clouds and cloud shadows will be easily detected 

(ZHU; WOODCOCK, 2014). Multi-temporal methods usually achieve a higher 

cloud detection accuracy by requiring more scenes over a short period (LI et al., 

2017b). But this may cause problems for applications like change detection 

because LULC change will also result in sudden changes in satellite observations 

(ZHU; WOODCOCK, 2014). 

Most of the methods for detecting clouds and cloud shadows were designed for 

images of a specific sensor. Fmask, for example, was originally designed for 

cloud screen and cloud shadows in Thematic Mapper (TM) and Enhanced 
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Thematic Mapper (ETM+) sensors on board Landsat satellites (ZHU; 

WOODCOCK, 2012). Later, this algorithm was improved to be used on Landsat-

8/OLI (Operational Land Imager) and Sentinel-2/MSI images (ZHU; WANG; 

WOODCOCK, 2015; QIU; ZHU; HE, 2019). Other algorithms are image 

processors, which generate the cloud mask as part of the converting radiance 

process at the top of the atmosphere to surface reflectance (SANCHEZ et al., 

2020). This is the case of the Sen2Cor algorithm (LOUIS et al., 2016), developed 

for Sentinel-2 MSI images. However, these algorithms use specific bands that 

many other sensors do not have (e.g., cirrus, SWIR, thermal) (ZHU; HELMER, 

2018). 

The WFI sensor has only four spectral bands (i.e., Blue, Green, Red, and NIR). 

Due to the limited number of spectral bands, detecting clouds and cloud shadows 

in WFI images is even more challenging, and few algorithms have been 

developed for such characteristics. For example, the Fmask needs SWIR and 

thermal spectral bands in older versions and at least SWIR and cirrus bands in 

newer versions (ZHU; WOODCOCK, 2012; ZHU; WANG; WOODCOCK, 2015). 

These bands are not present in the WFI sensor, which makes the Fmask 

unfeasible to be applied to the images of this sensor. The Automatic Time-Series 

Analysis (ATSA) (ZHU; HELMER, 2018) is suitable for sensors such as the WFI 

since it needs a minimum number of bands and fewer predefined parameters. 

This algorithm can be applied for areas with persistent clouds. 

The reliability of the cloud mask is also a key element that determines the noise 

present in the reflectance time series (BAETENS; DESJARDINS; HAGOLLE, 



28 
 
 

2019). In practice, performance assessment is done by selecting representative 

images and assessing how well each algorithm performs in each image 

(SANCHEZ et al., 2020). Several studies have compared the accuracy of different 

cloud and cloud shadow detection algorithms. For exemple, Foga et al. (2017) 

assessed the accuracy of multiple cloud masking algorithms to determine the 

best globally applicable algorithm to be used in future Landsat quality assurance 

data products. Sanchez et al. (2020) compared four cloud detection methods 

(Fmask 4, MAJA, Sen2Cor 2.8, and s2cloudless) for Sentinel-2/MSI images in 

the Amazon region. Their results showed that FMask 4 has the best overall 

accuracy on images of the Amazon region. 

Although the remote sensing community is making extensive use of CBERS-

4/WFI data and the importance of cloud and cloud shadow masks for optical 

analysis of satellite imagery is well known, no cloud and cloud shadow masks 

assessment has been documented yet in the literature for this sensor. Thus, the 

objective of this work is to compare two cloud detection algorithms for CBERS-

4/WFI images: the CMASK and the ATSA. The CMASK was previously used to 

generate WFI data cubes (FERREIRA et al., 2020), and the ATSA was initially 

tested with Landsat-8/OLI, Landsat-4/MSS, and Sentinel-2/MSI images (ZHU; 

HELMER, 2018). 

4.2 Material and methods 

4.2.1 Study sites 

We selected four Military Grid Reference System (MGRS) tiles (Figure 4.1) with 

different characteristics of LULC and cloud cover incidence. Since ATSA 
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algorithm needs a time series, we decided to use subsets delimited by the MGRS 

tiles then we cropped every WFI image that intersected with these tiles. 

Figure 4.1 – Location of the four MGRS tiles (red hatched) used as study sites and the 
WFI tiles (unfilled polygons). 

 

 

The 20NPH tile is in the Amazon biome. The predominant LULC in this region is 

forest formation and pasture (SOUZA et al., 2020). This tile has a high incidence 

of clouds all year round (PRUDENTE et al., 2020), making difficult to acquire 

cloud-free images. Tiles 21LYD and 23LLG are in the Cerrado biome. The 

predominant LULC in these tiles are intensive agriculture, pasture, grassland, 

and savanna formation (SOUZA et al., 2020). In these two tiles, there are well 
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defined dry and rainy seasons. Thus, during December and February, the rainy 

season, there is a high incidence of clouds. However, during the dry season (from 

June to August), clouds have low incidence (PRUDENTE et al., 2020). Tile 22JBT 

is located in the Atlantic Forest biome (SOUZA et al., 2020),  a region with a 

predominance of annual agriculture. In this tile, there is a high incidence of clouds 

between December and January and a medium incidence in the rest of the year 

(EBERHARDT et al., 2016; PRUDENTE et al., 2020). 

4.2.2 WFI data 

For our study, we obtained all available WFI images Level-4 intersecting the four 

MGRS tiles from January 1, 2020, to June 30, 2020, from the National Institute 

for Space Research (INPE) catalog website (http://www.dgi.inpe.br/catalogo/). 

The WFI Level 4 images provided by the INPE are geometrically corrected with 

ground control points and ortho-rectified (INPE, 2021c). The surface reflectance 

images were generated by MS3 software (SILVA; ANDRADE, 2013). We 

acquired 54, 68, 62, and 62 images for the tiles 20NPH, 21LYD, 22JBT, and 

23LLG, respectively. 

4.2.3 Cloud mask and cloud shadow detection algorithms 

4.2.3.1 CMASK 

The MS3 software was used to generate the CMASK (SILVA et al., 2016) in this 

work. CMASK classifies the image as clear or cloudy. CMASK is also used by the 

Brazil Data Cube project to generate ARD (analysis-ready data) data cubes for 

Brazil (FERREIRA et al., 2020). In CMASK, the reflectance of spectral bands is 

used to compute the NDVI, Whiteness Index (WI) and Haze Optimized 

http://www.dgi.inpe.br/catalogo/
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Transformation (HOT). The cloud detection is based on applying three filters from 

thresholds on these three indices. More details about CMASK can be found at 

Silva et al. (2016). 

4.2.3.2 Automatic Time-Series Analysis (ATSA) 

The ATSA was designed to identify clouds and cloud shadows in multitemporal 

optical images, being more suitable for areas with persistent clouds, and can be 

used for sensors with a limited number of spectral bands (ZHU; HELMER, 2018). 

The algorithm has five main steps: (i) calculate cloud and shadow indices to 

highlight cloud and cloud shadow information; (ii) obtain an initial cloud mask by 

unsupervised classifier; (iii) refine the initial cloud mask by analyzing the time 

series of a cloud index; (iv) predict the potential shadow mask using geometric 

relationships; and (v) refine the potential shadow mask by analyzing time series 

of a shadow index (ZHU; HELMER, 2018). 

The ATSA algorithm needs a water mask. We selected images with less than 5% 

clouds in the metadata to create the water mask. Afterward, we collected samples 

by visual interpretation of these images. We applied the supervised classifier 

Spectral Angle Mapper (SAM) over the stack of these selected images (Souza et 

al., 2013). We extracted the mask of water/no water, along with the elevation and 

azimuth solar angles information from the metadata, and we used it as input to 

the ATSA algorithm. 

Some parameters need to be configured in the ATSA algorithm. First, the longest 

and shortest distance between the shadow and its corresponding cloud must be 

selected. These values were empirically set to 1 and 40 pixels (64 m and 2560 
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m, respectively) after inspection of the images, as recommended by Zhu and 

Helmer (2018). ATSA uses these values to estimate shadow zones. Two other 

parameters, A and B, are the thresholds used by ATSA to identify cloud and 

shadow, respectively. We evaluated different combinations of A and B. We 

considered values of A equal to 0.5, 1.0, and 1.5, and B equal to 1.0 and 3.0. As 

the original algorithm was tested with Landsat data, and the WFI data has a lower 

spatial resolution (64 m), we changed the filter to remove isolated pixels from 4 

to 2 inside the 3-by-3 neighborhood, for both cloud and cloud shadow. 

4.2.4 Accuracy assessment 

We assessed the cloud mask accuracy for CMASK and ATSA, and the accuracy 

of the cloud shadow mask for ATSA on a tile basis. For this, we randomly chose 

four images in each tile, and for each image, we randomly selected 100 sample 

points. These points were tagged by a remote sensing expert through image 

visual interpretation, following previous work (SANCHEZ et al., 2020). Thus, each 

tile had a total of 400 points for accuracy assessment. The photo interpreter 

labeled each sample as "Cloud", "Cloud shadow", or "Clear", based on images in 

a true-colour composite (red, green, and blue) and a false-colour composite (NIR, 

red, and green). Furthermore, the interpreter was unaware of the classes of the 

validation sample points in the cloud mask. 

We generated an error matrix from the random sampling points. Thus the overall 

accuracy (OA), user's accuracy (UA), and producer's accuracy (PA) (FOODY, 

2002) were derived from the error matrices. OA indicates the proportion of 

correctly classified pixels, and it's calculated by dividing the total number of 
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correctly classified pixels by the sample size. The PA indicates the probability of 

a reference pixel is correctly classified, and it's calculated by dividing the total 

number of correct pixels in a class by the total number of pixels of that class. The 

UA is calculated by dividing the total number of correct pixels in a class by the 

total number of pixels classified in that class, it indicates the probability that a 

pixel classified on the map actually represents that category (CONGALTON, 

1991). 

While the ATSA classifies images into three classes (Clear, Cloud, and Cloud 

shadow), the CMASK classifies them into two classes (Clear and Cloud). 

Therefore, we initially evaluated the accuracy of the ATSA considering the three 

classes and different combinations of parameters A and B (as described in 

Section 4.2.3.2). Afterward, to compare ATSA with CMASK, we consider only two 

classes for the two algorithms: Clear and Not clear. Thus, the Cloud and Cloud 

shadows classes have been grouped into the Not clear class for ATSA. 

4.3 Results and discussion 

In our experiments, when we considered the three classes (Clear, Cloud, and 

Cloud shadows), for all analysed tiles except 23LLG, the parameter A equal to 

0.5 had the higher OA (Figure 4.2). For tile 23LLG, the highest value of OA was 

obtained with A equal to 1.0, while the lowest value was obtained with A equal to 

0.5. Considering parameter B, except for tile 22JBT, the highest OA was reached 

with a parameter value equal to 3.0. 
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Figure 4.2 – Overall accuracy for different A and B parameters combinations in ATSA 
algorithms considering three classes: Cloud, Cloud shadow, and Clear. 

 

 

When we consider only two classes (Figure 4.3), Clear and Not Clear, the OA is 

generally greater than in the case of three classes (Figure 4.2). However, the OA 

patterns for parameters A and B are similar. Low values of A result in high OA, 

except for tile 23LLG. Meanwhile, low values of B result in smaller OA, except for 

tile 22JBT. 
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Figure 4.3 – Overall accuracy for CMASK and different combinations of A and B 
parameters in ATSA algorithms considering two classes: Clear and No 
clear. 

  

 

Comparing OA between ATSA and CMASK, any combination of the A and B 

parameters in ATSA results in higher OA than CMASK. The lowest value of OA 

was 0.91 in the 23LLG tile, considering the combination of A equal to 1.0 and B 

equal to 3.0 in ATSA. In comparison, the highest value of OA for CMASK was on 

the 20NPH tile, with the OA equal to 0.84. 

For the case of the three classes, increasing the parameter A values in ATSA, 

there is an increase of UA for the Cloud class and a decrease for the Clear class 

(Figure 4.4). Conversely, increasing the parameter A value reduces the PA for 

the Cloud class and increases it for the Clear class. By reducing the parameter A 

value, more pixels are detected as clouds, reducing the omission error of the 

Cloud class. However, this also increases the number of clear pixels misclassified 

as clouds, increasing the commission error of the Cloud class. In most cases, the 
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UA and PA for ATSA were higher for the Cloud class than for the Cloud shadow 

class. A similar result was found by Zhu and Helmer (2018). 

Figure 4.4 – User's accuracy (UA) and Producer's accuracy (PA) for different 
combinations of A and B parameters value in ATSA algorithm considering 
three classes: Cloud, Cloud shadow, and Clear. 

 

 

For the Cloud shadow class, in tiles 21LYD and 22JBT, the PA was higher with 

parameter B equal to 1.0. There was practically no difference in PA for the other 

tiles when parameter B was equal to 1.0 or 3.0. For most tiles and the parameter 
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A values, the UA was higher when parameter B was equal to 3.0. The confusion 

of the Cloud shadows class occurred when it was classified as Cloud, mainly on 

the edges of clouds, and the Clear class was misclassified as Cloud shadow. One 

of the possible reasons of confusion in the Cloud shadow class can be the 

replacement of the SWIR band by the NIR band. In the case of the tests 

performed by Zhu and Helmer (2018), they used SWIR in the shadow index. 

However, as WFI does not have a SWIR band, we needed to replace it with the 

NIR band, as Zhu and Helmer (2018) suggested. 

In the ATSA algorithm, when the Cloud and Cloud shadow classes are combined 

in the No clear class, and the parameter A value is increased, there is an increase 

in the UA and a reduction in the PA for the No clear class (Figure 4.5). On the 

other hand, there is a reduction in UA and an increase in PA for the Clear class 

when the parameter A value is increased. Increasing the B parameter value 

results in an increase in UA, for the No clear class, and in PA, for the Clear class, 

in most cases. 

CMASK presented UA close to 1.0 for the No clear class and PA close to 1.0 for 

the Clear class. However, it presented an omission error between 25% and 36% 

for the No clear class, and commission errors between 29% and 39% for this 

class. Almost all pixels classified in the No clear class are clouds. However, the 

CMASK fails to classify many cloud pixels in the No clear class and misclassify 

them in the Clear class. CMASK also doesn't classify cloud shadows, which 

increases the omissions in the No clear class. 
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Figure 4.5 – User's accuracy (UA) and Producer's accuracy (PA) for CMASK and 
different combinations of A and B parameters values in ATSA algorithm 
considering two classes: Clear and No clear. 

 

 

As shown in Figure 4.6a, CMASK fails to classify many clouds' edges as Cloud 

and does not detect smaller clouds. CMAKS also does not identify semi-

transparent clouds (Figure 4.6b), in addition to not identifying cloud shadows. 

This explains the large number of omission errors in the No clear class (Figure 

4.5).  
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Figure 4.6 – Detail of cloud masks and cloud shadow generated by ATSA (with 
parameter A equal to 0.5, 1.0, and 1.5, and B equal to 3.0) and by CMASK 
over images false-colour composite (RGB: NIR-red-green) for the subset 
of the image of the day 05-Jun-2020 in tile 21LYD (a) and day 28-May-
2020 for the subset of tile 23LLG (b). 

 

continue 
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Figure 4.6 – Conclusion. 

 

 

The ATSA algorithm can better detect the edges of clouds and small clouds and 

are able to detect shadows (Figure 4.6). However, when parameter A was equal 

to 0.5, it presented cloud and cloud shadows commission errors (see the 
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southeast part of Figure 4.6). As ATSA calculates the potential shadow zones 

using sun-cloud geometry, commission errors in cloud identification can lead to 

commission errors in cloud shadow identification, as in this case. ATSA can 

detect semi-transparent clouds better than CMASK (Figure 4.6). However, when 

parameter A is equal to 1.5, some edges of semi-transparent clouds are not 

detected either. 

In our analysis, the ATSA parameters A and B strongly influenced omission and 

commission errors (Figure 4.4, Figure 4.5 e Figure 4.6). Therefore, the proper 

choice of these parameters is important. The performance of cloud detection 

algorithms may depend on the region's characteristics where it is being used. 

However, studies targeting specific regions can guide these algorithms 

(SANCHEZ et al., 2020). In our study, parameters A equal to 1.0 and B equal to 

3.0 presented a better balance between omission and commission errors. 

However, for the regions where we conducted our analyses, and for the case of 

applications sensitive to noise induced by clouds, it may be better to choose 

parameters A equal to 0.5 and B equal to 3.0.  

4.4 Conclusions 

In this study, we assessed the accuracy of two cloud mask algorithms for the 

CBERS-4/WFI data. The CMASK and the ATSA were selected because they are 

suitable for WFI's number of spectral bands (total of four). For ATSA, we also 

evaluated the accuracy with different A and B parameters settings. The ATSA 

showed overall accuracy (OA) superior to CMASK. Considering the parameters 

A equal to 1.0 and B equal to 3.0, in all tiles, the ATSA OA was higher than 0.91, 
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while for the CMASK, the OA did not exceed 0.84. The CMASK had omission 

errors for the Clear class and commission errors for the No clear class close to 

zero. However, there were several omission errors (25% to 36%) for the No clear 

class, failing to classify cloud in this class and misclassifying them in the Clear 

class. ATSA algorithm was successful in balancing omission and commission 

errors using the parameters A equal to 0.5 and 1.0 and B equal to 3.0. Despite 

the need of image time series, the ATSA proved suitable for screening cloud and 

cloud shadows in CBERS-4/WFI imagery. Applying the ATSA algorithm in these 

images can enhance the robustness of the methods used for several applications 

such as agricultural and environmental monitoring and deforestation detection. 

We believe that the results are also valid for WFI data from CBERS-4A and 

Amazonia-1 due to the similarity between the sensors. 
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5 GEOMETRIC ACCURACY ASSESSMENT AND A FRAMEWORK FOR 

AUTOMATIC SUB-PIXEL REGISTRATION OF WFI IMAGES FROM 

CBERS-4, CBERS-4A, AND AMAZONIA-1 SATELLITES OVER BRAZIL2 

This chapter presents the geometric accuracy assessment of images from 

CBERS-4, CBERS-4A, and AMAZONIA-1 satellites over Brazil and describes a 

framework for automatic sub-pixel registration of these data to improve their 

geometric accuracy. Due to the findings of this part of the research, the automatic 

registration introduced in this chapter was used in the following analyses 

(presented in the following chapters). 

5.1 Introduction 

A prerequisite to applying satellite imagery is the consistency of geolocation 

accuracy (HELDER et al., 2018; DONG et al., 2019; JING et al., 2021). This is 

essential to produce analysis-ready data (ARD) that combines satellite images 

from different dates or sensors, which are often organized as multidimensional 

data cubes (GAO; MASEK; WOLFE, 2009; FERREIRA et al., 2020). Although 

remote sensing data are usually available as georeferenced datasets, slight 

displacements among images of different dates or sensors often exist (YAN et 

al., 2016, 2018; SCHEFFLER et al., 2017; SKAKUN et al., 2017a). These 

displacements can be caused by multiple factors, such as instrument sensing 

geometry, surface relief, and perturbations in sensor's motion relative to the 

surface (WOLFE et al., 2002; STOREY; CHOATE; LEE, 2014). This 

 
2 A paper based on this chapter is currently under review at the Remote Sensing 

Applications: Society and Environment. 
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misregistration can influence the results of remote sensing data analysis, 

including the accuracy of land use and land cover classification (GU; 

CONGALTON; PAN, 2015; GÓMEZ; WHITE; WULDER, 2016; GU; 

CONGALTON, 2020), change detection (DAI, 1998; BROWN; FOODY; 

ATKINSON, 2007), spatiotemporal data fusion (TANG; WANG, 2019), Earth 

surface motion measurements (STUMPF; MICHÉA; MALET, 2018), and time 

series analysis (HUANG et al., 2009).  

The geometric accuracy quantification provides important guidance to improving 

geolocation accuracy and data application (JING et al., 2021). Each remote 

sensing instrument has its own registration accuracy specification, geometry, 

processing, and reference image characteristics. As a result, many studies have 

been conducted to determine the geometric quality of images from different 

orbital sensors, such as the Moderate Resolution Imaging Spectroradiometer 

(MODIS) (WOLFE et al., 2002; WOLFE; NISHIHAMA, 2009), FengYun-3C 

Microwave Radiation Imager Data (TANG et al., 2016), Geostationary Ocean 

Color Imager (JEONG; HAN; PARK, 2020), Himawari-8/Advanced Himawari 

Imager (YAMAMOTO et al., 2020), Suomi National Polar-orbiting 

Partnership/Advanced Technology Microwave Sounder (ZHOU; YANG; 

ANDERSON, 2019), FengYun- 3D/MEdium Resolution Spectral Imager II (JING 

et al., 2021), PRecursore IperSpettrale della Missione Applicativa (COGLIATI et 

al., 2021), Sentinel-2/MSI  (SKAKUN et al., 2017b; YAN et al., 2018), and 

Landsat-8/OLI (STOREY; CHOATE; LEE, 2014). Although the remote sensing 

community widely uses the WFI data, their geometrical accuracy has not yet 

undergone assessment. 
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Control Points (CPs) are frequently used to determine the geometric quality of 

satellite data, representing correspondence between the sensed images and an 

image used as a reference (EASTMAN; LE MOIGNE; NETANYAHU, 2007). The 

CPs can quantify the displacements between the sensed and the reference 

images and quantify the geometric quality of the sensed image (WOLFE et al., 

2002; SCHEFFLER et al., 2017; SKAKUN et al., 2017b, 2017a; STUMPF; 

MICHÉA; MALET, 2018; COGLIATI et al., 2021; JING et al., 2021). Usually, there 

are two types of methods to derive CPs automatically (FONSECA; MANJUNATH, 

1996; ZITOVÁ; FLUSSER, 2003): (1) feature-based methods and (2) area-based 

methods. The former extracts salient structures in the image, and the latter uses 

cross-correlation information in the spatial or frequency domain as a similarity 

indicator (FONSECA; MANJUNATH, 1996; ZITOVÁ; FLUSSER, 2003). The 

abilities of these methods to characterize the geometric errors are limited and 

dependent on different factors (WU; NAEGELI; WUNDERLE, 2019; JING et al., 

2021). 

When the displacements in the sensed image are larger than the user's needs, it 

may be necessary to align it with the reference image, to reduce the impacts on 

the application of the images (FONSECA; MANJUNATH, 1996; ZITOVÁ; 

FLUSSER, 2003; EASTMAN; LE MOIGNE; NETANYAHU, 2007; PAUL; PATI, 

2021a). The image registration process uses the CPs to determine a spatial 

transformation between the reference and the sensed images constructed 

through a mapping function (FONSECA; MANJUNATH, 1996). This 

transformation function maps points from the reference image to points in the 

sensed image (SKAKUN et al., 2017a). The function choice depends on the type 
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of geometric distortions present in the sensed image (FONSECA; MANJUNATH, 

1996). While simpler displacements can be modelled with polynomial functions, 

non-linear shifts may need more complex functions (SKAKUN et al., 2017a). 

Although new co-registration methods have recently been developed, such as 

those using deep learning (VAKALOPOULOU et al., 2019; LEE; SIM; OH, 2021), 

they are more computationally complex and time consuming (PAUL; PATI, 

2021b), and simpler methods have proved to be appropriate for registering some 

sensor data (YAN et al., 2016; SKAKUN et al., 2017a). Despite these approaches 

having been applied to data from other sensors, such as Landsat-8/OLI and 

Sentinel-2/MSI, they have not yet been evaluated for WFI sensors that have 

greater complexity, with two optics, a FOV, and more complex orbits imaging the 

same point on the earth's surface from multiple overpasses. 

As mentioned above, WFI data is an important resource for agricultural and 

environmental monitoring in Brazil. However, its geometric quality has not yet 

been documented, which may cause uncertainties to application potential. So, in 

this work, we present the first evaluation of the geometric accuracy of the images 

acquired by the WFI sensor onboard CBERS-4, CBERS-4A, and Amazonia-1 

satellites. This chapter has two main objectives: (i) to assess the geometric 

accuracy of WFI images in different spectral channels, from multitemporal data 

and comparing with Sentinel-2/MSI data, and (ii) to propose a framework for 

automatic registration of WFI data with sub-pixel registration accuracy, using 

open-source software to find consistent CPs and evaluating multiple mapping 

functions capable of handling linear and non-linear displacements. This 
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framework can assist the CBERS and Amazonia-1 technical team in providing 

consistent and robust WFI data, and it will guide the users to improve the 

geometric quality of the images. 

5.2 Study site 

We selected four tiles from the Military Grid Reference System (MGRS) as the 

basis for our analysis (Figure 5.1), covering different latitudes of Brazil. These 

places are in locations with different latitudes, longitudes, slope, biomes, land use 

and land cover, and cloud cover characteristics. The 20NQG tile is located in the 

Brazilian state of Roraima, in the Amazon biome, where the predominant land 

covers are forest and grassland (SOUZA et al., 2020). In Roraima, there is high 

cloud cover frequency throughout the year (PRUDENTE et al., 2020), reducing 

the probability of cloud-free image acquisition.  
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Figure 5.1 – Study sites location. The MGRS tiles (20NQG, 21LYD, 22JBT, and 23LLG) 
are shown in red hatched. The WFI tiles from Amazonia-1, CBERS-4, and 
CBERS-4A are shown in red, green, and blue, respectively. The images 
shown on tiles 20NQG (Amazonia-1 21-Apr-2021 path/row: 035/019), 
21LYD (Amazonia-1 15-Apr-2021 path/row: 037/017), 22JBT (CBERS-4A 
19- Feb-2021 path/row: 224/108 and 116), and 23LLG (CBERS-4 23-Jan-
2021 path/row: 157/11) are false color compositions (NIR-red-green). 

 

 

Tiles 21LYD is in Mato Grosso state, and 23LLG is between Tocantins (half west) 

and Bahia (half east) states. Both tiles are located in the Cerrado biome, Brazil. 

These two regions have a high frequency of cloud cover between December and 

February and a low frequency between June and August (PRUDENTE et al., 

2020). Large-scale intensive agriculture is predominant in the southern part of the 

tile 21LYD, with usually two crop seasons per year, where changes are rapid due 

to seasonal crop development. In the northern part of this tile, there is a 

predominance of pasture and natural vegetation, mainly savannas (SOUZA et 
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al., 2020). The portion of the tile 23LLG located in Bahia has a predominance of 

annual agriculture. In contrast, the portion located in the Tocantins has a 

predominance of pasture, grassland, and savanna formation (SOUZA et al., 

2020). There is still a difference in altitude between the part in the Tocantins and 

the part in Bahia, with the first one having ~400 m of altitude and the second ~800 

m of altitude, and a high slope between then.  

Tile 22JBT is in Paraná state, in Brazil’s Atlantic Forest biome. In this tile, the 

predominance is annual agriculture with two crop seasons per year (SOUZA et 

al., 2020). But the fields are smaller than those present in Mato Grosso or Bahia 

(IBGE, 2017). There is a high frequency of cloud cover from December to 

February and an average frequency for the rest of the year (PRUDENTE et al., 

2020). 

5.3 Remote sensing data acquisition 

5.3.1 Wide-Field Imager – WFI 

We acquired all the WFI images Level 4 with less than 50% cloud cover between 

January 1st and June 31st, 2021, that intersected the study area (Figure 5.1) 

acquired by CBERS-4, CBERS-4A, and Amazonia-1, from INPE website 

(http://www.dgi.inpe.br/catalogo/ and http://www2.dgi.inpe.br/catalogo/explore). 

