Close

1. Identity statement
Reference TypeJournal Article
Sitemtc-m21d.sid.inpe.br (namespace prefix: upn:44QHRCS)
Holder Codeisadg {BR SPINPE} ibi 8JMKD3MGPCW/3DT298S
Identifier8JMKD3MGP3W34T/475SM78
Repositorysid.inpe.br/mtc-m21d/2022/06.22.12.37   (restricted access)
Last Update2022:06.22.12.37.34 (UTC) simone
Metadata Repositorysid.inpe.br/mtc-m21d/2022/06.22.12.37.34
Metadata Last Update2023:01.03.16.46.08 (UTC) administrator
DOI10.5194/isprs-archives-XLIII-B3-2022-721-2022
ISSN1682-1750
Citation KeyVieiraQueiShig:2022:AnInNu
TitleAn analysis of the influence of the number of observations in a random forest time series classification to map the forest and deforestation in the brazilian Amazon
Year2022
MonthJune
Access Date2025, Dec. 07
Type of Workjournal article
Secondary TypePRE PI
Number of Files1
Size7019 KiB
2. Context
Author1 Vieira, Leonardo de Souza
2 Queiroz, Gilberto Ribeiro de
3 Shiguemori, Elcio H.
Resume Identifier1
2 8JMKD3MGP5W/3C9JHBC
Group1 CAP-COMP-DIPGR-INPE-MCTI-GOV-BR
2 DIOTG-CGCT-INPE-MCTI-GOV-BR
Affiliation1 Instituto Nacional de Pesquisas Espaciais (INPE)
2 Instituto Nacional de Pesquisas Espaciais (INPE)
3 Instituto de Estudos Avançados (IEAv)
Author e-Mail Address1 leo76sv@gmail.com
2 gilberto.queiroz@inpe.br
3 elcio@ieav.cta.br
JournalInternational Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Volume43
NumberB3
Pages721-728
Host Collectionurlib.net/www/2021/06.04.03.40 upn:44QHRCS
History (UTC)2022-06-22 12:38:01 :: simone -> administrator :: 2022
2022-07-08 16:51:17 :: administrator -> simone :: 2022
2022-12-20 14:14:10 :: simone -> administrator :: 2022
2023-01-03 16:46:08 :: administrator -> simone :: 2022
3. Content and structure
Is the master or a copy?is the master
Content Stagecompleted
Transferable1
Content TypeExternal Contribution
Version Typepublisher
KeywordsBrazilian Amazon
Classification
Land cover
Landsat
Random Forest
Time series
AbstractRemote sensing has been an essential tool in combating deforestation. However, the ever-rising deforestation rates require new remote sensing techniques. This paper presents a study to determine the effects on the accuracy of the data analysis of varying the number of satellite observations, using a Random Forest classification algorithm. We carried out experiments on the Landsat-8 data cube with 22 images and developed an automatic sampling system based on PRODES to generate the labeled time series. We split the time series dataset to build data subsets with different number of observations. The results showed that a fewer number of observations negatively effects the accuracy of the RF algorithm when analyzing deforested areas, but not forest areas. The RF classifiers were compared using a random test data set, where all classifiers presented an Overall Accuracy (OA), Balanced Accuracy (BA), and f1-score (F1) above 97%. In the first evaluation, the variation in the number of observations appears to cause little influence on the classification accuracy. The analysis used the reference map to contrast the RF classifier's results. The results showed that the best results in OA occurred with fewer observations. The best performance of 96% happened with four observations. We evaluated the performance of the classes, deforestation, and forest individually. The results showed that a fewer number of observations had negative effects on the accuracy of the RF algorithm when analyzing deforested areas, but not forest areas. Finally, we evaluated the visual quality of the land cover maps produced.
AreaCOMP
Arrangement 1urlib.net > BDMCI > Fonds > Produção pgr ATUAIS > CAP > An analysis of...
Arrangement 2urlib.net > BDMCI > Fonds > Produção a partir de 2021 > CGCT > An analysis of...
Arrangement 3urlib.net > BDMCI > Fonds > Produção a partir de 2021 > CGIP > An analysis of...
doc Directory Contentaccess
source Directory Contentthere are no files
agreement Directory Content
agreement.html 22/06/2022 09:37 1.0 KiB 
4. Conditions of access and use
Languageen
Target Fileisprs-archives-XLIII-B3-2022-721-2022.pdf
User Groupsimone
Reader Groupadministrator
simone
Visibilityshown
Read Permissiondeny from all and allow from 150.163
Update Permissionnot transferred
5. Allied materials
Next Higher Units8JMKD3MGPCW/3F2PHGS
8JMKD3MGPCW/46KUATE
8JMKD3MGPCW/46KUES5
Citing Item Listsid.inpe.br/bibdigital/2013/10.12.22.16 - 53
sid.inpe.br/bibdigital/2022/04.03.22.23 - 43
sid.inpe.br/bibdigital/2022/04.03.23.11 - 36
sid.inpe.br/mtc-m21/2012/07.13.14.49.22 - 18
DisseminationWEBSCI; PORTALCAPES; COMPENDEX.
6. Notes
Empty Fieldsalternatejournal archivingpolicy archivist callnumber copyholder copyright creatorhistory descriptionlevel e-mailaddress format isbn label lineage mark mirrorrepository nextedition notes orcid parameterlist parentrepositories previousedition previouslowerunit progress project rightsholder schedulinginformation secondarydate secondarykey secondarymark session shorttitle sponsor subject tertiarymark tertiarytype url
7. Description control
e-Mail (login)simone
update 


Close