The WFI Level 4 images provided by the INPE are geometrically corrected with 

ground control points and ortho-rectified (INPE, 2021c). We used the surface 

reflectance product, derived by the MS3 software (SILVA; ANDRADE, 2013). The 

product is delivered in the Universal Transverse Mercator (UTM) projection with 

http://www.dgi.inpe.br/catalogo/
http://www2.dgi.inpe.br/catalogo/explore
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the World Geodetic System 1984 (WGS84) datum. The number of images 

downloaded per tile is presented in Table 5.1. 

Table 5.1 – Number of images used in the analyses. 

MGRS tile CBERS-4/WFI CBERS-4A/WFI Amazonia-1/WFI 

20NQG 8 12 4 
21LYD 37 27 31 
22JBT 31 31 27 
23LLG 36 45 30 

Total 112 115 92 

 

5.3.2 Sentinel-2/MSI 

We used Sentinel-2/MSI Level-2A (L2A) product as reference in our analysis. 

This product is radiometrically and geometrically corrected with ortho-

rectification, and atmospherically corrected to surface reflectance (ESA, 2015). 

The MSI L2A from Baseline v03.00 onwards uses Global Reference Image (GRI) 

(DECHOZ et al., 2015) in its processing chain (ESA, 2021). GRI is a set of 

orthorectified Sentinel-2/MSI cloud-free images used as a ground control 

reference to improve geolocation accuracy to meet the requirements of multi-

temporal registration of 0.3 pixels for 10 m bands (GAUDEL et al., 2017). The 

MSI L2A images are provided in UTM projection with WGS84 datum using the 

U.S. MGRS as a reference to the tiling grid. 

We downloaded one Sentinel-2/MSI L2A cloud-free image for each MGRS tile 

described in Section 5.2. The images are from 02-19-2021, 06-17-2021, 05-25-

2021, and 05-24-2021 for the tiles 20NQG, 21LYD, 22JBT, and 23LLG, 

respectively. The image for tile 23LLG was acquired by the Sentinel-2A, and the 

others by the Sentinel-2B. The images are from the Processing Baseline v03.00, 



51 
 
 

except the image from tile 20NQG, which is from v02.14 because no cloud-free 

image from this tile was found in v03.00. In the period of the selected images, the 

geometric refinement product (which uses the GRI) was not yet available for 

Brazil, even at Baseline V03.00 (ESA, 2021). Thus, the Sentinel-2/MSI images 

used as reference have 0.4 pixels at 10 m mean multi-temporal misregistration 

(YAN et al., 2018). Therefore, our analysis is relative to Sentinel-2/MSI than an 

assessment of the WFI absolute geolocation. Although concerning the WFI 

resolution, this Sentinel-2/MSI misregistration is small, equivalent to 0.063 pixels 

of the CBERS-4/WFI and Amazonia-1/WFI images and 0.07 pixels of the 

CBERS-4A/WFI images, and we assume that Sentinel-2/MSI is an appropriate 

reference with minor uncertainties introduced by its own misregistration issues. 

5.4 Methodology and framework 

We propose a framework for automatic sub-pixel registration of WFI data onboard 

CBERS-4, CBERS-4A, and Amazonia-1 satellites. This framework contains three 

main steps (Figure 5.2), acquisition of input data (satellite images), geometric 

accuracy assessment (generation of control points and spatial registration 

evaluation), and co-registration steps (sub-pixel registration to correct the 

displacements). These steps are described in the following sections. 
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Figure 5.2 – Methodological framework for geometric accuracy assessment and 
registration. 

 

 

5.4.1 Generation of control points 

The general procedure for image-to-image registration automatically generates 

CPs between a reference image and a sensed (or target) image (SKAKUN et al., 

2017a). These CPs can quantify the displacements between the reference and 

the target images. Building a spatial transformation that aligns the reference 

image and the target image using CPs and warping the target image with 

geometric transformation is necessary to correct the displacements (SKAKUN et 

al., 2017a). 

The CPs were generated using the Python implementation of the Automatic and 

Robust Open-Source Image Co-Registration Software (AROSICS) 

(SCHEFFLER et al., 2017). In the local registration approach, AROSICS applies 

phase correlation to a regular grid in a moving-window way. Phase correlation 

produces good results due to a distinct sharp peak in the cross-power spectrum 

indicating the registration points (FOROOSH; ZERUBIA; BERTHOD, 2002; 
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SCHEFFLER et al., 2017; SKAKUN et al., 2017a), even when there are 

substantial ground cover changes between different images (ROGASS et al., 

2013; KRAVCHENKO; LAVRENYUK; KUSSUL, 2014). As phase correlation can 

only be used for two input images with the same pixel dimensions and spatial 

extension, AROSICS performs a pixel grid equalization if the images have 

different characteristics (SCHEFFLER et al., 2017). After the subset images of 

each matching window are transformed into the frequency domain and are 

phase-correlated to generate their cross-power spectrum, they are transformed 

back into the spatial domain. The sharp peak of the cross-power spectrum in the 

spatial domain is used first to quantify image integer shifts. Subsequently, 

AROSICS temporarily moves the subset of the target image according to the 

calculated integer shifts. Both subset images (reference and integer corrected 

target) are again transformed into the frequency domain allowing for sub-pixel 

shifts estimation (SCHEFFLER et al., 2017). AROSICS also implements 

complementary validation techniques that allow filtering unreliable CPs, including 

a reliability measure (SCHEFFLER et al., 2017), a Mean Structural Similarity 

Index (WANG et al., 2004), and the Random Sampling Consensus (RANSAC) 

(FISCHLER; BOLLES, 1981). More details of the AROSICS are found in Scheffler 

et al. (2017). 
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5.4.2 Geometric accuracy assessment  

To evaluate the WFI images geometric accuracy, we calculated the root mean 

square error (RMSE) (Equation (5.1) from the displacements of the CPs identified 

by AROSICS. 

∆𝑥 = 𝑥𝑟 − 𝑥𝑡 

∆𝑦 = 𝑦𝑟 − 𝑦𝑡 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑((∆𝑥)2 + (∆𝑦)2) 

𝑁

𝑛=1

 

 (5.1) 

where N is the number of CPs after filtering, and ∆𝑥 and ∆𝑦 are the displacements 

in x and y directions, 𝑥𝑡 and 𝑦𝑡 are the locations in target images, 𝑥𝑟 and 𝑦𝑟 are 

the locations in reference images. Furthermore, we used scatter plots between 

the shifts in x and y directions for a qualitative analysis of spatial displacements. 

The WFI image geometric accuracy assessment was divided into three parts. The 

first one evaluates the spatial registration between different WFI spectral bands 

(Section 5.4.2.1), the second evaluates the multitemporal registration for 

applications in time series analysis (Section 5.4.2.2), and the third analyses the 

WFI registration related to Sentinel-2/MSI data. We selected Sentinel-2/MSI data 

because it has an accurate registration (ESA, 2021) considering the spatial 

resolution of the WFI images (Section 5.4.2.3). 

5.4.2.1 Inter-channel spatial registration evaluation 

Inter-channel spatial registration accuracy refers to the registration accuracy 

between two spectral bands (band-to-band geometric performance) 
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(BARAZZETTI; CUCA; PREVITALI, 2016). The displacement between bands in 

pushbroom sensors can occur due to slight geometric misalignments between 

neighboring detectors and to micro-vibrations of the sensor during its overpass in 

space (SCHEFFLER et al., 2017). We evaluated the WFI blue, green, and red 

bands using the NIR band as reference. NIR band provides a wide dynamic range 

of values for multiple land cover types and is less sensitive to atmospheric effects 

(SKAKUN et al., 2017a). NIR band has been widely used for registration 

evaluation and registration from multitemporal and multi-sensor data (YAN et al., 

2016; SKAKUN et al., 2017a; CLAVERIE et al., 2018). However, to use the NIR 

as a reference for these cases, the other bands must be properly registered with 

the NIR band. AROSICS did not identify clouds as outliers for the band-to-band 

case in our initial assessments. Then, we only evaluated the images with less 

than 2% cloud cover from our initial dataset, leaving out 10, 18, and 18 images 

from CBERS-4, CBERS-4A, and Amazonia-1, respectively. We used a grid 

resolution of 200 pixels and a window size of 200 × 200 pixels, and the full image 

for the Inter-channel case. The grid resolution will define the distance between 

CPs, and the window size will define the dimension of the matching window. 

5.4.2.2 Multi-temporal WFI geometric accuracy evaluation 

To assess the multitemporal registration accuracy of the WFI data for each image 

selected in each tile (target image), we considered the previous WFI image as 

the reference image.  The multitemporal analyses were performed considering 

the NIR band in the reference and target image. The WFI sensor can acquires 

images from the same area of the Earth's surface from many overpasses, making 

it difficult to analyse the entire image. Our analysis was performed considering 
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only the MGRS tile. All the images that intersected each of the MGRS tiles were 

clipped to the tile's size.  

In many cases, WFI images overlapping the same MGRS tile covering the same 

geographic region might have different UTM assigned zones. AROSICS cannot 

work directly with different UTM zones, so we first warped the reference image to 

Albers Equal Area (AEA) projection and then to the same UTM zone as the target 

image, using a cubic resampling algorithm. For this case, we used a grid 

resolution and a window size of 20 pixels and 400 × 400 pixels, respectively. The 

grid resolution defines the distance between CPs. Small values in grid resolution 

enable model more complicated distortions (SCHEFFLER et al., 2017). The 

window size represents the size of the subset used to apply phase correlation. 

5.4.2.3 Registration accuracy between WFI and Sentinel-2/MSI 

As mentioned before, Sentinel-2/MSI misregistration is small in comparison with 

the spatial resolution of WFI data, so using Sentinel-2/MSI images as a reference 

is suitable for evaluating misregistration from WFI images as well as performing 

registration. Furthermore, other works also used MSI images as references for 

registration (CLAVERIE et al., 2018). As described in Section 5.4.2.1, when the 

WFI (target) image has a different UTM zone than the Sentinel-2/MSI used as a 

reference image, we warped the reference image first to AEA projection and later 

to the same UTM zone as the target image using cubic resampling algorithm. We 

selected the 10 m MSI NIR (B08; 0.832 µm) band as a reference. We used a grid 

resolution and a window size of 50 pixels and 400 × 400 pixels, respectively. An 
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example of CPs identified by AROSICS between a CBERS-4A/WFI image and a 

Sentinel-2/MSI image used as reference is shown in Figure 5.3.  

Figure 5.3 – Shift vector of the CPs identified by AROSICS between the NIR band of 
CBERS-4A/WFI image (acquired on 26-Jun-2021, path/row: 211/148) and 
Sentinel-2/MSI image (acquired on 25-May-2021, tile 22JBT) used as 
reference. The length of the displacement vector is given by the colorbar, 
and in the map it was multiplied by a factor of 40. 

 

 

5.4.3 Sub-pixel registration to correct the displacements 

Co-register was performed in the cases presented in Sections 5.4.2.2 and 

5.4.2.3. To correct the misregistration in the target image it is necessary to build 

a transformation function (f; Equation (5.2) to find correspondence between 
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points in the target image (𝑥𝑡, 𝑦𝑡) and points in the reference image 

(𝑥𝑟 , 𝑦𝑟) (FONSECA; MANJUNATH, 1996; SKAKUN et al., 2017a).  

(𝑥𝑡, 𝑦𝑡) = 𝑓(𝑥𝑟 , 𝑦𝑟) (5.2) 

The function f was created using the CPs identified by AROSICS. The RANSAC 

filter was not applied to filter the CPs used in the misregistration correction. In 

some cases, in tests performed (not showed), it eliminated the CPs from some 

parts of the images, reducing the quality of the co-register. Other authors have 

also found this aggressive removal of CPs using RANSAC (STUMPF; MICHÉA; 

MALET, 2018). 

In the case of multitemporal WFI registration, a 3rd-degree polynomial was used 

as a transformation function. For the case of registration between WFI and MSI 

images, three polynomial models and one Random Forest (RF) regression model 

were compared to create the transformation function (they are detailed in 

Sections 5.4.3.1 and 5.4.3.2).  

After the transform function was created, the target image was warped using a 

cubic resampling technique. A transformation from UTM to AEA has also been 

added to the processing chain. This allows all images to have the same spatial 

reference system without additional resampling, avoiding undesired geometric 

and spectral image quality degradation. The coordinate transformation was 

performed using the pyproj package (SNOW et al., 2021), and the resampling 

was performed using the scipy package (VIRTANEN et al., 2020). 

After performing the registration, AROSICS was used again to find CPs between 

the reference image and the registered image to assess the co-registration's 
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accuracy. Then, RMSE (Eq(5.1) was recalculated based on these points to 

quantify the accuracy of the co-registration. 

5.4.3.1 Polynomial model 

The f function was built as a 1st, 2nd, and 3rd-degree polynomial function using 

the CPs generated by AROSICS. The polynomial function (Eq(5.3) has the form 

(SCHMIDT; KING; MCVICAR, 2008; SKAKUN et al., 2017a):  

𝑥𝑡 = 𝑃𝑥,𝑛(𝑥𝑟 , 𝑦𝑟) =  ∑ ∑ 𝑎𝑖,𝑗𝑥𝑟
𝑖 𝑦𝑟

𝑗

𝑖+𝑗≤𝑛

𝑛

𝑖=0

 

𝑦𝑡 = 𝑃𝑦,𝑛(𝑥𝑟 , 𝑦𝑟) =  ∑ ∑ 𝑏𝑖,𝑗𝑥𝑟
𝑖 𝑦𝑟

𝑗

𝑖+𝑗≤𝑛

𝑛

𝑖=0

 

(5.3) 

where 𝑥𝑡 and 𝑦𝑡 are the locations in target images, 𝑥𝑟 and 𝑦𝑟 are the locations in 

reference images, n is the polynomial degree, 𝑎𝑖,𝑗 and 𝑏𝑖,𝑗 are the model 

parameters, i and j represent the indices for the parameters a and b, and the 

exponent for 𝑥𝑟 and 𝑦𝑟. The model parameters were fitted using the ordinary least 

square (OLS) method, which minimizes the residual sum of squares between the 

observed and the predicted values. The Scikit-Learn (PEDREGOSA et al., 2011) 

python package was used to fit the polynomial models. 

5.4.3.2 Random Forest model 

The RF is a machine learning algorithm that uses an ensemble of decision trees 

(BREIMAN, 2001). The bagging (BREIMAN, 1996) and the Classification And 

Regression Trees (CART- Breiman et al. 1984)-split criterion scheme are 

combined in RF (BIAU; SCORNET, 2016b). The algorithm grows many decision 

trees, and the final prediction value corresponds to the averaged output of all 
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individual decision trees for regression problems. Each tree is independently 

created during the training process using bootstrap samples from the training 

dataset (REIS et al. 2020). The best cut is selected at each node of each tree by 

optimizing the CART-split criterion, based on quality measure of a split (BIAU; 

SCORNET, 2016b). RF regression provides high accuracy and robustness with 

fast, flexible, robust, and accurate predictive capabilities (REIS et al. 2020). RF 

can account for local non-linear distortions (SKAKUN et al., 2017a). 

The RF regression implemented in Scikit-Learn (PEDREGOSA et al., 2011) was 

used to build a transformation function using a 2nd order polynomial pre-

processing (SKAKUN et al., 2017a). In this case, 𝑥𝑟, 𝑦𝑟, 𝑥𝑟
2, 𝑦𝑟

2, 𝑥𝑟𝑦𝑟 were input 

features to the RF model, trained to predict points in the sensed image. The 

number of trees was set to 1000, and the maximum depth of the tree was set to 

50. The Mean Absolute Error (MAE) was selected as a measure of the quality of 

a split in the RF algorithm. 

5.5 Results and discussion 

We present and discuss our results in three parts: first, the evaluation of the inter-

channel spatial registration (Section 5.5.1); second, the assessment of the multi-

temporal WFI geometric accuracy (Section 5.5.2); and for last, the registration 

accuracy between WFI and Sentinel-2/MSI images (Section 5.5.3). 

5.5.1 Inter-channel spatial registration evaluation 

In the inter-channel case, the spatial registration of the blue, green, and red bands 

in relation to NIR band was evaluated. Note that most alignment errors detected 

from CPs obtained by AROSICS have less than 0.5 pixels (Figure 5.4). While the 
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shifts in the three bands of CBERS-4/WFI and Amazonia-1/WFI are similar in the 

x and y directions, the CBERS-4A/WFI has greater shifts in the y direction than 

in the x direction. 

Figure 5.4 – Distribution of misregistration shifts between blue, green, and red bands to 
NIR band for CBERS-4/WFI, CBERS-4A/WFI, and Amazonia-1/WFI from 
CPs identified by AROSICS. The largest and smallest circles have a 1.0 
pixel and 0.5 pixel radius, respectively, at 64 m for CBERS-4/WFI and 
Amazonia-1/WFI, and 55 m for CBERS-4/WFI. The colorbar represents 
the number of CPs. 

 

 

The greater RMSE average of the alignment errors was 0.44±0.03 pixel in the 

CBERS-4/WFI blue band (Table 5.2). It can be seen in the scatter plot (Figure 

5.4) that for this band, there is a larger number of CPs with shifts greater than 0.5 

pixels. The same happened for the green band, but the dispersion was smaller in 
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this case. The highest RMSE average of the misregistration between bands was 

observed for the blue band relative to the NIR for the three satellites. The smaller 

RMSE average was observed for the green band, except for CBERS-4/WFI, 

where the smaller RMSE average was observed for the red band, with 0.36±0.02 

pixels (Table 5.2).  

 

Table 5.2 – Mean (standard deviation) RMSE of the spatial shifts detected between blue, 
green, and red bands to NIR band for CBERS-4/WFI, CBERS-4A/WFI, 
and Amazonia-1/WFI from CPs identified by AROSICS. 

 Blue band Green band Red band 

CBERS-4/WFI 0.4384 (0.0960) 0.4042 (0.0915) 0.3562 (0.0595) 
CBERS-4A/WFI 0.3957 (0.1015) 0.3305 (0.0915) 0.3709 (0.0661) 
Amazonia-1/WFI 0.4115 (0.1320) 0.3747 (0.1504) 0.3961 (0.1212) 

 

Scheffler et al. (2017) detected alignment errors up to 0.33 pixels at 20 m spatial 

resolution between band 7 (0.783 µm) and band 8A (0.865 µm) of Sentinel-2/MSI. 

Patterns in the form of block-like error clusters and wave-like patterns were found. 

According to the authors, they are due to slight geometric misalignments between 

neighbouring Sentinel-2/MSI detectors and micro-vibrations of the sensor during 

its overpass in space. Although WFI is also a pushbroom sensor with several 

arrays of detectors as MSI, we did not find patterns in the misalignment between 

WFI bands that could explain these displacements. Rather, shifts with random 

directions were found. As no large shifts between bands were found, a correction 

of the detected displacement was not performed in the inter-channel case, 

considering that additional resampling induces an alteration in the pixel value 

(SCHEFFLER et al., 2017). Furthermore, the WFI cloud mask omits many clouds, 

and AROSICS does not detect some CPs over clouds as erroneous in the band-
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to-band case, probably because the same cloud is imaged in the reference band 

and the target band. Unreliable CPs can also negatively impact cross-band 

registration (EASTMAN; LE MOIGNE; NETANYAHU, 2007). 

5.5.2 Multi-temporal WFI geometric accuracy evaluation 

Evaluating the multi-temporal geometric accuracy of WFI images aims to assess 

the suitability of using the data directly in time series analyses. The 

misregistration patterns of CBERS-4/WFI (Figure 5.5a) and CBERS-4A/WFI 

(Figure 5.5b) are similar for different MGRS tiles. Tiles 21LYD and 23LLG have 

the largest shifts, predominately in the y-direction. These two tiles are at close 

latitudes and have large altitude transitions with ~900 m on one part of the tile 

and ~350 m on the other. This can be one of the causes of these misregistration. 

The predominance of shifts in Amazonia-1/WFI is in the x-direction (Figure 5.5c).    

The RMSE average of the WFI multi-temporal misregistration was higher for the 

CBERS-4A, reaching 0.87±0.34 pixels in the 23LLG tile (Table 5.3). In CBERS-

4 and CBERS-4A, the higher RMSE average was identified in the 21LYD tiles. In 

the case of Amazonia-1, the 23LLG tile presented the smaller RMSE average 

with 0.45±0.16 pixels. After registration, the higher RMSE average was 0.39±0.06 

pixels for the Amazonia-1/WFI (Table 5.3). RMSE average after registration was 

lower for CBERS-4/WFI on all tiles except for 23LLG. In addition to reducing the 

RMSE average of the spatial shifts in all cases, there was a great reduction in the 

standard deviation after the multitemporal registration of WFI data. 
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Table 5.3 – Mean (standard deviation) RMSE of the spatial shifts detected between 
multitemporal WFI images for CBERS-4/WFI, CBERS-4A/WFI, and 
Amazonia-1/WFI from CPs identified by AROSICS before and after 
registration. 

Before co-
register 

20NQG 21LYD 22JBT 23LLG 

CBERS-4/WFI 0.513 
(0.267) 

0.624 
(0.257) 

0.487 
(0.090) 

0.550 
(0.168) 

CBERS-4A/WFI 0.545 
(0.237) 

0.797 
(0.315) 

0.780 
(0.271) 

0.868 
(0.336) 

Amazonia-1/WFI 0.508 
(0.097) 

0.701 
(0.260) 

0.630 
(0.185) 

0.450 
(0.173) 

After co-register     

CBERS-4/WFI 0.257 
(0.055) 

0.300 
(0.035) 

0.304 
(0.041) 

0.318 
(0.044) 

CBERS-4A/WFI 0.318 
(0.135) 

0.355 
(0.062) 

0.336 
(0.046) 

0.320 
(0.057) 

Amazonia-1/WFI 0.387 
(0.056) 

0.310 
(0.047) 

0.316 
(0.0467) 

0.305 
(0.053) 
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Figure 5.5 – Distribution of misregistration shifts between multitemporal NIR WFI images 
for CBERS-4 (a), CBERS-4A (b), and Amazonia-1 (c) before and after 
registration from CPs identified by AROSICS. The largest and the smallest 
circles have a 1.0-pixel and 0.5-pixel radius, respectively, at 64 m for 
CBERS-4/WFI e Amazonia-1/WFI, and 55 m for CBERS-4/WFI. The 
colorbar represents the number of CPs. 
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5.5.3 Registration accuracy between WFI and Sentinel-2/MSI 

As we found large displacement in the multi-temporal registration case, we did 

not conduct a registration assessment of multi-sensor WFI imagery (across 

satellites) because these geometric errors would propagate. Instead, we 

evaluated the geometric accuracy of WFI data relative to Sentinel-2/MSI data, as 

MSI data has higher spatial resolution than WFI data, in addition to having known 

absolute geolocation and multi-temporal registration (ESA, 2021). Furthermore, 

the MSI data underwent geometric refinement, obtaining absolute geolocation 

error better than 5.6 m (at 95.45% confidence) and multi-temporal registration 

better than 4 m (at 95.45% confidence) (ESA, 2021).  

Most CPs fell within the 1-pixel shift circle for CBERS-4/WFI (Figure 5.6) and 

Amazonia-1/WFI (Figure 5.8) data. For CBERS-4A/WFI data, most shifts were 

greater than 1-pixel (Figure 5.7). There seems to be some sort of systematic 

misalignment between CBERS-4A/WFI and Sentinel-2/MSI data, with shifts 

predominating in the southwest direction for all tiles. The displacements found 

are much higher than the geolocation errors of the MSI images. In addition, the 

WFI images of the three satellites were evaluated using the same MSI images as 

a reference and only the CBERS-4A/WFI images showed this pattern. This 

different spatial pattern of displacements found in CBERS-4A/WFI is not 

expected, as the WFI data of the three satellites are orthorectified using the same 

set of CP chips built from Landsat-8/OLI imagery. Causes of sensor 

misregistration are complex and may be related to inadequate knowledge and/or 

modelling of the interior and exterior orientation sensor and geometric relief 
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distortion imposed by digital elevation model inaccuracies (YAN et al., 2016), 

despite the four tiles having different relief conditions. 

Figure 5.6 – Distribution of misregistration shifts in CBERS-4/WFI images before and 
after registration from CPs identified by AROSICS using Sentinel-2/MSI 
as reference. The largest and smallest circles have a 1.0 pixel and 0.5-
pixel radius, respectively, at 64 m. The colorbar represents the number of 
CPs. 

 
 

 

While the biggest shifts reached -1.45 pixels (93 m) in the x-direction for CBERS-

4/WFI (Table 5.4) and Amazonia-1/WFI (Table 5.6), in CBERS-4A/WFI, they 
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reached 2.5 pixels (138 m) (Table 5.5). CBERS-4A/WFI had the highest RMSE 

average across all tiles, reaching 1.42±0.21 on the 20NQG tile. CBERS-4/MSI 

had the smaller RMSE average across all tiles, except for the 23LLG tile, where 

the RMSE average for Amazonia-1 was lower (0.46±0.15). For the data from the 

three satellites, the RMSE average was higher in the 20NQG tile. This tile is in a 

region with a high incidence of clouds (PRUDENTE et al., 2020), which can affect 

the identification of CPs in WFI image and Landsat-8/OLI chips for the 

orthorectification process and generation of the WFI Level-4 product by the 

provider. Also, the higher incidence of clouds in the 20NQG tile reduced the 

number of images available for our analysis compared to the other tiles. 
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Figure 5.7 – Distribution of misregistration shifts in CBERS-4A/WFI images before and 
after registration from CPs identified by AROSICS using Sentinel-2/MSI 
as reference. The largest and smallest circles have a 1.0 pixel and 0.5-
pixel radius, respectively, at 55 m. The colorbar represents the number of 
CPs. 

 

 

To correct the misregistration, we built different transformation functions from the 

CPs obtained by AROSICS using the 1st, 2nd, and 3rd order polynomial 

functions, in addition to the RF regressor. The difference between the results of 

the four transformation functions from the CPs identified by AROSICS for the 
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CBERS-4A/WFI image acquired on 26-Jun-2021 (Figure 5.3), using the Sentinel-

2/MSI image as a reference is shown in Figure 5.9. In the x-direction, the biggest 

shifts are concentrated on the east and west edges of the image, while the 

smallest shifts are concentrated in the central part of the image (Figure 5.3). The 

transformation function using the 3rd-degree function managed to adapt better to 

these misalignments compared to the lower degree polynomials in this case 

(Figure 5.9). RF, in turn, was better for handling this non-linear displacement than 

the polynomial functions. 
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Figure 5.8 – Distribution of misregistration shifts in Amazonia-1/WFI images before and 
after registration from CPs identified by AROSICS using Sentinel-2/MSI 
as reference. The largest and smallest circles have a 1.0 pixel and 0.5-
pixel radius, respectively, at 64 m. The colorbar represents the number of 
CPs. 
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Table 5.4 – Mean and standard deviation (std) of RMSE, and maximum (max) and 
minimum (min) value shifts in the x and y directions of the CPs identified 
by AROSICS between CBERS-4/WFI and Sentinel-2/MSI images, before 
and after the registration. 

  Δx  Δy  RMSE 

Co-register Tile min max  min max  mean std 

Before co-
register 

20NQG -1.454 0.557  -0.345 1.224  0.617 0.306 
21LYD -1.251 1.735  -0.803 0.631  0.486 0.195 
22JBT -1.452 1.176  -0.621 0.940  0.492 0.142 
23LLG -1.424 0.689  -1.345 1.192  0.502 0.162 

Polynomial 
1st 

20NQG -0.414 0.335  -0.352 0.325  0.246 0.074 
21LYD -0.454 0.462  -0.713 0.464  0.283 0.062 
22JBT -0.468 0.584  -0.578 0.652  0.289 0.066 
23LLG -0.454 0.455  -0.410 0.429  0.296 0.049 

Polynomial 
2nd 

20NQG -0.374 0.392  -0.275 0.340  0.231 0.060 
21LYD -0.369 0.457  -0.350 0.494  0.264 0.055 
22JBT -0.828 0.530  -0.769 0.666  0.286 0.072 
23LLG -0.466 0.421  -0.344 0.387  0.281 0.049 

Polynomial 
3rd 

20NQG -0.314 0.355  -0.390 0.293  0.232 0.061 
21LYD -0.447 0.427  -0.349 0.427  0.261 0.055 
22JBT -1.633 0.604  -0.722 0.651  0.296 0.095 
23LLG -0.460 0.425  -0.408 0.389  0.282 0.050 

Random 
Forest 

20NQG -0.339 0.319  -0.297 0.248  0.217 0.061 

21LYD -0.361 0.405  -0.350 0.484  0.260 0.052 

22JBT -0.761 0.647  -0.635 0.689  0.280 0.069 

23LLG -0.442 0.420  -0.403 0.382  0.276 0.053 
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Table 5.5 – Mean and standard deviation (std) of RMSE, and maximum (max) and 
minimum (min) value shifts in the x and y directions of the CPs identified 
by AROSICS between CBERS-4A/WFI and Sentinel-2/MSI images, 
before and after the registration. 

  Δx Δy RMSE 

Co-register Tile min max min max mean std 

Before co-
register 

20NQG -2.516 -0.288 -1.234 -0.135 1.419 0.247 
21LYD -2.516 0.210 -1.429 0.776 1.406 0.342 
22JBT -2.482 -0.072 -1.555 0.220 1.361 0.314 
23LLG -1.825 0.672 -2.196 0.395 1.120 0.372 

Polynomial 
1st 

20NQG -0.464 0.357 -0.307 0.286 0.287 0.057 
21LYD -0.803 0.918 -0.474 0.475 0.319 0.104 
22JBT -0.807 0.781 -0.543 0.780 0.309 0.059 
23LLG -0.686 0.693 -0.433 0.471 0.339 0.072 

Polynomial 
2nd 

20NQG -0.392 0.355 -0.316 0.303 0.274 0.049 
21LYD -0.704 0.779 -0.409 0.463 0.288 0.079 
22JBT -0.781 0.677 -0.498 0.473 0.285 0.052 
23LLG -0.520 0.654 -0.416 0.435 0.300 0.049 

Polynomial 
3rd 

20NQG -0.356 0.351 -0.300 0.264 0.273 0.051 
21LYD -0.529 0.677 -0.379 0.481 0.282 0.063 
22JBT -0.589 0.737 -0.604 0.466 0.285 0.055 
23LLG -0.475 0.533 -0.489 0.431 0.298 0.051 

Random 
Forest 

20NQG -0.351 0.330 -0.295 0.259 0.274 0.051 
21LYD -0.377 0.473 -0.435 0.481 0.272 0.052 
22JBT -0.462 0.635 -0.733 0.493 0.275 0.049 
23LLG 0.401 -0.472 -0.449 0.406 0.295 0.047 
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Table 5.6 – Mean and standard deviation (std) of RMSE, and maximum (max) and 
minimum (min) value shifts in the x and y directions of the CPs identified 
by AROSICS between Amazonia-1/WFI and Sentinel-2/MSI images, 
before and after the registration. 

  Δx Δy RMSE 

Co-register Tile min max min max mean std 

Before co-
register 

20NQG -1.446 -0.104 -0.422 0.495 0.869 0.386 
21LYD -1.442 0.785 -0.681 0.800 0.558 0.188 
22JBT -1.164 1.111 -0.691 0.566 0.494 0.097 
23LLG -1.376 0.739 -0.744 0.890 0.458 0.151 

Polynomial 1st 20NQG -0.342 0.630 -0.334 0.298 0.263 0.066 
21LYD -0.360 0.374 -0.362 0.338 0.243 0.050 
22JBT -0.365 0.340 -0.498 0.372 0.246 0.030 
23LLG -0.470 0.370 -0.395 0.447 0.290 0.060 

Polynomial 
2nd 

20NQG -0.307 0.406 -0.341 0.313 0.252 0.061 
21LYD -0.419 0.438 -0.392 0.404 0.244 0.052 
22JBT -0.389 0.377 -0.425 0.451 0.248 0.037 
23LLG -0.454 0.413 -0.407 0.440 0.284 0.057 

Polynomial 3rd 20NQG -0.300 0.406 -0.343 0.312 0.260 0.063 
21LYD -0.405 0.410 -0.357 0.398 0.242 0.049 
22JBT -0.351 0.525 -0.682 0.539 0.253 0.038 
23LLG -0.461 0.473 -0.369 0.493 0.277 0.063 

Random 
Forest 

20NQG -0.305 0.420 -0.340 0.282 0.260 0.069 
21LYD -0.471 0.413 -0.294 0.477 0.250 0.049 
22JBT -0.337 0.388 -0.404 0.514 0.258 0.045 
23LLG -0.431 0.404 -0.332 0.473 0.284 0.062 

 

The residues of the registration of the CBERS-4A/WFI image acquired on 26-

Jun-2021, using the CPs obtained by AROSICS (Figure 5.3) and the 

transformation functions built with the 1st, 2nd, and 3rd order polynomials, and 

the RF regressor (Figure 5.9), and warped with the cubic resampling technique 

are shown in Figure 5.10. The co-registered image using the 1st degree 

polynomial as the transformation function had the largest residuals, especially in 

the central part of the image, where there were smaller shifts before the 

registration (Figure 5.10). As the degree of the polynomial used in this case 

increased, the residuals reduced. The RMSE dropped from 1.61 pixels before 

registration to 0.47, 0.42, and 0.35 pixels after registration, using the 
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transformation function built from the 1st, 2nd, and 3rd-degree polynomials, 

respectively. In the case of registration using non-linear RF regression as the 

transformation function, the residuals were uniformly reduced throughout the 

image. This case had the greatest RMSE reduction after registration, with an 

RMSE of 0.25 pixels. 

Figure 5.9 – Displacement modelled in x and y  by the transformation functions 
constructed using the polynomial function of 1st, 2nd, and 3rd degrees, 
and by RF, from CPs identified by AROSICS between a CBERS-4A/WFI 
image (acquired in 26-Jun-2021, path/row: 211/148) and a Sentinel-2/MSI 
image (acquired in 25- May-2021, tile 22JBT) used as reference. 

 

 

Considering the entire dataset analysed, there was also a considerable reduction 

in the RMSE average after registration using all transformation functions. The 

highest RMSE average went from 0.62±0.31, 1.42±0.25, 0.87±0.39 to 0.30±0.05, 

0.34±0.07, 0.29±0.06 after registration for CBERS-4/WFI, CBERS-4A/ WFI, and 

Amazonia-1/WFI, respectively (Figure 5.6-Figure 5.8, Table 5.4-Table 5.6). 

These registration residues are close to those obtained by previous works that 

registered Landsat-8/OLI and Sentinel-2/MSI data. Scheffler et al. (2017) 
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achieved RMSE reduction from 2.31 to 0.3 pixels after co-registration. Yan et al. 

(2016) obtained RMSE between 0.286 and 0.309 10 m pixels after co-registration 

using 1st order and 2nd order polynomial transformation function and RMSE 

larger than 0.5 pixels using translation as transformation function. 

Figure 5.10 – Residues from registration using the 1st, 2nd, and 3rd-degree polynomials, 
and RF, as transformation functions for CBERS-4A/WFI image (acquired 
in 26-Jun-2021, path/row: 211/148), using Sentinel-2/MSI image 
(acquired in 25- May-2021, tile 22JBT) as a reference. The length of the 
displacement vector in the map was multiplied by a factor of 100. 

 

 

In most tiles, for the three-satellite data, the transform function using the 1st-

degree polynomial had an RMSE average greater than the higher degree 
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polynomial functions or the RF regressor. The RMSE average was similar 

between the 2nd and 3rd-degree polynomials for the three-satellite data. Some 

tiles had a lower average RMSE average with the 2nd-degree polynomial 

transform and others with the 3rd-degree polynomial function. For CBERS-4/WFI 

and CBERS-4A/WFI data, the co-register using the transformation function built 

with the RF regressor obtained a lower RMSE average than the functions built 

using polynomial models. For the CBERS-4/WFI data, the RMSE average using 

the RF regressor ranged from 0.22±0.06 to 0.28±0.07 pixel, while for the CBERS-

4A/WFI, it ranged between 0.27±0.05 and 0.29±0.05 pixel. For Amazonia-1/WFI, 

the RF regressor obtained was surpassed by the 2nd degree polynomial model 

in all tiles (except for 23LLG), where the RMSE average ranged between 

0.24±0.05 and 0.28±0.06 pixel. The RF slightly outperforms the 2nd and 3rd 

degree polynomial model in most cases (Table 5.4-Table 5.6) but is more 

complex to implement and more time consuming. Taking this into account, the 

use of the 2nd degree polynomial proved to be appropriate for registration of the 

WFI data as it is simpler and had a similar result to the best transformation model. 

Although, if the user needs more accurate results and is not concerned about 

time consuming, RF would be advisable. 

Yan et al. (2016) found prediction errors of similar magnitude when comparing 

the 1st order (also referred to as affine transformation) and the 2nd order 

polynomial transformation functions to register Landsat-8/OLI and Sentinel-2/MSI 

data. Despite this, according to the authors, the affine transformation proved to 

be more robust than the 2nd order polynomial transformation function, as it is less 

sensitive to the number and spatial distribution of CPs. The best result found for 
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the registration of WFI data using a higher polynomial order function may indicate 

greater displacement complexity. Only scaling, translation, and rotation, the 

operations provided by the affine transformation (BROWN, 1992), are insufficient 

to model the misregistration. Scheffler et al. (2017) attribute directional variations 

of remaining shifts after the registration of the TerraSAR-X multi-temporal dataset 

to their assumption that initial misregistration patterns can be modelled by a more 

or less affine transformation and suggest that a higher-order polynomial 

transformation model may reduce these effects. The best result obtained by the 

RF regressor as a transformation function can be attributed to its ability to model 

non-linear displacements, as presented in Figure 5.9. Skakun, Roger, et al. 

(2017) also got better results with RF regression as transformation functions. It 

slightly outperforms the translation, 1st order polynomial, Gaussian Radial Basis 

Function (RBF), and Thin-Plate Splines (TPS) to register multi-temporal Sentinel-

2A/MSI images and Landsat-8/OLI with Sentinel-2A/MSI images.  

The non-linear shifts shown in Figure 5.3 follow the flight line direction with a 

pattern of an along-track striping artifacts. These patterns are similar to those 

found by Scheffler et al. (2017) when analysing the Sentinel-2A/MSI multi-

channel registration and by Stumpf et al. (2018) analysing the Sentinel-2/MSI 

images multi-temporal register. According to these authors, this type of 

displacement is caused due to slight geometric misalignments between sensor 

detector arrays of pushbroom satellites. These types of displacement are 

addressed implicitly by using transformation functions that can account for local 

non-linear distortions (e.g., RF regressor, RBF model). Still, for certain 

applications, it may be necessary to use the information of the detector footprints’ 
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position on the ground to get a more accurate registration (STUMPF; MICHÉA; 

MALET, 2018). 

The result of correcting the misregistration is shown in Figure 5.11. The effects 

of misregistration on the displacement between the CBERS-4A/WFI image and 

the Sentinel-2/MSI image and between the CBERS-4A/WFI image and the 

Amazonia-1/MSI image are observed. The effects of misalignment were mainly 

noticed on the roads and in the central irrigation pivot (Figure 5.11a and Figure 

5.11c). After the registration is performed using the CPs identified by AROSICS 

to build a transformation function with the RF regressor, it is not possible to 

observe displacement between CBERS-4A/WFI and Sentinel-2/MSI images 

(Figure 5.10b), or CBERS-4A/WFI and Amazonia-1/WFI images (Figure 5.10d). 

The effect of misregistration depends on the landscape spatial heterogeneity and 

the satellite imagery application. In heterogeneous landscape regions, the effect 

of registration errors has a greater impact than in homogeneous regions (TANG; 

WANG, 2019; GU; CONGALTON, 2020). For example, in areas with a 

predominance of agriculture (Figure 5.11), the misregistration impact is probably 

much larger than in larger areas with the same land cover, as in the Amazon 

Forest. However, the near real-time forest monitoring (DINIZ et al., 2015) needs 

high accuracy in the geolocation because new small deforestation in the borders 

of older deforestation can be understood as an image displacement and not be 

reported.   
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Figure 5.11 – CBERS-4A/WFI (path/row: 211/148) image acquired on June 26th, 2021, 
on top of a, b, c, and d. Sentinel-2/MSI (tile T22JBT) image acquired on 
May 25th, 2021, used as a reference at the bottom of a and b. Amazonia-
1/WFI (path/row: 035/019) image acquired on June 25th at the bottom of 
c and d. Images before (a and c) and after (b and d) registration using the 
RF regressor as transformation function. The CBERS-4A/WFI and 
Amazonia-1/WFI are co-registered using the Sentinel-2/MSI as reference. 

 

 

The scatter plot between two CBERS-4A/WFI images acquired four days apart 

(10-Jun-2021 and 14-Jun-2021) before and after correcting the misregistration is 

presented in Figure 5.12. The images are from close dates, so it is unlikely that 

there will be major changes on the land surface. After correcting the 

misregistration, there is also a greater spectral agreement between the two 

images, with the correlation coefficient (r) going from 0.90 to 0.95. Furthermore, 

using our proposed framework there is a reduction in data dispersion (Root Mean 

Square deviation - RMSD from 0.027 to 0.021), with the regression line getting 

closer to the identity line. The registration of WFI imagery from CBERS-4, 
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CBERS-4A, and Amazonia-1 can improve the consistency of these data for time 

series analysis. Thus, our results show that it is possible to improve the WFI 

images quality. In this way, in the future, it would be possible to use/incorporate 

the WFI images in the LULC program. 

Figure 5.12 – Scatter plot between CBERS-4A/WFI images from 10-Jun-2021 (path/row: 
208/132) and 14-Jun-2021 (path/row: 201/132), before and after co-
register. RMSD is the Root Mean Square deviation. 

 

 

5.6 Conclusion 

The geometric accuracy of satellite images is crucial for most remote sensing 

applications, as misregistration can lead to biased results. This study assessed, 

for the first time, the geometric accuracy of WFI imagery from CBERS-4, CBERS-

4A, and Amazonia-1. For this, CPs were generated using the AROSICS package 

(SCHEFFLER et al., 2017). The inter-channel registration was assessed by using 

the NIR band as a reference. The highest RMSE average was in the blue band 

relative to the NIR band, with 0.44±0.03, 0.39±0.03, and 0.41±0.04 pixel, for 

CBERS-4/WFI, CBERS-4A/WFI, and Amazonia-1/WFI, respectively. The multi-

temporal geometric accuracy of each image (target) was evaluated considering 
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the previous image as a reference. In this case, on a tile basis, the RMSE average 

reached 0.87±0.34 pixels for CBERS-4A/WFI in the 23LLG tile; respectively, 

0.62±0.26 and 0.70±0.26 pixels for CBERS-4/WFI and Amazonia-1/WFI in the 

21LYD tile. This study further analysed the geometric accuracy of WFI data using 

Sentinel-2/MSI as a reference. The biggest shifts were 1.45 pixels (93m) for 

CBERS-4/WFI and Amazonia-1/WFI, while for CBERS-4A/WFI was 2.5 pixels 

(138 m). CBERS-4A/WFI had the highest RMSE average across all tiles, 

reaching 1.42±0.21 pixels on the 20NQG tile. Based on our results, then multi-

temporal image data comparisons (e.g., land cover change) cannot be effectively 

conducted.  

After finding these misregistrations, a framework was proposed to automatically 

register WFI images, evaluating the 1st, 2nd, and 3rd-degree polynomials, and 

RF regressor as mapping functions. The RMSE average was similar between the 

2nd and 3rd-degree polynomials for the three-satellite data. Some tiles had a 

lower RMSE average with the 2nd-degree polynomial transform and others with 

the 3rd-degree polynomial function. For Amazonia-1, using the 2nd-degree 

polynomial model, the RMSE average ranged between 0.24±0.05 and 0.28±0.06 

pixel. For CBERS-4/WFI and CBERS-4A/WFI data, the registration using the 

transformation function built with the RF regressor was able to better model non-

linear displacement and allowed to obtain a lower RMSE average compared to 

the functions built using polynomial models. In this case, the RMSE average 

ranged from 0.22±0.06 to 0.28±0.07 pixel and 0.27±0.05 to 0.29±0.05 pixel for 

CBERS-4/WFI and CBERS-4A/WFI, respectively. Despite this, the RF only 

slightly outperforms the 2nd and 3rd degree polynomial model in most cases but 
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is more complex to implement and more time consuming. Taking this into 

account, the use of the 2nd degree polynomial proved to be appropriate for 

registration of the WFI data as is simpler and had a similar result to the best 

transformation model.  

Given the displacements found in our analyses, image registration is a required 

step for further time series analysis of WFI images in several applications that 

require precise sub-pixel registration, but mainly in those spatially heterogeneous 

such as agriculture. As a result, the framework proposed in this study allowed the 

registration of WFI images automatically. In addition, the framework proved to be 

fundamental for image registration for works that involve multi-temporal analysis 

of WFI images or when they are combined with other data sources, substantially 

reducing misregistration and providing more consistent and robust data. The 

present study is the first to assess the geometric accuracy of the WFI sensor. 

Brazil had put a lot of effort into developing and launching the three WFI sensors, 

our study contributes to obtaining improved results and fostering the use of WFI 

data in the country. The CBERS legacy includes two decades of observations, 

and we expect the same to happen with the Amazonia satellite, so proposing 

improvements to the data from the sensors onboard these satellites is 

fundamental. 
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6 EVALUATION OF SIX APPROACHES FOR CORRECTING 

BIDIRECTIONAL EFFECTS ON CBERS-4/WFI IMAGES FROM BRAZIL  

6.1 Introduction 

Monitoring vegetation and land surface characteristics using images from space-

borne sensors depends on the relationship between biophysical quantities in the 

ground and the spectral radiance measured by sensors on the satellites (FLOOD 

et al., 2013). However, measurements retrieved by orbital sensors can have 

significant variation caused by several factors that are not directly related to the 

land surface. As most surfaces are anisotropic, their directional reflectance is 

dependent on the sun-target-sensor geometry. Variations in viewing and 

illumination geometry can cause significant spatial and temporal variation in the 

retrieved directional reflectance independent of variations in the land surface 

characteristics (FLOOD, 2013; GAO et al., 2014). These variations can be 

modeled by the Bidirectional Reflectance Distribution Function (BRDF), that 

describes the scattering of incident light from one direction in the hemisphere into 

another direction (SCHAEPMAN-STRUB et al., 2006).  

The BRDF effect can be strong in instruments with large FOV such MODIS 

(PETRI; GALVÃO; LYAPUSTIN, 2019), with approximately 55 degree both sides 

of nadir. MODIS has a low spatial resolution (between 250 m and 1000 m) but a 

high revisit rate (twice daily). Considerable effort has been invested to 

characterize and remove BRDF effects from MODIS images (SCHAAF et al., 

2002). The high repeatability of MODIS makes it possible to acquire images with 

different angular configurations in a short period of time. Thus, based on the 
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assumption that there are no surface changes in this period, and that the 

reflectance changes are due to the directional effects, the BRDF is modeled for 

each band, with parameterization by pixel at each 16-day period. This allows 

normalization of reflectance to standard angular configurations. 

Bidirectional effects have also been identified in medium spatial resolution 

sensors (HANSEN et al., 2008; ROY et al., 2008, 2016b, 2017; LI et al., 2010; 

POTAPOV et al., 2012; FLOOD, 2013; FLOOD et al., 2013; GAO et al., 2014), 

even though they generally have a much lower swath compared to MODIS. Thus, 

it is desirable to understand and correct these bidirectional effects for many 

quantitative applications that use data from adjacent paths or from time series 

with different viewing and solar geometries (GAO et al., 2014; ROY et al., 2016b). 

However, due to the lower temporal frequency of acquisitions and the low angular 

sampling, it becomes more difficult to remove the bidirectional effects in data from 

medium spatial resolution sensors in a per-pixel basis in the same way as it is 

done with MODIS (FLOOD et al., 2013; CLAVERIE et al., 2015).  

For Landsat imagery, which has a narrow swath (7.5º both sides of nadir), 

Hansen et al. (2008) and Potapov et al. (2012) found a reflectance gradient as a 

function of the view zenith angle (VZA), with an increase in the reflectance from 

forward direction to backward direction, allowing normalization to nadir viewing 

based on a simple linear regression. Other approaches used the BRDF model 

initially developed for MODIS. Roy et al. (2008) used directly BRDF MODIS 

parameters from corresponding 500 m MODIS pixels to adjust Landsat imagery. 

Li et al. (2010) used regional BRDF information averaging the MODIS BRDF 
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parameters by Landsat scene, and applying the same parameters to the entire 

scene. Shuai et al. (2011) extracted BRDF parameters for different land cover 

types based on MODIS pure pixels and used this information to correct directional 

effects on the corresponding land cover types. Flood et al. (2013), considering 

that at least a major component of the BRDF can be assumed to be the same 

across all pixels, derived a single fixed set of BRDF spectral model parameters 

from the Landsat imagery itself, using images from opposite sides in the 

overlapping areas between paths. Roy et al. (2016) also used the single fixed set 

of BRDF spectral model parameters derived from a large amount of globally and 

temporally distributed MODIS BRDF product pixels to normalize the angular 

effects in Landsat images. This approach was also evaluated for Sentinel-2/MSI 

data (ROY et al., 2017), which have a larger FOV than Landsat (with a swath 

width of approximately 12º both sides of nadir (DRUSCH et al., 2012)). 

The BRDF effects are much stronger in data from medium resolution wide swath 

sensors (GAO et al., 2014) or with off-nadir pointing capability sensors (FLOOD 

et al., 2013) compared to narrow swath ones. Gao et al. (2014) built an 8-day 1-

degree Look-Up Map (LUM) with BRDF parameters per-crop type based on 

MODIS pure pixels extracted from a detailed crop type map for the United States, 

accounting for spatial and temporal differences in the BRDF parameters. Then, 

the BRDF LUM was applied to data from AWiFS, a wide swath sensor (25° both 

sides of nadir), to correct directional effects. Flood et al. (2013) also used their 

approach to correct bidirectional effects in SPOT-5 HRG imagery, with a VZA of 

up to 20° off-nadir. Claverie et al. (2015) evaluated several methods to correct a 

sample of SPOT-4 data with a maximum VZA of 28°, assuming no variation of 
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the BRDF shape in space, or deriving the parameters from the MODIS data. 

Although all methods reduced the bidirectional effects, they showed different 

results. Van doninck and Tuomisto (2017) also made a similar observation when 

evaluating various methods to normalize bidirectional effects in Landsat images 

over the Amazon Forest, noting that the best results were obtained by deriving 

the BRDF coefficients from the image itself, although all methods were able to 

reduce the angular effects. 

For CBERS-4/WFI data, Pan et al. (2020) modeled the BRDF parameters from 

measuring angular data by an unmanned aerial vehicle. BRDF parameters were 

used to increase the accuracy of radiometric calibration of WFI data. They found 

a difference of up to 10% in the reflectance modeled in off nadir view relative to 

the nadir view from desert surface. Depending on the surface and spectral band 

for the VZA range of wide swath medium resolution sensors such as WFI, the 

reflectance difference between nadir and off nadir view can be greater, reaching 

60% (GAO et al., 2014). Thus, as the same surface point is observed from up to 

nine different paths by the CBERS-4/WFI, BRDF effects can cause inconsistency 

in the time series. Therefore, it becomes important to understand and normalize 

the BRDF effects in CBERS-4/WFI images in order to generate more consistent 

time series. This is also important so that the data from the CBERS-4/WFI can 

be combined with that generated by the WFI sensors onboard the CBERS-4A 

and Amazonia-1 in the future, in order to generate a consistent almost daily time 

series. 
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In this paper, we assessed the angular effects in CBERS-4/WFI images over 

various land cover types in a large area over Brazil and evaluated six approaches 

for normalizing BRDF effects in WFI imagery. These approaches were initially 

developed for data from other sensors with FOV lower than the WFI. Thus, it 

becomes important to assess their performance on the WFI as well. 

6.2 Data 

6.2.1 CBERS-4/WFI 

CBERS-4/WFI Level-4 images from 2020, were obtained from the National 

Institute for Space Research (INPE) catalog website 

(http://www.dgi.inpe.br/catalogo/). The WFI Level 4 images provided by the INPE 

are geometrically corrected with ground control points and ortho-rectified (INPE, 

2021c). We use the surface reflectance product, processed by the MS3 software 

(SILVA; ANDRADE, 2013). The product is delivered in the Universal Transverse 

Mercator (UTM) projection with the World Geodetic System 1984 (WGS84) 

datum. 

6.2.2 MODIS 

We downloaded the data from products MCD43A1, MCD43A2 and MCD43A4 

(Version 006) for the same date and which covered each of the 461 CBERS-

4/WFI images. A total of 1081 images of each product were downloaded from 

NASA's Land Processes Distributed Active Archive Center (LP DAAC) products 

located at the USGS Earth Resources Observation and Science (EROS) Center 

(https://lpdaac.usgs.gov/products). In some cases, more than one MODIS image 

was needed to cover the CBERS-4/WFI image. We only use the data from 

http://www.dgi.inpe.br/catalogo/
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MODIS products referring to the spectral bands of blue (B3), green (B4), red (B1), 

and NIR (B2), which can be considered equivalent to the respective bands B13 

(blue), B14 (green), B15 (red) and B16 (NIR) of the WFI data. Although the 

bandwidths and spectral response function are not the same. 

6.2.3 Land use and land cover data 

A land use and land cover map were used to select only vegetation areas. Data 

from MapBiomas Collection 5 for the year 2019 (most recent data during the 

processing of the data of this chapter) about Brazil were downloaded. 

MapBiomas is a multi-disciplinary network that produced land use and land cover 

maps between 1985 and 2019 for Brazil, based on applied random forest to 

Landsat archive using Google Earth Engine (SOUZA et al., 2020). MapBiomas 

data is one of the most comprehensive and detailed land use and land cover 

maps for the country at 30 m pixel resolution. From the MapBiomas map, we 

retained only the classes referring to vegetation, i.e., Forest Formation, Savanna 

Formation, Grassland, Pasture, Forest Plantation, Soybean, Other Temporary 

Crops, Sugarcane, Perennial Crop, Mosaic of Agriculture and Pasture. 

6.3 Methodology 

6.3.1 MODIS-CBERS-4/WFI reflectance bias 

The gradient introduced by surface anisotropy and VZA variation is approximately 

linear in narrow swath sensors, i.e., Landsat (± 7.5º) (HANSEN et al., 2008; 

POTAPOV et al., 2012). In the present study we test whether this assumption 

can be made to reduce BRDF effects in CBERS-4/WFI data, which is a wide 

swath sensor, with a much larger VZA than Landsat. The linear relationship that 
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characterizes this gradient can be obtained directly from the relationship between 

the surface reflectance and the VZA when analyzing the same type of land cover 

(HANSEN et al., 2008; VAN DONINCK; TUOMISTO, 2017). However, when the 

scene has different types of land cover, this relationship cannot be obtained 

directly. So, we follow the approach used by Potapov et al. (2012), using MODIS 

data as a reference.  

The product MCD43A4, MODIS Nadir BRDF-Adjusted Reflectance (NBAR), was 

selected as a reference because the directional effects were already removed 

from the surface reflectance. First the CBERS-4/WFI data were resampled to 500 

m using average algorithm to match the resolution of the MCD43A4 product. All 

500 m pixels that had within some CBERS-4/WFI pixels marked as cloud in the 

cloud mask were not considered. The mean bias between the MODIS NBAR and 

the CBERS-4/WFI surface reflectance data was calculated and aggregated at 

every 1º VZA. The reflectance gradient (𝛼) was estimated for each of the 

reflective bands as the slope of the linear regression between the surface 

reflectance bias of MODIS and CBERS-4/WFI (𝜌) and the VZA (𝑣) as follows: 

𝜌 =  𝛼 𝑣 +  𝑏  (6.1) 

The intercept (𝑏) represents systematic bias between the NBAR and the surface 

reflectance of the CBERS-4/WFI, which are constant across the scene, such as 

difference in atmospheric correction algorithm, bandwidths, and spectral 

response function. As the objective is just to eliminate the directional effects of 

the VZA, only the 𝛼 was considered, while the 𝑏 was not applied to normalization. 
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In some scenes clouds may be concentrated on only one side of the image. This 

may impact the estimation of the reflectance gradient through linear regression, 

probably due to omission errors in the cloud mask. A Random Sample 

Consensus (RANSAC) filter was used to detect outliers and eliminate them from 

the linear regression. This method will be called Approach 1 from now on. The 

other approaches will be detailed in Sections 6.3.2 and 6.3.3. 

6.3.2 BRDF model and BRDF parameters from MODIS 

The operational MODIS BRDF algorithm makes use of the semiempirical kernel-

driven RossThick-LiSparse Reciprocal BRDF model, that expresses land surface 

reflectance as the sum of a parameter and two kernels, that represent an isotropic 

scattering, a volumetric scattering and a geometric-optical surface scattering 

component (SCHAAF et al., 2002) in the following form (ROUJEAN; LEROY; 

DESCHAMPS, 1992): 

𝑅(𝜃, 𝜐, 𝜙, 𝜆) = 𝑓𝑖𝑠𝑜(𝜆) + 𝑓𝑣𝑜𝑙(𝜆) 𝐾𝑣𝑜𝑙(𝜃, 𝜐, 𝜙) + 𝑓𝑔𝑒𝑜(𝜆) 𝐾𝑔𝑒𝑜(𝜃, 𝜐, 𝜙) (6.2) 

where 𝑅 is the modeled reflectance,  𝐾𝑣𝑜𝑙 and 𝐾𝑔𝑒𝑜 are the kernel functions that 

describe volumetric and geometric scattering components, and 𝑓𝑖𝑠𝑜, 𝑓𝑣𝑜𝑙 and 𝑓𝑔𝑒𝑜 

are the three model parameters. The  𝐾𝑣𝑜𝑙 is represented for the RossThick kernel 

(ROUJEAN; LEROY; DESCHAMPS, 1992), and  𝐾𝑔𝑒𝑜 for the reciprocal form of 

the LiSparse model (WANNER; LI; STRAHLER, 1995), while by definition, the 

isotropic kernel component is unity.  𝐾𝑣𝑜𝑙 and 𝐾𝑔𝑒𝑜 are dependent of a viewing 

and illumination geometry, and 𝑓𝑖𝑠𝑜, 𝑓𝑣𝑜𝑙 and 𝑓𝑔𝑒𝑜 are spectrally dependent. As 

MODIS can obtain multiple observations with different angular configurations in 

a short period of time, the model parameters (𝑓𝑖𝑠𝑜, 𝑓𝑣𝑜𝑙 and 𝑓𝑔𝑒𝑜) can be fitted 
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empirically from the observations themselves, using either a full inversion or the 

magnitude inversion approach (SCHAAF et al., 2002). 

From the backup algorithm in MODIS BRDF algorithm, a magnitude inversion 

approach (SCHAAF et al., 2002) can be used to adjust the directional surface 

reflectance at a set of angles 𝐴 (𝜃𝐴, 𝜐𝐴, 𝜙𝐴) to the value equivalent to what it would 

have had if it had been observed from a different set of angles 𝐵 (θ𝐵, υ𝐵 , ϕ𝐵) 

(FLOOD, 2013; GAO et al., 2014), assuming that the modeled reflectance 𝑅 and 

a surface reflectance 𝜌 represent the same BRDF shape (FLOOD, 2013; VAN 

DONINCK; TUOMISTO, 2017): 

𝜌(𝜃𝐵 , 𝜐𝐵, 𝜙𝐵) =
𝑅(𝜃𝐵, 𝜐𝐵, 𝜙𝐵)

𝑅(𝜃𝐴, 𝜐𝐴, 𝜙𝐴)
𝜌(𝜃𝐴, 𝜐𝐴, 𝜙𝐴) (2) 

(6.3) 

With the parameter models obtained every 16 days, this approach has also been 

used to remove the directional effects in the MODIS images themselves 

(SCHAAF et al., 2002). As the revisit period for medium spatial resolution sensors 

is longer, it is difficult to obtain multiple observations with different angular 

configurations in a short period of time to regularly derive the BRDF model 

parameters from the image itself. So MODIS derived BRDF parameters have 

been employed to correct directional effects in medium resolution narrow swath 

sensor data (i.e., Landsat), from coincident observations (ROY et al., 2008; LI et 

al., 2010; SHUAI et al., 2011; FLOOD, 2013; VAN DONINCK; TUOMISTO, 2017) 

or unique set of parameters derived around the world (ROY et al., 2016b, 2017). 

Here we evaluate the applicability of using MODIS-derived BRDF parameters for 

correct the angular effects on data from a wide swath medium resolution sensor, 

the CBERS-4/WFI. We tested four cases considering different ways to assimilate 
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the MODIS BRDF parameters into the BRDF correction of the CBERS-4/WFI 

data. 

Approach 2. The MODIS BRDF parameter are taken from the pixel MODIS that 

match with the CBERS-4/WFI pixel (this is the approach used by Roy et al. 

(2008)). The images from MCD43A1 V6 product corresponding to the same date 

as the CBERS-4/WFI images were reprojected to 64 m in the AEA projection, 

using the nearest neighbor algorithm. 

Approach 3. A single set of MODIS BRDF parameters averaged for each CBERS-

4/WFI image being adjusted (this is the approach used by Li et al. (2010)). Only 

pixels with highest quality in the quality data (MCD43A2) and over land were used 

to calculate the average parameters for each scene. Pixels with cloud values in 

the cloud mask of the CBERS-4/WFI images were also not used. 

Approach 4. A set of BRDF MODIS parameters is averaged per class from "pure" 

homogeneous MODIS pixels (this case was based on the approach used by 

Shuai et al. (2011)). Initially an unsupervised K-means classification was 

generated with 10 classes for each CBERS-4/WFI image. Only MODIS pixels 

that contained more than 70% of a single class at the CBERS-4/WFI resolution 

were considered as candidate for "pure" pixels and thus used to calculate the 

average parameters. Furthermore, as in Approach 3, only the pixels with the 

highest quality in the MCD43A2 data, over land, and which did not contain clouds 

in the CBERS-4/WFI image were considered. Finally, a set of MODIS BRDF 

parameters is used for each class and for each image. 
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Approach 5. Here we evaluate the use of the fixed BRDF coefficients derived by 

Roy et al. (2016) (Table 6.1). These coefficients were also derived from the 

MCD43A product which were globally and temporally distributed (>15 billion 

pixels). These coefficients were initially used to remove the bidirectional effects 

in Landsat 7/ETM+ data (ROY et al., 2016b) and later also evaluated for Sentinel-

2/MSI data (ROY et al., 2017). Both the ETM+ and the MSI are narrow swath 

sensors (FOV ±7.5º and ±12.5º, respectively). Here we evaluate whether these 

same coefficients can remove the BRDF effects from the CBERS-4/WFI data, a 

wide swath sensor (FOV ±28.63°). 

Table 6.1 – Fixed BRDF coefficients derived by Roy et al. (2016). 

Band 𝑓𝑖𝑠𝑜 𝑓𝑔𝑒𝑜 𝑓𝑣𝑜𝑙 

Blue 0.1690 0.0227 0.0574 

Green 0.0774 0.0079 0.0372 

Red 0.1306 0.0178 0.0580 

NIR 0.3093 0.0330 0.1535 

Source: Roy et al. (2016). 

6.3.3 BRDF parameters derived from CBERS-4/WFI itself 

The insufficient number of observations in a short period of time with different 

angular configurations makes difficult to invert the BRDF parameters of the 

medium spatial resolution images themselves on a per-pixel basis and regularly 

in time as is done for MODIS data. However, Flood et al. (2013) has developed 

a methodology that allows inverting the BRDF parameters from the medium 

resolution images themselves, making the assumption that at least one major 

component of the BRDF can be assumed to be common to all pixels. It is similar 
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to the Roy et al. (2016) methodology, so a single set of BRDF parameters can be 

used to normalize all images.  

Approach 6: We use the Flood et al. (2013) approach to derive the BRDF 

parameters, with the simplification done by Van doninck and Tuomisto (2017), 

which ignores topography and diffuse illumination. Because of the global BRDF 

assumption, the parameters are estimated for the reflectance ratio of Equation 

(6.3). To obtain a single solution for the parameters it is necessary to cancel the 

𝑓𝑖𝑠𝑜 parameter, in the form 𝑓𝑣𝑜𝑙
′  = 𝑓𝑣𝑜𝑙/𝑓𝑖𝑠𝑜  and 𝑓𝑔𝑒𝑜

′  = 𝑓𝑔𝑒𝑜/𝑓𝑖𝑠𝑜 (FLOOD et al., 

2013). Then minimizing the cost function C a single set of estimates of 𝑓𝑣𝑜𝑙
′  and 

𝑓𝑔𝑒𝑜
′  can be obtained (FLOOD et al., 2013; VAN DONINCK; TUOMISTO, 2017): 

𝐶 =
1

𝑁
∑ |𝜌(𝐴, 𝜆)  −  𝜌(𝐵, 𝜆)

1 + 𝑓𝑣𝑜𝑙
′ (𝜆) 𝐾𝑣𝑜𝑙(𝐴) + 𝑓𝑔𝑒𝑜

′ (𝜆) 𝐾𝑔𝑒𝑜(𝐴) 

1 + 𝑓𝑣𝑜𝑙
′ (𝜆) 𝐾𝑣𝑜𝑙(𝐵) + 𝑓𝑔𝑒𝑜

′ (𝜆) 𝐾𝑔𝑒𝑜(𝐵)
|

𝑁

𝑖=1

 
(6.4) 

where N is the number of observed pixel pairs used. These pairs of pixels were 

obtained in the areas of overlap between acquisitions of adjacent path so that 

each observation is in the opposite view directions, as suggested by Flood et al. 

(2013) and which will be further detailed in Section 6.3.4. We used the Nelder-

Mead simplex algorithm available in Scipy to perform the minimization of the C 

function and obtain of 𝑓𝑣𝑜𝑙
′  and 𝑓𝑔𝑒𝑜

′   for each waveband separately. 

6.3.4 Accuracy assessment of the methods for angular normalization 

Three analyses were performed to evaluate the performance of the angular 

normalization approaches: (i) for directional effects; (ii) solar illumination effects; 

(iii) for IVs time series. These analyses will be described in the next sections. 
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6.3.4.1 Directional effects 

Due to the wide swath, the WFI sensor observes the same location on the earth 

surface from multiple CBERS-4 paths (total of 9 at equator). This allows the same 

location to be observed with different viewing geometry. Pairs of images from 

adjacent orbits that have an intersection area were selected, as described in 

Section 6.2.1, to evaluate the directional effects from existing in CBERS-4/WFI 

images, to estimate the parameters 𝑓𝑣𝑜𝑙
′  and 𝑓geo

′  described in Section 6.3.3, and 

to evaluate the angular normalization methods described in Sections 6.3.1, 6.3.2, 

6.3.3. To analyze bidirectional effects and evaluate methods of normalizing these 

effects, we took pairs of images with overlap areas from different adjacent paths. 

This makes it possible to obtain observations from the same point on the Earth's 

surface with different angular configurations and without substantial changes in 

the surface characteristics. So, we selected images from the same row and 

difference in path ranging from 3 to 7, which forms an overlapping area of ~550 

to 130 km. To avoid substantial changes in the land surface, pairs of images with 

a maximum difference of 16 days between them were selected. The maximum 

cloud cover threshold was set to 10%. A total of 459 CBERS-4/WFI images 

satisfied these criteria. The largest number of images used (Figure 6.1) were 

acquired during the dry season when there is less cloud cover. A total of 401 

pairs were formed with these images. 
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Figure 6.1 – Distribution of the number of CBERS-4/WFI images throughout the year 
(2020) used in this study. 

 

 

In the intersection area, points were systematically distributed in a grid of 

100x100 pixels. For each of these points there is a pair of reflectance 𝜌𝐴 and 𝜌𝐵, 

observed from two different set of angles 𝐴 and 𝐵. Due to some targets that can 

show rapid changes in phenology (e.g., agriculture (ESQUERDO; ZULLO 

JÚNIOR; ANTUNES, 2011) and savanna (PETRI; GALVÃO; LYAPUSTIN, 2019)) 

the difference between the dates of observations A and B was limited to 16 days, 

to avoid difference in reflectance due to this type of change. The points were also 

filtered by land cover type, keeping only points belonging to vegetation classes, 

i.e., Forest Formation, Savanna Formation, Grassland, Pasture, Forest 

Plantation, Soybean, Other Temporary Crops, Sugar Cane, Perennial Crop, 

Mosaic of Agriculture and Pasture (Figure 6.2). Points with a relative azimuthal 

angle (RAA) greater than 90° when viewed from the east side or RAA less than 

90° when viewed from the west side of the overlap have also been removed. This 

ensures that all points are seen in the backward scattering direction in the image 
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from the east of the overlap area and forward scattering direction in the image 

from the west.  

Figure 6.2 – Distribution of points generated in areas of overlapping images of adjacent 
paths used to assess directional effects on CBERS-4/WFI images and 
methods to normalize these effects by land cover class. 

 

 

We present a scatter plot of reflectance data from each of the approaches for 

directional effects normalization presented in Sections 6.3.1, 6.3.2, 6.3.3 and 

summarized in Table 6.2. In approaches 2 to 6, a full bidirectional reflectance 

adjustment is performed using the RossThick-LiSparse-Reciprocal (RTLS) 
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model. The reflectance of the CBERS-4/WFI data was adjusted to the Nadir at a 

standard angular configuration (𝜃=35º, 𝜐=0º, 𝜙=0º) (VAN DONINCK; 

TUOMISTO, 2017). Scatter plots are also showed when no angular normalization 

is applied. This allows showing the magnitude of the BRDF effects and serves as 

a basis for comparing the approaches for normalization of the BRDF effects. A 

scatter plot is shown for each case and for each band. The x-axis shows the 

reflectance seen from the west, in the forward scattering direction, while the y-

axis shows the reflectance seen from the east, in the backward scattering 

direction. The results were also assessed by three statistical metrics. The linear 

correlation coefficient (r) is an indicator of how strong a linear relationship is 

between the two sets of data. A linear regression was also fitted using orthogonal 

distance regression (ODR). The linear regression slope is a measure of the 

systematic bias existing between the reflectance observed in the two different 

angular configurations considered. The Root-Mean-Square Deviation (RMSD) 

was calculated as an indication of error, in reflectance units. 
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Table 6.2 – Summary of the six approaches of angular normalization compared in this 
work. 

Approach Summary Reference 

1 Based on the empirical gradient existing in 
each scene between the bias of reflectance 
in the CBERS-4/WFI data and the NBAR 
reflectance product (MCD43A4) in function 
of the VZA 

(HANSEN et al., 
2008; POTAPOV et 

al., 2012) 

2 BRDF parameters of the model were 
obtained from MODIS of the coincident 
date, by taken from the MODIS pixels in 
which the CBERS-4/WFI pixels are 
contained 

(Roy et al., 2008) 

3 BRDF parameters of the model were 
obtained from MODIS of the coincident 
date averaged from pure MODIS pixels for 
different types of land cover 

(Shuai et al., 2011) 

4 BRDF parameters of the model were 
obtained from MODIS of the coincident 
date averaged over the CBERS-4/WFI 
scene 

(Li et al., 2010) 

5 Uses a single global set of BRDF 
parameters, obtained from a large number 
of MODIS pixels 

(Roy et al., 2016) 

6 Uses a single global set of BRDF 
parameters, inverted from CBERS-4/WFI 
image pairs 

(Flood et al., 2013) 

 

6.3.4.2 Solar illumination effects 

To assess how the six angular normalization approaches perform with large 

changes in the solar vector we selected another set of pairs of images, because 

with the interval of 16 days the change in the solar vector is small. Only images 

with less than 15% of cloud cover over the Amazon Forest were selected because 

they have fewer phenological and land surfaces changes than other land covers 

such as savannas and agriculture. In each pair, an image with high SZA (between 
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January and March or between October and December) and another image with 

low SZA (between 15-May to 15-August) was selected. As in the case of view 

angle analyses, points were systematically distributed in a grid of 100x100 pixels 

in the intersection area. The average, maximum and minimum SZA of the high 

SZA points set were 39.73º, 47.35º, 28.88º, respectively. The set of points with 

low SZA had average, maximum and minimum SZA equal to 24.64º, 37.32º and 

17.89º, respectively. The average, maximum, and minimum difference between 

the first and second sets were equal to 15.08º, 26.53º, and 4.68º, respectively. 

The Mean Absolute Difference (MAD) of each pair of pixels was calculated as a 

measure of accuracy for each angular normalization approach in each of the four 

spectral bands, in addition to the NDVI and EVI. The NDVI is a normalized index 

that is less influenced by angular effects, while the EVI is heavily influenced 

(PETRI; GALVÃO; LYAPUSTIN, 2019). Box plot of the MAD was generated. 

Even though over the Amazon Forest there is still spectral variation due to 

phenology or other surface changes difficult to separate from the angular effect, 

this analysis serves for a relative comparison between the six angular 

normalization methods. 

6.3.4.3 IVs time series 

We also accessed the effects of angular normalization methods on the IVs time 

series. To that, we selected the Aripuanã National Park which has a preserved 

area of Amazon rainforest. We follow the work of Petri et al. (2019) that analyzed 

the effects of BRDF normalization on MODIS data on this site. Between 20 and 

50 pixels were visually selected in each image. The mean and standard deviation 
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of the EVI and NDVI were calculated for each image for the year 2020 that had 

cloud-free pixels. 

6.4 Results 

6.4.1 Directional effects 

The relationship between reflectance from west and east view of the overlap 

areas of images for the four CBERS-4/WFI spectral bands can be observed in 

Figure 6.3. In Figure 6.3a, in which no angular normalization was applied, a 

systematic bias can be seen, indicated by the slope of the ODR regression line 

that reached 1.16 in the NIR band. The reflectance is higher when the view is 

from the east than the view from the west. The systematic bias was lower in the 

visible bands than in the NIR. The blue and green bands also showed greater 

data dispersion. This may be indicative of residual atmospheric contamination 

unaccounted in the atmospheric correction process or by unmasked clouds. 
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Figure 6.3 – Scatter plots of CBERS-4/WFI reflectance compared from opposite view 
directions. Horizontal and vertical axis shows reflectance from west view 
and east view, respectively. The columns of scatter plots represent the 
bands from blue to NIR. The rows of scatter plots represent the different 
sets of input data: (a) no angular normalization adjusts applied; (b) 
Approach 1; (c) Approach 2; (d) Approach 3; (e) Approach 4; (f) Approach 
5; (g) Approach 6. Regression was calculated using orthogonal distance 
regression (ODR). Black dashed line represents 1-to-1 line, and red 
dashed line is the regression line. RMSD is Root Mean Square Deviation. 
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The six angular normalization approaches reduced the view angle effects (Figure 

6.3b-g) for all bands. In all cases, the slope of the regression line was closer to 

1.0 than when no angular normalization was applied, indicating a reduction in the 

systematic bias in the function of the view angle. In some cases, there was also 

a reduction in data dispersion. In most cases, there was an increase in the 

regression coefficient and a reduction in the RMSD. It is also possible to notice 

that for the blue, green and mainly NIR bands, the reflectance when viewed from 

the west presented higher values than that viewed from the east after applied the 

angular normalization using the BRDF parameters derived from MODIS (with 

lower intensity when using the set of parameters derived by Roy et al., 2016) 

(Figure 6.3c-f). This is an indication that there was overcorrection in the angular 

normalization in these approaches. 

Three CBERS-4/WFI NIR images of the adjacent paths acquired every two days 

(maximum four days apart) are shown in Figure 6.4. With this short period of time, 

any change in the images due to the phenology of the vegetation is unlikely. 

Before the angular normalization (Figure 6.4a) directional effects are evident, with 

increasing brightness when increasing the VZA in the backscattering direction. 

While there is a reduction in brightness with increasing of VZA in the forward 

scattering direction. There is almost no difference between the edges of the 

images after angular normalization (Figure 6.4b, Approach 6 - angular 

normalization using BRDF parameters derived from the WFI image itself). 
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Figure 6.4 – CBERS-4/WFI images over amazon region from 27-Jul-2020, 29-Jul-2020 
and 31-Jul-2020 (path 165, 173, 181, respectively, row 105) before (a) 
and after angular normalization using BRDF parameters derived from the 
WFI images itself (Approach 6) (b). These images are displayed with no 
contrast or histogram handle, reflectance values between 0.0 and 1.0. 

 

6.4.2 Solar illumination effects 

The MAD between image pairs from adjacent paths acquired with high SZA 

(January-March and October-December) and low SZA (15-May to 15-August) for 

the CBERS-4/WFI reflective bands, NDVI and EVI in each of the six angular 

normalization method is presented in Figure 6.5.  As in the analysis of directional 

effects, the angular effects in function of illumination angle were also stronger in 

the NIR compared to the visible spectral bands. In the case of vegetation indices, 

EVI was much more influenced by angular effects than NDVI.  

After angular normalization, a reduction in MAD values occurred for the four 

spectral bands and for the EVI. While for the NDVI there was practically no 
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change. The reduction in MAD occurred for all normalization approaches, except 

for Approach 1. The three angular normalization approaches that use BRDF 

parameters of coincident MODIS images (Approach 2, 3, and 4) promoted greater 

reduction of MAD values. While the two approaches that use fixed BRDF 

parameters (Approach 5 - from MODIS, Approach 6 - from the CBERS-4/WFI 

images themselves) caused less reduced of the MAD values. 

Figure 6.5 – Mean absolute differences (MAD) between imagens from low and high SZA 
for each CBERS-4/WFI reflectance band, NDVI and EVI images. The high 
SZA images were from January-March and October-December, and low 
SZA images were from 15-May to 15-August. 

 

6.4.3 IVs time series 

Figure 6.6 and Figure 6.7 shows the EVI and NDVI time series of a protected 

area in the Amazon rainforest, before angular normalization (Figure 6.6d and 

Figure 6.7d) and after normalization with the six different approaches (Figure 

6.6e-j and Figure 6.7e-j), in addition to SZA (Figure 6.6a and Figure 6.7a), RAA 

(Figure 6.6b and Figure 6.7) and VZA (Figure 6.6c and Figure 6.7c). Tropical 

forest EVI and NDVI has less variation throughout the year than other vegetation 
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types, such as savannas, due to phenology. EVI from rainforests are also more 

affected by angular effects (PETRI; GALVÃO; LYAPUSTIN, 2019). At the 

beginning and at the end of the year, there is greater variation in the EVI for each 

date indicated by the largest error bar, probably due to cloud contamination and 

cloud shadows since this is the wettest period in the region. During the driest 

period, discontinuities in the EVI time series without angular normalization can be 

seen when there is a change from the observation from backscattering 

(RAA<90º) to the forward scattering direction (RAA >90º) (Figure 6.6d and Figure 

6.6b). These discontinuities can also be seen in the NDVI time series, but with a 

smaller range (Figure 6.7d and Figure 6.7b). After angular normalization, for all 

the six approaches, there is an increase in EVI for observations in the forward 

scatter direction and a reduction in EVI for observations in the backscattering 

direction (Figure 6.6e-j). This reduces discontinuities in the EVI time series. 

However, there is practically no effect of angular normalization approaches on 

the NDVI time series (Figure 6.7e-j). During the year, higher EVI values can be 

seen near the beginning and end of the year and lower values in the middle of 

the year. After the angular normalization with the five approaches that use the 

RTLS and BRDF parameters (Approaches 2-6, Figure 6.6f-j) a reduction in the 

EVI values can be seen in these periods. This reduction is more pronounced 

when using the BRDF parameters derived from coincident images (Approaches 

2-4, Figure 6.6f-h). In the case of the NDVI, there is a smaller variation during the 

year compared to the EVI (Figure 6.7d-j). 
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Figure 6.6 – CBERS-4/WFI EVI time series of points collected in Aripuanã National Park. 
(a) Solar zenith angle (SZA) (b) Relative azimuth angle (RAA); (c) View 
zenith angle (VZA) – VZA from RAA < 90º were multiplied by -1 for better 
visualization; (d) no angular normalization adjusts applied; (e) Approach 
1; (f) Approach 2; (g) Approach 3; (h) Approach 4; (i) Approach 5; (j) 
Approach 6. 
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Figure 6.7 – CBERS-4/WFI NDVI time series of points collected in Aripuanã National 
Park. (a) Solar zenith angle (SZA) (b) Relative azimuth angle (RAA); (c) 
View zenith angle (VZA) – VZA from RAA < 90º were multiplied by -1 for 
better visualization; (d) no angular normalization adjusts applied; (e) 
Approach 1; (f) Approach 2; (g) Approach 3; (h) Approach 4; (i) Approach 
5; (j) Approach 6. 
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6.5 Discussions 

The WFI sensor onboard of CBERS-4 has a wide FOV, that reach ±28.63°, so a 

directional effect from view angle is expected. To isolate these effects and allow 

their analysis, following previous work with Landsat images (FLOOD, 2013; 

FLOOD et al., 2013; VAN DONINCK; TUOMISTO, 2017), we analyzed pixels of 

intersection areas between adjacent paths of CBERS-4/WFI of close dates. A 

systematic bias was observed between the observations from east and from west 

(Figure 6.3). When the pixel is viewed from the east, the RAA is less than 90°, so 

the sensor is on the same side as the sun. In this case, the sensor is viewing the 

illuminated part of the sub-pixel structural elements than when viewed from the 

west (FLOOD et al., 2013). This explains the greater brightness when the pixels 

are observed from the east in relation to the observations from the west. The six 

angular normalization approaches considered reduced the systematic bias 

caused by the viewing angle. Some of them almost eliminated this bias. 

The angular effects observed were stronger in the NIR than in the visible bands, 

both caused by the view angle (Figure 6.3) and the change in the solar vector 

(Figure 6.5). This effect was also observed in Landsat data for TM/ETM+ sensors 

by Van doninck and Tuomisto (2017). The effects of angular normalization in 

pairs of images obtained with high and low SZA over Amazon Forest were more 

pronounced in the NIR. The same happened with the EVI. With NDVI there was 

practically no difference between the data before and after angular normalization. 

This is in agreement with previous work in the same region using MODIS data 

that founded greater angular effects in EVI than in NDVI (PETRI; GALVÃO; 
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LYAPUSTIN, 2019). In NDVI the angular effects are smaller due to the 

cancellation of the BRDF effects from red and NIR bands (GAO et al., 2014). 

Directional effects are also present in the EVI time series of pixels from Aripuanã 

National Park. Discontinuities are seen when the observation moves from the 

backscattering to the forward scattering direction (Figure 6.6). There is also an 

increase in the EVI value from June to October coincident with shifts in RAA into 

the principal plane (0°-180° azimuth direction), similar to what was observed by 

Petri et al. (2019) with MODIS data. Despite this, it is difficult to separate spectral 

variations resulting from shifts in solar vector from those caused by changes in 

phenology or others change in the surface. So, our analyzes (Figure 6.5 and 

Figure 6.6) serve more as a relative comparison among the angular normalization 

approaches employed.  

Approach 1 showed no difference between normalized and non-normalized data 

when analyzing the variation of the illumination vector (Figure 6.5 and Figure 

6.6d). This is to be expected because this method does not take solar angular 

information into account. This non-existence of difference between the corrected 

and uncorrected data from low and high SZA of Approach 1 is also an indicator 

that there was no influence of the view angle in this analysis. All other approaches 

that perform a full BRDF correction using the RossThick–LiSparse–Reciprocal 

model reduced the differences as a function of SZA change. This is indicative of 

the existence of angular effects as a function of the solar vector in the CBERS-

4/WFI images, although the magnitude of this difference was not quantified. 
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The empirical normalization to nadir view was the simplest normalization methods 

validated here (Approach 1). As we apply the analysis on various types of land 

cover, we use linear regression of the difference between the surface reflectance 

of the CBERS-4/WFI and the MODIS MCD43A4 product versus VZA. As the 

MCD43A4 product is normalized for nadir view we use them as a reference 

minimizing the influence of different land cover in the scene. This probably did 

not completely eliminate the influence of the land cover, as the magnitude of the 

angular effects are different for each target on the surface. But it allowed to 

remove much of the influence of the VZA (Figure 6.3b). Including increasing the 

agreement between the reflectance of pixels when viewed in the forward and 

backscattering direction with increasing correlation coefficient (except for the blue 

band). In the case there is only one type of landcover in the whole scene the 

linear regression could be done directly between the surface reflectance of the 

CBERS-4/WFI versus the VZA (HANSEN et al., 2008; VAN DONINCK; 

TUOMISTO, 2017). The RANSAC filter during the linear regression allowed to 

eliminate part of the noise caused by the influence of clouds in an edge of the 

image. However, under more cloudy conditions the available range in sensor view 

angles may be too small to reliably derive an empirical gradient (VAN DONINCK; 

TUOMISTO, 2017). Another limitation can be caused by the large difference in 

relief faces between the east and west edges of the scene. 

The five approaches that perform the full BRDF normalization using the 

RossThick–LiSparse–Reciprocal model were able to reduce both the angular 

effects caused by the view angle and the change in the solar vector. The three 

approaches using BRDF parameters derived from concomitant MODIS images 
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showed the greatest reduction in reflectance differences or vegetation indices 

between images observed with high and low SZA. However, when analyzing the 

normalization for the view angle, there is an indication of overcorrection in all 

bands (except for red), with the reflectance in forward scattering direction 

becoming greater than in the backscattering direction. For Landsat images, Van 

doninck and Tuomisto (2017) found that using the BRDF coefficients of the 

concomitant MODIS pixel or the image average undercorrected surface 

reflectance of the NIR band. This difference may be related to the fact that the 

authors analyzed only forest pixels, and in our analysis, we considered different 

land uses and land cover. Van doninck and Tuomisto (2017) also raise the 

possibility that these methods performed worse in their study as a result of 

differences in the spectral response function, although they also consider that no 

other study has suggested that MODIS BRDF parameters should not be used 

because of this reason. This could be one of the causes of our result as well, as 

MODIS and CBERS-4/WFI also have differences in the spectral response 

function. Another cause may be associated with the model parameters in the 

MCD43 products were noisy (BRÉON; VERMOTE, 2012a), and we don't apply 

any filter on these parameters. Despite Flood (2013) and Van doninck and 

Tuomisto (2017) found no difference between per-pixel BRDF information 

compared to using a scene-averaged set of BRDF parameters, in our analysis 

the BRDF parameters of the MODIS pixel corresponding to each CBERS-4/WFI 

pixel showed slightly better results than using the average BRDF parameters for 

each class, which in turn was slightly better than using a single set of BRDF 
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parameters per Landsat scene. This can be seen by the higher correlation 

coefficient and slope closer to 1.0 (Figure 6.3) and lower MAD (Figure 6.5). 

The two approaches that use fixed BRDF coefficients, either those derived from 

MODIS by Roy et al. (2016) or derived from the WFI images themselves following 

the methodology proposed by Flood et al. (2013), were also able to reduce the 

angular effects, both those caused by the view angle and by the change in the 

solar vector. Roy used the MODIS BRDF parameters initially to perform angular 

normalization on Landsat images. These parameters were also validated to 

perform angular normalization of Sentinel-2/MSI images. Both have much 

narrower FOVs than CBERS-4/WFI images. Our analysis showed that at least 

parts of the angular effect in WFI images can be reduced by employing these 

same parameters in the LTRS function.  

Fixed BRDF parameters derived from the WFI images themselves also had 

similar results, with a small under correction in the visible bands compared to the 

other methods. Different set of random pixels used for parameterizing the model, 

or slightly different criteria for selecting image pairs may result in very different 

estimates of 𝑓𝑣𝑜𝑙
′  and 𝑓𝑔𝑒𝑜

′  (VAN DONINCK; TUOMISTO, 2017), which could also 

influence the result of the normalization. According to Flood et al. (2013), due to 

global nature of the BRDF correction using a single set of BRDF parameter, there 

will remain some variation due to BRDF effects which are specific to the land 

cover at each pixel. 

The two approaches that use a single set of BRDF parameters are the easiest to 

apply, as they do not depend on MODIS data. The parameters set derived by 
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Roy et al. (2016) can be directly applied. While calculating model parameters in 

pairs from the WFI images themselves can be computationally demanding, once 

obtained, they can be easily applied to normalize the WFI images. 

6.6 Conclusions 

In this work, we investigated the angular effects existing in CBERS-4/WFI 

images, which have a wide FOV (±28.63°). Our results suggest that there are 

directional effects due to VZA and the change of the solar vector (SZA), in all 

spectral bands, being stronger in the NIR. Our analysis showed that there is also 

a strong angular influence on EVI compared with NDVI. 

The six angular normalization approaches evaluated were able to reduce the 

angular effects resulting from the view angle. While the five methods that perform 

the full BRDF normalization using the RossThick–LiSparse–Reciprocal model 

were able to reduce the angular effects caused by the change in the solar vector 

(SZA). The empirical approach that uses linear regression of the difference 

between the surface reflectance of the CBERS-4/WFI and the MODIS NBAR 

product versus the VZA, was able to normalize the WFI images to the nadir view. 

The three approaches that use BRDF parameters derived from the concomitant 

MODIS product showed reduction in the angular effects resulting from the angle 

of view in the visible bands but overcorrected the NIR band. These approaches 

promoted the greatest reduction in MAD values between images obtained with 

high sun and low SZA. The two approaches that use a single set of BRDF 

parameters (either derived from MODIS data or derived from the WFI images 

themselves) show good ability to reduce the angular effects both in terms of the 
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view angle and the change in the solar angle. In addition, they are the easiest to 

apply because they do not depend on MODIS imagery. Then they can be easily 

used to perform angular normalization of other set of CBERS-4/WFI image. We 

believe that the results obtained in this work can be expanded to the images of 

the WFI sensors on board CBERS-4A and Amazonia-1, as they have similar 

geometric and spectral characteristics to the WFI sensor on board CBERS-4. 

Angular normalization should be important for the analysis of CBERS-4/WFI time 

series or image mosaics from spectral bands, mainly NIR, and also from non-

normalized vegetation indices such as EVI. Angular normalization will produce a 

more consistent time series over time. 

  



117 
 
 

7 INTER-SATELLITE CROSS-COMPARISON OF WFI DATA FROM 

CBERS-4, CBERS-4A, AND AMAZONIA-1 

This chapter presents the inter-satellite cross-comparison of WFI data from 

CBERS-4, CBERS-4A, and Amazonia-1, to identify possible differences between 

data from the different sensors and derive transformation functions between 

them. 

7.1 Introduction 

Inter-satellite cross-comparison among multiple sensors is indispensable when 

aiming to combine Earth observation data products obtained from different 

missions (ANDERSON et al., 2011; CHEN et al., 2013; LI; JIANG; FENG, 2013; 

FLOOD, 2014; ROY et al., 2016a; LI et al., 2017a; ZHANG et al., 2018). Cross-

comparison among satellite sensor systems covers almost all the existing 

airborne and spaceborne sensors (LI; JIANG; FENG, 2013). The spectral 

reflectance of the same target in the same period can be different even when 

using similar sensors (ZHANG et al., 2018). Geometric calibration, radiometric 

calibration, the difference in spectral response function, atmospheric correction 

model, and BRDF effects are factors that can contribute to the difference between 

the spectral surface reflectance of different satellite sensors (FLOOD, 2017; 

CLAVERIE et al., 2018; HELDER et al., 2018; MARTINS et al., 2018; ZHANG et 

al., 2018).  

From cross-comparison, it is possible to define quantitative transformations 

between sensors, i.e., it allows the reflectance of a sensor or the spectral indices 

to be converted into the equivalent of the other sensor (STEVEN et al., 2003; LI; 
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JIANG; FENG, 2013; FLOOD, 2014; ROY et al., 2016a; ZHANG et al., 2018). 

Transformations developed by statistical comparison of contemporary satellite 

sensor observations are a common approach (FLOOD, 2014; ROY et al., 2016a; 

ZHANG et al., 2018). Differences between reflectance values from different 

sensors depend on the surface being observed (FLOOD, 2014). The observed 

radiance sensor differs as a function of differences in spectral response in a way 

that is dependent on the observed surface component (ROY et al., 2016a).  

Furthermore, comparison of data with different solar and view zenith geometry 

may introduce differences when surfaces are non-Lambertian, with target-

dependent magnitudes (GAO et al., 2014). Reliable and representative 

determination of statistical functions to transform data between sensor bands 

require a comparison of data sensed over a wide range of surface conditions. 

The images capture time must be short, so there is no change in the surface state 

and condition (ROY et al., 2016a). 

Given all these differences between different sensors, a question to be answered 

is whether the reflectance of WFI sensors from CBERS-4, CBERS-4A, and 

Amazonia-1 can be directly compared and combined in the same time series 

seamless. Despite the radiometric calibration showing that the quality of WFI 

onboard CBERS-4 is comparable to Landsat-8/OLI data for the common spectral 

bands (PINTO et al., 2016a), the radiometric calibration status of the other two 

WFI sensors is not documented in the literature yet. Furthermore, in the previous 

chapters, we showed that there is a larger geometric displacement of WFI 

imagery (Chapter 5) and that they are affected by BRDF effects (Chapter 6). 



119 
 
 

Thus, to test whether these factors are important it is necessary to evaluate real 

imagery. We conducted cross-comparative pairwise analyses of near-coincident 

data from WFI sensors from CBERS-4, CBERS-4A, and Amazonia-1. The 

objectives of the study are: (i) to compare the differences of spectral bands, and 

(ii) to derive statistical transformation functions between WFI data from the three 

different satellites. We believe that such an assessment will contribute to better 

monitoring and mapping of agriculture and natural vegetation in Brazil by 

combining images with the 2-3 day temporal resolution of three sensors. 

7.2 Remote sensing data acquisition 

7.2.1 Wide-Field Imager (WFI) data 

The WFI sensors onboard CBERS-4, CBERS-4A, and Amazonia-1 have two 

optics (right and left). Although the WFI sensors onboard the three satellites have 

the same specifications, the spectral response functions are not the same. This 

difference exists even between the optics of the same sensor (Figure 7.1). This 

can cause differences in the images generated, even if they were acquired over 

the same location and under the same conditions. 
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Figure 7.1 – Relative spectral response functions for right and left optics from the WFI 
sensor onboard CBERS-4 (a), CBERS-4A (b), and Amazonia-1 (c). 

 

 

The temporal resolution for each sensor is five days at the Equator line. Because 

of the difference in the satellite altitude, the images generated by CBERS-4A 

have a spatial resolution of 55 m, while those generated by CBERS-4 and 

Amazonia-1 have 64 m. In addition, the three satellites also have different orbits, 

which combined with different scene sizes (Figure 7.2). This causes different 

scenes to cover the same point on the land surface. For CBERS-4 and CBERS-

4A, up to nine passes can cover the same point on the earth's surface, while for 

Amazonia-1 only two. 
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Figure 7.2 – WFI grid from CBERS-4 (a), CBERS-4A (b), and Amazonia-1 (c). The black 
polygons indicate an example of all paths that may cover the same point 
on the land surface. 

 

 

For the cross-comparison of the images of the WFI, we did a paired analysis of 

the images (images generated by the WFI of two satellites at a time). We selected 

all pairs of images between January 1, 2021, to December 31, 2021, acquired on 

the same date, with less than 10% of clouds that had at least 30% intersection 

area. A total of 120, 121, and 136 pairs were formed for CBERS-4/WFI-CBERS-

4A/WFI, CBERS-4/WFI-Amazonia-1/WFI, and CBERS-4A/WFI-Amazonia-

1/WFI, respectively. To compose these pairs, 171, 188, and 157 WFI images for 

CBERS-4, CBERS-4A, and Amazonia-1, respectively, were downloaded from the 

INPE website (http://www.dgi.inpe.br/catalogo/ and 

http://www2.dgi.inpe.br/catalogo/explore) at Level 4. The WFI Level 4 images 

provided by INPE are geometrically corrected with ground control points and 

ortho-rectified (INPE, 2021c). We used the surface reflectance product, which 

has been processed by the MS3 software (SILVA; ANDRADE, 2013). The 

product is delivered in the Universal Transverse Mercator (UTM) projection with 

the World Geodetic System 1984 (WGS84) datum.  

http://www.dgi.inpe.br/catalogo/
http://www2.dgi.inpe.br/catalogo/explore
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7.2.2 Multispectral Instrument (MSI) data 

We downloaded the NIR band at 10 m (B08) cloud-free image from Sentinel-

2/MSI Level-2A (L2A) product for each MGRS tile in areas covered by the WFI 

images described in Section 7.2.1. The images are from the Processing Baseline 

v03.00 and v03.01, covering the period from April to December 2021. This 

product is radiometrically and geometrically corrected with ortho-rectification and 

atmospherically corrected to surface reflectance (ESA, 2015). The MSI L2A uses 

Global Reference Image (GRI) (DECHOZ et al., 2015) in its processing chain. 

GRI is a set of orthorectified Sentinel-2/MSI cloud-free images used as a ground 

control reference to improve geolocation accuracy to meet the requirements of 

multi-temporal registration of 0.3 pixels for 10 m bands (GAUDEL et al., 2017). 

The MSI L2A images are provided in UTM projection with WGS84 datum using 

the U.S. MGRS as a reference to the tiling grid. 

7.2.3 Hyperion data 

To simulate the reflectance of the WFI sensor's cameras reflectance spectra 

Earth Observing-1 (EO-1) Hyperion images were used. We downloaded 21 

cloud-free Level 1R EO-1 Hyperion images from the Earth Explorer site 

(https://earthexplorer.usgs.gov/) across Brazil. The Hyperion L1R images were 

processed to surface reflectance using the Fast Line-of-sight Atmospheric 

Analysis of Spectral Hypercubes (FLAASH) atmospheric correction algorithm 

(FELDE et al., 2003). Hyperion sensor has 220 continuous bands, ranging from 

357 to 2,576 nm with a 10-nm bandwidth. We only used 47 bands (447.17 nm to 

915.23 nm) corresponding to the WFI response function range (Figure 7.1). 

https://earthexplorer.usgs.gov/
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7.3 Methodology 

7.3.1 WFI reflectance simulation 

We simulated WFI sensor reflectance to identify possible differences between the 

left and right optic of each sensor and between sensors present in the CBERS-

4, CBERS-4A, and Amazonia-1 due to the variability in the relative spectral 

response function. The WFI reflectance at each band was simulated by 

integrating the spectral response of the sensor with the hyperspectral reflectance 

spectra at each sampled wavelength weighted by the respective relative spectral 

response (Figure 7.1) (STEVEN et al., 2003; PINTO et al., 2016a; ZHANG et al., 

2018). The simulated reflectance at each spectral band is computed according to 

the equation: 

𝜌̅𝑏𝑎𝑛𝑑 =
∫ 𝑅𝑆𝑅 (𝜆𝑖) 𝜌′𝜆2

𝜆1
(𝜆𝑖)𝑑𝜆

∫ 𝑅𝑆𝑅 (𝜆𝑖)𝑑𝜆
𝜆2

𝜆1

     

(7.1) 

where 𝜌̅𝑏𝑎𝑛𝑑 is the simulated reflectance value of the specific-sensor and spectral 

band, 𝜌′is Hyperion reflectance centered at 𝜆𝑖 wavelength, RSR is the relative 

spectral response between the minimum (𝜆1) and maximum (𝜆2) interval where 

the RSR is greater than zero. A total of 14,610,062 spectra were used. 

7.3.2 WFI data processing 

7.3.2.1 Co-registration 

As the WFI images of the three satellites have different grids, we defined a tiling 

system to be used for all images. They were defined using an AEA projection and 

SIRGAS 2000 datum. The grids were generated by taking -54 longitude and -12 
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latitude as the central reference and defining tiles of 3 × 2 degrees. Each image 

has 5807x4115 pixels and 4990x3536 at 55 m and 64 m, respectively. For each 

tile that contained a WFI image, a Sentinel-2/MSI mosaic with the NIR band at 10 

m was generated. This mosaic was used as a reference for the co-registration of 

WFI images. The MSI mosaics were generated in the same spatial reference 

system as the respective WFI images, i.e., UTM projection, using the correct UTM 

zone. 

We used the Python implementation of the Automatic and Robust Open-Source 

Image Co-Registration Software (AROSICS) (SCHEFFLER et al., 2017) to find 

control points (CP) that represent the correspondence between the reference 

image (MSI) and the target image (WFI). We used a grid resolution of 50 pixels 

in the AROSICS, i.e., looking for CPs every 50 pixels. To correct the 

misregistration a transformation function is necessary to find correspondence 

between points in the target image and points in the reference image. We 

selected the 2nd-degree polynomial as a transformation function because it 

proved to be sufficient to reduce displacement in the WFI images (Chapter 5). 

After the transform function was created, the target image was warped using a 

cubic resampling technique. The processing chain has also added a 

transformation from UTM to AEA projection. This allows all images to have the 

same spatial reference system without additional resampling, avoiding undesired 

geometric and spectral image quality degradation. 
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7.3.2.2 BRDF normalization 

Most land surfaces are not Lambertian, so variations in viewing and illumination 

geometry can cause significant spatial and temporal variation in the retrieved 

directional reflectance independent of land surface characteristics (GAO et al., 

2014). In Chapter 6, our experiments showed that the CBERS-4/WFI images 

suffered directional effects as a function of the observation angle. Thus, the 

surface reflectance is higher when observed in the backscattering direction and 

lower when observed in the forward scattering direction. As the WFI sensor on 

the CBERS-4A and Amazonia-1 have the same angular characteristics as the 

onboard WFI on the CBERS-4, we assume that your images suffered the same 

directional effect. This type of effect may constitute a significant source of noise 

for many applications (ZHANG et al., 2018). It may also be a source of difference 

between the reflectance of different sensors. We selected the c-factor technique 

and the global coefficients provided by Roy et al. (2016). This approach was 

initially used for Landsat application (ROY et al., 2016b), demonstrated for 

Sentinel-2/MSI data (ROY et al., 2017), and according to the results shown in 

Chapter 6 it is also able to reduce directional effects in WFI images. The c-factor 

technique uses fixed BRDF coefficients for each spectral band. Normalized 

reflectance is calculated by multiplying the original reflectance by the c-factor 

(CLAVERIE et al., 2018) as follow: 

𝜌(𝜆, 𝜃𝑛, 𝜐𝑛, 𝜙𝑛) = 𝑐 (𝜆) × 𝜌(𝜆, 𝜃𝑠, 𝜐𝑠, 𝜙𝑠)   (2) (7.2) 

The c-factor is calculated from the semiempirical kernel-driven RossThick-

LiSparse Reciprocal BRDF model (SCHAAF et al., 2002), using two kernels,  𝐾𝑣𝑜𝑙 
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and 𝐾𝑔𝑒𝑜, that describe volumetric and geometric scattering components, and 

three model parameters (Table 6.1) as follow: 

𝑐 (𝜆) =
𝑓𝑖𝑠𝑜(𝜆) + 𝑓𝑣𝑜𝑙(𝜆) 𝐾𝑣𝑜𝑙( 𝜃𝑛, 𝜐𝑛, 𝜙𝑛) + 𝑓𝑔𝑒𝑜(𝜆) 𝐾𝑔𝑒𝑜(𝜃𝑛, 𝜐𝑛, 𝜙𝑛)

𝑓𝑖𝑠𝑜(𝜆) + 𝑓𝑣𝑜𝑙(𝜆) 𝐾𝑣𝑜𝑙(𝜃𝑠, 𝜐𝑠, 𝜙𝑠) + 𝑓𝑔𝑒𝑜(𝜆) 𝐾𝑔𝑒𝑜(𝜃𝑠, 𝜐𝑠, 𝜙𝑠)
 

(7.3) 

where 𝜃𝑠, 𝜐𝑠, 𝜙𝑠 represents the view azimuth angle (VAA), VZA e RAA from input 

data, and  𝜃𝑛, 𝜐𝑛, 𝜙𝑛 represents the VAA, VZA, and RAA of the normalized data. 

The VZA was set to nadir, the RAA was set to zero, and the SZA was set to the 

mean between the two images compared (Chapter 6). 

7.3.3 WFI reflectance comparison 

7.3.3.1 Simulated reflectance comparison using Hyperion 

To analyze the effect of differences in the spectral response function between the 

right and left optics (Figure 7.1) on the surface reflectance, we compared the 

simulated surface reflectance for them in each WFI sensor. We present a scatter 

plot of the simulated surface reflectance from Hyperion hyperspectral spectra 

between the right and left optic of the WFI sensor for CBERS-4, CBERS-4A, and 

Amazonia-1. A scatter plot is shown for each band of each WFI sensor 

combination. The x-axis shows the simulated surface reflectance of the right 

optic, while the y-axis shows the simulated surface reflectance for the left optic. 

The results were assessed by three statistical metrics: linear correlation 

coefficient (r), orthogonal distance regression (ODR), and Root-Mean-Square 

Deviation (RMSD). The linear correlation coefficient is an indicator of how strong 

a linear relationship is between the two sets of data. Linear regression was also 

fitted using orthogonal distance regression. We chose the ODR regression 
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because there is equal uncertainty in both variables. The linear regression slope 

measures the systematic bias between the simulated surface reflectance from 

the right and left optic. The Root-Mean-Square Deviation (RMSD) was calculated 

as an indication of error, in reflectance units. 

After that, we also compared the simulated surface reflectance between the WFI 

sensors in pairs, i.e., CBERS-4 versus CBERS-4A, CBERS-4 versus Amazonia-

1, and CBERS-4A versus Amazonia-1. This analysis evaluates possible 

expected differences between the surface reflectance of the WFI sensor on the 

different satellites only as a function of the differences in the relative spectral 

response function. For this analysis, we also generated scatter plots and 

calculated the linear correlation coefficient, the RMSD and the ODR linear 

regression. 

7.3.3.2 WFI spectral reflectance comparison 

To assess any systematic differences between WFI sensor data on different 

satellites, we performed a pairwise comparison using the dataset described in 

Section 8.3.1. In all pairs of images acquired on the same day, pixels were 

sampled every 6400 m (or 100 pixels at 64 m) in the row and column directions 

across all overlap areas. The spatial distribution of points is shown in Figure 7.3. 

For the simulated reflectance, we also presented scatter plots of these points for 

each band and for each satellite combination. The linear correlation coefficient, 

the RMSD, and the ODR linear regression were also calculated to quantify the 

difference between data of WFI on the three different satellites combinations. The 

analyzes were performed for surface reflectance data before and after co-
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registration, and for Nadir BRDF-adjusted reflectance (NBAR) data. In addition, 

we analyzed the surface reflectance data after co-registration filtering only pixels 

with less than 7° of VZA to evaluate systematic differences without the influence 

of directional effects. 

Figure 7.3 – Distribution of points for cross-comparison between WFI data of CBERS-4 
versus CBERS-4A (a), CBERS-4 versus Amazonia-1 (b), and CBERS-4A 
versus Amazonia-1 (c). 

 

 

Statistical functions were built to transform the reflectance obtained by the WFI 

in one satellite into what it would look like if obtained by the WFI from the other 

satellite. Ordinary least-squares (OLS) linear regression was fitted as the 

statistical transformation function. The quality of the OLS regression adjustments 

was assessed by calculating the coefficients of determination (𝑟2) and the 

significance by examining the F-statistic p-value. 

7.4 Results and discussion 

7.4.1 Simulated spectral reflectance 

Figure 7.4 shows scatter plots of the simulated reflectance for the right and left 

optics of the WFI sensor from CBERS-4 (Figure 7.4a), CBERS-4A (Figure 7.4b), 

and Amazonia-1 (Figure 7.4c). The data were highly correlated, with a correlation 
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coefficient equal to 1.000 for all cases, except for the blue band of Amazonia-1. 

The intercept of the ODR regression in all cases was equal to 0.00, indicating the 

absence of systematic biases. The ODR regression slope was equal to 1.00 for 

the NIR and the red band of the three satellites, except for the red band of 

Amazonia-1. In the blue and green bands, the slope difference concerning the 

unit line was 0.01. The exception was the green band of CBERS-4 (0.98) and the 

blue band of Amazonia-1 (0.95). The RMSD was equal to or less than 0.001 for 

all cases, excepted for the blue band of Amazonia-1 (0.007). The spectra from 

Hyperion data used in this study represent a variety of land use and land cover 

classes and provides simulated values that fall over a wide range of reflectance 

and still close to the 1:1 line in all cases. The only exception was for the blue band 

of Amazonia-1, in which there was greater data dispersion. This can be explained 

by the large difference between the relative response function of the right and left 

optics. The right optic has a maximum value close to 510 nm, while the left optic 

has a maximum value close to 460 nm. This difference combined with the spectra 

of each target can cause a larger difference between the simulated reflectance 

of optical right and left for this band. Despite this, as for all the other bands of the 

three satellites, there was practically no difference, thus, the following analysis 

will disregard the difference between left and right optic. 
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Figure 7.4 – Scatter plot of simulated spectral reflectance for WFI relative response 
function from CBERS-4 (a), CBERS-4A (b), and Amazonia-1 (c). The 
horizontal and vertical axis shows reflectance from the right and the left 
optic, respectively. Regression was calculated using orthogonal distance 
regression (ODR). The black dashed line represents the 1:1 line, and the 
red dashed one is the regression line. RMSD is Root Mean Square 
Deviation. 

 

 

 

 

Figure 7.5 shows scatter plots of WFI inter-satellite simulated reflectance 

between CBERS-4 and CBERS-4A (Figure 7.5a), CBERS-4 and Amazonia-1 

(Figure 7.5b), and CBERS-4A and Amazonia-1 (Figure 7.5c) considering the 

relative response function of the right optics. The slope is equal to the unit, the 

intercept equal to zero, and the coefficient of correlation equals to 1.000 for the 

three combinations of satellites in the NIR band. The same occurs for the red 

band between CBERS-4A and Amazonia-1. The greatest differences in terms of 
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bands occurred between the red band of CBERS-4 and CBERS-4A, and CBERS-

4 and Amazonia-1. In both cases, the ODR slope was equal to 0.94, i.e., in 

general, the simulated WFI/CBERS-4 was lower than the simulated reflectance 

of WFI/CBERS-4A or WFI/Amazonia-1. The relative response function for this 

band extends in WFI/CBERS-4 to close to 700 nm, while for CBERS4A and 

Amazonia-1 it decreases earlier (Figure 7.1). This same pattern of simulated 

reflectance occurs between the right and left optics (not shown), showing that 

there is almost no difference between them for the NIR and red bands. In the 

green band, the ODR slope differs from the 1:1 line by at most 0.01, and the 

correlation coefficient is not equal to 1.000 only between CBERS-4A and 

Amazonia-1 (r=0.999). The greatest differences in simulated reflectance occur in 

the blue band. For this band, the slope between CBERS-4 and Amazonia-1, and 

between CBERS-4A and Amazonia-1 is greater than 1.00, indicating that in most 

cases, the simulated reflectance of Amazonia-1 is greater than the simulated 

reflectance of CBERS-4 and CBERS-4A. In the case between CBERS-4A and 

Amazonia-1, the ODR slope reaches 1.04, and the RMSD reaches 0.005. 

However, in cases where the scatter plots involve Amazonia-1 in the blue band, 

if we analyze the left optic (not shown), the slope is less than 1.00 for both 

CBERS-4 and CBERS-4A. This indicates that the differences observed in the 

inter-optic comparison also affect the inter-satellite comparison. 

Simulation of reflectance implicitly assumed that the surface had no BRDF effect, 

and that there were no calibration or geolocation errors, no atmospheric 

scattering or absorption, no residual clouds or shadow, which is not the case for 
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real data (ZHANG et al., 2018). Thus, in the next sections we analyze the real 

data. 

Figure 7.5 – Scatter plot of simulated spectral reflectance for WFI relative response 
function between CBERS-4 and CBERS-4A (a), CBERS-4 and 
Amazonia-1 (b), and CBERS-4A and Amazonia-1 (c) for the right optics. 
Regression was calculated using orthogonal distance regression (ODR). 
The black dashed line represents the 1:1 line, and the red dashed one is 
the regression line. RMSD is Root Mean Square Deviation. 

 

 

 
 

7.4.2 Spectral surface reflectance before co-registration 

Figure 7.6 shows scatter plots of WFI inter-satellite spectral surface reflectance 

between CBERS-4 and CBERS-4A (Figure 7.6a), between CBERS-4 and 

Amazonia-1 (Figure 7.6b), and between CBERS-4A and Amazonia-1 (Figure 

7.6c) before co-registration. The slope of the ODR regression between the 

CBERS-4 and CBERS-4A WFI data for all bands was less than 1.000 (Figure 
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7.6a). This indicates in all bands, the tendency of the surface reflectance of 

CBERS-4 to be greater than that of CBERS-4A. In the bands of shorter 

wavelength, the slope of the ODR regression was more distant from the line 1:1. 

In all bands, there was the same pattern in the scatter plot between CBERS-4 

and Amazonia-1 (Figure 7.6b), and between CBERS-4A and Amazonia-1 (Figure 

7.6c), with similar slopes in the two cross-satellite comparisons. The ODR slope 

is less than 1.000 in the blue and NIR bands and greater in the green and red 

bands in both cases.  Two clusters can be observed in the scatter plots in the 

blue and NIR bands. In the case of the blue band, it may be due to differences in 

the spectral response function between the right and left optics on the Amazonia-

1's WFI sensor (Figure 7.1c), which caused a difference in the simulated 

reflectance between the two optics (Figure 7.4). But this difference does not occur 

in the NIR band. It could be a spectral calibration effect. This difference could be 

caused by differences in radiometric calibration in some of the detectors in the 

NIR band. However, in the literature there is no information about the radiometric 

calibration status of the WFI sensor onboard of Amazonia-1. 

As the results of Chapter 5 showed the need to perform the co-registration for a 

consistent analysis of the WFI data, we did not build the transform functions 

previous to the co-registration. This analysis will be presented in the next section. 
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Figure 7.6 – Scatter plot of WFI spectral surface reflectance between CBERS-4 and 
CBERS-4A (a), CBERS-4 and Amazonia-1 (b), and CBERS-4A and 
Amazonia-1 (c) before co-registration. Regression was calculated using 
orthogonal distance regression (ODR). The black dashed line represents 
the 1:1 line, and the red dashed one is the regression line. RMSD is Root 
Mean Square Deviation. The color bar shows the frequency of occurrence 
of values. 

 

 

 
 

7.4.3 Spectral surface reflectance after co-registration 

Figure 7.7 shows scatter plots of WFI inter-satellite spectral surface reflectance 

between CBERS-4 and CBERS-4A (Figure 7.7a), CBERS-4 and Amazonia-1 

(Figure 7.7b), and CBERS-4A and Amazonia-1 (Figure 7.7c) after co-registration. 

There were no major changes in the scatter plot patterns comparing to the data 

before co-registration. But a reduction in the dispersion of reflectance data can 

be seen. The correlation coefficient and the RMSD confirm this. In almost all 
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combinations of satellites and bands, there was at least an increase in the 

correlation coefficient, a decrease in RMSD, or both. Differences in reflectance 

values due to misregistration are greater in heterogeneous landscapes, mainly 

near edges of different land use and land cover classes (Chapter 5). As the data 

were distributed across a wide variety of land use cover classes and regions in 

Brazil, the effects of misregistration are smaller as many of these landscapes are 

homogeneous. Otherwise, the observed data dispersion reduction could be even 

greater.  

Figure 7.7 also shows the transformation lines fitted using the OLS regression, in 

addition to the ODR regression line. The green line is the fitted function of the 

WFI reflectance from the satellite on the x-axis versus the one on the y-axis. The 

magenta line is the fitted function the WFI reflectance from the satellite on the y-

axis versus the one on the x-axis. Both are different from each other and the ODR 

regression line. The ODR regression systematically indicates differences 

between sensor inter-satellites because there is noise in either variable, so it does 

not bias towards one or the other (FLOOD, 2014). The OLS regression assumes 

that all unmodeled variation is in the dependent variable, considering that the 

independent variable has no noise. The transformation equations for WFI surface 

reflectance data between satellites after co-registration are presented in Table 

7.1. All the OLS regressions are significant (p-value < 0.01) and the 𝑟2 was 

greater than 0.67 in all cases. 
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Figure 7.7 – Scatter plot of WFI spectral surface reflectance between CBERS-4 and 
CBERS-4A (a), CBERS-4 and Amazonia-1 (b), and CBERS-4A and 
Amazonia-1 (c) after co-registration. The black dashed line represents the 
1:1 line, and the red dashed one is the ODR regression line. Slope and 
intercept are from ODR regression. The green line is the ordinary least 
squares (OLS) regression of the WFI data on the x-axis versus the y-axis, 
the magenta line is the OLS regression of the WFI data on the y-axis 
versus the x-axis. RMSD is Root Mean Square Deviation. The color bar 
shows the frequency of occurrence of values. 
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Table 7.1 – WFI surface reflectance transformation function inter-satellite fitted by 
ordinary least squares (OLS) regression for the co-registered data. 

 Band OLS transformation functions 𝑟2 p-
value 

CBERS-4  

x  

CBERS-4A 

Blue C4A = 0.8184 C4 + 0.0051 

C4 = 0.9561 C4A + 0.0054 

0.78 0.0 

Green C4A = 0.8638 C4 + 0.0070 

C4 = 1.0021 C4A + 0.0038 

0.87 0.0 

Red C4A = 0.9291 C4 + 0.0034 

C4 = 1.0073 C4A + 0.0018 

0.94 0.0 

NIR C4A = 0.8872 C4 + 0.0254 

C4 = 0.9449 C4A + 0.0231 

0.84 0.0 

CBERS-4  

x  

Amazonia-1 

Blue Am1 = 0.8105 C4 - 0.0044 
C4 = 0.9005 Am1 + 0.0154 

0.73 0.0 

Green Am1 = 1.0089 C4 + 0.0079  
C4 = 0.8522 Am1 + 0.0038 

0.86 0.0 

Red Am1 = 1.0290 C4 - 0.0005 
C4 = 0.9164 Am1 + 0.0045 

0.94 0.0 

Nir Am1 = 0.8323 C4 + 0.0249 
C4 = 0.9032 Am1 + 0.0524 

0.75 0.0 

CBERS-4A  

x  

Amazonia-1 

Blue Am1 = 0.7776 C4A - 0.0031  
C4A = 0.8918 Am1 + 0.0162 

0.69 0.0 

Green Am1 = 0.9833 C4A + 0.0110  
C4A = 0.8240 Am1 + 0.0050 

0.81 0.0 

Red Am1 = 0.9881 C4A + 0.0028 
C4A = 0.9157 Am1 + 0.0041 

0.90 0.0 

NIR Am1 = 0.7646 C4A - 0.0436 
C4A = 0.8738 Am1 + 0.0581 

0.67 0.0 

 

As can be observe in the scatter plots of Figure 7.7 the data dispersion was much 

greater and the ODR regression line much further from the 1:1 line than in the 

simulated reflectance case (Figure 7.5). In addition to the differences in the 

spectral response function, other factors such as atmospheric contamination, 

radiometric calibration, and bi-directional effects can cause these across satellite 

differences in surface reflectance (ZHANG et al., 2018). To try to isolate these 
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effects, in Figure 7.8 we presented the scatter plots only with WFI surface 

reflectance data after co-registration with VZA < 7º, thus minimizing BRDF 

effects. The cross-comparison between WFI surface reflectance from CBERS-4 

and CBERS-4A shows similar patterns to the simulated reflectance data (Figure 

7.5). The slope of the ODR regression was very close to line 1:1, and the 

coefficient of correlation was > 0.93 for all bands. This indicates that a large part 

of the bias between the WFI surface reflectance of the CBERS-4 and CBERS-4A 

in concerning the 1:1 line observed in Figure 7.7 is due to bidirectional effects.  

The scatter plots between WFI data from CBERS-4 and Amazonia-1 (Figure 

7.8b), and between CBERS-4A and Amazonia-1 (Figure 7.8c) show the same 

pattern, similar to each other in all bands. In both cases, they differed from the 

simulated reflectance data. The WFI surface reflectance data of Amazonia-1 are 

generally higher than that of CBERS-4 and CBERS-4A in the blue and NIR bands 

and higher in the green and the red band. These differences in surface 

reflectance from the WFI onboard Amazonia-1 to CBERS-4 and CBERS-4A may 

be due to differences in the radiometric calibration of Amazonia-1. As previously 

discussed, information on the radiometric calibration status of Amazonia-1 was 

not found in the literature. The two clusters found in the blue and NIR bands in 

the WFI data between CBERS-4 and Amazonia-1 (Figure 7.7b), and between 

CBERS-4A and Amazonia-1 (Figure 7.7c) can also be seen in Figure 7.8b-c. Note 

that the smaller cluster in both bands and for both CBERS-4 and CBERS-4A is 

located on the 1:1 line, while the larger clusters are displaced. The inter-satellite 

transformation function of the WFI surface reflectance with VZA < 7º fitted by OLS 

regression was significant in all cases (p-value < 0.01) (Table 7.2).  



139 
 
 

Figure 7.8 – Scatter plot of WFI spectral surface reflectance between CBERS-4 and 
CBERS-4A (a), CBERS-4 and Amazonia-1 (b), and CBERS-4A and 
Amazonia-1 (c) after co-registration for view zenith angle less than 7º. The 
black dashed line represents the 1:1 line, and the red dashed one is the 
ODR regression line. Slope and intercept are from ODR regression. The 
green line is the ordinary least squares (OLS) regression of the WFI data 
on the x-axis versus the y-axis, and the magenta line is the OLS 
regression of the WFI data on the y-axis versus the x-axis. RMSD is Root 
Mean Square Deviation. The color bar shows the frequency of occurrence 
of values. 
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Table 7.2 – WFI surface reflectance transformation function inter-satellite fitted by 
ordinary least squares (OLS) regression for the co-registered data and 
view zenith angle < 7º. 

 Band OLS transformation functions 𝑟2 p-
value 

CBERS-4  

x  

CBERS-4A 

Blue C4A = 0.9264 C4 + 0.0028 

C4 = 0.9243 C4A + 0.0043 

0.86 0.0 

Green C4A = 0.9331 C4 + 0.0035 

C4 = 0.9679 C4A + 0.0046 

0.90 0.0 

Red C4A = 0.9794 C4 + 0.0006 

C4 = 0.9766 C4A + 0.0030 

0.96 0.0 

NIR C4A = 0.9488 C4 + 0.0115 

C4 = 0.9449 C4A + 0.0177 

0.90 0.0 

CBERS-4  

x  

Amazonia-1 

Blue Am1 = 0.7762 C4 - 0.0057  
C4 = 0.9085 Am1 + 0.0179 

0.71 0.0 

Green Am1 = 1.1017 C4 - 0.0008  
C4 = 0.8202 Am1 +0.0081  

0.90 0.0 

Red Am1 = 1.0543 C4 - 0.0023 
C4 = 0.9117 Am1 + 0.0051 

0.96 0.0 

Nir Am1 = 0.9500 C4 - 0.0180  
C4 = 0.9007 Am1 + 0.0587 

0.86 0.0 

CBERS-4A  

x  

Amazonia-1 

Blue Am1 = 0.6933 C4A - 0.0010  
C4A = 0.8433 Am1 + 0.0205 

0.58 0.0 

Green Am1 = 1.0322 C4A + 0.0065 
C4A = 0.7735 Am1 + 0.0109 

0.80 0.0 

Red Am1 = 1.0079 C4A - 0.0008  
C4A = 0.8991 Am1 + 0.0082  

0.91 0.0 

NIR Am1 = 0.7886 C4A + 0.0321  
C4A = 0.8708 Am1 + 0.0598 

0.69 0.0 

 

As the coverage of WFI data with VZA less than 7º is limited, we applied BRDF 

normalization to transform the surface reflectance as if observed from the nadir, 

also called Nadir BRDF-Adjusted Reflectance (NBAR). These results will be 

discussed in the next section. 
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7.4.4 Surface NBAR 

Figure 7.9 shows scatter plots of WFI inter-satellite surface NBAR between 

CBERS-4 and CBERS-4A (Figure 7.9a), CBERS-4 and Amazonia-1 (Figure 

7.9b), and CBERS-4A and Amazonia-1 (Figure 7.9c). In the cross-comparison 

between the WFI NBAR reflectance of the CBERS-4 and CBERS-4A (Figure 

7.9a) in all bands, the slope of the ODR regression approached the line 1:1 

compared to the surface reflectance data (Figure 7.7a). The slope of the ODR 

regression of the bands with shorter wavelengths were the ones that most 

distanced themselves from line 1:1. This differs from the previous chapter 

(Chapter 6) in which the results showed greater directional effects on the NIR 

band. Other factors might affect this in cross-comparison analysis such as 

uncertainties in atmospheric correction and residual cloud contamination 

because there is stronger atmospheric scattering at short wavelengths 

(MARTINS et al., 2018). The MS3 algorithm does not consider the information on 

viewing angles (SILVA; ANDRADE, 2013), which can lead to uncertainties in the 

characterization of the atmosphere. In addition, it uses atmospheric products 

from MODIS, and there may be changes in the condition of the atmosphere 

between the acquisition of images by MODIS and the WFI sensors. 



142 
 
 

Figure 7.9 – Scatter plot of WFI spectral surface NBAR between CBERS-4 and CBERS-
4A (a), CBERS-4 and Amazonia-1 (b), and CBERS-4A and Amazonia-1 
(c). The black dashed line represents the 1:1 line, and the red dashed one 
is the ODR regression line. Slope and intercept are from ODR regression. 
The green line is the ordinary least squares (OLS) regression of the WFI 
data on the x-axis the y-axis, and the magenta line is the OLS regression 
of the WFI data on the y-axis versus the x-axis. RMSD is Root Mean 
Square Deviation. The color bar shows the frequency of occurrence of 
values. 

 

 

 
 

After the normalization of surface reflectance to the nadir viewing angle, there 

was a small reduction in the correlation coefficient and a small increase in the 

RMSD in some cases. This may be related to our approximate approach to 

calculate the view azimuth angle (VAA) and ZVA. Another factor that can 

contribute to this is the use of fixed BRDF coefficients, which probably just 

capture the BRDF effects from the component which could be said to be roughly 
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the same for all pixels (FLOOD, 2013), so, there could still be part of the BRDF 

effects that is heterogeneous between pixels. Zhang et al. (2018) also found a 

greater mean relative difference in surface NBAR than in surface reflectance for 

some bands in the cross-comparison between OLI and MSI. 

The slope of the ODR regression in the cross-comparison between CBERS-4 

and Amazonia-1 (Figure 7.9b), and CBERS-4A and Amazonia-1 (Figure 7.9c) 

WFI surface NBAR became closer to the slope in the ODR regression of the data 

from surface reflectance with VZA<7º (Figure 7.8b-c). Except for the blue band 

between CBERS-4A and Amazonia-1, NIR band between CBERS-4 and 

Amazonia-1, where there were no changes, and the red band between CBERS-

4A and Amazonia-1, which became closer to the 1:1 line. This shows that surface 

reflectance normalization to the nadir approximates the surface reflectance as it 

would be without the directional effects. But in the case of data that involves the 

cross-comparison between CBERS-4 and CBERS-4A with Amazonia-1, it does 

not become closer to the 1:1 line. As previously discussed, one of the possible 

reasons is the differences in radiometric calibration, which is beyond the 

objectives of this work. Another issue that needs to be better investigated in the 

future is the formation of two clusters in the blue and NIR bands in the data 

involving Amazonia-1. This may also be related to the radiometric calibration of 

Amazonia-1. 

In Table 7.3 we present the transformation functions of the NBAR WFI cross-

satellite surface adjusted by the OLS regression. The OLS regressions were 

significant (p-value < 0.01) for all bands and the three-satellite cross-
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comparisons. The coefficient of determination in the transformation functions 

between the surface NBAR WFI between CBERS-4 and CBERS-4A, CBERS-4 

and Amazonia-1, CBERS-4A and Amazonia-1 were > 0.77, > 0.73, and >0.66 for 

all bands. The lowest coefficients of determination were in the blue and NIR 

bands. In the case of the transformation functions of the surface NBAR WFI 

between CBERS-4 and Amazonia-1, and between CBERS-4A and Amazonia-1, 

this is due to the formation of the two clusters in the blue and NIR bands. 

Table 7.3 – WFI surface NBAR transformation function inter-satellite fitted by ordinary 
least squares (OLS) regression. 

 Band OLS transformation functions 𝑟2 p-value 

CBERS-4  

x  

CBERS-4A 

Blue C4A = 0.8206 C4 + 0.0055 

C4 = 0.9390 C4A + 0.0060 

0.77 0.0 

Green C4A = 0.8616 C4 + 0.0085 

C4 = 0.9935 C4A + 0.0039 

0.86 0.0 

Red C4A = 0.9348 C4 + 0.0040 

C4 = 0.9991 C4A + 0.0017 

0.93 0.0 

NIR C4A = 0.8925 C4 + 0.0271 

C4 = 0.9399 C4A + 0.0231 

0.84 0.0 

CBERS-4  

x  

Amazonia-1 

Blue Am1 = 0.8080 C4 - 0.0042 
C4 = 0.9003 Am1 + 0.0157 

0.73 0.0 

Green Am1 = 1.0112 C4 + 0.0088 
C4 = 0.8160 Am1 + 0.0066 

0.83 0.0 

Red Am1 = 1.0286 C4 - 0.0003 
C4 = 0.9135 Am1 + 0.0047 

0.94 0.0 

Nir Am1 = 0.8504 C4 + 0.0215 
C4 = 0.9251 Am1 + 0.0467 

0.79 0.0 

CBERS-4A  

x  

Amazonia-1 

Blue Am1 = 0.7674 C4A - 0.0028 
C4A = 0.8776 Am1 + 0.0173 

0.67 0.0 

Green Am1 = 0.9688 C4A + 0.0125 
C4A = 0.8036 Am1 + 0.0074 

0.78 0.0 

Red Am1 = 0.9695 C4A + 0.0037 
C4A = 0.9260 Am1 + 0.0042 

0.90 0.0 

NIR Am1 = 0.7758 C4A + 0.0408 
C4A = 0.8540 Am1 + 0.0665 

0.66 0.0 
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These transformation functions were generated considering a large amount of 

data from different land use and land cover over Brazil. They can be used to 

remove the differences in WFI reflectance between-satellite, which is systematic 

across the landscape. This will make possible to combine the WFI data from the 

three satellites into a more dense time series contributing to better monitoring 

and mapping of agriculture and natural vegetation in Brazil. 

7.5 Conclusion 

Inter-satellite WFI sensor cross-comparison between CBERS-4 and CBERS-4A, 

CBERS-4 and Amazonia-1, and CBERS-4A and Amazonia-1 was performed in 

this work. Reflectance simulated from the convolution of Hyperion reflectance 

spectra by the spectral response function between the right and left optics of the 

WFI sensors for each band and each satellite showed no major systematic 

differences between the optics (|slope of ODR regression| < 0.02 from line 1:1), 

except for Amazonia-1 blue band (slope of ODR regression equal to 0.95). When 

the simulated WFI reflectance was cross-satellite compared, there were 

systematically greater differences only in the red bands between CBERS-4 and 

CBERS-4A and between CBERS-4 and Amazonia-1 (slope of ODR regression 

equal to 0.94). Comparing WFI surface reflectance between Amazonia-1 with 

CBERS-4 and CBERS-4A, there were also differences between the slope of the 

ODR regression considering the left (<1.0) and right (>1.0) optics in the blue 

band. 

In the WFI inter-satellite surface reflectance cross-comparison, in almost all 

combinations of satellites and bands there was at least an increase in the 
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correlation coefficient, a decrease in RMSD, or both, from before to after the co-

registration. The slope of the ODR regression between the CBERS-4 and 

CBERS-4A WFI data for all bands was less than 1.0, indicating, in all bands, the 

tendency of the surface reflectance of CBERS-4 to be greater than that of 

CBERS-4A. In all bands, there was the same pattern in the scatter plot between 

CBERS-4 and Amazonia-1, and between CBERS-4A and Amazonia-1, with 

similar slopes in the two cross-satellite comparisons. When only data with VZA < 

7º were considered slope of the ODR regression was very close to the 1:1 line, 

and the coefficient of correlation was > 0.93 for all bands between WFI surface 

reflectance of CBERS-4 and CBERS-4A. The scatter plots between the WFI data 

from CBERS-4 and Amazonia-1, and between from CBERS-4A and Amazonia-1 

show the same pattern similar to each other in all bands, and in both cases, they 

differed from the simulated reflectance data. In addition, in these two WFI inter-

satellite cross-comparisons, two clusters were formed in the blue and NIR bands. 

This indicate of the need to evaluate the radiometric calibration of the Amazonia-

1/WFI. The results showed that the slope of the ODR regression for the surface 

NBAR data approached the data with VZA < 7º. 

The WFI surface reflectance and surface NBAR transformation functions 

between satellites were also calculated using OLS regression. The regressions 

were significant in all cases and bands. These transformation functions can be 

used to convert the WFI data from one satellite to the equivalent of the other 

satellite, enabling the generation of a denser time series. 
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8 MAPPING FROST-DAMAGED CORN COMBINING WFI TIME SERIES 

FROM CBERS-4, CBERS-4A, AND AMAZONIA-1 

In this chapter we evaluate the combination of WFI data from the three satellites 

using what was investigated in the previous chapters in an agricultural monitoring 

application. The WFI NDVI time series was used to map frost-damaged corn 

areas in western Paraná. 

8.1 Introduction 

World food production needs to increase to meet the projected demands from 

population growth, dietary changes, and increasing bioenergy use, ensuring food 

security and access to sustainable energy (FAO, 2018; VAN DIJK et al., 2021). 

Corn is the most produced cereal in the world (FAOSTAT, 2022a), being 

processed for a variety of food and industrial products, consumed mainly for 

human and animal food, and biofuel production (RANUM; PEÑA-ROSAS; 

GARCIA-CASAL, 2014). Brazil is an important world food supplier (BRANCO et 

al., 2021), the country is the third largest corn producer (FAOSTAT, 2022b) and 

is expected to be the second largest exporter in 2022/2023 (USDA, 2021, 2022). 

In the last two decades, corn production in Brazil has grown by 324%, reaching 

102.59 million tons in the 2019/2020 harvest season (CONAB, 2022a), to meet 

growing domestic and foreign demand. However, the 2020/2021 harvest season 

had a production 15.5% lower than the previous one due to reduced productivity 

caused by adverse weather conditions (CONAB, 2021a). 

Agriculture is a high-risk activity with significant uncertainty, these risks arise from 

unstable weather conditions, sanitary events, and market fluctuations 
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(KOMAREK; DE PINTO; SMITH, 2020). Globally, ~32–39% of agricultural yield 

variability is due to the variability of weather conditions, and in Brazil, the 

percentages are between 15% and 75%, depending on the regions and crop 

analyzed (RAY et al., 2015). Among the weather conditions that incur agricultural 

losses are droughts, heat waves, windstorms, hail storm and frosts (MONTEIRO, 

2009). Frost can lead to poor yields and even complete crop failure depending 

on the phenological stage of the crop when the event occurs and its severity 

(CHOUDHURY et al., 2019).  

Radiation frosts occur on clear nights when energy loss by longwave radiation 

from both soil and vegetation to space is greater from the upper layers of the crop 

compared with that occurring at the soil surface, as a result, the air temperature 

becomes coldest in the upper canopy (STUTSEL et al., 2020a). Frost damage is 

mainly caused by ice formation rather than low temperatures, which can be either 

extra-cellular or intra-cellular (RODRIGO, 2000). In severe frost, ice crystals in 

the intercellular space break down chloroplast structures and cause a rapid 

change in leaf biochemical constituents. In less severe frost, the plants’ cells 

might not be damaged, but it can still affect the biochemistry and hence the 

absorption of light and the color of the leaves (CHOUDHURY et al., 2019). Frost 

tends to be unpredictable (CHOUDHURY et al., 2019), and its severity is spatially 

variable across regions and positions in the landscape (FITZGERALD et al., 

2019). It can be influenced by local factors such as topography and terrain 

orientation, soil types, soil moisture, etc. (CADENAS et al., 2020; STUTSEL et 

al., 2020b). These factors, translates to crop frost damage being highly variable 

at inter- and intra-field scales (FITZGERALD et al., 2019).  
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In Brazil, frosts are more common in the center-south region, being more severe 

in the south (WREGE et al., 2018b). Among Brazil's crops affected by frost there 

are wheat, coffee, sugarcane, and corn (CONAB, 2021b). The second corn 

season is highly vulnerable to frost damage, as this crop may still be in the 

reproductive phase during frost-susceptible periods of the year. The 

consequences can be disastrous as the second crop season represents most of 

Brazil's corn production (73% of production came from the second crop season 

in 2019/2020 - CONAB, 2022). In 2021, two frost events, one on 25-May and the 

other on 30-June, caused great economic losses, affecting Brazilian production 

of sugarcane, coffee and corn (CONAB, 2021c). Although farmers have few 

options for crop protection from frost, monitoring the occurrence, impact, and 

spatial distribution of frost damage are important for agricultural agencies and 

individual farmers to adopt the measures necessary to mitigate production losses 

for food security and the economy (FITZGERALD et al., 2019; WANG et al., 2020; 

ZHAO et al., 2020). In Brazil, the CONAB is responsible for providing statistical 

information on Brazilian production, accounting for losses due to weather 

conditions such as frost. However, this is challenging due to the country's 

continental dimensions, soil and climate diversity, and high agricultural dynamics. 

In addition, the frost damage information produced by CONAB is not spatialized. 

Remote sensing can provide objective information over large areas periodically, 

being one of the most promising sources of data for agricultural monitoring 

(CHAVES; PICOLI; SANCHES, 2020; WEISS; JACOB; DUVEILLER, 2020). 

Remote sensing has been used for frost damage assessment in several crops, 

such as oat (MACEDO-CRUZ et al., 2011), wheat (FITZGERALD et al., 2019), 
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grape (LIU et al., 2021), canola (DUDDU et al., 2018), rapeseed (JEŁOWICKI et 

al., 2020), and corn (CHOUDHURY et al., 2019). In corn, frost damage increased 

the reflectance in the photosynthetically active regions. At the same time, it 

caused a sharp decline in the near-infrared (between 720 and 1350 nm) and a 

shift in the red edge, also causing a decrease in the Normalized Difference 

Vegetation Index (NDVI) (CHOUDHURY et al., 2019). These changes in spectral 

reflectance could be identified in NDVI time series, allowing the identification of 

areas affected by frost damage. However, a similar pattern can occur as a result 

of the natural senescence of corn (PONZONI; SHIMABUKURO; KUPLICH, 

2012). While there is a slight reduction in the values of vegetation indexes due to 

senescence (OLDONI et al., 2021b), frost damage causes an abrupt reduction in 

the time series (CHOUDHURY et al., 2019). Thus, to avoid confusion between 

frost damage and natural senescence, a dense satellite image time series is 

necessary to allow the acquisition of images soon after the frost event and 

identification of rapid changes in the time series.  

The WFI onboard the CBERS-4, CBERS-4A and Amazonia-1 can provide dense 

time series data with a medium spatial resolution (55-64m). Combining the WFI 

data from the three satellites allows for a 1–3-day revisit time. WFI/CBERS-4 time 

series have recently been successfully used to map land use and land cover 

(PICOLI et al., 2020b; CHAVES et al., 2021b). Despite this, there are no works 

in the literature that used the combination of WFI data from the three satellites for 

applications in agriculture. Given the context presented, this work aims to map 

the extent of the corn frost damaged areas that occurred in the second crop 
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season of 2020/2021 in the west of the state of Paraná, Brazil, using the WFI time 

series. 

8.2 Study site 

The Paraná state, located in southern Brazil, is currently the second largest corn 

producer in the country. The state produced 15 million tons in the 2019/2020 

harvest season, corresponding to 15% of the national production (CONAB, 

2022b). In Paraná, two crops season are normally grown in one year. The first 

crop season occurs between spring and summer, from September to March. The 

second crop season that occurs between autumn and winter, from January to 

August, is the one that has a major production. In 2019/2020, the second crop 

season accounted for 68% of the state's corn production (CONAB, 2022b). 

About 25% of Paraná's corn production was cultivated in the west region in the 

2019/2020 harvest. We selected this region as our study area (Figure 8.1). In 

addition to the large corn production, this region was affected by a severe frost in 

the second season of the 2020/2021 harvest. The major soils in the region are 

Dystrophic Red Ultisols, Dystroferric Red Latosols, Eutrophic Lithological 

Neosols, Eutrophic Red Nitosols (EMBRAPA, 2011). The climate is subtropical 

mesothermal (Cfa), according to the Köppen classification, with average annual 

precipitation of 1200 - 1800 mm and an average annual temperature of 18.5 - 

22.9 °C (APARECIDO et al., 2016). The altitude in the region ranges from 87 to 

919 m (JARVIS et al., 2008). 
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Figure 8.1 – (a) Study site, Paraná state, Brazil. (b) Digital elevation from Shuttle Radar 
Topography Mission (SRTM) (Jarvis et al., 2008). 

 

 

8.3 Remote sensing data acquisition 

8.3.1 Wide-Field Imager (WFI) data 

We selected all available WFI images from CBERS-4, CBERS-4A and Amazonia 

between February 1 to August 12, 2021, Level L4 that intersected the study area. 

A total of 57, 60, and 43 WFI images for CBERS-4, CBERS-4A, and Amazonia-

1, respectively, were downloaded from the INPE website 

(http://www.dgi.inpe.br/catalogo/ and http://www2.dgi.inpe.br/catalogo/explore) 

at Level 4. The WFI Level 4 images provided by INPE are geometrically corrected 

with ground control points and ortho-rectified (INPE, 2021c). We use the surface 

reflectance product, which has been processed by the MS3 software (SILVA; 

(a

) 

(b

) 

http://www.dgi.inpe.br/catalogo/
http://www2.dgi.inpe.br/catalogo/explore
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ANDRADE, 2013). The product is delivered in the Universal Transverse Mercator 

(UTM) projection with the World Geodetic System 1984 (WGS84) datum.  

8.3.2 MultiSpectral Instrument (MSI) data 

We used a cloud free mosaic of the Sentinel-2/MSI Level-2A (L2A) NIR band 

(B08) at 10 m from the study site as a reference for the co-registration of WFI 

images. The mosaic was composed using the median of the images with less 

than 5% of clouds between June 1st and 30th, 2021, in Google Earth Engine. 

The L2A product is radiometrically and geometrically corrected with ortho-

rectification and atmospherically corrected to surface reflectance (ESA, 2015).  

8.3.3 MODIS data 

We downloaded MODIS MCD43A4 version 6 product for the study area on the 

same date as each WFI image from NASA's Land Processes Distributed Active 

Archive Center (LP DAAC) products located at the USGS Earth Resources 

Observation and Science (EROS) Center (https://lpdaac.usgs.gov/products). We 

only use the data from MODIS products referring to the spectral bands of blue 

(B3), green (B4), red (B1), and NIR (B2), which can be considered equivalent to 

the respective bands B13/B1 (blue), B14/B2 (green), B15/B3 (red) and B16/B4 

(NIR) of the WFI data (CBERS-4 and -4A/Amazonia-1). 

8.3.4 Corn map 

The corn map used in this work was provided by Chaves et al. (In review). This 

map was generated using attributes derived from the surface reflectance of nine 

Sentinel-2/MSI spectral bands and three spectral indices calculated from them. 

The bands considered were band 3 (Green) to band 12 (SWIR) except the bands 

https://lpdaac.usgs.gov/products
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9 (Water vapor) and 10 (Cirrus). And the indices used were the Normalized 

Difference Vegetation Index (NDVI) (ROUSE et al., 1974b), Normalized Water 

Difference Index (NDWI) (GAO, 1996), and Green Normalized Difference 

Vegetation Index (GNDVI) (GITELSON; KAUFMAN; MERZLYAK, 1996). The 

authors used matrix attributes (median, first and third quartiles, minimum and 

maximum values) monthly for the sowing and flowering periods and the total 

period for each variable in the Random Forest model. Their classification reached 

an overall accuracy (OA) equal to 0.96. For our analysis, we resampled the corn 

map from 20 m to 64 m, using the mode resampling algorithm, only for the areas 

identified as corn in the 2021 second crop season. 

8.4 Methodology 

Figure 8.2 shows the methodological flowchart of this chapter. Section 8.4.1 

describes the pre-processing steps that include co-registration and cloud 

masking. Section 8.4.2 describes the two methods compared for normalizing the 

differences between inter-satellite WFI sensors. Sections 8.4.3, 8.4.4, and 8.4.5 

describe the procedures for extracting phenological metrics, classification 

algorithm, and accuracy assessment of maps of corn frost damaged areas. 
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Figure 8.2 – Flowchart of Chapter 8. S2, C4, C4A and Am1 are Sentinel-2, CBERS-4, 
CBERS-4A and Amazonia-1, respectively. 

 

 

8.4.1 WFI data pre-processing 

8.4.1.1 Co-registration 

According to Chapter 5 the co-registration of WFI images is a fundamental step, 

as the images have displacement up to 1.45 pixels for CBERS-4/WFI and 

Amazonia-1/WFI and 2.5 pixels for CBERS-4A/WFI. We used the Sentinel-2/MSI 

mosaic with the NIR band at 10 m described in Section 8.3.2 as reference to co-

register the WFI images. The MSI mosaics were generated in the same spatial 

reference system as the respective WFI images, i.e., UTM projection, using the 

correct UTM zone. We used the Python implementation of the Automatic and 

Robust Open-Source Image Co-Registration Software (AROSICS) 

(SCHEFFLER et al., 2017) to find control points (CP) that represent the 
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correspondence between the reference image (MSI) and the target image (WFI). 

We used a grid resolution and window size of 100 and 400 pixels in the 

AROSICS, i.e., looking for CPs every 100 pixels in an image subset of 400 x 400 

pixels. We selected the 2nd-degree polynomial as a transformation function 

because it proved sufficient to reduce displacement in the WFI images (Chapter 

5). After the transform function was created, the target image was warped using 

a cubic resampling technique. A transformation from UTM to AEA projection has 

also been added to the processing chain. This allows all images to have the same 

spatial reference system without additional resampling, avoiding undesired 

geometric and spectral image quality degradation. 

8.4.1.2 Cloud mask 

We applied the ATSA algorithm (Zhu and Helmer, 2018) to generate cloud masks 

and cloud shadows. ATSA uses image time series to mask clouds and cloud 

shadows. As there are differences between the WFI images of the three satellites 

(Chapter 7), we apply ATSA individually to the WFI time series of each of them. 

After co-registration, the WFI images of each satellite were stacked in a data 

cube. The elevation and azimuth solar angles information were extracted from 

the metadata. The ATSA requires a water mask. The water mask was extracted 

from the land use and land cover map produced by MapBiomas Collection 5 for 

2019 (most recent data during data processing) (Souza et al., 2020). The 

MapBiomas map was reclassified to water and non-water and resampled to the 

spatial resolution of the WFI images using the mode resample algorithm. We set 

some parameters in the ATSA algorithm to generate the cloud and shadow cloud 

mask. First, the longest and shortest distance between the shadow and its 
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corresponding cloud was selected. These values were empirically set to 1 and 40 

pixels (64 m and 2560 m, respectively) after the images' inspection, as Zhu and 

Helmer (2018) recommended. Two other parameters, A and B, are the thresholds 

used by ATSA to identify cloud and shadow, respectively. We set the parameters 

A and B equal to 0.5 and 3.0, respectively, because they successfully balanced 

omission and commission errors (Chapter 4). 

8.4.2 WFI inter-satellite spectral normalization 

Although the WFI sensors onboard CBERS-4, CBERS-4A and Amazonia-1 have 

similar characteristics, their surface reflectance may have differences, as shown 

in the previous Chapters. We tested two approaches to normalize the WFI data 

from the three satellites and generate a more consistent time series: (i) the first 

uses the MODIS MCD43A4 product as a reference; (ii) the second uses the 

transformation functions from WFI inter-satellite cross comparison derived in 

Chapter 7. These two approaches will be detailed in Sections 8.4.2.1 and 8.4.2.2. 

8.4.2.1 WFI normalization using MODIS MCD43A4 as reference 

The empirical normalization of the WFI using the MODIS product MCD43A4 as a 

reference was divided into two steps: (i) normalization as a function of the VZA, 

and (ii) spectral normalization. 

8.4.2.1.1 WFI normalization as a function of the zenith view angle 

Our results from Chapter 6 showed that the surface reflectance of WFI images is 

influenced by BRDF effects. Furthermore, there is a reflectance gradient 

introduced by the surface anisotropy and the variation of the VZA, which is 

approximately linear. This reflectance gradient can be removed using the linear 
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relationship between surface reflectance and the VZA (HANSEN et al., 2008; 

POTAPOV et al., 2012), as the results of Chapter 6 demonstrated. 

BRDF effects depend on the land surface and the reflectance gradient can vary 

depending on the target. Therefore, we use the MODIS product MCD434A4 as a 

reference, as this product has already been normalized to nadir. The WFI images 

were resampled to 500 m using the pixels average to match the MCD43A4 

resolution. All 500 m pixels within some CBERS-4/WFI pixels marked as cloud in 

the cloud mask were not considered. The mean difference between the 

MCD43A4 NBAR reflectance and the WFI surface reflectance was aggregated at 

every 1º of VZA. The reflectance gradient (𝛼) was estimated for each band as the 

slope of the linear regression between the surface reflectance bias of MODIS and 

CBERS-4 (𝜌) and the VZA (𝑣) as follows: 

𝜌 =  𝛼 𝑣 +  𝛽 (8.1) 

A Random Sample Consensus (RANSAC) filter was used to detect outliers and 

eliminate them from the linear regression. The function (8.1 was fitted using 

Ordinary Least Squares (OLS) regression. After calculating the reflectance 

gradient, the 𝛼  was used to remove the BRDF effects caused by the VZA 

variation. The WFI surface reflectance normalized to the nadir (𝜌𝑊𝐹𝐼 (𝜐=0)) was 

calculated as follows (Equation 8.2): 

𝜌𝑊𝐹𝐼 (𝜐=0) = 𝜌𝑊𝐹𝐼 (𝜐𝑜𝑏𝑠 ) +  𝛼 𝑣  (8.2) 

8.4.2.1.2 Spectral normalization using MODIS as a reference 

After normalizing the directional effects, spectral normalization was also 

performed using the MODIS MCD43A4 product as a reference. In this case, the 
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normalized surface reflectance for each band of each WFI image was cross 

compared with the NBAR MCD43A4 reflectance at 500 m. A transformation 

function was fitted to transform the WFI reflectance to the equivalent of the 

MODIS reflectance using OLS regression as follows: 

𝜌𝑀𝑂𝐷𝐼𝑆 = 𝜌𝑊𝐹𝐼 (𝜐=0) × 𝑎 + 𝑏   (8.3) 

where 𝑎 and 𝑏 are the slope and intercept, respectively, of the OLS regression. 

8.4.2.2 WFI normalization using inter-satellite cross-comparison 

transformation function 

The WFI normalization using the inter-satellite cross-comparison transformation 

function is divided into two steps: (i) the BRDF effect is removed using the factor 

c; (ii) the application of the transformation functions derived in the previous 

chapter. 

8.4.2.2.1 BRDF normalization 

We selected the c-factor technique and the global coefficients provided by Roy 

et al. (2016) to remove the BRDF effects on the WFI imagens for this second 

approach. According to the results showed in the Chapter 6 it can also reduce 

directional effects in WFI images. The c-factor technique uses fixed BRDF 

coefficients for each spectral band. Normalized reflectance is calculated by 

multiplying the original reflectance by the c-factor (CLAVERIE et al., 2018) 

(Equation (8.4): 

𝜌(𝜆, 𝜃𝑛, 𝜐𝑛, 𝜙𝑛) = 𝑐 (𝜆) × 𝜌(𝜆, 𝜃𝑠, 𝜐𝑠, 𝜙𝑠)  (8.4) 



160 
 
 

The c-factor is calculated from the semiempirical kernel-driven RossThick-

LiSparse Reciprocal BRDF model (SCHAAF et al., 2002), using two kernels,  𝐾𝑣𝑜𝑙 

and 𝐾𝑔𝑒𝑜, that describe volumetric and geometric scattering components, and 

three model parameters (Table 6.1) (8.5): 

𝑐 (𝜆) =
𝑓𝑖𝑠𝑜(𝜆) + 𝑓𝑣𝑜𝑙(𝜆) 𝐾𝑣𝑜𝑙( 𝜃𝑛, 𝜐𝑛, 𝜙𝑛) + 𝑓𝑔𝑒𝑜(𝜆) 𝐾𝑔𝑒𝑜(𝜃𝑛, 𝜐𝑛, 𝜙𝑛)

𝑓𝑖𝑠𝑜(𝜆) + 𝑓𝑣𝑜𝑙(𝜆) 𝐾𝑣𝑜𝑙(𝜃𝑠, 𝜐𝑠, 𝜙𝑠) + 𝑓𝑔𝑒𝑜(𝜆) 𝐾𝑔𝑒𝑜(𝜃𝑠, 𝜐𝑠, 𝜙𝑠)
  

(8.5) 

where 𝜃𝑠, 𝜐𝑠, 𝜙𝑠 represents the VAA, VZA e RAA from input data, and  𝜃𝑛, 𝜐𝑛, 𝜙𝑛 

represents the VAA, VZA e RAA of the normalized data. The VZA was set to 

nadir, the RAA was set to zero, and the SZA was set to 35° (Chapter 6). 

8.4.2.2.2 Application of transformation functions 

After the BRDF normalization, the transformation functions derived in Chapter 7 

and presented in Table 7.3 were applied. In this case, the CBERS-4/WFI was 

used as a reference, i.e., the CBERS-4A/WFI and Amazonia-1/WFI images were 

converted to reflectance values equivalent to if they had been obtained by the 

CBERS-4/WFI. 

8.4.3 Phenological metrics derivation  

Severe frost causes changes in plants that are noticeable within one or two days. 

Among these changes is the increase in the reflectance of the blue and red 

regions of the electromagnetic spectrum and reduced reflectance in the NIR 

region, which causes a reduction in the NDVI value (CHOUDHURY et al., 2019). 

This abrupt change can be identified in a dense NDVI time series. To identify 

these changes, we derived phenological metrics. Phenological transition dates 

were derived by fitting a pre-defined curve from the NDVI values. An asymmetric 
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double sigmoid function was selected as the curve function (SOUDANI et al., 

2008), and phenological variables were extracted either directly or indirectly 

(ZHONG et al., 2016a): 

𝑉(𝑡) = 𝑉𝑏 +
1

2
𝑉𝑎[tanh(𝑝(𝑡 − 𝐷𝑖)) − tanh(𝑞(𝑡 − 𝐷𝑑)) ] 

(8.6) 

where 𝑉(𝑡) is the NDVI time series. Metrics extracted directly or indirectly from 

the curve fit are described in Table 8.1. The curve fitting was carried out using 

the Levenberg-Marquardt algorithm (MORÉ, 1978) available in SciPy library 

(VIRTANEN et al., 2020). Only phenological metrics related to the end or duration 

of the cycle were used. These were the sets of attributes used in the Random 

Forest classifier. 

8.4.4 Classification algorithm  

We consider four classes in the classification process: (i) Frost damage 25-May, 

the areas affected by frost on May 25, 2021; (ii) Frost damage 30-June, the areas 

affected by frost on June 30, 2021; (iii) Harvested/senescent, areas that were 

already senescent or were harvested during frost events; and (iv) Not frost 

damage, areas that were not affected by any of the frosts and that were not in 

senescence or have been harvested. The training samples were generated 

based on analysis of the WFI NDVI time series and the multi-temporal false-color 

composites (NIR-red-green) from before and after frost events, i.e., May 23; June 

12 and 30; July 2, 7, and 22, 2021.   



162 
 
 

Table 8.1 Metrics extracted directly or indirectly from NDVI curve fitting. 

Phenological 
metric 

Description Use in the classification 

𝑉𝑏 Base value corresponding to 
the non-growing period 

Not used 

𝑉𝑎 Amplitude of variation (the 
difference between the 
maximum and minimum NDVI 
with the growing cycle) 

Not used 

p, q rate of change of the increasing 
and decreasing segments in 
the cycle 

Only q was used. In frost-
damaged areas the rate of 
change of the decreasing 
segment is higher than in 
unaffected areas 

Di, Dd The dates when the increasing 
or decreasing rates (first 
derivative) of the NDVI time 
series are maximum  

Only Dd was used. In frost-
damaged areas Dd is closer 
to the frost event date 

D1, D2, D3, D4 Four dates when the second 
derivative of the curve reaches 
the local maximum or minimum 

Only D3 and D4 were used. 
D3 indicates the date that 
the fitted NDVI curve starts 
to decrease. In frost 
damaged areas D3 is close 
to the frost event 

Lgs Difference between D4 and D1 
representing the length of the 
growing season 

The duration of the growing 
season has been reduced in 
frost-damaged areas 

Lhvp Difference between D3 and D2 D3 generally occurred earlier 
in frost-affected areas, which 
shortened the time between 
D2 and D3 

D70, D90, 
D90, D95 

Dates of the 70th, 80th, 90th, 
and 95th percentiles of the 
NDVI values between D3 and 
D4 

Indicates the dates that the 
NDVI reached certain 
decreases. In frost-damaged 
areas, these dates are close 
to frost events. 

Slope Slope of the line between points 
D3 and D4 

In frost-damaged areas the 
slope is lower than in 
unaffected areas. 

Source: Adapted from Zhong, Gong and Biging (2012); Zhong et al., (2016a;b). 
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We used the Random Forest (RF) model (BREIMAN, 2001) from the 

implementation in the Scikit-learn library (PEDREGOSA et al., 2011). RF 

classifier is a machine learning ensemble classifier that produces multiple 

decision trees from a randomly selected subset of training samples and variables 

(BELGIU; DRĂGU; DRĂGUŢ, 2016). Each tree is independently created during 

the training process using bootstrap samples from the training dataset (Reis et 

al. 2020). The final classification decision corresponds to the averaged (using the 

arithmetic mean) class assignment probabilities calculated by all individual 

decision trees (BELGIU; DRĂGU; DRĂGUŢ, 2016). To classify new unlabeled 

data, it is evaluated against all decision trees created in the ensemble and each 

tree votes for the membership class, with the most voted membership class being 

the one selected in the final output (BELGIU; DRĂGU; DRĂGUŢ, 2016). RF has 

the ability to deal with small sample sizes, process high-dimensional feature 

spaces and not overfit (GERGELY DAROCZI, 2015; BELGIU; DRĂGU; 

DRĂGUŢ, 2016; BIAU; SCORNET, 2016a). The popularity of RF comes from the 

fact that it can be applied to solve a wide range of prediction problems (BIAU; 

SCORNET, 2016a). Furthermore, RF has shown good performance in remote 

sensing application (PELLETIER et al., 2016; SANTOS et al., 2019; NGUYEN et 

al., 2020; CHAVES et al., 2021b; OLDONI et al., 2021a). Each node of each 

decision tree in the RF is split using a user-defined number of features 

(max_features) selected at random, and the forest grows up to a number of tree 

(n_estimators), allowing to create trees with high variance and low bias (BELGIU; 

DRĂGU; DRĂGUŢ, 2016). The n_estimators was set to 100, the function to 
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measure the quality of a split (criterion) was set to gini, and the max_features was 

set to the default value, i.e., square root of the total number of features. 

8.4.5 Accuracy assessment 

To perform the classification accuracy assessment, we sampled stratified random 

points across the study site. The goal of stratified random points is to have a 

practical design that satisfies the accuracy measurement objectives and most of 

the desirable design criteria (PRUDENTE et al., 2022). The number of points was 

weighted by the areas of each class and the expected accuracies following the 

good practices of assessing accuracy proposed by Olofsson et al. (2014). The 

sample size was increased in the classes that occupy a small proportion of the 

area to reduce the standard errors of the class-specific accuracy for these 

classes. Thus, 632 random sample points were distributed stratified according to 

Harvested/Senescent: 102; Frost damage May-25: 75; Frost damage June-30: 

365; and Not frost affected: 90. The points were labeled based on analysis of the 

WFI NDVI time series and the multi-temporal false-color composites (NIR-red-

green) from before and after frost events, i.e., May 23; June 12 and 30; July 7, 

2021. The interpreter did not access the sample class to avoid any influence and 

possible bias. 

After, these points were used as validation points to create an error matrix. These 

validation points are independent of the training samples. The overall accuracy 

(OA) derived from the error matrix was computed to evaluate the classification 

accuracy. The producer's accuracy (PA), which indicates the likelihood that a 

pixel in a given class was classified correctly, and the user's accuracy (UA), which 
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indicates the likelihood that a pixel classified on the map represents that class on 

the ground (CONGALTON, 1991), were also calculated. 

8.5 Results and discussion 

8.5.1 Spectral normalization of the WFI time series  

We used two approaches to normalize the WFI data and generate a consistent 

time series. In the first, the WFI surface reflectance values of the three sensors 

were normalized using the MODIS MCD43A4 product as a reference. The 

MCD43A4 product already has normalization of the VZA to nadir, which allows it 

to be used as a reference. Figure 8.3 shows the scatter plots between WFI 

surface reflectance from CBERS-4 (Figure 8.3a-b) and Amazonia-1 (Figure 8.3c-

d) versus MODIS MCD43A4 reflectance for the red (Figure 8.3a-c) and NIR 

bands (Figure 8.3b-d) from June 30, 2021. The scatter plots in Figure 8.3 

exemplify the differences between the WFI surface reflectance from the sensor 

onboard CBERS-4 and the Amazonia-1. As the images were acquired on the 

same day, no differences in surface reflectance were expected. However, in the 

NIR band, while the CBERS-4/WFI surface reflectance values are generally 

higher than the MCD43A4 product, the Amazonia-1/WFI is lower. In the red band, 

both WFI reflectance values are greater than the MCD43A4 product, but the 

Amazonia-1 is further from the 1:1 line. 
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Figure 8.3 – Scatter plots of WFI surface reflectance from CBERS-4 (a-b) and Amazonia-
1 (c-d) versus MODIS MCD43A4 product for bands red (a-c) and NIR (b-
d). WFI images and MODIS MCD43A4 product from June 30, 2021. 
Regression was fitted by ordinal least square (OLS) regression. The black 
dashed line represents 1:1 line, and the red dashed one is the regression 
line. RMSD is Root Mean Square Deviation. 

 

 

The differences in surface reflectance in the red and NIR bands between the WFI 

sensors of the three satellites cause discrepancies in the NDVI time series 

(Figure 8.4). On most dates, before normalization, the NDVI from Amazonia-

1/WFI is smaller than the NDVI from CBERS-4 and CBERS-4A. After spectral 

normalization with the first approach, i.e., using coefficients fitted using OLS 

regression taking MODIS MCD43A4 as a reference, the difference among NDVI 

of the WFI from the three satellites was reduced (Figure 8.4a). The NDVI values 

became higher after spectral normalization, probably due to differences in the 
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spectral response function between WFI and MODIS. This approach also 

reduces the range between the highest and lowest values after normalization. 

The NDVI time series became more consistent after spectral normalization, with 

the variations being due to the target and not the difference between the sensors.  

The second approach, which uses transformation functions fitted from OLS 

regression from WFI inter-satellite cross-comparison (Chapter 7), also reduced 

the differences in NDVI values between the WFI sensors (Figure 8.4b). However, 

the time series is noisier than the one derived from normalization using MODIS 

as a reference. The same coefficients are applied to all images using 

transformation functions derived from cross-comparison between WFI sensors. 

The incorrect characterization of the atmosphere condition on some dates may 

contribute to differences in some images in the time series. Whereas, when using 

MODIS as a reference, the WFI reflectance is converted to the equivalent 

reflectance of the MCD43A4 product. This is a consolidated product, with high 

quality and consistency over time. Even so, the second approach which uses 

transformation functions fitted from WFI data itself does not change neither the 

maximum values nor the amplitude of the NDVI values of the time series. 

The time series of a corn pixel affected by the frost on June 30, 2021, is plotted 

in Figure 8.4. After this date, an abrupt drop in NDVI values can be observed, 

due to the damage to the corn leaves caused by frost. These markers in the NDVI 

time series can be quantified by extracting phenological metrics through curve 

fitting and inflection points, as will be discussed in the next section. 

 (a) 
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Figure 8.4 – Frost damage NDVI time series from WFI of CBERS-4, CBERS-4A e 
Amazonia-1 before and after spectral normalization using MODIS as 
reference (a) or using transformation function from inter-satellite cross-
comparison (b). The dotted black line indicates the post-frost period. No 
filtering process was applied to the NDVI time series. 

 

 

 

8.5.2 Curve fitting and phenological metrics 

Fitting the asymmetric double sigmoid function to NDVI time series of WFI 

normalized data (Figure 8.5a-d, Figure 8.6a-d) allowed to extract of six 

phenological metrics directly and ten indirectly (but only the metrics related to the 

middle to the end of the growing season were used) (Figure 8.5e, Figure 8.6e). 

Harvested/Senescent (Figure 8.5a and Figure 8.6a) and Frost damage 25-May 

(Figure 8.5c and Figure 8.6c) classes had differences between the time series 

fitted with normalized data using MODIS as a reference and using transformation 

(b) 

(a) 

(a) 
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functions from WFI inter-satellite cross-comparison. In both classes the fall of the 

fitted NDVI values is smoother in the normalized data using MODIS as a 

reference, and this happened due to the reduced amplitude of the time series 

fitted to these data. This can also be seen in the q and slope metrics (Figure 8.5e 

and Figure 8.6e).  The q is larger, and the slope is smaller in the data normalized 

using the transformation functions compared to the normalized data using 

MODIS as a reference, indicating a more abrupt drop in the NDVI fitted for these 

two classes. 

Despite these differences, in the fitted NDVI time series from both approaches of 

normalization, frost damaged pixels have an abrupt drop right after the respective 

frost events (Figure 8.5c-d, Figure 8.6c-d). The fitted time series of pixel that were 

already going into senescence when the 25-May frost occurs has a smooth drop 

in NDVI values (Figure 8.5a, Figure 8.6a). The same occurs with the pixel that is 

not affected by any frost, but in this case the reduction of NDVI values only starts 

a few weeks after the 30-Jun frost (Figure 8.5b, Figure 8.6b). The areas that were 

damaged by the 25-May frost (in dark green tones in the false color composition 

of 02-Jun-2021 - Figure 8.5e, Figure 8.6e) are in micro relief with lower altitude 

(Figure 8.5, Figure 8.6 – SRTM). The areas that were not affected by any frost 

(in shades of red in the false color composition of 07-Jul-2021 - Figure 8.5e, 

Figure 8.6e) are mostly located in the highest portion of the micro relief. 
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Figure 8.5 – Four examples of fitted curve from the NDVI time series of WFI normalized 
using the MODIS data as reference for: (a) a pixel of 
Harvested/senescent, (b) Not frost damaged, (c) Frost damage 25-May, 
and (d) Frost damage 30-June. (e) Zoomed raster: WFI false-color 
composite (R: NIR, G: red, and B: green) for 23-May-2021, 02-June-2021, 
30-June-2021, and 07-July-2021; the SRTM digital elevation model; and 
ten phenological metrics. The figure highlighted four points representing 
the four analyzed classes (Frost damage 25-May, Frost damage 30-June, 
Harvested/senescent, and Not frost damage). 
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Figure 8.6 – Four examples of the fitted curve from the NDVI time series of WFI 
normalized transformation function fitted from WFI images itself for: (a) a 
pixel of Harvested/senescent, (b) Not frost damaged, (c) Frost damage 
25-May, and (d) Frost damage 30-Jun. (e) Zoomed raster: WFI false-color 
composite (R: NIR, G: red, and B: green) for 23-May-2021, 02-June-2021, 
30-June-2021, and 07-July-2021; the SRTM digital elevation model; and 
ten phenological metrics. The figure highlighted four points representing 
the four analyzed classes (Frost damage 25-May, Frost damage 30-June, 
Harvested/senescent, and Not frost damage). 

 

 

D3, which represents the date when the NDVI starts to decrease, still occurs in 

May for the areas affected by the frost on May 25th. While in the areas that have 

not been affected by any frost, it only occurs in July. A similar pattern occurred 
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with Dd and D4, but with a delay relative to D3. It is noticed that the cycle duration 

(Lgs) of the areas affected by the frost on May 25th is reduced concerning the 

other areas. This is expected, as the frost occurred prematurely, interrupting the 

corn phenological cycle. The area that was in senescence when the frost 

occurred on May 25th (pivot field area) has similar Dd and D4 values to the areas 

affected by the frost on June 30th. The same occurred for the metrics D80, D90, 

and D95, they had similar values to the areas damaged by the frost on May 25th. 

This could cause confusion during the classification. However, the q values are 

lower and the NDVI slope is higher, which indicates a smoother reduction of the 

NDVI value, similarly to what occurred with the areas that were not affected by 

any frost event. The combination of these metrics allows the separation of the 

four classes using the Random Forest model, as will be discussed in the next 

section. 

8.5.3 Frost damage map 

The spatial distribution of the frost-affected areas is similar in the maps generated 

from the fitted NDVI WFI time series normalized using MODIS as a reference 

(Figure 8.7a) and normalized using the transformation functions derived from the 

WFI inter-satellite cross comparison (Figure 8.7b). The classification that uses 

the normalized WFI time series as input using MODIS as a reference identified 

more areas as harvested/senescent, mainly in the southwest and northwest 

portions of the study region. These two regions have in common the recurrence 

of clouds during the analyzed period. Thin clouds cause NDVI reduction, and the 

omission of these clouds in the cloud mask on the dates before the frost caused 
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a smoother drop in the fitted NDVI value. The omission of thin clouds combined 

with the amplitude reduction in the NDVI time series normalized using MODIS as 

a reference caused this misclassification of frost affected areas as 

harvested/senescent. 

In the two WFI time series normalization approaches, the areas not affected by 

frost are located mainly in the north and west (Figure 8.6a-b) of the study region 

and in the places with the highest topography (Figure 8.6c-e). The latitude to the 

north is higher, which makes this region warmer than regions in further south 

(APARECIDO et al., 2016). The west region is on the shores of Lake Itaipu. 

These two regions (north and west) have the lowest altitudes in the study site 

(Figure 8.1) and are less prone to frost (WREGE et al., 2018a). This is probably 

linked to macroclimatic factors, in which regions with lower altitudes are generally 

less cold and less susceptible to frost (PEREIRA et al., 2002).  

From the total corn area, 69.7% was mapped as frost damaged in the approach 

that uses the normalized NDVI WFI time series as input using MODIS as a 

reference. In comparison, 72.4% was mapped as frost damaged in the approach 

with the WFI data normalized using the transformation functions. Only ~2.4% of 

the corn areas were damaged by the frost on May 25th in both approaches, while 

the rest of the damaged corn was affected by the June 30th frost. The May 25th 

frost mainly damaged the corn in the lower regions of the microrelief. This can be 

seen in the changes in the lower areas (Figure 8.7c - SRTM) between the May 

23th image and June 2nd image (Figure 8.7c). Topo climatic factors can explain 

this effect, because the denser and colder air is deposited in the lower regions, 
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mainly in river valleys (PEREIRA et al., 2002). Areas damaged by the June 30th 

frost changed from shades of red to cyan between June 30 to July 7 images. In 

the June 30, 2021 image it is not possible to see the effects of the frost that 

occurred on that day (Figure 8.7c-e). Areas that have not been affected by any 

frost are still shaded red in all four images. The areas in senescence or harvested 

did not show changes in the images before and after the frost events. 

Figure 8.7 – Frost damage map with WFI time series (a) normalized using MODIS as 
reference and (b) normalized using transformation function derived from 
WFI inter-satellite cross-comparison, and three zooming locations. All 
WFI images are false-colour composites (R: NIR, G: red, and B: green). 
Scale bar from SRTM in meters. 

 

The rate of change of the NDVI decrease (q) was the most important variable 

used by Random Forest model when the WFI NDVI time series was normalized 
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using MODIS as a reference, and the second more important when the input data 

was normalized using the transformation function derived from WFI inter-satellite 

cross-comparison (Figure 8.8). Frost breaks down chloroplast structures and 

causes a rapid change in leaf biochemical constituents causing an increase in 

reflectance in the photosynthetically active regions. In contrast, it caused a 

decline in the near-infrared region (Choudhury et al., 2019). The increase in red 

reflectance and the decrease in infrared reflectance cause an abrupt drop in NDVI 

shortly after frost. This causes a high rate of change in the decrease of the NDVI, 

i.e., high value of q. In areas where corn senescence occurred naturally (areas 

that did not have frost damaged or were already harvested), the decrease in NDVI 

is smoother, with lower values of q. Dd was the most important variable for 

Random Forest model when the WFI input data were normalized using the 

transformation function from WFI inter-satellite cross-comparison. Dd is related 

to q, as it is the date when the maximum rate of the adjusted NDVI decline 

occurred. Another important variable in both approaches was the D70. While D80 

was the second most important variable for the approach in which the data was 

normalized with MODIS, D3 was the third most important variable in the approach 

where the data was normalized with the transformation functions. D70, D80, and 

D3 are metrics related to the dates when there was a percentage of NDVI decline, 

or the start of the inflection point for NDVI decline, in frost damaged areas this 

occurs shortly after the frost event. Combining these metrics allowed the 

separation of frost-damaged areas from unaffected areas. 
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Figure 8.8 – Feature importance of the variables used by Random Forest model using 

as input WFI time series (a) normalized applying MODIS as reference and 
(b) normalized by transformation function derived from WFI inter-satellite 
cross-comparison. 

 

 

 

According to the classification accuracy analysis using phenological metrics 

derived from WFI NDVI time series normalized with MODIS as a reference as 

input for the Random Forest model, the result had an overall accuracy of 0.93 

(Table 8.2). Producer (PA) and User (UA) accuracy were greater than 0.88 for all 

classes, except the AU for Harvested/Senescent, which was equal to 0.78. This 

class's biggest confusion was for areas misclassified as damaged by the June 30 

frost. There was also confusion between areas of the Not affected class being 

classified as Frost damage 30-June class. 

(b) 

(a) 

(a) 
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Table 8.2 – Error matrix for corn frost damages classification by frost, in 2021, in western 
Paraná, using WFI normalization with MODIS as reference. 

    Reference     

    
Harvested/
Senescent 

Frost 
25-May 

Frost 
30-Jun 

Not 
affected Total UA 

Classification 

Harvested/ 
Senescent 

80 5 12 5 102 0.78 

Frost 25-May 2 70 2 0 75 0.95 

Frost 30-Jun 0 0 360 5 365 0.99 

Not affected 2 0 9 79 90 0.88 

 Total 84 75 383 89 OA 

 PA 0.95 0.93 0.94 0.89 0.9334  

 

The classification that used as input the phenological metrics derived from the 

WFI NDVI time series normalized applying the transformation functions from WFI 

inter-satellite cross-comparison reached overall accuracy of 0.96 (Table 8.3). UA 

and PA were greater than 0.90 for all classes. In this approach, the biggest 

confusions were also from frost damaged areas classified as the 

Harvest/Senescent class. However, in this approach there was more confusion 

of areas damaged by the May 25 frost than by the June 30 frost misclassified as 

Harvest/Senescent. 
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Table 8.3 – Error matrix for corn frost damages classification by frost, in 2021, in western 
Paraná, using WFI normalization with transformation function. 

    Reference     

    
Harvested/
Senescent 

Frost 
25-May 

Frost 
30-Jun 

Not 
affected Total UA 

Classification 

Harvested/ 
Senescent 

92 5 4 1 102 0.90 

Frost 25-May 2 71 2 0 75 0.95 

Frost 30-Jun 5 0 357 4 366 0.98 

Not affected 0 0 2 88 90 0.98 
 Total 99 76 365 93 OA 
 PA 0.93 0.93 0.98 0.95 0.9605 

 

Classification errors may be related to poor curve fitting of the NDVI time series 

that leads to the extraction of phenological metrics that do not adequately 

represent the events that occurred in the field. They may also be related to errors 

in the corn mask used. These two factors may explain the difference in accuracy 

between the maps generated by the two data normalization approaches. The 

normalized time series using MODIS as a reference has a smaller amplitude 

between the maximum and minimum values of NDVI. Combining this with the 

incorrect identification of clouds in the cloud mask led to a more similar curve fit 

between some classes in some cases, which caused misclassification. The 

difference in resolution between the used corn mask, which was generated based 

on Sentinel-2/MSI at 10 m, and the WFI images (64 m) can also be a source of 

error because the fields edges there may be spectral mixing with other classes, 

generated by resampling. 

Our approach allowed us to spatially identify crop areas damaged by each of the 

two-frost events that occurred in western Paraná. The frost on May 25, 2021, 

affected the corn in earlier stages of the reproductive stage, grain filling, and 
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maturation. The frost on June 30, 2021, affected the corn in the final stages of 

grain filling, maturation, and other fields already in the harvest phase. The 

damage caused by frost is greater at earlier stages than closer to harvest. Corn 

productivity in the second crop in Paraná felt from 5684.00 kg ha-1 in the 

2019/2020 crop to 3340.57 kg ha-1 in the 2020/2021 crop (CONAB, 2022b), due 

to two frost events and a drought that occurred in the region.  

Frost, as well as other disasters, can negatively affect agriculture's growing cycle 

and production. In this way, data related to frost monitoring in crops can support 

decision-making and inform policy interventions and market transparency, 

especially for major commodity crops such as corn. Furthermore, corn is the basis 

of many people's diets, and a large part of the corn produced in Brazil is exported. 

Therefore, the negative effects of a lack of monitoring and poor management of 

agricultural land in Brazil can have a dangerous impact on food security in many 

other countries. Therefore, the results generated with the methodology proposed 

in this work can help the corn crop condition monitoring. Our approach can be 

extended to other regions in the future to identify the corn phenological phase 

during the frost event and the areas that are susceptible to frost damage. 

8.6 Conclusion 

In this work, we mapped the corn areas damaged by the frosts that occurred in 

May and June 2021, in western Paraná, using the Random Forest model and as 

input phenological metrics extracted from the NDVI time series from the WFI 

sensor onboard CBERS-4, CBERS-4A and Amazonia-1. Two approaches were 

used to normalize the WFI data from the three sensors into a more consistent 
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time series. The first uses the MODIS sensor as a reference. The second uses 

transformation functions derived from WFI inter-satellite cross-comparison. The 

two approaches managed to reduce the difference between the WFI sensors of 

the three satellites. However, the first approach, despite being able to reduce the 

difference between sensors better, also reduced the amplitude of NDVI values.  

The phenological metrics extracted from the NDVI time series of the two WFI data 

normalization approaches allowed the Random Forest model to identify areas 

affected by frost. The overall accuracy of the classifications was 0.93 and 0.96 

for the normalization approach using MODIS as a reference and the transform 

functions, respectively. The biggest confusions were in areas damaged by frost 

misclassified as harvested/senescent, mainly in the normalization approach that 

uses MODIS as a reference. 

Our approach allowed us to identify the corn areas damaged by the two frost 

events in 2021 in western Paraná using WFI data from CBERS-4, CBERS-4A, 

and Amazonia-1. The approach can be expanded in the future to identify the corn 

phenological stage when it is affected by frost, thus allowing improvement in frost 

damage monitoring and production estimates. 

Corn monitoring in Brazil is essential for government services dealing with the 

import and export of this commodity, corn producers, agencies with a role in food 

relief, international organizations that monitor the world food production, and 

commodity traders. An adequate monitoring system that provides information 

regarding productivity losses can help combat food security with strategic 
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planning in the country and other countries since Brazil is the second largest corn 

exporter. 
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9 OVERALL DISCUSSION 

Agricultural monitoring requests RS data with a high revisit frequency to generate 

dense SITS. The combination of WFI data from sensors onboard the CBERS-4, 

CBERS-4A and Amazonia-1 satellites can generate dense SITS, reaching a 

revisits frequency of 1-3 days over Brazil. However, several factors can cause 

differences in surface reflectance between sensors. These factors need to be 

evaluated and minimized so that variations in reflectance or derived spectral 

indices are due only to changes in the target or agricultural crop. Therefore, 

allowing the generation of consistent SITS and the development of studies whose 

objective is to analyze and compare targets over time. 

An accurate and reliable cloud mask is mandatory for effective EO optical 

imagery exploitation and time series analysis (REWEHEL; LI; KESHK, 2022a). 

However, WFI sensors only have four spectral bands making accurate cloud and 

cloud shadow detection quite difficult. Furthermore, few cloud and cloud shadow 

detection algorithms are compatible with sensor data that have a limited number 

of spectral bands. Nonetheless, it is important to understand the strength and 

limitations of each of these algorithms. When comparing the CMASK and ATSA 

algorithms, our results showed that CMASK has high reliability in detecting 

clouds, i.e., almost all pixels identified as clouds are actually clouds (UA close to 

100%). However, the algorithm also has a high omission rate of cloud pixels (PA 

~70%) misclassifying them as clear pixels. In comparison, the ATSA brings more 

balanced results between omission and commission errors. In regions or areas 

with low availability of clear pixels, CMASK may be better, as it practically does 
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not mislabel clear pixels as clouds. However, unidentified cloud pixels in the cloud 

mask generally bring noise to the time series, which can generate worse results 

in its applications (OLDONI et al., 2021a). In this case, ATSA may be more 

suitable as it can better identify shadows and cloud shadows. Algorithms based 

on deep learning have brought advances in cloud identification (LI et al., 2019a; 

REWEHEL; LI; KESHK, 2022b) and may be an option to obtain more accurate 

cloud masking and cloud shadows for the WFI images in the future. 

Second, precisely co-registered images are extremely important for combining 

data from different sensors and for time series analysis (GAO; MASEK; WOLFE, 

2009). In this sense, it is necessary to know the geometric accuracy of the 

images. When co-registration between bands was evaluated, the results showed 

average RMSE of spatial shifts close to specifications (0.3 pixel; EPIPHANIO, 

2009). Thus, it was decided not to perform the correction of the band-to-band 

detected displacement, considering that additional resampling induces an 

alteration in the pixel value (SCHEFFLER et al., 2017). However, when assessing 

the geometric accuracy between multitemporal WFI data and using Sentinel-

2/MSI data as a reference, large displacements were observed, reaching 1.45 

pixels (93m) for CBERS-4/WFI and Amazonia-1/WFI, and 2.5 pixels (138 m) for 

CBERS-4A/WFI. These large displacements can lead to degradation of results 

when combining data from three WFI sensors and also for time series analysis. 

Thus, a framework for automatically correcting these displacements was 

introduced. After the co-registration procedures, the geometric accuracy of the 

images was improved, reaching an average RMSE of spatial shifts on a tile basis 

of 0.29±0.05. In addition, our approach of the co-registration avoid additional 
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resampling of the images, that reduce the pixel values degradation, and allowing 

to align the images in regular grids, as required for the data cubes generation 

(FERREIRA et al., 2020). The image registration is required for further time series 

analysis of WFI images in several applications that require precise sub-pixel 

registration, but mainly for targets spatially heterogeneous such as agriculture. 

Angular effects can occur as a function of the view angle and changes in the solar 

illumination vector as most surfaces are not Lambertian. These effects can bring 

differences in surface reflectance even in images of the same date and location 

when observed by different sensors or over time in the time series. The WFI 

images presented angular effects both as a function of the VZA and as a function 

of the change in the vector of solar illumination (SZA). All approaches tested were 

able to reduce the effects from directional effects, while only those using full 

BRDF normalization were able to reduce the SZA effects. The two approaches, 

that use RossThick–LiSparse–Reciprocal model fixed parameters derived from 

MODIS (ROY et al., 2016b) or inverted from the medium resolution images 

themselves  (FLOOD et al., 2013), showed good ability to reduce the angular 

effects and were easier to apply because they do not depend on MODIS data. 

Still, none of the approaches completely eliminate the angular effects. Our 

approach to calculate the VZA and VAA is only approximate, which may have 

brought some uncertainty in the angular normalizations. The exact modeling 

mainly of the vector of VAA of each pixel can bring improvement in the results. 

Different land use and land cover classes may have different magnitudes of 

angular effects (PETRI; GALVÃO; LYAPUSTIN, 2019), so, the analysis of these 

effects by class can provide insights to improve the results of BRDF 
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normalization. In addition, approaches that disaggregate the BRDF parameters 

to the resolution of the image to be normalized can also bring improvements in 

reducing angular effects (FRANCH et al., 2019). 

The WFI inter-satellite cross-comparison results showed that co-registration and 

BRDF normalization contribute to reduce differences between sensors. When 

only data with a VZA smaller than 7º were considered, the ODR regression line 

between the surface reflectance WFI from CBERS-4 and CBERS-4A approached 

the identity line, indicating greater similarity between these data. Even after the 

BRDF normalization, there was still a greater distance from the identity line 

concerning the data close to the nadir, indicating that there is still a residual 

angular effect. Another factor that can influence this aspect is the atmospheric 

correction uncertainties that do not consider the view angles or the 

misidentification of clouds and cloud shadows. The cross-comparison between 

the WFI data from Amazonia-1, CBERS-4, and CBERS-4A showed the formation 

of two distinct clusters in the blue and NIR bands. This could be an effect of some 

radiometric calibration problem. During radiometric calibration, CBERS-4/WFI 

data showed comparable quality to Landsat-8/OLI data. However, periodic 

calibration activities are highly recommended to maintain the standard quality of 

data because the radiometric coefficients might change over time (MARTINS et 

al., 2018). Furthermore, there is no information in the literature about the 

radiometric calibration status of the WFI sensors onboard the CBERS-4A and 

Amazonia-1. Nevertheless, assessing the uncertainties of atmospheric correction 

and performing radiometric calibration of the WFI data are beyond the scope of 

this work, but should be considered in future research. Despite this, we derived 
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transformation functions to convert the WFI sensor reflectance data from one 

satellite to the equivalent of the other satellite, allowing us to combine them into 

a single time series. 

As a case study, we evaluated the combination of the WFI data from the three 

satellites in a single time series by mapping second crop season corn damaged 

by the frosts that occurred in western Paraná in 2021. Two data normalization 

approaches were compared: using the previously derived transformation 

functions; and the MODIS product MCD43A4 as a reference. Although the 

normalization with MODIS further reduced the differences in the NDVI time series 

among WFI from the three satellites, it also reduced the amplitude of the values 

during the corn growth cycle. The approach with the transformation functions 

preserved the amplitude of the data, which was important in the extraction of the 

phenological metrics, which allowed the mapping of frost-damaged corn areas 

with greater accuracy. The Random Forest classifier using as input the 

phenological metrics derived from the normalized NDVI time series of the WFI 

data from the three satellites allowed mapping the areas affected by two frost 

events, separating them from areas in senescence/harvest and from unaffected 

areas. This proves the potential of the combined time series of the WFI data in a 

single consistent and seamless time series from the three satellites for 

agricultural monitoring. Other applications such as mapping crop types and 

estimating phenological phases also have great potential to be carried out using 

these time series. Future improvements in cloud masking, radiometric calibration, 

atmospheric correction and BRDF normalization may bring improvements in the 
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integration of WFI data from the three satellites into a single time series, bringing 

improvements to agricultural monitoring applications. 
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10 OVERALL CONTRIBUTIONS 

This research investigated various aspects of WFI data quality, and ways to 

improve the data, aiming to combine them into a more consistent time series, 

thus allowing agricultural monitoring. The main contributions produced by this 

research were: 

• In Chapter 4, we investigated the quality of two cloud mask 

algorithms for WFI data, an essential product for automatic time 

series analysis. The results showed the strengths and limitations of 

each algorithm, serving as a guide for WFI data users. In addition 

to bringing insights to improve algorithms. 

• In Chapter 5, we evaluated the geometric accuracy of the WFI data. 

The geometric accuracy quantification provides important guidance 

to improving geolocation accuracy and data application. As the 

results showed displacements, we introduced a framework for 

automatic sub-pixel co-registration. Thus, allowing to improve the 

geometric quality of the WFI data. 

• In Chapter 6, we assessed the angular effects in WFI images and 

evaluated six approaches for normalizing BRDF effects in WFI 

imagery. The results showed the occurrence of bidirectional effects 

in the WFI images, both in the spectral bands and in the EVI. This 

chapter can also serve as a guide for choosing the most suitable 

normalization method, allowing WFI data users to reduce angular 

effects. 
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• In Chapter 7, we performed inter-satellite cross-comparison of WFI 

data from CBERS-4, CBERS-4A, and Amazonia-1, which allowed 

us to identify differences between the data and to derive 

transformation functions between the satellites. This, together with 

the processing developed in the previous chapters, makes it 

possible to combine the WFI data from the three satellites in a more 

consistent time series.  

• In Chapter 8, we mapped frost-damaged corn areas in western 

Paraná state using time series of WFI data from the three satellites 

combined. The proposed methodology allowed to distinguish areas 

damaged by two frost events, allowing to distinguish them from corn 

areas already in senescence or harvested, and from unaffected 

areas. This chapter also demonstrated the enormous potential of 

WFI data for agricultural monitoring. An adequate monitoring 

system that provides information regarding crop production can 

help combat food security with strategic planning in the country and 

other countries since Brazil is a large food producer. 
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11 OVERALL CONCLUSION 

In this research, we investigated the quality of WFI data onboard the CBERS-4, 

CBERS-4A, and Amazonia-1 satellites and data interoperability procedures to 

integrate them into a single, more consistent time series for agricultural 

monitoring. The main conclusions of the research were: 

• Our results showed that despite CMASK having high reliability in 

pixels identified as a cloud (user accuracy close to 100%), it had 

omission errors in identifying clouds greater than 30 %. In 

comparison, ATSA showed a better balance between omission and 

commission errors.  

• Spatial shifts were found in relation to the Sentinel-2/MSI images of 

up to 2.5 pixels (138 m) for CBERS-4A/WFI and up to 1.45 pixels 

(93 m) for CBERS-4/WFI and Amazonia-1/WFI, showing the need 

to co-register these images for WFI multi-temporal analysis or when 

they are combined with other data sources.  

• Our approach to automatic co-registration improved the geometric 

quality of the WFI data, reducing the RMSE on a tile basis from 

1.42±0.21 to 0.29±0.05, thus substantially reducing misregistration 

and providing more consistent and robust data.  

• Our results suggest that there are directional effects as a function 

of the view angle and the change of the solar vector, in all spectral 

bands, being greater in the NIR and the EVI.  
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• The six angular normalization approaches evaluated reduced the 

angular effects resulting from the view angle. The five methods that 

perform the full BRDF correction using the RossThick–LiSparse–

Reciprocal model reduced the angular effects caused by the 

change in the solar vector. Angular normalization should be 

conducted for the analysis of CBERS-4/WFI time series or image 

mosaics from spectral bands, mainly NIR, and non-normalized 

vegetation indices such as EVI.  

• In the inter-satellite WFI cross-comparison, in most cases there was 

a reduction in the differences between sensors after co-registration 

and BRDF normalization, with the data approaching the 1:1 straight 

line and reduction of the RMSD. The surface reflectance and NBAR 

of the WFI sensors onboard the CBERS-4 and CBERS-4A were 

more similar than the WFI onboard the Amazonia-1.  

• Statistical transformation functions were derived that allow the 

conversion of the surface reflectance and NBAR of one sensor to 

the equivalent if it had been obtained by the other.  

• Combining all the previous findings in a case study to map corn 

frost-damaged areas in western Paraná state allowed extracting 

phenological metrics from the NDVI time series of the WFI sensor 

of the three satellites and separate areas affected by two frost 

events from areas that had already been harvested or in 

senescence and were not affected. The approach can be expanded 
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in the future to identify and map the crop's phenological phases, 

crop type, among others.  
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